1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 55 { 56 assert(ri->fieldoffset); 57 if (cpreg_field_is_64bit(ri)) { 58 CPREG_FIELD64(env, ri) = value; 59 } else { 60 CPREG_FIELD32(env, ri) = value; 61 } 62 } 63 64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 return (char *)env + ri->fieldoffset; 67 } 68 69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 70 { 71 /* Raw read of a coprocessor register (as needed for migration, etc). */ 72 if (ri->type & ARM_CP_CONST) { 73 return ri->resetvalue; 74 } else if (ri->raw_readfn) { 75 return ri->raw_readfn(env, ri); 76 } else if (ri->readfn) { 77 return ri->readfn(env, ri); 78 } else { 79 return raw_read(env, ri); 80 } 81 } 82 83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 84 uint64_t v) 85 { 86 /* Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* Return true if the regdef would cause an assertion if you called 105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 106 * program bug for it not to have the NO_RAW flag). 107 * NB that returning false here doesn't necessarily mean that calling 108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 109 * read/write access functions which are safe for raw use" from "has 110 * read/write access functions which have side effects but has forgotten 111 * to provide raw access functions". 112 * The tests here line up with the conditions in read/write_raw_cp_reg() 113 * and assertions in raw_read()/raw_write(). 114 */ 115 if ((ri->type & ARM_CP_CONST) || 116 ri->fieldoffset || 117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 118 return false; 119 } 120 return true; 121 } 122 123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 124 { 125 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 126 int i; 127 bool ok = true; 128 129 for (i = 0; i < cpu->cpreg_array_len; i++) { 130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 131 const ARMCPRegInfo *ri; 132 uint64_t newval; 133 134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 135 if (!ri) { 136 ok = false; 137 continue; 138 } 139 if (ri->type & ARM_CP_NO_RAW) { 140 continue; 141 } 142 143 newval = read_raw_cp_reg(&cpu->env, ri); 144 if (kvm_sync) { 145 /* 146 * Only sync if the previous list->cpustate sync succeeded. 147 * Rather than tracking the success/failure state for every 148 * item in the list, we just recheck "does the raw write we must 149 * have made in write_list_to_cpustate() read back OK" here. 150 */ 151 uint64_t oldval = cpu->cpreg_values[i]; 152 153 if (oldval == newval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, oldval); 158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 159 continue; 160 } 161 162 write_raw_cp_reg(&cpu->env, ri, newval); 163 } 164 cpu->cpreg_values[i] = newval; 165 } 166 return ok; 167 } 168 169 bool write_list_to_cpustate(ARMCPU *cpu) 170 { 171 int i; 172 bool ok = true; 173 174 for (i = 0; i < cpu->cpreg_array_len; i++) { 175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 176 uint64_t v = cpu->cpreg_values[i]; 177 const ARMCPRegInfo *ri; 178 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 180 if (!ri) { 181 ok = false; 182 continue; 183 } 184 if (ri->type & ARM_CP_NO_RAW) { 185 continue; 186 } 187 /* Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 /* 269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 270 */ 271 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 272 const ARMCPRegInfo *ri, 273 bool isread) 274 { 275 if (!is_a64(env) && arm_current_el(env) == 3 && 276 arm_is_secure_below_el3(env)) { 277 return CP_ACCESS_TRAP_UNCATEGORIZED; 278 } 279 return CP_ACCESS_OK; 280 } 281 282 /* Some secure-only AArch32 registers trap to EL3 if used from 283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 285 * We assume that the .access field is set to PL1_RW. 286 */ 287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 288 const ARMCPRegInfo *ri, 289 bool isread) 290 { 291 if (arm_current_el(env) == 3) { 292 return CP_ACCESS_OK; 293 } 294 if (arm_is_secure_below_el3(env)) { 295 if (env->cp15.scr_el3 & SCR_EEL2) { 296 return CP_ACCESS_TRAP_EL2; 297 } 298 return CP_ACCESS_TRAP_EL3; 299 } 300 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 301 return CP_ACCESS_TRAP_UNCATEGORIZED; 302 } 303 304 /* Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 366 { 367 ARMCPU *cpu = env_archcpu(env); 368 369 raw_write(env, ri, value); 370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 371 } 372 373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 374 { 375 ARMCPU *cpu = env_archcpu(env); 376 377 if (raw_read(env, ri) != value) { 378 /* Unlike real hardware the qemu TLB uses virtual addresses, 379 * not modified virtual addresses, so this causes a TLB flush. 380 */ 381 tlb_flush(CPU(cpu)); 382 raw_write(env, ri, value); 383 } 384 } 385 386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 387 uint64_t value) 388 { 389 ARMCPU *cpu = env_archcpu(env); 390 391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 392 && !extended_addresses_enabled(env)) { 393 /* For VMSA (when not using the LPAE long descriptor page table 394 * format) this register includes the ASID, so do a TLB flush. 395 * For PMSA it is purely a process ID and no action is needed. 396 */ 397 tlb_flush(CPU(cpu)); 398 } 399 raw_write(env, ri, value); 400 } 401 402 /* IS variants of TLB operations must affect all cores */ 403 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 404 uint64_t value) 405 { 406 CPUState *cs = env_cpu(env); 407 408 tlb_flush_all_cpus_synced(cs); 409 } 410 411 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 CPUState *cs = env_cpu(env); 415 416 tlb_flush_all_cpus_synced(cs); 417 } 418 419 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 420 uint64_t value) 421 { 422 CPUState *cs = env_cpu(env); 423 424 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 425 } 426 427 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 428 uint64_t value) 429 { 430 CPUState *cs = env_cpu(env); 431 432 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 433 } 434 435 /* 436 * Non-IS variants of TLB operations are upgraded to 437 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 438 * force broadcast of these operations. 439 */ 440 static bool tlb_force_broadcast(CPUARMState *env) 441 { 442 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 443 } 444 445 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 446 uint64_t value) 447 { 448 /* Invalidate all (TLBIALL) */ 449 CPUState *cs = env_cpu(env); 450 451 if (tlb_force_broadcast(env)) { 452 tlb_flush_all_cpus_synced(cs); 453 } else { 454 tlb_flush(cs); 455 } 456 } 457 458 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 459 uint64_t value) 460 { 461 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 462 CPUState *cs = env_cpu(env); 463 464 value &= TARGET_PAGE_MASK; 465 if (tlb_force_broadcast(env)) { 466 tlb_flush_page_all_cpus_synced(cs, value); 467 } else { 468 tlb_flush_page(cs, value); 469 } 470 } 471 472 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 473 uint64_t value) 474 { 475 /* Invalidate by ASID (TLBIASID) */ 476 CPUState *cs = env_cpu(env); 477 478 if (tlb_force_broadcast(env)) { 479 tlb_flush_all_cpus_synced(cs); 480 } else { 481 tlb_flush(cs); 482 } 483 } 484 485 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 486 uint64_t value) 487 { 488 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 489 CPUState *cs = env_cpu(env); 490 491 value &= TARGET_PAGE_MASK; 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_page_all_cpus_synced(cs, value); 494 } else { 495 tlb_flush_page(cs, value); 496 } 497 } 498 499 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 CPUState *cs = env_cpu(env); 503 504 tlb_flush_by_mmuidx(cs, 505 ARMMMUIdxBit_E10_1 | 506 ARMMMUIdxBit_E10_1_PAN | 507 ARMMMUIdxBit_E10_0); 508 } 509 510 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 511 uint64_t value) 512 { 513 CPUState *cs = env_cpu(env); 514 515 tlb_flush_by_mmuidx_all_cpus_synced(cs, 516 ARMMMUIdxBit_E10_1 | 517 ARMMMUIdxBit_E10_1_PAN | 518 ARMMMUIdxBit_E10_0); 519 } 520 521 522 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 523 uint64_t value) 524 { 525 CPUState *cs = env_cpu(env); 526 527 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 528 } 529 530 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 CPUState *cs = env_cpu(env); 534 535 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 536 } 537 538 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 539 uint64_t value) 540 { 541 CPUState *cs = env_cpu(env); 542 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 543 544 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 545 } 546 547 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 552 553 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 554 ARMMMUIdxBit_E2); 555 } 556 557 static const ARMCPRegInfo cp_reginfo[] = { 558 /* Define the secure and non-secure FCSE identifier CP registers 559 * separately because there is no secure bank in V8 (no _EL3). This allows 560 * the secure register to be properly reset and migrated. There is also no 561 * v8 EL1 version of the register so the non-secure instance stands alone. 562 */ 563 { .name = "FCSEIDR", 564 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 565 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 566 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 567 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 568 { .name = "FCSEIDR_S", 569 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 570 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 571 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 572 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 573 /* Define the secure and non-secure context identifier CP registers 574 * separately because there is no secure bank in V8 (no _EL3). This allows 575 * the secure register to be properly reset and migrated. In the 576 * non-secure case, the 32-bit register will have reset and migration 577 * disabled during registration as it is handled by the 64-bit instance. 578 */ 579 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 580 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 581 .access = PL1_RW, .accessfn = access_tvm_trvm, 582 .secure = ARM_CP_SECSTATE_NS, 583 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 584 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 585 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 586 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 587 .access = PL1_RW, .accessfn = access_tvm_trvm, 588 .secure = ARM_CP_SECSTATE_S, 589 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 590 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 591 }; 592 593 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 594 /* NB: Some of these registers exist in v8 but with more precise 595 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 596 */ 597 /* MMU Domain access control / MPU write buffer control */ 598 { .name = "DACR", 599 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 600 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 601 .writefn = dacr_write, .raw_writefn = raw_write, 602 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 603 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 604 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 605 * For v6 and v5, these mappings are overly broad. 606 */ 607 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 608 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 609 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 610 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 611 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 612 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 613 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 614 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 615 /* Cache maintenance ops; some of this space may be overridden later. */ 616 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 617 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 618 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 619 }; 620 621 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 622 /* Not all pre-v6 cores implemented this WFI, so this is slightly 623 * over-broad. 624 */ 625 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 626 .access = PL1_W, .type = ARM_CP_WFI }, 627 }; 628 629 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 630 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 631 * is UNPREDICTABLE; we choose to NOP as most implementations do). 632 */ 633 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 634 .access = PL1_W, .type = ARM_CP_WFI }, 635 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 636 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 637 * OMAPCP will override this space. 638 */ 639 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 640 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 641 .resetvalue = 0 }, 642 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 643 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 644 .resetvalue = 0 }, 645 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 646 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 647 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 648 .resetvalue = 0 }, 649 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 650 * implementing it as RAZ means the "debug architecture version" bits 651 * will read as a reserved value, which should cause Linux to not try 652 * to use the debug hardware. 653 */ 654 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 655 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 656 /* MMU TLB control. Note that the wildcarding means we cover not just 657 * the unified TLB ops but also the dside/iside/inner-shareable variants. 658 */ 659 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 660 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 661 .type = ARM_CP_NO_RAW }, 662 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 663 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 664 .type = ARM_CP_NO_RAW }, 665 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 666 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 667 .type = ARM_CP_NO_RAW }, 668 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 669 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 670 .type = ARM_CP_NO_RAW }, 671 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 672 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 673 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 674 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 675 }; 676 677 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 678 uint64_t value) 679 { 680 uint32_t mask = 0; 681 682 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 683 if (!arm_feature(env, ARM_FEATURE_V8)) { 684 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 685 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 686 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 687 */ 688 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 689 /* VFP coprocessor: cp10 & cp11 [23:20] */ 690 mask |= R_CPACR_ASEDIS_MASK | 691 R_CPACR_D32DIS_MASK | 692 R_CPACR_CP11_MASK | 693 R_CPACR_CP10_MASK; 694 695 if (!arm_feature(env, ARM_FEATURE_NEON)) { 696 /* ASEDIS [31] bit is RAO/WI */ 697 value |= R_CPACR_ASEDIS_MASK; 698 } 699 700 /* VFPv3 and upwards with NEON implement 32 double precision 701 * registers (D0-D31). 702 */ 703 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 704 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 705 value |= R_CPACR_D32DIS_MASK; 706 } 707 } 708 value &= mask; 709 } 710 711 /* 712 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 713 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 714 */ 715 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 716 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 717 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 718 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 719 } 720 721 env->cp15.cpacr_el1 = value; 722 } 723 724 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 725 { 726 /* 727 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 728 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 729 */ 730 uint64_t value = env->cp15.cpacr_el1; 731 732 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 733 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 734 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 735 } 736 return value; 737 } 738 739 740 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 741 { 742 /* Call cpacr_write() so that we reset with the correct RAO bits set 743 * for our CPU features. 744 */ 745 cpacr_write(env, ri, 0); 746 } 747 748 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 749 bool isread) 750 { 751 if (arm_feature(env, ARM_FEATURE_V8)) { 752 /* Check if CPACR accesses are to be trapped to EL2 */ 753 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 754 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 755 return CP_ACCESS_TRAP_EL2; 756 /* Check if CPACR accesses are to be trapped to EL3 */ 757 } else if (arm_current_el(env) < 3 && 758 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 759 return CP_ACCESS_TRAP_EL3; 760 } 761 } 762 763 return CP_ACCESS_OK; 764 } 765 766 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 767 bool isread) 768 { 769 /* Check if CPTR accesses are set to trap to EL3 */ 770 if (arm_current_el(env) == 2 && 771 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 772 return CP_ACCESS_TRAP_EL3; 773 } 774 775 return CP_ACCESS_OK; 776 } 777 778 static const ARMCPRegInfo v6_cp_reginfo[] = { 779 /* prefetch by MVA in v6, NOP in v7 */ 780 { .name = "MVA_prefetch", 781 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 782 .access = PL1_W, .type = ARM_CP_NOP }, 783 /* We need to break the TB after ISB to execute self-modifying code 784 * correctly and also to take any pending interrupts immediately. 785 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 786 */ 787 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 788 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 789 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 790 .access = PL0_W, .type = ARM_CP_NOP }, 791 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 792 .access = PL0_W, .type = ARM_CP_NOP }, 793 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 794 .access = PL1_RW, .accessfn = access_tvm_trvm, 795 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 796 offsetof(CPUARMState, cp15.ifar_ns) }, 797 .resetvalue = 0, }, 798 /* Watchpoint Fault Address Register : should actually only be present 799 * for 1136, 1176, 11MPCore. 800 */ 801 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 802 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 803 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 804 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 805 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 806 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 807 }; 808 809 typedef struct pm_event { 810 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 811 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 812 bool (*supported)(CPUARMState *); 813 /* 814 * Retrieve the current count of the underlying event. The programmed 815 * counters hold a difference from the return value from this function 816 */ 817 uint64_t (*get_count)(CPUARMState *); 818 /* 819 * Return how many nanoseconds it will take (at a minimum) for count events 820 * to occur. A negative value indicates the counter will never overflow, or 821 * that the counter has otherwise arranged for the overflow bit to be set 822 * and the PMU interrupt to be raised on overflow. 823 */ 824 int64_t (*ns_per_count)(uint64_t); 825 } pm_event; 826 827 static bool event_always_supported(CPUARMState *env) 828 { 829 return true; 830 } 831 832 static uint64_t swinc_get_count(CPUARMState *env) 833 { 834 /* 835 * SW_INCR events are written directly to the pmevcntr's by writes to 836 * PMSWINC, so there is no underlying count maintained by the PMU itself 837 */ 838 return 0; 839 } 840 841 static int64_t swinc_ns_per(uint64_t ignored) 842 { 843 return -1; 844 } 845 846 /* 847 * Return the underlying cycle count for the PMU cycle counters. If we're in 848 * usermode, simply return 0. 849 */ 850 static uint64_t cycles_get_count(CPUARMState *env) 851 { 852 #ifndef CONFIG_USER_ONLY 853 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 854 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 855 #else 856 return cpu_get_host_ticks(); 857 #endif 858 } 859 860 #ifndef CONFIG_USER_ONLY 861 static int64_t cycles_ns_per(uint64_t cycles) 862 { 863 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 864 } 865 866 static bool instructions_supported(CPUARMState *env) 867 { 868 return icount_enabled() == 1; /* Precise instruction counting */ 869 } 870 871 static uint64_t instructions_get_count(CPUARMState *env) 872 { 873 return (uint64_t)icount_get_raw(); 874 } 875 876 static int64_t instructions_ns_per(uint64_t icount) 877 { 878 return icount_to_ns((int64_t)icount); 879 } 880 #endif 881 882 static bool pmuv3p1_events_supported(CPUARMState *env) 883 { 884 /* For events which are supported in any v8.1 PMU */ 885 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 886 } 887 888 static bool pmuv3p4_events_supported(CPUARMState *env) 889 { 890 /* For events which are supported in any v8.1 PMU */ 891 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 892 } 893 894 static uint64_t zero_event_get_count(CPUARMState *env) 895 { 896 /* For events which on QEMU never fire, so their count is always zero */ 897 return 0; 898 } 899 900 static int64_t zero_event_ns_per(uint64_t cycles) 901 { 902 /* An event which never fires can never overflow */ 903 return -1; 904 } 905 906 static const pm_event pm_events[] = { 907 { .number = 0x000, /* SW_INCR */ 908 .supported = event_always_supported, 909 .get_count = swinc_get_count, 910 .ns_per_count = swinc_ns_per, 911 }, 912 #ifndef CONFIG_USER_ONLY 913 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 914 .supported = instructions_supported, 915 .get_count = instructions_get_count, 916 .ns_per_count = instructions_ns_per, 917 }, 918 { .number = 0x011, /* CPU_CYCLES, Cycle */ 919 .supported = event_always_supported, 920 .get_count = cycles_get_count, 921 .ns_per_count = cycles_ns_per, 922 }, 923 #endif 924 { .number = 0x023, /* STALL_FRONTEND */ 925 .supported = pmuv3p1_events_supported, 926 .get_count = zero_event_get_count, 927 .ns_per_count = zero_event_ns_per, 928 }, 929 { .number = 0x024, /* STALL_BACKEND */ 930 .supported = pmuv3p1_events_supported, 931 .get_count = zero_event_get_count, 932 .ns_per_count = zero_event_ns_per, 933 }, 934 { .number = 0x03c, /* STALL */ 935 .supported = pmuv3p4_events_supported, 936 .get_count = zero_event_get_count, 937 .ns_per_count = zero_event_ns_per, 938 }, 939 }; 940 941 /* 942 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 943 * events (i.e. the statistical profiling extension), this implementation 944 * should first be updated to something sparse instead of the current 945 * supported_event_map[] array. 946 */ 947 #define MAX_EVENT_ID 0x3c 948 #define UNSUPPORTED_EVENT UINT16_MAX 949 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 950 951 /* 952 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 953 * of ARM event numbers to indices in our pm_events array. 954 * 955 * Note: Events in the 0x40XX range are not currently supported. 956 */ 957 void pmu_init(ARMCPU *cpu) 958 { 959 unsigned int i; 960 961 /* 962 * Empty supported_event_map and cpu->pmceid[01] before adding supported 963 * events to them 964 */ 965 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 966 supported_event_map[i] = UNSUPPORTED_EVENT; 967 } 968 cpu->pmceid0 = 0; 969 cpu->pmceid1 = 0; 970 971 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 972 const pm_event *cnt = &pm_events[i]; 973 assert(cnt->number <= MAX_EVENT_ID); 974 /* We do not currently support events in the 0x40xx range */ 975 assert(cnt->number <= 0x3f); 976 977 if (cnt->supported(&cpu->env)) { 978 supported_event_map[cnt->number] = i; 979 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 980 if (cnt->number & 0x20) { 981 cpu->pmceid1 |= event_mask; 982 } else { 983 cpu->pmceid0 |= event_mask; 984 } 985 } 986 } 987 } 988 989 /* 990 * Check at runtime whether a PMU event is supported for the current machine 991 */ 992 static bool event_supported(uint16_t number) 993 { 994 if (number > MAX_EVENT_ID) { 995 return false; 996 } 997 return supported_event_map[number] != UNSUPPORTED_EVENT; 998 } 999 1000 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1001 bool isread) 1002 { 1003 /* Performance monitor registers user accessibility is controlled 1004 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1005 * trapping to EL2 or EL3 for other accesses. 1006 */ 1007 int el = arm_current_el(env); 1008 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1009 1010 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1011 return CP_ACCESS_TRAP; 1012 } 1013 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1014 return CP_ACCESS_TRAP_EL2; 1015 } 1016 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1017 return CP_ACCESS_TRAP_EL3; 1018 } 1019 1020 return CP_ACCESS_OK; 1021 } 1022 1023 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1024 const ARMCPRegInfo *ri, 1025 bool isread) 1026 { 1027 /* ER: event counter read trap control */ 1028 if (arm_feature(env, ARM_FEATURE_V8) 1029 && arm_current_el(env) == 0 1030 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1031 && isread) { 1032 return CP_ACCESS_OK; 1033 } 1034 1035 return pmreg_access(env, ri, isread); 1036 } 1037 1038 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1039 const ARMCPRegInfo *ri, 1040 bool isread) 1041 { 1042 /* SW: software increment write trap control */ 1043 if (arm_feature(env, ARM_FEATURE_V8) 1044 && arm_current_el(env) == 0 1045 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1046 && !isread) { 1047 return CP_ACCESS_OK; 1048 } 1049 1050 return pmreg_access(env, ri, isread); 1051 } 1052 1053 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1054 const ARMCPRegInfo *ri, 1055 bool isread) 1056 { 1057 /* ER: event counter read trap control */ 1058 if (arm_feature(env, ARM_FEATURE_V8) 1059 && arm_current_el(env) == 0 1060 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1061 return CP_ACCESS_OK; 1062 } 1063 1064 return pmreg_access(env, ri, isread); 1065 } 1066 1067 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1068 const ARMCPRegInfo *ri, 1069 bool isread) 1070 { 1071 /* CR: cycle counter read trap control */ 1072 if (arm_feature(env, ARM_FEATURE_V8) 1073 && arm_current_el(env) == 0 1074 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1075 && isread) { 1076 return CP_ACCESS_OK; 1077 } 1078 1079 return pmreg_access(env, ri, isread); 1080 } 1081 1082 /* 1083 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1084 * We use these to decide whether we need to wrap a write to MDCR_EL2 1085 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1086 */ 1087 #define MDCR_EL2_PMU_ENABLE_BITS \ 1088 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1089 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1090 1091 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1092 * the current EL, security state, and register configuration. 1093 */ 1094 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1095 { 1096 uint64_t filter; 1097 bool e, p, u, nsk, nsu, nsh, m; 1098 bool enabled, prohibited = false, filtered; 1099 bool secure = arm_is_secure(env); 1100 int el = arm_current_el(env); 1101 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1102 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1103 1104 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1105 return false; 1106 } 1107 1108 if (!arm_feature(env, ARM_FEATURE_EL2) || 1109 (counter < hpmn || counter == 31)) { 1110 e = env->cp15.c9_pmcr & PMCRE; 1111 } else { 1112 e = mdcr_el2 & MDCR_HPME; 1113 } 1114 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1115 1116 /* Is event counting prohibited? */ 1117 if (el == 2 && (counter < hpmn || counter == 31)) { 1118 prohibited = mdcr_el2 & MDCR_HPMD; 1119 } 1120 if (secure) { 1121 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1122 } 1123 1124 if (counter == 31) { 1125 /* 1126 * The cycle counter defaults to running. PMCR.DP says "disable 1127 * the cycle counter when event counting is prohibited". 1128 * Some MDCR bits disable the cycle counter specifically. 1129 */ 1130 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1131 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1132 if (secure) { 1133 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1134 } 1135 if (el == 2) { 1136 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1137 } 1138 } 1139 } 1140 1141 if (counter == 31) { 1142 filter = env->cp15.pmccfiltr_el0; 1143 } else { 1144 filter = env->cp15.c14_pmevtyper[counter]; 1145 } 1146 1147 p = filter & PMXEVTYPER_P; 1148 u = filter & PMXEVTYPER_U; 1149 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1150 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1151 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1152 m = arm_el_is_aa64(env, 1) && 1153 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1154 1155 if (el == 0) { 1156 filtered = secure ? u : u != nsu; 1157 } else if (el == 1) { 1158 filtered = secure ? p : p != nsk; 1159 } else if (el == 2) { 1160 filtered = !nsh; 1161 } else { /* EL3 */ 1162 filtered = m != p; 1163 } 1164 1165 if (counter != 31) { 1166 /* 1167 * If not checking PMCCNTR, ensure the counter is setup to an event we 1168 * support 1169 */ 1170 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1171 if (!event_supported(event)) { 1172 return false; 1173 } 1174 } 1175 1176 return enabled && !prohibited && !filtered; 1177 } 1178 1179 static void pmu_update_irq(CPUARMState *env) 1180 { 1181 ARMCPU *cpu = env_archcpu(env); 1182 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1183 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1184 } 1185 1186 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1187 { 1188 /* 1189 * Return true if the clock divider is enabled and the cycle counter 1190 * is supposed to tick only once every 64 clock cycles. This is 1191 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1192 * (64-bit) cycle counter PMCR.D has no effect. 1193 */ 1194 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1195 } 1196 1197 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1198 { 1199 /* Return true if the specified event counter is configured to be 64 bit */ 1200 1201 /* This isn't intended to be used with the cycle counter */ 1202 assert(counter < 31); 1203 1204 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1205 return false; 1206 } 1207 1208 if (arm_feature(env, ARM_FEATURE_EL2)) { 1209 /* 1210 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1211 * current security state, so we don't use arm_mdcr_el2_eff() here. 1212 */ 1213 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1214 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1215 1216 if (hpmn != 0 && counter >= hpmn) { 1217 return hlp; 1218 } 1219 } 1220 return env->cp15.c9_pmcr & PMCRLP; 1221 } 1222 1223 /* 1224 * Ensure c15_ccnt is the guest-visible count so that operations such as 1225 * enabling/disabling the counter or filtering, modifying the count itself, 1226 * etc. can be done logically. This is essentially a no-op if the counter is 1227 * not enabled at the time of the call. 1228 */ 1229 static void pmccntr_op_start(CPUARMState *env) 1230 { 1231 uint64_t cycles = cycles_get_count(env); 1232 1233 if (pmu_counter_enabled(env, 31)) { 1234 uint64_t eff_cycles = cycles; 1235 if (pmccntr_clockdiv_enabled(env)) { 1236 eff_cycles /= 64; 1237 } 1238 1239 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1240 1241 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1242 1ull << 63 : 1ull << 31; 1243 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1244 env->cp15.c9_pmovsr |= (1ULL << 31); 1245 pmu_update_irq(env); 1246 } 1247 1248 env->cp15.c15_ccnt = new_pmccntr; 1249 } 1250 env->cp15.c15_ccnt_delta = cycles; 1251 } 1252 1253 /* 1254 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1255 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1256 * pmccntr_op_start. 1257 */ 1258 static void pmccntr_op_finish(CPUARMState *env) 1259 { 1260 if (pmu_counter_enabled(env, 31)) { 1261 #ifndef CONFIG_USER_ONLY 1262 /* Calculate when the counter will next overflow */ 1263 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1264 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1265 remaining_cycles = (uint32_t)remaining_cycles; 1266 } 1267 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1268 1269 if (overflow_in > 0) { 1270 int64_t overflow_at; 1271 1272 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1273 overflow_in, &overflow_at)) { 1274 ARMCPU *cpu = env_archcpu(env); 1275 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1276 } 1277 } 1278 #endif 1279 1280 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1281 if (pmccntr_clockdiv_enabled(env)) { 1282 prev_cycles /= 64; 1283 } 1284 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1285 } 1286 } 1287 1288 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1289 { 1290 1291 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1292 uint64_t count = 0; 1293 if (event_supported(event)) { 1294 uint16_t event_idx = supported_event_map[event]; 1295 count = pm_events[event_idx].get_count(env); 1296 } 1297 1298 if (pmu_counter_enabled(env, counter)) { 1299 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1300 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1301 1ULL << 63 : 1ULL << 31; 1302 1303 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1304 env->cp15.c9_pmovsr |= (1 << counter); 1305 pmu_update_irq(env); 1306 } 1307 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1308 } 1309 env->cp15.c14_pmevcntr_delta[counter] = count; 1310 } 1311 1312 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1313 { 1314 if (pmu_counter_enabled(env, counter)) { 1315 #ifndef CONFIG_USER_ONLY 1316 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1317 uint16_t event_idx = supported_event_map[event]; 1318 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1319 int64_t overflow_in; 1320 1321 if (!pmevcntr_is_64_bit(env, counter)) { 1322 delta = (uint32_t)delta; 1323 } 1324 overflow_in = pm_events[event_idx].ns_per_count(delta); 1325 1326 if (overflow_in > 0) { 1327 int64_t overflow_at; 1328 1329 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1330 overflow_in, &overflow_at)) { 1331 ARMCPU *cpu = env_archcpu(env); 1332 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1333 } 1334 } 1335 #endif 1336 1337 env->cp15.c14_pmevcntr_delta[counter] -= 1338 env->cp15.c14_pmevcntr[counter]; 1339 } 1340 } 1341 1342 void pmu_op_start(CPUARMState *env) 1343 { 1344 unsigned int i; 1345 pmccntr_op_start(env); 1346 for (i = 0; i < pmu_num_counters(env); i++) { 1347 pmevcntr_op_start(env, i); 1348 } 1349 } 1350 1351 void pmu_op_finish(CPUARMState *env) 1352 { 1353 unsigned int i; 1354 pmccntr_op_finish(env); 1355 for (i = 0; i < pmu_num_counters(env); i++) { 1356 pmevcntr_op_finish(env, i); 1357 } 1358 } 1359 1360 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1361 { 1362 pmu_op_start(&cpu->env); 1363 } 1364 1365 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1366 { 1367 pmu_op_finish(&cpu->env); 1368 } 1369 1370 void arm_pmu_timer_cb(void *opaque) 1371 { 1372 ARMCPU *cpu = opaque; 1373 1374 /* 1375 * Update all the counter values based on the current underlying counts, 1376 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1377 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1378 * counter may expire. 1379 */ 1380 pmu_op_start(&cpu->env); 1381 pmu_op_finish(&cpu->env); 1382 } 1383 1384 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1385 uint64_t value) 1386 { 1387 pmu_op_start(env); 1388 1389 if (value & PMCRC) { 1390 /* The counter has been reset */ 1391 env->cp15.c15_ccnt = 0; 1392 } 1393 1394 if (value & PMCRP) { 1395 unsigned int i; 1396 for (i = 0; i < pmu_num_counters(env); i++) { 1397 env->cp15.c14_pmevcntr[i] = 0; 1398 } 1399 } 1400 1401 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1402 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1403 1404 pmu_op_finish(env); 1405 } 1406 1407 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1408 uint64_t value) 1409 { 1410 unsigned int i; 1411 uint64_t overflow_mask, new_pmswinc; 1412 1413 for (i = 0; i < pmu_num_counters(env); i++) { 1414 /* Increment a counter's count iff: */ 1415 if ((value & (1 << i)) && /* counter's bit is set */ 1416 /* counter is enabled and not filtered */ 1417 pmu_counter_enabled(env, i) && 1418 /* counter is SW_INCR */ 1419 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1420 pmevcntr_op_start(env, i); 1421 1422 /* 1423 * Detect if this write causes an overflow since we can't predict 1424 * PMSWINC overflows like we can for other events 1425 */ 1426 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1427 1428 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1429 1ULL << 63 : 1ULL << 31; 1430 1431 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1432 env->cp15.c9_pmovsr |= (1 << i); 1433 pmu_update_irq(env); 1434 } 1435 1436 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1437 1438 pmevcntr_op_finish(env, i); 1439 } 1440 } 1441 } 1442 1443 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1444 { 1445 uint64_t ret; 1446 pmccntr_op_start(env); 1447 ret = env->cp15.c15_ccnt; 1448 pmccntr_op_finish(env); 1449 return ret; 1450 } 1451 1452 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1453 uint64_t value) 1454 { 1455 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1456 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1457 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1458 * accessed. 1459 */ 1460 env->cp15.c9_pmselr = value & 0x1f; 1461 } 1462 1463 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1464 uint64_t value) 1465 { 1466 pmccntr_op_start(env); 1467 env->cp15.c15_ccnt = value; 1468 pmccntr_op_finish(env); 1469 } 1470 1471 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1472 uint64_t value) 1473 { 1474 uint64_t cur_val = pmccntr_read(env, NULL); 1475 1476 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1477 } 1478 1479 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1480 uint64_t value) 1481 { 1482 pmccntr_op_start(env); 1483 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1484 pmccntr_op_finish(env); 1485 } 1486 1487 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1488 uint64_t value) 1489 { 1490 pmccntr_op_start(env); 1491 /* M is not accessible from AArch32 */ 1492 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1493 (value & PMCCFILTR); 1494 pmccntr_op_finish(env); 1495 } 1496 1497 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1498 { 1499 /* M is not visible in AArch32 */ 1500 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1501 } 1502 1503 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1504 uint64_t value) 1505 { 1506 pmu_op_start(env); 1507 value &= pmu_counter_mask(env); 1508 env->cp15.c9_pmcnten |= value; 1509 pmu_op_finish(env); 1510 } 1511 1512 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 pmu_op_start(env); 1516 value &= pmu_counter_mask(env); 1517 env->cp15.c9_pmcnten &= ~value; 1518 pmu_op_finish(env); 1519 } 1520 1521 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1522 uint64_t value) 1523 { 1524 value &= pmu_counter_mask(env); 1525 env->cp15.c9_pmovsr &= ~value; 1526 pmu_update_irq(env); 1527 } 1528 1529 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1530 uint64_t value) 1531 { 1532 value &= pmu_counter_mask(env); 1533 env->cp15.c9_pmovsr |= value; 1534 pmu_update_irq(env); 1535 } 1536 1537 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1538 uint64_t value, const uint8_t counter) 1539 { 1540 if (counter == 31) { 1541 pmccfiltr_write(env, ri, value); 1542 } else if (counter < pmu_num_counters(env)) { 1543 pmevcntr_op_start(env, counter); 1544 1545 /* 1546 * If this counter's event type is changing, store the current 1547 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1548 * pmevcntr_op_finish has the correct baseline when it converts back to 1549 * a delta. 1550 */ 1551 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1552 PMXEVTYPER_EVTCOUNT; 1553 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1554 if (old_event != new_event) { 1555 uint64_t count = 0; 1556 if (event_supported(new_event)) { 1557 uint16_t event_idx = supported_event_map[new_event]; 1558 count = pm_events[event_idx].get_count(env); 1559 } 1560 env->cp15.c14_pmevcntr_delta[counter] = count; 1561 } 1562 1563 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1564 pmevcntr_op_finish(env, counter); 1565 } 1566 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1567 * PMSELR value is equal to or greater than the number of implemented 1568 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1569 */ 1570 } 1571 1572 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1573 const uint8_t counter) 1574 { 1575 if (counter == 31) { 1576 return env->cp15.pmccfiltr_el0; 1577 } else if (counter < pmu_num_counters(env)) { 1578 return env->cp15.c14_pmevtyper[counter]; 1579 } else { 1580 /* 1581 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1582 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1583 */ 1584 return 0; 1585 } 1586 } 1587 1588 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1592 pmevtyper_write(env, ri, value, counter); 1593 } 1594 1595 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1596 uint64_t value) 1597 { 1598 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1599 env->cp15.c14_pmevtyper[counter] = value; 1600 1601 /* 1602 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1603 * pmu_op_finish calls when loading saved state for a migration. Because 1604 * we're potentially updating the type of event here, the value written to 1605 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1606 * different counter type. Therefore, we need to set this value to the 1607 * current count for the counter type we're writing so that pmu_op_finish 1608 * has the correct count for its calculation. 1609 */ 1610 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1611 if (event_supported(event)) { 1612 uint16_t event_idx = supported_event_map[event]; 1613 env->cp15.c14_pmevcntr_delta[counter] = 1614 pm_events[event_idx].get_count(env); 1615 } 1616 } 1617 1618 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1619 { 1620 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1621 return pmevtyper_read(env, ri, counter); 1622 } 1623 1624 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1625 uint64_t value) 1626 { 1627 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1628 } 1629 1630 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1631 { 1632 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1633 } 1634 1635 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value, uint8_t counter) 1637 { 1638 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1639 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1640 value &= MAKE_64BIT_MASK(0, 32); 1641 } 1642 if (counter < pmu_num_counters(env)) { 1643 pmevcntr_op_start(env, counter); 1644 env->cp15.c14_pmevcntr[counter] = value; 1645 pmevcntr_op_finish(env, counter); 1646 } 1647 /* 1648 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1649 * are CONSTRAINED UNPREDICTABLE. 1650 */ 1651 } 1652 1653 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1654 uint8_t counter) 1655 { 1656 if (counter < pmu_num_counters(env)) { 1657 uint64_t ret; 1658 pmevcntr_op_start(env, counter); 1659 ret = env->cp15.c14_pmevcntr[counter]; 1660 pmevcntr_op_finish(env, counter); 1661 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1662 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1663 ret &= MAKE_64BIT_MASK(0, 32); 1664 } 1665 return ret; 1666 } else { 1667 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1668 * are CONSTRAINED UNPREDICTABLE. */ 1669 return 0; 1670 } 1671 } 1672 1673 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1674 uint64_t value) 1675 { 1676 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1677 pmevcntr_write(env, ri, value, counter); 1678 } 1679 1680 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1681 { 1682 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1683 return pmevcntr_read(env, ri, counter); 1684 } 1685 1686 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1687 uint64_t value) 1688 { 1689 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1690 assert(counter < pmu_num_counters(env)); 1691 env->cp15.c14_pmevcntr[counter] = value; 1692 pmevcntr_write(env, ri, value, counter); 1693 } 1694 1695 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1696 { 1697 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1698 assert(counter < pmu_num_counters(env)); 1699 return env->cp15.c14_pmevcntr[counter]; 1700 } 1701 1702 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1703 uint64_t value) 1704 { 1705 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1709 { 1710 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1711 } 1712 1713 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 if (arm_feature(env, ARM_FEATURE_V8)) { 1717 env->cp15.c9_pmuserenr = value & 0xf; 1718 } else { 1719 env->cp15.c9_pmuserenr = value & 1; 1720 } 1721 } 1722 1723 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1724 uint64_t value) 1725 { 1726 /* We have no event counters so only the C bit can be changed */ 1727 value &= pmu_counter_mask(env); 1728 env->cp15.c9_pminten |= value; 1729 pmu_update_irq(env); 1730 } 1731 1732 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1733 uint64_t value) 1734 { 1735 value &= pmu_counter_mask(env); 1736 env->cp15.c9_pminten &= ~value; 1737 pmu_update_irq(env); 1738 } 1739 1740 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 /* Note that even though the AArch64 view of this register has bits 1744 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1745 * architectural requirements for bits which are RES0 only in some 1746 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1747 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1748 */ 1749 raw_write(env, ri, value & ~0x1FULL); 1750 } 1751 1752 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1753 { 1754 /* Begin with base v8.0 state. */ 1755 uint32_t valid_mask = 0x3fff; 1756 ARMCPU *cpu = env_archcpu(env); 1757 1758 /* 1759 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1760 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1761 * Instead, choose the format based on the mode of EL3. 