xref: /openbmc/qemu/target/arm/helper.c (revision 503bb0b9)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
22 #include "qapi/qapi-commands-target.h"
23 
24 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
25 
26 #ifndef CONFIG_USER_ONLY
27 /* Cacheability and shareability attributes for a memory access */
28 typedef struct ARMCacheAttrs {
29     unsigned int attrs:8; /* as in the MAIR register encoding */
30     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
31 } ARMCacheAttrs;
32 
33 static bool get_phys_addr(CPUARMState *env, target_ulong address,
34                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
35                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
36                           target_ulong *page_size,
37                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
38 
39 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
40                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
41                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
42                                target_ulong *page_size_ptr,
43                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
44 
45 /* Security attributes for an address, as returned by v8m_security_lookup. */
46 typedef struct V8M_SAttributes {
47     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
48     bool ns;
49     bool nsc;
50     uint8_t sregion;
51     bool srvalid;
52     uint8_t iregion;
53     bool irvalid;
54 } V8M_SAttributes;
55 
56 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
57                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
58                                 V8M_SAttributes *sattrs);
59 #endif
60 
61 static void switch_mode(CPUARMState *env, int mode);
62 
63 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
64 {
65     int nregs;
66 
67     /* VFP data registers are always little-endian.  */
68     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
69     if (reg < nregs) {
70         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
71         return 8;
72     }
73     if (arm_feature(env, ARM_FEATURE_NEON)) {
74         /* Aliases for Q regs.  */
75         nregs += 16;
76         if (reg < nregs) {
77             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
78             stq_le_p(buf, q[0]);
79             stq_le_p(buf + 8, q[1]);
80             return 16;
81         }
82     }
83     switch (reg - nregs) {
84     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
85     case 1: stl_p(buf, vfp_get_fpscr(env)); return 4;
86     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
87     }
88     return 0;
89 }
90 
91 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
92 {
93     int nregs;
94 
95     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
96     if (reg < nregs) {
97         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
98         return 8;
99     }
100     if (arm_feature(env, ARM_FEATURE_NEON)) {
101         nregs += 16;
102         if (reg < nregs) {
103             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
104             q[0] = ldq_le_p(buf);
105             q[1] = ldq_le_p(buf + 8);
106             return 16;
107         }
108     }
109     switch (reg - nregs) {
110     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
111     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
112     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
113     }
114     return 0;
115 }
116 
117 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
118 {
119     switch (reg) {
120     case 0 ... 31:
121         /* 128 bit FP register */
122         {
123             uint64_t *q = aa64_vfp_qreg(env, reg);
124             stq_le_p(buf, q[0]);
125             stq_le_p(buf + 8, q[1]);
126             return 16;
127         }
128     case 32:
129         /* FPSR */
130         stl_p(buf, vfp_get_fpsr(env));
131         return 4;
132     case 33:
133         /* FPCR */
134         stl_p(buf, vfp_get_fpcr(env));
135         return 4;
136     default:
137         return 0;
138     }
139 }
140 
141 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
142 {
143     switch (reg) {
144     case 0 ... 31:
145         /* 128 bit FP register */
146         {
147             uint64_t *q = aa64_vfp_qreg(env, reg);
148             q[0] = ldq_le_p(buf);
149             q[1] = ldq_le_p(buf + 8);
150             return 16;
151         }
152     case 32:
153         /* FPSR */
154         vfp_set_fpsr(env, ldl_p(buf));
155         return 4;
156     case 33:
157         /* FPCR */
158         vfp_set_fpcr(env, ldl_p(buf));
159         return 4;
160     default:
161         return 0;
162     }
163 }
164 
165 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
166 {
167     assert(ri->fieldoffset);
168     if (cpreg_field_is_64bit(ri)) {
169         return CPREG_FIELD64(env, ri);
170     } else {
171         return CPREG_FIELD32(env, ri);
172     }
173 }
174 
175 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
176                       uint64_t value)
177 {
178     assert(ri->fieldoffset);
179     if (cpreg_field_is_64bit(ri)) {
180         CPREG_FIELD64(env, ri) = value;
181     } else {
182         CPREG_FIELD32(env, ri) = value;
183     }
184 }
185 
186 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
187 {
188     return (char *)env + ri->fieldoffset;
189 }
190 
191 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
192 {
193     /* Raw read of a coprocessor register (as needed for migration, etc). */
194     if (ri->type & ARM_CP_CONST) {
195         return ri->resetvalue;
196     } else if (ri->raw_readfn) {
197         return ri->raw_readfn(env, ri);
198     } else if (ri->readfn) {
199         return ri->readfn(env, ri);
200     } else {
201         return raw_read(env, ri);
202     }
203 }
204 
205 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
206                              uint64_t v)
207 {
208     /* Raw write of a coprocessor register (as needed for migration, etc).
209      * Note that constant registers are treated as write-ignored; the
210      * caller should check for success by whether a readback gives the
211      * value written.
212      */
213     if (ri->type & ARM_CP_CONST) {
214         return;
215     } else if (ri->raw_writefn) {
216         ri->raw_writefn(env, ri, v);
217     } else if (ri->writefn) {
218         ri->writefn(env, ri, v);
219     } else {
220         raw_write(env, ri, v);
221     }
222 }
223 
224 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
225 {
226     ARMCPU *cpu = arm_env_get_cpu(env);
227     const ARMCPRegInfo *ri;
228     uint32_t key;
229 
230     key = cpu->dyn_xml.cpregs_keys[reg];
231     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
232     if (ri) {
233         if (cpreg_field_is_64bit(ri)) {
234             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
235         } else {
236             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
237         }
238     }
239     return 0;
240 }
241 
242 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
243 {
244     return 0;
245 }
246 
247 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
248 {
249    /* Return true if the regdef would cause an assertion if you called
250     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
251     * program bug for it not to have the NO_RAW flag).
252     * NB that returning false here doesn't necessarily mean that calling
253     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
254     * read/write access functions which are safe for raw use" from "has
255     * read/write access functions which have side effects but has forgotten
256     * to provide raw access functions".
257     * The tests here line up with the conditions in read/write_raw_cp_reg()
258     * and assertions in raw_read()/raw_write().
259     */
260     if ((ri->type & ARM_CP_CONST) ||
261         ri->fieldoffset ||
262         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
263         return false;
264     }
265     return true;
266 }
267 
268 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
269 {
270     /* Write the coprocessor state from cpu->env to the (index,value) list. */
271     int i;
272     bool ok = true;
273 
274     for (i = 0; i < cpu->cpreg_array_len; i++) {
275         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
276         const ARMCPRegInfo *ri;
277         uint64_t newval;
278 
279         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
280         if (!ri) {
281             ok = false;
282             continue;
283         }
284         if (ri->type & ARM_CP_NO_RAW) {
285             continue;
286         }
287 
288         newval = read_raw_cp_reg(&cpu->env, ri);
289         if (kvm_sync) {
290             /*
291              * Only sync if the previous list->cpustate sync succeeded.
292              * Rather than tracking the success/failure state for every
293              * item in the list, we just recheck "does the raw write we must
294              * have made in write_list_to_cpustate() read back OK" here.
295              */
296             uint64_t oldval = cpu->cpreg_values[i];
297 
298             if (oldval == newval) {
299                 continue;
300             }
301 
302             write_raw_cp_reg(&cpu->env, ri, oldval);
303             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
304                 continue;
305             }
306 
307             write_raw_cp_reg(&cpu->env, ri, newval);
308         }
309         cpu->cpreg_values[i] = newval;
310     }
311     return ok;
312 }
313 
314 bool write_list_to_cpustate(ARMCPU *cpu)
315 {
316     int i;
317     bool ok = true;
318 
319     for (i = 0; i < cpu->cpreg_array_len; i++) {
320         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
321         uint64_t v = cpu->cpreg_values[i];
322         const ARMCPRegInfo *ri;
323 
324         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
325         if (!ri) {
326             ok = false;
327             continue;
328         }
329         if (ri->type & ARM_CP_NO_RAW) {
330             continue;
331         }
332         /* Write value and confirm it reads back as written
333          * (to catch read-only registers and partially read-only
334          * registers where the incoming migration value doesn't match)
335          */
336         write_raw_cp_reg(&cpu->env, ri, v);
337         if (read_raw_cp_reg(&cpu->env, ri) != v) {
338             ok = false;
339         }
340     }
341     return ok;
342 }
343 
344 static void add_cpreg_to_list(gpointer key, gpointer opaque)
345 {
346     ARMCPU *cpu = opaque;
347     uint64_t regidx;
348     const ARMCPRegInfo *ri;
349 
350     regidx = *(uint32_t *)key;
351     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
352 
353     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
354         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
355         /* The value array need not be initialized at this point */
356         cpu->cpreg_array_len++;
357     }
358 }
359 
360 static void count_cpreg(gpointer key, gpointer opaque)
361 {
362     ARMCPU *cpu = opaque;
363     uint64_t regidx;
364     const ARMCPRegInfo *ri;
365 
366     regidx = *(uint32_t *)key;
367     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
368 
369     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
370         cpu->cpreg_array_len++;
371     }
372 }
373 
374 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
375 {
376     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
377     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
378 
379     if (aidx > bidx) {
380         return 1;
381     }
382     if (aidx < bidx) {
383         return -1;
384     }
385     return 0;
386 }
387 
388 void init_cpreg_list(ARMCPU *cpu)
389 {
390     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
391      * Note that we require cpreg_tuples[] to be sorted by key ID.
392      */
393     GList *keys;
394     int arraylen;
395 
396     keys = g_hash_table_get_keys(cpu->cp_regs);
397     keys = g_list_sort(keys, cpreg_key_compare);
398 
399     cpu->cpreg_array_len = 0;
400 
401     g_list_foreach(keys, count_cpreg, cpu);
402 
403     arraylen = cpu->cpreg_array_len;
404     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
405     cpu->cpreg_values = g_new(uint64_t, arraylen);
406     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
407     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
408     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
409     cpu->cpreg_array_len = 0;
410 
411     g_list_foreach(keys, add_cpreg_to_list, cpu);
412 
413     assert(cpu->cpreg_array_len == arraylen);
414 
415     g_list_free(keys);
416 }
417 
418 /*
419  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
420  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
421  *
422  * access_el3_aa32ns: Used to check AArch32 register views.
423  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
424  */
425 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
426                                         const ARMCPRegInfo *ri,
427                                         bool isread)
428 {
429     bool secure = arm_is_secure_below_el3(env);
430 
431     assert(!arm_el_is_aa64(env, 3));
432     if (secure) {
433         return CP_ACCESS_TRAP_UNCATEGORIZED;
434     }
435     return CP_ACCESS_OK;
436 }
437 
438 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
439                                                 const ARMCPRegInfo *ri,
440                                                 bool isread)
441 {
442     if (!arm_el_is_aa64(env, 3)) {
443         return access_el3_aa32ns(env, ri, isread);
444     }
445     return CP_ACCESS_OK;
446 }
447 
448 /* Some secure-only AArch32 registers trap to EL3 if used from
449  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
450  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
451  * We assume that the .access field is set to PL1_RW.
452  */
453 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
454                                             const ARMCPRegInfo *ri,
455                                             bool isread)
456 {
457     if (arm_current_el(env) == 3) {
458         return CP_ACCESS_OK;
459     }
460     if (arm_is_secure_below_el3(env)) {
461         return CP_ACCESS_TRAP_EL3;
462     }
463     /* This will be EL1 NS and EL2 NS, which just UNDEF */
464     return CP_ACCESS_TRAP_UNCATEGORIZED;
465 }
466 
467 /* Check for traps to "powerdown debug" registers, which are controlled
468  * by MDCR.TDOSA
469  */
470 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
471                                    bool isread)
472 {
473     int el = arm_current_el(env);
474     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
475         (env->cp15.mdcr_el2 & MDCR_TDE) ||
476         (arm_hcr_el2_eff(env) & HCR_TGE);
477 
478     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
479         return CP_ACCESS_TRAP_EL2;
480     }
481     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
482         return CP_ACCESS_TRAP_EL3;
483     }
484     return CP_ACCESS_OK;
485 }
486 
487 /* Check for traps to "debug ROM" registers, which are controlled
488  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
489  */
490 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
491                                   bool isread)
492 {
493     int el = arm_current_el(env);
494     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
495         (env->cp15.mdcr_el2 & MDCR_TDE) ||
496         (arm_hcr_el2_eff(env) & HCR_TGE);
497 
498     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
499         return CP_ACCESS_TRAP_EL2;
500     }
501     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
502         return CP_ACCESS_TRAP_EL3;
503     }
504     return CP_ACCESS_OK;
505 }
506 
507 /* Check for traps to general debug registers, which are controlled
508  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
509  */
510 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
511                                   bool isread)
512 {
513     int el = arm_current_el(env);
514     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
515         (env->cp15.mdcr_el2 & MDCR_TDE) ||
516         (arm_hcr_el2_eff(env) & HCR_TGE);
517 
518     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
519         return CP_ACCESS_TRAP_EL2;
520     }
521     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
522         return CP_ACCESS_TRAP_EL3;
523     }
524     return CP_ACCESS_OK;
525 }
526 
527 /* Check for traps to performance monitor registers, which are controlled
528  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
529  */
530 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
531                                  bool isread)
532 {
533     int el = arm_current_el(env);
534 
535     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
536         && !arm_is_secure_below_el3(env)) {
537         return CP_ACCESS_TRAP_EL2;
538     }
539     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
540         return CP_ACCESS_TRAP_EL3;
541     }
542     return CP_ACCESS_OK;
543 }
544 
545 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
546 {
547     ARMCPU *cpu = arm_env_get_cpu(env);
548 
549     raw_write(env, ri, value);
550     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
551 }
552 
553 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
554 {
555     ARMCPU *cpu = arm_env_get_cpu(env);
556 
557     if (raw_read(env, ri) != value) {
558         /* Unlike real hardware the qemu TLB uses virtual addresses,
559          * not modified virtual addresses, so this causes a TLB flush.
560          */
561         tlb_flush(CPU(cpu));
562         raw_write(env, ri, value);
563     }
564 }
565 
566 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
567                              uint64_t value)
568 {
569     ARMCPU *cpu = arm_env_get_cpu(env);
570 
571     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
572         && !extended_addresses_enabled(env)) {
573         /* For VMSA (when not using the LPAE long descriptor page table
574          * format) this register includes the ASID, so do a TLB flush.
575          * For PMSA it is purely a process ID and no action is needed.
576          */
577         tlb_flush(CPU(cpu));
578     }
579     raw_write(env, ri, value);
580 }
581 
582 /* IS variants of TLB operations must affect all cores */
583 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
584                              uint64_t value)
585 {
586     CPUState *cs = ENV_GET_CPU(env);
587 
588     tlb_flush_all_cpus_synced(cs);
589 }
590 
591 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                              uint64_t value)
593 {
594     CPUState *cs = ENV_GET_CPU(env);
595 
596     tlb_flush_all_cpus_synced(cs);
597 }
598 
599 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600                              uint64_t value)
601 {
602     CPUState *cs = ENV_GET_CPU(env);
603 
604     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
605 }
606 
607 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
608                              uint64_t value)
609 {
610     CPUState *cs = ENV_GET_CPU(env);
611 
612     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
613 }
614 
615 /*
616  * Non-IS variants of TLB operations are upgraded to
617  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
618  * force broadcast of these operations.
619  */
620 static bool tlb_force_broadcast(CPUARMState *env)
621 {
622     return (env->cp15.hcr_el2 & HCR_FB) &&
623         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
624 }
625 
626 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
627                           uint64_t value)
628 {
629     /* Invalidate all (TLBIALL) */
630     ARMCPU *cpu = arm_env_get_cpu(env);
631 
632     if (tlb_force_broadcast(env)) {
633         tlbiall_is_write(env, NULL, value);
634         return;
635     }
636 
637     tlb_flush(CPU(cpu));
638 }
639 
640 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
641                           uint64_t value)
642 {
643     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
644     ARMCPU *cpu = arm_env_get_cpu(env);
645 
646     if (tlb_force_broadcast(env)) {
647         tlbimva_is_write(env, NULL, value);
648         return;
649     }
650 
651     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
652 }
653 
654 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
655                            uint64_t value)
656 {
657     /* Invalidate by ASID (TLBIASID) */
658     ARMCPU *cpu = arm_env_get_cpu(env);
659 
660     if (tlb_force_broadcast(env)) {
661         tlbiasid_is_write(env, NULL, value);
662         return;
663     }
664 
665     tlb_flush(CPU(cpu));
666 }
667 
668 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
669                            uint64_t value)
670 {
671     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
672     ARMCPU *cpu = arm_env_get_cpu(env);
673 
674     if (tlb_force_broadcast(env)) {
675         tlbimvaa_is_write(env, NULL, value);
676         return;
677     }
678 
679     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
680 }
681 
682 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
683                                uint64_t value)
684 {
685     CPUState *cs = ENV_GET_CPU(env);
686 
687     tlb_flush_by_mmuidx(cs,
688                         ARMMMUIdxBit_S12NSE1 |
689                         ARMMMUIdxBit_S12NSE0 |
690                         ARMMMUIdxBit_S2NS);
691 }
692 
693 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
694                                   uint64_t value)
695 {
696     CPUState *cs = ENV_GET_CPU(env);
697 
698     tlb_flush_by_mmuidx_all_cpus_synced(cs,
699                                         ARMMMUIdxBit_S12NSE1 |
700                                         ARMMMUIdxBit_S12NSE0 |
701                                         ARMMMUIdxBit_S2NS);
702 }
703 
704 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
705                             uint64_t value)
706 {
707     /* Invalidate by IPA. This has to invalidate any structures that
708      * contain only stage 2 translation information, but does not need
709      * to apply to structures that contain combined stage 1 and stage 2
710      * translation information.
711      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
712      */
713     CPUState *cs = ENV_GET_CPU(env);
714     uint64_t pageaddr;
715 
716     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
717         return;
718     }
719 
720     pageaddr = sextract64(value << 12, 0, 40);
721 
722     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
723 }
724 
725 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
726                                uint64_t value)
727 {
728     CPUState *cs = ENV_GET_CPU(env);
729     uint64_t pageaddr;
730 
731     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
732         return;
733     }
734 
735     pageaddr = sextract64(value << 12, 0, 40);
736 
737     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
738                                              ARMMMUIdxBit_S2NS);
739 }
740 
741 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
742                               uint64_t value)
743 {
744     CPUState *cs = ENV_GET_CPU(env);
745 
746     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
747 }
748 
749 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
750                                  uint64_t value)
751 {
752     CPUState *cs = ENV_GET_CPU(env);
753 
754     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
755 }
756 
757 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
758                               uint64_t value)
759 {
760     CPUState *cs = ENV_GET_CPU(env);
761     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
762 
763     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
764 }
765 
766 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
767                                  uint64_t value)
768 {
769     CPUState *cs = ENV_GET_CPU(env);
770     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
771 
772     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
773                                              ARMMMUIdxBit_S1E2);
774 }
775 
776 static const ARMCPRegInfo cp_reginfo[] = {
777     /* Define the secure and non-secure FCSE identifier CP registers
778      * separately because there is no secure bank in V8 (no _EL3).  This allows
779      * the secure register to be properly reset and migrated. There is also no
780      * v8 EL1 version of the register so the non-secure instance stands alone.
781      */
782     { .name = "FCSEIDR",
783       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
784       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
785       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
786       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
787     { .name = "FCSEIDR_S",
788       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
789       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
790       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
791       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
792     /* Define the secure and non-secure context identifier CP registers
793      * separately because there is no secure bank in V8 (no _EL3).  This allows
794      * the secure register to be properly reset and migrated.  In the
795      * non-secure case, the 32-bit register will have reset and migration
796      * disabled during registration as it is handled by the 64-bit instance.
797      */
798     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
799       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
800       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
801       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
802       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
803     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
804       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
805       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
806       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
807       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
808     REGINFO_SENTINEL
809 };
810 
811 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
812     /* NB: Some of these registers exist in v8 but with more precise
813      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
814      */
815     /* MMU Domain access control / MPU write buffer control */
816     { .name = "DACR",
817       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
818       .access = PL1_RW, .resetvalue = 0,
819       .writefn = dacr_write, .raw_writefn = raw_write,
820       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
821                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
822     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
823      * For v6 and v5, these mappings are overly broad.
824      */
825     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
826       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
827     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
828       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
829     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
830       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
831     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
832       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
833     /* Cache maintenance ops; some of this space may be overridden later. */
834     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
835       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
836       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
837     REGINFO_SENTINEL
838 };
839 
840 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
841     /* Not all pre-v6 cores implemented this WFI, so this is slightly
842      * over-broad.
843      */
844     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
845       .access = PL1_W, .type = ARM_CP_WFI },
846     REGINFO_SENTINEL
847 };
848 
849 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
850     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
851      * is UNPREDICTABLE; we choose to NOP as most implementations do).
852      */
853     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
854       .access = PL1_W, .type = ARM_CP_WFI },
855     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
856      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
857      * OMAPCP will override this space.
858      */
859     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
860       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
861       .resetvalue = 0 },
862     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
863       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
864       .resetvalue = 0 },
865     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
866     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
867       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
868       .resetvalue = 0 },
869     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
870      * implementing it as RAZ means the "debug architecture version" bits
871      * will read as a reserved value, which should cause Linux to not try
872      * to use the debug hardware.
873      */
874     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
875       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
876     /* MMU TLB control. Note that the wildcarding means we cover not just
877      * the unified TLB ops but also the dside/iside/inner-shareable variants.
878      */
879     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
880       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
881       .type = ARM_CP_NO_RAW },
882     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
883       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
884       .type = ARM_CP_NO_RAW },
885     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
886       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
887       .type = ARM_CP_NO_RAW },
888     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
889       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
890       .type = ARM_CP_NO_RAW },
891     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
892       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
893     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
894       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
895     REGINFO_SENTINEL
896 };
897 
898 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
899                         uint64_t value)
900 {
901     uint32_t mask = 0;
902 
903     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
904     if (!arm_feature(env, ARM_FEATURE_V8)) {
905         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
906          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
907          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
908          */
909         if (arm_feature(env, ARM_FEATURE_VFP)) {
910             /* VFP coprocessor: cp10 & cp11 [23:20] */
911             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
912 
913             if (!arm_feature(env, ARM_FEATURE_NEON)) {
914                 /* ASEDIS [31] bit is RAO/WI */
915                 value |= (1 << 31);
916             }
917 
918             /* VFPv3 and upwards with NEON implement 32 double precision
919              * registers (D0-D31).
920              */
921             if (!arm_feature(env, ARM_FEATURE_NEON) ||
922                     !arm_feature(env, ARM_FEATURE_VFP3)) {
923                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
924                 value |= (1 << 30);
925             }
926         }
927         value &= mask;
928     }
929     env->cp15.cpacr_el1 = value;
930 }
931 
932 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
933 {
934     /* Call cpacr_write() so that we reset with the correct RAO bits set
935      * for our CPU features.
936      */
937     cpacr_write(env, ri, 0);
938 }
939 
940 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
941                                    bool isread)
942 {
943     if (arm_feature(env, ARM_FEATURE_V8)) {
944         /* Check if CPACR accesses are to be trapped to EL2 */
945         if (arm_current_el(env) == 1 &&
946             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
947             return CP_ACCESS_TRAP_EL2;
948         /* Check if CPACR accesses are to be trapped to EL3 */
949         } else if (arm_current_el(env) < 3 &&
950                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
951             return CP_ACCESS_TRAP_EL3;
952         }
953     }
954 
955     return CP_ACCESS_OK;
956 }
957 
958 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
959                                   bool isread)
960 {
961     /* Check if CPTR accesses are set to trap to EL3 */
962     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
963         return CP_ACCESS_TRAP_EL3;
964     }
965 
966     return CP_ACCESS_OK;
967 }
968 
969 static const ARMCPRegInfo v6_cp_reginfo[] = {
970     /* prefetch by MVA in v6, NOP in v7 */
971     { .name = "MVA_prefetch",
972       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
973       .access = PL1_W, .type = ARM_CP_NOP },
974     /* We need to break the TB after ISB to execute self-modifying code
975      * correctly and also to take any pending interrupts immediately.
976      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
977      */
978     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
979       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
980     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
981       .access = PL0_W, .type = ARM_CP_NOP },
982     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
983       .access = PL0_W, .type = ARM_CP_NOP },
984     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
985       .access = PL1_RW,
986       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
987                              offsetof(CPUARMState, cp15.ifar_ns) },
988       .resetvalue = 0, },
989     /* Watchpoint Fault Address Register : should actually only be present
990      * for 1136, 1176, 11MPCore.
991      */
992     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
993       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
994     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
995       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
996       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
997       .resetfn = cpacr_reset, .writefn = cpacr_write },
998     REGINFO_SENTINEL
999 };
1000 
1001 /* Definitions for the PMU registers */
1002 #define PMCRN_MASK  0xf800
1003 #define PMCRN_SHIFT 11
1004 #define PMCRLC  0x40
1005 #define PMCRDP  0x10
1006 #define PMCRD   0x8
1007 #define PMCRC   0x4
1008 #define PMCRP   0x2
1009 #define PMCRE   0x1
1010 
1011 #define PMXEVTYPER_P          0x80000000
1012 #define PMXEVTYPER_U          0x40000000
1013 #define PMXEVTYPER_NSK        0x20000000
1014 #define PMXEVTYPER_NSU        0x10000000
1015 #define PMXEVTYPER_NSH        0x08000000
1016 #define PMXEVTYPER_M          0x04000000
1017 #define PMXEVTYPER_MT         0x02000000
1018 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1019 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1020                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1021                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1022                                PMXEVTYPER_EVTCOUNT)
1023 
1024 #define PMCCFILTR             0xf8000000
1025 #define PMCCFILTR_M           PMXEVTYPER_M
1026 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1027 
1028 static inline uint32_t pmu_num_counters(CPUARMState *env)
1029 {
1030   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1031 }
1032 
1033 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1034 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1035 {
1036   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1037 }
1038 
1039 typedef struct pm_event {
1040     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1041     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1042     bool (*supported)(CPUARMState *);
1043     /*
1044      * Retrieve the current count of the underlying event. The programmed
1045      * counters hold a difference from the return value from this function
1046      */
1047     uint64_t (*get_count)(CPUARMState *);
1048     /*
1049      * Return how many nanoseconds it will take (at a minimum) for count events
1050      * to occur. A negative value indicates the counter will never overflow, or
1051      * that the counter has otherwise arranged for the overflow bit to be set
1052      * and the PMU interrupt to be raised on overflow.