1762 */ 1763 if (arm_el_is_aa64(env, 3)) { 1764 value |= SCR_FW | SCR_AW; /* RES1 */ 1765 valid_mask &= ~SCR_NET; /* RES0 */ 1766 1767 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1768 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1769 value |= SCR_RW; /* RAO/WI */ 1770 } 1771 if (cpu_isar_feature(aa64_ras, cpu)) { 1772 valid_mask |= SCR_TERR; 1773 } 1774 if (cpu_isar_feature(aa64_lor, cpu)) { 1775 valid_mask |= SCR_TLOR; 1776 } 1777 if (cpu_isar_feature(aa64_pauth, cpu)) { 1778 valid_mask |= SCR_API | SCR_APK; 1779 } 1780 if (cpu_isar_feature(aa64_sel2, cpu)) { 1781 valid_mask |= SCR_EEL2; 1782 } 1783 if (cpu_isar_feature(aa64_mte, cpu)) { 1784 valid_mask |= SCR_ATA; 1785 } 1786 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1787 valid_mask |= SCR_ENSCXT; 1788 } 1789 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1790 valid_mask |= SCR_EASE | SCR_NMEA; 1791 } 1792 } else { 1793 valid_mask &= ~(SCR_RW | SCR_ST); 1794 if (cpu_isar_feature(aa32_ras, cpu)) { 1795 valid_mask |= SCR_TERR; 1796 } 1797 } 1798 1799 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1800 valid_mask &= ~SCR_HCE; 1801 1802 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1803 * supported if EL2 exists. The bit is UNK/SBZP when 1804 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1805 * when EL2 is unavailable. 1806 * On ARMv8, this bit is always available. 1807 */ 1808 if (arm_feature(env, ARM_FEATURE_V7) && 1809 !arm_feature(env, ARM_FEATURE_V8)) { 1810 valid_mask &= ~SCR_SMD; 1811 } 1812 } 1813 1814 /* Clear all-context RES0 bits. */ 1815 value &= valid_mask; 1816 raw_write(env, ri, value); 1817 } 1818 1819 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1820 { 1821 /* 1822 * scr_write will set the RES1 bits on an AArch64-only CPU. 1823 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1824 */ 1825 scr_write(env, ri, 0); 1826 } 1827 1828 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1829 const ARMCPRegInfo *ri, 1830 bool isread) 1831 { 1832 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1833 return CP_ACCESS_TRAP_EL2; 1834 } 1835 1836 return CP_ACCESS_OK; 1837 } 1838 1839 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1840 { 1841 ARMCPU *cpu = env_archcpu(env); 1842 1843 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1844 * bank 1845 */ 1846 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1847 ri->secure & ARM_CP_SECSTATE_S); 1848 1849 return cpu->ccsidr[index]; 1850 } 1851 1852 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 raw_write(env, ri, value & 0xf); 1856 } 1857 1858 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1859 { 1860 CPUState *cs = env_cpu(env); 1861 bool el1 = arm_current_el(env) == 1; 1862 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1863 uint64_t ret = 0; 1864 1865 if (hcr_el2 & HCR_IMO) { 1866 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1867 ret |= CPSR_I; 1868 } 1869 } else { 1870 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1871 ret |= CPSR_I; 1872 } 1873 } 1874 1875 if (hcr_el2 & HCR_FMO) { 1876 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1877 ret |= CPSR_F; 1878 } 1879 } else { 1880 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1881 ret |= CPSR_F; 1882 } 1883 } 1884 1885 if (hcr_el2 & HCR_AMO) { 1886 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1887 ret |= CPSR_A; 1888 } 1889 } 1890 1891 return ret; 1892 } 1893 1894 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1895 bool isread) 1896 { 1897 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1898 return CP_ACCESS_TRAP_EL2; 1899 } 1900 1901 return CP_ACCESS_OK; 1902 } 1903 1904 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1905 bool isread) 1906 { 1907 if (arm_feature(env, ARM_FEATURE_V8)) { 1908 return access_aa64_tid1(env, ri, isread); 1909 } 1910 1911 return CP_ACCESS_OK; 1912 } 1913 1914 static const ARMCPRegInfo v7_cp_reginfo[] = { 1915 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1916 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1917 .access = PL1_W, .type = ARM_CP_NOP }, 1918 /* Performance monitors are implementation defined in v7, 1919 * but with an ARM recommended set of registers, which we 1920 * follow. 1921 * 1922 * Performance registers fall into three categories: 1923 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1924 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1925 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1926 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1927 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1928 */ 1929 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1930 .access = PL0_RW, .type = ARM_CP_ALIAS, 1931 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1932 .writefn = pmcntenset_write, 1933 .accessfn = pmreg_access, 1934 .raw_writefn = raw_write }, 1935 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1936 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1937 .access = PL0_RW, .accessfn = pmreg_access, 1938 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1939 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1940 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1941 .access = PL0_RW, 1942 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1943 .accessfn = pmreg_access, 1944 .writefn = pmcntenclr_write, 1945 .type = ARM_CP_ALIAS }, 1946 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1947 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1948 .access = PL0_RW, .accessfn = pmreg_access, 1949 .type = ARM_CP_ALIAS, 1950 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1951 .writefn = pmcntenclr_write }, 1952 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1953 .access = PL0_RW, .type = ARM_CP_IO, 1954 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1955 .accessfn = pmreg_access, 1956 .writefn = pmovsr_write, 1957 .raw_writefn = raw_write }, 1958 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1959 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1960 .access = PL0_RW, .accessfn = pmreg_access, 1961 .type = ARM_CP_ALIAS | ARM_CP_IO, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1963 .writefn = pmovsr_write, 1964 .raw_writefn = raw_write }, 1965 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1966 .access = PL0_W, .accessfn = pmreg_access_swinc, 1967 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1968 .writefn = pmswinc_write }, 1969 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1971 .access = PL0_W, .accessfn = pmreg_access_swinc, 1972 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1973 .writefn = pmswinc_write }, 1974 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1975 .access = PL0_RW, .type = ARM_CP_ALIAS, 1976 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1977 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1978 .raw_writefn = raw_write}, 1979 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1980 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1981 .access = PL0_RW, .accessfn = pmreg_access_selr, 1982 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1983 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1984 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1985 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1986 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1987 .accessfn = pmreg_access_ccntr }, 1988 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1989 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1990 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1991 .type = ARM_CP_IO, 1992 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1993 .readfn = pmccntr_read, .writefn = pmccntr_write, 1994 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1995 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1996 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1997 .access = PL0_RW, .accessfn = pmreg_access, 1998 .type = ARM_CP_ALIAS | ARM_CP_IO, 1999 .resetvalue = 0, }, 2000 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2002 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2003 .access = PL0_RW, .accessfn = pmreg_access, 2004 .type = ARM_CP_IO, 2005 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2006 .resetvalue = 0, }, 2007 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2008 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2009 .accessfn = pmreg_access, 2010 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2011 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2012 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2013 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2014 .accessfn = pmreg_access, 2015 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2016 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2017 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2018 .accessfn = pmreg_access_xevcntr, 2019 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2020 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2021 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2022 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2023 .accessfn = pmreg_access_xevcntr, 2024 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2025 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2026 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2027 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2028 .resetvalue = 0, 2029 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2030 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2032 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2033 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2034 .resetvalue = 0, 2035 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2036 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2037 .access = PL1_RW, .accessfn = access_tpm, 2038 .type = ARM_CP_ALIAS | ARM_CP_IO, 2039 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2040 .resetvalue = 0, 2041 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2042 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2043 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2044 .access = PL1_RW, .accessfn = access_tpm, 2045 .type = ARM_CP_IO, 2046 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2047 .writefn = pmintenset_write, .raw_writefn = raw_write, 2048 .resetvalue = 0x0 }, 2049 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2050 .access = PL1_RW, .accessfn = access_tpm, 2051 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2052 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2053 .writefn = pmintenclr_write, }, 2054 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2055 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2056 .access = PL1_RW, .accessfn = access_tpm, 2057 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2058 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2059 .writefn = pmintenclr_write }, 2060 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2061 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2062 .access = PL1_R, 2063 .accessfn = access_aa64_tid2, 2064 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2065 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2067 .access = PL1_RW, 2068 .accessfn = access_aa64_tid2, 2069 .writefn = csselr_write, .resetvalue = 0, 2070 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2071 offsetof(CPUARMState, cp15.csselr_ns) } }, 2072 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2073 * just RAZ for all cores: 2074 */ 2075 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2076 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2077 .access = PL1_R, .type = ARM_CP_CONST, 2078 .accessfn = access_aa64_tid1, 2079 .resetvalue = 0 }, 2080 /* Auxiliary fault status registers: these also are IMPDEF, and we 2081 * choose to RAZ/WI for all cores. 2082 */ 2083 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2084 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2085 .access = PL1_RW, .accessfn = access_tvm_trvm, 2086 .type = ARM_CP_CONST, .resetvalue = 0 }, 2087 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2088 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2089 .access = PL1_RW, .accessfn = access_tvm_trvm, 2090 .type = ARM_CP_CONST, .resetvalue = 0 }, 2091 /* MAIR can just read-as-written because we don't implement caches 2092 * and so don't need to care about memory attributes. 2093 */ 2094 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2095 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2096 .access = PL1_RW, .accessfn = access_tvm_trvm, 2097 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2098 .resetvalue = 0 }, 2099 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2100 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2101 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2102 .resetvalue = 0 }, 2103 /* For non-long-descriptor page tables these are PRRR and NMRR; 2104 * regardless they still act as reads-as-written for QEMU. 2105 */ 2106 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2107 * allows them to assign the correct fieldoffset based on the endianness 2108 * handled in the field definitions. 2109 */ 2110 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2111 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2112 .access = PL1_RW, .accessfn = access_tvm_trvm, 2113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2114 offsetof(CPUARMState, cp15.mair0_ns) }, 2115 .resetfn = arm_cp_reset_ignore }, 2116 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2117 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2118 .access = PL1_RW, .accessfn = access_tvm_trvm, 2119 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2120 offsetof(CPUARMState, cp15.mair1_ns) }, 2121 .resetfn = arm_cp_reset_ignore }, 2122 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2124 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2125 /* 32 bit ITLB invalidates */ 2126 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 /* 32 bit DTLB invalidates */ 2136 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2137 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2138 .writefn = tlbiall_write }, 2139 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2140 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2141 .writefn = tlbimva_write }, 2142 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2143 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2144 .writefn = tlbiasid_write }, 2145 /* 32 bit TLB invalidates */ 2146 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbiall_write }, 2149 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbimva_write }, 2152 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbiasid_write }, 2155 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2156 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2157 .writefn = tlbimvaa_write }, 2158 }; 2159 2160 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2161 /* 32 bit TLB invalidates, Inner Shareable */ 2162 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2163 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2164 .writefn = tlbiall_is_write }, 2165 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2166 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2167 .writefn = tlbimva_is_write }, 2168 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2169 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2170 .writefn = tlbiasid_is_write }, 2171 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2172 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2173 .writefn = tlbimvaa_is_write }, 2174 }; 2175 2176 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2177 /* PMOVSSET is not implemented in v7 before v7ve */ 2178 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2179 .access = PL0_RW, .accessfn = pmreg_access, 2180 .type = ARM_CP_ALIAS | ARM_CP_IO, 2181 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2182 .writefn = pmovsset_write, 2183 .raw_writefn = raw_write }, 2184 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2185 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2186 .access = PL0_RW, .accessfn = pmreg_access, 2187 .type = ARM_CP_ALIAS | ARM_CP_IO, 2188 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2189 .writefn = pmovsset_write, 2190 .raw_writefn = raw_write }, 2191 }; 2192 2193 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2194 uint64_t value) 2195 { 2196 value &= 1; 2197 env->teecr = value; 2198 } 2199 2200 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2201 bool isread) 2202 { 2203 /* 2204 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2205 * at all, so we don't need to check whether we're v8A. 2206 */ 2207 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2208 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2209 return CP_ACCESS_TRAP_EL2; 2210 } 2211 return CP_ACCESS_OK; 2212 } 2213 2214 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2215 bool isread) 2216 { 2217 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2218 return CP_ACCESS_TRAP; 2219 } 2220 return teecr_access(env, ri, isread); 2221 } 2222 2223 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2224 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2226 .resetvalue = 0, 2227 .writefn = teecr_write, .accessfn = teecr_access }, 2228 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2229 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2230 .accessfn = teehbr_access, .resetvalue = 0 }, 2231 }; 2232 2233 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2234 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2235 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2236 .access = PL0_RW, 2237 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2238 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2239 .access = PL0_RW, 2240 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2241 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2242 .resetfn = arm_cp_reset_ignore }, 2243 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2244 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2245 .access = PL0_R|PL1_W, 2246 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2247 .resetvalue = 0}, 2248 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2249 .access = PL0_R|PL1_W, 2250 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2251 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2252 .resetfn = arm_cp_reset_ignore }, 2253 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2254 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2255 .access = PL1_RW, 2256 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2257 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2258 .access = PL1_RW, 2259 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2260 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2261 .resetvalue = 0 }, 2262 }; 2263 2264 #ifndef CONFIG_USER_ONLY 2265 2266 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2267 bool isread) 2268 { 2269 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2270 * Writable only at the highest implemented exception level. 2271 */ 2272 int el = arm_current_el(env); 2273 uint64_t hcr; 2274 uint32_t cntkctl; 2275 2276 switch (el) { 2277 case 0: 2278 hcr = arm_hcr_el2_eff(env); 2279 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2280 cntkctl = env->cp15.cnthctl_el2; 2281 } else { 2282 cntkctl = env->cp15.c14_cntkctl; 2283 } 2284 if (!extract32(cntkctl, 0, 2)) { 2285 return CP_ACCESS_TRAP; 2286 } 2287 break; 2288 case 1: 2289 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2290 arm_is_secure_below_el3(env)) { 2291 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2292 return CP_ACCESS_TRAP_UNCATEGORIZED; 2293 } 2294 break; 2295 case 2: 2296 case 3: 2297 break; 2298 } 2299 2300 if (!isread && el < arm_highest_el(env)) { 2301 return CP_ACCESS_TRAP_UNCATEGORIZED; 2302 } 2303 2304 return CP_ACCESS_OK; 2305 } 2306 2307 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2308 bool isread) 2309 { 2310 unsigned int cur_el = arm_current_el(env); 2311 bool has_el2 = arm_is_el2_enabled(env); 2312 uint64_t hcr = arm_hcr_el2_eff(env); 2313 2314 switch (cur_el) { 2315 case 0: 2316 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2317 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2318 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2319 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2320 } 2321 2322 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2323 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2324 return CP_ACCESS_TRAP; 2325 } 2326 2327 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2328 if (hcr & HCR_E2H) { 2329 if (timeridx == GTIMER_PHYS && 2330 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 } else { 2334 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2335 if (has_el2 && timeridx == GTIMER_PHYS && 2336 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2337 return CP_ACCESS_TRAP_EL2; 2338 } 2339 } 2340 break; 2341 2342 case 1: 2343 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2344 if (has_el2 && timeridx == GTIMER_PHYS && 2345 (hcr & HCR_E2H 2346 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2347 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2348 return CP_ACCESS_TRAP_EL2; 2349 } 2350 break; 2351 } 2352 return CP_ACCESS_OK; 2353 } 2354 2355 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2356 bool isread) 2357 { 2358 unsigned int cur_el = arm_current_el(env); 2359 bool has_el2 = arm_is_el2_enabled(env); 2360 uint64_t hcr = arm_hcr_el2_eff(env); 2361 2362 switch (cur_el) { 2363 case 0: 2364 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2365 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2366 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2367 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2368 } 2369 2370 /* 2371 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2372 * EL0 if EL0[PV]TEN is zero. 2373 */ 2374 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2375 return CP_ACCESS_TRAP; 2376 } 2377 /* fall through */ 2378 2379 case 1: 2380 if (has_el2 && timeridx == GTIMER_PHYS) { 2381 if (hcr & HCR_E2H) { 2382 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2383 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2384 return CP_ACCESS_TRAP_EL2; 2385 } 2386 } else { 2387 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2388 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2389 return CP_ACCESS_TRAP_EL2; 2390 } 2391 } 2392 } 2393 break; 2394 } 2395 return CP_ACCESS_OK; 2396 } 2397 2398 static CPAccessResult gt_pct_access(CPUARMState *env, 2399 const ARMCPRegInfo *ri, 2400 bool isread) 2401 { 2402 return gt_counter_access(env, GTIMER_PHYS, isread); 2403 } 2404 2405 static CPAccessResult gt_vct_access(CPUARMState *env, 2406 const ARMCPRegInfo *ri, 2407 bool isread) 2408 { 2409 return gt_counter_access(env, GTIMER_VIRT, isread); 2410 } 2411 2412 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2413 bool isread) 2414 { 2415 return gt_timer_access(env, GTIMER_PHYS, isread); 2416 } 2417 2418 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2419 bool isread) 2420 { 2421 return gt_timer_access(env, GTIMER_VIRT, isread); 2422 } 2423 2424 static CPAccessResult gt_stimer_access(CPUARMState *env, 2425 const ARMCPRegInfo *ri, 2426 bool isread) 2427 { 2428 /* The AArch64 register view of the secure physical timer is 2429 * always accessible from EL3, and configurably accessible from 2430 * Secure EL1. 2431 */ 2432 switch (arm_current_el(env)) { 2433 case 1: 2434 if (!arm_is_secure(env)) { 2435 return CP_ACCESS_TRAP; 2436 } 2437 if (!(env->cp15.scr_el3 & SCR_ST)) { 2438 return CP_ACCESS_TRAP_EL3; 2439 } 2440 return CP_ACCESS_OK; 2441 case 0: 2442 case 2: 2443 return CP_ACCESS_TRAP; 2444 case 3: 2445 return CP_ACCESS_OK; 2446 default: 2447 g_assert_not_reached(); 2448 } 2449 } 2450 2451 static uint64_t gt_get_countervalue(CPUARMState *env) 2452 { 2453 ARMCPU *cpu = env_archcpu(env); 2454 2455 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2456 } 2457 2458 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2459 { 2460 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2461 2462 if (gt->ctl & 1) { 2463 /* Timer enabled: calculate and set current ISTATUS, irq, and 2464 * reset timer to when ISTATUS next has to change 2465 */ 2466 uint64_t offset = timeridx == GTIMER_VIRT ? 2467 cpu->env.cp15.cntvoff_el2 : 0; 2468 uint64_t count = gt_get_countervalue(&cpu->env); 2469 /* Note that this must be unsigned 64 bit arithmetic: */ 2470 int istatus = count - offset >= gt->cval; 2471 uint64_t nexttick; 2472 int irqstate; 2473 2474 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2475 2476 irqstate = (istatus && !(gt->ctl & 2)); 2477 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2478 2479 if (istatus) { 2480 /* Next transition is when count rolls back over to zero */ 2481 nexttick = UINT64_MAX; 2482 } else { 2483 /* Next transition is when we hit cval */ 2484 nexttick = gt->cval + offset; 2485 } 2486 /* Note that the desired next expiry time might be beyond the 2487 * signed-64-bit range of a QEMUTimer -- in this case we just 2488 * set the timer for as far in the future as possible. When the 2489 * timer expires we will reset the timer for any remaining period. 2490 */ 2491 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2492 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2493 } else { 2494 timer_mod(cpu->gt_timer[timeridx], nexttick); 2495 } 2496 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2497 } else { 2498 /* Timer disabled: ISTATUS and timer output always clear */ 2499 gt->ctl &= ~4; 2500 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2501 timer_del(cpu->gt_timer[timeridx]); 2502 trace_arm_gt_recalc_disabled(timeridx); 2503 } 2504 } 2505 2506 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2507 int timeridx) 2508 { 2509 ARMCPU *cpu = env_archcpu(env); 2510 2511 timer_del(cpu->gt_timer[timeridx]); 2512 } 2513 2514 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2515 { 2516 return gt_get_countervalue(env); 2517 } 2518 2519 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2520 { 2521 uint64_t hcr; 2522 2523 switch (arm_current_el(env)) { 2524 case 2: 2525 hcr = arm_hcr_el2_eff(env); 2526 if (hcr & HCR_E2H) { 2527 return 0; 2528 } 2529 break; 2530 case 0: 2531 hcr = arm_hcr_el2_eff(env); 2532 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2533 return 0; 2534 } 2535 break; 2536 } 2537 2538 return env->cp15.cntvoff_el2; 2539 } 2540 2541 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2542 { 2543 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2544 } 2545 2546 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2547 int timeridx, 2548 uint64_t value) 2549 { 2550 trace_arm_gt_cval_write(timeridx, value); 2551 env->cp15.c14_timer[timeridx].cval = value; 2552 gt_recalc_timer(env_archcpu(env), timeridx); 2553 } 2554 2555 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2556 int timeridx) 2557 { 2558 uint64_t offset = 0; 2559 2560 switch (timeridx) { 2561 case GTIMER_VIRT: 2562 case GTIMER_HYPVIRT: 2563 offset = gt_virt_cnt_offset(env); 2564 break; 2565 } 2566 2567 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2568 (gt_get_countervalue(env) - offset)); 2569 } 2570 2571 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2572 int timeridx, 2573 uint64_t value) 2574 { 2575 uint64_t offset = 0; 2576 2577 switch (timeridx) { 2578 case GTIMER_VIRT: 2579 case GTIMER_HYPVIRT: 2580 offset = gt_virt_cnt_offset(env); 2581 break; 2582 } 2583 2584 trace_arm_gt_tval_write(timeridx, value); 2585 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2586 sextract64(value, 0, 32); 2587 gt_recalc_timer(env_archcpu(env), timeridx); 2588 } 2589 2590 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2591 int timeridx, 2592 uint64_t value) 2593 { 2594 ARMCPU *cpu = env_archcpu(env); 2595 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2596 2597 trace_arm_gt_ctl_write(timeridx, value); 2598 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2599 if ((oldval ^ value) & 1) { 2600 /* Enable toggled */ 2601 gt_recalc_timer(cpu, timeridx); 2602 } else if ((oldval ^ value) & 2) { 2603 /* IMASK toggled: don't need to recalculate, 2604 * just set the interrupt line based on ISTATUS 2605 */ 2606 int irqstate = (oldval & 4) && !(value & 2); 2607 2608 trace_arm_gt_imask_toggle(timeridx, irqstate); 2609 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2610 } 2611 } 2612 2613 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2614 { 2615 gt_timer_reset(env, ri, GTIMER_PHYS); 2616 } 2617 2618 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2619 uint64_t value) 2620 { 2621 gt_cval_write(env, ri, GTIMER_PHYS, value); 2622 } 2623 2624 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2625 { 2626 return gt_tval_read(env, ri, GTIMER_PHYS); 2627 } 2628 2629 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2630 uint64_t value) 2631 { 2632 gt_tval_write(env, ri, GTIMER_PHYS, value); 2633 } 2634 2635 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2636 uint64_t value) 2637 { 2638 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2639 } 2640 2641 static int gt_phys_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYP; 2651 default: 2652 return GTIMER_PHYS; 2653 } 2654 } 2655 2656 static int gt_virt_redir_timeridx(CPUARMState *env) 2657 { 2658 switch (arm_mmu_idx(env)) { 2659 case ARMMMUIdx_E20_0: 2660 case ARMMMUIdx_E20_2: 2661 case ARMMMUIdx_E20_2_PAN: 2662 case ARMMMUIdx_SE20_0: 2663 case ARMMMUIdx_SE20_2: 2664 case ARMMMUIdx_SE20_2_PAN: 2665 return GTIMER_HYPVIRT; 2666 default: 2667 return GTIMER_VIRT; 2668 } 2669 } 2670 2671 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2672 const ARMCPRegInfo *ri) 2673 { 2674 int timeridx = gt_phys_redir_timeridx(env); 2675 return env->cp15.c14_timer[timeridx].cval; 2676 } 2677 2678 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2679 uint64_t value) 2680 { 2681 int timeridx = gt_phys_redir_timeridx(env); 2682 gt_cval_write(env, ri, timeridx, value); 2683 } 2684 2685 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2686 const ARMCPRegInfo *ri) 2687 { 2688 int timeridx = gt_phys_redir_timeridx(env); 2689 return gt_tval_read(env, ri, timeridx); 2690 } 2691 2692 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2693 uint64_t value) 2694 { 2695 int timeridx = gt_phys_redir_timeridx(env); 2696 gt_tval_write(env, ri, timeridx, value); 2697 } 2698 2699 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2700 const ARMCPRegInfo *ri) 2701 { 2702 int timeridx = gt_phys_redir_timeridx(env); 2703 return env->cp15.c14_timer[timeridx].ctl; 2704 } 2705 2706 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2707 uint64_t value) 2708 { 2709 int timeridx = gt_phys_redir_timeridx(env); 2710 gt_ctl_write(env, ri, timeridx, value); 2711 } 2712 2713 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2714 { 2715 gt_timer_reset(env, ri, GTIMER_VIRT); 2716 } 2717 2718 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 gt_cval_write(env, ri, GTIMER_VIRT, value); 2722 } 2723 2724 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2725 { 2726 return gt_tval_read(env, ri, GTIMER_VIRT); 2727 } 2728 2729 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2730 uint64_t value) 2731 { 2732 gt_tval_write(env, ri, GTIMER_VIRT, value); 2733 } 2734 2735 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2736 uint64_t value) 2737 { 2738 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2739 } 2740 2741 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2742 uint64_t value) 2743 { 2744 ARMCPU *cpu = env_archcpu(env); 2745 2746 trace_arm_gt_cntvoff_write(value); 2747 raw_write(env, ri, value); 2748 gt_recalc_timer(cpu, GTIMER_VIRT); 2749 } 2750 2751 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2752 const ARMCPRegInfo *ri) 2753 { 2754 int timeridx = gt_virt_redir_timeridx(env); 2755 return env->cp15.c14_timer[timeridx].cval; 2756 } 2757 2758 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2759 uint64_t value) 2760 { 2761 int timeridx = gt_virt_redir_timeridx(env); 2762 gt_cval_write(env, ri, timeridx, value); 2763 } 2764 2765 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2766 const ARMCPRegInfo *ri) 2767 { 2768 int timeridx = gt_virt_redir_timeridx(env); 2769 return gt_tval_read(env, ri, timeridx); 2770 } 2771 2772 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2773 uint64_t value) 2774 { 2775 int timeridx = gt_virt_redir_timeridx(env); 2776 gt_tval_write(env, ri, timeridx, value); 2777 } 2778 2779 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2780 const ARMCPRegInfo *ri) 2781 { 2782 int timeridx = gt_virt_redir_timeridx(env); 2783 return env->cp15.c14_timer[timeridx].ctl; 2784 } 2785 2786 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 int timeridx = gt_virt_redir_timeridx(env); 2790 gt_ctl_write(env, ri, timeridx, value); 2791 } 2792 2793 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2794 { 2795 gt_timer_reset(env, ri, GTIMER_HYP); 2796 } 2797 2798 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 gt_cval_write(env, ri, GTIMER_HYP, value); 2802 } 2803 2804 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2805 { 2806 return gt_tval_read(env, ri, GTIMER_HYP); 2807 } 2808 2809 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2810 uint64_t value) 2811 { 2812 gt_tval_write(env, ri, GTIMER_HYP, value); 2813 } 2814 2815 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2816 uint64_t value) 2817 { 2818 gt_ctl_write(env, ri, GTIMER_HYP, value); 2819 } 2820 2821 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2822 { 2823 gt_timer_reset(env, ri, GTIMER_SEC); 2824 } 2825 2826 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 gt_cval_write(env, ri, GTIMER_SEC, value); 2830 } 2831 2832 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 return gt_tval_read(env, ri, GTIMER_SEC); 2835 } 2836 2837 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 gt_tval_write(env, ri, GTIMER_SEC, value); 2841 } 2842 2843 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2844 uint64_t value) 2845 { 2846 gt_ctl_write(env, ri, GTIMER_SEC, value); 2847 } 2848 2849 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2850 { 2851 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2852 } 2853 2854 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2855 uint64_t value) 2856 { 2857 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2858 } 2859 2860 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2861 { 2862 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2863 } 2864 2865 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2866 uint64_t value) 2867 { 2868 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2869 } 2870 2871 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2872 uint64_t value) 2873 { 2874 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2875 } 2876 2877 void arm_gt_ptimer_cb(void *opaque) 2878 { 2879 ARMCPU *cpu = opaque; 2880 2881 gt_recalc_timer(cpu, GTIMER_PHYS); 2882 } 2883 2884 void arm_gt_vtimer_cb(void *opaque) 2885 { 2886 ARMCPU *cpu = opaque; 2887 2888 gt_recalc_timer(cpu, GTIMER_VIRT); 2889 } 2890 2891 void arm_gt_htimer_cb(void *opaque) 2892 { 2893 ARMCPU *cpu = opaque; 2894 2895 gt_recalc_timer(cpu, GTIMER_HYP); 2896 } 2897 2898 void arm_gt_stimer_cb(void *opaque) 2899 { 2900 ARMCPU *cpu = opaque; 2901 2902 gt_recalc_timer(cpu, GTIMER_SEC); 2903 } 2904 2905 void arm_gt_hvtimer_cb(void *opaque) 2906 { 2907 ARMCPU *cpu = opaque; 2908 2909 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2910 } 2911 2912 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2913 { 2914 ARMCPU *cpu = env_archcpu(env); 2915 2916 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2917 } 2918 2919 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2920 /* Note that CNTFRQ is purely reads-as-written for the benefit 2921 * of software; writing it doesn't actually change the timer frequency. 2922 * Our reset value matches the fixed frequency we implement the timer at. 2923 */ 2924 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2925 .type = ARM_CP_ALIAS, 2926 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2927 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2928 }, 2929 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2930 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2931 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2932 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2933 .resetfn = arm_gt_cntfrq_reset, 2934 }, 2935 /* overall control: mostly access permissions */ 2936 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2937 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2938 .access = PL1_RW, 2939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2940 .resetvalue = 0, 2941 }, 2942 /* per-timer control */ 2943 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2944 .secure = ARM_CP_SECSTATE_NS, 2945 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2946 .accessfn = gt_ptimer_access, 2947 .fieldoffset = offsetoflow32(CPUARMState, 2948 cp15.c14_timer[GTIMER_PHYS].ctl), 2949 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2950 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2951 }, 2952 { .name = "CNTP_CTL_S", 2953 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2954 .secure = ARM_CP_SECSTATE_S, 2955 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2956 .accessfn = gt_ptimer_access, 2957 .fieldoffset = offsetoflow32(CPUARMState, 2958 cp15.c14_timer[GTIMER_SEC].ctl), 2959 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2960 }, 2961 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2962 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2963 .type = ARM_CP_IO, .access = PL0_RW, 2964 .accessfn = gt_ptimer_access, 2965 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2966 .resetvalue = 0, 2967 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2968 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2969 }, 2970 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2971 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2972 .accessfn = gt_vtimer_access, 2973 .fieldoffset = offsetoflow32(CPUARMState, 2974 cp15.c14_timer[GTIMER_VIRT].ctl), 2975 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2976 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2977 }, 2978 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2979 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2980 .type = ARM_CP_IO, .access = PL0_RW, 2981 .accessfn = gt_vtimer_access, 2982 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2983 .resetvalue = 0, 2984 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2985 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2986 }, 2987 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2988 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2989 .secure = ARM_CP_SECSTATE_NS, 2990 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2991 .accessfn = gt_ptimer_access, 2992 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2993 }, 2994 { .name = "CNTP_TVAL_S", 2995 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2996 .secure = ARM_CP_SECSTATE_S, 2997 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2998 .accessfn = gt_ptimer_access, 2999 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3000 }, 3001 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3003 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3004 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3005 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3006 }, 3007 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3009 .accessfn = gt_vtimer_access, 3010 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3011 }, 3012 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3013 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3014 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3015 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3016 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3017 }, 3018 /* The counter itself */ 3019 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3020 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3021 .accessfn = gt_pct_access, 3022 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3023 }, 3024 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3025 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3026 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3027 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3028 }, 3029 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3030 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3031 .accessfn = gt_vct_access, 3032 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3033 }, 3034 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3035 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3036 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3037 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3038 }, 3039 /* Comparison value, indicating when the timer goes off */ 3040 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3041 .secure = ARM_CP_SECSTATE_NS, 3042 .access = PL0_RW, 3043 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3044 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3045 .accessfn = gt_ptimer_access, 3046 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3047 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3048 }, 3049 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3050 .secure = ARM_CP_SECSTATE_S, 3051 .access = PL0_RW, 3052 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3053 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3054 .accessfn = gt_ptimer_access, 3055 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3056 }, 3057 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3058 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3059 .access = PL0_RW, 3060 .type = ARM_CP_IO, 3061 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3062 .resetvalue = 0, .accessfn = gt_ptimer_access, 3063 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3064 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3065 }, 3066 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3067 .access = PL0_RW, 3068 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3069 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3070 .accessfn = gt_vtimer_access, 3071 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3072 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3073 }, 3074 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3076 .access = PL0_RW, 3077 .type = ARM_CP_IO, 3078 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3079 .resetvalue = 0, .accessfn = gt_vtimer_access, 3080 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3081 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3082 }, 3083 /* Secure timer -- this is actually restricted to only EL3 3084 * and configurably Secure-EL1 via the accessfn. 3085 */ 3086 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3087 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3088 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3089 .accessfn = gt_stimer_access, 3090 .readfn = gt_sec_tval_read, 3091 .writefn = gt_sec_tval_write, 3092 .resetfn = gt_sec_timer_reset, 3093 }, 3094 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3095 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3096 .type = ARM_CP_IO, .access = PL1_RW, 3097 .accessfn = gt_stimer_access, 3098 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3099 .resetvalue = 0, 3100 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3101 }, 3102 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3103 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3104 .type = ARM_CP_IO, .access = PL1_RW, 3105 .accessfn = gt_stimer_access, 3106 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3107 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3108 }, 3109 }; 3110 3111 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3112 bool isread) 3113 { 3114 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3115 return CP_ACCESS_TRAP; 3116 } 3117 return CP_ACCESS_OK; 3118 } 3119 3120 #else 3121 3122 /* In user-mode most of the generic timer registers are inaccessible 3123 * however modern kernels (4.12+) allow access to cntvct_el0 3124 */ 3125 3126 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3127 { 3128 ARMCPU *cpu = env_archcpu(env); 3129 3130 /* Currently we have no support for QEMUTimer in linux-user so we 3131 * can't call gt_get_countervalue(env), instead we directly 3132 * call the lower level functions. 3133 */ 3134 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3135 } 3136 3137 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3138 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3139 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3140 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3141 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3142 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3143 }, 3144 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3145 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3146 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3147 .readfn = gt_virt_cnt_read, 3148 }, 3149 }; 3150 3151 #endif 3152 3153 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3154 { 3155 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3156 raw_write(env, ri, value); 3157 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3158 raw_write(env, ri, value & 0xfffff6ff); 3159 } else { 3160 raw_write(env, ri, value & 0xfffff1ff); 3161 } 3162 } 3163 3164 #ifndef CONFIG_USER_ONLY 3165 /* get_phys_addr() isn't present for user-mode-only targets */ 3166 3167 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3168 bool isread) 3169 { 3170 if (ri->opc2 & 4) { 3171 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3172 * Secure EL1 (which can only happen if EL3 is AArch64). 3173 * They are simply UNDEF if executed from NS EL1. 3174 * They function normally from EL2 or EL3. 3175 */ 3176 if (arm_current_el(env) == 1) { 3177 if (arm_is_secure_below_el3(env)) { 3178 if (env->cp15.scr_el3 & SCR_EEL2) { 3179 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3180 } 3181 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3182 } 3183 return CP_ACCESS_TRAP_UNCATEGORIZED; 3184 } 3185 } 3186 return CP_ACCESS_OK; 3187 } 3188 3189 #ifdef CONFIG_TCG 3190 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3191 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3192 { 3193 bool ret; 3194 uint64_t par64; 3195 bool format64 = false; 3196 ARMMMUFaultInfo fi = {}; 3197 GetPhysAddrResult res = {}; 3198 3199 ret = get_phys_addr(env, value, access_type, mmu_idx, &res, &fi); 3200 3201 /* 3202 * ATS operations only do S1 or S1+S2 translations, so we never 3203 * have to deal with the ARMCacheAttrs format for S2 only. 3204 */ 3205 assert(!res.cacheattrs.is_s2_format); 3206 3207 if (ret) { 3208 /* 3209 * Some kinds of translation fault must cause exceptions rather 3210 * than being reported in the PAR. 3211 */ 3212 int current_el = arm_current_el(env); 3213 int target_el; 3214 uint32_t syn, fsr, fsc; 3215 bool take_exc = false; 3216 3217 if (fi.s1ptw && current_el == 1 3218 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3219 /* 3220 * Synchronous stage 2 fault on an access made as part of the 3221 * translation table walk for AT S1E0* or AT S1E1* insn 3222 * executed from NS EL1. If this is a synchronous external abort 3223 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3224 * to EL3. Otherwise the fault is taken as an exception to EL2, 3225 * and HPFAR_EL2 holds the faulting IPA. 3226 */ 3227 if (fi.type == ARMFault_SyncExternalOnWalk && 3228 (env->cp15.scr_el3 & SCR_EA)) { 3229 target_el = 3; 3230 } else { 3231 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3232 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3233 env->cp15.hpfar_el2 |= HPFAR_NS; 3234 } 3235 target_el = 2; 3236 } 3237 take_exc = true; 3238 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3239 /* 3240 * Synchronous external aborts during a translation table walk 3241 * are taken as Data Abort exceptions. 3242 */ 3243 if (fi.stage2) { 3244 if (current_el == 3) { 3245 target_el = 3; 3246 } else { 3247 target_el = 2; 3248 } 3249 } else { 3250 target_el = exception_target_el(env); 3251 } 3252 take_exc = true; 3253 } 3254 3255 if (take_exc) { 3256 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3257 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3258 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3259 fsr = arm_fi_to_lfsc(&fi); 3260 fsc = extract32(fsr, 0, 6); 3261 } else { 3262 fsr = arm_fi_to_sfsc(&fi); 3263 fsc = 0x3f; 3264 } 3265 /* 3266 * Report exception with ESR indicating a fault due to a 3267 * translation table walk for a cache maintenance instruction. 3268 */ 3269 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3270 fi.ea, 1, fi.s1ptw, 1, fsc); 3271 env->exception.vaddress = value; 3272 env->exception.fsr = fsr; 3273 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3274 } 3275 } 3276 3277 if (is_a64(env)) { 3278 format64 = true; 3279 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3280 /* 3281 * ATS1Cxx: 3282 * * TTBCR.EAE determines whether the result is returned using the 3283 * 32-bit or the 64-bit PAR format 3284 * * Instructions executed in Hyp mode always use the 64bit format 3285 * 3286 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3287 * * The Non-secure TTBCR.EAE bit is set to 1 3288 * * The implementation includes EL2, and the value of HCR.VM is 1 3289 * 3290 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3291 * 3292 * ATS1Hx always uses the 64bit format. 3293 */ 3294 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3295 3296 if (arm_feature(env, ARM_FEATURE_EL2)) { 3297 if (mmu_idx == ARMMMUIdx_E10_0 || 3298 mmu_idx == ARMMMUIdx_E10_1 || 3299 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3300 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3301 } else { 3302 format64 |= arm_current_el(env) == 2; 3303 } 3304 } 3305 } 3306 3307 if (format64) { 3308 /* Create a 64-bit PAR */ 3309 par64 = (1 << 11); /* LPAE bit always set */ 3310 if (!ret) { 3311 par64 |= res.phys & ~0xfffULL; 3312 if (!res.attrs.secure) { 3313 par64 |= (1 << 9); /* NS */ 3314 } 3315 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3316 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3317 } else { 3318 uint32_t fsr = arm_fi_to_lfsc(&fi); 3319 3320 par64 |= 1; /* F */ 3321 par64 |= (fsr & 0x3f) << 1; /* FS */ 3322 if (fi.stage2) { 3323 par64 |= (1 << 9); /* S */ 3324 } 3325 if (fi.s1ptw) { 3326 par64 |= (1 << 8); /* PTW */ 3327 } 3328 } 3329 } else { 3330 /* fsr is a DFSR/IFSR value for the short descriptor 3331 * translation table format (with WnR always clear). 3332 * Convert it to a 32-bit PAR. 3333 */ 3334 if (!ret) { 3335 /* We do not set any attribute bits in the PAR */ 3336 if (res.page_size == (1 << 24) 3337 && arm_feature(env, ARM_FEATURE_V7)) { 3338 par64 = (res.phys & 0xff000000) | (1 << 1); 3339 } else { 3340 par64 = res.phys & 0xfffff000; 3341 } 3342 if (!res.attrs.secure) { 3343 par64 |= (1 << 9); /* NS */ 3344 } 3345 } else { 3346 uint32_t fsr = arm_fi_to_sfsc(&fi); 3347 3348 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3349 ((fsr & 0xf) << 1) | 1; 3350 } 3351 } 3352 return par64; 3353 } 3354 #endif /* CONFIG_TCG */ 3355 3356 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3357 { 3358 #ifdef CONFIG_TCG 3359 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3360 uint64_t par64; 3361 ARMMMUIdx mmu_idx; 3362 int el = arm_current_el(env); 3363 bool secure = arm_is_secure_below_el3(env); 3364 3365 switch (ri->opc2 & 6) { 3366 case 0: 3367 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3368 switch (el) { 3369 case 3: 3370 mmu_idx = ARMMMUIdx_SE3; 3371 break; 3372 case 2: 3373 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3374 /* fall through */ 3375 case 1: 3376 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3377 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3378 : ARMMMUIdx_Stage1_E1_PAN); 3379 } else { 3380 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3381 } 3382 break; 3383 default: 3384 g_assert_not_reached(); 3385 } 3386 break; 3387 case 2: 3388 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3389 switch (el) { 3390 case 3: 3391 mmu_idx = ARMMMUIdx_SE10_0; 3392 break; 3393 case 2: 3394 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3395 mmu_idx = ARMMMUIdx_Stage1_E0; 3396 break; 3397 case 1: 3398 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3399 break; 3400 default: 3401 g_assert_not_reached(); 3402 } 3403 break; 3404 case 4: 3405 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3406 mmu_idx = ARMMMUIdx_E10_1; 3407 break; 3408 case 6: 3409 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3410 mmu_idx = ARMMMUIdx_E10_0; 3411 break; 3412 default: 3413 g_assert_not_reached(); 3414 } 3415 3416 par64 = do_ats_write(env, value, access_type, mmu_idx); 3417 3418 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3419 #else 3420 /* Handled by hardware accelerator. */ 3421 g_assert_not_reached(); 3422 #endif /* CONFIG_TCG */ 3423 } 3424 3425 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3426 uint64_t value) 3427 { 3428 #ifdef CONFIG_TCG 3429 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3430 uint64_t par64; 3431 3432 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3433 3434 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3435 #else 3436 /* Handled by hardware accelerator. */ 3437 g_assert_not_reached(); 3438 #endif /* CONFIG_TCG */ 3439 } 3440 3441 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3442 bool isread) 3443 { 3444 if (arm_current_el(env) == 3 && 3445 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3446 return CP_ACCESS_TRAP; 3447 } 3448 return CP_ACCESS_OK; 3449 } 3450 3451 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3452 uint64_t value) 3453 { 3454 #ifdef CONFIG_TCG 3455 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3456 ARMMMUIdx mmu_idx; 3457 int secure = arm_is_secure_below_el3(env); 3458 3459 switch (ri->opc2 & 6) { 3460 case 0: 3461 switch (ri->opc1) { 3462 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3463 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3464 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3465 : ARMMMUIdx_Stage1_E1_PAN); 3466 } else { 3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3468 } 3469 break; 3470 case 4: /* AT S1E2R, AT S1E2W */ 3471 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3472 break; 3473 case 6: /* AT S1E3R, AT S1E3W */ 3474 mmu_idx = ARMMMUIdx_SE3; 3475 break; 3476 default: 3477 g_assert_not_reached(); 3478 } 3479 break; 3480 case 2: /* AT S1E0R, AT S1E0W */ 3481 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3482 break; 3483 case 4: /* AT S12E1R, AT S12E1W */ 3484 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3485 break; 3486 case 6: /* AT S12E0R, AT S12E0W */ 3487 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3488 break; 3489 default: 3490 g_assert_not_reached(); 3491 } 3492 3493 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3494 #else 3495 /* Handled by hardware accelerator. */ 3496 g_assert_not_reached(); 3497 #endif /* CONFIG_TCG */ 3498 } 3499 #endif 3500 3501 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3502 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3503 .access = PL1_RW, .resetvalue = 0, 3504 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3505 offsetoflow32(CPUARMState, cp15.par_ns) }, 3506 .writefn = par_write }, 3507 #ifndef CONFIG_USER_ONLY 3508 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3509 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3510 .access = PL1_W, .accessfn = ats_access, 3511 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3512 #endif 3513 }; 3514 3515 /* Return basic MPU access permission bits. */ 3516 static uint32_t simple_mpu_ap_bits(uint32_t val) 3517 { 3518 uint32_t ret; 3519 uint32_t mask; 3520 int i; 3521 ret = 0; 3522 mask = 3; 3523 for (i = 0; i < 16; i += 2) { 3524 ret |= (val >> i) & mask; 3525 mask <<= 2; 3526 } 3527 return ret; 3528 } 3529 3530 /* Pad basic MPU access permission bits to extended format. */ 3531 static uint32_t extended_mpu_ap_bits(uint32_t val) 3532 { 3533 uint32_t ret; 3534 uint32_t mask; 3535 int i; 3536 ret = 0; 3537 mask = 3; 3538 for (i = 0; i < 16; i += 2) { 3539 ret |= (val & mask) << i; 3540 mask <<= 2; 3541 } 3542 return ret; 3543 } 3544 3545 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3546 uint64_t value) 3547 { 3548 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3549 } 3550 3551 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3552 { 3553 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3554 } 3555 3556 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3557 uint64_t value) 3558 { 3559 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3560 } 3561 3562 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3563 { 3564 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3565 } 3566 3567 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3568 { 3569 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3570 3571 if (!u32p) { 3572 return 0; 3573 } 3574 3575 u32p += env->pmsav7.rnr[M_REG_NS]; 3576 return *u32p; 3577 } 3578 3579 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3580 uint64_t value) 3581 { 3582 ARMCPU *cpu = env_archcpu(env); 3583 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3584 3585 if (!u32p) { 3586 return; 3587 } 3588 3589 u32p += env->pmsav7.rnr[M_REG_NS]; 3590 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3591 *u32p = value; 3592 } 3593 3594 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3595 uint64_t value) 3596 { 3597 ARMCPU *cpu = env_archcpu(env); 3598 uint32_t nrgs = cpu->pmsav7_dregion; 3599 3600 if (value >= nrgs) { 3601 qemu_log_mask(LOG_GUEST_ERROR, 3602 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3603 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3604 return; 3605 } 3606 3607 raw_write(env, ri, value); 3608 } 3609 3610 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3611 /* Reset for all these registers is handled in arm_cpu_reset(), 3612 * because the PMSAv7 is also used by M-profile CPUs, which do 3613 * not register cpregs but still need the state to be reset. 3614 */ 3615 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3616 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3617 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3618 .readfn = pmsav7_read, .writefn = pmsav7_write, 3619 .resetfn = arm_cp_reset_ignore }, 3620 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3621 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3622 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3623 .readfn = pmsav7_read, .writefn = pmsav7_write, 3624 .resetfn = arm_cp_reset_ignore }, 3625 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3626 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3627 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3628 .readfn = pmsav7_read, .writefn = pmsav7_write, 3629 .resetfn = arm_cp_reset_ignore }, 3630 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3631 .access = PL1_RW, 3632 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3633 .writefn = pmsav7_rgnr_write, 3634 .resetfn = arm_cp_reset_ignore }, 3635 }; 3636 3637 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3638 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3639 .access = PL1_RW, .type = ARM_CP_ALIAS, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3641 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3642 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3643 .access = PL1_RW, .type = ARM_CP_ALIAS, 3644 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3645 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3646 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3647 .access = PL1_RW, 3648 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3649 .resetvalue = 0, }, 3650 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3651 .access = PL1_RW, 3652 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3653 .resetvalue = 0, }, 3654 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3655 .access = PL1_RW, 3656 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3657 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3658 .access = PL1_RW, 3659 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3660 /* Protection region base and size registers */ 3661 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3664 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3667 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3670 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3673 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3674 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3675 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3676 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3677 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3678 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3679 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3680 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3681 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3682 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3683 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3684 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3685 }; 3686 3687 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3688 uint64_t value) 3689 { 3690 ARMCPU *cpu = env_archcpu(env); 3691 3692 if (!arm_feature(env, ARM_FEATURE_V8)) { 3693 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3694 /* 3695 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3696 * using Long-descriptor translation table format 3697 */ 3698 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3699 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3700 /* 3701 * In an implementation that includes the Security Extensions 3702 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3703 * Short-descriptor translation table format. 3704 */ 3705 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3706 } else { 3707 value &= TTBCR_N; 3708 } 3709 } 3710 3711 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3712 /* With LPAE the TTBCR could result in a change of ASID 3713 * via the TTBCR.A1 bit, so do a TLB flush. 3714 */ 3715 tlb_flush(CPU(cpu)); 3716 } 3717 raw_write(env, ri, value); 3718 } 3719 3720 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3721 uint64_t value) 3722 { 3723 ARMCPU *cpu = env_archcpu(env); 3724 3725 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3726 tlb_flush(CPU(cpu)); 3727 raw_write(env, ri, value); 3728 } 3729 3730 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3731 uint64_t value) 3732 { 3733 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3734 if (cpreg_field_is_64bit(ri) && 3735 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3736 ARMCPU *cpu = env_archcpu(env); 3737 tlb_flush(CPU(cpu)); 3738 } 3739 raw_write(env, ri, value); 3740 } 3741 3742 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3743 uint64_t value) 3744 { 3745 /* 3746 * If we are running with E2&0 regime, then an ASID is active. 3747 * Flush if that might be changing. Note we're not checking 3748 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3749 * holds the active ASID, only checking the field that might. 3750 */ 3751 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3752 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3753 uint16_t mask = ARMMMUIdxBit_E20_2 | 3754 ARMMMUIdxBit_E20_2_PAN | 3755 ARMMMUIdxBit_E20_0; 3756 3757 if (arm_is_secure_below_el3(env)) { 3758 mask >>= ARM_MMU_IDX_A_NS; 3759 } 3760 3761 tlb_flush_by_mmuidx(env_cpu(env), mask); 3762 } 3763 raw_write(env, ri, value); 3764 } 3765 3766 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3767 uint64_t value) 3768 { 3769 ARMCPU *cpu = env_archcpu(env); 3770 CPUState *cs = CPU(cpu); 3771 3772 /* 3773 * A change in VMID to the stage2 page table (Stage2) invalidates 3774 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3775 */ 3776 if (raw_read(env, ri) != value) { 3777 uint16_t mask = ARMMMUIdxBit_E10_1 | 3778 ARMMMUIdxBit_E10_1_PAN | 3779 ARMMMUIdxBit_E10_0; 3780 3781 if (arm_is_secure_below_el3(env)) { 3782 mask >>= ARM_MMU_IDX_A_NS; 3783 } 3784 3785 tlb_flush_by_mmuidx(cs, mask); 3786 raw_write(env, ri, value); 3787 } 3788 } 3789 3790 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3791 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3792 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3793 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3794 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3795 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3796 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3797 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3798 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3799 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3800 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3801 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3802 offsetof(CPUARMState, cp15.dfar_ns) } }, 3803 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3804 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3805 .access = PL1_RW, .accessfn = access_tvm_trvm, 3806 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3807 .resetvalue = 0, }, 3808 }; 3809 3810 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3811 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3812 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3813 .access = PL1_RW, .accessfn = access_tvm_trvm, 3814 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3815 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3816 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3817 .access = PL1_RW, .accessfn = access_tvm_trvm, 3818 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3819 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3820 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3821 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3822 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3823 .access = PL1_RW, .accessfn = access_tvm_trvm, 3824 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3825 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3826 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3827 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3828 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3829 .access = PL1_RW, .accessfn = access_tvm_trvm, 3830 .writefn = vmsa_tcr_el12_write, 3831 .raw_writefn = raw_write, 3832 .resetvalue = 0, 3833 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3834 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3835 .access = PL1_RW, .accessfn = access_tvm_trvm, 3836 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3837 .raw_writefn = raw_write, 3838 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3839 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3840 }; 3841 3842 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3843 * qemu tlbs nor adjusting cached masks. 3844 */ 3845 static const ARMCPRegInfo ttbcr2_reginfo = { 3846 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3847 .access = PL1_RW, .accessfn = access_tvm_trvm, 3848 .type = ARM_CP_ALIAS, 3849 .bank_fieldoffsets = { 3850 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3851 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 3852 }, 3853 }; 3854 3855 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3856 uint64_t value) 3857 { 3858 env->cp15.c15_ticonfig = value & 0xe7; 3859 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3860 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3861 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3862 } 3863 3864 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3865 uint64_t value) 3866 { 3867 env->cp15.c15_threadid = value & 0xffff; 3868 } 3869 3870 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3871 uint64_t value) 3872 { 3873 /* Wait-for-interrupt (deprecated) */ 3874 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3875 } 3876 3877 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3878 uint64_t value) 3879 { 3880 /* On OMAP there are registers indicating the max/min index of dcache lines 3881 * containing a dirty line; cache flush operations have to reset these. 3882 */ 3883 env->cp15.c15_i_max = 0x000; 3884 env->cp15.c15_i_min = 0xff0; 3885 } 3886 3887 static const ARMCPRegInfo omap_cp_reginfo[] = { 3888 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3889 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3890 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3891 .resetvalue = 0, }, 3892 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3893 .access = PL1_RW, .type = ARM_CP_NOP }, 3894 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3895 .access = PL1_RW, 3896 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3897 .writefn = omap_ticonfig_write }, 3898 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3899 .access = PL1_RW, 3900 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3901 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3902 .access = PL1_RW, .resetvalue = 0xff0, 3903 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3904 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3905 .access = PL1_RW, 3906 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3907 .writefn = omap_threadid_write }, 3908 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3909 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3910 .type = ARM_CP_NO_RAW, 3911 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3912 /* TODO: Peripheral port remap register: 3913 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3914 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3915 * when MMU is off. 3916 */ 3917 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3918 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3919 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3920 .writefn = omap_cachemaint_write }, 3921 { .name = "C9", .cp = 15, .crn = 9, 3922 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3923 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3924 }; 3925 3926 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3927 uint64_t value) 3928 { 3929 env->cp15.c15_cpar = value & 0x3fff; 3930 } 3931 3932 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3933 { .name = "XSCALE_CPAR", 3934 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3935 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3936 .writefn = xscale_cpar_write, }, 3937 { .name = "XSCALE_AUXCR", 3938 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3939 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3940 .resetvalue = 0, }, 3941 /* XScale specific cache-lockdown: since we have no cache we NOP these 3942 * and hope the guest does not really rely on cache behaviour. 3943 */ 3944 { .name = "XSCALE_LOCK_ICACHE_LINE", 3945 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3946 .access = PL1_W, .type = ARM_CP_NOP }, 3947 { .name = "XSCALE_UNLOCK_ICACHE", 3948 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3949 .access = PL1_W, .type = ARM_CP_NOP }, 3950 { .name = "XSCALE_DCACHE_LOCK", 3951 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3952 .access = PL1_RW, .type = ARM_CP_NOP }, 3953 { .name = "XSCALE_UNLOCK_DCACHE", 3954 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3955 .access = PL1_W, .type = ARM_CP_NOP }, 3956 }; 3957 3958 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3959 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3960 * implementation of this implementation-defined space. 3961 * Ideally this should eventually disappear in favour of actually 3962 * implementing the correct behaviour for all cores. 3963 */ 3964 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3965 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3966 .access = PL1_RW, 3967 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3968 .resetvalue = 0 }, 3969 }; 3970 3971 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3972 /* Cache status: RAZ because we have no cache so it's always clean */ 3973 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3974 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3975 .resetvalue = 0 }, 3976 }; 3977 3978 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3979 /* We never have a block transfer operation in progress */ 3980 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3981 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3982 .resetvalue = 0 }, 3983 /* The cache ops themselves: these all NOP for QEMU */ 3984 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3985 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3986 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3987 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3988 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3989 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3990 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3991 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3992 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3993 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3994 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3995 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3996 }; 3997 3998 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3999 /* The cache test-and-clean instructions always return (1 << 30) 4000 * to indicate that there are no dirty cache lines. 4001 */ 4002 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4003 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4004 .resetvalue = (1 << 30) }, 4005 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4007 .resetvalue = (1 << 30) }, 4008 }; 4009 4010 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4011 /* Ignore ReadBuffer accesses */ 4012 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4013 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4014 .access = PL1_RW, .resetvalue = 0, 4015 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4016 }; 4017 4018 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4019 { 4020 unsigned int cur_el = arm_current_el(env); 4021 4022 if (arm_is_el2_enabled(env) && cur_el == 1) { 4023 return env->cp15.vpidr_el2; 4024 } 4025 return raw_read(env, ri); 4026 } 4027 4028 static uint64_t mpidr_read_val(CPUARMState *env) 4029 { 4030 ARMCPU *cpu = env_archcpu(env); 4031 uint64_t mpidr = cpu->mp_affinity; 4032 4033 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4034 mpidr |= (1U << 31); 4035 /* Cores which are uniprocessor (non-coherent) 4036 * but still implement the MP extensions set 4037 * bit 30. (For instance, Cortex-R5). 4038 */ 4039 if (cpu->mp_is_up) { 4040 mpidr |= (1u << 30); 4041 } 4042 } 4043 return mpidr; 4044 } 4045 4046 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 unsigned int cur_el = arm_current_el(env); 4049 4050 if (arm_is_el2_enabled(env) && cur_el == 1) { 4051 return env->cp15.vmpidr_el2; 4052 } 4053 return mpidr_read_val(env); 4054 } 4055 4056 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4057 /* NOP AMAIR0/1 */ 4058 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4059 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4060 .access = PL1_RW, .accessfn = access_tvm_trvm, 4061 .type = ARM_CP_CONST, .resetvalue = 0 }, 4062 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4063 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4064 .access = PL1_RW, .accessfn = access_tvm_trvm, 4065 .type = ARM_CP_CONST, .resetvalue = 0 }, 4066 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4067 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4068 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4069 offsetof(CPUARMState, cp15.par_ns)} }, 4070 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4071 .access = PL1_RW, .accessfn = access_tvm_trvm, 4072 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4073 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4074 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4075 .writefn = vmsa_ttbr_write, }, 4076 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4077 .access = PL1_RW, .accessfn = access_tvm_trvm, 4078 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4079 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4080 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4081 .writefn = vmsa_ttbr_write, }, 4082 }; 4083 4084 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4085 { 4086 return vfp_get_fpcr(env); 4087 } 4088 4089 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4090 uint64_t value) 4091 { 4092 vfp_set_fpcr(env, value); 4093 } 4094 4095 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4096 { 4097 return vfp_get_fpsr(env); 4098 } 4099 4100 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4101 uint64_t value) 4102 { 4103 vfp_set_fpsr(env, value); 4104 } 4105 4106 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4107 bool isread) 4108 { 4109 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4110 return CP_ACCESS_TRAP; 4111 } 4112 return CP_ACCESS_OK; 4113 } 4114 4115 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4116 uint64_t value) 4117 { 4118 env->daif = value & PSTATE_DAIF; 4119 } 4120 4121 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4122 { 4123 return env->pstate & PSTATE_PAN; 4124 } 4125 4126 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4127 uint64_t value) 4128 { 4129 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4130 } 4131 4132 static const ARMCPRegInfo pan_reginfo = { 4133 .name = "PAN", .state = ARM_CP_STATE_AA64, 4134 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4135 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4136 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4137 }; 4138 4139 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4140 { 4141 return env->pstate & PSTATE_UAO; 4142 } 4143 4144 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4148 } 4149 4150 static const ARMCPRegInfo uao_reginfo = { 4151 .name = "UAO", .state = ARM_CP_STATE_AA64, 4152 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4153 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4154 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4155 }; 4156 4157 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4158 { 4159 return env->pstate & PSTATE_DIT; 4160 } 4161 4162 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4163 uint64_t value) 4164 { 4165 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4166 } 4167 4168 static const ARMCPRegInfo dit_reginfo = { 4169 .name = "DIT", .state = ARM_CP_STATE_AA64, 4170 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4171 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4172 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4173 }; 4174 4175 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4176 { 4177 return env->pstate & PSTATE_SSBS; 4178 } 4179 4180 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4181 uint64_t value) 4182 { 4183 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4184 } 4185 4186 static const ARMCPRegInfo ssbs_reginfo = { 4187 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4188 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4189 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4190 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4191 }; 4192 4193 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4194 const ARMCPRegInfo *ri, 4195 bool isread) 4196 { 4197 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4198 switch (arm_current_el(env)) { 4199 case 0: 4200 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4201 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4202 return CP_ACCESS_TRAP; 4203 } 4204 /* fall through */ 4205 case 1: 4206 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4207 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4208 return CP_ACCESS_TRAP_EL2; 4209 } 4210 break; 4211 } 4212 return CP_ACCESS_OK; 4213 } 4214 4215 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4216 const ARMCPRegInfo *ri, 4217 bool isread) 4218 { 4219 /* Cache invalidate/clean to Point of Unification... */ 4220 switch (arm_current_el(env)) { 4221 case 0: 4222 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4223 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4224 return CP_ACCESS_TRAP; 4225 } 4226 /* fall through */ 4227 case 1: 4228 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4229 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4230 return CP_ACCESS_TRAP_EL2; 4231 } 4232 break; 4233 } 4234 return CP_ACCESS_OK; 4235 } 4236 4237 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4238 * Page D4-1736 (DDI0487A.b) 4239 */ 4240 4241 static int vae1_tlbmask(CPUARMState *env) 4242 { 4243 uint64_t hcr = arm_hcr_el2_eff(env); 4244 uint16_t mask; 4245 4246 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4247 mask = ARMMMUIdxBit_E20_2 | 4248 ARMMMUIdxBit_E20_2_PAN | 4249 ARMMMUIdxBit_E20_0; 4250 } else { 4251 mask = ARMMMUIdxBit_E10_1 | 4252 ARMMMUIdxBit_E10_1_PAN | 4253 ARMMMUIdxBit_E10_0; 4254 } 4255 4256 if (arm_is_secure_below_el3(env)) { 4257 mask >>= ARM_MMU_IDX_A_NS; 4258 } 4259 4260 return mask; 4261 } 4262 4263 /* Return 56 if TBI is enabled, 64 otherwise. */ 4264 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4265 uint64_t addr) 4266 { 4267 uint64_t tcr = regime_tcr(env, mmu_idx); 4268 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4269 int select = extract64(addr, 55, 1); 4270 4271 return (tbi >> select) & 1 ? 56 : 64; 4272 } 4273 4274 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4275 { 4276 uint64_t hcr = arm_hcr_el2_eff(env); 4277 ARMMMUIdx mmu_idx; 4278 4279 /* Only the regime of the mmu_idx below is significant. */ 4280 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4281 mmu_idx = ARMMMUIdx_E20_0; 4282 } else { 4283 mmu_idx = ARMMMUIdx_E10_0; 4284 } 4285 4286 if (arm_is_secure_below_el3(env)) { 4287 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4288 } 4289 4290 return tlbbits_for_regime(env, mmu_idx, addr); 4291 } 4292 4293 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4294 uint64_t value) 4295 { 4296 CPUState *cs = env_cpu(env); 4297 int mask = vae1_tlbmask(env); 4298 4299 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4300 } 4301 4302 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4303 uint64_t value) 4304 { 4305 CPUState *cs = env_cpu(env); 4306 int mask = vae1_tlbmask(env); 4307 4308 if (tlb_force_broadcast(env)) { 4309 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4310 } else { 4311 tlb_flush_by_mmuidx(cs, mask); 4312 } 4313 } 4314 4315 static int alle1_tlbmask(CPUARMState *env) 4316 { 4317 /* 4318 * Note that the 'ALL' scope must invalidate both stage 1 and 4319 * stage 2 translations, whereas most other scopes only invalidate 4320 * stage 1 translations. 4321 */ 4322 if (arm_is_secure_below_el3(env)) { 4323 return ARMMMUIdxBit_SE10_1 | 4324 ARMMMUIdxBit_SE10_1_PAN | 4325 ARMMMUIdxBit_SE10_0; 4326 } else { 4327 return ARMMMUIdxBit_E10_1 | 4328 ARMMMUIdxBit_E10_1_PAN | 4329 ARMMMUIdxBit_E10_0; 4330 } 4331 } 4332 4333 static int e2_tlbmask(CPUARMState *env) 4334 { 4335 if (arm_is_secure_below_el3(env)) { 4336 return ARMMMUIdxBit_SE20_0 | 4337 ARMMMUIdxBit_SE20_2 | 4338 ARMMMUIdxBit_SE20_2_PAN | 4339 ARMMMUIdxBit_SE2; 4340 } else { 4341 return ARMMMUIdxBit_E20_0 | 4342 ARMMMUIdxBit_E20_2 | 4343 ARMMMUIdxBit_E20_2_PAN | 4344 ARMMMUIdxBit_E2; 4345 } 4346 } 4347 4348 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4349 uint64_t value) 4350 { 4351 CPUState *cs = env_cpu(env); 4352 int mask = alle1_tlbmask(env); 4353 4354 tlb_flush_by_mmuidx(cs, mask); 4355 } 4356 4357 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4358 uint64_t value) 4359 { 4360 CPUState *cs = env_cpu(env); 4361 int mask = e2_tlbmask(env); 4362 4363 tlb_flush_by_mmuidx(cs, mask); 4364 } 4365 4366 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 ARMCPU *cpu = env_archcpu(env); 4370 CPUState *cs = CPU(cpu); 4371 4372 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4373 } 4374 4375 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4376 uint64_t value) 4377 { 4378 CPUState *cs = env_cpu(env); 4379 int mask = alle1_tlbmask(env); 4380 4381 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4382 } 4383 4384 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 CPUState *cs = env_cpu(env); 4388 int mask = e2_tlbmask(env); 4389 4390 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4391 } 4392 4393 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 CPUState *cs = env_cpu(env); 4397 4398 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4399 } 4400 4401 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4402 uint64_t value) 4403 { 4404 /* Invalidate by VA, EL2 4405 * Currently handles both VAE2 and VALE2, since we don't support 4406 * flush-last-level-only. 4407 */ 4408 CPUState *cs = env_cpu(env); 4409 int mask = e2_tlbmask(env); 4410 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4411 4412 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4413 } 4414 4415 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4416 uint64_t value) 4417 { 4418 /* Invalidate by VA, EL3 4419 * Currently handles both VAE3 and VALE3, since we don't support 4420 * flush-last-level-only. 4421 */ 4422 ARMCPU *cpu = env_archcpu(env); 4423 CPUState *cs = CPU(cpu); 4424 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4425 4426 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4427 } 4428 4429 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4430 uint64_t value) 4431 { 4432 CPUState *cs = env_cpu(env); 4433 int mask = vae1_tlbmask(env); 4434 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4435 int bits = vae1_tlbbits(env, pageaddr); 4436 4437 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4438 } 4439 4440 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4441 uint64_t value) 4442 { 4443 /* Invalidate by VA, EL1&0 (AArch64 version). 4444 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4445 * since we don't support flush-for-specific-ASID-only or 4446 * flush-last-level-only. 4447 */ 4448 CPUState *cs = env_cpu(env); 4449 int mask = vae1_tlbmask(env); 4450 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4451 int bits = vae1_tlbbits(env, pageaddr); 4452 4453 if (tlb_force_broadcast(env)) { 4454 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4455 } else { 4456 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4457 } 4458 } 4459 4460 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4461 uint64_t value) 4462 { 4463 CPUState *cs = env_cpu(env); 4464 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4465 bool secure = arm_is_secure_below_el3(env); 4466 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4467 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4468 pageaddr); 4469 4470 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4471 } 4472 4473 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4474 uint64_t value) 4475 { 4476 CPUState *cs = env_cpu(env); 4477 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4478 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4479 4480 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4481 ARMMMUIdxBit_SE3, bits); 4482 } 4483 4484 #ifdef TARGET_AARCH64 4485 typedef struct { 4486 uint64_t base; 4487 uint64_t length; 4488 } TLBIRange; 4489 4490 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4491 uint64_t value) 4492 { 4493 unsigned int page_size_granule, page_shift, num, scale, exponent; 4494 /* Extract one bit to represent the va selector in use. */ 4495 uint64_t select = sextract64(value, 36, 1); 4496 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4497 TLBIRange ret = { }; 4498 4499 page_size_granule = extract64(value, 46, 2); 4500 4501 /* The granule encoded in value must match the granule in use. */ 4502 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4503 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4504 page_size_granule); 4505 return ret; 4506 } 4507 4508 page_shift = (page_size_granule - 1) * 2 + 12; 4509 num = extract64(value, 39, 5); 4510 scale = extract64(value, 44, 2); 4511 exponent = (5 * scale) + 1; 4512 4513 ret.length = (num + 1) << (exponent + page_shift); 4514 4515 if (param.select) { 4516 ret.base = sextract64(value, 0, 37); 4517 } else { 4518 ret.base = extract64(value, 0, 37); 4519 } 4520 if (param.ds) { 4521 /* 4522 * With DS=1, BaseADDR is always shifted 16 so that it is able 4523 * to address all 52 va bits. The input address is perforce 4524 * aligned on a 64k boundary regardless of translation granule. 4525 */ 4526 page_shift = 16; 4527 } 4528 ret.base <<= page_shift; 4529 4530 return ret; 4531 } 4532 4533 static void do_rvae_write(CPUARMState *env, uint64_t value, 4534 int idxmap, bool synced) 4535 { 4536 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4537 TLBIRange range; 4538 int bits; 4539 4540 range = tlbi_aa64_get_range(env, one_idx, value); 4541 bits = tlbbits_for_regime(env, one_idx, range.base); 4542 4543 if (synced) { 4544 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4545 range.base, 4546 range.length, 4547 idxmap, 4548 bits); 4549 } else { 4550 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4551 range.length, idxmap, bits); 4552 } 4553 } 4554 4555 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4556 const ARMCPRegInfo *ri, 4557 uint64_t value) 4558 { 4559 /* 4560 * Invalidate by VA range, EL1&0. 4561 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4562 * since we don't support flush-for-specific-ASID-only or 4563 * flush-last-level-only. 4564 */ 4565 4566 do_rvae_write(env, value, vae1_tlbmask(env), 4567 tlb_force_broadcast(env)); 4568 } 4569 4570 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4571 const ARMCPRegInfo *ri, 4572 uint64_t value) 4573 { 4574 /* 4575 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4576 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4577 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4578 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4579 * shareable specific flushes. 4580 */ 4581 4582 do_rvae_write(env, value, vae1_tlbmask(env), true); 4583 } 4584 4585 static int vae2_tlbmask(CPUARMState *env) 4586 { 4587 return (arm_is_secure_below_el3(env) 4588 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4589 } 4590 4591 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4592 const ARMCPRegInfo *ri, 4593 uint64_t value) 4594 { 4595 /* 4596 * Invalidate by VA range, EL2. 4597 * Currently handles all of RVAE2 and RVALE2, 4598 * since we don't support flush-for-specific-ASID-only or 4599 * flush-last-level-only. 4600 */ 4601 4602 do_rvae_write(env, value, vae2_tlbmask(env), 4603 tlb_force_broadcast(env)); 4604 4605 4606 } 4607 4608 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4609 const ARMCPRegInfo *ri, 4610 uint64_t value) 4611 { 4612 /* 4613 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4614 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4615 * since we don't support flush-for-specific-ASID-only, 4616 * flush-last-level-only or inner/outer shareable specific flushes. 4617 */ 4618 4619 do_rvae_write(env, value, vae2_tlbmask(env), true); 4620 4621 } 4622 4623 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4624 const ARMCPRegInfo *ri, 4625 uint64_t value) 4626 { 4627 /* 4628 * Invalidate by VA range, EL3. 4629 * Currently handles all of RVAE3 and RVALE3, 4630 * since we don't support flush-for-specific-ASID-only or 4631 * flush-last-level-only. 4632 */ 4633 4634 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4635 tlb_force_broadcast(env)); 4636 } 4637 4638 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4639 const ARMCPRegInfo *ri, 4640 uint64_t value) 4641 { 4642 /* 4643 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4644 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4645 * since we don't support flush-for-specific-ASID-only, 4646 * flush-last-level-only or inner/outer specific flushes. 4647 */ 4648 4649 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4650 } 4651 #endif 4652 4653 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4654 bool isread) 4655 { 4656 int cur_el = arm_current_el(env); 4657 4658 if (cur_el < 2) { 4659 uint64_t hcr = arm_hcr_el2_eff(env); 4660 4661 if (cur_el == 0) { 4662 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4663 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4664 return CP_ACCESS_TRAP_EL2; 4665 } 4666 } else { 4667 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4668 return CP_ACCESS_TRAP; 4669 } 4670 if (hcr & HCR_TDZ) { 4671 return CP_ACCESS_TRAP_EL2; 4672 } 4673 } 4674 } else if (hcr & HCR_TDZ) { 4675 return CP_ACCESS_TRAP_EL2; 4676 } 4677 } 4678 return CP_ACCESS_OK; 4679 } 4680 4681 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4682 { 4683 ARMCPU *cpu = env_archcpu(env); 4684 int dzp_bit = 1 << 4; 4685 4686 /* DZP indicates whether DC ZVA access is allowed */ 4687 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4688 dzp_bit = 0; 4689 } 4690 return cpu->dcz_blocksize | dzp_bit; 4691 } 4692 4693 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4694 bool isread) 4695 { 4696 if (!