1053      */
1054     int64_t (*ns_per_count)(uint64_t);
1055 } pm_event;
1056 
1057 static bool event_always_supported(CPUARMState *env)
1058 {
1059     return true;
1060 }
1061 
1062 static uint64_t swinc_get_count(CPUARMState *env)
1063 {
1064     /*
1065      * SW_INCR events are written directly to the pmevcntr's by writes to
1066      * PMSWINC, so there is no underlying count maintained by the PMU itself
1067      */
1068     return 0;
1069 }
1070 
1071 static int64_t swinc_ns_per(uint64_t ignored)
1072 {
1073     return -1;
1074 }
1075 
1076 /*
1077  * Return the underlying cycle count for the PMU cycle counters. If we're in
1078  * usermode, simply return 0.
1079  */
1080 static uint64_t cycles_get_count(CPUARMState *env)
1081 {
1082 #ifndef CONFIG_USER_ONLY
1083     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1084                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1085 #else
1086     return cpu_get_host_ticks();
1087 #endif
1088 }
1089 
1090 #ifndef CONFIG_USER_ONLY
1091 static int64_t cycles_ns_per(uint64_t cycles)
1092 {
1093     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1094 }
1095 
1096 static bool instructions_supported(CPUARMState *env)
1097 {
1098     return use_icount == 1 /* Precise instruction counting */;
1099 }
1100 
1101 static uint64_t instructions_get_count(CPUARMState *env)
1102 {
1103     return (uint64_t)cpu_get_icount_raw();
1104 }
1105 
1106 static int64_t instructions_ns_per(uint64_t icount)
1107 {
1108     return cpu_icount_to_ns((int64_t)icount);
1109 }
1110 #endif
1111 
1112 static const pm_event pm_events[] = {
1113     { .number = 0x000, /* SW_INCR */
1114       .supported = event_always_supported,
1115       .get_count = swinc_get_count,
1116       .ns_per_count = swinc_ns_per,
1117     },
1118 #ifndef CONFIG_USER_ONLY
1119     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1120       .supported = instructions_supported,
1121       .get_count = instructions_get_count,
1122       .ns_per_count = instructions_ns_per,
1123     },
1124     { .number = 0x011, /* CPU_CYCLES, Cycle */
1125       .supported = event_always_supported,
1126       .get_count = cycles_get_count,
1127       .ns_per_count = cycles_ns_per,
1128     }
1129 #endif
1130 };
1131 
1132 /*
1133  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1134  * events (i.e. the statistical profiling extension), this implementation
1135  * should first be updated to something sparse instead of the current
1136  * supported_event_map[] array.
1137  */
1138 #define MAX_EVENT_ID 0x11
1139 #define UNSUPPORTED_EVENT UINT16_MAX
1140 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1141 
1142 /*
1143  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1144  * of ARM event numbers to indices in our pm_events array.
1145  *
1146  * Note: Events in the 0x40XX range are not currently supported.
1147  */
1148 void pmu_init(ARMCPU *cpu)
1149 {
1150     unsigned int i;
1151 
1152     /*
1153      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1154      * events to them
1155      */
1156     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1157         supported_event_map[i] = UNSUPPORTED_EVENT;
1158     }
1159     cpu->pmceid0 = 0;
1160     cpu->pmceid1 = 0;
1161 
1162     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1163         const pm_event *cnt = &pm_events[i];
1164         assert(cnt->number <= MAX_EVENT_ID);
1165         /* We do not currently support events in the 0x40xx range */
1166         assert(cnt->number <= 0x3f);
1167 
1168         if (cnt->supported(&cpu->env)) {
1169             supported_event_map[cnt->number] = i;
1170             uint64_t event_mask = 1 << (cnt->number & 0x1f);
1171             if (cnt->number & 0x20) {
1172                 cpu->pmceid1 |= event_mask;
1173             } else {
1174                 cpu->pmceid0 |= event_mask;
1175             }
1176         }
1177     }
1178 }
1179 
1180 /*
1181  * Check at runtime whether a PMU event is supported for the current machine
1182  */
1183 static bool event_supported(uint16_t number)
1184 {
1185     if (number > MAX_EVENT_ID) {
1186         return false;
1187     }
1188     return supported_event_map[number] != UNSUPPORTED_EVENT;
1189 }
1190 
1191 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1192                                    bool isread)
1193 {
1194     /* Performance monitor registers user accessibility is controlled
1195      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1196      * trapping to EL2 or EL3 for other accesses.
1197      */
1198     int el = arm_current_el(env);
1199 
1200     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1201         return CP_ACCESS_TRAP;
1202     }
1203     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1204         && !arm_is_secure_below_el3(env)) {
1205         return CP_ACCESS_TRAP_EL2;
1206     }
1207     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1208         return CP_ACCESS_TRAP_EL3;
1209     }
1210 
1211     return CP_ACCESS_OK;
1212 }
1213 
1214 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1215                                            const ARMCPRegInfo *ri,
1216                                            bool isread)
1217 {
1218     /* ER: event counter read trap control */
1219     if (arm_feature(env, ARM_FEATURE_V8)
1220         && arm_current_el(env) == 0
1221         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1222         && isread) {
1223         return CP_ACCESS_OK;
1224     }
1225 
1226     return pmreg_access(env, ri, isread);
1227 }
1228 
1229 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1230                                          const ARMCPRegInfo *ri,
1231                                          bool isread)
1232 {
1233     /* SW: software increment write trap control */
1234     if (arm_feature(env, ARM_FEATURE_V8)
1235         && arm_current_el(env) == 0
1236         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1237         && !isread) {
1238         return CP_ACCESS_OK;
1239     }
1240 
1241     return pmreg_access(env, ri, isread);
1242 }
1243 
1244 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1245                                         const ARMCPRegInfo *ri,
1246                                         bool isread)
1247 {
1248     /* ER: event counter read trap control */
1249     if (arm_feature(env, ARM_FEATURE_V8)
1250         && arm_current_el(env) == 0
1251         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1252         return CP_ACCESS_OK;
1253     }
1254 
1255     return pmreg_access(env, ri, isread);
1256 }
1257 
1258 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1259                                          const ARMCPRegInfo *ri,
1260                                          bool isread)
1261 {
1262     /* CR: cycle counter read trap control */
1263     if (arm_feature(env, ARM_FEATURE_V8)
1264         && arm_current_el(env) == 0
1265         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1266         && isread) {
1267         return CP_ACCESS_OK;
1268     }
1269 
1270     return pmreg_access(env, ri, isread);
1271 }
1272 
1273 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1274  * the current EL, security state, and register configuration.
1275  */
1276 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1277 {
1278     uint64_t filter;
1279     bool e, p, u, nsk, nsu, nsh, m;
1280     bool enabled, prohibited, filtered;
1281     bool secure = arm_is_secure(env);
1282     int el = arm_current_el(env);
1283     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1284 
1285     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1286             (counter < hpmn || counter == 31)) {
1287         e = env->cp15.c9_pmcr & PMCRE;
1288     } else {
1289         e = env->cp15.mdcr_el2 & MDCR_HPME;
1290     }
1291     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1292 
1293     if (!secure) {
1294         if (el == 2 && (counter < hpmn || counter == 31)) {
1295             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1296         } else {
1297             prohibited = false;
1298         }
1299     } else {
1300         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1301            (env->cp15.mdcr_el3 & MDCR_SPME);
1302     }
1303 
1304     if (prohibited && counter == 31) {
1305         prohibited = env->cp15.c9_pmcr & PMCRDP;
1306     }
1307 
1308     if (counter == 31) {
1309         filter = env->cp15.pmccfiltr_el0;
1310     } else {
1311         filter = env->cp15.c14_pmevtyper[counter];
1312     }
1313 
1314     p   = filter & PMXEVTYPER_P;
1315     u   = filter & PMXEVTYPER_U;
1316     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1317     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1318     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1319     m   = arm_el_is_aa64(env, 1) &&
1320               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1321 
1322     if (el == 0) {
1323         filtered = secure ? u : u != nsu;
1324     } else if (el == 1) {
1325         filtered = secure ? p : p != nsk;
1326     } else if (el == 2) {
1327         filtered = !nsh;
1328     } else { /* EL3 */
1329         filtered = m != p;
1330     }
1331 
1332     if (counter != 31) {
1333         /*
1334          * If not checking PMCCNTR, ensure the counter is setup to an event we
1335          * support
1336          */
1337         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1338         if (!event_supported(event)) {
1339             return false;
1340         }
1341     }
1342 
1343     return enabled && !prohibited && !filtered;
1344 }
1345 
1346 static void pmu_update_irq(CPUARMState *env)
1347 {
1348     ARMCPU *cpu = arm_env_get_cpu(env);
1349     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1350             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1351 }
1352 
1353 /*
1354  * Ensure c15_ccnt is the guest-visible count so that operations such as
1355  * enabling/disabling the counter or filtering, modifying the count itself,
1356  * etc. can be done logically. This is essentially a no-op if the counter is
1357  * not enabled at the time of the call.
1358  */
1359 void pmccntr_op_start(CPUARMState *env)
1360 {
1361     uint64_t cycles = cycles_get_count(env);
1362 
1363     if (pmu_counter_enabled(env, 31)) {
1364         uint64_t eff_cycles = cycles;
1365         if (env->cp15.c9_pmcr & PMCRD) {
1366             /* Increment once every 64 processor clock cycles */
1367             eff_cycles /= 64;
1368         }
1369 
1370         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1371 
1372         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1373                                  1ull << 63 : 1ull << 31;
1374         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1375             env->cp15.c9_pmovsr |= (1 << 31);
1376             pmu_update_irq(env);
1377         }
1378 
1379         env->cp15.c15_ccnt = new_pmccntr;
1380     }
1381     env->cp15.c15_ccnt_delta = cycles;
1382 }
1383 
1384 /*
1385  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1386  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1387  * pmccntr_op_start.
1388  */
1389 void pmccntr_op_finish(CPUARMState *env)
1390 {
1391     if (pmu_counter_enabled(env, 31)) {
1392 #ifndef CONFIG_USER_ONLY
1393         /* Calculate when the counter will next overflow */
1394         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1395         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1396             remaining_cycles = (uint32_t)remaining_cycles;
1397         }
1398         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1399 
1400         if (overflow_in > 0) {
1401             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1402                 overflow_in;
1403             ARMCPU *cpu = arm_env_get_cpu(env);
1404             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1405         }
1406 #endif
1407 
1408         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1409         if (env->cp15.c9_pmcr & PMCRD) {
1410             /* Increment once every 64 processor clock cycles */
1411             prev_cycles /= 64;
1412         }
1413         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1414     }
1415 }
1416 
1417 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1418 {
1419 
1420     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1421     uint64_t count = 0;
1422     if (event_supported(event)) {
1423         uint16_t event_idx = supported_event_map[event];
1424         count = pm_events[event_idx].get_count(env);
1425     }
1426 
1427     if (pmu_counter_enabled(env, counter)) {
1428         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1429 
1430         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1431             env->cp15.c9_pmovsr |= (1 << counter);
1432             pmu_update_irq(env);
1433         }
1434         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1435     }
1436     env->cp15.c14_pmevcntr_delta[counter] = count;
1437 }
1438 
1439 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1440 {
1441     if (pmu_counter_enabled(env, counter)) {
1442 #ifndef CONFIG_USER_ONLY
1443         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1444         uint16_t event_idx = supported_event_map[event];
1445         uint64_t delta = UINT32_MAX -
1446             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1447         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1448 
1449         if (overflow_in > 0) {
1450             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1451                 overflow_in;
1452             ARMCPU *cpu = arm_env_get_cpu(env);
1453             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1454         }
1455 #endif
1456 
1457         env->cp15.c14_pmevcntr_delta[counter] -=
1458             env->cp15.c14_pmevcntr[counter];
1459     }
1460 }
1461 
1462 void pmu_op_start(CPUARMState *env)
1463 {
1464     unsigned int i;
1465     pmccntr_op_start(env);
1466     for (i = 0; i < pmu_num_counters(env); i++) {
1467         pmevcntr_op_start(env, i);
1468     }
1469 }
1470 
1471 void pmu_op_finish(CPUARMState *env)
1472 {
1473     unsigned int i;
1474     pmccntr_op_finish(env);
1475     for (i = 0; i < pmu_num_counters(env); i++) {
1476         pmevcntr_op_finish(env, i);
1477     }
1478 }
1479 
1480 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1481 {
1482     pmu_op_start(&cpu->env);
1483 }
1484 
1485 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1486 {
1487     pmu_op_finish(&cpu->env);
1488 }
1489 
1490 void arm_pmu_timer_cb(void *opaque)
1491 {
1492     ARMCPU *cpu = opaque;
1493 
1494     /*
1495      * Update all the counter values based on the current underlying counts,
1496      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1497      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1498      * counter may expire.
1499      */
1500     pmu_op_start(&cpu->env);
1501     pmu_op_finish(&cpu->env);
1502 }
1503 
1504 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1505                        uint64_t value)
1506 {
1507     pmu_op_start(env);
1508 
1509     if (value & PMCRC) {
1510         /* The counter has been reset */
1511         env->cp15.c15_ccnt = 0;
1512     }
1513 
1514     if (value & PMCRP) {
1515         unsigned int i;
1516         for (i = 0; i < pmu_num_counters(env); i++) {
1517             env->cp15.c14_pmevcntr[i] = 0;
1518         }
1519     }
1520 
1521     /* only the DP, X, D and E bits are writable */
1522     env->cp15.c9_pmcr &= ~0x39;
1523     env->cp15.c9_pmcr |= (value & 0x39);
1524 
1525     pmu_op_finish(env);
1526 }
1527 
1528 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1529                           uint64_t value)
1530 {
1531     unsigned int i;
1532     for (i = 0; i < pmu_num_counters(env); i++) {
1533         /* Increment a counter's count iff: */
1534         if ((value & (1 << i)) && /* counter's bit is set */
1535                 /* counter is enabled and not filtered */
1536                 pmu_counter_enabled(env, i) &&
1537                 /* counter is SW_INCR */
1538                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1539             pmevcntr_op_start(env, i);
1540 
1541             /*
1542              * Detect if this write causes an overflow since we can't predict
1543              * PMSWINC overflows like we can for other events
1544              */
1545             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1546 
1547             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1548                 env->cp15.c9_pmovsr |= (1 << i);
1549                 pmu_update_irq(env);
1550             }
1551 
1552             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1553 
1554             pmevcntr_op_finish(env, i);
1555         }
1556     }
1557 }
1558 
1559 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1560 {
1561     uint64_t ret;
1562     pmccntr_op_start(env);
1563     ret = env->cp15.c15_ccnt;
1564     pmccntr_op_finish(env);
1565     return ret;
1566 }
1567 
1568 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1569                          uint64_t value)
1570 {
1571     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1572      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1573      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1574      * accessed.
1575      */
1576     env->cp15.c9_pmselr = value & 0x1f;
1577 }
1578 
1579 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1580                         uint64_t value)
1581 {
1582     pmccntr_op_start(env);
1583     env->cp15.c15_ccnt = value;
1584     pmccntr_op_finish(env);
1585 }
1586 
1587 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1588                             uint64_t value)
1589 {
1590     uint64_t cur_val = pmccntr_read(env, NULL);
1591 
1592     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1593 }
1594 
1595 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596                             uint64_t value)
1597 {
1598     pmccntr_op_start(env);
1599     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1600     pmccntr_op_finish(env);
1601 }
1602 
1603 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1604                             uint64_t value)
1605 {
1606     pmccntr_op_start(env);
1607     /* M is not accessible from AArch32 */
1608     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1609         (value & PMCCFILTR);
1610     pmccntr_op_finish(env);
1611 }
1612 
1613 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1614 {
1615     /* M is not visible in AArch32 */
1616     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1617 }
1618 
1619 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1620                             uint64_t value)
1621 {
1622     value &= pmu_counter_mask(env);
1623     env->cp15.c9_pmcnten |= value;
1624 }
1625 
1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627                              uint64_t value)
1628 {
1629     value &= pmu_counter_mask(env);
1630     env->cp15.c9_pmcnten &= ~value;
1631 }
1632 
1633 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1634                          uint64_t value)
1635 {
1636     value &= pmu_counter_mask(env);
1637     env->cp15.c9_pmovsr &= ~value;
1638     pmu_update_irq(env);
1639 }
1640 
1641 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1642                          uint64_t value)
1643 {
1644     value &= pmu_counter_mask(env);
1645     env->cp15.c9_pmovsr |= value;
1646     pmu_update_irq(env);
1647 }
1648 
1649 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1650                              uint64_t value, const uint8_t counter)
1651 {
1652     if (counter == 31) {
1653         pmccfiltr_write(env, ri, value);
1654     } else if (counter < pmu_num_counters(env)) {
1655         pmevcntr_op_start(env, counter);
1656 
1657         /*
1658          * If this counter's event type is changing, store the current
1659          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1660          * pmevcntr_op_finish has the correct baseline when it converts back to
1661          * a delta.
1662          */
1663         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1664             PMXEVTYPER_EVTCOUNT;
1665         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1666         if (old_event != new_event) {
1667             uint64_t count = 0;
1668             if (event_supported(new_event)) {
1669                 uint16_t event_idx = supported_event_map[new_event];
1670                 count = pm_events[event_idx].get_count(env);
1671             }
1672             env->cp15.c14_pmevcntr_delta[counter] = count;
1673         }
1674 
1675         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1676         pmevcntr_op_finish(env, counter);
1677     }
1678     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1679      * PMSELR value is equal to or greater than the number of implemented
1680      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1681      */
1682 }
1683 
1684 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1685                                const uint8_t counter)
1686 {
1687     if (counter == 31) {
1688         return env->cp15.pmccfiltr_el0;
1689     } else if (counter < pmu_num_counters(env)) {
1690         return env->cp15.c14_pmevtyper[counter];
1691     } else {
1692       /*
1693        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1694        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1695        */
1696         return 0;
1697     }
1698 }
1699 
1700 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1701                               uint64_t value)
1702 {
1703     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1704     pmevtyper_write(env, ri, value, counter);
1705 }
1706 
1707 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1708                                uint64_t value)
1709 {
1710     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1711     env->cp15.c14_pmevtyper[counter] = value;
1712 
1713     /*
1714      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1715      * pmu_op_finish calls when loading saved state for a migration. Because
1716      * we're potentially updating the type of event here, the value written to
1717      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1718      * different counter type. Therefore, we need to set this value to the
1719      * current count for the counter type we're writing so that pmu_op_finish
1720      * has the correct count for its calculation.
1721      */
1722     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1723     if (event_supported(event)) {
1724         uint16_t event_idx = supported_event_map[event];
1725         env->cp15.c14_pmevcntr_delta[counter] =
1726             pm_events[event_idx].get_count(env);
1727     }
1728 }
1729 
1730 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1731 {
1732     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1733     return pmevtyper_read(env, ri, counter);
1734 }
1735 
1736 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1737                              uint64_t value)
1738 {
1739     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1740 }
1741 
1742 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1743 {
1744     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1745 }
1746 
1747 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1748                              uint64_t value, uint8_t counter)
1749 {
1750     if (counter < pmu_num_counters(env)) {
1751         pmevcntr_op_start(env, counter);
1752         env->cp15.c14_pmevcntr[counter] = value;
1753         pmevcntr_op_finish(env, counter);
1754     }
1755     /*
1756      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1757      * are CONSTRAINED UNPREDICTABLE.
1758      */
1759 }
1760 
1761 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1762                               uint8_t counter)
1763 {
1764     if (counter < pmu_num_counters(env)) {
1765         uint64_t ret;
1766         pmevcntr_op_start(env, counter);
1767         ret = env->cp15.c14_pmevcntr[counter];
1768         pmevcntr_op_finish(env, counter);
1769         return ret;
1770     } else {
1771       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1772        * are CONSTRAINED UNPREDICTABLE. */
1773         return 0;
1774     }
1775 }
1776 
1777 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1778                              uint64_t value)
1779 {
1780     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1781     pmevcntr_write(env, ri, value, counter);
1782 }
1783 
1784 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1785 {
1786     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1787     return pmevcntr_read(env, ri, counter);
1788 }
1789 
1790 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1791                              uint64_t value)
1792 {
1793     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1794     assert(counter < pmu_num_counters(env));
1795     env->cp15.c14_pmevcntr[counter] = value;
1796     pmevcntr_write(env, ri, value, counter);
1797 }
1798 
1799 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1800 {
1801     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1802     assert(counter < pmu_num_counters(env));
1803     return env->cp15.c14_pmevcntr[counter];
1804 }
1805 
1806 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                              uint64_t value)
1808 {
1809     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1810 }
1811 
1812 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1813 {
1814     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1815 }
1816 
1817 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1818                             uint64_t value)
1819 {
1820     if (arm_feature(env, ARM_FEATURE_V8)) {
1821         env->cp15.c9_pmuserenr = value & 0xf;
1822     } else {
1823         env->cp15.c9_pmuserenr = value & 1;
1824     }
1825 }
1826 
1827 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1828                              uint64_t value)
1829 {
1830     /* We have no event counters so only the C bit can be changed */
1831     value &= pmu_counter_mask(env);
1832     env->cp15.c9_pminten |= value;
1833     pmu_update_irq(env);
1834 }
1835 
1836 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1837                              uint64_t value)
1838 {
1839     value &= pmu_counter_mask(env);
1840     env->cp15.c9_pminten &= ~value;
1841     pmu_update_irq(env);
1842 }
1843 
1844 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1845                        uint64_t value)
1846 {
1847     /* Note that even though the AArch64 view of this register has bits
1848      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1849      * architectural requirements for bits which are RES0 only in some
1850      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1851      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1852      */
1853     raw_write(env, ri, value & ~0x1FULL);
1854 }
1855 
1856 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1857 {
1858     /* Begin with base v8.0 state.  */
1859     uint32_t valid_mask = 0x3fff;
1860     ARMCPU *cpu = arm_env_get_cpu(env);
1861 
1862     if (arm_el_is_aa64(env, 3)) {
1863         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
1864         valid_mask &= ~SCR_NET;
1865     } else {
1866         valid_mask &= ~(SCR_RW | SCR_ST);
1867     }
1868 
1869     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1870         valid_mask &= ~SCR_HCE;
1871 
1872         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1873          * supported if EL2 exists. The bit is UNK/SBZP when
1874          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1875          * when EL2 is unavailable.
1876          * On ARMv8, this bit is always available.
1877          */
1878         if (arm_feature(env, ARM_FEATURE_V7) &&
1879             !arm_feature(env, ARM_FEATURE_V8)) {
1880             valid_mask &= ~SCR_SMD;
1881         }
1882     }
1883     if (cpu_isar_feature(aa64_lor, cpu)) {
1884         valid_mask |= SCR_TLOR;
1885     }
1886     if (cpu_isar_feature(aa64_pauth, cpu)) {
1887         valid_mask |= SCR_API | SCR_APK;
1888     }
1889 
1890     /* Clear all-context RES0 bits.  */
1891     value &= valid_mask;
1892     raw_write(env, ri, value);
1893 }
1894 
1895 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1896 {
1897     ARMCPU *cpu = arm_env_get_cpu(env);
1898 
1899     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1900      * bank
1901      */
1902     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1903                                         ri->secure & ARM_CP_SECSTATE_S);
1904 
1905     return cpu->ccsidr[index];
1906 }
1907 
1908 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1909                          uint64_t value)
1910 {
1911     raw_write(env, ri, value & 0xf);
1912 }
1913 
1914 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1915 {
1916     CPUState *cs = ENV_GET_CPU(env);
1917     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1918     uint64_t ret = 0;
1919 
1920     if (hcr_el2 & HCR_IMO) {
1921         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1922             ret |= CPSR_I;
1923         }
1924     } else {
1925         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1926             ret |= CPSR_I;
1927         }
1928     }
1929 
1930     if (hcr_el2 & HCR_FMO) {
1931         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1932             ret |= CPSR_F;
1933         }
1934     } else {
1935         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1936             ret |= CPSR_F;
1937         }
1938     }
1939 
1940     /* External aborts are not possible in QEMU so A bit is always clear */
1941     return ret;
1942 }
1943 
1944 static const ARMCPRegInfo v7_cp_reginfo[] = {
1945     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1946     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1947       .access = PL1_W, .type = ARM_CP_NOP },
1948     /* Performance monitors are implementation defined in v7,
1949      * but with an ARM recommended set of registers, which we
1950      * follow.