(env->pstate & PSTATE_SP)) { 4697 /* Access to SP_EL0 is undefined if it's being used as 4698 * the stack pointer. 4699 */ 4700 return CP_ACCESS_TRAP_UNCATEGORIZED; 4701 } 4702 return CP_ACCESS_OK; 4703 } 4704 4705 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4706 { 4707 return env->pstate & PSTATE_SP; 4708 } 4709 4710 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4711 { 4712 update_spsel(env, val); 4713 } 4714 4715 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4716 uint64_t value) 4717 { 4718 ARMCPU *cpu = env_archcpu(env); 4719 4720 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4721 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4722 value &= ~SCTLR_M; 4723 } 4724 4725 /* ??? Lots of these bits are not implemented. */ 4726 4727 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4728 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4729 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4730 } else { 4731 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4732 SCTLR_ATA0 | SCTLR_ATA); 4733 } 4734 } 4735 4736 if (raw_read(env, ri) == value) { 4737 /* Skip the TLB flush if nothing actually changed; Linux likes 4738 * to do a lot of pointless SCTLR writes. 4739 */ 4740 return; 4741 } 4742 4743 raw_write(env, ri, value); 4744 4745 /* This may enable/disable the MMU, so do a TLB flush. */ 4746 tlb_flush(CPU(cpu)); 4747 4748 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4749 /* 4750 * Normally we would always end the TB on an SCTLR write; see the 4751 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4752 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4753 * of hflags from the translator, so do it here. 4754 */ 4755 arm_rebuild_hflags(env); 4756 } 4757 } 4758 4759 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4760 uint64_t value) 4761 { 4762 /* 4763 * Some MDCR_EL3 bits affect whether PMU counters are running: 4764 * if we are trying to change any of those then we must 4765 * bracket this update with PMU start/finish calls. 4766 */ 4767 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4768 4769 if (pmu_op) { 4770 pmu_op_start(env); 4771 } 4772 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4773 if (pmu_op) { 4774 pmu_op_finish(env); 4775 } 4776 } 4777 4778 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4779 uint64_t value) 4780 { 4781 /* 4782 * Some MDCR_EL2 bits affect whether PMU counters are running: 4783 * if we are trying to change any of those then we must 4784 * bracket this update with PMU start/finish calls. 4785 */ 4786 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4787 4788 if (pmu_op) { 4789 pmu_op_start(env); 4790 } 4791 env->cp15.mdcr_el2 = value; 4792 if (pmu_op) { 4793 pmu_op_finish(env); 4794 } 4795 } 4796 4797 static const ARMCPRegInfo v8_cp_reginfo[] = { 4798 /* Minimal set of EL0-visible registers. This will need to be expanded 4799 * significantly for system emulation of AArch64 CPUs. 4800 */ 4801 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4803 .access = PL0_RW, .type = ARM_CP_NZCV }, 4804 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4805 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4806 .type = ARM_CP_NO_RAW, 4807 .access = PL0_RW, .accessfn = aa64_daif_access, 4808 .fieldoffset = offsetof(CPUARMState, daif), 4809 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4810 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4812 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4813 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4814 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4815 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4816 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4817 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4818 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4819 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4820 .access = PL0_R, .type = ARM_CP_NO_RAW, 4821 .readfn = aa64_dczid_read }, 4822 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4823 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4824 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4825 #ifndef CONFIG_USER_ONLY 4826 /* Avoid overhead of an access check that always passes in user-mode */ 4827 .accessfn = aa64_zva_access, 4828 #endif 4829 }, 4830 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4831 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4832 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4833 /* Cache ops: all NOPs since we don't emulate caches */ 4834 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4835 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4836 .access = PL1_W, .type = ARM_CP_NOP, 4837 .accessfn = aa64_cacheop_pou_access }, 4838 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4839 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4840 .access = PL1_W, .type = ARM_CP_NOP, 4841 .accessfn = aa64_cacheop_pou_access }, 4842 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4844 .access = PL0_W, .type = ARM_CP_NOP, 4845 .accessfn = aa64_cacheop_pou_access }, 4846 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4847 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4848 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4849 .type = ARM_CP_NOP }, 4850 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4851 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4852 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4853 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4854 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4855 .access = PL0_W, .type = ARM_CP_NOP, 4856 .accessfn = aa64_cacheop_poc_access }, 4857 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4858 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4859 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4860 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4861 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4862 .access = PL0_W, .type = ARM_CP_NOP, 4863 .accessfn = aa64_cacheop_pou_access }, 4864 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4865 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4866 .access = PL0_W, .type = ARM_CP_NOP, 4867 .accessfn = aa64_cacheop_poc_access }, 4868 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4869 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4870 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4871 /* TLBI operations */ 4872 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4873 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4874 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4875 .writefn = tlbi_aa64_vmalle1is_write }, 4876 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4878 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4879 .writefn = tlbi_aa64_vae1is_write }, 4880 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4881 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4882 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4883 .writefn = tlbi_aa64_vmalle1is_write }, 4884 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4886 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4887 .writefn = tlbi_aa64_vae1is_write }, 4888 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4891 .writefn = tlbi_aa64_vae1is_write }, 4892 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4894 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4895 .writefn = tlbi_aa64_vae1is_write }, 4896 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4899 .writefn = tlbi_aa64_vmalle1_write }, 4900 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4901 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4902 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4903 .writefn = tlbi_aa64_vae1_write }, 4904 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4906 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4907 .writefn = tlbi_aa64_vmalle1_write }, 4908 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4910 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4911 .writefn = tlbi_aa64_vae1_write }, 4912 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4914 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4915 .writefn = tlbi_aa64_vae1_write }, 4916 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4918 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4919 .writefn = tlbi_aa64_vae1_write }, 4920 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4922 .access = PL2_W, .type = ARM_CP_NOP }, 4923 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4925 .access = PL2_W, .type = ARM_CP_NOP }, 4926 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4928 .access = PL2_W, .type = ARM_CP_NO_RAW, 4929 .writefn = tlbi_aa64_alle1is_write }, 4930 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4932 .access = PL2_W, .type = ARM_CP_NO_RAW, 4933 .writefn = tlbi_aa64_alle1is_write }, 4934 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4936 .access = PL2_W, .type = ARM_CP_NOP }, 4937 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4939 .access = PL2_W, .type = ARM_CP_NOP }, 4940 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4941 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4942 .access = PL2_W, .type = ARM_CP_NO_RAW, 4943 .writefn = tlbi_aa64_alle1_write }, 4944 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4946 .access = PL2_W, .type = ARM_CP_NO_RAW, 4947 .writefn = tlbi_aa64_alle1is_write }, 4948 #ifndef CONFIG_USER_ONLY 4949 /* 64 bit address translation operations */ 4950 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4952 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4953 .writefn = ats_write64 }, 4954 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4956 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4957 .writefn = ats_write64 }, 4958 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4960 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4961 .writefn = ats_write64 }, 4962 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4964 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4965 .writefn = ats_write64 }, 4966 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4968 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4969 .writefn = ats_write64 }, 4970 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4972 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4973 .writefn = ats_write64 }, 4974 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4976 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4977 .writefn = ats_write64 }, 4978 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4980 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4981 .writefn = ats_write64 }, 4982 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4983 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4985 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4989 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4990 .writefn = ats_write64 }, 4991 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4992 .type = ARM_CP_ALIAS, 4993 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4994 .access = PL1_RW, .resetvalue = 0, 4995 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4996 .writefn = par_write }, 4997 #endif 4998 /* TLB invalidate last level of translation table walk */ 4999 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5000 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5001 .writefn = tlbimva_is_write }, 5002 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5003 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5004 .writefn = tlbimvaa_is_write }, 5005 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5006 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5007 .writefn = tlbimva_write }, 5008 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5009 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5010 .writefn = tlbimvaa_write }, 5011 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5012 .type = ARM_CP_NO_RAW, .access = PL2_W, 5013 .writefn = tlbimva_hyp_write }, 5014 { .name = "TLBIMVALHIS", 5015 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5016 .type = ARM_CP_NO_RAW, .access = PL2_W, 5017 .writefn = tlbimva_hyp_is_write }, 5018 { .name = "TLBIIPAS2", 5019 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5020 .type = ARM_CP_NOP, .access = PL2_W }, 5021 { .name = "TLBIIPAS2IS", 5022 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5023 .type = ARM_CP_NOP, .access = PL2_W }, 5024 { .name = "TLBIIPAS2L", 5025 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5026 .type = ARM_CP_NOP, .access = PL2_W }, 5027 { .name = "TLBIIPAS2LIS", 5028 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5029 .type = ARM_CP_NOP, .access = PL2_W }, 5030 /* 32 bit cache operations */ 5031 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5032 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5033 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5034 .type = ARM_CP_NOP, .access = PL1_W }, 5035 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5036 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5037 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5038 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5039 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5040 .type = ARM_CP_NOP, .access = PL1_W }, 5041 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5042 .type = ARM_CP_NOP, .access = PL1_W }, 5043 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5044 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5045 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5046 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5047 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5048 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5049 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5050 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5051 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5052 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5053 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5054 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5055 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5056 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5057 /* MMU Domain access control / MPU write buffer control */ 5058 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5059 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5060 .writefn = dacr_write, .raw_writefn = raw_write, 5061 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5062 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5063 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5064 .type = ARM_CP_ALIAS, 5065 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5066 .access = PL1_RW, 5067 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5068 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5069 .type = ARM_CP_ALIAS, 5070 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5071 .access = PL1_RW, 5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5073 /* We rely on the access checks not allowing the guest to write to the 5074 * state field when SPSel indicates that it's being used as the stack 5075 * pointer. 5076 */ 5077 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5079 .access = PL1_RW, .accessfn = sp_el0_access, 5080 .type = ARM_CP_ALIAS, 5081 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5082 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5084 .access = PL2_RW, .type = ARM_CP_ALIAS, 5085 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5086 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5088 .type = ARM_CP_NO_RAW, 5089 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5090 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5091 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5092 .access = PL2_RW, 5093 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5094 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5095 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5097 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5098 .writefn = dacr_write, .raw_writefn = raw_write, 5099 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5100 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5101 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5102 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5103 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5104 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5105 .type = ARM_CP_ALIAS, 5106 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5107 .access = PL2_RW, 5108 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5109 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5110 .type = ARM_CP_ALIAS, 5111 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5112 .access = PL2_RW, 5113 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5114 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5115 .type = ARM_CP_ALIAS, 5116 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5117 .access = PL2_RW, 5118 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5119 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5120 .type = ARM_CP_ALIAS, 5121 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5122 .access = PL2_RW, 5123 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5124 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5125 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5126 .resetvalue = 0, 5127 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5128 { .name = "SDCR", .type = ARM_CP_ALIAS, 5129 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5130 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5131 .writefn = sdcr_write, 5132 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5133 }; 5134 5135 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5136 { 5137 ARMCPU *cpu = env_archcpu(env); 5138 5139 if (arm_feature(env, ARM_FEATURE_V8)) { 5140 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5141 } else { 5142 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5143 } 5144 5145 if (arm_feature(env, ARM_FEATURE_EL3)) { 5146 valid_mask &= ~HCR_HCD; 5147 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5148 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5149 * However, if we're using the SMC PSCI conduit then QEMU is 5150 * effectively acting like EL3 firmware and so the guest at 5151 * EL2 should retain the ability to prevent EL1 from being 5152 * able to make SMC calls into the ersatz firmware, so in 5153 * that case HCR.TSC should be read/write. 5154 */ 5155 valid_mask &= ~HCR_TSC; 5156 } 5157 5158 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5159 if (cpu_isar_feature(aa64_vh, cpu)) { 5160 valid_mask |= HCR_E2H; 5161 } 5162 if (cpu_isar_feature(aa64_ras, cpu)) { 5163 valid_mask |= HCR_TERR | HCR_TEA; 5164 } 5165 if (cpu_isar_feature(aa64_lor, cpu)) { 5166 valid_mask |= HCR_TLOR; 5167 } 5168 if (cpu_isar_feature(aa64_pauth, cpu)) { 5169 valid_mask |= HCR_API | HCR_APK; 5170 } 5171 if (cpu_isar_feature(aa64_mte, cpu)) { 5172 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5173 } 5174 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5175 valid_mask |= HCR_ENSCXT; 5176 } 5177 if (cpu_isar_feature(aa64_fwb, cpu)) { 5178 valid_mask |= HCR_FWB; 5179 } 5180 } 5181 5182 /* Clear RES0 bits. */ 5183 value &= valid_mask; 5184 5185 /* 5186 * These bits change the MMU setup: 5187 * HCR_VM enables stage 2 translation 5188 * HCR_PTW forbids certain page-table setups 5189 * HCR_DC disables stage1 and enables stage2 translation 5190 * HCR_DCT enables tagging on (disabled) stage1 translation 5191 * HCR_FWB changes the interpretation of stage2 descriptor bits 5192 */ 5193 if ((env->cp15.hcr_el2 ^ value) & 5194 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5195 tlb_flush(CPU(cpu)); 5196 } 5197 env->cp15.hcr_el2 = value; 5198 5199 /* 5200 * Updates to VI and VF require us to update the status of 5201 * virtual interrupts, which are the logical OR of these bits 5202 * and the state of the input lines from the GIC. (This requires 5203 * that we have the iothread lock, which is done by marking the 5204 * reginfo structs as ARM_CP_IO.) 5205 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5206 * possible for it to be taken immediately, because VIRQ and 5207 * VFIQ are masked unless running at EL0 or EL1, and HCR 5208 * can only be written at EL2. 5209 */ 5210 g_assert(qemu_mutex_iothread_locked()); 5211 arm_cpu_update_virq(cpu); 5212 arm_cpu_update_vfiq(cpu); 5213 arm_cpu_update_vserr(cpu); 5214 } 5215 5216 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5217 { 5218 do_hcr_write(env, value, 0); 5219 } 5220 5221 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5222 uint64_t value) 5223 { 5224 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5225 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5226 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5227 } 5228 5229 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5230 uint64_t value) 5231 { 5232 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5233 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5234 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5235 } 5236 5237 /* 5238 * Return the effective value of HCR_EL2. 5239 * Bits that are not included here: 5240 * RW (read from SCR_EL3.RW as needed) 5241 */ 5242 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5243 { 5244 uint64_t ret = env->cp15.hcr_el2; 5245 5246 if (!arm_is_el2_enabled(env)) { 5247 /* 5248 * "This register has no effect if EL2 is not enabled in the 5249 * current Security state". This is ARMv8.4-SecEL2 speak for 5250 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5251 * 5252 * Prior to that, the language was "In an implementation that 5253 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5254 * as if this field is 0 for all purposes other than a direct 5255 * read or write access of HCR_EL2". With lots of enumeration 5256 * on a per-field basis. In current QEMU, this is condition 5257 * is arm_is_secure_below_el3. 5258 * 5259 * Since the v8.4 language applies to the entire register, and 5260 * appears to be backward compatible, use that. 5261 */ 5262 return 0; 5263 } 5264 5265 /* 5266 * For a cpu that supports both aarch64 and aarch32, we can set bits 5267 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5268 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5269 */ 5270 if (!arm_el_is_aa64(env, 2)) { 5271 uint64_t aa32_valid; 5272 5273 /* 5274 * These bits are up-to-date as of ARMv8.6. 5275 * For HCR, it's easiest to list just the 2 bits that are invalid. 5276 * For HCR2, list those that are valid. 5277 */ 5278 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5279 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5280 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5281 ret &= aa32_valid; 5282 } 5283 5284 if (ret & HCR_TGE) { 5285 /* These bits are up-to-date as of ARMv8.6. */ 5286 if (ret & HCR_E2H) { 5287 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5288 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5289 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5290 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5291 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5292 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5293 } else { 5294 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5295 } 5296 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5297 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5298 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5299 HCR_TLOR); 5300 } 5301 5302 return ret; 5303 } 5304 5305 /* 5306 * Corresponds to ARM pseudocode function ELIsInHost(). 5307 */ 5308 bool el_is_in_host(CPUARMState *env, int el) 5309 { 5310 uint64_t mask; 5311 5312 /* 5313 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5314 * Perform the simplest bit tests first, and validate EL2 afterward. 5315 */ 5316 if (el & 1) { 5317 return false; /* EL1 or EL3 */ 5318 } 5319 5320 /* 5321 * Note that hcr_write() checks isar_feature_aa64_vh(), 5322 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5323 */ 5324 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5325 if ((env->cp15.hcr_el2 & mask) != mask) { 5326 return false; 5327 } 5328 5329 /* TGE and/or E2H set: double check those bits are currently legal. */ 5330 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5331 } 5332 5333 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5334 uint64_t value) 5335 { 5336 uint64_t valid_mask = 0; 5337 5338 /* No features adding bits to HCRX are implemented. */ 5339 5340 /* Clear RES0 bits. */ 5341 env->cp15.hcrx_el2 = value & valid_mask; 5342 } 5343 5344 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5345 bool isread) 5346 { 5347 if (arm_current_el(env) < 3 5348 && arm_feature(env, ARM_FEATURE_EL3) 5349 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5350 return CP_ACCESS_TRAP_EL3; 5351 } 5352 return CP_ACCESS_OK; 5353 } 5354 5355 static const ARMCPRegInfo hcrx_el2_reginfo = { 5356 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5357 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5358 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5359 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5360 }; 5361 5362 /* Return the effective value of HCRX_EL2. */ 5363 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5364 { 5365 /* 5366 * The bits in this register behave as 0 for all purposes other than 5367 * direct reads of the register if: 5368 * - EL2 is not enabled in the current security state, 5369 * - SCR_EL3.HXEn is 0. 5370 */ 5371 if (!arm_is_el2_enabled(env) 5372 || (arm_feature(env, ARM_FEATURE_EL3) 5373 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5374 return 0; 5375 } 5376 return env->cp15.hcrx_el2; 5377 } 5378 5379 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5380 uint64_t value) 5381 { 5382 /* 5383 * For A-profile AArch32 EL3, if NSACR.CP10 5384 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5385 */ 5386 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5387 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5388 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5389 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5390 } 5391 env->cp15.cptr_el[2] = value; 5392 } 5393 5394 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5395 { 5396 /* 5397 * For A-profile AArch32 EL3, if NSACR.CP10 5398 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5399 */ 5400 uint64_t value = env->cp15.cptr_el[2]; 5401 5402 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5403 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5404 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5405 } 5406 return value; 5407 } 5408 5409 static const ARMCPRegInfo el2_cp_reginfo[] = { 5410 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5411 .type = ARM_CP_IO, 5412 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5413 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5414 .writefn = hcr_write }, 5415 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5416 .type = ARM_CP_ALIAS | ARM_CP_IO, 5417 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5418 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5419 .writefn = hcr_writelow }, 5420 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5421 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5422 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5423 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5424 .type = ARM_CP_ALIAS, 5425 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5426 .access = PL2_RW, 5427 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5428 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5429 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5430 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5431 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5432 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5433 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5434 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5435 .type = ARM_CP_ALIAS, 5436 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5437 .access = PL2_RW, 5438 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5439 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5440 .type = ARM_CP_ALIAS, 5441 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5442 .access = PL2_RW, 5443 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5444 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5445 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5446 .access = PL2_RW, .writefn = vbar_write, 5447 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5448 .resetvalue = 0 }, 5449 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5450 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5451 .access = PL3_RW, .type = ARM_CP_ALIAS, 5452 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5453 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5454 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5455 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5456 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5457 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5458 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5459 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5460 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5461 .resetvalue = 0 }, 5462 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5463 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5464 .access = PL2_RW, .type = ARM_CP_ALIAS, 5465 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5466 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5467 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5468 .access = PL2_RW, .type = ARM_CP_CONST, 5469 .resetvalue = 0 }, 5470 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5471 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5472 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5473 .access = PL2_RW, .type = ARM_CP_CONST, 5474 .resetvalue = 0 }, 5475 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5476 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5477 .access = PL2_RW, .type = ARM_CP_CONST, 5478 .resetvalue = 0 }, 5479 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5480 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5481 .access = PL2_RW, .type = ARM_CP_CONST, 5482 .resetvalue = 0 }, 5483 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5484 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5485 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5486 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5487 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5488 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5489 .type = ARM_CP_ALIAS, 5490 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5491 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5492 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5494 .access = PL2_RW, 5495 /* no .writefn needed as this can't cause an ASID change */ 5496 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5497 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5498 .cp = 15, .opc1 = 6, .crm = 2, 5499 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5500 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5501 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5502 .writefn = vttbr_write }, 5503 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5504 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5505 .access = PL2_RW, .writefn = vttbr_write, 5506 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5507 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5508 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5509 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5510 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5511 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5512 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5513 .access = PL2_RW, .resetvalue = 0, 5514 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5515 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5516 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5517 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5518 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5519 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5520 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5521 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5522 { .name = "TLBIALLNSNH", 5523 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5524 .type = ARM_CP_NO_RAW, .access = PL2_W, 5525 .writefn = tlbiall_nsnh_write }, 5526 { .name = "TLBIALLNSNHIS", 5527 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5528 .type = ARM_CP_NO_RAW, .access = PL2_W, 5529 .writefn = tlbiall_nsnh_is_write }, 5530 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5531 .type = ARM_CP_NO_RAW, .access = PL2_W, 5532 .writefn = tlbiall_hyp_write }, 5533 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5534 .type = ARM_CP_NO_RAW, .access = PL2_W, 5535 .writefn = tlbiall_hyp_is_write }, 5536 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5537 .type = ARM_CP_NO_RAW, .access = PL2_W, 5538 .writefn = tlbimva_hyp_write }, 5539 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5540 .type = ARM_CP_NO_RAW, .access = PL2_W, 5541 .writefn = tlbimva_hyp_is_write }, 5542 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5543 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5544 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5545 .writefn = tlbi_aa64_alle2_write }, 5546 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5547 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5548 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5549 .writefn = tlbi_aa64_vae2_write }, 5550 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5552 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5553 .writefn = tlbi_aa64_vae2_write }, 5554 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5555 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5556 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5557 .writefn = tlbi_aa64_alle2is_write }, 5558 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5559 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5560 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5561 .writefn = tlbi_aa64_vae2is_write }, 5562 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5564 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5565 .writefn = tlbi_aa64_vae2is_write }, 5566 #ifndef CONFIG_USER_ONLY 5567 /* Unlike the other EL2-related AT operations, these must 5568 * UNDEF from EL3 if EL2 is not implemented, which is why we 5569 * define them here rather than with the rest of the AT ops. 5570 */ 5571 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5572 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5573 .access = PL2_W, .accessfn = at_s1e2_access, 5574 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5575 .writefn = ats_write64 }, 5576 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5577 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5578 .access = PL2_W, .accessfn = at_s1e2_access, 5579 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5580 .writefn = ats_write64 }, 5581 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5582 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5583 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5584 * to behave as if SCR.NS was 1. 5585 */ 5586 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5587 .access = PL2_W, 5588 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5589 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5590 .access = PL2_W, 5591 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5592 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5593 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5594 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5595 * reset values as IMPDEF. We choose to reset to 3 to comply with 5596 * both ARMv7 and ARMv8. 5597 */ 5598 .access = PL2_RW, .resetvalue = 3, 5599 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5600 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5601 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5602 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5603 .writefn = gt_cntvoff_write, 5604 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5605 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5606 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5607 .writefn = gt_cntvoff_write, 5608 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5609 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5611 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5612 .type = ARM_CP_IO, .access = PL2_RW, 5613 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5614 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5615 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5616 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5617 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5618 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5619 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5620 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5621 .resetfn = gt_hyp_timer_reset, 5622 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5623 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5624 .type = ARM_CP_IO, 5625 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5626 .access = PL2_RW, 5627 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5628 .resetvalue = 0, 5629 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5630 #endif 5631 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5632 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5633 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5634 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5635 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5636 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5637 .access = PL2_RW, 5638 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5639 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5640 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5641 .access = PL2_RW, 5642 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5643 }; 5644 5645 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5646 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5647 .type = ARM_CP_ALIAS | ARM_CP_IO, 5648 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5649 .access = PL2_RW, 5650 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5651 .writefn = hcr_writehigh }, 5652 }; 5653 5654 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5655 bool isread) 5656 { 5657 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5658 return CP_ACCESS_OK; 5659 } 5660 return CP_ACCESS_TRAP_UNCATEGORIZED; 5661 } 5662 5663 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5664 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5665 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5666 .access = PL2_RW, .accessfn = sel2_access, 5667 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5668 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5669 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5670 .access = PL2_RW, .accessfn = sel2_access, 5671 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5672 }; 5673 5674 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5675 bool isread) 5676 { 5677 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5678 * At Secure EL1 it traps to EL3 or EL2. 5679 */ 5680 if (arm_current_el(env) == 3) { 5681 return CP_ACCESS_OK; 5682 } 5683 if (arm_is_secure_below_el3(env)) { 5684 if (env->cp15.scr_el3 & SCR_EEL2) { 5685 return CP_ACCESS_TRAP_EL2; 5686 } 5687 return CP_ACCESS_TRAP_EL3; 5688 } 5689 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5690 if (isread) { 5691 return CP_ACCESS_OK; 5692 } 5693 return CP_ACCESS_TRAP_UNCATEGORIZED; 5694 } 5695 5696 static const ARMCPRegInfo el3_cp_reginfo[] = { 5697 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5698 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5699 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5700 .resetfn = scr_reset, .writefn = scr_write }, 5701 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5702 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5703 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5704 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5705 .writefn = scr_write }, 5706 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5707 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5708 .access = PL3_RW, .resetvalue = 0, 5709 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5710 { .name = "SDER", 5711 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5712 .access = PL3_RW, .resetvalue = 0, 5713 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5714 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5715 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5716 .writefn = vbar_write, .resetvalue = 0, 5717 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5718 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5720 .access = PL3_RW, .resetvalue = 0, 5721 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5722 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5724 .access = PL3_RW, 5725 /* no .writefn needed as this can't cause an ASID change */ 5726 .resetvalue = 0, 5727 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5728 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5729 .type = ARM_CP_ALIAS, 5730 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5731 .access = PL3_RW, 5732 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5733 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5734 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5735 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5736 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5737 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5738 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5739 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5740 .type = ARM_CP_ALIAS, 5741 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5742 .access = PL3_RW, 5743 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5744 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5745 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5746 .access = PL3_RW, .writefn = vbar_write, 5747 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5748 .resetvalue = 0 }, 5749 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5750 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5751 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5752 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5753 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5754 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5755 .access = PL3_RW, .resetvalue = 0, 5756 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5757 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5758 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5759 .access = PL3_RW, .type = ARM_CP_CONST, 5760 .resetvalue = 0 }, 5761 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5762 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5763 .access = PL3_RW, .type = ARM_CP_CONST, 5764 .resetvalue = 0 }, 5765 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5766 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5767 .access = PL3_RW, .type = ARM_CP_CONST, 5768 .resetvalue = 0 }, 5769 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5771 .access = PL3_W, .type = ARM_CP_NO_RAW, 5772 .writefn = tlbi_aa64_alle3is_write }, 5773 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5775 .access = PL3_W, .type = ARM_CP_NO_RAW, 5776 .writefn = tlbi_aa64_vae3is_write }, 5777 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5779 .access = PL3_W, .type = ARM_CP_NO_RAW, 5780 .writefn = tlbi_aa64_vae3is_write }, 5781 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5783 .access = PL3_W, .type = ARM_CP_NO_RAW, 5784 .writefn = tlbi_aa64_alle3_write }, 5785 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5787 .access = PL3_W, .type = ARM_CP_NO_RAW, 5788 .writefn = tlbi_aa64_vae3_write }, 5789 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5791 .access = PL3_W, .type = ARM_CP_NO_RAW, 5792 .writefn = tlbi_aa64_vae3_write }, 5793 }; 5794 5795 #ifndef CONFIG_USER_ONLY 5796 /* Test if system register redirection is to occur in the current state. */ 5797 static bool redirect_for_e2h(CPUARMState *env) 5798 { 5799 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5800 } 5801 5802 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5803 { 5804 CPReadFn *readfn; 5805 5806 if (redirect_for_e2h(env)) { 5807 /* Switch to the saved EL2 version of the register. */ 5808 ri = ri->opaque; 5809 readfn = ri->readfn; 5810 } else { 5811 readfn = ri->orig_readfn; 5812 } 5813 if (readfn == NULL) { 5814 readfn = raw_read; 5815 } 5816 return readfn(env, ri); 5817 } 5818 5819 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5820 uint64_t value) 5821 { 5822 CPWriteFn *writefn; 5823 5824 if (redirect_for_e2h(env)) { 5825 /* Switch to the saved EL2 version of the register. */ 5826 ri = ri->opaque; 5827 writefn = ri->writefn; 5828 } else { 5829 writefn = ri->orig_writefn; 5830 } 5831 if (writefn == NULL) { 5832 writefn = raw_write; 5833 } 5834 writefn(env, ri, value); 5835 } 5836 5837 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5838 { 5839 struct E2HAlias { 5840 uint32_t src_key, dst_key, new_key; 5841 const char *src_name, *dst_name, *new_name; 5842 bool (*feature)(const ARMISARegisters *id); 5843 }; 5844 5845 #define K(op0, op1, crn, crm, op2) \ 5846 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5847 5848 static const struct E2HAlias aliases[] = { 5849 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5850 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5851 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5852 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5853 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5854 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5855 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5856 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5857 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5858 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5859 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5860 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5861 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5862 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5863 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5864 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5865 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5866 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5867 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5868 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5869 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5870 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5871 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5872 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5873 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5874 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5875 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5876 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5877 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5878 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5879 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5880 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5881 5882 /* 5883 * Note that redirection of ZCR is mentioned in the description 5884 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5885 * not in the summary table. 5886 */ 5887 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5888 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5889 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5890 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5891 5892 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5893 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5894 5895 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5896 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5897 isar_feature_aa64_scxtnum }, 5898 5899 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5900 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5901 }; 5902 #undef K 5903 5904 size_t i; 5905 5906 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5907 const struct E2HAlias *a = &aliases[i]; 5908 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5909 bool ok; 5910 5911 if (a->feature && !a->feature(&cpu->isar)) { 5912 continue; 5913 } 5914 5915 src_reg = g_hash_table_lookup(cpu->cp_regs, 5916 (gpointer)(uintptr_t)a->src_key); 5917 dst_reg = g_hash_table_lookup(cpu->cp_regs, 5918 (gpointer)(uintptr_t)a->dst_key); 5919 g_assert(src_reg != NULL); 5920 g_assert(dst_reg != NULL); 5921 5922 /* Cross-compare names to detect typos in the keys. */ 5923 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5924 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5925 5926 /* None of the core system registers use opaque; we will. */ 5927 g_assert(src_reg->opaque == NULL); 5928 5929 /* Create alias before redirection so we dup the right data. */ 5930 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5931 5932 new_reg->name = a->new_name; 5933 new_reg->type |= ARM_CP_ALIAS; 5934 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5935 new_reg->access &= PL2_RW | PL3_RW; 5936 5937 ok = g_hash_table_insert(cpu->cp_regs, 5938 (gpointer)(uintptr_t)a->new_key, new_reg); 5939 g_assert(ok); 5940 5941 src_reg->opaque = dst_reg; 5942 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5943 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5944 if (!src_reg->raw_readfn) { 5945 src_reg->raw_readfn = raw_read; 5946 } 5947 if (!src_reg->raw_writefn) { 5948 src_reg->raw_writefn = raw_write; 5949 } 5950 src_reg->readfn = el2_e2h_read; 5951 src_reg->writefn = el2_e2h_write; 5952 } 5953 } 5954 #endif 5955 5956 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5957 bool isread) 5958 { 5959 int cur_el = arm_current_el(env); 5960 5961 if (cur_el < 2) { 5962 uint64_t hcr = arm_hcr_el2_eff(env); 5963 5964 if (cur_el == 0) { 5965 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5966 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 5967 return CP_ACCESS_TRAP_EL2; 5968 } 5969 } else { 5970 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5971 return CP_ACCESS_TRAP; 5972 } 5973 if (hcr & HCR_TID2) { 5974 return CP_ACCESS_TRAP_EL2; 5975 } 5976 } 5977 } else if (hcr & HCR_TID2) { 5978 return CP_ACCESS_TRAP_EL2; 5979 } 5980 } 5981 5982 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5983 return CP_ACCESS_TRAP_EL2; 5984 } 5985 5986 return CP_ACCESS_OK; 5987 } 5988 5989 /* 5990 * Check for traps to RAS registers, which are controlled 5991 * by HCR_EL2.TERR and SCR_EL3.TERR. 5992 */ 5993 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 5994 bool isread) 5995 { 5996 int el = arm_current_el(env); 5997 5998 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 5999 return CP_ACCESS_TRAP_EL2; 6000 } 6001 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6002 return CP_ACCESS_TRAP_EL3; 6003 } 6004 return CP_ACCESS_OK; 6005 } 6006 6007 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6008 { 6009 int el = arm_current_el(env); 6010 6011 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6012 return env->cp15.vdisr_el2; 6013 } 6014 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6015 return 0; /* RAZ/WI */ 6016 } 6017 return env->cp15.disr_el1; 6018 } 6019 6020 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6021 { 6022 int el = arm_current_el(env); 6023 6024 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6025 env->cp15.vdisr_el2 = val; 6026 return; 6027 } 6028 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6029 return; /* RAZ/WI */ 6030 } 6031 env->cp15.disr_el1 = val; 6032 } 6033 6034 /* 6035 * Minimal RAS implementation with no Error Records. 6036 * Which means that all of the Error Record registers: 6037 * ERXADDR_EL1 6038 * ERXCTLR_EL1 6039 * ERXFR_EL1 6040 * ERXMISC0_EL1 6041 * ERXMISC1_EL1 6042 * ERXMISC2_EL1 6043 * ERXMISC3_EL1 6044 * ERXPFGCDN_EL1 (RASv1p1) 6045 * ERXPFGCTL_EL1 (RASv1p1) 6046 * ERXPFGF_EL1 (RASv1p1) 6047 * ERXSTATUS_EL1 6048 * and 6049 * ERRSELR_EL1 6050 * may generate UNDEFINED, which is the effect we get by not 6051 * listing them at all. 6052 */ 6053 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6054 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6055 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6056 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6057 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6058 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6059 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6060 .access = PL1_R, .accessfn = access_terr, 6061 .type = ARM_CP_CONST, .resetvalue = 0 }, 6062 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6063 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6064 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6065 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6066 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6067 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6068 }; 6069 6070 /* 6071 * Return the exception level to which exceptions should be taken 6072 * via SVEAccessTrap. This excludes the check for whether the exception 6073 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6074 * be found by testing 0 < fp_exception_el < sve_exception_el. 6075 * 6076 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6077 * pseudocode does *not* separate out the FP trap checks, but has them 6078 * all in one function. 6079 */ 6080 int sve_exception_el(CPUARMState *env, int el) 6081 { 6082 #ifndef CONFIG_USER_ONLY 6083 if (el <= 1 && !el_is_in_host(env, el)) { 6084 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6085 case 1: 6086 if (el != 0) { 6087 break; 6088 } 6089 /* fall through */ 6090 case 0: 6091 case 2: 6092 return 1; 6093 } 6094 } 6095 6096 if (el <= 2 && arm_is_el2_enabled(env)) { 6097 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6098 if (env->cp15.hcr_el2 & HCR_E2H) { 6099 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6100 case 1: 6101 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6102 break; 6103 } 6104 /* fall through */ 6105 case 0: 6106 case 2: 6107 return 2; 6108 } 6109 } else { 6110 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6111 return 2; 6112 } 6113 } 6114 } 6115 6116 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6117 if (arm_feature(env, ARM_FEATURE_EL3) 6118 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6119 return 3; 6120 } 6121 #endif 6122 return 0; 6123 } 6124 6125 /* 6126 * Return the exception level to which exceptions should be taken for SME. 6127 * C.f. the ARM pseudocode function CheckSMEAccess. 6128 */ 6129 int sme_exception_el(CPUARMState *env, int el) 6130 { 6131 #ifndef CONFIG_USER_ONLY 6132 if (el <= 1 && !el_is_in_host(env, el)) { 6133 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6134 case 1: 6135 if (el != 0) { 6136 break; 6137 } 6138 /* fall through */ 6139 case 0: 6140 case 2: 6141 return 1; 6142 } 6143 } 6144 6145 if (el <= 2 && arm_is_el2_enabled(env)) { 6146 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6147 if (env->cp15.hcr_el2 & HCR_E2H) { 6148 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6149 case 1: 6150 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6151 break; 6152 } 6153 /* fall through */ 6154 case 0: 6155 case 2: 6156 return 2; 6157 } 6158 } else { 6159 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6160 return 2; 6161 } 6162 } 6163 } 6164 6165 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6166 if (arm_feature(env, ARM_FEATURE_EL3) 6167 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6168 return 3; 6169 } 6170 #endif 6171 return 0; 6172 } 6173 6174 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6175 static bool sme_fa64(CPUARMState *env, int el) 6176 { 6177 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6178 return false; 6179 } 6180 6181 if (el <= 1 && !el_is_in_host(env, el)) { 6182 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6183 return false; 6184 } 6185 } 6186 if (el <= 2 && arm_is_el2_enabled(env)) { 6187 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6188 return false; 6189 } 6190 } 6191 if (arm_feature(env, ARM_FEATURE_EL3)) { 6192 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6193 return false; 6194 } 6195 } 6196 6197 return true; 6198 } 6199 6200 /* 6201 * Given that SVE is enabled, return the vector length for EL. 6202 */ 6203 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6204 { 6205 ARMCPU *cpu = env_archcpu(env); 6206 uint64_t *cr = env->vfp.zcr_el; 6207 uint32_t map = cpu->sve_vq.map; 6208 uint32_t len = ARM_MAX_VQ - 1; 6209 6210 if (sm) { 6211 cr = env->vfp.smcr_el; 6212 map = cpu->sme_vq.map; 6213 } 6214 6215 if (el <= 1 && !el_is_in_host(env, el)) { 6216 len = MIN(len, 0xf & (uint32_t)cr[1]); 6217 } 6218 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6219 len = MIN(len, 0xf & (uint32_t)cr[2]); 6220 } 6221 if (arm_feature(env, ARM_FEATURE_EL3)) { 6222 len = MIN(len, 0xf & (uint32_t)cr[3]); 6223 } 6224 6225 map &= MAKE_64BIT_MASK(0, len + 1); 6226 if (map != 0) { 6227 return 31 - clz32(map); 6228 } 6229 6230 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6231 assert(sm); 6232 return ctz32(cpu->sme_vq.map); 6233 } 6234 6235 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6236 { 6237 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6238 } 6239 6240 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6241 uint64_t value) 6242 { 6243 int cur_el = arm_current_el(env); 6244 int old_len = sve_vqm1_for_el(env, cur_el); 6245 int new_len; 6246 6247 /* Bits other than [3:0] are RAZ/WI. */ 6248 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6249 raw_write(env, ri, value & 0xf); 6250 6251 /* 6252 * Because we arrived here, we know both FP and SVE are enabled; 6253 * otherwise we would have trapped access to the ZCR_ELn register. 6254 */ 6255 new_len = sve_vqm1_for_el(env, cur_el); 6256 if (new_len < old_len) { 6257 aarch64_sve_narrow_vq(env, new_len + 1); 6258 } 6259 } 6260 6261 static const ARMCPRegInfo zcr_reginfo[] = { 6262 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6263 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6264 .access = PL1_RW, .type = ARM_CP_SVE, 6265 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6266 .writefn = zcr_write, .raw_writefn = raw_write }, 6267 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6268 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6269 .access = PL2_RW, .type = ARM_CP_SVE, 6270 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6271 .writefn = zcr_write, .raw_writefn = raw_write }, 6272 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6273 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6274 .access = PL3_RW, .type = ARM_CP_SVE, 6275 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6276 .writefn = zcr_write, .raw_writefn = raw_write }, 6277 }; 6278 6279 #ifdef TARGET_AARCH64 6280 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6281 bool isread) 6282 { 6283 int el = arm_current_el(env); 6284 6285 if (el == 0) { 6286 uint64_t sctlr = arm_sctlr(env, el); 6287 if (!(sctlr & SCTLR_EnTP2)) { 6288 return CP_ACCESS_TRAP; 6289 } 6290 } 6291 /* TODO: FEAT_FGT */ 6292 if (el < 3 6293 && arm_feature(env, ARM_FEATURE_EL3) 6294 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6295 return CP_ACCESS_TRAP_EL3; 6296 } 6297 return CP_ACCESS_OK; 6298 } 6299 6300 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6301 bool isread) 6302 { 6303 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6304 if (arm_current_el(env) < 3 6305 && arm_feature(env, ARM_FEATURE_EL3) 6306 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6307 return CP_ACCESS_TRAP_EL3; 6308 } 6309 return CP_ACCESS_OK; 6310 } 6311 6312 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6313 uint64_t value) 6314 { 6315 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6316 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6317 arm_rebuild_hflags(env); 6318 } 6319 6320 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6321 uint64_t value) 6322 { 6323 int cur_el = arm_current_el(env); 6324 int old_len = sve_vqm1_for_el(env, cur_el); 6325 int new_len; 6326 6327 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6328 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6329 raw_write(env, ri, value); 6330 6331 /* 6332 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6333 * when SVL is widened (old values kept, or zeros). Choose to keep the 6334 * current values for simplicity. But for QEMU internals, we must still 6335 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6336 * above aarch64_sve_narrow_vq. 6337 */ 6338 new_len = sve_vqm1_for_el(env, cur_el); 6339 if (new_len < old_len) { 6340 aarch64_sve_narrow_vq(env, new_len + 1); 6341 } 6342 } 6343 6344 static const ARMCPRegInfo sme_reginfo[] = { 6345 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6346 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6347 .access = PL0_RW, .accessfn = access_tpidr2, 6348 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6349 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6350 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6351 .access = PL0_RW, .type = ARM_CP_SME, 6352 .fieldoffset = offsetof(CPUARMState, svcr), 6353 .writefn = svcr_write, .raw_writefn = raw_write }, 6354 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6355 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6356 .access = PL1_RW, .type = ARM_CP_SME, 6357 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6358 .writefn = smcr_write, .raw_writefn = raw_write }, 6359 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6360 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6361 .access = PL2_RW, .type = ARM_CP_SME, 6362 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6363 .writefn = smcr_write, .raw_writefn = raw_write }, 6364 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6365 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6366 .access = PL3_RW, .type = ARM_CP_SME, 6367 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6368 .writefn = smcr_write, .raw_writefn = raw_write }, 6369 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6370 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6371 .access = PL1_R, .accessfn = access_aa64_tid1, 6372 /* 6373 * IMPLEMENTOR = 0 (software) 6374 * REVISION = 0 (implementation defined) 6375 * SMPS = 0 (no streaming execution priority in QEMU) 6376 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6377 */ 6378 .type = ARM_CP_CONST, .resetvalue = 0, }, 6379 /* 6380 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6381 */ 6382 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6383 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6384 .access = PL1_RW, .accessfn = access_esm, 6385 .type = ARM_CP_CONST, .resetvalue = 0 }, 6386 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6387 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6388 .access = PL2_RW, .accessfn = access_esm, 6389 .type = ARM_CP_CONST, .resetvalue = 0 }, 6390 }; 6391 #endif /* TARGET_AARCH64 */ 6392 6393 static void define_pmu_regs(ARMCPU *cpu) 6394 { 6395 /* 6396 * v7 performance monitor control register: same implementor 6397 * field as main ID register, and we implement four counters in 6398 * addition to the cycle count register. 6399 */ 6400 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6401 ARMCPRegInfo pmcr = { 6402 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6403 .access = PL0_RW, 6404 .type = ARM_CP_IO | ARM_CP_ALIAS, 6405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6406 .accessfn = pmreg_access, .writefn = pmcr_write, 6407 .raw_writefn = raw_write, 6408 }; 6409 ARMCPRegInfo pmcr64 = { 6410 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6411 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6412 .access = PL0_RW, .accessfn = pmreg_access, 6413 .type = ARM_CP_IO, 6414 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6415 .resetvalue = cpu->isar.reset_pmcr_el0, 6416 .writefn = pmcr_write, .raw_writefn = raw_write, 6417 }; 6418 6419 define_one_arm_cp_reg(cpu, &pmcr); 6420 define_one_arm_cp_reg(cpu, &pmcr64); 6421 for (i = 0; i < pmcrn; i++) { 6422 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6423 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6424 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6425 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6426 ARMCPRegInfo pmev_regs[] = { 6427 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6428 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6429 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6430 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6431 .accessfn = pmreg_access_xevcntr }, 6432 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6433 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6434 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6435 .type = ARM_CP_IO, 6436 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6437 .raw_readfn = pmevcntr_rawread, 6438 .raw_writefn = pmevcntr_rawwrite }, 6439 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6440 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6441 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6442 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6443 .accessfn = pmreg_access }, 6444 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6445 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6446 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6447 .type = ARM_CP_IO, 6448 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6449 .raw_writefn = pmevtyper_rawwrite }, 6450 }; 6451 define_arm_cp_regs(cpu, pmev_regs); 6452 g_free(pmevcntr_name); 6453 g_free(pmevcntr_el0_name); 6454 g_free(pmevtyper_name); 6455 g_free(pmevtyper_el0_name); 6456 } 6457 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6458 ARMCPRegInfo v81_pmu_regs[] = { 6459 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6460 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6461 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6462 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6463 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6464 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6465 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6466 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6467 }; 6468 define_arm_cp_regs(cpu, v81_pmu_regs); 6469 } 6470 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6471 static const ARMCPRegInfo v84_pmmir = { 6472 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6473 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6474 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6475 .resetvalue = 0 6476 }; 6477 define_one_arm_cp_reg(cpu, &v84_pmmir); 6478 } 6479 } 6480 6481 /* We don't know until after realize whether there's a GICv3 6482 * attached, and that is what registers the gicv3 sysregs. 6483 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6484 * at runtime. 6485 */ 6486 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6487 { 6488 ARMCPU *cpu = env_archcpu(env); 6489 uint64_t pfr1 = cpu->isar.id_pfr1; 6490 6491 if (env->gicv3state) { 6492 pfr1 |= 1 << 28; 6493 } 6494 return pfr1; 6495 } 6496 6497 #ifndef CONFIG_USER_ONLY 6498 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6499 { 6500 ARMCPU *cpu = env_archcpu(env); 6501 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6502 6503 if (env->gicv3state) { 6504 pfr0 |= 1 << 24; 6505 } 6506 return pfr0; 6507 } 6508 #endif 6509 6510 /* Shared logic between LORID and the rest of the LOR* registers. 6511 * Secure state exclusion has already been dealt with. 6512 */ 6513 static CPAccessResult access_lor_ns(CPUARMState *env, 6514 const ARMCPRegInfo *ri, bool isread) 6515 { 6516 int el = arm_current_el(env); 6517 6518 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6519 return CP_ACCESS_TRAP_EL2; 6520 } 6521 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6522 return CP_ACCESS_TRAP_EL3; 6523 } 6524 return CP_ACCESS_OK; 6525 } 6526 6527 static CPAccessResult access_lor_other(CPUARMState *env, 6528 const ARMCPRegInfo *ri, bool isread) 6529 { 6530 if (arm_is_secure_below_el3(env)) { 6531 /* Access denied in secure mode. */ 6532 return CP_ACCESS_TRAP; 6533 } 6534 return access_lor_ns(env, ri, isread); 6535 } 6536 6537 /* 6538 * A trivial implementation of ARMv8.1-LOR leaves all of these 6539 * registers fixed at 0, which indicates that there are zero 6540 * supported Limited Ordering regions. 6541 */ 6542 static const ARMCPRegInfo lor_reginfo[] = { 6543 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6544 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6545 .access = PL1_RW, .accessfn = access_lor_other, 6546 .type = ARM_CP_CONST, .resetvalue = 0 }, 6547 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6548 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6549 .access = PL1_RW, .accessfn = access_lor_other, 6550 .type = ARM_CP_CONST, .resetvalue = 0 }, 6551 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6552 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6553 .access = PL1_RW, .accessfn = access_lor_other, 6554 .type = ARM_CP_CONST, .resetvalue = 0 }, 6555 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6556 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6557 .access = PL1_RW, .accessfn = access_lor_other, 6558 .type = ARM_CP_CONST, .resetvalue = 0 }, 6559 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6560 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6561 .access = PL1_R, .accessfn = access_lor_ns, 6562 .type = ARM_CP_CONST, .resetvalue = 0 }, 6563 }; 6564 6565 #ifdef TARGET_AARCH64 6566 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6567 bool isread) 6568 { 6569 int el = arm_current_el(env); 6570 6571 if (el < 2 && 6572 arm_is_el2_enabled(env) && 6573 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6574 return CP_ACCESS_TRAP_EL2; 6575 } 6576 if (el < 3 && 6577 arm_feature(env, ARM_FEATURE_EL3) && 6578 !(env->cp15.scr_el3 & SCR_APK)) { 6579 return CP_ACCESS_TRAP_EL3; 6580 } 6581 return CP_ACCESS_OK; 6582 } 6583 6584 static const ARMCPRegInfo pauth_reginfo[] = { 6585 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6586 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6587 .access = PL1_RW, .accessfn = access_pauth, 6588 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6589 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6590 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6591 .access = PL1_RW, .accessfn = access_pauth, 6592 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6593 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6594 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6595 .access = PL1_RW, .accessfn = access_pauth, 6596 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6597 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6598 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6599 .access = PL1_RW, .accessfn = access_pauth, 6600 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6601 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6602 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6603 .access = PL1_RW, .accessfn = access_pauth, 6604 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6605 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6606 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6607 .access = PL1_RW, .accessfn = access_pauth, 6608 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6609 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6610 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6611 .access = PL1_RW, .accessfn = access_pauth, 6612 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6613 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6614 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6615 .access = PL1_RW, .accessfn = access_pauth, 6616 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6617 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6618 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6619 .access = PL1_RW, .accessfn = access_pauth, 6620 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6621 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6622 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6623 .access = PL1_RW, .accessfn = access_pauth, 6624 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6625 }; 6626 6627 static const ARMCPRegInfo tlbirange_reginfo[] = { 6628 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6629 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6630 .access = PL1_W, .type = ARM_CP_NO_RAW, 6631 .writefn = tlbi_aa64_rvae1is_write }, 6632 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6633 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6634 .access = PL1_W, .type = ARM_CP_NO_RAW, 6635 .writefn = tlbi_aa64_rvae1is_write }, 6636 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6637 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6638 .access = PL1_W, .type = ARM_CP_NO_RAW, 6639 .writefn = tlbi_aa64_rvae1is_write }, 6640 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6641 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6642 .access = PL1_W, .type = ARM_CP_NO_RAW, 6643 .writefn = tlbi_aa64_rvae1is_write }, 6644 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6645 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6646 .access = PL1_W, .type = ARM_CP_NO_RAW, 6647 .writefn = tlbi_aa64_rvae1is_write }, 6648 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6649 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6650 .access = PL1_W, .type = ARM_CP_NO_RAW, 6651 .writefn = tlbi_aa64_rvae1is_write }, 6652 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6653 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6654 .access = PL1_W, .type = ARM_CP_NO_RAW, 6655 .writefn = tlbi_aa64_rvae1is_write }, 6656 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6657 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6658 .access = PL1_W, .type = ARM_CP_NO_RAW, 6659 .writefn = tlbi_aa64_rvae1is_write }, 6660 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6661 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6662 .access = PL1_W, .type = ARM_CP_NO_RAW, 6663 .writefn = tlbi_aa64_rvae1_write }, 6664 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6665 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6666 .access = PL1_W, .type = ARM_CP_NO_RAW, 6667 .writefn = tlbi_aa64_rvae1_write }, 6668 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6669 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6670 .access = PL1_W, .type = ARM_CP_NO_RAW, 6671 .writefn = tlbi_aa64_rvae1_write }, 6672 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6673 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6674 .access = PL1_W, .type = ARM_CP_NO_RAW, 6675 .writefn = tlbi_aa64_rvae1_write }, 6676 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6677 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6678 .access = PL2_W, .type = ARM_CP_NOP }, 6679 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6680 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6681 .access = PL2_W, .type = ARM_CP_NOP }, 6682 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6683 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6684 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6685 .writefn = tlbi_aa64_rvae2is_write }, 6686 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6687 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6688 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6689 .writefn = tlbi_aa64_rvae2is_write }, 6690 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6691 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6692 .access = PL2_W, .type = ARM_CP_NOP }, 6693 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6694 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6695 .access = PL2_W, .type = ARM_CP_NOP }, 6696 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6698 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6699 .writefn = tlbi_aa64_rvae2is_write }, 6700 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6701 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6702 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6703 .writefn = tlbi_aa64_rvae2is_write }, 6704 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6705 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6706 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6707 .writefn = tlbi_aa64_rvae2_write }, 6708 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6710 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6711 .writefn = tlbi_aa64_rvae2_write }, 6712 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6714 .access = PL3_W, .type = ARM_CP_NO_RAW, 6715 .writefn = tlbi_aa64_rvae3is_write }, 6716 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6718 .access = PL3_W, .type = ARM_CP_NO_RAW, 6719 .writefn = tlbi_aa64_rvae3is_write }, 6720 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6721 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6722 .access = PL3_W, .type = ARM_CP_NO_RAW, 6723 .writefn = tlbi_aa64_rvae3is_write }, 6724 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6725 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6726 .access = PL3_W, .type = ARM_CP_NO_RAW, 6727 .writefn = tlbi_aa64_rvae3is_write }, 6728 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6729 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6730 .access = PL3_W, .type = ARM_CP_NO_RAW, 6731 .writefn = tlbi_aa64_rvae3_write }, 6732 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6733 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6734 .access = PL3_W, .type = ARM_CP_NO_RAW, 6735 .writefn = tlbi_aa64_rvae3_write }, 6736 }; 6737 6738 static const ARMCPRegInfo tlbios_reginfo[] = { 6739 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6740 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6741 .access = PL1_W, .type = ARM_CP_NO_RAW, 6742 .writefn = tlbi_aa64_vmalle1is_write }, 6743 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6745 .access = PL1_W, .type = ARM_CP_NO_RAW, 6746 .writefn = tlbi_aa64_vae1is_write }, 6747 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6748 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6749 .access = PL1_W, .type = ARM_CP_NO_RAW, 6750 .writefn = tlbi_aa64_vmalle1is_write }, 6751 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6753 .access = PL1_W, .type = ARM_CP_NO_RAW, 6754 .writefn = tlbi_aa64_vae1is_write }, 6755 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6757 .access = PL1_W, .type = ARM_CP_NO_RAW, 6758 .writefn = tlbi_aa64_vae1is_write }, 6759 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6761 .access = PL1_W, .type = ARM_CP_NO_RAW, 6762 .writefn = tlbi_aa64_vae1is_write }, 6763 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6765 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6766 .writefn = tlbi_aa64_alle2is_write }, 6767 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6769 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6770 .writefn = tlbi_aa64_vae2is_write }, 6771 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6772 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6773 .access = PL2_W, .type = ARM_CP_NO_RAW, 6774 .writefn = tlbi_aa64_alle1is_write }, 6775 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6776 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6777 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6778 .writefn = tlbi_aa64_vae2is_write }, 6779 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6780 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6781 .access = PL2_W, .type = ARM_CP_NO_RAW, 6782 .writefn = tlbi_aa64_alle1is_write }, 6783 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6784 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6785 .access = PL2_W, .type = ARM_CP_NOP }, 6786 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6788 .access = PL2_W, .type = ARM_CP_NOP }, 6789 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6790 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6791 .access = PL2_W, .type = ARM_CP_NOP }, 6792 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6793 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6794 .access = PL2_W, .type = ARM_CP_NOP }, 6795 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6796 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6797 .access = PL3_W, .type = ARM_CP_NO_RAW, 6798 .writefn = tlbi_aa64_alle3is_write }, 6799 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6800 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6801 .access = PL3_W, .type = ARM_CP_NO_RAW, 6802 .writefn = tlbi_aa64_vae3is_write }, 6803 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6804 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6805 .access = PL3_W, .type = ARM_CP_NO_RAW, 6806 .writefn = tlbi_aa64_vae3is_write }, 6807 }; 6808 6809 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6810 { 6811 Error *err = NULL; 6812 uint64_t ret; 6813 6814 /* Success sets NZCV = 0000. */ 6815 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6816 6817 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6818 /* 6819 * ??? Failed, for unknown reasons in the crypto subsystem. 6820 * The best we can do is log the reason and return the 6821 * timed-out indication to the guest. There is no reason 6822 * we know to expect this failure to be transitory, so the 6823 * guest may well hang retrying the operation. 6824 */ 6825 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6826 ri->name, error_get_pretty(err)); 6827 error_free(err); 6828 6829 env->ZF = 0; /* NZCF = 0100 */ 6830 return 0; 6831 } 6832 return ret; 6833 } 6834 6835 /* We do not support re-seeding, so the two registers operate the same. */ 6836 static const ARMCPRegInfo rndr_reginfo[] = { 6837 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6838 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6839 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6840 .access = PL0_R, .readfn = rndr_readfn }, 6841 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6842 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6843 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6844 .access = PL0_R, .readfn = rndr_readfn }, 6845 }; 6846 6847 #ifndef CONFIG_USER_ONLY 6848 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6849 uint64_t value) 6850 { 6851 ARMCPU *cpu = env_archcpu(env); 6852 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6853 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6854 uint64_t vaddr_in = (uint64_t) value; 6855 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6856 void *haddr; 6857 int mem_idx = cpu_mmu_index(env, false); 6858 6859 /* This won't be crossing page boundaries */ 6860 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6861 if (haddr) { 6862 6863 ram_addr_t offset; 6864 MemoryRegion *mr; 6865 6866 /* RCU lock is already being held */ 6867 mr = memory_region_from_host(haddr, &offset); 6868 6869 if (mr) { 6870 memory_region_writeback(mr, offset, dline_size); 6871 } 6872 } 6873 } 6874 6875 static const ARMCPRegInfo dcpop_reg[] = { 6876 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6877 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6878 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6879 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6880 }; 6881 6882 static const ARMCPRegInfo dcpodp_reg[] = { 6883 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6885 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6886 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6887 }; 6888 #endif /*CONFIG_USER_ONLY*/ 6889 6890 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6891 bool isread) 6892 { 6893 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6894 return CP_ACCESS_TRAP_EL2; 6895 } 6896 6897 return CP_ACCESS_OK; 6898 } 6899 6900 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6901 bool isread) 6902 { 6903 int el = arm_current_el(env); 6904 6905 if (el < 2 && arm_is_el2_enabled(env)) { 6906 uint64_t hcr = arm_hcr_el2_eff(env); 6907 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 6908 return CP_ACCESS_TRAP_EL2; 6909 } 6910 } 6911 if (el < 3 && 6912 arm_feature(env, ARM_FEATURE_EL3) && 6913 !(env->cp15.scr_el3 & SCR_ATA)) { 6914 return CP_ACCESS_TRAP_EL3; 6915 } 6916 return CP_ACCESS_OK; 6917 } 6918 6919 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 6920 { 6921 return env->pstate & PSTATE_TCO; 6922 } 6923 6924 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6925 { 6926 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 6927 } 6928 6929 static const ARMCPRegInfo mte_reginfo[] = { 6930 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 6931 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 6932 .access = PL1_RW, .accessfn = access_mte, 6933 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 6934 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 6935 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 6936 .access = PL1_RW, .accessfn = access_mte, 6937 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 6938 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 6939 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 6940 .access = PL2_RW, .accessfn = access_mte, 6941 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 6942 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 6943 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 6944 .access = PL3_RW, 6945 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 6946 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 6947 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 6948 .access = PL1_RW, .accessfn = access_mte, 6949 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 6950 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 6951 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 6952 .access = PL1_RW, .accessfn = access_mte, 6953 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 6954 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 6956 .access = PL1_R, .accessfn = access_aa64_tid5, 6957 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 6958 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6959 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6960 .type = ARM_CP_NO_RAW, 6961 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 6962 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 6964 .type = ARM_CP_NOP, .access = PL1_W, 6965 .accessfn = aa64_cacheop_poc_access }, 6966 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 6967 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 6968 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6969 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 6971 .type = ARM_CP_NOP, .access = PL1_W, 6972 .accessfn = aa64_cacheop_poc_access }, 6973 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 6975 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6976 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 6977 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 6978 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6979 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 6980 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 6981 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6982 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 6983 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 6984 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6985 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 6987 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 6988 }; 6989 6990 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 6991 { .name = "TCO", .state = ARM_CP_STATE_AA64, 6992 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 6993 .type = ARM_CP_CONST, .access = PL0_RW, }, 6994 }; 6995 6996 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 6997 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 6999 .type = ARM_CP_NOP, .access = PL0_W, 7000 .accessfn = aa64_cacheop_poc_access }, 7001 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7003 .type = ARM_CP_NOP, .access = PL0_W, 7004 .accessfn = aa64_cacheop_poc_access }, 7005 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7006 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7007 .type = ARM_CP_NOP, .access = PL0_W, 7008 .accessfn = aa64_cacheop_poc_access }, 7009 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7011 .type = ARM_CP_NOP, .access = PL0_W, 7012 .accessfn = aa64_cacheop_poc_access }, 7013 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7015 .type = ARM_CP_NOP, .access = PL0_W, 7016 .accessfn = aa64_cacheop_poc_access }, 7017 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7019 .type = ARM_CP_NOP, .access = PL0_W, 7020 .accessfn = aa64_cacheop_poc_access }, 7021 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7023 .type = ARM_CP_NOP, .access = PL0_W, 7024 .accessfn = aa64_cacheop_poc_access }, 7025 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7027 .type = ARM_CP_NOP, .access = PL0_W, 7028 .accessfn = aa64_cacheop_poc_access }, 7029 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7031 .access = PL0_W, .type = ARM_CP_DC_GVA, 7032 #ifndef CONFIG_USER_ONLY 7033 /* Avoid overhead of an access check that always passes in user-mode */ 7034 .accessfn = aa64_zva_access, 7035 #endif 7036 }, 7037 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7039 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7040 #ifndef CONFIG_USER_ONLY 7041 /* Avoid overhead of an access check that always passes in user-mode */ 7042 .accessfn = aa64_zva_access, 7043 #endif 7044 }, 7045 }; 7046 7047 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7048 bool isread) 7049 { 7050 uint64_t hcr = arm_hcr_el2_eff(env); 7051 int el = arm_current_el(env); 7052 7053 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7054 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7055 if (hcr & HCR_TGE) { 7056 return CP_ACCESS_TRAP_EL2; 7057 } 7058 return CP_ACCESS_TRAP; 7059 } 7060 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7061 return CP_ACCESS_TRAP_EL2; 7062 } 7063 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7064 return CP_ACCESS_TRAP_EL2; 7065 } 7066 if (el < 3 7067 && arm_feature(env, ARM_FEATURE_EL3) 7068 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7069 return CP_ACCESS_TRAP_EL3; 7070 } 7071 return CP_ACCESS_OK; 7072 } 7073 7074 static const ARMCPRegInfo scxtnum_reginfo[] = { 7075 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7077 .access = PL0_RW, .accessfn = access_scxtnum, 7078 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7079 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7081 .access = PL1_RW, .accessfn = access_scxtnum, 7082 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7083 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7084 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7085 .access = PL2_RW, .accessfn = access_scxtnum, 7086 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7087 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7088 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7089 .access = PL3_RW, 7090 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7091 }; 7092 #endif /* TARGET_AARCH64 */ 7093 7094 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7095 bool isread) 7096 { 7097 int el = arm_current_el(env); 7098 7099 if (el == 0) { 7100 uint64_t sctlr = arm_sctlr(env, el); 7101 if (!(sctlr & SCTLR_EnRCTX)) { 7102 return CP_ACCESS_TRAP; 7103 } 7104 } else if (el == 1) { 7105 uint64_t hcr = arm_hcr_el2_eff(env); 7106 if (hcr & HCR_NV) { 7107 return CP_ACCESS_TRAP_EL2; 7108 } 7109 } 7110 return CP_ACCESS_OK; 7111 } 7112 7113 static const ARMCPRegInfo predinv_reginfo[] = { 7114 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7115 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7116 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7117 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7118 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7119 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7120 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7121 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7122 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7123 /* 7124 * Note the AArch32 opcodes have a different OPC1. 