1951      *
1952      * Performance registers fall into three categories:
1953      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1954      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1955      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1956      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1957      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1958      */
1959     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1960       .access = PL0_RW, .type = ARM_CP_ALIAS,
1961       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1962       .writefn = pmcntenset_write,
1963       .accessfn = pmreg_access,
1964       .raw_writefn = raw_write },
1965     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1966       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1967       .access = PL0_RW, .accessfn = pmreg_access,
1968       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1969       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1970     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1971       .access = PL0_RW,
1972       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1973       .accessfn = pmreg_access,
1974       .writefn = pmcntenclr_write,
1975       .type = ARM_CP_ALIAS },
1976     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1977       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1978       .access = PL0_RW, .accessfn = pmreg_access,
1979       .type = ARM_CP_ALIAS,
1980       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1981       .writefn = pmcntenclr_write },
1982     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1983       .access = PL0_RW, .type = ARM_CP_IO,
1984       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1985       .accessfn = pmreg_access,
1986       .writefn = pmovsr_write,
1987       .raw_writefn = raw_write },
1988     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1989       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1990       .access = PL0_RW, .accessfn = pmreg_access,
1991       .type = ARM_CP_ALIAS | ARM_CP_IO,
1992       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1993       .writefn = pmovsr_write,
1994       .raw_writefn = raw_write },
1995     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1996       .access = PL0_W, .accessfn = pmreg_access_swinc,
1997       .type = ARM_CP_NO_RAW | ARM_CP_IO,
1998       .writefn = pmswinc_write },
1999     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2000       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2001       .access = PL0_W, .accessfn = pmreg_access_swinc,
2002       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2003       .writefn = pmswinc_write },
2004     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2005       .access = PL0_RW, .type = ARM_CP_ALIAS,
2006       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2007       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2008       .raw_writefn = raw_write},
2009     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2010       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2011       .access = PL0_RW, .accessfn = pmreg_access_selr,
2012       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2013       .writefn = pmselr_write, .raw_writefn = raw_write, },
2014     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2015       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2016       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2017       .accessfn = pmreg_access_ccntr },
2018     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2019       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2020       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2021       .type = ARM_CP_IO,
2022       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2023       .readfn = pmccntr_read, .writefn = pmccntr_write,
2024       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2025     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2026       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2027       .access = PL0_RW, .accessfn = pmreg_access,
2028       .type = ARM_CP_ALIAS | ARM_CP_IO,
2029       .resetvalue = 0, },
2030     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2031       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2032       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2033       .access = PL0_RW, .accessfn = pmreg_access,
2034       .type = ARM_CP_IO,
2035       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2036       .resetvalue = 0, },
2037     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2038       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2039       .accessfn = pmreg_access,
2040       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2041     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2042       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2043       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2044       .accessfn = pmreg_access,
2045       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2046     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2047       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2048       .accessfn = pmreg_access_xevcntr,
2049       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2050     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2051       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2052       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2053       .accessfn = pmreg_access_xevcntr,
2054       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2055     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2056       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2057       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2058       .resetvalue = 0,
2059       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2060     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2061       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2062       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2063       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2064       .resetvalue = 0,
2065       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2066     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2067       .access = PL1_RW, .accessfn = access_tpm,
2068       .type = ARM_CP_ALIAS | ARM_CP_IO,
2069       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2070       .resetvalue = 0,
2071       .writefn = pmintenset_write, .raw_writefn = raw_write },
2072     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2073       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2074       .access = PL1_RW, .accessfn = access_tpm,
2075       .type = ARM_CP_IO,
2076       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2077       .writefn = pmintenset_write, .raw_writefn = raw_write,
2078       .resetvalue = 0x0 },
2079     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2080       .access = PL1_RW, .accessfn = access_tpm,
2081       .type = ARM_CP_ALIAS | ARM_CP_IO,
2082       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2083       .writefn = pmintenclr_write, },
2084     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2085       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2086       .access = PL1_RW, .accessfn = access_tpm,
2087       .type = ARM_CP_ALIAS | ARM_CP_IO,
2088       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2089       .writefn = pmintenclr_write },
2090     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2091       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2092       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2093     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2094       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2095       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
2096       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2097                              offsetof(CPUARMState, cp15.csselr_ns) } },
2098     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2099      * just RAZ for all cores:
2100      */
2101     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2102       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2103       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
2104     /* Auxiliary fault status registers: these also are IMPDEF, and we
2105      * choose to RAZ/WI for all cores.
2106      */
2107     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2108       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2109       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2110     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2111       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2112       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
2113     /* MAIR can just read-as-written because we don't implement caches
2114      * and so don't need to care about memory attributes.
2115      */
2116     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2117       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2118       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2119       .resetvalue = 0 },
2120     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2121       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2122       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2123       .resetvalue = 0 },
2124     /* For non-long-descriptor page tables these are PRRR and NMRR;
2125      * regardless they still act as reads-as-written for QEMU.
2126      */
2127      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2128       * allows them to assign the correct fieldoffset based on the endianness
2129       * handled in the field definitions.
2130       */
2131     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2132       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
2133       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2134                              offsetof(CPUARMState, cp15.mair0_ns) },
2135       .resetfn = arm_cp_reset_ignore },
2136     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2137       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
2138       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2139                              offsetof(CPUARMState, cp15.mair1_ns) },
2140       .resetfn = arm_cp_reset_ignore },
2141     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2142       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2143       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2144     /* 32 bit ITLB invalidates */
2145     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2146       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2147     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2148       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2149     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2150       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2151     /* 32 bit DTLB invalidates */
2152     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2153       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2154     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2155       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2156     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2157       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2158     /* 32 bit TLB invalidates */
2159     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2160       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
2161     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2162       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
2163     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2164       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
2165     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2166       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
2167     REGINFO_SENTINEL
2168 };
2169 
2170 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2171     /* 32 bit TLB invalidates, Inner Shareable */
2172     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2173       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
2174     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2175       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
2176     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2177       .type = ARM_CP_NO_RAW, .access = PL1_W,
2178       .writefn = tlbiasid_is_write },
2179     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2180       .type = ARM_CP_NO_RAW, .access = PL1_W,
2181       .writefn = tlbimvaa_is_write },
2182     REGINFO_SENTINEL
2183 };
2184 
2185 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2186     /* PMOVSSET is not implemented in v7 before v7ve */
2187     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2188       .access = PL0_RW, .accessfn = pmreg_access,
2189       .type = ARM_CP_ALIAS | ARM_CP_IO,
2190       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2191       .writefn = pmovsset_write,
2192       .raw_writefn = raw_write },
2193     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2194       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2195       .access = PL0_RW, .accessfn = pmreg_access,
2196       .type = ARM_CP_ALIAS | ARM_CP_IO,
2197       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2198       .writefn = pmovsset_write,
2199       .raw_writefn = raw_write },
2200     REGINFO_SENTINEL
2201 };
2202 
2203 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2204                         uint64_t value)
2205 {
2206     value &= 1;
2207     env->teecr = value;
2208 }
2209 
2210 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2211                                     bool isread)
2212 {
2213     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2214         return CP_ACCESS_TRAP;
2215     }
2216     return CP_ACCESS_OK;
2217 }
2218 
2219 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2220     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2221       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2222       .resetvalue = 0,
2223       .writefn = teecr_write },
2224     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2225       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2226       .accessfn = teehbr_access, .resetvalue = 0 },
2227     REGINFO_SENTINEL
2228 };
2229 
2230 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2231     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2232       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2233       .access = PL0_RW,
2234       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2235     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2236       .access = PL0_RW,
2237       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2238                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2239       .resetfn = arm_cp_reset_ignore },
2240     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2241       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2242       .access = PL0_R|PL1_W,
2243       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2244       .resetvalue = 0},
2245     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2246       .access = PL0_R|PL1_W,
2247       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2248                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2249       .resetfn = arm_cp_reset_ignore },
2250     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2251       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2252       .access = PL1_RW,
2253       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2254     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2255       .access = PL1_RW,
2256       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2257                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2258       .resetvalue = 0 },
2259     REGINFO_SENTINEL
2260 };
2261 
2262 #ifndef CONFIG_USER_ONLY
2263 
2264 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265                                        bool isread)
2266 {
2267     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2268      * Writable only at the highest implemented exception level.
2269      */
2270     int el = arm_current_el(env);
2271 
2272     switch (el) {
2273     case 0:
2274         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
2275             return CP_ACCESS_TRAP;
2276         }
2277         break;
2278     case 1:
2279         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2280             arm_is_secure_below_el3(env)) {
2281             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2282             return CP_ACCESS_TRAP_UNCATEGORIZED;
2283         }
2284         break;
2285     case 2:
2286     case 3:
2287         break;
2288     }
2289 
2290     if (!isread && el < arm_highest_el(env)) {
2291         return CP_ACCESS_TRAP_UNCATEGORIZED;
2292     }
2293 
2294     return CP_ACCESS_OK;
2295 }
2296 
2297 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2298                                         bool isread)
2299 {
2300     unsigned int cur_el = arm_current_el(env);
2301     bool secure = arm_is_secure(env);
2302 
2303     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2304     if (cur_el == 0 &&
2305         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2306         return CP_ACCESS_TRAP;
2307     }
2308 
2309     if (arm_feature(env, ARM_FEATURE_EL2) &&
2310         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2311         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
2312         return CP_ACCESS_TRAP_EL2;
2313     }
2314     return CP_ACCESS_OK;
2315 }
2316 
2317 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2318                                       bool isread)
2319 {
2320     unsigned int cur_el = arm_current_el(env);
2321     bool secure = arm_is_secure(env);
2322 
2323     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2324      * EL0[PV]TEN is zero.
2325      */
2326     if (cur_el == 0 &&
2327         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2328         return CP_ACCESS_TRAP;
2329     }
2330 
2331     if (arm_feature(env, ARM_FEATURE_EL2) &&
2332         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
2333         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2334         return CP_ACCESS_TRAP_EL2;
2335     }
2336     return CP_ACCESS_OK;
2337 }
2338 
2339 static CPAccessResult gt_pct_access(CPUARMState *env,
2340                                     const ARMCPRegInfo *ri,
2341                                     bool isread)
2342 {
2343     return gt_counter_access(env, GTIMER_PHYS, isread);
2344 }
2345 
2346 static CPAccessResult gt_vct_access(CPUARMState *env,
2347                                     const ARMCPRegInfo *ri,
2348                                     bool isread)
2349 {
2350     return gt_counter_access(env, GTIMER_VIRT, isread);
2351 }
2352 
2353 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2354                                        bool isread)
2355 {
2356     return gt_timer_access(env, GTIMER_PHYS, isread);
2357 }
2358 
2359 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2360                                        bool isread)
2361 {
2362     return gt_timer_access(env, GTIMER_VIRT, isread);
2363 }
2364 
2365 static CPAccessResult gt_stimer_access(CPUARMState *env,
2366                                        const ARMCPRegInfo *ri,
2367                                        bool isread)
2368 {
2369     /* The AArch64 register view of the secure physical timer is
2370      * always accessible from EL3, and configurably accessible from
2371      * Secure EL1.
2372      */
2373     switch (arm_current_el(env)) {
2374     case 1:
2375         if (!arm_is_secure(env)) {
2376             return CP_ACCESS_TRAP;
2377         }
2378         if (!(env->cp15.scr_el3 & SCR_ST)) {
2379             return CP_ACCESS_TRAP_EL3;
2380         }
2381         return CP_ACCESS_OK;
2382     case 0:
2383     case 2:
2384         return CP_ACCESS_TRAP;
2385     case 3:
2386         return CP_ACCESS_OK;
2387     default:
2388         g_assert_not_reached();
2389     }
2390 }
2391 
2392 static uint64_t gt_get_countervalue(CPUARMState *env)
2393 {
2394     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
2395 }
2396 
2397 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2398 {
2399     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2400 
2401     if (gt->ctl & 1) {
2402         /* Timer enabled: calculate and set current ISTATUS, irq, and
2403          * reset timer to when ISTATUS next has to change
2404          */
2405         uint64_t offset = timeridx == GTIMER_VIRT ?
2406                                       cpu->env.cp15.cntvoff_el2 : 0;
2407         uint64_t count = gt_get_countervalue(&cpu->env);
2408         /* Note that this must be unsigned 64 bit arithmetic: */
2409         int istatus = count - offset >= gt->cval;
2410         uint64_t nexttick;
2411         int irqstate;
2412 
2413         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2414 
2415         irqstate = (istatus && !(gt->ctl & 2));
2416         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2417 
2418         if (istatus) {
2419             /* Next transition is when count rolls back over to zero */
2420             nexttick = UINT64_MAX;
2421         } else {
2422             /* Next transition is when we hit cval */
2423             nexttick = gt->cval + offset;
2424         }
2425         /* Note that the desired next expiry time might be beyond the
2426          * signed-64-bit range of a QEMUTimer -- in this case we just
2427          * set the timer for as far in the future as possible. When the
2428          * timer expires we will reset the timer for any remaining period.
2429          */
2430         if (nexttick > INT64_MAX / GTIMER_SCALE) {
2431             nexttick = INT64_MAX / GTIMER_SCALE;
2432         }
2433         timer_mod(cpu->gt_timer[timeridx], nexttick);
2434         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2435     } else {
2436         /* Timer disabled: ISTATUS and timer output always clear */
2437         gt->ctl &= ~4;
2438         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2439         timer_del(cpu->gt_timer[timeridx]);
2440         trace_arm_gt_recalc_disabled(timeridx);
2441     }
2442 }
2443 
2444 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2445                            int timeridx)
2446 {
2447     ARMCPU *cpu = arm_env_get_cpu(env);
2448 
2449     timer_del(cpu->gt_timer[timeridx]);
2450 }
2451 
2452 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2453 {
2454     return gt_get_countervalue(env);
2455 }
2456 
2457 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2458 {
2459     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
2460 }
2461 
2462 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2463                           int timeridx,
2464                           uint64_t value)
2465 {
2466     trace_arm_gt_cval_write(timeridx, value);
2467     env->cp15.c14_timer[timeridx].cval = value;
2468     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2469 }
2470 
2471 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2472                              int timeridx)
2473 {
2474     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2475 
2476     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2477                       (gt_get_countervalue(env) - offset));
2478 }
2479 
2480 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2481                           int timeridx,
2482                           uint64_t value)
2483 {
2484     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
2485 
2486     trace_arm_gt_tval_write(timeridx, value);
2487     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2488                                          sextract64(value, 0, 32);
2489     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
2490 }
2491 
2492 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2493                          int timeridx,
2494                          uint64_t value)
2495 {
2496     ARMCPU *cpu = arm_env_get_cpu(env);
2497     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2498 
2499     trace_arm_gt_ctl_write(timeridx, value);
2500     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2501     if ((oldval ^ value) & 1) {
2502         /* Enable toggled */
2503         gt_recalc_timer(cpu, timeridx);
2504     } else if ((oldval ^ value) & 2) {
2505         /* IMASK toggled: don't need to recalculate,
2506          * just set the interrupt line based on ISTATUS
2507          */
2508         int irqstate = (oldval & 4) && !(value & 2);
2509 
2510         trace_arm_gt_imask_toggle(timeridx, irqstate);
2511         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2512     }
2513 }
2514 
2515 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2516 {
2517     gt_timer_reset(env, ri, GTIMER_PHYS);
2518 }
2519 
2520 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2521                                uint64_t value)
2522 {
2523     gt_cval_write(env, ri, GTIMER_PHYS, value);
2524 }
2525 
2526 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2527 {
2528     return gt_tval_read(env, ri, GTIMER_PHYS);
2529 }
2530 
2531 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2532                                uint64_t value)
2533 {
2534     gt_tval_write(env, ri, GTIMER_PHYS, value);
2535 }
2536 
2537 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2538                               uint64_t value)
2539 {
2540     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2541 }
2542 
2543 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2544 {
2545     gt_timer_reset(env, ri, GTIMER_VIRT);
2546 }
2547 
2548 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2549                                uint64_t value)
2550 {
2551     gt_cval_write(env, ri, GTIMER_VIRT, value);
2552 }
2553 
2554 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2555 {
2556     return gt_tval_read(env, ri, GTIMER_VIRT);
2557 }
2558 
2559 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2560                                uint64_t value)
2561 {
2562     gt_tval_write(env, ri, GTIMER_VIRT, value);
2563 }
2564 
2565 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566                               uint64_t value)
2567 {
2568     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2569 }
2570 
2571 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2572                               uint64_t value)
2573 {
2574     ARMCPU *cpu = arm_env_get_cpu(env);
2575 
2576     trace_arm_gt_cntvoff_write(value);
2577     raw_write(env, ri, value);
2578     gt_recalc_timer(cpu, GTIMER_VIRT);
2579 }
2580 
2581 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2582 {
2583     gt_timer_reset(env, ri, GTIMER_HYP);
2584 }
2585 
2586 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587                               uint64_t value)
2588 {
2589     gt_cval_write(env, ri, GTIMER_HYP, value);
2590 }
2591 
2592 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2593 {
2594     return gt_tval_read(env, ri, GTIMER_HYP);
2595 }
2596 
2597 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2598                               uint64_t value)
2599 {
2600     gt_tval_write(env, ri, GTIMER_HYP, value);
2601 }
2602 
2603 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2604                               uint64_t value)
2605 {
2606     gt_ctl_write(env, ri, GTIMER_HYP, value);
2607 }
2608 
2609 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2610 {
2611     gt_timer_reset(env, ri, GTIMER_SEC);
2612 }
2613 
2614 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2615                               uint64_t value)
2616 {
2617     gt_cval_write(env, ri, GTIMER_SEC, value);
2618 }
2619 
2620 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2621 {
2622     return gt_tval_read(env, ri, GTIMER_SEC);
2623 }
2624 
2625 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2626                               uint64_t value)
2627 {
2628     gt_tval_write(env, ri, GTIMER_SEC, value);
2629 }
2630 
2631 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2632                               uint64_t value)
2633 {
2634     gt_ctl_write(env, ri, GTIMER_SEC, value);
2635 }
2636 
2637 void arm_gt_ptimer_cb(void *opaque)
2638 {
2639     ARMCPU *cpu = opaque;
2640 
2641     gt_recalc_timer(cpu, GTIMER_PHYS);
2642 }
2643 
2644 void arm_gt_vtimer_cb(void *opaque)
2645 {
2646     ARMCPU *cpu = opaque;
2647 
2648     gt_recalc_timer(cpu, GTIMER_VIRT);
2649 }
2650 
2651 void arm_gt_htimer_cb(void *opaque)
2652 {
2653     ARMCPU *cpu = opaque;
2654 
2655     gt_recalc_timer(cpu, GTIMER_HYP);
2656 }
2657 
2658 void arm_gt_stimer_cb(void *opaque)
2659 {
2660     ARMCPU *cpu = opaque;
2661 
2662     gt_recalc_timer(cpu, GTIMER_SEC);
2663 }
2664 
2665 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2666     /* Note that CNTFRQ is purely reads-as-written for the benefit
2667      * of software; writing it doesn't actually change the timer frequency.
2668      * Our reset value matches the fixed frequency we implement the timer at.
2669      */
2670     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2671       .type = ARM_CP_ALIAS,
2672       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2673       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2674     },
2675     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2676       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2677       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2678       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2679       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2680     },
2681     /* overall control: mostly access permissions */
2682     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2683       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2684       .access = PL1_RW,
2685       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2686       .resetvalue = 0,
2687     },
2688     /* per-timer control */
2689     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2690       .secure = ARM_CP_SECSTATE_NS,
2691       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2692       .accessfn = gt_ptimer_access,
2693       .fieldoffset = offsetoflow32(CPUARMState,
2694                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2695       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2696     },
2697     { .name = "CNTP_CTL_S",
2698       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2699       .secure = ARM_CP_SECSTATE_S,
2700       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2701       .accessfn = gt_ptimer_access,
2702       .fieldoffset = offsetoflow32(CPUARMState,
2703                                    cp15.c14_timer[GTIMER_SEC].ctl),
2704       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2705     },
2706     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2707       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2708       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2709       .accessfn = gt_ptimer_access,
2710       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2711       .resetvalue = 0,
2712       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2713     },
2714     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2715       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2716       .accessfn = gt_vtimer_access,
2717       .fieldoffset = offsetoflow32(CPUARMState,
2718                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2719       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2720     },
2721     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2722       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2723       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2724       .accessfn = gt_vtimer_access,
2725       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2726       .resetvalue = 0,
2727       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2728     },
2729     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2730     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2731       .secure = ARM_CP_SECSTATE_NS,
2732       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2733       .accessfn = gt_ptimer_access,
2734       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2735     },
2736     { .name = "CNTP_TVAL_S",
2737       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2738       .secure = ARM_CP_SECSTATE_S,
2739       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2740       .accessfn = gt_ptimer_access,
2741       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2742     },
2743     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2744       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2745       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2746       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2747       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2748     },
2749     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2750       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2751       .accessfn = gt_vtimer_access,
2752       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2753     },
2754     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2755       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2756       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2757       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2758       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2759     },
2760     /* The counter itself */
2761     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2762       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2763       .accessfn = gt_pct_access,
2764       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2765     },
2766     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2767       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2768       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2769       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2770     },
2771     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2772       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2773       .accessfn = gt_vct_access,
2774       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2775     },
2776     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2777       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2778       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2779       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2780     },
2781     /* Comparison value, indicating when the timer goes off */
2782     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2783       .secure = ARM_CP_SECSTATE_NS,
2784       .access = PL1_RW | PL0_R,
2785       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2786       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2787       .accessfn = gt_ptimer_access,
2788       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2789     },
2790     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2791       .secure = ARM_CP_SECSTATE_S,
2792       .access = PL1_RW | PL0_R,
2793       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2794       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2795       .accessfn = gt_ptimer_access,
2796       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2797     },
2798     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2799       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2800       .access = PL1_RW | PL0_R,
2801       .type = ARM_CP_IO,
2802       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2803       .resetvalue = 0, .accessfn = gt_ptimer_access,
2804       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2805     },
2806     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2807       .access = PL1_RW | PL0_R,
2808       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2809       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2810       .accessfn = gt_vtimer_access,
2811       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2812     },
2813     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2814       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2815       .access = PL1_RW | PL0_R,
2816       .type = ARM_CP_IO,
2817       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2818       .resetvalue = 0, .accessfn = gt_vtimer_access,
2819       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2820     },
2821     /* Secure timer -- this is actually restricted to only EL3
2822      * and configurably Secure-EL1 via the accessfn.
2823      */
2824     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2825       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2826       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2827       .accessfn = gt_stimer_access,
2828       .readfn = gt_sec_tval_read,
2829       .writefn = gt_sec_tval_write,
2830       .resetfn = gt_sec_timer_reset,
2831     },
2832     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2833       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2834       .type = ARM_CP_IO, .access = PL1_RW,
2835       .accessfn = gt_stimer_access,
2836       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2837       .resetvalue = 0,
2838       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2839     },
2840     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2841       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2842       .type = ARM_CP_IO, .access = PL1_RW,
2843       .accessfn = gt_stimer_access,
2844       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2845       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2846     },
2847     REGINFO_SENTINEL
2848 };
2849 
2850 #else
2851 
2852 /* In user-mode most of the generic timer registers are inaccessible
2853  * however modern kernels (4.12+) allow access to cntvct_el0
2854  */
2855 
2856 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2857 {
2858     /* Currently we have no support for QEMUTimer in linux-user so we
2859      * can't call gt_get_countervalue(env), instead we directly
2860      * call the lower level functions.
2861      */
2862     return cpu_get_clock() / GTIMER_SCALE;
2863 }
2864 
2865 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2866     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2867       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2868       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2869       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2870       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2871     },
2872     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2873       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2874       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2875       .readfn = gt_virt_cnt_read,
2876     },
2877     REGINFO_SENTINEL
2878 };
2879 
2880 #endif
2881 
2882 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2883 {
2884     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2885         raw_write(env, ri, value);
2886     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2887         raw_write(env, ri, value & 0xfffff6ff);
2888     } else {
2889         raw_write(env, ri, value & 0xfffff1ff);
2890     }
2891 }
2892 
2893 #ifndef CONFIG_USER_ONLY
2894 /* get_phys_addr() isn't present for user-mode-only targets */
2895 
2896 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2897                                  bool isread)
2898 {
2899     if (ri->opc2 & 4) {
2900         /* The ATS12NSO* operations must trap to EL3 if executed in
2901          * Secure EL1 (which can only happen if EL3 is AArch64).
2902          * They are simply UNDEF if executed from NS EL1.
2903          * They function normally from EL2 or EL3.
2904          */
2905         if (arm_current_el(env) == 1) {
2906             if (arm_is_secure_below_el3(env)) {
2907                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2908             }
2909             return CP_ACCESS_TRAP_UNCATEGORIZED;
2910         }
2911     }
2912     return CP_ACCESS_OK;
2913 }
2914 
2915 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2916                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2917 {
2918     hwaddr phys_addr;
2919     target_ulong page_size;
2920     int prot;
2921     bool ret;
2922     uint64_t par64;
2923     bool format64 = false;
2924     MemTxAttrs attrs = {};
2925     ARMMMUFaultInfo fi = {};
2926     ARMCacheAttrs cacheattrs = {};
2927 
2928     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2929                         &prot, &page_size, &fi, &cacheattrs);
2930 
2931     if (is_a64(env)) {
2932         format64 = true;
2933     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2934         /*
2935          * ATS1Cxx:
2936          * * TTBCR.EAE determines whether the result is returned using the
2937          *   32-bit or the 64-bit PAR format
2938          * * Instructions executed in Hyp mode always use the 64bit format
2939          *
2940          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2941          * * The Non-secure TTBCR.EAE bit is set to 1
2942          * * The implementation includes EL2, and the value of HCR.VM is 1
2943          *
2944          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2945          *
2946          * ATS1Hx always uses the 64bit format.
2947          */
2948         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2949 
2950         if (arm_feature(env, ARM_FEATURE_EL2)) {
2951             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2952                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2953             } else {
2954                 format64 |= arm_current_el(env) == 2;
2955             }
2956         }
2957     }
2958 
2959     if (format64) {
2960         /* Create a 64-bit PAR */
2961         par64 = (1 << 11); /* LPAE bit always set */
2962         if (!ret) {
2963             par64 |= phys_addr & ~0xfffULL;
2964             if (!attrs.secure) {
2965                 par64 |= (1 << 9); /* NS */
2966             }
2967             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2968             par64 |= cacheattrs.shareability << 7; /* SH */
2969         } else {
2970             uint32_t fsr = arm_fi_to_lfsc(&fi);
2971 
2972             par64 |= 1; /* F */
2973             par64 |= (fsr & 0x3f) << 1; /* FS */
2974             if (fi.stage2) {
2975                 par64 |= (1 << 9); /* S */
2976             }
2977             if (fi.s1ptw) {
2978                 par64 |= (1 << 8); /* PTW */
2979             }
2980         }
2981     } else {
2982         /* fsr is a DFSR/IFSR value for the short descriptor
2983          * translation table format (with WnR always clear).
2984          * Convert it to a 32-bit PAR.