7125 */ 7126 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7127 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7128 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7129 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7130 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7131 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7132 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7133 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7134 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7135 }; 7136 7137 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7138 { 7139 /* Read the high 32 bits of the current CCSIDR */ 7140 return extract64(ccsidr_read(env, ri), 32, 32); 7141 } 7142 7143 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7144 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7145 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7146 .access = PL1_R, 7147 .accessfn = access_aa64_tid2, 7148 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7149 }; 7150 7151 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7152 bool isread) 7153 { 7154 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7155 return CP_ACCESS_TRAP_EL2; 7156 } 7157 7158 return CP_ACCESS_OK; 7159 } 7160 7161 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7162 bool isread) 7163 { 7164 if (arm_feature(env, ARM_FEATURE_V8)) { 7165 return access_aa64_tid3(env, ri, isread); 7166 } 7167 7168 return CP_ACCESS_OK; 7169 } 7170 7171 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7172 bool isread) 7173 { 7174 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7175 return CP_ACCESS_TRAP_EL2; 7176 } 7177 7178 return CP_ACCESS_OK; 7179 } 7180 7181 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7182 const ARMCPRegInfo *ri, bool isread) 7183 { 7184 /* 7185 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7186 * in v7A, not in v8A. 7187 */ 7188 if (!arm_feature(env, ARM_FEATURE_V8) && 7189 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7190 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7191 return CP_ACCESS_TRAP_EL2; 7192 } 7193 return CP_ACCESS_OK; 7194 } 7195 7196 static const ARMCPRegInfo jazelle_regs[] = { 7197 { .name = "JIDR", 7198 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7199 .access = PL1_R, .accessfn = access_jazelle, 7200 .type = ARM_CP_CONST, .resetvalue = 0 }, 7201 { .name = "JOSCR", 7202 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7203 .accessfn = access_joscr_jmcr, 7204 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7205 { .name = "JMCR", 7206 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7207 .accessfn = access_joscr_jmcr, 7208 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7209 }; 7210 7211 static const ARMCPRegInfo contextidr_el2 = { 7212 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7214 .access = PL2_RW, 7215 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7216 }; 7217 7218 static const ARMCPRegInfo vhe_reginfo[] = { 7219 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7220 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7221 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7222 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7223 #ifndef CONFIG_USER_ONLY 7224 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7226 .fieldoffset = 7227 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7228 .type = ARM_CP_IO, .access = PL2_RW, 7229 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7230 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7231 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7232 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7233 .resetfn = gt_hv_timer_reset, 7234 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7235 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7236 .type = ARM_CP_IO, 7237 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7238 .access = PL2_RW, 7239 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7240 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7241 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7243 .type = ARM_CP_IO | ARM_CP_ALIAS, 7244 .access = PL2_RW, .accessfn = e2h_access, 7245 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7246 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7247 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7249 .type = ARM_CP_IO | ARM_CP_ALIAS, 7250 .access = PL2_RW, .accessfn = e2h_access, 7251 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7252 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7253 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7255 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7256 .access = PL2_RW, .accessfn = e2h_access, 7257 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7258 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7259 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7260 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7261 .access = PL2_RW, .accessfn = e2h_access, 7262 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7263 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7265 .type = ARM_CP_IO | ARM_CP_ALIAS, 7266 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7267 .access = PL2_RW, .accessfn = e2h_access, 7268 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7269 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7270 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7271 .type = ARM_CP_IO | ARM_CP_ALIAS, 7272 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7273 .access = PL2_RW, .accessfn = e2h_access, 7274 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7275 #endif 7276 }; 7277 7278 #ifndef CONFIG_USER_ONLY 7279 static const ARMCPRegInfo ats1e1_reginfo[] = { 7280 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7281 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7282 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7283 .writefn = ats_write64 }, 7284 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7286 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7287 .writefn = ats_write64 }, 7288 }; 7289 7290 static const ARMCPRegInfo ats1cp_reginfo[] = { 7291 { .name = "ATS1CPRP", 7292 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7293 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7294 .writefn = ats_write }, 7295 { .name = "ATS1CPWP", 7296 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7297 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7298 .writefn = ats_write }, 7299 }; 7300 #endif 7301 7302 /* 7303 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7304 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7305 * is non-zero, which is never for ARMv7, optionally in ARMv8 7306 * and mandatorily for ARMv8.2 and up. 7307 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7308 * implementation is RAZ/WI we can ignore this detail, as we 7309 * do for ACTLR. 7310 */ 7311 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7312 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7313 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7314 .access = PL1_RW, .accessfn = access_tacr, 7315 .type = ARM_CP_CONST, .resetvalue = 0 }, 7316 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7317 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7318 .access = PL2_RW, .type = ARM_CP_CONST, 7319 .resetvalue = 0 }, 7320 }; 7321 7322 void register_cp_regs_for_features(ARMCPU *cpu) 7323 { 7324 /* Register all the coprocessor registers based on feature bits */ 7325 CPUARMState *env = &cpu->env; 7326 if (arm_feature(env, ARM_FEATURE_M)) { 7327 /* M profile has no coprocessor registers */ 7328 return; 7329 } 7330 7331 define_arm_cp_regs(cpu, cp_reginfo); 7332 if (!arm_feature(env, ARM_FEATURE_V8)) { 7333 /* Must go early as it is full of wildcards that may be 7334 * overridden by later definitions. 7335 */ 7336 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7337 } 7338 7339 if (arm_feature(env, ARM_FEATURE_V6)) { 7340 /* The ID registers all have impdef reset values */ 7341 ARMCPRegInfo v6_idregs[] = { 7342 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7343 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7344 .access = PL1_R, .type = ARM_CP_CONST, 7345 .accessfn = access_aa32_tid3, 7346 .resetvalue = cpu->isar.id_pfr0 }, 7347 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7348 * the value of the GIC field until after we define these regs. 7349 */ 7350 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7351 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7352 .access = PL1_R, .type = ARM_CP_NO_RAW, 7353 .accessfn = access_aa32_tid3, 7354 .readfn = id_pfr1_read, 7355 .writefn = arm_cp_write_ignore }, 7356 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7358 .access = PL1_R, .type = ARM_CP_CONST, 7359 .accessfn = access_aa32_tid3, 7360 .resetvalue = cpu->isar.id_dfr0 }, 7361 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7362 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7363 .access = PL1_R, .type = ARM_CP_CONST, 7364 .accessfn = access_aa32_tid3, 7365 .resetvalue = cpu->id_afr0 }, 7366 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7367 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7368 .access = PL1_R, .type = ARM_CP_CONST, 7369 .accessfn = access_aa32_tid3, 7370 .resetvalue = cpu->isar.id_mmfr0 }, 7371 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7372 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7373 .access = PL1_R, .type = ARM_CP_CONST, 7374 .accessfn = access_aa32_tid3, 7375 .resetvalue = cpu->isar.id_mmfr1 }, 7376 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7377 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7378 .access = PL1_R, .type = ARM_CP_CONST, 7379 .accessfn = access_aa32_tid3, 7380 .resetvalue = cpu->isar.id_mmfr2 }, 7381 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7382 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7383 .access = PL1_R, .type = ARM_CP_CONST, 7384 .accessfn = access_aa32_tid3, 7385 .resetvalue = cpu->isar.id_mmfr3 }, 7386 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7387 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7388 .access = PL1_R, .type = ARM_CP_CONST, 7389 .accessfn = access_aa32_tid3, 7390 .resetvalue = cpu->isar.id_isar0 }, 7391 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7392 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7393 .access = PL1_R, .type = ARM_CP_CONST, 7394 .accessfn = access_aa32_tid3, 7395 .resetvalue = cpu->isar.id_isar1 }, 7396 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7397 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7398 .access = PL1_R, .type = ARM_CP_CONST, 7399 .accessfn = access_aa32_tid3, 7400 .resetvalue = cpu->isar.id_isar2 }, 7401 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7402 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7403 .access = PL1_R, .type = ARM_CP_CONST, 7404 .accessfn = access_aa32_tid3, 7405 .resetvalue = cpu->isar.id_isar3 }, 7406 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7407 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7408 .access = PL1_R, .type = ARM_CP_CONST, 7409 .accessfn = access_aa32_tid3, 7410 .resetvalue = cpu->isar.id_isar4 }, 7411 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7412 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7413 .access = PL1_R, .type = ARM_CP_CONST, 7414 .accessfn = access_aa32_tid3, 7415 .resetvalue = cpu->isar.id_isar5 }, 7416 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7417 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7418 .access = PL1_R, .type = ARM_CP_CONST, 7419 .accessfn = access_aa32_tid3, 7420 .resetvalue = cpu->isar.id_mmfr4 }, 7421 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7422 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7423 .access = PL1_R, .type = ARM_CP_CONST, 7424 .accessfn = access_aa32_tid3, 7425 .resetvalue = cpu->isar.id_isar6 }, 7426 }; 7427 define_arm_cp_regs(cpu, v6_idregs); 7428 define_arm_cp_regs(cpu, v6_cp_reginfo); 7429 } else { 7430 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7431 } 7432 if (arm_feature(env, ARM_FEATURE_V6K)) { 7433 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7434 } 7435 if (arm_feature(env, ARM_FEATURE_V7MP) && 7436 !arm_feature(env, ARM_FEATURE_PMSA)) { 7437 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7438 } 7439 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7440 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7441 } 7442 if (arm_feature(env, ARM_FEATURE_V7)) { 7443 ARMCPRegInfo clidr = { 7444 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7445 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7446 .access = PL1_R, .type = ARM_CP_CONST, 7447 .accessfn = access_aa64_tid2, 7448 .resetvalue = cpu->clidr 7449 }; 7450 define_one_arm_cp_reg(cpu, &clidr); 7451 define_arm_cp_regs(cpu, v7_cp_reginfo); 7452 define_debug_regs(cpu); 7453 define_pmu_regs(cpu); 7454 } else { 7455 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7456 } 7457 if (arm_feature(env, ARM_FEATURE_V8)) { 7458 /* 7459 * v8 ID registers, which all have impdef reset values. 7460 * Note that within the ID register ranges the unused slots 7461 * must all RAZ, not UNDEF; future architecture versions may 7462 * define new registers here. 7463 * ID registers which are AArch64 views of the AArch32 ID registers 7464 * which already existed in v6 and v7 are handled elsewhere, 7465 * in v6_idregs[]. 7466 */ 7467 int i; 7468 ARMCPRegInfo v8_idregs[] = { 7469 /* 7470 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7471 * emulation because we don't know the right value for the 7472 * GIC field until after we define these regs. 7473 */ 7474 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7476 .access = PL1_R, 7477 #ifdef CONFIG_USER_ONLY 7478 .type = ARM_CP_CONST, 7479 .resetvalue = cpu->isar.id_aa64pfr0 7480 #else 7481 .type = ARM_CP_NO_RAW, 7482 .accessfn = access_aa64_tid3, 7483 .readfn = id_aa64pfr0_read, 7484 .writefn = arm_cp_write_ignore 7485 #endif 7486 }, 7487 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7489 .access = PL1_R, .type = ARM_CP_CONST, 7490 .accessfn = access_aa64_tid3, 7491 .resetvalue = cpu->isar.id_aa64pfr1}, 7492 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7493 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7494 .access = PL1_R, .type = ARM_CP_CONST, 7495 .accessfn = access_aa64_tid3, 7496 .resetvalue = 0 }, 7497 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7498 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7499 .access = PL1_R, .type = ARM_CP_CONST, 7500 .accessfn = access_aa64_tid3, 7501 .resetvalue = 0 }, 7502 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7503 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7504 .access = PL1_R, .type = ARM_CP_CONST, 7505 .accessfn = access_aa64_tid3, 7506 .resetvalue = cpu->isar.id_aa64zfr0 }, 7507 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7508 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7509 .access = PL1_R, .type = ARM_CP_CONST, 7510 .accessfn = access_aa64_tid3, 7511 .resetvalue = cpu->isar.id_aa64smfr0 }, 7512 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7514 .access = PL1_R, .type = ARM_CP_CONST, 7515 .accessfn = access_aa64_tid3, 7516 .resetvalue = 0 }, 7517 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7519 .access = PL1_R, .type = ARM_CP_CONST, 7520 .accessfn = access_aa64_tid3, 7521 .resetvalue = 0 }, 7522 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7524 .access = PL1_R, .type = ARM_CP_CONST, 7525 .accessfn = access_aa64_tid3, 7526 .resetvalue = cpu->isar.id_aa64dfr0 }, 7527 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7528 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7529 .access = PL1_R, .type = ARM_CP_CONST, 7530 .accessfn = access_aa64_tid3, 7531 .resetvalue = cpu->isar.id_aa64dfr1 }, 7532 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7534 .access = PL1_R, .type = ARM_CP_CONST, 7535 .accessfn = access_aa64_tid3, 7536 .resetvalue = 0 }, 7537 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7539 .access = PL1_R, .type = ARM_CP_CONST, 7540 .accessfn = access_aa64_tid3, 7541 .resetvalue = 0 }, 7542 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7543 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7544 .access = PL1_R, .type = ARM_CP_CONST, 7545 .accessfn = access_aa64_tid3, 7546 .resetvalue = cpu->id_aa64afr0 }, 7547 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7548 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7549 .access = PL1_R, .type = ARM_CP_CONST, 7550 .accessfn = access_aa64_tid3, 7551 .resetvalue = cpu->id_aa64afr1 }, 7552 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7553 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7554 .access = PL1_R, .type = ARM_CP_CONST, 7555 .accessfn = access_aa64_tid3, 7556 .resetvalue = 0 }, 7557 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7559 .access = PL1_R, .type = ARM_CP_CONST, 7560 .accessfn = access_aa64_tid3, 7561 .resetvalue = 0 }, 7562 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7563 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7564 .access = PL1_R, .type = ARM_CP_CONST, 7565 .accessfn = access_aa64_tid3, 7566 .resetvalue = cpu->isar.id_aa64isar0 }, 7567 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7568 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7569 .access = PL1_R, .type = ARM_CP_CONST, 7570 .accessfn = access_aa64_tid3, 7571 .resetvalue = cpu->isar.id_aa64isar1 }, 7572 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7573 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7574 .access = PL1_R, .type = ARM_CP_CONST, 7575 .accessfn = access_aa64_tid3, 7576 .resetvalue = 0 }, 7577 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7578 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7579 .access = PL1_R, .type = ARM_CP_CONST, 7580 .accessfn = access_aa64_tid3, 7581 .resetvalue = 0 }, 7582 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7584 .access = PL1_R, .type = ARM_CP_CONST, 7585 .accessfn = access_aa64_tid3, 7586 .resetvalue = 0 }, 7587 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7588 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7589 .access = PL1_R, .type = ARM_CP_CONST, 7590 .accessfn = access_aa64_tid3, 7591 .resetvalue = 0 }, 7592 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7594 .access = PL1_R, .type = ARM_CP_CONST, 7595 .accessfn = access_aa64_tid3, 7596 .resetvalue = 0 }, 7597 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7599 .access = PL1_R, .type = ARM_CP_CONST, 7600 .accessfn = access_aa64_tid3, 7601 .resetvalue = 0 }, 7602 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7604 .access = PL1_R, .type = ARM_CP_CONST, 7605 .accessfn = access_aa64_tid3, 7606 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7607 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7609 .access = PL1_R, .type = ARM_CP_CONST, 7610 .accessfn = access_aa64_tid3, 7611 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7612 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa64_tid3, 7616 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7617 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7619 .access = PL1_R, .type = ARM_CP_CONST, 7620 .accessfn = access_aa64_tid3, 7621 .resetvalue = 0 }, 7622 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7624 .access = PL1_R, .type = ARM_CP_CONST, 7625 .accessfn = access_aa64_tid3, 7626 .resetvalue = 0 }, 7627 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7629 .access = PL1_R, .type = ARM_CP_CONST, 7630 .accessfn = access_aa64_tid3, 7631 .resetvalue = 0 }, 7632 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7634 .access = PL1_R, .type = ARM_CP_CONST, 7635 .accessfn = access_aa64_tid3, 7636 .resetvalue = 0 }, 7637 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7639 .access = PL1_R, .type = ARM_CP_CONST, 7640 .accessfn = access_aa64_tid3, 7641 .resetvalue = 0 }, 7642 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7644 .access = PL1_R, .type = ARM_CP_CONST, 7645 .accessfn = access_aa64_tid3, 7646 .resetvalue = cpu->isar.mvfr0 }, 7647 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7649 .access = PL1_R, .type = ARM_CP_CONST, 7650 .accessfn = access_aa64_tid3, 7651 .resetvalue = cpu->isar.mvfr1 }, 7652 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7654 .access = PL1_R, .type = ARM_CP_CONST, 7655 .accessfn = access_aa64_tid3, 7656 .resetvalue = cpu->isar.mvfr2 }, 7657 /* 7658 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7659 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7660 * as RAZ, since it is in the "reserved for future ID 7661 * registers, RAZ" part of the AArch32 encoding space. 7662 */ 7663 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7664 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7665 .access = PL1_R, .type = ARM_CP_CONST, 7666 .accessfn = access_aa64_tid3, 7667 .resetvalue = 0 }, 7668 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7669 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7670 .access = PL1_R, .type = ARM_CP_CONST, 7671 .accessfn = access_aa64_tid3, 7672 .resetvalue = 0 }, 7673 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7674 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7675 .access = PL1_R, .type = ARM_CP_CONST, 7676 .accessfn = access_aa64_tid3, 7677 .resetvalue = 0 }, 7678 /* 7679 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7680 * they're also RAZ for AArch64, and in v8 are gradually 7681 * being filled with AArch64-view-of-AArch32-ID-register 7682 * for new ID registers. 7683 */ 7684 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7685 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7686 .access = PL1_R, .type = ARM_CP_CONST, 7687 .accessfn = access_aa64_tid3, 7688 .resetvalue = 0 }, 7689 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7690 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7691 .access = PL1_R, .type = ARM_CP_CONST, 7692 .accessfn = access_aa64_tid3, 7693 .resetvalue = cpu->isar.id_pfr2 }, 7694 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7696 .access = PL1_R, .type = ARM_CP_CONST, 7697 .accessfn = access_aa64_tid3, 7698 .resetvalue = cpu->isar.id_dfr1 }, 7699 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7700 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7701 .access = PL1_R, .type = ARM_CP_CONST, 7702 .accessfn = access_aa64_tid3, 7703 .resetvalue = cpu->isar.id_mmfr5 }, 7704 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7705 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7706 .access = PL1_R, .type = ARM_CP_CONST, 7707 .accessfn = access_aa64_tid3, 7708 .resetvalue = 0 }, 7709 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7711 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7712 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7713 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7714 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7715 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7716 .resetvalue = cpu->pmceid0 }, 7717 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7718 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7719 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7720 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7721 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7723 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7724 .resetvalue = cpu->pmceid1 }, 7725 }; 7726 #ifdef CONFIG_USER_ONLY 7727 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7728 { .name = "ID_AA64PFR0_EL1", 7729 .exported_bits = 0x000f000f00ff0000, 7730 .fixed_bits = 0x0000000000000011 }, 7731 { .name = "ID_AA64PFR1_EL1", 7732 .exported_bits = 0x00000000000000f0 }, 7733 { .name = "ID_AA64PFR*_EL1_RESERVED", 7734 .is_glob = true }, 7735 { .name = "ID_AA64ZFR0_EL1" }, 7736 { .name = "ID_AA64MMFR0_EL1", 7737 .fixed_bits = 0x00000000ff000000 }, 7738 { .name = "ID_AA64MMFR1_EL1" }, 7739 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7740 .is_glob = true }, 7741 { .name = "ID_AA64DFR0_EL1", 7742 .fixed_bits = 0x0000000000000006 }, 7743 { .name = "ID_AA64DFR1_EL1" }, 7744 { .name = "ID_AA64DFR*_EL1_RESERVED", 7745 .is_glob = true }, 7746 { .name = "ID_AA64AFR*", 7747 .is_glob = true }, 7748 { .name = "ID_AA64ISAR0_EL1", 7749 .exported_bits = 0x00fffffff0fffff0 }, 7750 { .name = "ID_AA64ISAR1_EL1", 7751 .exported_bits = 0x000000f0ffffffff }, 7752 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7753 .is_glob = true }, 7754 }; 7755 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7756 #endif 7757 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7758 if (!arm_feature(env, ARM_FEATURE_EL3) && 7759 !arm_feature(env, ARM_FEATURE_EL2)) { 7760 ARMCPRegInfo rvbar = { 7761 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7763 .access = PL1_R, 7764 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7765 }; 7766 define_one_arm_cp_reg(cpu, &rvbar); 7767 } 7768 define_arm_cp_regs(cpu, v8_idregs); 7769 define_arm_cp_regs(cpu, v8_cp_reginfo); 7770 7771 for (i = 4; i < 16; i++) { 7772 /* 7773 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 7774 * For pre-v8 cores there are RAZ patterns for these in 7775 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 7776 * v8 extends the "must RAZ" part of the ID register space 7777 * to also cover c0, 0, c{8-15}, {0-7}. 7778 * These are STATE_AA32 because in the AArch64 sysreg space 7779 * c4-c7 is where the AArch64 ID registers live (and we've 7780 * already defined those in v8_idregs[]), and c8-c15 are not 7781 * "must RAZ" for AArch64. 7782 */ 7783 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 7784 ARMCPRegInfo v8_aa32_raz_idregs = { 7785 .name = name, 7786 .state = ARM_CP_STATE_AA32, 7787 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 7788 .access = PL1_R, .type = ARM_CP_CONST, 7789 .accessfn = access_aa64_tid3, 7790 .resetvalue = 0 }; 7791 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 7792 } 7793 } 7794 7795 /* 7796 * Register the base EL2 cpregs. 7797 * Pre v8, these registers are implemented only as part of the 7798 * Virtualization Extensions (EL2 present). Beginning with v8, 7799 * if EL2 is missing but EL3 is enabled, mostly these become 7800 * RES0 from EL3, with some specific exceptions. 7801 */ 7802 if (arm_feature(env, ARM_FEATURE_EL2) 7803 || (arm_feature(env, ARM_FEATURE_EL3) 7804 && arm_feature(env, ARM_FEATURE_V8))) { 7805 uint64_t vmpidr_def = mpidr_read_val(env); 7806 ARMCPRegInfo vpidr_regs[] = { 7807 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7808 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7809 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7810 .resetvalue = cpu->midr, 7811 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7812 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7813 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7815 .access = PL2_RW, .resetvalue = cpu->midr, 7816 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7817 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7818 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7819 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7820 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7821 .resetvalue = vmpidr_def, 7822 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7823 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7824 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7826 .access = PL2_RW, .resetvalue = vmpidr_def, 7827 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7828 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7829 }; 7830 /* 7831 * The only field of MDCR_EL2 that has a defined architectural reset 7832 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7833 */ 7834 ARMCPRegInfo mdcr_el2 = { 7835 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 7836 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7837 .writefn = mdcr_el2_write, 7838 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7839 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7840 }; 7841 define_one_arm_cp_reg(cpu, &mdcr_el2); 7842 define_arm_cp_regs(cpu, vpidr_regs); 7843 define_arm_cp_regs(cpu, el2_cp_reginfo); 7844 if (arm_feature(env, ARM_FEATURE_V8)) { 7845 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7846 } 7847 if (cpu_isar_feature(aa64_sel2, cpu)) { 7848 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7849 } 7850 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7851 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7852 ARMCPRegInfo rvbar = { 7853 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7854 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7855 .access = PL2_R, 7856 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7857 }; 7858 define_one_arm_cp_reg(cpu, &rvbar); 7859 } 7860 } 7861 7862 /* Register the base EL3 cpregs. */ 7863 if (arm_feature(env, ARM_FEATURE_EL3)) { 7864 define_arm_cp_regs(cpu, el3_cp_reginfo); 7865 ARMCPRegInfo el3_regs[] = { 7866 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7868 .access = PL3_R, 7869 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7870 }, 7871 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7872 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7873 .access = PL3_RW, 7874 .raw_writefn = raw_write, .writefn = sctlr_write, 7875 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7876 .resetvalue = cpu->reset_sctlr }, 7877 }; 7878 7879 define_arm_cp_regs(cpu, el3_regs); 7880 } 7881 /* The behaviour of NSACR is sufficiently various that we don't 7882 * try to describe it in a single reginfo: 7883 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7884 * reads as constant 0xc00 from NS EL1 and NS EL2 7885 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7886 * if v7 without EL3, register doesn't exist 7887 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7888 */ 7889 if (arm_feature(env, ARM_FEATURE_EL3)) { 7890 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7891 static const ARMCPRegInfo nsacr = { 7892 .name = "NSACR", .type = ARM_CP_CONST, 7893 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7894 .access = PL1_RW, .accessfn = nsacr_access, 7895 .resetvalue = 0xc00 7896 }; 7897 define_one_arm_cp_reg(cpu, &nsacr); 7898 } else { 7899 static const ARMCPRegInfo nsacr = { 7900 .name = "NSACR", 7901 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7902 .access = PL3_RW | PL1_R, 7903 .resetvalue = 0, 7904 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7905 }; 7906 define_one_arm_cp_reg(cpu, &nsacr); 7907 } 7908 } else { 7909 if (arm_feature(env, ARM_FEATURE_V8)) { 7910 static const ARMCPRegInfo nsacr = { 7911 .name = "NSACR", .type = ARM_CP_CONST, 7912 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7913 .access = PL1_R, 7914 .resetvalue = 0xc00 7915 }; 7916 define_one_arm_cp_reg(cpu, &nsacr); 7917 } 7918 } 7919 7920 if (arm_feature(env, ARM_FEATURE_PMSA)) { 7921 if (arm_feature(env, ARM_FEATURE_V6)) { 7922 /* PMSAv6 not implemented */ 7923 assert(arm_feature(env, ARM_FEATURE_V7)); 7924 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7925 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 7926 } else { 7927 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 7928 } 7929 } else { 7930 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 7931 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 7932 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 7933 if (cpu_isar_feature(aa32_hpd, cpu)) { 7934 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 7935 } 7936 } 7937 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 7938 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 7939 } 7940 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 7941 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 7942 } 7943 if (arm_feature(env, ARM_FEATURE_VAPA)) { 7944 define_arm_cp_regs(cpu, vapa_cp_reginfo); 7945 } 7946 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 7947 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 7948 } 7949 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 7950 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 7951 } 7952 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 7953 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 7954 } 7955 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 7956 define_arm_cp_regs(cpu, omap_cp_reginfo); 7957 } 7958 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 7959 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 7960 } 7961 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7962 define_arm_cp_regs(cpu, xscale_cp_reginfo); 7963 } 7964 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 7965 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 7966 } 7967 if (arm_feature(env, ARM_FEATURE_LPAE)) { 7968 define_arm_cp_regs(cpu, lpae_cp_reginfo); 7969 } 7970 if (cpu_isar_feature(aa32_jazelle, cpu)) { 7971 define_arm_cp_regs(cpu, jazelle_regs); 7972 } 7973 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 7974 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 7975 * be read-only (ie write causes UNDEF exception). 7976 */ 7977 { 7978 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 7979 /* Pre-v8 MIDR space. 7980 * Note that the MIDR isn't a simple constant register because 7981 * of the TI925 behaviour where writes to another register can 7982 * cause the MIDR value to change. 7983 * 7984 * Unimplemented registers in the c15 0 0 0 space default to 7985 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 7986 * and friends override accordingly. 7987 */ 7988 { .name = "MIDR", 7989 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 7990 .access = PL1_R, .resetvalue = cpu->midr, 7991 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 7992 .readfn = midr_read, 7993 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 7994 .type = ARM_CP_OVERRIDE }, 7995 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 7996 { .name = "DUMMY", 7997 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 7998 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 7999 { .name = "DUMMY", 8000 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8001 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8002 { .name = "DUMMY", 8003 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8004 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8005 { .name = "DUMMY", 8006 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8007 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8008 { .name = "DUMMY", 8009 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8010 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8011 }; 8012 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8013 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8015 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8016 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8017 .readfn = midr_read }, 8018 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8019 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8020 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8021 .access = PL1_R, .resetvalue = cpu->midr }, 8022 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8023 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8024 .access = PL1_R, .resetvalue = cpu->midr }, 8025 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8027 .access = PL1_R, 8028 .accessfn = access_aa64_tid1, 8029 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8030 }; 8031 ARMCPRegInfo id_cp_reginfo[] = { 8032 /* These are common to v8 and pre-v8 */ 8033 { .name = "CTR", 8034 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8035 .access = PL1_R, .accessfn = ctr_el0_access, 8036 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8037 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8038 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8039 .access = PL0_R, .accessfn = ctr_el0_access, 8040 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8041 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8042 { .name = "TCMTR", 8043 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8044 .access = PL1_R, 8045 .accessfn = access_aa32_tid1, 8046 .type = ARM_CP_CONST, .resetvalue = 0 }, 8047 }; 8048 /* TLBTR is specific to VMSA */ 8049 ARMCPRegInfo id_tlbtr_reginfo = { 8050 .name = "TLBTR", 8051 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8052 .access = PL1_R, 8053 .accessfn = access_aa32_tid1, 8054 .type = ARM_CP_CONST, .resetvalue = 0, 8055 }; 8056 /* MPUIR is specific to PMSA V6+ */ 8057 ARMCPRegInfo id_mpuir_reginfo = { 8058 .name = "MPUIR", 8059 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8060 .access = PL1_R, .type = ARM_CP_CONST, 8061 .resetvalue = cpu->pmsav7_dregion << 8 8062 }; 8063 static const ARMCPRegInfo crn0_wi_reginfo = { 8064 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8065 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8066 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8067 }; 8068 #ifdef CONFIG_USER_ONLY 8069 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8070 { .name = "MIDR_EL1", 8071 .exported_bits = 0x00000000ffffffff }, 8072 { .name = "REVIDR_EL1" }, 8073 }; 8074 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8075 #endif 8076 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8077 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8078 size_t i; 8079 /* Register the blanket "writes ignored" value first to cover the 8080 * whole space. Then update the specific ID registers to allow write 8081 * access, so that they ignore writes rather than causing them to 8082 * UNDEF. 8083 */ 8084 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8085 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8086 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8087 } 8088 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8089 id_cp_reginfo[i].access = PL1_RW; 8090 } 8091 id_mpuir_reginfo.access = PL1_RW; 8092 id_tlbtr_reginfo.access = PL1_RW; 8093 } 8094 if (arm_feature(env, ARM_FEATURE_V8)) { 8095 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8096 } else { 8097 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8098 } 8099 define_arm_cp_regs(cpu, id_cp_reginfo); 8100 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8101 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8102 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8103 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8104 } 8105 } 8106 8107 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8108 ARMCPRegInfo mpidr_cp_reginfo[] = { 8109 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8110 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8111 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8112 }; 8113 #ifdef CONFIG_USER_ONLY 8114 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8115 { .name = "MPIDR_EL1", 8116 .fixed_bits = 0x0000000080000000 }, 8117 }; 8118 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8119 #endif 8120 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8121 } 8122 8123 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8124 ARMCPRegInfo auxcr_reginfo[] = { 8125 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8126 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8127 .access = PL1_RW, .accessfn = access_tacr, 8128 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8129 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8130 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8131 .access = PL2_RW, .type = ARM_CP_CONST, 8132 .resetvalue = 0 }, 8133 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8134 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8135 .access = PL3_RW, .type = ARM_CP_CONST, 8136 .resetvalue = 0 }, 8137 }; 8138 define_arm_cp_regs(cpu, auxcr_reginfo); 8139 if (cpu_isar_feature(aa32_ac2, cpu)) { 8140 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8141 } 8142 } 8143 8144 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8145 /* 8146 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8147 * There are two flavours: 8148 * (1) older 32-bit only cores have a simple 32-bit CBAR 8149 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8150 * 32-bit register visible to AArch32 at a different encoding 8151 * to the "flavour 1" register and with the bits rearranged to 8152 * be able to squash a 64-bit address into the 32-bit view. 8153 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8154 * in future if we support AArch32-only configs of some of the 8155 * AArch64 cores we might need to add a specific feature flag 8156 * to indicate cores with "flavour 2" CBAR. 8157 */ 8158 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8159 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8160 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8161 | extract64(cpu->reset_cbar, 32, 12); 8162 ARMCPRegInfo cbar_reginfo[] = { 8163 { .name = "CBAR", 8164 .type = ARM_CP_CONST, 8165 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8166 .access = PL1_R, .resetvalue = cbar32 }, 8167 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8168 .type = ARM_CP_CONST, 8169 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8170 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8171 }; 8172 /* We don't implement a r/w 64 bit CBAR currently */ 8173 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8174 define_arm_cp_regs(cpu, cbar_reginfo); 8175 } else { 8176 ARMCPRegInfo cbar = { 8177 .name = "CBAR", 8178 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8179 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8180 .fieldoffset = offsetof(CPUARMState, 8181 cp15.c15_config_base_address) 8182 }; 8183 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8184 cbar.access = PL1_R; 8185 cbar.fieldoffset = 0; 8186 cbar.type = ARM_CP_CONST; 8187 } 8188 define_one_arm_cp_reg(cpu, &cbar); 8189 } 8190 } 8191 8192 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8193 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8194 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8195 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8196 .access = PL1_RW, .writefn = vbar_write, 8197 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8198 offsetof(CPUARMState, cp15.vbar_ns) }, 8199 .resetvalue = 0 }, 8200 }; 8201 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8202 } 8203 8204 /* Generic registers whose values depend on the implementation */ 8205 { 8206 ARMCPRegInfo sctlr = { 8207 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8208 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8209 .access = PL1_RW, .accessfn = access_tvm_trvm, 8210 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8211 offsetof(CPUARMState, cp15.sctlr_ns) }, 8212 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8213 .raw_writefn = raw_write, 8214 }; 8215 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8216 /* Normally we would always end the TB on an SCTLR write, but Linux 8217 * arch/arm/mach-pxa/sleep.S expects two instructions following 8218 * an MMU enable to execute from cache. Imitate this behaviour. 8219 */ 8220 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8221 } 8222 define_one_arm_cp_reg(cpu, &sctlr); 8223 } 8224 8225 if (cpu_isar_feature(aa64_lor, cpu)) { 8226 define_arm_cp_regs(cpu, lor_reginfo); 8227 } 8228 if (cpu_isar_feature(aa64_pan, cpu)) { 8229 define_one_arm_cp_reg(cpu, &pan_reginfo); 8230 } 8231 #ifndef CONFIG_USER_ONLY 8232 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8233 define_arm_cp_regs(cpu, ats1e1_reginfo); 8234 } 8235 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8236 define_arm_cp_regs(cpu, ats1cp_reginfo); 8237 } 8238 #endif 8239 if (cpu_isar_feature(aa64_uao, cpu)) { 8240 define_one_arm_cp_reg(cpu, &uao_reginfo); 8241 } 8242 8243 if (cpu_isar_feature(aa64_dit, cpu)) { 8244 define_one_arm_cp_reg(cpu, &dit_reginfo); 8245 } 8246 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8247 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8248 } 8249 if (cpu_isar_feature(any_ras, cpu)) { 8250 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8251 } 8252 8253 if (cpu_isar_feature(aa64_vh, cpu) || 8254 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8255 define_one_arm_cp_reg(cpu, &contextidr_el2); 8256 } 8257 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8258 define_arm_cp_regs(cpu, vhe_reginfo); 8259 } 8260 8261 if (cpu_isar_feature(aa64_sve, cpu)) { 8262 define_arm_cp_regs(cpu, zcr_reginfo); 8263 } 8264 8265 if (cpu_isar_feature(aa64_hcx, cpu)) { 8266 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8267 } 8268 8269 #ifdef TARGET_AARCH64 8270 if (cpu_isar_feature(aa64_sme, cpu)) { 8271 define_arm_cp_regs(cpu, sme_reginfo); 8272 } 8273 if (cpu_isar_feature(aa64_pauth, cpu)) { 8274 define_arm_cp_regs(cpu, pauth_reginfo); 8275 } 8276 if (cpu_isar_feature(aa64_rndr, cpu)) { 8277 define_arm_cp_regs(cpu, rndr_reginfo); 8278 } 8279 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8280 define_arm_cp_regs(cpu, tlbirange_reginfo); 8281 } 8282 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8283 define_arm_cp_regs(cpu, tlbios_reginfo); 8284 } 8285 #ifndef CONFIG_USER_ONLY 8286 /* Data Cache clean instructions up to PoP */ 8287 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8288 define_one_arm_cp_reg(cpu, dcpop_reg); 8289 8290 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8291 define_one_arm_cp_reg(cpu, dcpodp_reg); 8292 } 8293 } 8294 #endif /*CONFIG_USER_ONLY*/ 8295 8296 /* 8297 * If full MTE is enabled, add all of the system registers. 8298 * If only "instructions available at EL0" are enabled, 8299 * then define only a RAZ/WI version of PSTATE.TCO. 8300 */ 8301 if (cpu_isar_feature(aa64_mte, cpu)) { 8302 define_arm_cp_regs(cpu, mte_reginfo); 8303 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8304 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8305 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8306 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8307 } 8308 8309 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8310 define_arm_cp_regs(cpu, scxtnum_reginfo); 8311 } 8312 #endif 8313 8314 if (cpu_isar_feature(any_predinv, cpu)) { 8315 define_arm_cp_regs(cpu, predinv_reginfo); 8316 } 8317 8318 if (cpu_isar_feature(any_ccidx, cpu)) { 8319 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8320 } 8321 8322 #ifndef CONFIG_USER_ONLY 8323 /* 8324 * Register redirections and aliases must be done last, 8325 * after the registers from the other extensions have been defined. 8326 */ 8327 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8328 define_arm_vh_e2h_redirects_aliases(cpu); 8329 } 8330 #endif 8331 } 8332 8333 /* Sort alphabetically by type name, except for "any". */ 8334 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8335 { 8336 ObjectClass *class_a = (ObjectClass *)a; 8337 ObjectClass *class_b = (ObjectClass *)b; 8338 const char *name_a, *name_b; 8339 8340 name_a = object_class_get_name(class_a); 8341 name_b = object_class_get_name(class_b); 8342 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8343 return 1; 8344 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8345 return -1; 8346 } else { 8347 return strcmp(name_a, name_b); 8348 } 8349 } 8350 8351 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8352 { 8353 ObjectClass *oc = data; 8354 CPUClass *cc = CPU_CLASS(oc); 8355 const char *typename; 8356 char *name; 8357 8358 typename = object_class_get_name(oc); 8359 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8360 if (cc->deprecation_note) { 8361 qemu_printf(" %s (deprecated)\n", name); 8362 } else { 8363 qemu_printf(" %s\n", name); 8364 } 8365 g_free(name); 8366 } 8367 8368 void arm_cpu_list(void) 8369 { 8370 GSList *list; 8371 8372 list = object_class_get_list(TYPE_ARM_CPU, false); 8373 list = g_slist_sort(list, arm_cpu_list_compare); 8374 qemu_printf("Available CPUs:\n"); 8375 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8376 g_slist_free(list); 8377 } 8378 8379 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8380 { 8381 ObjectClass *oc = data; 8382 CpuDefinitionInfoList **cpu_list = user_data; 8383 CpuDefinitionInfo *info; 8384 const char *typename; 8385 8386 typename = object_class_get_name(oc); 8387 info = g_malloc0(sizeof(*info)); 8388 info->name = g_strndup(typename, 8389 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8390 info->q_typename = g_strdup(typename); 8391 8392 QAPI_LIST_PREPEND(*cpu_list, info); 8393 } 8394 8395 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8396 { 8397 CpuDefinitionInfoList *cpu_list = NULL; 8398 GSList *list; 8399 8400 list = object_class_get_list(TYPE_ARM_CPU, false); 8401 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8402 g_slist_free(list); 8403 8404 return cpu_list; 8405 } 8406 8407 /* 8408 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8409 * add a single reginfo struct to the hash table. 8410 */ 8411 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8412 void *opaque, CPState state, 8413 CPSecureState secstate, 8414 int crm, int opc1, int opc2, 8415 const char *name) 8416 { 8417 CPUARMState *env = &cpu->env; 8418 uint32_t key; 8419 ARMCPRegInfo *r2; 8420 bool is64 = r->type & ARM_CP_64BIT; 8421 bool ns = secstate & ARM_CP_SECSTATE_NS; 8422 int cp = r->cp; 8423 size_t name_len; 8424 bool make_const; 8425 8426 switch (state) { 8427 case ARM_CP_STATE_AA32: 8428 /* We assume it is a cp15 register if the .cp field is left unset. */ 8429 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8430 cp = 15; 8431 } 8432 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8433 break; 8434 case ARM_CP_STATE_AA64: 8435 /* 8436 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8437 * cp == 0 as equivalent to the value for "standard guest-visible 8438 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8439 * in their AArch64 view (the .cp value may be non-zero for the 8440 * benefit of the AArch32 view). 8441 */ 8442 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8443 cp = CP_REG_ARM64_SYSREG_CP; 8444 } 8445 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8446 break; 8447 default: 8448 g_assert_not_reached(); 8449 } 8450 8451 /* Overriding of an existing definition must be explicitly requested. */ 8452 if (!(r->type & ARM_CP_OVERRIDE)) { 8453 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8454 if (oldreg) { 8455 assert(oldreg->type & ARM_CP_OVERRIDE); 8456 } 8457 } 8458 8459 /* 8460 * Eliminate registers that are not present because the EL is missing. 8461 * Doing this here makes it easier to put all registers for a given 8462 * feature into the same ARMCPRegInfo array and define them all at once. 8463 */ 8464 make_const = false; 8465 if (arm_feature(env, ARM_FEATURE_EL3)) { 8466 /* 8467 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8468 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8469 */ 8470 int min_el = ctz32(r->access) / 2; 8471 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8472 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8473 return; 8474 } 8475 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8476 } 8477 } else { 8478 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8479 ? PL2_RW : PL1_RW); 8480 if ((r->access & max_el) == 0) { 8481 return; 8482 } 8483 } 8484 8485 /* Combine cpreg and name into one allocation. */ 8486 name_len = strlen(name) + 1; 8487 r2 = g_malloc(sizeof(*r2) + name_len); 8488 *r2 = *r; 8489 r2->name = memcpy(r2 + 1, name, name_len); 8490 8491 /* 8492 * Update fields to match the instantiation, overwiting wildcards 8493 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8494 */ 8495 r2->cp = cp; 8496 r2->crm = crm; 8497 r2->opc1 = opc1; 8498 r2->opc2 = opc2; 8499 r2->state = state; 8500 r2->secure = secstate; 8501 if (opaque) { 8502 r2->opaque = opaque; 8503 } 8504 8505 if (make_const) { 8506 /* This should not have been a very special register to begin. */ 8507 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8508 assert(old_special == 0 || old_special == ARM_CP_NOP); 8509 /* 8510 * Set the special function to CONST, retaining the other flags. 8511 * This is important for e.g. ARM_CP_SVE so that we still 8512 * take the SVE trap if CPTR_EL3.EZ == 0. 8513 */ 8514 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8515 /* 8516 * Usually, these registers become RES0, but there are a few 8517 * special cases like VPIDR_EL2 which have a constant non-zero 8518 * value with writes ignored. 8519 */ 8520 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8521 r2->resetvalue = 0; 8522 } 8523 /* 8524 * ARM_CP_CONST has precedence, so removing the callbacks and 8525 * offsets are not strictly necessary, but it is potentially 8526 * less confusing to debug later. 8527 */ 8528 r2->readfn = NULL; 8529 r2->writefn = NULL; 8530 r2->raw_readfn = NULL; 8531 r2->raw_writefn = NULL; 8532 r2->resetfn = NULL; 8533 r2->fieldoffset = 0; 8534 r2->bank_fieldoffsets[0] = 0; 8535 r2->bank_fieldoffsets[1] = 0; 8536 } else { 8537 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8538 8539 if (isbanked) { 8540 /* 8541 * Register is banked (using both entries in array). 8542 * Overwriting fieldoffset as the array is only used to define 8543 * banked registers but later only fieldoffset is used. 8544 */ 8545 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8546 } 8547 if (state == ARM_CP_STATE_AA32) { 8548 if (isbanked) { 8549 /* 8550 * If the register is banked then we don't need to migrate or 8551 * reset the 32-bit instance in certain cases: 8552 * 8553 * 1) If the register has both 32-bit and 64-bit instances 8554 * then we can count on the 64-bit instance taking care 8555 * of the non-secure bank. 8556 * 2) If ARMv8 is enabled then we can count on a 64-bit 8557 * version taking care of the secure bank. This requires 8558 * that separate 32 and 64-bit definitions are provided. 8559 */ 8560 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8561 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8562 r2->type |= ARM_CP_ALIAS; 8563 } 8564 } else if ((secstate != r->secure) && !ns) { 8565 /* 8566 * The register is not banked so we only want to allow 8567 * migration of the non-secure instance. 8568 */ 8569 r2->type |= ARM_CP_ALIAS; 8570 } 8571 8572 if (HOST_BIG_ENDIAN && 8573 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8574 r2->fieldoffset += sizeof(uint32_t); 8575 } 8576 } 8577 } 8578 8579 /* 8580 * By convention, for wildcarded registers only the first 8581 * entry is used for migration; the others are marked as 8582 * ALIAS so we don't try to transfer the register 8583 * multiple times. Special registers (ie NOP/WFI) are 8584 * never migratable and not even raw-accessible. 8585 */ 8586 if (r2->type & ARM_CP_SPECIAL_MASK) { 8587 r2->type |= ARM_CP_NO_RAW; 8588 } 8589 if (((r->crm == CP_ANY) && crm != 0) || 8590 ((r->opc1 == CP_ANY) && opc1 != 0) || 8591 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8592 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8593 } 8594 8595 /* 8596 * Check that raw accesses are either forbidden or handled. Note that 8597 * we can't assert this earlier because the setup of fieldoffset for 8598 * banked registers has to be done first. 8599 */ 8600 if (!(r2->type & ARM_CP_NO_RAW)) { 8601 assert(!raw_accessors_invalid(r2)); 8602 } 8603 8604 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8605 } 8606 8607 8608 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8609 const ARMCPRegInfo *r, void *opaque) 8610 { 8611 /* Define implementations of coprocessor registers. 8612 * We store these in a hashtable because typically 8613 * there are less than 150 registers in a space which 8614 * is 16*16*16*8*8 = 262144 in size. 8615 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8616 * If a register is defined twice then the second definition is 8617 * used, so this can be used to define some generic registers and 8618 * then override them with implementation specific variations. 8619 * At least one of the original and the second definition should 8620 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8621 * against accidental use. 8622 * 8623 * The state field defines whether the register is to be 8624 * visible in the AArch32 or AArch64 execution state. If the 8625 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8626 * reginfo structure for the AArch32 view, which sees the lower 8627 * 32 bits of the 64 bit register. 8628 * 8629 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8630 * be wildcarded. AArch64 registers are always considered to be 64 8631 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8632 * the register, if any. 8633 */ 8634 int crm, opc1, opc2; 8635 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8636 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8637 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8638 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8639 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8640 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8641 CPState state; 8642 8643 /* 64 bit registers have only CRm and Opc1 fields */ 8644 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8645 /* op0 only exists in the AArch64 encodings */ 8646 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8647 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8648 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8649 /* 8650 * This API is only for Arm's system coprocessors (14 and 15) or 8651 * (M-profile or v7A-and-earlier only) for implementation defined 8652 * coprocessors in the range 0..7. Our decode assumes this, since 8653 * 8..13 can be used for other insns including VFP and Neon. See 8654 * valid_cp() in translate.c. Assert here that we haven't tried 8655 * to use an invalid coprocessor number. 8656 */ 8657 switch (r->state) { 8658 case ARM_CP_STATE_BOTH: 8659 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8660 if (r->cp == 0) { 8661 break; 8662 } 8663 /* fall through */ 8664 case ARM_CP_STATE_AA32: 8665 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8666 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8667 assert(r->cp >= 14 && r->cp <= 15); 8668 } else { 8669 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8670 } 8671 break; 8672 case ARM_CP_STATE_AA64: 8673 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8674 break; 8675 default: 8676 g_assert_not_reached(); 8677 } 8678 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8679 * encodes a minimum access level for the register. We roll this 8680 * runtime check into our general permission check code, so check 8681 * here that the reginfo's specified permissions are strict enough 8682 * to encompass the generic architectural permission check. 8683 */ 8684 if (r->state != ARM_CP_STATE_AA32) { 8685 CPAccessRights mask; 8686 switch (r->opc1) { 8687 case 0: 8688 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8689 mask = PL0U_R | PL1_RW; 8690 break; 8691 case 1: case 2: 8692 /* min_EL EL1 */ 8693 mask = PL1_RW; 8694 break; 8695 case 3: 8696 /* min_EL EL0 */ 8697 mask = PL0_RW; 8698 break; 8699 case 4: 8700 case 5: 8701 /* min_EL EL2 */ 8702 mask = PL2_RW; 8703 break; 8704 case 6: 8705 /* min_EL EL3 */ 8706 mask = PL3_RW; 8707 break; 8708 case 7: 8709 /* min_EL EL1, secure mode only (we don't check the latter) */ 8710 mask = PL1_RW; 8711 break; 8712 default: 8713 /* broken reginfo with out-of-range opc1 */ 8714 g_assert_not_reached(); 8715 } 8716 /* assert our permissions are not too lax (stricter is fine) */ 8717 assert((r->access & ~mask) == 0); 8718 } 8719 8720 /* Check that the register definition has enough info to handle 8721 * reads and writes if they are permitted. 8722 */ 8723 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8724 if (r->access & PL3_R) { 8725 assert((r->fieldoffset || 8726 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8727 r->readfn); 8728 } 8729 if (r->access & PL3_W) { 8730 assert((r->fieldoffset || 8731 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8732 r->writefn); 8733 } 8734 } 8735 8736 for (crm = crmmin; crm <= crmmax; crm++) { 8737 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8738 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8739 for (state = ARM_CP_STATE_AA32; 8740 state <= ARM_CP_STATE_AA64; state++) { 8741 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8742 continue; 8743 } 8744 if (state == ARM_CP_STATE_AA32) { 8745 /* Under AArch32 CP registers can be common 8746 * (same for secure and non-secure world) or banked. 8747 */ 8748 char *name; 8749 8750 switch (r->secure) { 8751 case ARM_CP_SECSTATE_S: 8752 case ARM_CP_SECSTATE_NS: 8753 add_cpreg_to_hashtable(cpu, r, opaque, state, 8754 r->secure, crm, opc1, opc2, 8755 r->name); 8756 break; 8757 case ARM_CP_SECSTATE_BOTH: 8758 name = g_strdup_printf("%s_S", r->name); 8759 add_cpreg_to_hashtable(cpu, r, opaque, state, 8760 ARM_CP_SECSTATE_S, 8761 crm, opc1, opc2, name); 8762 g_free(name); 8763 add_cpreg_to_hashtable(cpu, r, opaque, state, 8764 ARM_CP_SECSTATE_NS, 8765 crm, opc1, opc2, r->name); 8766 break; 8767 default: 8768 g_assert_not_reached(); 8769 } 8770 } else { 8771 /* AArch64 registers get mapped to non-secure instance 8772 * of AArch32 */ 8773 add_cpreg_to_hashtable(cpu, r, opaque, state, 8774 ARM_CP_SECSTATE_NS, 8775 crm, opc1, opc2, r->name); 8776 } 8777 } 8778 } 8779 } 8780 } 8781 } 8782 8783 /* Define a whole list of registers */ 8784 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8785 void *opaque, size_t len) 8786 { 8787 size_t i; 8788 for (i = 0; i < len; ++i) { 8789 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8790 } 8791 } 8792 8793 /* 8794 * Modify ARMCPRegInfo for access from userspace. 8795 * 8796 * This is a data driven modification directed by 8797 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8798 * user-space cannot alter any values and dynamic values pertaining to 8799 * execution state are hidden from user space view anyway. 8800 */ 8801 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8802 const ARMCPRegUserSpaceInfo *mods, 8803 size_t mods_len) 8804 { 8805 for (size_t mi = 0; mi < mods_len; ++mi) { 8806 const ARMCPRegUserSpaceInfo *m = mods + mi; 8807 GPatternSpec *pat = NULL; 8808 8809 if (m->is_glob) { 8810 pat = g_pattern_spec_new(m->name); 8811 } 8812 for (size_t ri = 0; ri < regs_len; ++ri) { 8813 ARMCPRegInfo *r = regs + ri; 8814 8815 if (pat && g_pattern_match_string(pat, r->name)) { 8816 r->type = ARM_CP_CONST; 8817 r->access = PL0U_R; 8818 r->resetvalue = 0; 8819 /* continue */ 8820 } else if (strcmp(r->name, m->name) == 0) { 8821 r->type = ARM_CP_CONST; 8822 r->access = PL0U_R; 8823 r->resetvalue &= m->exported_bits; 8824 r->resetvalue |= m->fixed_bits; 8825 break; 8826 } 8827 } 8828 if (pat) { 8829 g_pattern_spec_free(pat); 8830 } 8831 } 8832 } 8833 8834 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8835 { 8836 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8837 } 8838 8839 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8840 uint64_t value) 8841 { 8842 /* Helper coprocessor write function for write-ignore registers */ 8843 } 8844 8845 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8846 { 8847 /* Helper coprocessor write function for read-as-zero registers */ 8848 return 0; 8849 } 8850 8851 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8852 { 8853 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8854 } 8855 8856 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8857 { 8858 /* Return true if it is not valid for us to switch to 8859 * this CPU mode (ie all the UNPREDICTABLE cases in 8860 * the ARM ARM CPSRWriteByInstr pseudocode). 8861 */ 8862 8863 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8864 if (write_type == CPSRWriteByInstr && 8865 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8866 mode == ARM_CPU_MODE_HYP)) { 8867 return 1; 8868 } 8869 8870 switch (mode) { 8871 case ARM_CPU_MODE_USR: 8872 return 0; 8873 case ARM_CPU_MODE_SYS: 8874 case ARM_CPU_MODE_SVC: 8875 case ARM_CPU_MODE_ABT: 8876 case ARM_CPU_MODE_UND: 8877 case ARM_CPU_MODE_IRQ: 8878 case ARM_CPU_MODE_FIQ: 8879 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8880 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8881 */ 8882 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8883 * and CPS are treated as illegal mode changes. 8884 */ 8885 if (write_type == CPSRWriteByInstr && 8886 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8887 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8888 return 1; 8889 } 8890 return 0; 8891 case ARM_CPU_MODE_HYP: 8892 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8893 case ARM_CPU_MODE_MON: 8894 return arm_current_el(env) < 3; 8895 default: 8896 return 1; 8897 } 8898 } 8899 8900 uint32_t cpsr_read(CPUARMState *env) 8901 { 8902 int ZF; 8903 ZF = (env->ZF == 0); 8904 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8905 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 8906 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 8907 | ((env->condexec_bits & 0xfc) << 8) 8908 | (env->GE << 16) | (env->daif & CPSR_AIF); 8909 } 8910 8911 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 8912 CPSRWriteType write_type) 8913 { 8914 uint32_t changed_daif; 8915 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 8916 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 8917 8918 if (mask & CPSR_NZCV) { 8919 env->ZF = (~val) & CPSR_Z; 8920 env->NF = val; 8921 env->CF = (val >> 29) & 1; 8922 env->VF = (val << 3) & 0x80000000; 8923 } 8924 if (mask & CPSR_Q) 8925 env->QF = ((val & CPSR_Q) != 0); 8926 if (mask & CPSR_T) 8927 env->thumb = ((val & CPSR_T) != 0); 8928 if (mask & CPSR_IT_0_1) { 8929 env->condexec_bits &= ~3; 8930 env->condexec_bits |= (val >> 25) & 3; 8931 } 8932 if (mask & CPSR_IT_2_7) { 8933 env->condexec_bits &= 3; 8934 env->condexec_bits |= (val >> 8) & 0xfc; 8935 } 8936 if (mask & CPSR_GE) { 8937 env->GE = (val >> 16) & 0xf; 8938 } 8939 8940 /* In a V7 implementation that includes the security extensions but does 8941 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 8942 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 8943 * bits respectively. 8944 * 8945 * In a V8 implementation, it is permitted for privileged software to 8946 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 8947 */ 8948 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 8949 arm_feature(env, ARM_FEATURE_EL3) && 8950 !arm_feature(env, ARM_FEATURE_EL2) && 8951 !arm_is_secure(env)) { 8952 8953 changed_daif = (env->daif ^ val) & mask; 8954 8955 if (changed_daif & CPSR_A) { 8956 /* Check to see if we are allowed to change the masking of async 8957 * abort exceptions from a non-secure state. 8958 */ 8959 if (!(env->cp15.scr_el3 & SCR_AW)) { 8960 qemu_log_mask(LOG_GUEST_ERROR, 8961 "Ignoring attempt to switch CPSR_A flag from " 8962 "non-secure world with SCR.AW bit clear\n"); 8963 mask &= ~CPSR_A; 8964 } 8965 } 8966 8967 if (changed_daif & CPSR_F) { 8968 /* Check to see if we are allowed to change the masking of FIQ 8969 * exceptions from a non-secure state. 8970 */ 8971 if (!(env->cp15.scr_el3 & SCR_FW)) { 8972 qemu_log_mask(LOG_GUEST_ERROR, 8973 "Ignoring attempt to switch CPSR_F flag from " 8974 "non-secure world with SCR.FW bit clear\n"); 8975 mask &= ~CPSR_F; 8976 } 8977 8978 /* Check whether non-maskable FIQ (NMFI) support is enabled. 8979 * If this bit is set software is not allowed to mask 8980 * FIQs, but is allowed to set CPSR_F to 0. 8981 */ 8982 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 8983 (val & CPSR_F)) { 8984 qemu_log_mask(LOG_GUEST_ERROR, 8985 "Ignoring attempt to enable CPSR_F flag " 8986 "(non-maskable FIQ [NMFI] support enabled)\n"); 8987 mask &= ~CPSR_F; 8988 } 8989 } 8990 } 8991 8992 env->daif &= ~(CPSR_AIF & mask); 8993 env->daif |= val & CPSR_AIF & mask; 8994 8995 if (write_type != CPSRWriteRaw && 8996 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 8997 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 8998 /* Note that we can only get here in USR mode if this is a 8999 * gdb stub write; for this case we follow the architectural 9000 * behaviour for guest writes in USR mode of ignoring an attempt 9001 * to switch mode. (Those are caught by translate.c for writes 9002 * triggered by guest instructions.) 9003 */ 9004 mask &= ~CPSR_M; 9005 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9006 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9007 * v7, and has defined behaviour in v8: 9008 * + leave CPSR.M untouched 9009 * + allow changes to the other CPSR fields 9010 * + set PSTATE.IL 9011 * For user changes via the GDB stub, we don't set PSTATE.IL, 9012 * as this would be unnecessarily harsh for a user error. 9013 */ 9014 mask &= ~CPSR_M; 9015 if (write_type != CPSRWriteByGDBStub && 9016 arm_feature(env, ARM_FEATURE_V8)) { 9017 mask |= CPSR_IL; 9018 val |= CPSR_IL; 9019 } 9020 qemu_log_mask(LOG_GUEST_ERROR, 9021 "Illegal AArch32 mode switch attempt from %s to %s\n", 9022 aarch32_mode_name(env->uncached_cpsr), 9023 aarch32_mode_name(val)); 9024 } else { 9025 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9026 write_type == CPSRWriteExceptionReturn ? 9027 "Exception return from AArch32" : 9028 "AArch32 mode switch from", 9029 aarch32_mode_name(env->uncached_cpsr), 9030 aarch32_mode_name(val), env->regs[15]); 9031 switch_mode(env, val & CPSR_M); 9032 } 9033 } 9034 mask &= ~CACHED_CPSR_BITS; 9035 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9036 if (rebuild_hflags) { 9037 arm_rebuild_hflags(env); 9038 } 9039 } 9040 9041 /* Sign/zero extend */ 9042 uint32_t HELPER(sxtb16)(uint32_t x) 9043 { 9044 uint32_t res; 9045 res = (uint16_t)(int8_t)x; 9046 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9047 return res; 9048 } 9049 9050 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9051 { 9052 /* 9053 * Take a division-by-zero exception if necessary; otherwise return 9054 * to get the usual non-trapping division behaviour (result of 0) 9055 */ 9056 if (arm_feature(env, ARM_FEATURE_M) 9057 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9058 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9059 } 9060 } 9061 9062 uint32_t HELPER(uxtb16)(uint32_t x) 9063 { 9064 uint32_t res; 9065 res = (uint16_t)(uint8_t)x; 9066 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9067 return res; 9068 } 9069 9070 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9071 { 9072 if (den == 0) { 9073 handle_possible_div0_trap(env, GETPC()); 9074 return 0; 9075 } 9076 if (num == INT_MIN && den == -1) { 9077 return INT_MIN; 9078 } 9079 return num / den; 9080 } 9081 9082 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9083 { 9084 if (den == 0) { 9085 handle_possible_div0_trap(env, GETPC()); 9086 return 0; 9087 } 9088 return num / den; 9089 } 9090 9091 uint32_t HELPER(rbit)(uint32_t x) 9092 { 9093 return revbit32(x); 9094 } 9095 9096 #ifdef CONFIG_USER_ONLY 9097 9098 static void switch_mode(CPUARMState *env, int mode) 9099 { 9100 ARMCPU *cpu = env_archcpu(env); 9101 9102 if (mode != ARM_CPU_MODE_USR) { 9103 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9104 } 9105 } 9106 9107 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9108 uint32_t cur_el, bool secure) 9109 { 9110 return 1; 9111 } 9112 9113 void aarch64_sync_64_to_32(CPUARMState *env) 9114 { 9115 g_assert_not_reached(); 9116 } 9117 9118 #else 9119 9120 static void switch_mode(CPUARMState *env, int mode) 9121 { 9122 int old_mode; 9123 int i; 9124 9125 old_mode = env->uncached_cpsr & CPSR_M; 9126 if (mode == old_mode) 9127 return; 9128 9129 if (old_mode == ARM_CPU_MODE_FIQ) { 9130 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9131 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9132 } else if (mode == ARM_CPU_MODE_FIQ) { 9133 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9134 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9135 } 9136 9137 i = bank_number(old_mode); 9138 env->banked_r13[i] = env->regs[13]; 9139 env->banked_spsr[i] = env->spsr; 9140 9141 i = bank_number(mode); 9142 env->regs[13] = env->banked_r13[i]; 9143 env->spsr = env->banked_spsr[i]; 9144 9145 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9146 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9147 } 9148 9149 /* Physical Interrupt Target EL Lookup Table 9150 * 9151 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9152 * 9153 * The below multi-dimensional table is used for looking up the target 9154 * exception level given numerous condition criteria. Specifically, the 9155 * target EL is based on SCR and HCR routing controls as well as the 9156 * currently executing EL and secure state. 9157 * 9158 * Dimensions: 9159 * target_el_table[2][2][2][2][2][4] 9160 * | | | | | +--- Current EL 9161 * | | | | +------ Non-secure(0)/Secure(1) 9162 * | | | +--------- HCR mask override 9163 * | | +------------ SCR exec state control 9164 * | +--------------- SCR mask override 9165 * +------------------ 32-bit(0)/64-bit(1) EL3 9166 * 9167 * The table values are as such: 9168 * 0-3 = EL0-EL3 9169 * -1 = Cannot occur 9170 * 9171 * The ARM ARM target EL table includes entries indicating that an "exception 9172 * is not taken". The two cases where this is applicable are: 9173 * 1) An exception is taken from EL3 but the SCR does not have the exception 9174 * routed to EL3. 9175 * 2) An exception is taken from EL2 but the HCR does not have the exception 9176 * routed to EL2. 9177 * In these two cases, the below table contain a target of EL1. This value is 9178 * returned as it is expected that the consumer of the table data will check 9179 * for "target EL >= current EL" to ensure the exception is not taken. 9180 * 9181 * SCR HCR 9182 * 64 EA AMO From 9183 * BIT IRQ IMO Non-secure Secure 9184 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9185 */ 9186 static const int8_t target_el_table[2][2][2][2][2][4] = { 9187 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9188 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9189 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9190 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9191 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9192 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9193 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9194 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9195 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9196 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9197 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9198 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9199 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9200 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9201 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9202 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9203 }; 9204 9205 /* 9206 * Determine the target EL for physical exceptions 9207 */ 9208 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9209 uint32_t cur_el, bool secure) 9210 { 9211 CPUARMState *env = cs->env_ptr; 9212 bool rw; 9213 bool scr; 9214 bool hcr; 9215 int target_el; 9216 /* Is the highest EL AArch64? */ 9217 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9218 uint64_t hcr_el2; 9219 9220 if (arm_feature(env, ARM_FEATURE_EL3)) { 9221 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9222 } else { 9223 /* Either EL2 is the highest EL (and so the EL2 register width 9224 * is given by is64); or there is no EL2 or EL3, in which case 9225 * the value of 'rw' does not affect the table lookup anyway. 9226 */ 9227 rw = is64; 9228 } 9229 9230 hcr_el2 = arm_hcr_el2_eff(env); 9231 switch (excp_idx) { 9232 case EXCP_IRQ: 9233 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9234 hcr = hcr_el2 & HCR_IMO; 9235 break; 9236 case EXCP_FIQ: 9237 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9238 hcr = hcr_el2 & HCR_FMO; 9239 break; 9240 default: 9241 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9242 hcr = hcr_el2 & HCR_AMO; 9243 break; 9244 }; 9245 9246 /* 9247 * For these purposes, TGE and AMO/IMO/FMO both force the 9248 * interrupt to EL2. Fold TGE into the bit extracted above. 9249 */ 9250 hcr |= (hcr_el2 & HCR_TGE) != 0; 9251 9252 /* Perform a table-lookup for the target EL given the current state */ 9253 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9254 9255 assert(target_el > 0); 9256 9257 return target_el; 9258 } 9259 9260 void arm_log_exception(CPUState *cs) 9261 { 9262 int idx = cs->exception_index; 9263 9264 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9265 const char *exc = NULL; 9266 static const char * const excnames[] = { 9267 [EXCP_UDEF] = "Undefined Instruction", 9268 [EXCP_SWI] = "SVC", 9269 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9270 [EXCP_DATA_ABORT] = "Data Abort", 9271 [EXCP_IRQ] = "IRQ", 9272 [EXCP_FIQ] = "FIQ", 9273 [EXCP_BKPT] = "Breakpoint", 9274 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9275 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9276 [EXCP_HVC] = "Hypervisor Call", 9277 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9278 [EXCP_SMC] = "Secure Monitor Call", 9279 [EXCP_VIRQ] = "Virtual IRQ", 9280 [EXCP_VFIQ] = "Virtual FIQ", 9281 [EXCP_SEMIHOST] = "Semihosting call", 9282 [EXCP_NOCP] = "v7M NOCP UsageFault", 9283 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9284 [EXCP_STKOF] = "v8M STKOF UsageFault", 9285 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9286 [EXCP_LSERR] = "v8M LSERR UsageFault", 9287 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9288 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9289 [EXCP_VSERR] = "Virtual SERR", 9290 }; 9291 9292 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9293 exc = excnames[idx]; 9294 } 9295 if (!exc) { 9296 exc = "unknown"; 9297 } 9298 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9299 idx, exc, cs->cpu_index); 9300 } 9301 } 9302 9303 /* 9304 * Function used to synchronize QEMU's AArch64 register set with AArch32 9305 * register set. This is necessary when switching between AArch32 and AArch64 9306 * execution state. 9307 */ 9308 void aarch64_sync_32_to_64(CPUARMState *env) 9309 { 9310 int i; 9311 uint32_t mode = env->uncached_cpsr & CPSR_M; 9312 9313 /* We can blanket copy R[0:7] to X[0:7] */ 9314 for (i = 0; i < 8; i++) { 9315 env->xregs[i] = env->regs[i]; 9316 } 9317 9318 /* 9319 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9320 * Otherwise, they come from the banked user regs. 9321 */ 9322 if (mode == ARM_CPU_MODE_FIQ) { 9323 for (i = 8; i < 13; i++) { 9324 env->xregs[i] = env->usr_regs[i - 8]; 9325 } 9326 } else { 9327 for (i = 8; i < 13; i++) { 9328 env->xregs[i] = env->regs[i]; 9329 } 9330 } 9331 9332 /* 9333 * Registers x13-x23 are the various mode SP and FP registers. Registers 9334 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9335 * from the mode banked register. 9336 */ 9337 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9338 env->xregs[13] = env->regs[13]; 9339 env->xregs[14] = env->regs[14]; 9340 } else { 9341 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9342 /* HYP is an exception in that it is copied from r14 */ 9343 if (mode == ARM_CPU_MODE_HYP) { 9344 env->xregs[14] = env->regs[14]; 9345 } else { 9346 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9347 } 9348 } 9349 9350 if (mode == ARM_CPU_MODE_HYP) { 9351 env->xregs[15] = env->regs[13]; 9352 } else { 9353 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9354 } 9355 9356 if (mode == ARM_CPU_MODE_IRQ) { 9357 env->xregs[16] = env->regs[14]; 9358 env->xregs[17] = env->regs[13]; 9359 } else { 9360 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9361 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9362 } 9363 9364 if (mode == ARM_CPU_MODE_SVC) { 9365 env->xregs[18] = env->regs[14]; 9366 env->xregs[19] = env->regs[13]; 9367 } else { 9368 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9369 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9370 } 9371 9372 if (mode == ARM_CPU_MODE_ABT) { 9373 env->xregs[20] = env->regs[14]; 9374 env->xregs[21] = env->regs[13]; 9375 } else { 9376 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9377 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9378 } 9379 9380 if (mode == ARM_CPU_MODE_UND) { 9381 env->xregs[22] = env->regs[14]; 9382 env->xregs[23] = env->regs[13]; 9383 } else { 9384 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9385 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9386 } 9387 9388 /* 9389 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9390 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9391 * FIQ bank for r8-r14. 9392 */ 9393 if (mode == ARM_CPU_MODE_FIQ) { 9394 for (i = 24; i < 31; i++) { 9395 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9396 } 9397 } else { 9398 for (i = 24; i < 29; i++) { 9399 env->xregs[i] = env->fiq_regs[i - 24]; 9400 } 9401 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9402 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9403 } 9404 9405 env->pc = env->regs[15]; 9406 } 9407 9408 /* 9409 * Function used to synchronize QEMU's AArch32 register set with AArch64 9410 * register set. This is necessary when switching between AArch32 and AArch64 9411 * execution state. 9412 */ 9413 void aarch64_sync_64_to_32(CPUARMState *env) 9414 { 9415 int i; 9416 uint32_t mode = env->uncached_cpsr & CPSR_M; 9417 9418 /* We can blanket copy X[0:7] to R[0:7] */ 9419 for (i = 0; i < 8; i++) { 9420 env->regs[i] = env->xregs[i]; 9421 } 9422 9423 /* 9424 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9425 * Otherwise, we copy x8-x12 into the banked user regs. 9426 */ 9427 if (mode == ARM_CPU_MODE_FIQ) { 9428 for (i = 8; i < 13; i++) { 9429 env->usr_regs[i - 8] = env->xregs[i]; 9430 } 9431 } else { 9432 for (i = 8; i < 13; i++) { 9433 env->regs[i] = env->xregs[i]; 9434 } 9435 } 9436 9437 /* 9438 * Registers r13 & r14 depend on the current mode. 9439 * If we are in a given mode, we copy the corresponding x registers to r13 9440 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9441 * for the mode. 9442 */ 9443 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9444 env->regs[13] = env->xregs[13]; 9445 env->regs[14] = env->xregs[14]; 9446 } else { 9447 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9448 9449 /* 9450 * HYP is an exception in that it does not have its own banked r14 but 9451 * shares the USR r14 9452 */ 9453 if (mode == ARM_CPU_MODE_HYP) { 9454 env->regs[14] = env->xregs[14]; 9455 } else { 9456 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9457 } 9458 } 9459 9460 if (mode == ARM_CPU_MODE_HYP) { 9461 env->regs[13] = env->xregs[15]; 9462 } else { 9463 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9464 } 9465 9466 if (mode == ARM_CPU_MODE_IRQ) { 9467 env->regs[14] = env->xregs[16]; 9468 env->regs[13] = env->xregs[17]; 9469 } else { 9470 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9471 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9472 } 9473 9474 if (mode == ARM_CPU_MODE_SVC) { 9475 env->regs[14] = env->xregs[18]; 9476 env->regs[13] = env->xregs[19]; 9477 } else { 9478 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9479 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9480 } 9481 9482 if (mode == ARM_CPU_MODE_ABT) { 9483 env->regs[14] = env->xregs[20]; 9484 env->regs[13] = env->xregs[21]; 9485 } else { 9486 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9487 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9488 } 9489 9490 if (mode == ARM_CPU_MODE_UND) { 9491 env->regs[14] = env->xregs[22]; 9492 env->regs[13] = env->xregs[23]; 9493 } else { 9494 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9495 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9496 } 9497 9498 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9499 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9500 * FIQ bank for r8-r14. 9501 */ 9502 if (mode == ARM_CPU_MODE_FIQ) { 9503 for (i = 24; i < 31; i++) { 9504 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9505 } 9506 } else { 9507 for (i = 24; i < 29; i++) { 9508 env->fiq_regs[i - 24] = env->xregs[i]; 9509 } 9510 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9511 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9512 } 9513 9514 env->regs[15] = env->pc; 9515 } 9516 9517 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9518 uint32_t mask, uint32_t offset, 9519 uint32_t newpc) 9520 { 9521 int new_el; 9522 9523 /* Change the CPU state so as to actually take the exception. */ 9524 switch_mode(env, new_mode); 9525 9526 /* 9527 * For exceptions taken to AArch32 we must clear the SS bit in both 9528 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9529 */ 9530 env->pstate &= ~PSTATE_SS; 9531 env->spsr = cpsr_read(env); 9532 /* Clear IT bits. */ 9533 env->condexec_bits = 0; 9534 /* Switch to the new mode, and to the correct instruction set. */ 9535 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9536 9537 /* This must be after mode switching. */ 9538 new_el = arm_current_el(env); 9539 9540 /* Set new mode endianness */ 9541 env->uncached_cpsr &= ~CPSR_E; 9542 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9543 env->uncached_cpsr |= CPSR_E; 9544 } 9545 /* J and IL must always be cleared for exception entry */ 9546 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9547 env->daif |= mask; 9548 9549 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9550 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9551 env->uncached_cpsr |= CPSR_SSBS; 9552 } else { 9553 env->uncached_cpsr &= ~CPSR_SSBS; 9554 } 9555 } 9556 9557 if (new_mode == ARM_CPU_MODE_HYP) { 9558 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9559 env->elr_el[2] = env->regs[15]; 9560 } else { 9561 /* CPSR.PAN is normally preserved preserved unless... */ 9562 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9563 switch (new_el) { 9564 case 3: 9565 if (!arm_is_secure_below_el3(env)) { 9566 /* ... the target is EL3, from non-secure state. */ 9567 env->uncached_cpsr &= ~CPSR_PAN; 9568 break; 9569 } 9570 /* ... the target is EL3, from secure state ... */ 9571 /* fall through */ 9572 case 1: 9573 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9574 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9575 env->uncached_cpsr |= CPSR_PAN; 9576 } 9577 break; 9578 } 9579 } 9580 /* 9581 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9582 * and we should just guard the thumb mode on V4 9583 */ 9584 if (arm_feature(env, ARM_FEATURE_V4T)) { 9585 env->thumb = 9586 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9587 } 9588 env->regs[14] = env->regs[15] + offset; 9589 } 9590 env->regs[15] = newpc; 9591 arm_rebuild_hflags(env); 9592 } 9593 9594 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9595 { 9596 /* 9597 * Handle exception entry to Hyp mode; this is sufficiently 9598 * different to entry to other AArch32 modes that we handle it 9599 * separately here. 9600 * 9601 * The vector table entry used is always the 0x14 Hyp mode entry point, 9602 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9603 * The offset applied to the preferred return address is always zero 9604 * (see DDI0487C.a section G1.12.3). 9605 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9606 */ 9607 uint32_t addr, mask; 9608 ARMCPU *cpu = ARM_CPU(cs); 9609 CPUARMState *env = &cpu->env; 9610 9611 switch (cs->exception_index) { 9612 case EXCP_UDEF: 9613 addr = 0x04; 9614 break; 9615 case EXCP_SWI: 9616 addr = 0x08; 9617 break; 9618 case EXCP_BKPT: 9619 /* Fall through to prefetch abort. */ 9620 case EXCP_PREFETCH_ABORT: 9621 env->cp15.ifar_s = env->exception.vaddress; 9622 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9623 (uint32_t)env->exception.vaddress); 9624 addr = 0x0c; 9625 break; 9626 case EXCP_DATA_ABORT: 9627 env->cp15.dfar_s = env->exception.vaddress; 9628 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9629 (uint32_t)env->exception.vaddress); 9630 addr = 0x10; 9631 break; 9632 case EXCP_IRQ: 9633 addr = 0x18; 9634 break; 9635 case EXCP_FIQ: 9636 addr = 0x1c; 9637 break; 9638 case EXCP_HVC: 9639 addr = 0x08; 9640 break; 9641 case EXCP_HYP_TRAP: 9642 addr = 0x14; 9643 break; 9644 default: 9645 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9646 } 9647 9648 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9649 if (!arm_feature(env, ARM_FEATURE_V8)) { 9650 /* 9651 * QEMU syndrome values are v8-style. v7 has the IL bit 9652 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9653 * If this is a v7 CPU, squash the IL bit in those cases. 9654 */ 9655 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9656 (cs->exception_index == EXCP_DATA_ABORT && 9657 !(env->exception.syndrome & ARM_EL_ISV)) || 9658 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9659 env->exception.syndrome &= ~ARM_EL_IL; 9660 } 9661 } 9662 env->cp15.esr_el[2] = env->exception.syndrome; 9663 } 9664 9665 if (arm_current_el(env) != 2 && addr < 0x14) { 9666 addr = 0x14; 9667 } 9668 9669 mask = 0; 9670 if (!(env->cp15.scr_el3 & SCR_EA)) { 9671 mask |= CPSR_A; 9672 } 9673 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9674 mask |= CPSR_I; 9675 } 9676 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9677 mask |= CPSR_F; 9678 } 9679 9680 addr += env->cp15.hvbar; 9681 9682 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9683 } 9684 9685 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9686 { 9687 ARMCPU *cpu = ARM_CPU(cs); 9688 CPUARMState *env = &cpu->env; 9689 uint32_t addr; 9690 uint32_t mask; 9691 int new_mode; 9692 uint32_t offset; 9693 uint32_t moe; 9694 9695 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9696 switch (syn_get_ec(env->exception.syndrome)) { 9697 case EC_BREAKPOINT: 9698 case EC_BREAKPOINT_SAME_EL: 9699 moe = 1; 9700 break; 9701 case EC_WATCHPOINT: 9702 case EC_WATCHPOINT_SAME_EL: 9703 moe = 10; 9704 break; 9705 case EC_AA32_BKPT: 9706 moe = 3; 9707 break; 9708 case EC_VECTORCATCH: 9709 moe = 5; 9710 break; 9711 default: 9712 moe = 0; 9713 break; 9714 } 9715 9716 if (moe) { 9717 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9718 } 9719 9720 if (env->exception.target_el == 2) { 9721 arm_cpu_do_interrupt_aarch32_hyp(cs); 9722 return; 9723 } 9724 9725 switch (cs->exception_index) { 9726 case EXCP_UDEF: 9727 new_mode = ARM_CPU_MODE_UND; 9728 addr = 0x04; 9729 mask = CPSR_I; 9730 if (env->thumb) 9731 offset = 2; 9732 else 9733 offset = 4; 9734 break; 9735 case EXCP_SWI: 9736 new_mode = ARM_CPU_MODE_SVC; 9737 addr = 0x08; 9738 mask = CPSR_I; 9739 /* The PC already points to the next instruction. */ 9740 offset = 0; 9741 break; 9742 case EXCP_BKPT: 9743 /* Fall through to prefetch abort. */ 9744 case EXCP_PREFETCH_ABORT: 9745 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9746 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9747 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9748 env->exception.fsr, (uint32_t)env->exception.vaddress); 9749 new_mode = ARM_CPU_MODE_ABT; 9750 addr = 0x0c; 9751 mask = CPSR_A | CPSR_I; 9752 offset = 4; 9753 break; 9754 case EXCP_DATA_ABORT: 9755 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9756 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9757 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9758 env->exception.fsr, 9759 (uint32_t)env->exception.vaddress); 9760 new_mode = ARM_CPU_MODE_ABT; 9761 addr = 0x10; 9762 mask = CPSR_A | CPSR_I; 9763 offset = 8; 9764 break; 9765 case EXCP_IRQ: 9766 new_mode = ARM_CPU_MODE_IRQ; 9767 addr = 0x18; 9768 /* Disable IRQ and imprecise data aborts. */ 9769 mask = CPSR_A | CPSR_I; 9770 offset = 4; 9771 if (env->cp15.scr_el3 & SCR_IRQ) { 9772 /* IRQ routed to monitor mode */ 9773 new_mode = ARM_CPU_MODE_MON; 9774 mask |= CPSR_F; 9775 } 9776 break; 9777 case EXCP_FIQ: 9778 new_mode = ARM_CPU_MODE_FIQ; 9779 addr = 0x1c; 9780 /* Disable FIQ, IRQ and imprecise data aborts. */ 9781 mask = CPSR_A | CPSR_I | CPSR_F; 9782 if (env->cp15.scr_el3 & SCR_FIQ) { 9783 /* FIQ routed to monitor mode */ 9784 new_mode = ARM_CPU_MODE_MON; 9785 } 9786 offset = 4; 9787 break; 9788 case EXCP_VIRQ: 9789 new_mode = ARM_CPU_MODE_IRQ; 9790 addr = 0x18; 9791 /* Disable IRQ and imprecise data aborts. */ 9792 mask = CPSR_A | CPSR_I; 9793 offset = 4; 9794 break; 9795 case EXCP_VFIQ: 9796 new_mode = ARM_CPU_MODE_FIQ; 9797 addr = 0x1c; 9798 /* Disable FIQ, IRQ and imprecise data aborts. */ 9799 mask = CPSR_A | CPSR_I | CPSR_F; 9800 offset = 4; 9801 break; 9802 case EXCP_VSERR: 9803 { 9804 /* 9805 * Note that this is reported as a data abort, but the DFAR 9806 * has an UNKNOWN value. Construct the SError syndrome from 9807 * AET and ExT fields. 9808 */ 9809 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9810 9811 if (extended_addresses_enabled(env)) { 9812 env->exception.fsr = arm_fi_to_lfsc(&fi); 9813 } else { 9814 env->exception.fsr = arm_fi_to_sfsc(&fi); 9815 } 9816 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9817 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9818 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9819 env->exception.fsr); 9820 9821 new_mode = ARM_CPU_MODE_ABT; 9822 addr = 0x10; 9823 mask = CPSR_A | CPSR_I; 9824 offset = 8; 9825 } 9826 break; 9827 case EXCP_SMC: 9828 new_mode = ARM_CPU_MODE_MON; 9829 addr = 0x08; 9830 mask = CPSR_A | CPSR_I | CPSR_F; 9831 offset = 0; 9832 break; 9833 default: 9834 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9835 return; /* Never happens. Keep compiler happy. */ 9836 } 9837 9838 if (new_mode == ARM_CPU_MODE_MON) { 9839 addr += env->cp15.mvbar; 9840 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9841 /* High vectors. When enabled, base address cannot be remapped. */ 9842 addr += 0xffff0000; 9843 } else { 9844 /* ARM v7 architectures provide a vector base address register to remap 9845 * the interrupt vector table. 