2985          */
2986         if (!ret) {
2987             /* We do not set any attribute bits in the PAR */
2988             if (page_size == (1 << 24)
2989                 && arm_feature(env, ARM_FEATURE_V7)) {
2990                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2991             } else {
2992                 par64 = phys_addr & 0xfffff000;
2993             }
2994             if (!attrs.secure) {
2995                 par64 |= (1 << 9); /* NS */
2996             }
2997         } else {
2998             uint32_t fsr = arm_fi_to_sfsc(&fi);
2999 
3000             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3001                     ((fsr & 0xf) << 1) | 1;
3002         }
3003     }
3004     return par64;
3005 }
3006 
3007 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3008 {
3009     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3010     uint64_t par64;
3011     ARMMMUIdx mmu_idx;
3012     int el = arm_current_el(env);
3013     bool secure = arm_is_secure_below_el3(env);
3014 
3015     switch (ri->opc2 & 6) {
3016     case 0:
3017         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
3018         switch (el) {
3019         case 3:
3020             mmu_idx = ARMMMUIdx_S1E3;
3021             break;
3022         case 2:
3023             mmu_idx = ARMMMUIdx_S1NSE1;
3024             break;
3025         case 1:
3026             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3027             break;
3028         default:
3029             g_assert_not_reached();
3030         }
3031         break;
3032     case 2:
3033         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3034         switch (el) {
3035         case 3:
3036             mmu_idx = ARMMMUIdx_S1SE0;
3037             break;
3038         case 2:
3039             mmu_idx = ARMMMUIdx_S1NSE0;
3040             break;
3041         case 1:
3042             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3043             break;
3044         default:
3045             g_assert_not_reached();
3046         }
3047         break;
3048     case 4:
3049         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3050         mmu_idx = ARMMMUIdx_S12NSE1;
3051         break;
3052     case 6:
3053         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3054         mmu_idx = ARMMMUIdx_S12NSE0;
3055         break;
3056     default:
3057         g_assert_not_reached();
3058     }
3059 
3060     par64 = do_ats_write(env, value, access_type, mmu_idx);
3061 
3062     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3063 }
3064 
3065 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3066                         uint64_t value)
3067 {
3068     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3069     uint64_t par64;
3070 
3071     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2);
3072 
3073     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3074 }
3075 
3076 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3077                                      bool isread)
3078 {
3079     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3080         return CP_ACCESS_TRAP;
3081     }
3082     return CP_ACCESS_OK;
3083 }
3084 
3085 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3086                         uint64_t value)
3087 {
3088     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3089     ARMMMUIdx mmu_idx;
3090     int secure = arm_is_secure_below_el3(env);
3091 
3092     switch (ri->opc2 & 6) {
3093     case 0:
3094         switch (ri->opc1) {
3095         case 0: /* AT S1E1R, AT S1E1W */
3096             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
3097             break;
3098         case 4: /* AT S1E2R, AT S1E2W */
3099             mmu_idx = ARMMMUIdx_S1E2;
3100             break;
3101         case 6: /* AT S1E3R, AT S1E3W */
3102             mmu_idx = ARMMMUIdx_S1E3;
3103             break;
3104         default:
3105             g_assert_not_reached();
3106         }
3107         break;
3108     case 2: /* AT S1E0R, AT S1E0W */
3109         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
3110         break;
3111     case 4: /* AT S12E1R, AT S12E1W */
3112         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
3113         break;
3114     case 6: /* AT S12E0R, AT S12E0W */
3115         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
3116         break;
3117     default:
3118         g_assert_not_reached();
3119     }
3120 
3121     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3122 }
3123 #endif
3124 
3125 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3126     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3127       .access = PL1_RW, .resetvalue = 0,
3128       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3129                              offsetoflow32(CPUARMState, cp15.par_ns) },
3130       .writefn = par_write },
3131 #ifndef CONFIG_USER_ONLY
3132     /* This underdecoding is safe because the reginfo is NO_RAW. */
3133     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3134       .access = PL1_W, .accessfn = ats_access,
3135       .writefn = ats_write, .type = ARM_CP_NO_RAW },
3136 #endif
3137     REGINFO_SENTINEL
3138 };
3139 
3140 /* Return basic MPU access permission bits.  */
3141 static uint32_t simple_mpu_ap_bits(uint32_t val)
3142 {
3143     uint32_t ret;
3144     uint32_t mask;
3145     int i;
3146     ret = 0;
3147     mask = 3;
3148     for (i = 0; i < 16; i += 2) {
3149         ret |= (val >> i) & mask;
3150         mask <<= 2;
3151     }
3152     return ret;
3153 }
3154 
3155 /* Pad basic MPU access permission bits to extended format.  */
3156 static uint32_t extended_mpu_ap_bits(uint32_t val)
3157 {
3158     uint32_t ret;
3159     uint32_t mask;
3160     int i;
3161     ret = 0;
3162     mask = 3;
3163     for (i = 0; i < 16; i += 2) {
3164         ret |= (val & mask) << i;
3165         mask <<= 2;
3166     }
3167     return ret;
3168 }
3169 
3170 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3171                                  uint64_t value)
3172 {
3173     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3174 }
3175 
3176 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3177 {
3178     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3179 }
3180 
3181 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3182                                  uint64_t value)
3183 {
3184     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3185 }
3186 
3187 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3188 {
3189     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3190 }
3191 
3192 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3193 {
3194     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3195 
3196     if (!u32p) {
3197         return 0;
3198     }
3199 
3200     u32p += env->pmsav7.rnr[M_REG_NS];
3201     return *u32p;
3202 }
3203 
3204 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3205                          uint64_t value)
3206 {
3207     ARMCPU *cpu = arm_env_get_cpu(env);
3208     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3209 
3210     if (!u32p) {
3211         return;
3212     }
3213 
3214     u32p += env->pmsav7.rnr[M_REG_NS];
3215     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3216     *u32p = value;
3217 }
3218 
3219 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3220                               uint64_t value)
3221 {
3222     ARMCPU *cpu = arm_env_get_cpu(env);
3223     uint32_t nrgs = cpu->pmsav7_dregion;
3224 
3225     if (value >= nrgs) {
3226         qemu_log_mask(LOG_GUEST_ERROR,
3227                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3228                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3229         return;
3230     }
3231 
3232     raw_write(env, ri, value);
3233 }
3234 
3235 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3236     /* Reset for all these registers is handled in arm_cpu_reset(),
3237      * because the PMSAv7 is also used by M-profile CPUs, which do
3238      * not register cpregs but still need the state to be reset.
3239      */
3240     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3241       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3242       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3243       .readfn = pmsav7_read, .writefn = pmsav7_write,
3244       .resetfn = arm_cp_reset_ignore },
3245     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3246       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3247       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3248       .readfn = pmsav7_read, .writefn = pmsav7_write,
3249       .resetfn = arm_cp_reset_ignore },
3250     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3251       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3252       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3253       .readfn = pmsav7_read, .writefn = pmsav7_write,
3254       .resetfn = arm_cp_reset_ignore },
3255     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3256       .access = PL1_RW,
3257       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3258       .writefn = pmsav7_rgnr_write,
3259       .resetfn = arm_cp_reset_ignore },
3260     REGINFO_SENTINEL
3261 };
3262 
3263 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3264     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3265       .access = PL1_RW, .type = ARM_CP_ALIAS,
3266       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3267       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3268     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3269       .access = PL1_RW, .type = ARM_CP_ALIAS,
3270       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3271       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3272     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3273       .access = PL1_RW,
3274       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3275       .resetvalue = 0, },
3276     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3277       .access = PL1_RW,
3278       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3279       .resetvalue = 0, },
3280     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3281       .access = PL1_RW,
3282       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3283     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3284       .access = PL1_RW,
3285       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3286     /* Protection region base and size registers */
3287     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3288       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3289       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3290     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3291       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3292       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3293     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3294       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3295       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3296     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3297       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3298       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3299     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3300       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3301       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3302     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3303       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3304       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3305     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3306       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3307       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3308     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3309       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3310       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3311     REGINFO_SENTINEL
3312 };
3313 
3314 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3315                                  uint64_t value)
3316 {
3317     TCR *tcr = raw_ptr(env, ri);
3318     int maskshift = extract32(value, 0, 3);
3319 
3320     if (!arm_feature(env, ARM_FEATURE_V8)) {
3321         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3322             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3323              * using Long-desciptor translation table format */
3324             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3325         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3326             /* In an implementation that includes the Security Extensions
3327              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3328              * Short-descriptor translation table format.
3329              */
3330             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3331         } else {
3332             value &= TTBCR_N;
3333         }
3334     }
3335 
3336     /* Update the masks corresponding to the TCR bank being written
3337      * Note that we always calculate mask and base_mask, but
3338      * they are only used for short-descriptor tables (ie if EAE is 0);
3339      * for long-descriptor tables the TCR fields are used differently
3340      * and the mask and base_mask values are meaningless.
3341      */
3342     tcr->raw_tcr = value;
3343     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3344     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3345 }
3346 
3347 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3348                              uint64_t value)
3349 {
3350     ARMCPU *cpu = arm_env_get_cpu(env);
3351     TCR *tcr = raw_ptr(env, ri);
3352 
3353     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3354         /* With LPAE the TTBCR could result in a change of ASID
3355          * via the TTBCR.A1 bit, so do a TLB flush.
3356          */
3357         tlb_flush(CPU(cpu));
3358     }
3359     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3360     value = deposit64(tcr->raw_tcr, 0, 32, value);
3361     vmsa_ttbcr_raw_write(env, ri, value);
3362 }
3363 
3364 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3365 {
3366     TCR *tcr = raw_ptr(env, ri);
3367 
3368     /* Reset both the TCR as well as the masks corresponding to the bank of
3369      * the TCR being reset.
3370      */
3371     tcr->raw_tcr = 0;
3372     tcr->mask = 0;
3373     tcr->base_mask = 0xffffc000u;
3374 }
3375 
3376 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3377                                uint64_t value)
3378 {
3379     ARMCPU *cpu = arm_env_get_cpu(env);
3380     TCR *tcr = raw_ptr(env, ri);
3381 
3382     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3383     tlb_flush(CPU(cpu));
3384     tcr->raw_tcr = value;
3385 }
3386 
3387 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3388                             uint64_t value)
3389 {
3390     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3391     if (cpreg_field_is_64bit(ri) &&
3392         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3393         ARMCPU *cpu = arm_env_get_cpu(env);
3394         tlb_flush(CPU(cpu));
3395     }
3396     raw_write(env, ri, value);
3397 }
3398 
3399 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3400                         uint64_t value)
3401 {
3402     ARMCPU *cpu = arm_env_get_cpu(env);
3403     CPUState *cs = CPU(cpu);
3404 
3405     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
3406     if (raw_read(env, ri) != value) {
3407         tlb_flush_by_mmuidx(cs,
3408                             ARMMMUIdxBit_S12NSE1 |
3409                             ARMMMUIdxBit_S12NSE0 |
3410                             ARMMMUIdxBit_S2NS);
3411         raw_write(env, ri, value);
3412     }
3413 }
3414 
3415 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
3416     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3417       .access = PL1_RW, .type = ARM_CP_ALIAS,
3418       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
3419                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
3420     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3421       .access = PL1_RW, .resetvalue = 0,
3422       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
3423                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
3424     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
3425       .access = PL1_RW, .resetvalue = 0,
3426       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
3427                              offsetof(CPUARMState, cp15.dfar_ns) } },
3428     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
3429       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
3430       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
3431       .resetvalue = 0, },
3432     REGINFO_SENTINEL
3433 };
3434 
3435 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
3436     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
3437       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
3438       .access = PL1_RW,
3439       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
3440     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
3441       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
3442       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3443       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3444                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
3445     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
3446       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
3447       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3448       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3449                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
3450     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3452       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
3453       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
3454       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
3455     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
3456       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
3457       .raw_writefn = vmsa_ttbcr_raw_write,
3458       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
3459                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
3460     REGINFO_SENTINEL
3461 };
3462 
3463 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3464  * qemu tlbs nor adjusting cached masks.
3465  */
3466 static const ARMCPRegInfo ttbcr2_reginfo = {
3467     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
3468     .access = PL1_RW, .type = ARM_CP_ALIAS,
3469     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
3470                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
3471 };
3472 
3473 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
3474                                 uint64_t value)
3475 {
3476     env->cp15.c15_ticonfig = value & 0xe7;
3477     /* The OS_TYPE bit in this register changes the reported CPUID! */
3478     env->cp15.c0_cpuid = (value & (1 << 5)) ?
3479         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
3480 }
3481 
3482 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
3483                                 uint64_t value)
3484 {
3485     env->cp15.c15_threadid = value & 0xffff;
3486 }
3487 
3488 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
3489                            uint64_t value)
3490 {
3491     /* Wait-for-interrupt (deprecated) */
3492     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
3493 }
3494 
3495 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
3496                                   uint64_t value)
3497 {
3498     /* On OMAP there are registers indicating the max/min index of dcache lines
3499      * containing a dirty line; cache flush operations have to reset these.
3500      */
3501     env->cp15.c15_i_max = 0x000;
3502     env->cp15.c15_i_min = 0xff0;
3503 }
3504 
3505 static const ARMCPRegInfo omap_cp_reginfo[] = {
3506     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
3507       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
3508       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
3509       .resetvalue = 0, },
3510     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
3511       .access = PL1_RW, .type = ARM_CP_NOP },
3512     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
3513       .access = PL1_RW,
3514       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
3515       .writefn = omap_ticonfig_write },
3516     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
3517       .access = PL1_RW,
3518       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
3519     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
3520       .access = PL1_RW, .resetvalue = 0xff0,
3521       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
3522     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
3523       .access = PL1_RW,
3524       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
3525       .writefn = omap_threadid_write },
3526     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
3527       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3528       .type = ARM_CP_NO_RAW,
3529       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
3530     /* TODO: Peripheral port remap register:
3531      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3532      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3533      * when MMU is off.
3534      */
3535     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
3536       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
3537       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
3538       .writefn = omap_cachemaint_write },
3539     { .name = "C9", .cp = 15, .crn = 9,
3540       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
3541       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
3542     REGINFO_SENTINEL
3543 };
3544 
3545 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3546                               uint64_t value)
3547 {
3548     env->cp15.c15_cpar = value & 0x3fff;
3549 }
3550 
3551 static const ARMCPRegInfo xscale_cp_reginfo[] = {
3552     { .name = "XSCALE_CPAR",
3553       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
3554       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
3555       .writefn = xscale_cpar_write, },
3556     { .name = "XSCALE_AUXCR",
3557       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
3558       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
3559       .resetvalue = 0, },
3560     /* XScale specific cache-lockdown: since we have no cache we NOP these
3561      * and hope the guest does not really rely on cache behaviour.
3562      */
3563     { .name = "XSCALE_LOCK_ICACHE_LINE",
3564       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
3565       .access = PL1_W, .type = ARM_CP_NOP },
3566     { .name = "XSCALE_UNLOCK_ICACHE",
3567       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
3568       .access = PL1_W, .type = ARM_CP_NOP },
3569     { .name = "XSCALE_DCACHE_LOCK",
3570       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
3571       .access = PL1_RW, .type = ARM_CP_NOP },
3572     { .name = "XSCALE_UNLOCK_DCACHE",
3573       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
3574       .access = PL1_W, .type = ARM_CP_NOP },
3575     REGINFO_SENTINEL
3576 };
3577 
3578 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
3579     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3580      * implementation of this implementation-defined space.
3581      * Ideally this should eventually disappear in favour of actually
3582      * implementing the correct behaviour for all cores.
3583      */
3584     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
3585       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3586       .access = PL1_RW,
3587       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
3588       .resetvalue = 0 },
3589     REGINFO_SENTINEL
3590 };
3591 
3592 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
3593     /* Cache status: RAZ because we have no cache so it's always clean */
3594     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
3595       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3596       .resetvalue = 0 },
3597     REGINFO_SENTINEL
3598 };
3599 
3600 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
3601     /* We never have a a block transfer operation in progress */
3602     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
3603       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3604       .resetvalue = 0 },
3605     /* The cache ops themselves: these all NOP for QEMU */
3606     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
3607       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3608     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
3609       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3610     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
3611       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3612     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
3613       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3614     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
3615       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3616     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
3617       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
3618     REGINFO_SENTINEL
3619 };
3620 
3621 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
3622     /* The cache test-and-clean instructions always return (1 << 30)
3623      * to indicate that there are no dirty cache lines.
3624      */
3625     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
3626       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3627       .resetvalue = (1 << 30) },
3628     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
3629       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
3630       .resetvalue = (1 << 30) },
3631     REGINFO_SENTINEL
3632 };
3633 
3634 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
3635     /* Ignore ReadBuffer accesses */
3636     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
3637       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
3638       .access = PL1_RW, .resetvalue = 0,
3639       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3640     REGINFO_SENTINEL
3641 };
3642 
3643 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3644 {
3645     ARMCPU *cpu = arm_env_get_cpu(env);
3646     unsigned int cur_el = arm_current_el(env);
3647     bool secure = arm_is_secure(env);
3648 
3649     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3650         return env->cp15.vpidr_el2;
3651     }
3652     return raw_read(env, ri);
3653 }
3654 
3655 static uint64_t mpidr_read_val(CPUARMState *env)
3656 {
3657     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3658     uint64_t mpidr = cpu->mp_affinity;
3659 
3660     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3661         mpidr |= (1U << 31);
3662         /* Cores which are uniprocessor (non-coherent)
3663          * but still implement the MP extensions set
3664          * bit 30. (For instance, Cortex-R5).
3665          */
3666         if (cpu->mp_is_up) {
3667             mpidr |= (1u << 30);
3668         }
3669     }
3670     return mpidr;
3671 }
3672 
3673 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3674 {
3675     unsigned int cur_el = arm_current_el(env);
3676     bool secure = arm_is_secure(env);
3677 
3678     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3679         return env->cp15.vmpidr_el2;
3680     }
3681     return mpidr_read_val(env);
3682 }
3683 
3684 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3685     /* NOP AMAIR0/1 */
3686     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3687       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3688       .access = PL1_RW, .type = ARM_CP_CONST,
3689       .resetvalue = 0 },
3690     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3691     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3692       .access = PL1_RW, .type = ARM_CP_CONST,
3693       .resetvalue = 0 },
3694     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3695       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3696       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3697                              offsetof(CPUARMState, cp15.par_ns)} },
3698     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3699       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3700       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3701                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3702       .writefn = vmsa_ttbr_write, },
3703     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3704       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3705       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3706                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3707       .writefn = vmsa_ttbr_write, },
3708     REGINFO_SENTINEL
3709 };
3710 
3711 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3712 {
3713     return vfp_get_fpcr(env);
3714 }
3715 
3716 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3717                             uint64_t value)
3718 {
3719     vfp_set_fpcr(env, value);
3720 }
3721 
3722 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3723 {
3724     return vfp_get_fpsr(env);
3725 }
3726 
3727 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3728                             uint64_t value)
3729 {
3730     vfp_set_fpsr(env, value);
3731 }
3732 
3733 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3734                                        bool isread)
3735 {
3736     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3737         return CP_ACCESS_TRAP;
3738     }
3739     return CP_ACCESS_OK;
3740 }
3741 
3742 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3743                             uint64_t value)
3744 {
3745     env->daif = value & PSTATE_DAIF;
3746 }
3747 
3748 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3749                                           const ARMCPRegInfo *ri,
3750                                           bool isread)
3751 {
3752     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3753      * SCTLR_EL1.UCI is set.
3754      */
3755     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3756         return CP_ACCESS_TRAP;
3757     }
3758     return CP_ACCESS_OK;
3759 }
3760 
3761 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3762  * Page D4-1736 (DDI0487A.b)
3763  */
3764 
3765 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3766                                       uint64_t value)
3767 {
3768     CPUState *cs = ENV_GET_CPU(env);
3769     bool sec = arm_is_secure_below_el3(env);
3770 
3771     if (sec) {
3772         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3773                                             ARMMMUIdxBit_S1SE1 |
3774                                             ARMMMUIdxBit_S1SE0);
3775     } else {
3776         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3777                                             ARMMMUIdxBit_S12NSE1 |
3778                                             ARMMMUIdxBit_S12NSE0);
3779     }
3780 }
3781 
3782 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3783                                     uint64_t value)
3784 {
3785     CPUState *cs = ENV_GET_CPU(env);
3786 
3787     if (tlb_force_broadcast(env)) {
3788         tlbi_aa64_vmalle1is_write(env, NULL, value);
3789         return;
3790     }
3791 
3792     if (arm_is_secure_below_el3(env)) {
3793         tlb_flush_by_mmuidx(cs,
3794                             ARMMMUIdxBit_S1SE1 |
3795                             ARMMMUIdxBit_S1SE0);
3796     } else {
3797         tlb_flush_by_mmuidx(cs,
3798                             ARMMMUIdxBit_S12NSE1 |
3799                             ARMMMUIdxBit_S12NSE0);
3800     }
3801 }
3802 
3803 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3804                                   uint64_t value)
3805 {
3806     /* Note that the 'ALL' scope must invalidate both stage 1 and
3807      * stage 2 translations, whereas most other scopes only invalidate
3808      * stage 1 translations.
3809      */
3810     ARMCPU *cpu = arm_env_get_cpu(env);
3811     CPUState *cs = CPU(cpu);
3812 
3813     if (arm_is_secure_below_el3(env)) {
3814         tlb_flush_by_mmuidx(cs,
3815                             ARMMMUIdxBit_S1SE1 |
3816                             ARMMMUIdxBit_S1SE0);
3817     } else {
3818         if (arm_feature(env, ARM_FEATURE_EL2)) {
3819             tlb_flush_by_mmuidx(cs,
3820                                 ARMMMUIdxBit_S12NSE1 |
3821                                 ARMMMUIdxBit_S12NSE0 |
3822                                 ARMMMUIdxBit_S2NS);
3823         } else {
3824             tlb_flush_by_mmuidx(cs,
3825                                 ARMMMUIdxBit_S12NSE1 |
3826                                 ARMMMUIdxBit_S12NSE0);
3827         }
3828     }
3829 }
3830 
3831 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3832                                   uint64_t value)
3833 {
3834     ARMCPU *cpu = arm_env_get_cpu(env);
3835     CPUState *cs = CPU(cpu);
3836 
3837     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3838 }
3839 
3840 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3841                                   uint64_t value)
3842 {
3843     ARMCPU *cpu = arm_env_get_cpu(env);
3844     CPUState *cs = CPU(cpu);
3845 
3846     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3847 }
3848 
3849 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3850                                     uint64_t value)
3851 {
3852     /* Note that the 'ALL' scope must invalidate both stage 1 and
3853      * stage 2 translations, whereas most other scopes only invalidate
3854      * stage 1 translations.
3855      */
3856     CPUState *cs = ENV_GET_CPU(env);
3857     bool sec = arm_is_secure_below_el3(env);
3858     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3859 
3860     if (sec) {
3861         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3862                                             ARMMMUIdxBit_S1SE1 |
3863                                             ARMMMUIdxBit_S1SE0);
3864     } else if (has_el2) {
3865         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3866                                             ARMMMUIdxBit_S12NSE1 |
3867                                             ARMMMUIdxBit_S12NSE0 |
3868                                             ARMMMUIdxBit_S2NS);
3869     } else {
3870           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3871                                               ARMMMUIdxBit_S12NSE1 |
3872                                               ARMMMUIdxBit_S12NSE0);
3873     }
3874 }
3875 
3876 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3877                                     uint64_t value)
3878 {
3879     CPUState *cs = ENV_GET_CPU(env);
3880 
3881     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3882 }
3883 
3884 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3885                                     uint64_t value)
3886 {
3887     CPUState *cs = ENV_GET_CPU(env);
3888 
3889     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3890 }
3891 
3892 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                                  uint64_t value)
3894 {
3895     /* Invalidate by VA, EL2
3896      * Currently handles both VAE2 and VALE2, since we don't support
3897      * flush-last-level-only.
3898      */
3899     ARMCPU *cpu = arm_env_get_cpu(env);
3900     CPUState *cs = CPU(cpu);
3901     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3902 
3903     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3904 }
3905 
3906 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3907                                  uint64_t value)
3908 {
3909     /* Invalidate by VA, EL3
3910      * Currently handles both VAE3 and VALE3, since we don't support
3911      * flush-last-level-only.
3912      */
3913     ARMCPU *cpu = arm_env_get_cpu(env);
3914     CPUState *cs = CPU(cpu);
3915     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3916 
3917     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3918 }
3919 
3920 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3921                                    uint64_t value)
3922 {
3923     ARMCPU *cpu = arm_env_get_cpu(env);
3924     CPUState *cs = CPU(cpu);
3925     bool sec = arm_is_secure_below_el3(env);
3926     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3927 
3928     if (sec) {
3929         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3930                                                  ARMMMUIdxBit_S1SE1 |
3931                                                  ARMMMUIdxBit_S1SE0);
3932     } else {
3933         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3934                                                  ARMMMUIdxBit_S12NSE1 |
3935                                                  ARMMMUIdxBit_S12NSE0);
3936     }
3937 }
3938 
3939 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3940                                  uint64_t value)
3941 {
3942     /* Invalidate by VA, EL1&0 (AArch64 version).
3943      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3944      * since we don't support flush-for-specific-ASID-only or
3945      * flush-last-level-only.
3946      */
3947     ARMCPU *cpu = arm_env_get_cpu(env);
3948     CPUState *cs = CPU(cpu);
3949     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3950 
3951     if (tlb_force_broadcast(env)) {
3952         tlbi_aa64_vae1is_write(env, NULL, value);
3953         return;
3954     }
3955 
3956     if (arm_is_secure_below_el3(env)) {
3957         tlb_flush_page_by_mmuidx(cs, pageaddr,
3958                                  ARMMMUIdxBit_S1SE1 |
3959                                  ARMMMUIdxBit_S1SE0);
3960     } else {
3961         tlb_flush_page_by_mmuidx(cs, pageaddr,
3962                                  ARMMMUIdxBit_S12NSE1 |
3963                                  ARMMMUIdxBit_S12NSE0);
3964     }
3965 }
3966 
3967 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3968                                    uint64_t value)
3969 {
3970     CPUState *cs = ENV_GET_CPU(env);
3971     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3972 
3973     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3974                                              ARMMMUIdxBit_S1E2);
3975 }
3976 
3977 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3978                                    uint64_t value)
3979 {
3980     CPUState *cs = ENV_GET_CPU(env);
3981     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3982 
3983     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3984                                              ARMMMUIdxBit_S1E3);
3985 }
3986 
3987 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3988                                     uint64_t value)
3989 {
3990     /* Invalidate by IPA. This has to invalidate any structures that
3991      * contain only stage 2 translation information, but does not need
3992      * to apply to structures that contain combined stage 1 and stage 2
3993      * translation information.
3994      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3995      */
3996     ARMCPU *cpu = arm_env_get_cpu(env);
3997     CPUState *cs = CPU(cpu);
3998     uint64_t pageaddr;
3999 
4000     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4001         return;
4002     }
4003 
4004     pageaddr = sextract64(value << 12, 0, 48);
4005 
4006     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
4007 }
4008 
4009 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4010                                       uint64_t value)
4011 {
4012     CPUState *cs = ENV_GET_CPU(env);
4013     uint64_t pageaddr;
4014 
4015     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
4016         return;
4017     }
4018 
4019     pageaddr = sextract64(value << 12, 0, 48);
4020 
4021     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
4022                                              ARMMMUIdxBit_S2NS);
4023 }
4024 
4025 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4026                                       bool isread)
4027 {
4028     /* We don't implement EL2, so the only control on DC ZVA is the
4029      * bit in the SCTLR which can prohibit access for EL0.
4030      */
4031     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4032         return CP_ACCESS_TRAP;
4033     }
4034     return CP_ACCESS_OK;
4035 }
4036 
4037 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4038 {
4039     ARMCPU *cpu = arm_env_get_cpu(env);
4040     int dzp_bit = 1 << 4;
4041 
4042     /* DZP indicates whether DC ZVA access is allowed */
4043     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4044         dzp_bit = 0;
4045     }
4046     return cpu->dcz_blocksize | dzp_bit;
4047 }
4048 
4049 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4050                                     bool isread)
4051 {
4052     if (!(env->pstate & PSTATE_SP)) {
4053         /* Access to SP_EL0 is undefined if it's being used as
4054          * the stack pointer.
4055          */
4056         return CP_ACCESS_TRAP_UNCATEGORIZED;
4057     }
4058     return CP_ACCESS_OK;
4059 }
4060 
4061 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4062 {
4063     return env->pstate & PSTATE_SP;
4064 }
4065 
4066 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4067 {
4068     update_spsel(env, val);
4069 }
4070 
4071 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4072                         uint64_t value)
4073 {
4074     ARMCPU *cpu = arm_env_get_cpu(env);
4075 
4076     if (raw_read(env, ri) == value) {
4077         /* Skip the TLB flush if nothing actually changed; Linux likes
4078          * to do a lot of pointless SCTLR writes.
4079          */
4080         return;
4081     }
4082 
4083     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4084         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4085         value &= ~SCTLR_M;
4086     }
4087 
4088     raw_write(env, ri, value);
4089     /* ??? Lots of these bits are not implemented.  */
4090     /* This may enable/disable the MMU, so do a TLB flush.  */
4091     tlb_flush(CPU(cpu));
4092 }
4093 
4094 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4095                                      bool isread)
4096 {
4097     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4098         return CP_ACCESS_TRAP_FP_EL2;
4099     }
4100     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4101         return CP_ACCESS_TRAP_FP_EL3;
4102     }
4103     return CP_ACCESS_OK;
4104 }
4105 
4106 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4107                        uint64_t value)
4108 {
4109     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4110 }
4111 
4112 static const ARMCPRegInfo v8_cp_reginfo[] = {
4113     /* Minimal set of EL0-visible registers. This will need to be expanded
4114      * significantly for system emulation of AArch64 CPUs.
4115      */
4116     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4117       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4118       .access = PL0_RW, .type = ARM_CP_NZCV },
4119     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4120       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4121       .type = ARM_CP_NO_RAW,
4122       .access = PL0_RW, .accessfn = aa64_daif_access,
4123       .fieldoffset = offsetof(CPUARMState, daif),
4124       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4125     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4126       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4127       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4128       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4129     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4130       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4131       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4132       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4133     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4134       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4135       .access = PL0_R, .type = ARM_CP_NO_RAW,
4136       .readfn = aa64_dczid_read },
4137     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4138       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4139       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4140 #ifndef CONFIG_USER_ONLY
4141       /* Avoid overhead of an access check that always passes in user-mode */
4142       .accessfn = aa64_zva_access,
4143 #endif
4144     },
4145     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4146       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4147       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4148     /* Cache ops: all NOPs since we don't emulate caches */
4149     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4150       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4151       .access = PL1_W, .type = ARM_CP_NOP },
4152     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4153       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4154       .access = PL1_W, .type = ARM_CP_NOP },
4155     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4156       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4157       .access = PL0_W, .type = ARM_CP_NOP,
4158       .accessfn = aa64_cacheop_access },
4159     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4160       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4161       .access = PL1_W, .type = ARM_CP_NOP },
4162     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4163       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4164       .access = PL1_W, .type = ARM_CP_NOP },
4165     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4166       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4167       .access = PL0_W, .type = ARM_CP_NOP,
4168       .accessfn = aa64_cacheop_access },
4169     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4170       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4171       .access = PL1_W, .type = ARM_CP_NOP },
4172     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4173       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4174       .access = PL0_W, .type = ARM_CP_NOP,
4175       .accessfn = aa64_cacheop_access },
4176     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4177       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4178       .access = PL0_W, .type = ARM_CP_NOP,
4179       .accessfn = aa64_cacheop_access },
4180     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4181       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4182       .access = PL1_W, .type = ARM_CP_NOP },
4183     /* TLBI operations */
4184     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4185       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4186       .access = PL1_W, .type = ARM_CP_NO_RAW,
4187       .writefn = tlbi_aa64_vmalle1is_write },
4188     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4189       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4190       .access = PL1_W, .type = ARM_CP_NO_RAW,
4191       .writefn = tlbi_aa64_vae1is_write },
4192     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4193       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4194       .access = PL1_W, .type = ARM_CP_NO_RAW,
4195       .writefn = tlbi_aa64_vmalle1is_write },
4196     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4197       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4198       .access = PL1_W, .type = ARM_CP_NO_RAW,
4199       .writefn = tlbi_aa64_vae1is_write },
4200     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4201       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4202       .access = PL1_W, .type = ARM_CP_NO_RAW,
4203       .writefn = tlbi_aa64_vae1is_write },
4204     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4205       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4206       .access = PL1_W, .type = ARM_CP_NO_RAW,
4207       .writefn = tlbi_aa64_vae1is_write },
4208     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4209       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4210       .access = PL1_W, .type = ARM_CP_NO_RAW,
4211       .writefn = tlbi_aa64_vmalle1_write },
4212     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4213       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4214       .access = PL1_W, .type = ARM_CP_NO_RAW,
4215       .writefn = tlbi_aa64_vae1_write },
4216     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4217       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4218       .access = PL1_W, .type = ARM_CP_NO_RAW,
4219       .writefn = tlbi_aa64_vmalle1_write },
4220     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4221       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4222       .access = PL1_W, .type = ARM_CP_NO_RAW,
4223       .writefn = tlbi_aa64_vae1_write },
4224     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4225       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4226       .access = PL1_W, .type = ARM_CP_NO_RAW,
4227       .writefn = tlbi_aa64_vae1_write },
4228     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4229       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4230       .access = PL1_W, .type = ARM_CP_NO_RAW,
4231       .writefn = tlbi_aa64_vae1_write },
4232     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4233       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4234       .access = PL2_W, .type = ARM_CP_NO_RAW,
4235       .writefn = tlbi_aa64_ipas2e1is_write },
4236     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4237       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4238       .access = PL2_W, .type = ARM_CP_NO_RAW,
4239       .writefn = tlbi_aa64_ipas2e1is_write },
4240     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4241       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4242       .access = PL2_W, .type = ARM_CP_NO_RAW,
4243       .writefn = tlbi_aa64_alle1is_write },
4244     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4245       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4246       .access = PL2_W, .type = ARM_CP_NO_RAW,
4247       .writefn = tlbi_aa64_alle1is_write },
4248     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4249       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4250       .access = PL2_W, .type = ARM_CP_NO_RAW,
4251       .writefn = tlbi_aa64_ipas2e1_write },
4252     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4253       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4254       .access = PL2_W, .type = ARM_CP_NO_RAW,
4255       .writefn = tlbi_aa64_ipas2e1_write },
4256     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4257       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4258       .access = PL2_W, .type = ARM_CP_NO_RAW,
4259       .writefn = tlbi_aa64_alle1_write },
4260     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4261       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4262       .access = PL2_W, .type = ARM_CP_NO_RAW,
4263       .writefn = tlbi_aa64_alle1is_write },
4264 #ifndef CONFIG_USER_ONLY
4265     /* 64 bit address translation operations */
4266     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4267       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4268       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4269     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4270       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4271       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4272     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4273       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4274       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4275     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4276       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4277       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4278     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4279       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4280       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4281     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4282       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4283       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4284     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4285       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4286       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4287     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4288       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4289       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4290     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4291     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4292       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4293       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4294     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4295       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4296       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4297     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4298       .type = ARM_CP_ALIAS,
4299       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4300       .access = PL1_RW, .resetvalue = 0,
4301       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4302       .writefn = par_write },
4303 #endif
4304     /* TLB invalidate last level of translation table walk */
4305     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4306       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
4307     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4308       .type = ARM_CP_NO_RAW, .access = PL1_W,
4309       .writefn = tlbimvaa_is_write },
4310     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4311       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
4312     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4313       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
4314     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4315       .type = ARM_CP_NO_RAW, .access = PL2_W,
4316       .writefn = tlbimva_hyp_write },
4317     { .name = "TLBIMVALHIS",
4318       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4319       .type = ARM_CP_NO_RAW, .access = PL2_W,
4320       .writefn = tlbimva_hyp_is_write },
4321     { .name = "TLBIIPAS2",
4322       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4323       .type = ARM_CP_NO_RAW, .access = PL2_W,
4324       .writefn = tlbiipas2_write },
4325     { .name = "TLBIIPAS2IS",
4326       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4327       .type = ARM_CP_NO_RAW, .access = PL2_W,
4328       .writefn = tlbiipas2_is_write },
4329     { .name = "TLBIIPAS2L",
4330       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4331       .type = ARM_CP_NO_RAW, .access = PL2_W,
4332       .writefn = tlbiipas2_write },
4333     { .name = "TLBIIPAS2LIS",
4334       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4335       .type = ARM_CP_NO_RAW, .access = PL2_W,
4336       .writefn = tlbiipas2_is_write },
4337     /* 32 bit cache operations */
4338     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4339       .type = ARM_CP_NOP, .access = PL1_W },
4340     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
4341       .type = ARM_CP_NOP, .access = PL1_W },
4342     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4343       .type = ARM_CP_NOP, .access = PL1_W },
4344     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
4345       .type = ARM_CP_NOP, .access = PL1_W },
4346     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
4347       .type = ARM_CP_NOP, .access = PL1_W },
4348     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
4349       .type = ARM_CP_NOP, .access = PL1_W },
4350     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4351       .type = ARM_CP_NOP, .access = PL1_W },
4352     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4353       .type = ARM_CP_NOP, .access = PL1_W },
4354     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
4355       .type = ARM_CP_NOP, .access = PL1_W },
4356     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4357       .type = ARM_CP_NOP, .access = PL1_W },
4358     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
4359       .type = ARM_CP_NOP, .access = PL1_W },
4360     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
4361       .type = ARM_CP_NOP, .access = PL1_W },
4362     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4363       .type = ARM_CP_NOP, .access = PL1_W },
4364     /* MMU Domain access control / MPU write buffer control */
4365     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
4366       .access = PL1_RW, .resetvalue = 0,
4367       .writefn = dacr_write, .raw_writefn = raw_write,
4368       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
4369                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
4370     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
4371       .type = ARM_CP_ALIAS,
4372       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
4373       .access = PL1_RW,
4374       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
4375     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
4376       .type = ARM_CP_ALIAS,
4377       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
4378       .access = PL1_RW,
4379       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
4380     /* We rely on the access checks not allowing the guest to write to the
4381      * state field when SPSel indicates that it's being used as the stack
4382      * pointer.
4383      */
4384     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
4385       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
4386       .access = PL1_RW, .accessfn = sp_el0_access,
4387       .type = ARM_CP_ALIAS,
4388       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
4389     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
4390       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
4391       .access = PL2_RW, .type = ARM_CP_ALIAS,
4392       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
4393     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
4394       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
4395       .type = ARM_CP_NO_RAW,
4396       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
4397     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
4398       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
4399       .type = ARM_CP_ALIAS,
4400       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
4401       .access = PL2_RW, .accessfn = fpexc32_access },
4402     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
4403       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
4404       .access = PL2_RW, .resetvalue = 0,
4405       .writefn = dacr_write, .raw_writefn = raw_write,
4406       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
4407     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
4408       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
4409       .access = PL2_RW, .resetvalue = 0,
4410       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
4411     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
4412       .type = ARM_CP_ALIAS,
4413       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
4414       .access = PL2_RW,
4415       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
4416     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
4417       .type = ARM_CP_ALIAS,
4418       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
4419       .access = PL2_RW,
4420       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
4421     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
4422       .type = ARM_CP_ALIAS,
4423       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
4424       .access = PL2_RW,
4425       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
4426     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
4427       .type = ARM_CP_ALIAS,
4428       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
4429       .access = PL2_RW,
4430       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
4431     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
4432       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
4433       .resetvalue = 0,
4434       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
4435     { .name = "SDCR", .type = ARM_CP_ALIAS,
4436       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
4437       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4438       .writefn = sdcr_write,
4439       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
4440     REGINFO_SENTINEL
4441 };
4442 
4443 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
4444 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
4445     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4446       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4447       .access = PL2_RW,
4448       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
4449     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
4450       .type = ARM_CP_NO_RAW,
4451       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4452       .access = PL2_RW,
4453       .type = ARM_CP_CONST, .resetvalue = 0 },
4454     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4455       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4456       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4457     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4458       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4459       .access = PL2_RW,
4460       .type = ARM_CP_CONST, .resetvalue = 0 },
4461     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4462       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4463       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4464     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4465       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4466       .access = PL2_RW, .type = ARM_CP_CONST,
4467       .resetvalue = 0 },
4468     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4469       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4470       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4471     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4472       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4473       .access = PL2_RW, .type = ARM_CP_CONST,
4474       .resetvalue = 0 },
4475     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4476       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4477       .access = PL2_RW, .type = ARM_CP_CONST,
4478       .resetvalue = 0 },
4479     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4480       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4481       .access = PL2_RW, .type = ARM_CP_CONST,
4482       .resetvalue = 0 },
4483     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4484       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4485       .access = PL2_RW, .type = ARM_CP_CONST,
4486       .resetvalue = 0 },
4487     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4488       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4489       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4490     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
4491       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4492       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4493       .type = ARM_CP_CONST, .resetvalue = 0 },
4494     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4495       .cp = 15, .opc1 = 6, .crm = 2,
4496       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4497       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
4498     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4499       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4500       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4501     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4502       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4503       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4504     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4505       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4506       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4507     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4508       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4509       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4510     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4511       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4512       .resetvalue = 0 },
4513     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4514       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4515       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4516     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4517       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4518       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4519     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4520       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4521       .resetvalue = 0 },
4522     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4523       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4524       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4525     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4526       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
4527       .resetvalue = 0 },
4528     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4529       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4530       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4531     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4532       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4533       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4534     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4535       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4536       .access = PL2_RW, .accessfn = access_tda,
4537       .type = ARM_CP_CONST, .resetvalue = 0 },
4538     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
4539       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4540       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4541       .type = ARM_CP_CONST, .resetvalue = 0 },
4542     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4543       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4544       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4545     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4546       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4547       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4548     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4549       .type = ARM_CP_CONST,
4550       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4551       .access = PL2_RW, .resetvalue = 0 },
4552     REGINFO_SENTINEL
4553 };
4554 
4555 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4556 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
4557     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4558       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4559       .access = PL2_RW,
4560       .type = ARM_CP_CONST, .resetvalue = 0 },
4561     REGINFO_SENTINEL
4562 };
4563 
4564 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
4565 {
4566     ARMCPU *cpu = arm_env_get_cpu(env);
4567     uint64_t valid_mask = HCR_MASK;
4568 
4569     if (arm_feature(env, ARM_FEATURE_EL3)) {
4570         valid_mask &= ~HCR_HCD;
4571     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
4572         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4573          * However, if we're using the SMC PSCI conduit then QEMU is
4574          * effectively acting like EL3 firmware and so the guest at
4575          * EL2 should retain the ability to prevent EL1 from being
4576          * able to make SMC calls into the ersatz firmware, so in
4577          * that case HCR.TSC should be read/write.
4578          */
4579         valid_mask &= ~HCR_TSC;
4580     }
4581     if (cpu_isar_feature(aa64_lor, cpu)) {
4582         valid_mask |= HCR_TLOR;
4583     }
4584     if (cpu_isar_feature(aa64_pauth, cpu)) {
4585         valid_mask |= HCR_API | HCR_APK;
4586     }
4587 
4588     /* Clear RES0 bits.  */
4589     value &= valid_mask;
4590 
4591     /* These bits change the MMU setup:
4592      * HCR_VM enables stage 2 translation
4593      * HCR_PTW forbids certain page-table setups
4594      * HCR_DC Disables stage1 and enables stage2 translation
4595      */
4596     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
4597         tlb_flush(CPU(cpu));
4598     }
4599     env->cp15.hcr_el2 = value;
4600 
4601     /*
4602      * Updates to VI and VF require us to update the status of
4603      * virtual interrupts, which are the logical OR of these bits
4604      * and the state of the input lines from the GIC. (This requires
4605      * that we have the iothread lock, which is done by marking the
4606      * reginfo structs as ARM_CP_IO.)
4607      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4608      * possible for it to be taken immediately, because VIRQ and
4609      * VFIQ are masked unless running at EL0 or EL1, and HCR
4610      * can only be written at EL2.
4611      */
4612     g_assert(qemu_mutex_iothread_locked());
4613     arm_cpu_update_virq(cpu);
4614     arm_cpu_update_vfiq(cpu);
4615 }
4616 
4617 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
4618                           uint64_t value)
4619 {
4620     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4621     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
4622     hcr_write(env, NULL, value);
4623 }
4624 
4625 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
4626                          uint64_t value)
4627 {
4628     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4629     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
4630     hcr_write(env, NULL, value);
4631 }
4632 
4633 /*
4634  * Return the effective value of HCR_EL2.
4635  * Bits that are not included here:
4636  * RW       (read from SCR_EL3.RW as needed)
4637  */
4638 uint64_t arm_hcr_el2_eff(CPUARMState *env)
4639 {
4640     uint64_t ret = env->cp15.hcr_el2;
4641 
4642     if (arm_is_secure_below_el3(env)) {
4643         /*
4644          * "This register has no effect if EL2 is not enabled in the
4645          * current Security state".  This is ARMv8.4-SecEL2 speak for
4646          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4647          *
4648          * Prior to that, the language was "In an implementation that
4649          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4650          * as if this field is 0 for all purposes other than a direct
4651          * read or write access of HCR_EL2".  With lots of enumeration
4652          * on a per-field basis.  In current QEMU, this is condition
4653          * is arm_is_secure_below_el3.
4654          *
4655          * Since the v8.4 language applies to the entire register, and
4656          * appears to be backward compatible, use that.
4657          */
4658         ret = 0;
4659     } else if (ret & HCR_TGE) {
4660         /* These bits are up-to-date as of ARMv8.4.  */
4661         if (ret & HCR_E2H) {
4662             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
4663                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
4664                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
4665                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE);
4666         } else {
4667             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
4668         }
4669         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
4670                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
4671                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
4672                  HCR_TLOR);
4673     }
4674 
4675     return ret;
4676 }
4677 
4678 static const ARMCPRegInfo el2_cp_reginfo[] = {
4679     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4680       .type = ARM_CP_IO,
4681       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4682       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4683       .writefn = hcr_write },
4684     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4685       .type = ARM_CP_ALIAS | ARM_CP_IO,
4686       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4687       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4688       .writefn = hcr_writelow },
4689     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
4690       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
4691       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
4692     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4693       .type = ARM_CP_ALIAS,
4694       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4695       .access = PL2_RW,
4696       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4697     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4698       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4699       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4700     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4701       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4702       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4703     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4704       .type = ARM_CP_ALIAS,
4705       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4706       .access = PL2_RW,
4707       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4708     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4709       .type = ARM_CP_ALIAS,
4710       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4711       .access = PL2_RW,
4712       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4713     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4714       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4715       .access = PL2_RW, .writefn = vbar_write,
4716       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4717       .resetvalue = 0 },
4718     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4719       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4720       .access = PL3_RW, .type = ARM_CP_ALIAS,
4721       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4722     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4723       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4724       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4725       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4726     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4727       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4728       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4729       .resetvalue = 0 },
4730     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4731       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4732       .access = PL2_RW, .type = ARM_CP_ALIAS,
4733       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4734     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4735       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4736       .access = PL2_RW, .type = ARM_CP_CONST,
4737       .resetvalue = 0 },
4738     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4739     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4740       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4741       .access = PL2_RW, .type = ARM_CP_CONST,
4742       .resetvalue = 0 },
4743     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4744       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4745       .access = PL2_RW, .type = ARM_CP_CONST,
4746       .resetvalue = 0 },
4747     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4748       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4749       .access = PL2_RW, .type = ARM_CP_CONST,
4750       .resetvalue = 0 },
4751     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4752       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4753       .access = PL2_RW,
4754       /* no .writefn needed as this can't cause an ASID change;
4755        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4756        */
4757       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4758     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4759       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4760       .type = ARM_CP_ALIAS,
4761       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4762       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4763     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4764       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4765       .access = PL2_RW,
4766       /* no .writefn needed as this can't cause an ASID change;
4767        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4768        */
4769       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4770     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4771       .cp = 15, .opc1 = 6, .crm = 2,
4772       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4773       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4774       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4775       .writefn = vttbr_write },
4776     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4777       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4778       .access = PL2_RW, .writefn = vttbr_write,
4779       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4780     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4781       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4782       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4783       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4784     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4785       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4786       .access = PL2_RW, .resetvalue = 0,
4787       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4788     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4789       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4790       .access = PL2_RW, .resetvalue = 0,
4791       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4792     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4793       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4794       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4795     { .name = "TLBIALLNSNH",
4796       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4797       .type = ARM_CP_NO_RAW, .access = PL2_W,
4798       .writefn = tlbiall_nsnh_write },
4799     { .name = "TLBIALLNSNHIS",
4800       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4801       .type = ARM_CP_NO_RAW, .access = PL2_W,
4802       .writefn = tlbiall_nsnh_is_write },
4803     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4804       .type = ARM_CP_NO_RAW, .access = PL2_W,
4805       .writefn = tlbiall_hyp_write },
4806     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4807       .type = ARM_CP_NO_RAW, .access = PL2_W,
4808       .writefn = tlbiall_hyp_is_write },
4809     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4810       .type = ARM_CP_NO_RAW, .access = PL2_W,
4811       .writefn = tlbimva_hyp_write },
4812     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4813       .type = ARM_CP_NO_RAW, .access = PL2_W,
4814       .writefn = tlbimva_hyp_is_write },
4815     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4817       .type = ARM_CP_NO_RAW, .access = PL2_W,
4818       .writefn = tlbi_aa64_alle2_write },
4819     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4820       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4821       .type = ARM_CP_NO_RAW, .access = PL2_W,
4822       .writefn = tlbi_aa64_vae2_write },
4823     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4824       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4825       .access = PL2_W, .type = ARM_CP_NO_RAW,
4826       .writefn = tlbi_aa64_vae2_write },
4827     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4828       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4829       .access = PL2_W, .type = ARM_CP_NO_RAW,
4830       .writefn = tlbi_aa64_alle2is_write },
4831     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4832       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4833       .type = ARM_CP_NO_RAW, .access = PL2_W,
4834       .writefn = tlbi_aa64_vae2is_write },
4835     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4836       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4837       .access = PL2_W, .type = ARM_CP_NO_RAW,
4838       .writefn = tlbi_aa64_vae2is_write },
4839 #ifndef CONFIG_USER_ONLY
4840     /* Unlike the other EL2-related AT operations, these must
4841      * UNDEF from EL3 if EL2 is not implemented, which is why we
4842      * define them here rather than with the rest of the AT ops.
4843      */
4844     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4845       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4846       .access = PL2_W, .accessfn = at_s1e2_access,
4847       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4848     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4849       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4850       .access = PL2_W, .accessfn = at_s1e2_access,
4851       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4852     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4853      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4854      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4855      * to behave as if SCR.NS was 1.
4856      */
4857     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4858       .access = PL2_W,
4859       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4860     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4861       .access = PL2_W,
4862       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4863     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4864       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4865       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4866        * reset values as IMPDEF. We choose to reset to 3 to comply with
4867        * both ARMv7 and ARMv8.
4868        */
4869       .access = PL2_RW, .resetvalue = 3,
4870       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4871     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4872       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4873       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4874       .writefn = gt_cntvoff_write,
4875       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4876     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4877       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4878       .writefn = gt_cntvoff_write,
4879       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4880     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4881       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4882       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4883       .type = ARM_CP_IO, .access = PL2_RW,
4884       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4885     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4886       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4887       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4888       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4889     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4890       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4891       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4892       .resetfn = gt_hyp_timer_reset,
4893       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4894     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4895       .type = ARM_CP_IO,
4896       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4897       .access = PL2_RW,
4898       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4899       .resetvalue = 0,
4900       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4901 #endif
4902     /* The only field of MDCR_EL2 that has a defined architectural reset value
4903      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4904      * don't implement any PMU event counters, so using zero as a reset
4905      * value for MDCR_EL2 is okay
4906      */
4907     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4908       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4909       .access = PL2_RW, .resetvalue = 0,
4910       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4911     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4912       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4913       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4914       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4915     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4916       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4917       .access = PL2_RW,
4918       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4919     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4920       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4921       .access = PL2_RW,
4922       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4923     REGINFO_SENTINEL
4924 };
4925 
4926 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4927     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4928       .type = ARM_CP_ALIAS | ARM_CP_IO,
4929       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4930       .access = PL2_RW,
4931       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4932       .writefn = hcr_writehigh },
4933     REGINFO_SENTINEL
4934 };
4935 
4936 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4937                                    bool isread)
4938 {
4939     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4940      * At Secure EL1 it traps to EL3.
4941      */
4942     if (arm_current_el(env) == 3) {
4943         return CP_ACCESS_OK;
4944     }
4945     if (arm_is_secure_below_el3(env)) {
4946         return CP_ACCESS_TRAP_EL3;
4947     }
4948     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4949     if (isread) {
4950         return CP_ACCESS_OK;
4951     }
4952     return CP_ACCESS_TRAP_UNCATEGORIZED;
4953 }
4954 
4955 static const ARMCPRegInfo el3_cp_reginfo[] = {
4956     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4957       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4958       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4959       .resetvalue = 0, .writefn = scr_write },
4960     { .name = "SCR",  .type = ARM_CP_ALIAS,
4961       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4962       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4963       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4964       .writefn = scr_write },
4965     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4966       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4967       .access = PL3_RW, .resetvalue = 0,
4968       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4969     { .name = "SDER",
4970       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4971       .access = PL3_RW, .resetvalue = 0,
4972       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4973     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4974       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4975       .writefn = vbar_write, .resetvalue = 0,
4976       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4977     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4978       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4979       .access = PL3_RW, .resetvalue = 0,
4980       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4981     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4982       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4983       .access = PL3_RW,
4984       /* no .writefn needed as this can't cause an ASID change;
4985        * we must provide a .raw_writefn and .resetfn because we handle
4986        * reset and migration for the AArch32 TTBCR(S), which might be
4987        * using mask and base_mask.