9846 * This register is only followed in non-monitor mode, and is banked. 9847 * Note: only bits 31:5 are valid. 9848 */ 9849 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9850 } 9851 9852 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9853 env->cp15.scr_el3 &= ~SCR_NS; 9854 } 9855 9856 take_aarch32_exception(env, new_mode, mask, offset, addr); 9857 } 9858 9859 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9860 { 9861 /* 9862 * Return the register number of the AArch64 view of the AArch32 9863 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9864 * be that of the AArch32 mode the exception came from. 9865 */ 9866 int mode = env->uncached_cpsr & CPSR_M; 9867 9868 switch (aarch32_reg) { 9869 case 0 ... 7: 9870 return aarch32_reg; 9871 case 8 ... 12: 9872 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9873 case 13: 9874 switch (mode) { 9875 case ARM_CPU_MODE_USR: 9876 case ARM_CPU_MODE_SYS: 9877 return 13; 9878 case ARM_CPU_MODE_HYP: 9879 return 15; 9880 case ARM_CPU_MODE_IRQ: 9881 return 17; 9882 case ARM_CPU_MODE_SVC: 9883 return 19; 9884 case ARM_CPU_MODE_ABT: 9885 return 21; 9886 case ARM_CPU_MODE_UND: 9887 return 23; 9888 case ARM_CPU_MODE_FIQ: 9889 return 29; 9890 default: 9891 g_assert_not_reached(); 9892 } 9893 case 14: 9894 switch (mode) { 9895 case ARM_CPU_MODE_USR: 9896 case ARM_CPU_MODE_SYS: 9897 case ARM_CPU_MODE_HYP: 9898 return 14; 9899 case ARM_CPU_MODE_IRQ: 9900 return 16; 9901 case ARM_CPU_MODE_SVC: 9902 return 18; 9903 case ARM_CPU_MODE_ABT: 9904 return 20; 9905 case ARM_CPU_MODE_UND: 9906 return 22; 9907 case ARM_CPU_MODE_FIQ: 9908 return 30; 9909 default: 9910 g_assert_not_reached(); 9911 } 9912 case 15: 9913 return 31; 9914 default: 9915 g_assert_not_reached(); 9916 } 9917 } 9918 9919 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 9920 { 9921 uint32_t ret = cpsr_read(env); 9922 9923 /* Move DIT to the correct location for SPSR_ELx */ 9924 if (ret & CPSR_DIT) { 9925 ret &= ~CPSR_DIT; 9926 ret |= PSTATE_DIT; 9927 } 9928 /* Merge PSTATE.SS into SPSR_ELx */ 9929 ret |= env->pstate & PSTATE_SS; 9930 9931 return ret; 9932 } 9933 9934 static bool syndrome_is_sync_extabt(uint32_t syndrome) 9935 { 9936 /* Return true if this syndrome value is a synchronous external abort */ 9937 switch (syn_get_ec(syndrome)) { 9938 case EC_INSNABORT: 9939 case EC_INSNABORT_SAME_EL: 9940 case EC_DATAABORT: 9941 case EC_DATAABORT_SAME_EL: 9942 /* Look at fault status code for all the synchronous ext abort cases */ 9943 switch (syndrome & 0x3f) { 9944 case 0x10: 9945 case 0x13: 9946 case 0x14: 9947 case 0x15: 9948 case 0x16: 9949 case 0x17: 9950 return true; 9951 default: 9952 return false; 9953 } 9954 default: 9955 return false; 9956 } 9957 } 9958 9959 /* Handle exception entry to a target EL which is using AArch64 */ 9960 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 9961 { 9962 ARMCPU *cpu = ARM_CPU(cs); 9963 CPUARMState *env = &cpu->env; 9964 unsigned int new_el = env->exception.target_el; 9965 target_ulong addr = env->cp15.vbar_el[new_el]; 9966 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 9967 unsigned int old_mode; 9968 unsigned int cur_el = arm_current_el(env); 9969 int rt; 9970 9971 /* 9972 * Note that new_el can never be 0. If cur_el is 0, then 9973 * el0_a64 is is_a64(), else el0_a64 is ignored. 9974 */ 9975 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 9976 9977 if (cur_el < new_el) { 9978 /* Entry vector offset depends on whether the implemented EL 9979 * immediately lower than the target level is using AArch32 or AArch64 9980 */ 9981 bool is_aa64; 9982 uint64_t hcr; 9983 9984 switch (new_el) { 9985 case 3: 9986 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 9987 break; 9988 case 2: 9989 hcr = arm_hcr_el2_eff(env); 9990 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 9991 is_aa64 = (hcr & HCR_RW) != 0; 9992 break; 9993 } 9994 /* fall through */ 9995 case 1: 9996 is_aa64 = is_a64(env); 9997 break; 9998 default: 9999 g_assert_not_reached(); 10000 } 10001 10002 if (is_aa64) { 10003 addr += 0x400; 10004 } else { 10005 addr += 0x600; 10006 } 10007 } else if (pstate_read(env) & PSTATE_SP) { 10008 addr += 0x200; 10009 } 10010 10011 switch (cs->exception_index) { 10012 case EXCP_PREFETCH_ABORT: 10013 case EXCP_DATA_ABORT: 10014 /* 10015 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10016 * to be taken to the SError vector entrypoint. 10017 */ 10018 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10019 syndrome_is_sync_extabt(env->exception.syndrome)) { 10020 addr += 0x180; 10021 } 10022 env->cp15.far_el[new_el] = env->exception.vaddress; 10023 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10024 env->cp15.far_el[new_el]); 10025 /* fall through */ 10026 case EXCP_BKPT: 10027 case EXCP_UDEF: 10028 case EXCP_SWI: 10029 case EXCP_HVC: 10030 case EXCP_HYP_TRAP: 10031 case EXCP_SMC: 10032 switch (syn_get_ec(env->exception.syndrome)) { 10033 case EC_ADVSIMDFPACCESSTRAP: 10034 /* 10035 * QEMU internal FP/SIMD syndromes from AArch32 include the 10036 * TA and coproc fields which are only exposed if the exception 10037 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10038 * AArch64 format syndrome. 10039 */ 10040 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10041 break; 10042 case EC_CP14RTTRAP: 10043 case EC_CP15RTTRAP: 10044 case EC_CP14DTTRAP: 10045 /* 10046 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10047 * the raw register field from the insn; when taking this to 10048 * AArch64 we must convert it to the AArch64 view of the register 10049 * number. Notice that we read a 4-bit AArch32 register number and 10050 * write back a 5-bit AArch64 one. 10051 */ 10052 rt = extract32(env->exception.syndrome, 5, 4); 10053 rt = aarch64_regnum(env, rt); 10054 env->exception.syndrome = deposit32(env->exception.syndrome, 10055 5, 5, rt); 10056 break; 10057 case EC_CP15RRTTRAP: 10058 case EC_CP14RRTTRAP: 10059 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10060 rt = extract32(env->exception.syndrome, 5, 4); 10061 rt = aarch64_regnum(env, rt); 10062 env->exception.syndrome = deposit32(env->exception.syndrome, 10063 5, 5, rt); 10064 rt = extract32(env->exception.syndrome, 10, 4); 10065 rt = aarch64_regnum(env, rt); 10066 env->exception.syndrome = deposit32(env->exception.syndrome, 10067 10, 5, rt); 10068 break; 10069 } 10070 env->cp15.esr_el[new_el] = env->exception.syndrome; 10071 break; 10072 case EXCP_IRQ: 10073 case EXCP_VIRQ: 10074 addr += 0x80; 10075 break; 10076 case EXCP_FIQ: 10077 case EXCP_VFIQ: 10078 addr += 0x100; 10079 break; 10080 case EXCP_VSERR: 10081 addr += 0x180; 10082 /* Construct the SError syndrome from IDS and ISS fields. */ 10083 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10084 env->cp15.esr_el[new_el] = env->exception.syndrome; 10085 break; 10086 default: 10087 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10088 } 10089 10090 if (is_a64(env)) { 10091 old_mode = pstate_read(env); 10092 aarch64_save_sp(env, arm_current_el(env)); 10093 env->elr_el[new_el] = env->pc; 10094 } else { 10095 old_mode = cpsr_read_for_spsr_elx(env); 10096 env->elr_el[new_el] = env->regs[15]; 10097 10098 aarch64_sync_32_to_64(env); 10099 10100 env->condexec_bits = 0; 10101 } 10102 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10103 10104 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10105 env->elr_el[new_el]); 10106 10107 if (cpu_isar_feature(aa64_pan, cpu)) { 10108 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10109 new_mode |= old_mode & PSTATE_PAN; 10110 switch (new_el) { 10111 case 2: 10112 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10113 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10114 != (HCR_E2H | HCR_TGE)) { 10115 break; 10116 } 10117 /* fall through */ 10118 case 1: 10119 /* ... the target is EL1 ... */ 10120 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10121 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10122 new_mode |= PSTATE_PAN; 10123 } 10124 break; 10125 } 10126 } 10127 if (cpu_isar_feature(aa64_mte, cpu)) { 10128 new_mode |= PSTATE_TCO; 10129 } 10130 10131 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10132 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10133 new_mode |= PSTATE_SSBS; 10134 } else { 10135 new_mode &= ~PSTATE_SSBS; 10136 } 10137 } 10138 10139 pstate_write(env, PSTATE_DAIF | new_mode); 10140 env->aarch64 = true; 10141 aarch64_restore_sp(env, new_el); 10142 helper_rebuild_hflags_a64(env, new_el); 10143 10144 env->pc = addr; 10145 10146 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10147 new_el, env->pc, pstate_read(env)); 10148 } 10149 10150 /* 10151 * Do semihosting call and set the appropriate return value. All the 10152 * permission and validity checks have been done at translate time. 10153 * 10154 * We only see semihosting exceptions in TCG only as they are not 10155 * trapped to the hypervisor in KVM. 10156 */ 10157 #ifdef CONFIG_TCG 10158 static void handle_semihosting(CPUState *cs) 10159 { 10160 ARMCPU *cpu = ARM_CPU(cs); 10161 CPUARMState *env = &cpu->env; 10162 10163 if (is_a64(env)) { 10164 qemu_log_mask(CPU_LOG_INT, 10165 "...handling as semihosting call 0x%" PRIx64 "\n", 10166 env->xregs[0]); 10167 do_common_semihosting(cs); 10168 env->pc += 4; 10169 } else { 10170 qemu_log_mask(CPU_LOG_INT, 10171 "...handling as semihosting call 0x%x\n", 10172 env->regs[0]); 10173 do_common_semihosting(cs); 10174 env->regs[15] += env->thumb ? 2 : 4; 10175 } 10176 } 10177 #endif 10178 10179 /* Handle a CPU exception for A and R profile CPUs. 10180 * Do any appropriate logging, handle PSCI calls, and then hand off 10181 * to the AArch64-entry or AArch32-entry function depending on the 10182 * target exception level's register width. 10183 * 10184 * Note: this is used for both TCG (as the do_interrupt tcg op), 10185 * and KVM to re-inject guest debug exceptions, and to 10186 * inject a Synchronous-External-Abort. 10187 */ 10188 void arm_cpu_do_interrupt(CPUState *cs) 10189 { 10190 ARMCPU *cpu = ARM_CPU(cs); 10191 CPUARMState *env = &cpu->env; 10192 unsigned int new_el = env->exception.target_el; 10193 10194 assert(!arm_feature(env, ARM_FEATURE_M)); 10195 10196 arm_log_exception(cs); 10197 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10198 new_el); 10199 if (qemu_loglevel_mask(CPU_LOG_INT) 10200 && !excp_is_internal(cs->exception_index)) { 10201 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10202 syn_get_ec(env->exception.syndrome), 10203 env->exception.syndrome); 10204 } 10205 10206 if (arm_is_psci_call(cpu, cs->exception_index)) { 10207 arm_handle_psci_call(cpu); 10208 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10209 return; 10210 } 10211 10212 /* 10213 * Semihosting semantics depend on the register width of the code 10214 * that caused the exception, not the target exception level, so 10215 * must be handled here. 10216 */ 10217 #ifdef CONFIG_TCG 10218 if (cs->exception_index == EXCP_SEMIHOST) { 10219 handle_semihosting(cs); 10220 return; 10221 } 10222 #endif 10223 10224 /* Hooks may change global state so BQL should be held, also the 10225 * BQL needs to be held for any modification of 10226 * cs->interrupt_request. 10227 */ 10228 g_assert(qemu_mutex_iothread_locked()); 10229 10230 arm_call_pre_el_change_hook(cpu); 10231 10232 assert(!excp_is_internal(cs->exception_index)); 10233 if (arm_el_is_aa64(env, new_el)) { 10234 arm_cpu_do_interrupt_aarch64(cs); 10235 } else { 10236 arm_cpu_do_interrupt_aarch32(cs); 10237 } 10238 10239 arm_call_el_change_hook(cpu); 10240 10241 if (!kvm_enabled()) { 10242 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10243 } 10244 } 10245 #endif /* !CONFIG_USER_ONLY */ 10246 10247 uint64_t arm_sctlr(CPUARMState *env, int el) 10248 { 10249 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10250 if (el == 0) { 10251 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10252 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10253 ? 2 : 1; 10254 } 10255 return env->cp15.sctlr_el[el]; 10256 } 10257 10258 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10259 { 10260 if (regime_has_2_ranges(mmu_idx)) { 10261 return extract64(tcr, 37, 2); 10262 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10263 return 0; /* VTCR_EL2 */ 10264 } else { 10265 /* Replicate the single TBI bit so we always have 2 bits. */ 10266 return extract32(tcr, 20, 1) * 3; 10267 } 10268 } 10269 10270 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10271 { 10272 if (regime_has_2_ranges(mmu_idx)) { 10273 return extract64(tcr, 51, 2); 10274 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10275 return 0; /* VTCR_EL2 */ 10276 } else { 10277 /* Replicate the single TBID bit so we always have 2 bits. */ 10278 return extract32(tcr, 29, 1) * 3; 10279 } 10280 } 10281 10282 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10283 { 10284 if (regime_has_2_ranges(mmu_idx)) { 10285 return extract64(tcr, 57, 2); 10286 } else { 10287 /* Replicate the single TCMA bit so we always have 2 bits. */ 10288 return extract32(tcr, 30, 1) * 3; 10289 } 10290 } 10291 10292 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10293 ARMMMUIdx mmu_idx, bool data) 10294 { 10295 uint64_t tcr = regime_tcr(env, mmu_idx); 10296 bool epd, hpd, using16k, using64k, tsz_oob, ds; 10297 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10298 ARMCPU *cpu = env_archcpu(env); 10299 10300 if (!regime_has_2_ranges(mmu_idx)) { 10301 select = 0; 10302 tsz = extract32(tcr, 0, 6); 10303 using64k = extract32(tcr, 14, 1); 10304 using16k = extract32(tcr, 15, 1); 10305 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10306 /* VTCR_EL2 */ 10307 hpd = false; 10308 } else { 10309 hpd = extract32(tcr, 24, 1); 10310 } 10311 epd = false; 10312 sh = extract32(tcr, 12, 2); 10313 ps = extract32(tcr, 16, 3); 10314 ds = extract64(tcr, 32, 1); 10315 } else { 10316 /* 10317 * Bit 55 is always between the two regions, and is canonical for 10318 * determining if address tagging is enabled. 10319 */ 10320 select = extract64(va, 55, 1); 10321 if (!select) { 10322 tsz = extract32(tcr, 0, 6); 10323 epd = extract32(tcr, 7, 1); 10324 sh = extract32(tcr, 12, 2); 10325 using64k = extract32(tcr, 14, 1); 10326 using16k = extract32(tcr, 15, 1); 10327 hpd = extract64(tcr, 41, 1); 10328 } else { 10329 int tg = extract32(tcr, 30, 2); 10330 using16k = tg == 1; 10331 using64k = tg == 3; 10332 tsz = extract32(tcr, 16, 6); 10333 epd = extract32(tcr, 23, 1); 10334 sh = extract32(tcr, 28, 2); 10335 hpd = extract64(tcr, 42, 1); 10336 } 10337 ps = extract64(tcr, 32, 3); 10338 ds = extract64(tcr, 59, 1); 10339 } 10340 10341 if (cpu_isar_feature(aa64_st, cpu)) { 10342 max_tsz = 48 - using64k; 10343 } else { 10344 max_tsz = 39; 10345 } 10346 10347 /* 10348 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10349 * adjust the effective value of DS, as documented. 10350 */ 10351 min_tsz = 16; 10352 if (using64k) { 10353 if (cpu_isar_feature(aa64_lva, cpu)) { 10354 min_tsz = 12; 10355 } 10356 ds = false; 10357 } else if (ds) { 10358 switch (mmu_idx) { 10359 case ARMMMUIdx_Stage2: 10360 case ARMMMUIdx_Stage2_S: 10361 if (using16k) { 10362 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10363 } else { 10364 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10365 } 10366 break; 10367 default: 10368 if (using16k) { 10369 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10370 } else { 10371 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10372 } 10373 break; 10374 } 10375 if (ds) { 10376 min_tsz = 12; 10377 } 10378 } 10379 10380 if (tsz > max_tsz) { 10381 tsz = max_tsz; 10382 tsz_oob = true; 10383 } else if (tsz < min_tsz) { 10384 tsz = min_tsz; 10385 tsz_oob = true; 10386 } else { 10387 tsz_oob = false; 10388 } 10389 10390 /* Present TBI as a composite with TBID. */ 10391 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10392 if (!data) { 10393 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10394 } 10395 tbi = (tbi >> select) & 1; 10396 10397 return (ARMVAParameters) { 10398 .tsz = tsz, 10399 .ps = ps, 10400 .sh = sh, 10401 .select = select, 10402 .tbi = tbi, 10403 .epd = epd, 10404 .hpd = hpd, 10405 .using16k = using16k, 10406 .using64k = using64k, 10407 .tsz_oob = tsz_oob, 10408 .ds = ds, 10409 }; 10410 } 10411 10412 /* Note that signed overflow is undefined in C. The following routines are 10413 careful to use unsigned types where modulo arithmetic is required. 10414 Failure to do so _will_ break on newer gcc. */ 10415 10416 /* Signed saturating arithmetic. */ 10417 10418 /* Perform 16-bit signed saturating addition. */ 10419 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10420 { 10421 uint16_t res; 10422 10423 res = a + b; 10424 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10425 if (a & 0x8000) 10426 res = 0x8000; 10427 else 10428 res = 0x7fff; 10429 } 10430 return res; 10431 } 10432 10433 /* Perform 8-bit signed saturating addition. */ 10434 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10435 { 10436 uint8_t res; 10437 10438 res = a + b; 10439 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10440 if (a & 0x80) 10441 res = 0x80; 10442 else 10443 res = 0x7f; 10444 } 10445 return res; 10446 } 10447 10448 /* Perform 16-bit signed saturating subtraction. */ 10449 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10450 { 10451 uint16_t res; 10452 10453 res = a - b; 10454 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10455 if (a & 0x8000) 10456 res = 0x8000; 10457 else 10458 res = 0x7fff; 10459 } 10460 return res; 10461 } 10462 10463 /* Perform 8-bit signed saturating subtraction. */ 10464 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10465 { 10466 uint8_t res; 10467 10468 res = a - b; 10469 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10470 if (a & 0x80) 10471 res = 0x80; 10472 else 10473 res = 0x7f; 10474 } 10475 return res; 10476 } 10477 10478 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10479 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10480 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10481 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10482 #define PFX q 10483 10484 #include "op_addsub.h" 10485 10486 /* Unsigned saturating arithmetic. */ 10487 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10488 { 10489 uint16_t res; 10490 res = a + b; 10491 if (res < a) 10492 res = 0xffff; 10493 return res; 10494 } 10495 10496 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10497 { 10498 if (a > b) 10499 return a - b; 10500 else 10501 return 0; 10502 } 10503 10504 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10505 { 10506 uint8_t res; 10507 res = a + b; 10508 if (res < a) 10509 res = 0xff; 10510 return res; 10511 } 10512 10513 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10514 { 10515 if (a > b) 10516 return a - b; 10517 else 10518 return 0; 10519 } 10520 10521 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10522 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10523 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10524 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10525 #define PFX uq 10526 10527 #include "op_addsub.h" 10528 10529 /* Signed modulo arithmetic. */ 10530 #define SARITH16(a, b, n, op) do { \ 10531 int32_t sum; \ 10532 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10533 RESULT(sum, n, 16); \ 10534 if (sum >= 0) \ 10535 ge |= 3 << (n * 2); \ 10536 } while(0) 10537 10538 #define SARITH8(a, b, n, op) do { \ 10539 int32_t sum; \ 10540 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10541 RESULT(sum, n, 8); \ 10542 if (sum >= 0) \ 10543 ge |= 1 << n; \ 10544 } while(0) 10545 10546 10547 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10548 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10549 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10550 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10551 #define PFX s 10552 #define ARITH_GE 10553 10554 #include "op_addsub.h" 10555 10556 /* Unsigned modulo arithmetic. */ 10557 #define ADD16(a, b, n) do { \ 10558 uint32_t sum; \ 10559 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10560 RESULT(sum, n, 16); \ 10561 if ((sum >> 16) == 1) \ 10562 ge |= 3 << (n * 2); \ 10563 } while(0) 10564 10565 #define ADD8(a, b, n) do { \ 10566 uint32_t sum; \ 10567 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10568 RESULT(sum, n, 8); \ 10569 if ((sum >> 8) == 1) \ 10570 ge |= 1 << n; \ 10571 } while(0) 10572 10573 #define SUB16(a, b, n) do { \ 10574 uint32_t sum; \ 10575 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10576 RESULT(sum, n, 16); \ 10577 if ((sum >> 16) == 0) \ 10578 ge |= 3 << (n * 2); \ 10579 } while(0) 10580 10581 #define SUB8(a, b, n) do { \ 10582 uint32_t sum; \ 10583 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10584 RESULT(sum, n, 8); \ 10585 if ((sum >> 8) == 0) \ 10586 ge |= 1 << n; \ 10587 } while(0) 10588 10589 #define PFX u 10590 #define ARITH_GE 10591 10592 #include "op_addsub.h" 10593 10594 /* Halved signed arithmetic. */ 10595 #define ADD16(a, b, n) \ 10596 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10597 #define SUB16(a, b, n) \ 10598 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10599 #define ADD8(a, b, n) \ 10600 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10601 #define SUB8(a, b, n) \ 10602 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10603 #define PFX sh 10604 10605 #include "op_addsub.h" 10606 10607 /* Halved unsigned arithmetic. */ 10608 #define ADD16(a, b, n) \ 10609 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10610 #define SUB16(a, b, n) \ 10611 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10612 #define ADD8(a, b, n) \ 10613 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10614 #define SUB8(a, b, n) \ 10615 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10616 #define PFX uh 10617 10618 #include "op_addsub.h" 10619 10620 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10621 { 10622 if (a > b) 10623 return a - b; 10624 else 10625 return b - a; 10626 } 10627 10628 /* Unsigned sum of absolute byte differences. */ 10629 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10630 { 10631 uint32_t sum; 10632 sum = do_usad(a, b); 10633 sum += do_usad(a >> 8, b >> 8); 10634 sum += do_usad(a >> 16, b >> 16); 10635 sum += do_usad(a >> 24, b >> 24); 10636 return sum; 10637 } 10638 10639 /* For ARMv6 SEL instruction. */ 10640 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10641 { 10642 uint32_t mask; 10643 10644 mask = 0; 10645 if (flags & 1) 10646 mask |= 0xff; 10647 if (flags & 2) 10648 mask |= 0xff00; 10649 if (flags & 4) 10650 mask |= 0xff0000; 10651 if (flags & 8) 10652 mask |= 0xff000000; 10653 return (a & mask) | (b & ~mask); 10654 } 10655 10656 /* CRC helpers. 10657 * The upper bytes of val (above the number specified by 'bytes') must have 10658 * been zeroed out by the caller. 10659 */ 10660 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10661 { 10662 uint8_t buf[4]; 10663 10664 stl_le_p(buf, val); 10665 10666 /* zlib crc32 converts the accumulator and output to one's complement. */ 10667 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10668 } 10669 10670 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10671 { 10672 uint8_t buf[4]; 10673 10674 stl_le_p(buf, val); 10675 10676 /* Linux crc32c converts the output to one's complement. */ 10677 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10678 } 10679 10680 /* Return the exception level to which FP-disabled exceptions should 10681 * be taken, or 0 if FP is enabled. 10682 */ 10683 int fp_exception_el(CPUARMState *env, int cur_el) 10684 { 10685 #ifndef CONFIG_USER_ONLY 10686 uint64_t hcr_el2; 10687 10688 /* CPACR and the CPTR registers don't exist before v6, so FP is 10689 * always accessible 10690 */ 10691 if (!arm_feature(env, ARM_FEATURE_V6)) { 10692 return 0; 10693 } 10694 10695 if (arm_feature(env, ARM_FEATURE_M)) { 10696 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10697 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10698 return 1; 10699 } 10700 10701 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10702 if (!extract32(env->v7m.nsacr, 10, 1)) { 10703 /* FP insns cause a NOCP UsageFault taken to Secure */ 10704 return 3; 10705 } 10706 } 10707 10708 return 0; 10709 } 10710 10711 hcr_el2 = arm_hcr_el2_eff(env); 10712 10713 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10714 * 0, 2 : trap EL0 and EL1/PL1 accesses 10715 * 1 : trap only EL0 accesses 10716 * 3 : trap no accesses 10717 * This register is ignored if E2H+TGE are both set. 10718 */ 10719 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10720 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10721 10722 switch (fpen) { 10723 case 1: 10724 if (cur_el != 0) { 10725 break; 10726 } 10727 /* fall through */ 10728 case 0: 10729 case 2: 10730 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10731 if (!arm_el_is_aa64(env, 3) 10732 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10733 return 3; 10734 } 10735 if (cur_el <= 1) { 10736 return 1; 10737 } 10738 break; 10739 } 10740 } 10741 10742 /* 10743 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10744 * to control non-secure access to the FPU. It doesn't have any 10745 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10746 */ 10747 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10748 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10749 if (!extract32(env->cp15.nsacr, 10, 1)) { 10750 /* FP insns act as UNDEF */ 10751 return cur_el == 2 ? 2 : 1; 10752 } 10753 } 10754 10755 /* 10756 * CPTR_EL2 is present in v7VE or v8, and changes format 10757 * with HCR_EL2.E2H (regardless of TGE). 10758 */ 10759 if (cur_el <= 2) { 10760 if (hcr_el2 & HCR_E2H) { 10761 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10762 case 1: 10763 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10764 break; 10765 } 10766 /* fall through */ 10767 case 0: 10768 case 2: 10769 return 2; 10770 } 10771 } else if (arm_is_el2_enabled(env)) { 10772 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10773 return 2; 10774 } 10775 } 10776 } 10777 10778 /* CPTR_EL3 : present in v8 */ 10779 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10780 /* Trap all FP ops to EL3 */ 10781 return 3; 10782 } 10783 #endif 10784 return 0; 10785 } 10786 10787 /* Return the exception level we're running at if this is our mmu_idx */ 10788 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10789 { 10790 if (mmu_idx & ARM_MMU_IDX_M) { 10791 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10792 } 10793 10794 switch (mmu_idx) { 10795 case ARMMMUIdx_E10_0: 10796 case ARMMMUIdx_E20_0: 10797 case ARMMMUIdx_SE10_0: 10798 case ARMMMUIdx_SE20_0: 10799 return 0; 10800 case ARMMMUIdx_E10_1: 10801 case ARMMMUIdx_E10_1_PAN: 10802 case ARMMMUIdx_SE10_1: 10803 case ARMMMUIdx_SE10_1_PAN: 10804 return 1; 10805 case ARMMMUIdx_E2: 10806 case ARMMMUIdx_E20_2: 10807 case ARMMMUIdx_E20_2_PAN: 10808 case ARMMMUIdx_SE2: 10809 case ARMMMUIdx_SE20_2: 10810 case ARMMMUIdx_SE20_2_PAN: 10811 return 2; 10812 case ARMMMUIdx_SE3: 10813 return 3; 10814 default: 10815 g_assert_not_reached(); 10816 } 10817 } 10818 10819 #ifndef CONFIG_TCG 10820 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 10821 { 10822 g_assert_not_reached(); 10823 } 10824 #endif 10825 10826 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 10827 { 10828 ARMMMUIdx idx; 10829 uint64_t hcr; 10830 10831 if (arm_feature(env, ARM_FEATURE_M)) { 10832 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 10833 } 10834 10835 /* See ARM pseudo-function ELIsInHost. */ 10836 switch (el) { 10837 case 0: 10838 hcr = arm_hcr_el2_eff(env); 10839 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 10840 idx = ARMMMUIdx_E20_0; 10841 } else { 10842 idx = ARMMMUIdx_E10_0; 10843 } 10844 break; 10845 case 1: 10846 if (env->pstate & PSTATE_PAN) { 10847 idx = ARMMMUIdx_E10_1_PAN; 10848 } else { 10849 idx = ARMMMUIdx_E10_1; 10850 } 10851 break; 10852 case 2: 10853 /* Note that TGE does not apply at EL2. */ 10854 if (arm_hcr_el2_eff(env) & HCR_E2H) { 10855 if (env->pstate & PSTATE_PAN) { 10856 idx = ARMMMUIdx_E20_2_PAN; 10857 } else { 10858 idx = ARMMMUIdx_E20_2; 10859 } 10860 } else { 10861 idx = ARMMMUIdx_E2; 10862 } 10863 break; 10864 case 3: 10865 return ARMMMUIdx_SE3; 10866 default: 10867 g_assert_not_reached(); 10868 } 10869 10870 if (arm_is_secure_below_el3(env)) { 10871 idx &= ~ARM_MMU_IDX_A_NS; 10872 } 10873 10874 return idx; 10875 } 10876 10877 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 10878 { 10879 return arm_mmu_idx_el(env, arm_current_el(env)); 10880 } 10881 10882 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 10883 ARMMMUIdx mmu_idx, 10884 CPUARMTBFlags flags) 10885 { 10886 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 10887 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 10888 10889 if (arm_singlestep_active(env)) { 10890 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 10891 } 10892 return flags; 10893 } 10894 10895 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 10896 ARMMMUIdx mmu_idx, 10897 CPUARMTBFlags flags) 10898 { 10899 bool sctlr_b = arm_sctlr_b(env); 10900 10901 if (sctlr_b) { 10902 DP_TBFLAG_A32(flags, SCTLR__B, 1); 10903 } 10904 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 10905 DP_TBFLAG_ANY(flags, BE_DATA, 1); 10906 } 10907 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 10908 10909 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 10910 } 10911 10912 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 10913 ARMMMUIdx mmu_idx) 10914 { 10915 CPUARMTBFlags flags = {}; 10916 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 10917 10918 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 10919 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 10920 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 10921 } 10922 10923 if (arm_v7m_is_handler_mode(env)) { 10924 DP_TBFLAG_M32(flags, HANDLER, 1); 10925 } 10926 10927 /* 10928 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 10929 * is suppressing them because the requested execution priority 10930 * is less than 0. 10931 */ 10932 if (arm_feature(env, ARM_FEATURE_V8) && 10933 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 10934 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 10935 DP_TBFLAG_M32(flags, STACKCHECK, 1); 10936 } 10937 10938 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 10939 } 10940 10941 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 10942 ARMMMUIdx mmu_idx) 10943 { 10944 CPUARMTBFlags flags = {}; 10945 int el = arm_current_el(env); 10946 10947 if (arm_sctlr(env, el) & SCTLR_A) { 10948 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 10949 } 10950 10951 if (arm_el_is_aa64(env, 1)) { 10952 DP_TBFLAG_A32(flags, VFPEN, 1); 10953 } 10954 10955 if (el < 2 && env->cp15.hstr_el2 && 10956 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10957 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 10958 } 10959 10960 if (env->uncached_cpsr & CPSR_IL) { 10961 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 10962 } 10963 10964 /* 10965 * The SME exception we are testing for is raised via 10966 * AArch64.CheckFPAdvSIMDEnabled(), as called from 10967 * AArch32.CheckAdvSIMDOrFPEnabled(). 10968 */ 10969 if (el == 0 10970 && FIELD_EX64(env->svcr, SVCR, SM) 10971 && (!arm_is_el2_enabled(env) 10972 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 10973 && arm_el_is_aa64(env, 1) 10974 && !sme_fa64(env, el)) { 10975 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 10976 } 10977 10978 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 10979 } 10980 10981 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 10982 ARMMMUIdx mmu_idx) 10983 { 10984 CPUARMTBFlags flags = {}; 10985 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 10986 uint64_t tcr = regime_tcr(env, mmu_idx); 10987 uint64_t sctlr; 10988 int tbii, tbid; 10989 10990 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 10991 10992 /* Get control bits for tagged addresses. */ 10993 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 10994 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 10995 10996 DP_TBFLAG_A64(flags, TBII, tbii); 10997 DP_TBFLAG_A64(flags, TBID, tbid); 10998 10999 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11000 int sve_el = sve_exception_el(env, el); 11001 11002 /* 11003 * If either FP or SVE are disabled, translator does not need len. 11004 * If SVE EL > FP EL, FP exception has precedence, and translator 11005 * does not need SVE EL. Save potential re-translations by forcing 11006 * the unneeded data to zero. 11007 */ 11008 if (fp_el != 0) { 11009 if (sve_el > fp_el) { 11010 sve_el = 0; 11011 } 11012 } else if (sve_el == 0) { 11013 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11014 } 11015 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11016 } 11017 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11018 int sme_el = sme_exception_el(env, el); 11019 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11020 11021 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11022 if (sme_el == 0) { 11023 /* Similarly, do not compute SVL if SME is disabled. */ 11024 int svl = sve_vqm1_for_el_sm(env, el, true); 11025 DP_TBFLAG_A64(flags, SVL, svl); 11026 if (sm) { 11027 /* If SVE is disabled, we will not have set VL above. */ 11028 DP_TBFLAG_A64(flags, VL, svl); 11029 } 11030 } 11031 if (sm) { 11032 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11033 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11034 } 11035 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11036 } 11037 11038 sctlr = regime_sctlr(env, stage1); 11039 11040 if (sctlr & SCTLR_A) { 11041 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11042 } 11043 11044 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11045 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11046 } 11047 11048 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11049 /* 11050 * In order to save space in flags, we record only whether 11051 * pauth is "inactive", meaning all insns are implemented as 11052 * a nop, or "active" when some action must be performed. 11053 * The decision of which action to take is left to a helper. 11054 */ 11055 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11056 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11057 } 11058 } 11059 11060 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11061 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11062 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11063 DP_TBFLAG_A64(flags, BT, 1); 11064 } 11065 } 11066 11067 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11068 if (!(env->pstate & PSTATE_UAO)) { 11069 switch (mmu_idx) { 11070 case ARMMMUIdx_E10_1: 11071 case ARMMMUIdx_E10_1_PAN: 11072 case ARMMMUIdx_SE10_1: 11073 case ARMMMUIdx_SE10_1_PAN: 11074 /* TODO: ARMv8.3-NV */ 11075 DP_TBFLAG_A64(flags, UNPRIV, 1); 11076 break; 11077 case ARMMMUIdx_E20_2: 11078 case ARMMMUIdx_E20_2_PAN: 11079 case ARMMMUIdx_SE20_2: 11080 case ARMMMUIdx_SE20_2_PAN: 11081 /* 11082 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11083 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11084 */ 11085 if (env->cp15.hcr_el2 & HCR_TGE) { 11086 DP_TBFLAG_A64(flags, UNPRIV, 1); 11087 } 11088 break; 11089 default: 11090 break; 11091 } 11092 } 11093 11094 if (env->pstate & PSTATE_IL) { 11095 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11096 } 11097 11098 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11099 /* 11100 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11101 * if all accesses must be Unchecked: 11102 * 1) If no TBI, then there are no tags in the address to check, 11103 * 2) If Tag Check Override, then all accesses are Unchecked, 11104 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11105 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11106 */ 11107 if (allocation_tag_access_enabled(env, el, sctlr)) { 11108 DP_TBFLAG_A64(flags, ATA, 1); 11109 if (tbid 11110 && !(env->pstate & PSTATE_TCO) 11111 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11112 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11113 } 11114 } 11115 /* And again for unprivileged accesses, if required. */ 11116 if (EX_TBFLAG_A64(flags, UNPRIV) 11117 && tbid 11118 && !(env->pstate & PSTATE_TCO) 11119 && (sctlr & SCTLR_TCF0) 11120 && allocation_tag_access_enabled(env, 0, sctlr)) { 11121 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11122 } 11123 /* Cache TCMA as well as TBI. */ 11124 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11125 } 11126 11127 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11128 } 11129 11130 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11131 { 11132 int el = arm_current_el(env); 11133 int fp_el = fp_exception_el(env, el); 11134 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11135 11136 if (is_a64(env)) { 11137 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11138 } else if (arm_feature(env, ARM_FEATURE_M)) { 11139 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11140 } else { 11141 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11142 } 11143 } 11144 11145 void arm_rebuild_hflags(CPUARMState *env) 11146 { 11147 env->hflags = rebuild_hflags_internal(env); 11148 } 11149 11150 /* 11151 * If we have triggered a EL state change we can't rely on the 11152 * translator having passed it to us, we need to recompute. 11153 */ 11154 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11155 { 11156 int el = arm_current_el(env); 11157 int fp_el = fp_exception_el(env, el); 11158 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11159 11160 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11161 } 11162 11163 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11164 { 11165 int fp_el = fp_exception_el(env, el); 11166 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11167 11168 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11169 } 11170 11171 /* 11172 * If we have triggered a EL state change we can't rely on the 11173 * translator having passed it to us, we need to recompute. 11174 */ 11175 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11176 { 11177 int el = arm_current_el(env); 11178 int fp_el = fp_exception_el(env, el); 11179 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11180 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11181 } 11182 11183 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11184 { 11185 int fp_el = fp_exception_el(env, el); 11186 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11187 11188 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11189 } 11190 11191 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11192 { 11193 int fp_el = fp_exception_el(env, el); 11194 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11195 11196 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11197 } 11198 11199 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11200 { 11201 #ifdef CONFIG_DEBUG_TCG 11202 CPUARMTBFlags c = env->hflags; 11203 CPUARMTBFlags r = rebuild_hflags_internal(env); 11204 11205 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11206 fprintf(stderr, "TCG hflags mismatch " 11207 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11208 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11209 c.flags, c.flags2, r.flags, r.flags2); 11210 abort(); 11211 } 11212 #endif 11213 } 11214 11215 static bool mve_no_pred(CPUARMState *env) 11216 { 11217 /* 11218 * Return true if there is definitely no predication of MVE 11219 * instructions by VPR or LTPSIZE. (Returning false even if there 11220 * isn't any predication is OK; generated code will just be 11221 * a little worse.) 11222 * If the CPU does not implement MVE then this TB flag is always 0. 11223 * 11224 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11225 * logic in gen_update_fp_context() needs to be updated to match. 11226 * 11227 * We do not include the effect of the ECI bits here -- they are 11228 * tracked in other TB flags. This simplifies the logic for 11229 * "when did we emit code that changes the MVE_NO_PRED TB flag 11230 * and thus need to end the TB?". 11231 */ 11232 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11233 return false; 11234 } 11235 if (env->v7m.vpr) { 11236 return false; 11237 } 11238 if (env->v7m.ltpsize < 4) { 11239 return false; 11240 } 11241 return true; 11242 } 11243 11244 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11245 target_ulong *cs_base, uint32_t *pflags) 11246 { 11247 CPUARMTBFlags flags; 11248 11249 assert_hflags_rebuild_correctly(env); 11250 flags = env->hflags; 11251 11252 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11253 *pc = env->pc; 11254 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11255 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11256 } 11257 } else { 11258 *pc = env->regs[15]; 11259 11260 if (arm_feature(env, ARM_FEATURE_M)) { 11261 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11262 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11263 != env->v7m.secure) { 11264 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11265 } 11266 11267 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11268 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11269 (env->v7m.secure && 11270 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11271 /* 11272 * ASPEN is set, but FPCA/SFPA indicate that there is no 11273 * active FP context; we must create a new FP context before 11274 * executing any FP insn. 11275 */ 11276 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11277 } 11278 11279 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11280 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11281 DP_TBFLAG_M32(flags, LSPACT, 1); 11282 } 11283 11284 if (mve_no_pred(env)) { 11285 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11286 } 11287 } else { 11288 /* 11289 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11290 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11291 */ 11292 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11293 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11294 } else { 11295 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11296 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11297 } 11298 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11299 DP_TBFLAG_A32(flags, VFPEN, 1); 11300 } 11301 } 11302 11303 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11304 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11305 } 11306 11307 /* 11308 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11309 * states defined in the ARM ARM for software singlestep: 11310 * SS_ACTIVE PSTATE.SS State 11311 * 0 x Inactive (the TB flag for SS is always 0) 11312 * 1 0 Active-pending 11313 * 1 1 Active-not-pending 11314 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11315 */ 11316 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11317 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11318 } 11319 11320 *pflags = flags.flags; 11321 *cs_base = flags.flags2; 11322 } 11323 11324 #ifdef TARGET_AARCH64 11325 /* 11326 * The manual says that when SVE is enabled and VQ is widened the 11327 * implementation is allowed to zero the previously inaccessible 11328 * portion of the registers. The corollary to that is that when 11329 * SVE is enabled and VQ is narrowed we are also allowed to zero 11330 * the now inaccessible portion of the registers. 11331 * 11332 * The intent of this is that no predicate bit beyond VQ is ever set. 11333 * Which means that some operations on predicate registers themselves 11334 * may operate on full uint64_t or even unrolled across the maximum 11335 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11336 * may well be cheaper than conditionals to restrict the operation 11337 * to the relevant portion of a uint16_t[16]. 11338 */ 11339 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11340 { 11341 int i, j; 11342 uint64_t pmask; 11343 11344 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11345 assert(vq <= env_archcpu(env)->sve_max_vq); 11346 11347 /* Zap the high bits of the zregs. */ 11348 for (i = 0; i < 32; i++) { 11349 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11350 } 11351 11352 /* Zap the high bits of the pregs and ffr. */ 11353 pmask = 0; 11354 if (vq & 3) { 11355 pmask = ~(-1ULL << (16 * (vq & 3))); 11356 } 11357 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11358 for (i = 0; i < 17; ++i) { 11359 env->vfp.pregs[i].p[j] &= pmask; 11360 } 11361 pmask = 0; 11362 } 11363 } 11364 11365 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11366 { 11367 int exc_el; 11368 11369 if (sm) { 11370 exc_el = sme_exception_el(env, el); 11371 } else { 11372 exc_el = sve_exception_el(env, el); 11373 } 11374 if (exc_el) { 11375 return 0; /* disabled */ 11376 } 11377 return sve_vqm1_for_el_sm(env, el, sm); 11378 } 11379 11380 /* 11381 * Notice a change in SVE vector size when changing EL. 11382 */ 11383 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11384 int new_el, bool el0_a64) 11385 { 11386 ARMCPU *cpu = env_archcpu(env); 11387 int old_len, new_len; 11388 bool old_a64, new_a64, sm; 11389 11390 /* Nothing to do if no SVE. */ 11391 if (!cpu_isar_feature(aa64_sve, cpu)) { 11392 return; 11393 } 11394 11395 /* Nothing to do if FP is disabled in either EL. */ 11396 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11397 return; 11398 } 11399 11400 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11401 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11402 11403 /* 11404 * Both AArch64.TakeException and AArch64.ExceptionReturn 11405 * invoke ResetSVEState when taking an exception from, or 11406 * returning to, AArch32 state when PSTATE.SM is enabled. 11407 */ 11408 sm = FIELD_EX64(env->svcr, SVCR, SM); 11409 if (old_a64 != new_a64 && sm) { 11410 arm_reset_sve_state(env); 11411 return; 11412 } 11413 11414 /* 11415 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11416 * at ELx, or not available because the EL is in AArch32 state, then 11417 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11418 * has an effective value of 0". 11419 * 11420 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11421 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11422 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11423 * we already have the correct register contents when encountering the 11424 * vq0->vq0 transition between EL0->EL1. 11425 */ 11426 old_len = new_len = 0; 11427 if (old_a64) { 11428 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11429 } 11430 if (new_a64) { 11431 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11432 } 11433 11434 /* When changing vector length, clear inaccessible state. */ 11435 if (new_len < old_len) { 11436 aarch64_sve_narrow_vq(env, new_len + 1); 11437 } 11438 } 11439 #endif 11440