4988        */
4989       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4990       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4991     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4992       .type = ARM_CP_ALIAS,
4993       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4994       .access = PL3_RW,
4995       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4996     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4997       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4998       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4999     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5000       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5001       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5002     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5003       .type = ARM_CP_ALIAS,
5004       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5005       .access = PL3_RW,
5006       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5007     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5008       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5009       .access = PL3_RW, .writefn = vbar_write,
5010       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5011       .resetvalue = 0 },
5012     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5013       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5014       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5015       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5016     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5017       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5018       .access = PL3_RW, .resetvalue = 0,
5019       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5020     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5021       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5022       .access = PL3_RW, .type = ARM_CP_CONST,
5023       .resetvalue = 0 },
5024     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5025       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5026       .access = PL3_RW, .type = ARM_CP_CONST,
5027       .resetvalue = 0 },
5028     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5029       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5030       .access = PL3_RW, .type = ARM_CP_CONST,
5031       .resetvalue = 0 },
5032     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5033       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5034       .access = PL3_W, .type = ARM_CP_NO_RAW,
5035       .writefn = tlbi_aa64_alle3is_write },
5036     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5037       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5038       .access = PL3_W, .type = ARM_CP_NO_RAW,
5039       .writefn = tlbi_aa64_vae3is_write },
5040     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5041       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5042       .access = PL3_W, .type = ARM_CP_NO_RAW,
5043       .writefn = tlbi_aa64_vae3is_write },
5044     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5045       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5046       .access = PL3_W, .type = ARM_CP_NO_RAW,
5047       .writefn = tlbi_aa64_alle3_write },
5048     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5049       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5050       .access = PL3_W, .type = ARM_CP_NO_RAW,
5051       .writefn = tlbi_aa64_vae3_write },
5052     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5053       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5054       .access = PL3_W, .type = ARM_CP_NO_RAW,
5055       .writefn = tlbi_aa64_vae3_write },
5056     REGINFO_SENTINEL
5057 };
5058 
5059 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5060                                      bool isread)
5061 {
5062     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5063      * but the AArch32 CTR has its own reginfo struct)
5064      */
5065     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5066         return CP_ACCESS_TRAP;
5067     }
5068     return CP_ACCESS_OK;
5069 }
5070 
5071 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
5072                         uint64_t value)
5073 {
5074     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5075      * read via a bit in OSLSR_EL1.
5076      */
5077     int oslock;
5078 
5079     if (ri->state == ARM_CP_STATE_AA32) {
5080         oslock = (value == 0xC5ACCE55);
5081     } else {
5082         oslock = value & 1;
5083     }
5084 
5085     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
5086 }
5087 
5088 static const ARMCPRegInfo debug_cp_reginfo[] = {
5089     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5090      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5091      * unlike DBGDRAR it is never accessible from EL0.
5092      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5093      * accessor.
5094      */
5095     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
5096       .access = PL0_R, .accessfn = access_tdra,
5097       .type = ARM_CP_CONST, .resetvalue = 0 },
5098     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
5099       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5100       .access = PL1_R, .accessfn = access_tdra,
5101       .type = ARM_CP_CONST, .resetvalue = 0 },
5102     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
5103       .access = PL0_R, .accessfn = access_tdra,
5104       .type = ARM_CP_CONST, .resetvalue = 0 },
5105     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5106     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
5107       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5108       .access = PL1_RW, .accessfn = access_tda,
5109       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
5110       .resetvalue = 0 },
5111     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5112      * We don't implement the configurable EL0 access.
5113      */
5114     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
5115       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5116       .type = ARM_CP_ALIAS,
5117       .access = PL1_R, .accessfn = access_tda,
5118       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
5119     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
5120       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
5121       .access = PL1_W, .type = ARM_CP_NO_RAW,
5122       .accessfn = access_tdosa,
5123       .writefn = oslar_write },
5124     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
5125       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
5126       .access = PL1_R, .resetvalue = 10,
5127       .accessfn = access_tdosa,
5128       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
5129     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5130     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
5131       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
5132       .access = PL1_RW, .accessfn = access_tdosa,
5133       .type = ARM_CP_NOP },
5134     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5135      * implement vector catch debug events yet.
5136      */
5137     { .name = "DBGVCR",
5138       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5139       .access = PL1_RW, .accessfn = access_tda,
5140       .type = ARM_CP_NOP },
5141     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5142      * to save and restore a 32-bit guest's DBGVCR)
5143      */
5144     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
5145       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
5146       .access = PL2_RW, .accessfn = access_tda,
5147       .type = ARM_CP_NOP },
5148     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5149      * Channel but Linux may try to access this register. The 32-bit
5150      * alias is DBGDCCINT.
5151      */
5152     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
5153       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5154       .access = PL1_RW, .accessfn = access_tda,
5155       .type = ARM_CP_NOP },
5156     REGINFO_SENTINEL
5157 };
5158 
5159 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
5160     /* 64 bit access versions of the (dummy) debug registers */
5161     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
5162       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5163     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
5164       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
5165     REGINFO_SENTINEL
5166 };
5167 
5168 /* Return the exception level to which exceptions should be taken
5169  * via SVEAccessTrap.  If an exception should be routed through
5170  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5171  * take care of raising that exception.
5172  * C.f. the ARM pseudocode function CheckSVEEnabled.
5173  */
5174 int sve_exception_el(CPUARMState *env, int el)
5175 {
5176 #ifndef CONFIG_USER_ONLY
5177     if (el <= 1) {
5178         bool disabled = false;
5179 
5180         /* The CPACR.ZEN controls traps to EL1:
5181          * 0, 2 : trap EL0 and EL1 accesses
5182          * 1    : trap only EL0 accesses
5183          * 3    : trap no accesses
5184          */
5185         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
5186             disabled = true;
5187         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
5188             disabled = el == 0;
5189         }
5190         if (disabled) {
5191             /* route_to_el2 */
5192             return (arm_feature(env, ARM_FEATURE_EL2)
5193                     && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1);
5194         }
5195 
5196         /* Check CPACR.FPEN.  */
5197         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
5198             disabled = true;
5199         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
5200             disabled = el == 0;
5201         }
5202         if (disabled) {
5203             return 0;
5204         }
5205     }
5206 
5207     /* CPTR_EL2.  Since TZ and TFP are positive,
5208      * they will be zero when EL2 is not present.
5209      */
5210     if (el <= 2 && !arm_is_secure_below_el3(env)) {
5211         if (env->cp15.cptr_el[2] & CPTR_TZ) {
5212             return 2;
5213         }
5214         if (env->cp15.cptr_el[2] & CPTR_TFP) {
5215             return 0;
5216         }
5217     }
5218 
5219     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
5220     if (arm_feature(env, ARM_FEATURE_EL3)
5221         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
5222         return 3;
5223     }
5224 #endif
5225     return 0;
5226 }
5227 
5228 /*
5229  * Given that SVE is enabled, return the vector length for EL.
5230  */
5231 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
5232 {
5233     ARMCPU *cpu = arm_env_get_cpu(env);
5234     uint32_t zcr_len = cpu->sve_max_vq - 1;
5235 
5236     if (el <= 1) {
5237         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
5238     }
5239     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
5240         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
5241     }
5242     if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
5243         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
5244     }
5245     return zcr_len;
5246 }
5247 
5248 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5249                       uint64_t value)
5250 {
5251     int cur_el = arm_current_el(env);
5252     int old_len = sve_zcr_len_for_el(env, cur_el);
5253     int new_len;
5254 
5255     /* Bits other than [3:0] are RAZ/WI.  */
5256     raw_write(env, ri, value & 0xf);
5257 
5258     /*
5259      * Because we arrived here, we know both FP and SVE are enabled;
5260      * otherwise we would have trapped access to the ZCR_ELn register.
5261      */
5262     new_len = sve_zcr_len_for_el(env, cur_el);
5263     if (new_len < old_len) {
5264         aarch64_sve_narrow_vq(env, new_len + 1);
5265     }
5266 }
5267 
5268 static const ARMCPRegInfo zcr_el1_reginfo = {
5269     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
5270     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
5271     .access = PL1_RW, .type = ARM_CP_SVE,
5272     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
5273     .writefn = zcr_write, .raw_writefn = raw_write
5274 };
5275 
5276 static const ARMCPRegInfo zcr_el2_reginfo = {
5277     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5278     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5279     .access = PL2_RW, .type = ARM_CP_SVE,
5280     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
5281     .writefn = zcr_write, .raw_writefn = raw_write
5282 };
5283 
5284 static const ARMCPRegInfo zcr_no_el2_reginfo = {
5285     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
5286     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
5287     .access = PL2_RW, .type = ARM_CP_SVE,
5288     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
5289 };
5290 
5291 static const ARMCPRegInfo zcr_el3_reginfo = {
5292     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
5293     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
5294     .access = PL3_RW, .type = ARM_CP_SVE,
5295     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
5296     .writefn = zcr_write, .raw_writefn = raw_write
5297 };
5298 
5299 void hw_watchpoint_update(ARMCPU *cpu, int n)
5300 {
5301     CPUARMState *env = &cpu->env;
5302     vaddr len = 0;
5303     vaddr wvr = env->cp15.dbgwvr[n];
5304     uint64_t wcr = env->cp15.dbgwcr[n];
5305     int mask;
5306     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
5307 
5308     if (env->cpu_watchpoint[n]) {
5309         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
5310         env->cpu_watchpoint[n] = NULL;
5311     }
5312 
5313     if (!extract64(wcr, 0, 1)) {
5314         /* E bit clear : watchpoint disabled */
5315         return;
5316     }
5317 
5318     switch (extract64(wcr, 3, 2)) {
5319     case 0:
5320         /* LSC 00 is reserved and must behave as if the wp is disabled */
5321         return;
5322     case 1:
5323         flags |= BP_MEM_READ;
5324         break;
5325     case 2:
5326         flags |= BP_MEM_WRITE;
5327         break;
5328     case 3:
5329         flags |= BP_MEM_ACCESS;
5330         break;
5331     }
5332 
5333     /* Attempts to use both MASK and BAS fields simultaneously are
5334      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5335      * thus generating a watchpoint for every byte in the masked region.
5336      */
5337     mask = extract64(wcr, 24, 4);
5338     if (mask == 1 || mask == 2) {
5339         /* Reserved values of MASK; we must act as if the mask value was
5340          * some non-reserved value, or as if the watchpoint were disabled.
5341          * We choose the latter.
5342          */
5343         return;
5344     } else if (mask) {
5345         /* Watchpoint covers an aligned area up to 2GB in size */
5346         len = 1ULL << mask;
5347         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5348          * whether the watchpoint fires when the unmasked bits match; we opt
5349          * to generate the exceptions.
5350          */
5351         wvr &= ~(len - 1);
5352     } else {
5353         /* Watchpoint covers bytes defined by the byte address select bits */
5354         int bas = extract64(wcr, 5, 8);
5355         int basstart;
5356 
5357         if (bas == 0) {
5358             /* This must act as if the watchpoint is disabled */
5359             return;
5360         }
5361 
5362         if (extract64(wvr, 2, 1)) {
5363             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5364              * ignored, and BAS[3:0] define which bytes to watch.
5365              */
5366             bas &= 0xf;
5367         }
5368         /* The BAS bits are supposed to be programmed to indicate a contiguous
5369          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5370          * we fire for each byte in the word/doubleword addressed by the WVR.
5371          * We choose to ignore any non-zero bits after the first range of 1s.
5372          */
5373         basstart = ctz32(bas);
5374         len = cto32(bas >> basstart);
5375         wvr += basstart;
5376     }
5377 
5378     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
5379                           &env->cpu_watchpoint[n]);
5380 }
5381 
5382 void hw_watchpoint_update_all(ARMCPU *cpu)
5383 {
5384     int i;
5385     CPUARMState *env = &cpu->env;
5386 
5387     /* Completely clear out existing QEMU watchpoints and our array, to
5388      * avoid possible stale entries following migration load.
5389      */
5390     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
5391     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
5392 
5393     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
5394         hw_watchpoint_update(cpu, i);
5395     }
5396 }
5397 
5398 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5399                          uint64_t value)
5400 {
5401     ARMCPU *cpu = arm_env_get_cpu(env);
5402     int i = ri->crm;
5403 
5404     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5405      * register reads and behaves as if values written are sign extended.
5406      * Bits [1:0] are RES0.
5407      */
5408     value = sextract64(value, 0, 49) & ~3ULL;
5409 
5410     raw_write(env, ri, value);
5411     hw_watchpoint_update(cpu, i);
5412 }
5413 
5414 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5415                          uint64_t value)
5416 {
5417     ARMCPU *cpu = arm_env_get_cpu(env);
5418     int i = ri->crm;
5419 
5420     raw_write(env, ri, value);
5421     hw_watchpoint_update(cpu, i);
5422 }
5423 
5424 void hw_breakpoint_update(ARMCPU *cpu, int n)
5425 {
5426     CPUARMState *env = &cpu->env;
5427     uint64_t bvr = env->cp15.dbgbvr[n];
5428     uint64_t bcr = env->cp15.dbgbcr[n];
5429     vaddr addr;
5430     int bt;
5431     int flags = BP_CPU;
5432 
5433     if (env->cpu_breakpoint[n]) {
5434         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
5435         env->cpu_breakpoint[n] = NULL;
5436     }
5437 
5438     if (!extract64(bcr, 0, 1)) {
5439         /* E bit clear : watchpoint disabled */
5440         return;
5441     }
5442 
5443     bt = extract64(bcr, 20, 4);
5444 
5445     switch (bt) {
5446     case 4: /* unlinked address mismatch (reserved if AArch64) */
5447     case 5: /* linked address mismatch (reserved if AArch64) */
5448         qemu_log_mask(LOG_UNIMP,
5449                       "arm: address mismatch breakpoint types not implemented\n");
5450         return;
5451     case 0: /* unlinked address match */
5452     case 1: /* linked address match */
5453     {
5454         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5455          * we behave as if the register was sign extended. Bits [1:0] are
5456          * RES0. The BAS field is used to allow setting breakpoints on 16
5457          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5458          * a bp will fire if the addresses covered by the bp and the addresses
5459          * covered by the insn overlap but the insn doesn't start at the
5460          * start of the bp address range. We choose to require the insn and
5461          * the bp to have the same address. The constraints on writing to
5462          * BAS enforced in dbgbcr_write mean we have only four cases:
5463          *  0b0000  => no breakpoint
5464          *  0b0011  => breakpoint on addr
5465          *  0b1100  => breakpoint on addr + 2
5466          *  0b1111  => breakpoint on addr
5467          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5468          */
5469         int bas = extract64(bcr, 5, 4);
5470         addr = sextract64(bvr, 0, 49) & ~3ULL;
5471         if (bas == 0) {
5472             return;
5473         }
5474         if (bas == 0xc) {
5475             addr += 2;
5476         }
5477         break;
5478     }
5479     case 2: /* unlinked context ID match */
5480     case 8: /* unlinked VMID match (reserved if no EL2) */
5481     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5482         qemu_log_mask(LOG_UNIMP,
5483                       "arm: unlinked context breakpoint types not implemented\n");
5484         return;
5485     case 9: /* linked VMID match (reserved if no EL2) */
5486     case 11: /* linked context ID and VMID match (reserved if no EL2) */
5487     case 3: /* linked context ID match */
5488     default:
5489         /* We must generate no events for Linked context matches (unless
5490          * they are linked to by some other bp/wp, which is handled in
5491          * updates for the linking bp/wp). We choose to also generate no events
5492          * for reserved values.
5493          */
5494         return;
5495     }
5496 
5497     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
5498 }
5499 
5500 void hw_breakpoint_update_all(ARMCPU *cpu)
5501 {
5502     int i;
5503     CPUARMState *env = &cpu->env;
5504 
5505     /* Completely clear out existing QEMU breakpoints and our array, to
5506      * avoid possible stale entries following migration load.
5507      */
5508     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
5509     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
5510 
5511     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
5512         hw_breakpoint_update(cpu, i);
5513     }
5514 }
5515 
5516 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5517                          uint64_t value)
5518 {
5519     ARMCPU *cpu = arm_env_get_cpu(env);
5520     int i = ri->crm;
5521 
5522     raw_write(env, ri, value);
5523     hw_breakpoint_update(cpu, i);
5524 }
5525 
5526 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5527                          uint64_t value)
5528 {
5529     ARMCPU *cpu = arm_env_get_cpu(env);
5530     int i = ri->crm;
5531 
5532     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5533      * copy of BAS[0].
5534      */
5535     value = deposit64(value, 6, 1, extract64(value, 5, 1));
5536     value = deposit64(value, 8, 1, extract64(value, 7, 1));
5537 
5538     raw_write(env, ri, value);
5539     hw_breakpoint_update(cpu, i);
5540 }
5541 
5542 static void define_debug_regs(ARMCPU *cpu)
5543 {
5544     /* Define v7 and v8 architectural debug registers.
5545      * These are just dummy implementations for now.
5546      */
5547     int i;
5548     int wrps, brps, ctx_cmps;
5549     ARMCPRegInfo dbgdidr = {
5550         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
5551         .access = PL0_R, .accessfn = access_tda,
5552         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
5553     };
5554 
5555     /* Note that all these register fields hold "number of Xs minus 1". */
5556     brps = extract32(cpu->dbgdidr, 24, 4);
5557     wrps = extract32(cpu->dbgdidr, 28, 4);
5558     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
5559 
5560     assert(ctx_cmps <= brps);
5561 
5562     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5563      * of the debug registers such as number of breakpoints;
5564      * check that if they both exist then they agree.
5565      */
5566     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
5567         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
5568         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
5569         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
5570     }
5571 
5572     define_one_arm_cp_reg(cpu, &dbgdidr);
5573     define_arm_cp_regs(cpu, debug_cp_reginfo);
5574 
5575     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
5576         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
5577     }
5578 
5579     for (i = 0; i < brps + 1; i++) {
5580         ARMCPRegInfo dbgregs[] = {
5581             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
5582               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
5583               .access = PL1_RW, .accessfn = access_tda,
5584               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
5585               .writefn = dbgbvr_write, .raw_writefn = raw_write
5586             },
5587             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
5588               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
5589               .access = PL1_RW, .accessfn = access_tda,
5590               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
5591               .writefn = dbgbcr_write, .raw_writefn = raw_write
5592             },
5593             REGINFO_SENTINEL
5594         };
5595         define_arm_cp_regs(cpu, dbgregs);
5596     }
5597 
5598     for (i = 0; i < wrps + 1; i++) {
5599         ARMCPRegInfo dbgregs[] = {
5600             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
5601               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
5602               .access = PL1_RW, .accessfn = access_tda,
5603               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
5604               .writefn = dbgwvr_write, .raw_writefn = raw_write
5605             },
5606             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
5607               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
5608               .access = PL1_RW, .accessfn = access_tda,
5609               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
5610               .writefn = dbgwcr_write, .raw_writefn = raw_write
5611             },
5612             REGINFO_SENTINEL
5613         };
5614         define_arm_cp_regs(cpu, dbgregs);
5615     }
5616 }
5617 
5618 /* We don't know until after realize whether there's a GICv3
5619  * attached, and that is what registers the gicv3 sysregs.
5620  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5621  * at runtime.
5622  */
5623 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
5624 {
5625     ARMCPU *cpu = arm_env_get_cpu(env);
5626     uint64_t pfr1 = cpu->id_pfr1;
5627 
5628     if (env->gicv3state) {
5629         pfr1 |= 1 << 28;
5630     }
5631     return pfr1;
5632 }
5633 
5634 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
5635 {
5636     ARMCPU *cpu = arm_env_get_cpu(env);
5637     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
5638 
5639     if (env->gicv3state) {
5640         pfr0 |= 1 << 24;
5641     }
5642     return pfr0;
5643 }
5644 
5645 /* Shared logic between LORID and the rest of the LOR* registers.
5646  * Secure state has already been delt with.
5647  */
5648 static CPAccessResult access_lor_ns(CPUARMState *env)
5649 {
5650     int el = arm_current_el(env);
5651 
5652     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
5653         return CP_ACCESS_TRAP_EL2;
5654     }
5655     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
5656         return CP_ACCESS_TRAP_EL3;
5657     }
5658     return CP_ACCESS_OK;
5659 }
5660 
5661 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri,
5662                                    bool isread)
5663 {
5664     if (arm_is_secure_below_el3(env)) {
5665         /* Access ok in secure mode.  */
5666         return CP_ACCESS_OK;
5667     }
5668     return access_lor_ns(env);
5669 }
5670 
5671 static CPAccessResult access_lor_other(CPUARMState *env,
5672                                        const ARMCPRegInfo *ri, bool isread)
5673 {
5674     if (arm_is_secure_below_el3(env)) {
5675         /* Access denied in secure mode.  */
5676         return CP_ACCESS_TRAP;
5677     }
5678     return access_lor_ns(env);
5679 }
5680 
5681 #ifdef TARGET_AARCH64
5682 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
5683                                    bool isread)
5684 {
5685     int el = arm_current_el(env);
5686 
5687     if (el < 2 &&
5688         arm_feature(env, ARM_FEATURE_EL2) &&
5689         !(arm_hcr_el2_eff(env) & HCR_APK)) {
5690         return CP_ACCESS_TRAP_EL2;
5691     }
5692     if (el < 3 &&
5693         arm_feature(env, ARM_FEATURE_EL3) &&
5694         !(env->cp15.scr_el3 & SCR_APK)) {
5695         return CP_ACCESS_TRAP_EL3;
5696     }
5697     return CP_ACCESS_OK;
5698 }
5699 
5700 static const ARMCPRegInfo pauth_reginfo[] = {
5701     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5702       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
5703       .access = PL1_RW, .accessfn = access_pauth,
5704       .fieldoffset = offsetof(CPUARMState, apda_key.lo) },
5705     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5706       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
5707       .access = PL1_RW, .accessfn = access_pauth,
5708       .fieldoffset = offsetof(CPUARMState, apda_key.hi) },
5709     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5710       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
5711       .access = PL1_RW, .accessfn = access_pauth,
5712       .fieldoffset = offsetof(CPUARMState, apdb_key.lo) },
5713     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5714       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
5715       .access = PL1_RW, .accessfn = access_pauth,
5716       .fieldoffset = offsetof(CPUARMState, apdb_key.hi) },
5717     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5718       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
5719       .access = PL1_RW, .accessfn = access_pauth,
5720       .fieldoffset = offsetof(CPUARMState, apga_key.lo) },
5721     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5722       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
5723       .access = PL1_RW, .accessfn = access_pauth,
5724       .fieldoffset = offsetof(CPUARMState, apga_key.hi) },
5725     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5726       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
5727       .access = PL1_RW, .accessfn = access_pauth,
5728       .fieldoffset = offsetof(CPUARMState, apia_key.lo) },
5729     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5730       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
5731       .access = PL1_RW, .accessfn = access_pauth,
5732       .fieldoffset = offsetof(CPUARMState, apia_key.hi) },
5733     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
5734       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
5735       .access = PL1_RW, .accessfn = access_pauth,
5736       .fieldoffset = offsetof(CPUARMState, apib_key.lo) },
5737     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
5738       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
5739       .access = PL1_RW, .accessfn = access_pauth,
5740       .fieldoffset = offsetof(CPUARMState, apib_key.hi) },
5741     REGINFO_SENTINEL
5742 };
5743 #endif
5744 
5745 void register_cp_regs_for_features(ARMCPU *cpu)
5746 {
5747     /* Register all the coprocessor registers based on feature bits */
5748     CPUARMState *env = &cpu->env;
5749     if (arm_feature(env, ARM_FEATURE_M)) {
5750         /* M profile has no coprocessor registers */
5751         return;
5752     }
5753 
5754     define_arm_cp_regs(cpu, cp_reginfo);
5755     if (!arm_feature(env, ARM_FEATURE_V8)) {
5756         /* Must go early as it is full of wildcards that may be
5757          * overridden by later definitions.
5758          */
5759         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
5760     }
5761 
5762     if (arm_feature(env, ARM_FEATURE_V6)) {
5763         /* The ID registers all have impdef reset values */
5764         ARMCPRegInfo v6_idregs[] = {
5765             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5766               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5767               .access = PL1_R, .type = ARM_CP_CONST,
5768               .resetvalue = cpu->id_pfr0 },
5769             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5770              * the value of the GIC field until after we define these regs.
5771              */
5772             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5773               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5774               .access = PL1_R, .type = ARM_CP_NO_RAW,
5775               .readfn = id_pfr1_read,
5776               .writefn = arm_cp_write_ignore },
5777             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5778               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5779               .access = PL1_R, .type = ARM_CP_CONST,
5780               .resetvalue = cpu->id_dfr0 },
5781             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5782               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5783               .access = PL1_R, .type = ARM_CP_CONST,
5784               .resetvalue = cpu->id_afr0 },
5785             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5786               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5787               .access = PL1_R, .type = ARM_CP_CONST,
5788               .resetvalue = cpu->id_mmfr0 },
5789             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5791               .access = PL1_R, .type = ARM_CP_CONST,
5792               .resetvalue = cpu->id_mmfr1 },
5793             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5794               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5795               .access = PL1_R, .type = ARM_CP_CONST,
5796               .resetvalue = cpu->id_mmfr2 },
5797             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5798               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5799               .access = PL1_R, .type = ARM_CP_CONST,
5800               .resetvalue = cpu->id_mmfr3 },
5801             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5803               .access = PL1_R, .type = ARM_CP_CONST,
5804               .resetvalue = cpu->isar.id_isar0 },
5805             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5806               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5807               .access = PL1_R, .type = ARM_CP_CONST,
5808               .resetvalue = cpu->isar.id_isar1 },
5809             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5811               .access = PL1_R, .type = ARM_CP_CONST,
5812               .resetvalue = cpu->isar.id_isar2 },
5813             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5814               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5815               .access = PL1_R, .type = ARM_CP_CONST,
5816               .resetvalue = cpu->isar.id_isar3 },
5817             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5819               .access = PL1_R, .type = ARM_CP_CONST,
5820               .resetvalue = cpu->isar.id_isar4 },
5821             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5823               .access = PL1_R, .type = ARM_CP_CONST,
5824               .resetvalue = cpu->isar.id_isar5 },
5825             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5826               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5827               .access = PL1_R, .type = ARM_CP_CONST,
5828               .resetvalue = cpu->id_mmfr4 },
5829             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5830               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5831               .access = PL1_R, .type = ARM_CP_CONST,
5832               .resetvalue = cpu->isar.id_isar6 },
5833             REGINFO_SENTINEL
5834         };
5835         define_arm_cp_regs(cpu, v6_idregs);
5836         define_arm_cp_regs(cpu, v6_cp_reginfo);
5837     } else {
5838         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5839     }
5840     if (arm_feature(env, ARM_FEATURE_V6K)) {
5841         define_arm_cp_regs(cpu, v6k_cp_reginfo);
5842     }
5843     if (arm_feature(env, ARM_FEATURE_V7MP) &&
5844         !arm_feature(env, ARM_FEATURE_PMSA)) {
5845         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5846     }
5847     if (arm_feature(env, ARM_FEATURE_V7VE)) {
5848         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
5849     }
5850     if (arm_feature(env, ARM_FEATURE_V7)) {
5851         /* v7 performance monitor control register: same implementor
5852          * field as main ID register, and we implement four counters in
5853          * addition to the cycle count register.
5854          */
5855         unsigned int i, pmcrn = 4;
5856         ARMCPRegInfo pmcr = {
5857             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5858             .access = PL0_RW,
5859             .type = ARM_CP_IO | ARM_CP_ALIAS,
5860             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5861             .accessfn = pmreg_access, .writefn = pmcr_write,
5862             .raw_writefn = raw_write,
5863         };
5864         ARMCPRegInfo pmcr64 = {
5865             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5866             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5867             .access = PL0_RW, .accessfn = pmreg_access,
5868             .type = ARM_CP_IO,
5869             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5870             .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT),
5871             .writefn = pmcr_write, .raw_writefn = raw_write,
5872         };
5873         define_one_arm_cp_reg(cpu, &pmcr);
5874         define_one_arm_cp_reg(cpu, &pmcr64);
5875         for (i = 0; i < pmcrn; i++) {
5876             char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
5877             char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
5878             char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
5879             char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
5880             ARMCPRegInfo pmev_regs[] = {
5881                 { .name = pmevcntr_name, .cp = 15, .crn = 14,
5882                   .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5883                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5884                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5885                   .accessfn = pmreg_access },
5886                 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
5887                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
5888                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5889                   .type = ARM_CP_IO,
5890                   .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
5891                   .raw_readfn = pmevcntr_rawread,
5892                   .raw_writefn = pmevcntr_rawwrite },
5893                 { .name = pmevtyper_name, .cp = 15, .crn = 14,
5894                   .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
5895                   .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
5896                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5897                   .accessfn = pmreg_access },
5898                 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
5899                   .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
5900                   .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
5901                   .type = ARM_CP_IO,
5902                   .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
5903                   .raw_writefn = pmevtyper_rawwrite },
5904                 REGINFO_SENTINEL
5905             };
5906             define_arm_cp_regs(cpu, pmev_regs);
5907             g_free(pmevcntr_name);
5908             g_free(pmevcntr_el0_name);
5909             g_free(pmevtyper_name);
5910             g_free(pmevtyper_el0_name);
5911         }
5912         ARMCPRegInfo clidr = {
5913             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5914             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5915             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5916         };
5917         define_one_arm_cp_reg(cpu, &clidr);
5918         define_arm_cp_regs(cpu, v7_cp_reginfo);
5919         define_debug_regs(cpu);
5920     } else {
5921         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5922     }
5923     if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 &&
5924             FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) {
5925         ARMCPRegInfo v81_pmu_regs[] = {
5926             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
5927               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
5928               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5929               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
5930             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
5931               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
5932               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5933               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
5934             REGINFO_SENTINEL
5935         };
5936         define_arm_cp_regs(cpu, v81_pmu_regs);
5937     }
5938     if (arm_feature(env, ARM_FEATURE_V8)) {
5939         /* AArch64 ID registers, which all have impdef reset values.
5940          * Note that within the ID register ranges the unused slots
5941          * must all RAZ, not UNDEF; future architecture versions may
5942          * define new registers here.
5943          */
5944         ARMCPRegInfo v8_idregs[] = {
5945             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5946              * know the right value for the GIC field until after we
5947              * define these regs.
5948              */
5949             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5951               .access = PL1_R, .type = ARM_CP_NO_RAW,
5952               .readfn = id_aa64pfr0_read,
5953               .writefn = arm_cp_write_ignore },
5954             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5955               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5956               .access = PL1_R, .type = ARM_CP_CONST,
5957               .resetvalue = cpu->isar.id_aa64pfr1},
5958             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5959               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5960               .access = PL1_R, .type = ARM_CP_CONST,
5961               .resetvalue = 0 },
5962             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5963               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5964               .access = PL1_R, .type = ARM_CP_CONST,
5965               .resetvalue = 0 },
5966             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5967               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5968               .access = PL1_R, .type = ARM_CP_CONST,
5969               /* At present, only SVEver == 0 is defined anyway.  */
5970               .resetvalue = 0 },
5971             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5972               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5973               .access = PL1_R, .type = ARM_CP_CONST,
5974               .resetvalue = 0 },
5975             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5976               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5977               .access = PL1_R, .type = ARM_CP_CONST,
5978               .resetvalue = 0 },
5979             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5980               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5981               .access = PL1_R, .type = ARM_CP_CONST,
5982               .resetvalue = 0 },
5983             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5984               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5985               .access = PL1_R, .type = ARM_CP_CONST,
5986               .resetvalue = cpu->id_aa64dfr0 },
5987             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5988               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5989               .access = PL1_R, .type = ARM_CP_CONST,
5990               .resetvalue = cpu->id_aa64dfr1 },
5991             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5992               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5993               .access = PL1_R, .type = ARM_CP_CONST,
5994               .resetvalue = 0 },
5995             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5996               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5997               .access = PL1_R, .type = ARM_CP_CONST,
5998               .resetvalue = 0 },
5999             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
6000               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
6001               .access = PL1_R, .type = ARM_CP_CONST,
6002               .resetvalue = cpu->id_aa64afr0 },
6003             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
6004               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
6005               .access = PL1_R, .type = ARM_CP_CONST,
6006               .resetvalue = cpu->id_aa64afr1 },
6007             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6008               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
6009               .access = PL1_R, .type = ARM_CP_CONST,
6010               .resetvalue = 0 },
6011             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6012               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
6013               .access = PL1_R, .type = ARM_CP_CONST,
6014               .resetvalue = 0 },
6015             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
6016               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
6017               .access = PL1_R, .type = ARM_CP_CONST,
6018               .resetvalue = cpu->isar.id_aa64isar0 },
6019             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
6020               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
6021               .access = PL1_R, .type = ARM_CP_CONST,
6022               .resetvalue = cpu->isar.id_aa64isar1 },
6023             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6024               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
6025               .access = PL1_R, .type = ARM_CP_CONST,
6026               .resetvalue = 0 },
6027             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6028               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
6029               .access = PL1_R, .type = ARM_CP_CONST,
6030               .resetvalue = 0 },
6031             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6032               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
6033               .access = PL1_R, .type = ARM_CP_CONST,
6034               .resetvalue = 0 },
6035             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6036               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
6037               .access = PL1_R, .type = ARM_CP_CONST,
6038               .resetvalue = 0 },
6039             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6040               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
6041               .access = PL1_R, .type = ARM_CP_CONST,
6042               .resetvalue = 0 },
6043             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6044               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
6045               .access = PL1_R, .type = ARM_CP_CONST,
6046               .resetvalue = 0 },
6047             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
6048               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6049               .access = PL1_R, .type = ARM_CP_CONST,
6050               .resetvalue = cpu->isar.id_aa64mmfr0 },
6051             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
6052               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
6053               .access = PL1_R, .type = ARM_CP_CONST,
6054               .resetvalue = cpu->isar.id_aa64mmfr1 },
6055             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6056               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
6057               .access = PL1_R, .type = ARM_CP_CONST,
6058               .resetvalue = 0 },
6059             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6060               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
6061               .access = PL1_R, .type = ARM_CP_CONST,
6062               .resetvalue = 0 },
6063             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6064               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
6065               .access = PL1_R, .type = ARM_CP_CONST,
6066               .resetvalue = 0 },
6067             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6068               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
6069               .access = PL1_R, .type = ARM_CP_CONST,
6070               .resetvalue = 0 },
6071             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6072               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
6073               .access = PL1_R, .type = ARM_CP_CONST,
6074               .resetvalue = 0 },
6075             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6076               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
6077               .access = PL1_R, .type = ARM_CP_CONST,
6078               .resetvalue = 0 },
6079             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
6080               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
6081               .access = PL1_R, .type = ARM_CP_CONST,
6082               .resetvalue = cpu->isar.mvfr0 },
6083             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
6084               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
6085               .access = PL1_R, .type = ARM_CP_CONST,
6086               .resetvalue = cpu->isar.mvfr1 },
6087             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
6088               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
6089               .access = PL1_R, .type = ARM_CP_CONST,
6090               .resetvalue = cpu->isar.mvfr2 },
6091             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6092               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
6093               .access = PL1_R, .type = ARM_CP_CONST,
6094               .resetvalue = 0 },
6095             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6096               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
6097               .access = PL1_R, .type = ARM_CP_CONST,
6098               .resetvalue = 0 },
6099             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6100               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
6101               .access = PL1_R, .type = ARM_CP_CONST,
6102               .resetvalue = 0 },
6103             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6104               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
6105               .access = PL1_R, .type = ARM_CP_CONST,
6106               .resetvalue = 0 },
6107             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
6108               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
6109               .access = PL1_R, .type = ARM_CP_CONST,
6110               .resetvalue = 0 },
6111             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
6112               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
6113               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6114               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
6115             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
6116               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
6117               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6118               .resetvalue = cpu->pmceid0 },
6119             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
6120               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
6121               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6122               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
6123             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
6124               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
6125               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6126               .resetvalue = cpu->pmceid1 },
6127             REGINFO_SENTINEL
6128         };
6129 #ifdef CONFIG_USER_ONLY
6130         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
6131             { .name = "ID_AA64PFR0_EL1",
6132               .exported_bits = 0x000f000f00ff0000,
6133               .fixed_bits    = 0x0000000000000011 },
6134             { .name = "ID_AA64PFR1_EL1",
6135               .exported_bits = 0x00000000000000f0 },
6136             { .name = "ID_AA64PFR*_EL1_RESERVED",
6137               .is_glob = true                     },
6138             { .name = "ID_AA64ZFR0_EL1"           },
6139             { .name = "ID_AA64MMFR0_EL1",
6140               .fixed_bits    = 0x00000000ff000000 },
6141             { .name = "ID_AA64MMFR1_EL1"          },
6142             { .name = "ID_AA64MMFR*_EL1_RESERVED",
6143               .is_glob = true                     },
6144             { .name = "ID_AA64DFR0_EL1",
6145               .fixed_bits    = 0x0000000000000006 },
6146             { .name = "ID_AA64DFR1_EL1"           },
6147             { .name = "ID_AA64DFR*_EL1_RESERVED",
6148               .is_glob = true                     },
6149             { .name = "ID_AA64AFR*",
6150               .is_glob = true                     },
6151             { .name = "ID_AA64ISAR0_EL1",
6152               .exported_bits = 0x00fffffff0fffff0 },
6153             { .name = "ID_AA64ISAR1_EL1",
6154               .exported_bits = 0x000000f0ffffffff },
6155             { .name = "ID_AA64ISAR*_EL1_RESERVED",
6156               .is_glob = true                     },
6157             REGUSERINFO_SENTINEL
6158         };
6159         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
6160 #endif
6161         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6162         if (!arm_feature(env, ARM_FEATURE_EL3) &&
6163             !arm_feature(env, ARM_FEATURE_EL2)) {
6164             ARMCPRegInfo rvbar = {
6165                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
6166                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6167                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
6168             };
6169             define_one_arm_cp_reg(cpu, &rvbar);
6170         }
6171         define_arm_cp_regs(cpu, v8_idregs);
6172         define_arm_cp_regs(cpu, v8_cp_reginfo);
6173     }
6174     if (arm_feature(env, ARM_FEATURE_EL2)) {
6175         uint64_t vmpidr_def = mpidr_read_val(env);
6176         ARMCPRegInfo vpidr_regs[] = {
6177             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
6178               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6179               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6180               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
6181               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
6182             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
6183               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6184               .access = PL2_RW, .resetvalue = cpu->midr,
6185               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6186             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
6187               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6188               .access = PL2_RW, .accessfn = access_el3_aa32ns,
6189               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
6190               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
6191             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
6192               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6193               .access = PL2_RW,
6194               .resetvalue = vmpidr_def,
6195               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
6196             REGINFO_SENTINEL
6197         };
6198         define_arm_cp_regs(cpu, vpidr_regs);
6199         define_arm_cp_regs(cpu, el2_cp_reginfo);
6200         if (arm_feature(env, ARM_FEATURE_V8)) {
6201             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
6202         }
6203         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6204         if (!arm_feature(env, ARM_FEATURE_EL3)) {
6205             ARMCPRegInfo rvbar = {
6206                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
6207                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
6208                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
6209             };
6210             define_one_arm_cp_reg(cpu, &rvbar);
6211         }
6212     } else {
6213         /* If EL2 is missing but higher ELs are enabled, we need to
6214          * register the no_el2 reginfos.
6215          */
6216         if (arm_feature(env, ARM_FEATURE_EL3)) {
6217             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6218              * of MIDR_EL1 and MPIDR_EL1.
6219              */
6220             ARMCPRegInfo vpidr_regs[] = {
6221                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6222                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
6223                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6224                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
6225                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
6226                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6227                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
6228                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
6229                   .type = ARM_CP_NO_RAW,
6230                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
6231                 REGINFO_SENTINEL
6232             };
6233             define_arm_cp_regs(cpu, vpidr_regs);
6234             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
6235             if (arm_feature(env, ARM_FEATURE_V8)) {
6236                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
6237             }
6238         }
6239     }
6240     if (arm_feature(env, ARM_FEATURE_EL3)) {
6241         define_arm_cp_regs(cpu, el3_cp_reginfo);
6242         ARMCPRegInfo el3_regs[] = {
6243             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
6244               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
6245               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
6246             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
6247               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
6248               .access = PL3_RW,
6249               .raw_writefn = raw_write, .writefn = sctlr_write,
6250               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
6251               .resetvalue = cpu->reset_sctlr },
6252             REGINFO_SENTINEL
6253         };
6254 
6255         define_arm_cp_regs(cpu, el3_regs);
6256     }
6257     /* The behaviour of NSACR is sufficiently various that we don't
6258      * try to describe it in a single reginfo:
6259      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
6260      *     reads as constant 0xc00 from NS EL1 and NS EL2
6261      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6262      *  if v7 without EL3, register doesn't exist
6263      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6264      */
6265     if (arm_feature(env, ARM_FEATURE_EL3)) {
6266         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6267             ARMCPRegInfo nsacr = {
6268                 .name = "NSACR", .type = ARM_CP_CONST,
6269                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6270                 .access = PL1_RW, .accessfn = nsacr_access,
6271                 .resetvalue = 0xc00
6272             };
6273             define_one_arm_cp_reg(cpu, &nsacr);
6274         } else {
6275             ARMCPRegInfo nsacr = {
6276                 .name = "NSACR",
6277                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6278                 .access = PL3_RW | PL1_R,
6279                 .resetvalue = 0,
6280                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
6281             };
6282             define_one_arm_cp_reg(cpu, &nsacr);
6283         }
6284     } else {
6285         if (arm_feature(env, ARM_FEATURE_V8)) {
6286             ARMCPRegInfo nsacr = {
6287                 .name = "NSACR", .type = ARM_CP_CONST,
6288                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
6289                 .access = PL1_R,
6290                 .resetvalue = 0xc00
6291             };
6292             define_one_arm_cp_reg(cpu, &nsacr);
6293         }
6294     }
6295 
6296     if (arm_feature(env, ARM_FEATURE_PMSA)) {
6297         if (arm_feature(env, ARM_FEATURE_V6)) {
6298             /* PMSAv6 not implemented */
6299             assert(arm_feature(env, ARM_FEATURE_V7));
6300             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6301             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
6302         } else {
6303             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
6304         }
6305     } else {
6306         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
6307         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
6308         /* TTCBR2 is introduced with ARMv8.2-A32HPD.  */
6309         if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) {
6310             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
6311         }
6312     }
6313     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
6314         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
6315     }
6316     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
6317         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
6318     }
6319     if (arm_feature(env, ARM_FEATURE_VAPA)) {
6320         define_arm_cp_regs(cpu, vapa_cp_reginfo);
6321     }
6322     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
6323         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
6324     }
6325     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
6326         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
6327     }
6328     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
6329         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
6330     }
6331     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
6332         define_arm_cp_regs(cpu, omap_cp_reginfo);
6333     }
6334     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
6335         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
6336     }
6337     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6338         define_arm_cp_regs(cpu, xscale_cp_reginfo);
6339     }
6340     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
6341         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
6342     }
6343     if (arm_feature(env, ARM_FEATURE_LPAE)) {
6344         define_arm_cp_regs(cpu, lpae_cp_reginfo);
6345     }
6346     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6347      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6348      * be read-only (ie write causes UNDEF exception).
6349      */
6350     {
6351         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
6352             /* Pre-v8 MIDR space.
6353              * Note that the MIDR isn't a simple constant register because
6354              * of the TI925 behaviour where writes to another register can
6355              * cause the MIDR value to change.
6356              *
6357              * Unimplemented registers in the c15 0 0 0 space default to
6358              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6359              * and friends override accordingly.
6360              */
6361             { .name = "MIDR",
6362               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
6363               .access = PL1_R, .resetvalue = cpu->midr,
6364               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
6365               .readfn = midr_read,
6366               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6367               .type = ARM_CP_OVERRIDE },
6368             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6369             { .name = "DUMMY",
6370               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
6371               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6372             { .name = "DUMMY",
6373               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
6374               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6375             { .name = "DUMMY",
6376               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
6377               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6378             { .name = "DUMMY",
6379               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
6380               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6381             { .name = "DUMMY",
6382               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
6383               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6384             REGINFO_SENTINEL
6385         };
6386         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
6387             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
6388               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
6389               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
6390               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
6391               .readfn = midr_read },
6392             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6393             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6394               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6395               .access = PL1_R, .resetvalue = cpu->midr },
6396             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
6397               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
6398               .access = PL1_R, .resetvalue = cpu->midr },
6399             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
6400               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
6401               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
6402             REGINFO_SENTINEL
6403         };
6404         ARMCPRegInfo id_cp_reginfo[] = {
6405             /* These are common to v8 and pre-v8 */
6406             { .name = "CTR",
6407               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
6408               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6409             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
6410               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
6411               .access = PL0_R, .accessfn = ctr_el0_access,
6412               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
6413             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6414             { .name = "TCMTR",
6415               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
6416               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
6417             REGINFO_SENTINEL
6418         };
6419         /* TLBTR is specific to VMSA */
6420         ARMCPRegInfo id_tlbtr_reginfo = {
6421               .name = "TLBTR",
6422               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
6423               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
6424         };
6425         /* MPUIR is specific to PMSA V6+ */
6426         ARMCPRegInfo id_mpuir_reginfo = {
6427               .name = "MPUIR",
6428               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
6429               .access = PL1_R, .type = ARM_CP_CONST,
6430               .resetvalue = cpu->pmsav7_dregion << 8
6431         };
6432         ARMCPRegInfo crn0_wi_reginfo = {
6433             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
6434             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
6435             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
6436         };
6437 #ifdef CONFIG_USER_ONLY
6438         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
6439             { .name = "MIDR_EL1",
6440               .exported_bits = 0x00000000ffffffff },
6441             { .name = "REVIDR_EL1"                },
6442             REGUSERINFO_SENTINEL
6443         };
6444         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
6445 #endif
6446         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
6447             arm_feature(env, ARM_FEATURE_STRONGARM)) {
6448             ARMCPRegInfo *r;
6449             /* Register the blanket "writes ignored" value first to cover the
6450              * whole space. Then update the specific ID registers to allow write
6451              * access, so that they ignore writes rather than causing them to
6452              * UNDEF.
6453              */
6454             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
6455             for (r = id_pre_v8_midr_cp_reginfo;
6456                  r->type != ARM_CP_SENTINEL; r++) {
6457                 r->access = PL1_RW;
6458             }
6459             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
6460                 r->access = PL1_RW;
6461             }
6462             id_mpuir_reginfo.access = PL1_RW;
6463             id_tlbtr_reginfo.access = PL1_RW;
6464         }
6465         if (arm_feature(env, ARM_FEATURE_V8)) {
6466             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
6467         } else {
6468             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
6469         }
6470         define_arm_cp_regs(cpu, id_cp_reginfo);
6471         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
6472             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
6473         } else if (arm_feature(env, ARM_FEATURE_V7)) {
6474             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
6475         }
6476     }
6477 
6478     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
6479         ARMCPRegInfo mpidr_cp_reginfo[] = {
6480             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
6481               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
6482               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
6483             REGINFO_SENTINEL
6484         };
6485 #ifdef CONFIG_USER_ONLY
6486         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
6487             { .name = "MPIDR_EL1",
6488               .fixed_bits = 0x0000000080000000 },
6489             REGUSERINFO_SENTINEL
6490         };
6491         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
6492 #endif
6493         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
6494     }
6495 
6496     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
6497         ARMCPRegInfo auxcr_reginfo[] = {
6498             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
6499               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
6500               .access = PL1_RW, .type = ARM_CP_CONST,
6501               .resetvalue = cpu->reset_auxcr },
6502             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
6503               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
6504               .access = PL2_RW, .type = ARM_CP_CONST,
6505               .resetvalue = 0 },
6506             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
6507               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
6508               .access = PL3_RW, .type = ARM_CP_CONST,
6509               .resetvalue = 0 },
6510             REGINFO_SENTINEL
6511         };
6512         define_arm_cp_regs(cpu, auxcr_reginfo);
6513         if (arm_feature(env, ARM_FEATURE_V8)) {
6514             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6515             ARMCPRegInfo hactlr2_reginfo = {
6516                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
6517                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
6518                 .access = PL2_RW, .type = ARM_CP_CONST,
6519                 .resetvalue = 0
6520             };
6521             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
6522         }
6523     }
6524 
6525     if (arm_feature(env, ARM_FEATURE_CBAR)) {
6526         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6527             /* 32 bit view is [31:18] 0...0 [43:32]. */
6528             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
6529                 | extract64(cpu->reset_cbar, 32, 12);
6530             ARMCPRegInfo cbar_reginfo[] = {
6531                 { .name = "CBAR",
6532                   .type = ARM_CP_CONST,
6533                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6534                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
6535                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
6536                   .type = ARM_CP_CONST,
6537                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
6538                   .access = PL1_R, .resetvalue = cbar32 },
6539                 REGINFO_SENTINEL
6540             };
6541             /* We don't implement a r/w 64 bit CBAR currently */
6542             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
6543             define_arm_cp_regs(cpu, cbar_reginfo);
6544         } else {
6545             ARMCPRegInfo cbar = {
6546                 .name = "CBAR",
6547                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
6548                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
6549                 .fieldoffset = offsetof(CPUARMState,
6550                                         cp15.c15_config_base_address)
6551             };
6552             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
6553                 cbar.access = PL1_R;
6554                 cbar.fieldoffset = 0;
6555                 cbar.type = ARM_CP_CONST;
6556             }
6557             define_one_arm_cp_reg(cpu, &cbar);
6558         }
6559     }
6560 
6561     if (arm_feature(env, ARM_FEATURE_VBAR)) {
6562         ARMCPRegInfo vbar_cp_reginfo[] = {
6563             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
6564               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
6565               .access = PL1_RW, .writefn = vbar_write,
6566               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
6567                                      offsetof(CPUARMState, cp15.vbar_ns) },
6568               .resetvalue = 0 },
6569             REGINFO_SENTINEL
6570         };
6571         define_arm_cp_regs(cpu, vbar_cp_reginfo);
6572     }
6573 
6574     /* Generic registers whose values depend on the implementation */
6575     {
6576         ARMCPRegInfo sctlr = {
6577             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
6578             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6579             .access = PL1_RW,
6580             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
6581                                    offsetof(CPUARMState, cp15.sctlr_ns) },
6582             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
6583             .raw_writefn = raw_write,
6584         };
6585         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
6586             /* Normally we would always end the TB on an SCTLR write, but Linux
6587              * arch/arm/mach-pxa/sleep.S expects two instructions following
6588              * an MMU enable to execute from cache.  Imitate this behaviour.
6589              */
6590             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
6591         }
6592         define_one_arm_cp_reg(cpu, &sctlr);
6593     }
6594 
6595     if (cpu_isar_feature(aa64_lor, cpu)) {
6596         /*
6597          * A trivial implementation of ARMv8.1-LOR leaves all of these
6598          * registers fixed at 0, which indicates that there are zero
6599          * supported Limited Ordering regions.
6600          */
6601         static const ARMCPRegInfo lor_reginfo[] = {
6602             { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6603               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6604               .access = PL1_RW, .accessfn = access_lor_other,
6605               .type = ARM_CP_CONST, .resetvalue = 0 },
6606             { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6607               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6608               .access = PL1_RW, .accessfn = access_lor_other,
6609               .type = ARM_CP_CONST, .resetvalue = 0 },
6610             { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6611               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6612               .access = PL1_RW, .accessfn = access_lor_other,
6613               .type = ARM_CP_CONST, .resetvalue = 0 },
6614             { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6615               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6616               .access = PL1_RW, .accessfn = access_lor_other,
6617               .type = ARM_CP_CONST, .resetvalue = 0 },
6618             { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6619               .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6620               .access = PL1_R, .accessfn = access_lorid,
6621               .type = ARM_CP_CONST, .resetvalue = 0 },
6622             REGINFO_SENTINEL
6623         };
6624         define_arm_cp_regs(cpu, lor_reginfo);
6625     }
6626 
6627     if (cpu_isar_feature(aa64_sve, cpu)) {
6628         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
6629         if (arm_feature(env, ARM_FEATURE_EL2)) {
6630             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
6631         } else {
6632             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
6633         }
6634         if (arm_feature(env, ARM_FEATURE_EL3)) {
6635             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
6636         }
6637     }
6638 
6639 #ifdef TARGET_AARCH64
6640     if (cpu_isar_feature(aa64_pauth, cpu)) {
6641         define_arm_cp_regs(cpu, pauth_reginfo);
6642     }
6643 #endif
6644 }
6645 
6646 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
6647 {
6648     CPUState *cs = CPU(cpu);
6649     CPUARMState *env = &cpu->env;
6650 
6651     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
6652         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
6653                                  aarch64_fpu_gdb_set_reg,
6654                                  34, "aarch64-fpu.xml", 0);
6655     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
6656         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6657                                  51, "arm-neon.xml", 0);
6658     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
6659         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6660                                  35, "arm-vfp3.xml", 0);
6661     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
6662         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
6663                                  19, "arm-vfp.xml", 0);
6664     }
6665     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
6666                              arm_gen_dynamic_xml(cs),
6667                              "system-registers.xml", 0);
6668 }
6669 
6670 /* Sort alphabetically by type name, except for "any". */
6671 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
6672 {
6673     ObjectClass *class_a = (ObjectClass *)a;
6674     ObjectClass *class_b = (ObjectClass *)b;
6675     const char *name_a, *name_b;
6676 
6677     name_a = object_class_get_name(class_a);
6678     name_b = object_class_get_name(class_b);
6679     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
6680         return 1;
6681     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
6682         return -1;
6683     } else {
6684         return strcmp(name_a, name_b);
6685     }
6686 }
6687 
6688 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
6689 {
6690     ObjectClass *oc = data;
6691     CPUListState *s = user_data;
6692     const char *typename;
6693     char *name;
6694 
6695     typename = object_class_get_name(oc);
6696     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
6697     (*s->cpu_fprintf)(s->file, "  %s\n",
6698                       name);
6699     g_free(name);
6700 }
6701 
6702 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
6703 {
6704     CPUListState s = {
6705         .file = f,
6706         .cpu_fprintf = cpu_fprintf,
6707     };
6708     GSList *list;
6709 
6710     list = object_class_get_list(TYPE_ARM_CPU, false);
6711     list = g_slist_sort(list, arm_cpu_list_compare);
6712     (*cpu_fprintf)(f, "Available CPUs:\n");
6713     g_slist_foreach(list, arm_cpu_list_entry, &s);
6714     g_slist_free(list);
6715 }
6716 
6717 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
6718 {
6719     ObjectClass *oc = data;
6720     CpuDefinitionInfoList **cpu_list = user_data;
6721     CpuDefinitionInfoList *entry;
6722     CpuDefinitionInfo *info;
6723     const char *typename;
6724 
6725     typename = object_class_get_name(oc);
6726     info = g_malloc0(sizeof(*info));
6727     info->name = g_strndup(typename,
6728                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
6729     info->q_typename = g_strdup(typename);
6730 
6731     entry = g_malloc0(sizeof(*entry));
6732     entry->value = info;
6733     entry->next = *cpu_list;
6734     *cpu_list = entry;
6735 }
6736 
6737 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
6738 {
6739     CpuDefinitionInfoList *cpu_list = NULL;
6740     GSList *list;
6741 
6742     list = object_class_get_list(TYPE_ARM_CPU, false);
6743     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
6744     g_slist_free(list);
6745 
6746     return cpu_list;
6747 }
6748 
6749 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
6750                                    void *opaque, int state, int secstate,
6751                                    int crm, int opc1, int opc2,
6752                                    const char *name)
6753 {
6754     /* Private utility function for define_one_arm_cp_reg_with_opaque():
6755      * add a single reginfo struct to the hash table.
6756      */
6757     uint32_t *key = g_new(uint32_t, 1);
6758     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
6759     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
6760     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
6761 
6762     r2->name = g_strdup(name);
6763     /* Reset the secure state to the specific incoming state.  This is
6764      * necessary as the register may have been defined with both states.
6765      */
6766     r2->secure = secstate;
6767 
6768     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6769         /* Register is banked (using both entries in array).
6770          * Overwriting fieldoffset as the array is only used to define
6771          * banked registers but later only fieldoffset is used.
6772          */
6773         r2->fieldoffset = r->bank_fieldoffsets[ns];
6774     }
6775 
6776     if (state == ARM_CP_STATE_AA32) {
6777         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
6778             /* If the register is banked then we don't need to migrate or
6779              * reset the 32-bit instance in certain cases:
6780              *
6781              * 1) If the register has both 32-bit and 64-bit instances then we
6782              *    can count on the 64-bit instance taking care of the
6783              *    non-secure bank.
6784              * 2) If ARMv8 is enabled then we can count on a 64-bit version
6785              *    taking care of the secure bank.  This requires that separate
6786              *    32 and 64-bit definitions are provided.
6787              */
6788             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
6789                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
6790                 r2->type |= ARM_CP_ALIAS;
6791             }
6792         } else if ((secstate != r->secure) && !ns) {
6793             /* The register is not banked so we only want to allow migration of
6794              * the non-secure instance.
6795              */
6796             r2->type |= ARM_CP_ALIAS;
6797         }
6798 
6799         if (r->state == ARM_CP_STATE_BOTH) {
6800             /* We assume it is a cp15 register if the .cp field is left unset.
6801              */
6802             if (r2->cp == 0) {
6803                 r2->cp = 15;
6804             }
6805 
6806 #ifdef HOST_WORDS_BIGENDIAN
6807             if (r2->fieldoffset) {
6808                 r2->fieldoffset += sizeof(uint32_t);
6809             }
6810 #endif
6811         }
6812     }
6813     if (state == ARM_CP_STATE_AA64) {
6814         /* To allow abbreviation of ARMCPRegInfo
6815          * definitions, we treat cp == 0 as equivalent to
6816          * the value for "standard guest-visible sysreg".
6817          * STATE_BOTH definitions are also always "standard
6818          * sysreg" in their AArch64 view (the .cp value may
6819          * be non-zero for the benefit of the AArch32 view).
6820          */
6821         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
6822             r2->cp = CP_REG_ARM64_SYSREG_CP;
6823         }
6824         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
6825                                   r2->opc0, opc1, opc2);
6826     } else {
6827         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
6828     }
6829     if (opaque) {
6830         r2->opaque = opaque;
6831     }
6832     /* reginfo passed to helpers is correct for the actual access,
6833      * and is never ARM_CP_STATE_BOTH:
6834      */
6835     r2->state = state;
6836     /* Make sure reginfo passed to helpers for wildcarded regs
6837      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6838      */
6839     r2->crm = crm;
6840     r2->opc1 = opc1;
6841     r2->opc2 = opc2;
6842     /* By convention, for wildcarded registers only the first
6843      * entry is used for migration; the others are marked as
6844      * ALIAS so we don't try to transfer the register
6845      * multiple times. Special registers (ie NOP/WFI) are
6846      * never migratable and not even raw-accessible.
6847      */
6848     if ((r->type & ARM_CP_SPECIAL)) {
6849         r2->type |= ARM_CP_NO_RAW;
6850     }
6851     if (((r->crm == CP_ANY) && crm != 0) ||
6852         ((r->opc1 == CP_ANY) && opc1 != 0) ||
6853         ((r->opc2 == CP_ANY) && opc2 != 0)) {
6854         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
6855     }
6856 
6857     /* Check that raw accesses are either forbidden or handled. Note that
6858      * we can't assert this earlier because the setup of fieldoffset for
6859      * banked registers has to be done first.
6860      */
6861     if (!(r2->type & ARM_CP_NO_RAW)) {
6862         assert(!raw_accessors_invalid(r2));
6863     }
6864 
6865     /* Overriding of an existing definition must be explicitly
6866      * requested.
6867      */
6868     if (!(r->type & ARM_CP_OVERRIDE)) {
6869         ARMCPRegInfo *oldreg;
6870         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
6871         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
6872             fprintf(stderr, "Register redefined: cp=%d %d bit "
6873                     "crn=%d crm=%d opc1=%d opc2=%d, "
6874                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
6875                     r2->crn, r2->crm, r2->opc1, r2->opc2,
6876                     oldreg->name, r2->name);
6877             g_assert_not_reached();
6878         }
6879     }
6880     g_hash_table_insert(cpu->cp_regs, key, r2);
6881 }
6882 
6883 
6884 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
6885                                        const ARMCPRegInfo *r, void *opaque)
6886 {
6887     /* Define implementations of coprocessor registers.
6888      * We store these in a hashtable because typically
6889      * there are less than 150 registers in a space which
6890      * is 16*16*16*8*8 = 262144 in size.
6891      * Wildcarding is supported for the crm, opc1 and opc2 fields.
6892      * If a register is defined twice then the second definition is
6893      * used, so this can be used to define some generic registers and
6894      * then override them with implementation specific variations.
6895      * At least one of the original and the second definition should
6896      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6897      * against accidental use.
6898      *
6899      * The state field defines whether the register is to be
6900      * visible in the AArch32 or AArch64 execution state. If the
6901      * state is set to ARM_CP_STATE_BOTH then we synthesise a
6902      * reginfo structure for the AArch32 view, which sees the lower
6903      * 32 bits of the 64 bit register.
6904      *
6905      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6906      * be wildcarded. AArch64 registers are always considered to be 64
6907      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6908      * the register, if any.
6909      */
6910     int crm, opc1, opc2, state;
6911     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
6912     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
6913     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
6914     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
6915     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6916     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6917     /* 64 bit registers have only CRm and Opc1 fields */
6918     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6919     /* op0 only exists in the AArch64 encodings */
6920     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6921     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6922     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6923     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6924      * encodes a minimum access level for the register. We roll this
6925      * runtime check into our general permission check code, so check
6926      * here that the reginfo's specified permissions are strict enough
6927      * to encompass the generic architectural permission check.
6928      */
6929     if (r->state != ARM_CP_STATE_AA32) {
6930         int mask = 0;
6931         switch (r->opc1) {
6932         case 0:
6933             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6934             mask = PL0U_R | PL1_RW;
6935             break;
6936         case 1: case 2:
6937             /* min_EL EL1 */
6938             mask = PL1_RW;
6939             break;
6940         case 3:
6941             /* min_EL EL0 */
6942             mask = PL0_RW;
6943             break;
6944         case 4:
6945             /* min_EL EL2 */
6946             mask = PL2_RW;
6947             break;
6948         case 5:
6949             /* unallocated encoding, so not possible */
6950             assert(false);
6951             break;
6952         case 6:
6953             /* min_EL EL3 */
6954             mask = PL3_RW;
6955             break;
6956         case 7:
6957             /* min_EL EL1, secure mode only (we don't check the latter) */
6958             mask = PL1_RW;
6959             break;
6960         default:
6961             /* broken reginfo with out-of-range opc1 */
6962             assert(false);
6963             break;
6964         }
6965         /* assert our permissions are not too lax (stricter is fine) */
6966         assert((r->access & ~mask) == 0);
6967     }
6968 
6969     /* Check that the register definition has enough info to handle
6970      * reads and writes if they are permitted.
6971      */
6972     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6973         if (r->access & PL3_R) {
6974             assert((r->fieldoffset ||
6975                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6976                    r->readfn);
6977         }
6978         if (r->access & PL3_W) {
6979             assert((r->fieldoffset ||
6980                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6981                    r->writefn);
6982         }
6983     }
6984     /* Bad type field probably means missing sentinel at end of reg list */
6985     assert(cptype_valid(r->type));
6986     for (crm = crmmin; crm <= crmmax; crm++) {
6987         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6988             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6989                 for (state = ARM_CP_STATE_AA32;
6990                      state <= ARM_CP_STATE_AA64; state++) {
6991                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6992                         continue;
6993                     }
6994                     if (state == ARM_CP_STATE_AA32) {
6995                         /* Under AArch32 CP registers can be common
6996                          * (same for secure and non-secure world) or banked.
6997                          */
6998                         char *name;
6999 
7000                         switch (r->secure) {
7001                         case ARM_CP_SECSTATE_S:
7002                         case ARM_CP_SECSTATE_NS:
7003                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7004                                                    r->secure, crm, opc1, opc2,
7005                                                    r->name);
7006                             break;
7007                         default:
7008                             name = g_strdup_printf("%s_S", r->name);
7009                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7010                                                    ARM_CP_SECSTATE_S,
7011                                                    crm, opc1, opc2, name);
7012                             g_free(name);
7013                             add_cpreg_to_hashtable(cpu, r, opaque, state,
7014                                                    ARM_CP_SECSTATE_NS,
7015                                                    crm, opc1, opc2, r->name);
7016                             break;
7017                         }
7018                     } else {
7019                         /* AArch64 registers get mapped to non-secure instance
7020                          * of AArch32 */
7021                         add_cpreg_to_hashtable(cpu, r, opaque, state,
7022                                                ARM_CP_SECSTATE_NS,
7023                                                crm, opc1, opc2, r->name);
7024                     }
7025                 }
7026             }
7027         }
7028     }
7029 }
7030 
7031 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
7032                                     const ARMCPRegInfo *regs, void *opaque)
7033 {
7034     /* Define a whole list of registers */
7035     const ARMCPRegInfo *r;
7036     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7037         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
7038     }
7039 }
7040 
7041 /*
7042  * Modify ARMCPRegInfo for access from userspace.
7043  *
7044  * This is a data driven modification directed by
7045  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7046  * user-space cannot alter any values and dynamic values pertaining to
7047  * execution state are hidden from user space view anyway.
7048  */
7049 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
7050 {
7051     const ARMCPRegUserSpaceInfo *m;
7052     ARMCPRegInfo *r;
7053 
7054     for (m = mods; m->name; m++) {
7055         GPatternSpec *pat = NULL;
7056         if (m->is_glob) {
7057             pat = g_pattern_spec_new(m->name);
7058         }
7059         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
7060             if (pat && g_pattern_match_string(pat, r->name)) {
7061                 r->type = ARM_CP_CONST;
7062                 r->access = PL0U_R;
7063                 r->resetvalue = 0;
7064                 /* continue */
7065             } else if (strcmp(r->name, m->name) == 0) {
7066                 r->type = ARM_CP_CONST;
7067                 r->access = PL0U_R;
7068                 r->resetvalue &= m->exported_bits;
7069                 r->resetvalue |= m->fixed_bits;
7070                 break;
7071             }
7072         }
7073         if (pat) {
7074             g_pattern_spec_free(pat);
7075         }
7076     }
7077 }
7078 
7079 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
7080 {
7081     return g_hash_table_lookup(cpregs, &encoded_cp);
7082 }
7083 
7084 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
7085                          uint64_t value)
7086 {
7087     /* Helper coprocessor write function for write-ignore registers */
7088 }
7089 
7090 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
7091 {
7092     /* Helper coprocessor write function for read-as-zero registers */
7093     return 0;
7094 }
7095 
7096 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
7097 {
7098     /* Helper coprocessor reset function for do-nothing-on-reset registers */
7099 }
7100 
7101 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
7102 {
7103     /* Return true if it is not valid for us to switch to
7104      * this CPU mode (ie all the UNPREDICTABLE cases in
7105      * the ARM ARM CPSRWriteByInstr pseudocode).
7106      */
7107 
7108     /* Changes to or from Hyp via MSR and CPS are illegal. */
7109     if (write_type == CPSRWriteByInstr &&
7110         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
7111          mode == ARM_CPU_MODE_HYP)) {
7112         return 1;
7113     }
7114 
7115     switch (mode) {
7116     case ARM_CPU_MODE_USR:
7117         return 0;
7118     case ARM_CPU_MODE_SYS:
7119     case ARM_CPU_MODE_SVC:
7120     case ARM_CPU_MODE_ABT:
7121     case ARM_CPU_MODE_UND:
7122     case ARM_CPU_MODE_IRQ:
7123     case ARM_CPU_MODE_FIQ:
7124         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7125          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7126          */
7127         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7128          * and CPS are treated as illegal mode changes.
7129          */
7130         if (write_type == CPSRWriteByInstr &&
7131             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
7132             (arm_hcr_el2_eff(env) & HCR_TGE)) {
7133             return 1;
7134         }
7135         return 0;
7136     case ARM_CPU_MODE_HYP:
7137         return !arm_feature(env, ARM_FEATURE_EL2)
7138             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
7139     case ARM_CPU_MODE_MON:
7140         return arm_current_el(env) < 3;
7141     default:
7142         return 1;
7143     }
7144 }
7145 
7146 uint32_t cpsr_read(CPUARMState *env)
7147 {
7148     int ZF;
7149     ZF = (env->ZF == 0);
7150     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
7151         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
7152         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
7153         | ((env->condexec_bits & 0xfc) << 8)
7154         | (env->GE << 16) | (env->daif & CPSR_AIF);
7155 }
7156 
7157 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
7158                 CPSRWriteType write_type)
7159 {
7160     uint32_t changed_daif;
7161 
7162     if (mask & CPSR_NZCV) {
7163         env->ZF = (~val) & CPSR_Z;
7164         env->NF = val;
7165         env->CF = (val >> 29) & 1;
7166         env->VF = (val << 3) & 0x80000000;
7167     }
7168     if (mask & CPSR_Q)
7169         env->QF = ((val & CPSR_Q) != 0);
7170     if (mask & CPSR_T)
7171         env->thumb = ((val & CPSR_T) != 0);
7172     if (mask & CPSR_IT_0_1) {
7173         env->condexec_bits &= ~3;
7174         env->condexec_bits |= (val >> 25) & 3;
7175     }
7176     if (mask & CPSR_IT_2_7) {
7177         env->condexec_bits &= 3;
7178         env->condexec_bits |= (val >> 8) & 0xfc;
7179     }
7180     if (mask & CPSR_GE) {
7181         env->GE = (val >> 16) & 0xf;
7182     }
7183 
7184     /* In a V7 implementation that includes the security extensions but does
7185      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7186      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7187      * bits respectively.
7188      *
7189      * In a V8 implementation, it is permitted for privileged software to
7190      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7191      */
7192     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
7193         arm_feature(env, ARM_FEATURE_EL3) &&
7194         !arm_feature(env, ARM_FEATURE_EL2) &&
7195         !arm_is_secure(env)) {
7196 
7197         changed_daif = (env->daif ^ val) & mask;
7198 
7199         if (changed_daif & CPSR_A) {
7200             /* Check to see if we are allowed to change the masking of async
7201              * abort exceptions from a non-secure state.
7202              */
7203             if (!(env->cp15.scr_el3 & SCR_AW)) {
7204                 qemu_log_mask(LOG_GUEST_ERROR,
7205                               "Ignoring attempt to switch CPSR_A flag from "
7206                               "non-secure world with SCR.AW bit clear\n");
7207                 mask &= ~CPSR_A;
7208             }
7209         }
7210 
7211         if (changed_daif & CPSR_F) {
7212             /* Check to see if we are allowed to change the masking of FIQ
7213              * exceptions from a non-secure state.
7214              */
7215             if (!(env->cp15.scr_el3 & SCR_FW)) {
7216                 qemu_log_mask(LOG_GUEST_ERROR,
7217                               "Ignoring attempt to switch CPSR_F flag from "
7218                               "non-secure world with SCR.FW bit clear\n");
7219                 mask &= ~CPSR_F;
7220             }
7221 
7222             /* Check whether non-maskable FIQ (NMFI) support is enabled.
7223              * If this bit is set software is not allowed to mask
7224              * FIQs, but is allowed to set CPSR_F to 0.
7225              */
7226             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
7227                 (val & CPSR_F)) {
7228                 qemu_log_mask(LOG_GUEST_ERROR,
7229                               "Ignoring attempt to enable CPSR_F flag "
7230                               "(non-maskable FIQ [NMFI] support enabled)\n");
7231                 mask &= ~CPSR_F;
7232             }
7233         }
7234     }
7235 
7236     env->daif &= ~(CPSR_AIF & mask);
7237     env->daif |= val & CPSR_AIF & mask;
7238 
7239     if (write_type != CPSRWriteRaw &&
7240         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
7241         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
7242             /* Note that we can only get here in USR mode if this is a
7243              * gdb stub write; for this case we follow the architectural
7244              * behaviour for guest writes in USR mode of ignoring an attempt
7245              * to switch mode. (Those are caught by translate.c for writes
7246              * triggered by guest instructions.)
7247              */
7248             mask &= ~CPSR_M;
7249         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
7250             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7251              * v7, and has defined behaviour in v8:
7252              *  + leave CPSR.M untouched
7253              *  + allow changes to the other CPSR fields
7254              *  + set PSTATE.IL
7255              * For user changes via the GDB stub, we don't set PSTATE.IL,
7256              * as this would be unnecessarily harsh for a user error.
7257              */
7258             mask &= ~CPSR_M;
7259             if (write_type != CPSRWriteByGDBStub &&
7260                 arm_feature(env, ARM_FEATURE_V8)) {
7261                 mask |= CPSR_IL;
7262                 val |= CPSR_IL;
7263             }
7264             qemu_log_mask(LOG_GUEST_ERROR,
7265                           "Illegal AArch32 mode switch attempt from %s to %s\n",
7266                           aarch32_mode_name(env->uncached_cpsr),
7267                           aarch32_mode_name(val));
7268         } else {
7269             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
7270                           write_type == CPSRWriteExceptionReturn ?
7271                           "Exception return from AArch32" :
7272                           "AArch32 mode switch from",
7273                           aarch32_mode_name(env->uncached_cpsr),
7274                           aarch32_mode_name(val), env->regs[15]);
7275             switch_mode(env, val & CPSR_M);
7276         }
7277     }
7278     mask &= ~CACHED_CPSR_BITS;
7279     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
7280 }
7281 
7282 /* Sign/zero extend */
7283 uint32_t HELPER(sxtb16)(uint32_t x)
7284 {
7285     uint32_t res;
7286     res = (uint16_t)(int8_t)x;
7287     res |= (uint32_t)(int8_t)(x >> 16) << 16;
7288     return res;
7289 }
7290 
7291 uint32_t HELPER(uxtb16)(uint32_t x)
7292 {
7293     uint32_t res;
7294     res = (uint16_t)(uint8_t)x;
7295     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
7296     return res;
7297 }
7298 
7299 int32_t HELPER(sdiv)(int32_t num, int32_t den)
7300 {
7301     if (den == 0)
7302       return 0;
7303     if (num == INT_MIN && den == -1)
7304       return INT_MIN;
7305     return num / den;
7306 }
7307 
7308 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
7309 {
7310     if (den == 0)
7311       return 0;
7312     return num / den;
7313 }
7314 
7315 uint32_t HELPER(rbit)(uint32_t x)
7316 {
7317     return revbit32(x);
7318 }
7319 
7320 #ifdef CONFIG_USER_ONLY
7321 
7322 /* These should probably raise undefined insn exceptions.  */
7323 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
7324 {
7325     ARMCPU *cpu = arm_env_get_cpu(env);
7326 
7327     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
7328 }
7329 
7330 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
7331 {
7332     ARMCPU *cpu = arm_env_get_cpu(env);
7333 
7334     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
7335     return 0;
7336 }
7337 
7338 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7339 {
7340     /* translate.c should never generate calls here in user-only mode */
7341     g_assert_not_reached();
7342 }
7343 
7344 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7345 {
7346     /* translate.c should never generate calls here in user-only mode */
7347     g_assert_not_reached();
7348 }
7349 
7350 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
7351 {
7352     /* The TT instructions can be used by unprivileged code, but in
7353      * user-only emulation we don't have the MPU.
7354      * Luckily since we know we are NonSecure unprivileged (and that in
7355      * turn means that the A flag wasn't specified), all the bits in the
7356      * register must be zero:
7357      *  IREGION: 0 because IRVALID is 0
7358      *  IRVALID: 0 because NS
7359      *  S: 0 because NS
7360      *  NSRW: 0 because NS
7361      *  NSR: 0 because NS
7362      *  RW: 0 because unpriv and A flag not set
7363      *  R: 0 because unpriv and A flag not set
7364      *  SRVALID: 0 because NS
7365      *  MRVALID: 0 because unpriv and A flag not set
7366      *  SREGION: 0 becaus SRVALID is 0
7367      *  MREGION: 0 because MRVALID is 0
7368      */
7369     return 0;
7370 }
7371 
7372 static void switch_mode(CPUARMState *env, int mode)
7373 {
7374     ARMCPU *cpu = arm_env_get_cpu(env);
7375 
7376     if (mode != ARM_CPU_MODE_USR) {
7377         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
7378     }
7379 }
7380 
7381 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7382                                  uint32_t cur_el, bool secure)
7383 {
7384     return 1;
7385 }
7386 
7387 void aarch64_sync_64_to_32(CPUARMState *env)
7388 {
7389     g_assert_not_reached();
7390 }
7391 
7392 #else
7393 
7394 static void switch_mode(CPUARMState *env, int mode)
7395 {
7396     int old_mode;
7397     int i;
7398 
7399     old_mode = env->uncached_cpsr & CPSR_M;
7400     if (mode == old_mode)
7401         return;
7402 
7403     if (old_mode == ARM_CPU_MODE_FIQ) {
7404         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
7405         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
7406     } else if (mode == ARM_CPU_MODE_FIQ) {
7407         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
7408         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
7409     }
7410 
7411     i = bank_number(old_mode);
7412     env->banked_r13[i] = env->regs[13];
7413     env->banked_spsr[i] = env->spsr;
7414 
7415     i = bank_number(mode);
7416     env->regs[13] = env->banked_r13[i];
7417     env->spsr = env->banked_spsr[i];
7418 
7419     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
7420     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
7421 }
7422 
7423 /* Physical Interrupt Target EL Lookup Table
7424  *
7425  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7426  *
7427  * The below multi-dimensional table is used for looking up the target
7428  * exception level given numerous condition criteria.  Specifically, the
7429  * target EL is based on SCR and HCR routing controls as well as the
7430  * currently executing EL and secure state.
7431  *
7432  *    Dimensions:
7433  *    target_el_table[2][2][2][2][2][4]
7434  *                    |  |  |  |  |  +--- Current EL
7435  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
7436  *                    |  |  |  +--------- HCR mask override
7437  *                    |  |  +------------ SCR exec state control
7438  *                    |  +--------------- SCR mask override
7439  *                    +------------------ 32-bit(0)/64-bit(1) EL3
7440  *
7441  *    The table values are as such:
7442  *    0-3 = EL0-EL3
7443  *     -1 = Cannot occur
7444  *
7445  * The ARM ARM target EL table includes entries indicating that an "exception
7446  * is not taken".  The two cases where this is applicable are:
7447  *    1) An exception is taken from EL3 but the SCR does not have the exception
7448  *    routed to EL3.
7449  *    2) An exception is taken from EL2 but the HCR does not have the exception
7450  *    routed to EL2.
7451  * In these two cases, the below table contain a target of EL1.  This value is
7452  * returned as it is expected that the consumer of the table data will check
7453  * for "target EL >= current EL" to ensure the exception is not taken.
7454  *
7455  *            SCR     HCR
7456  *         64  EA     AMO                 From
7457  *        BIT IRQ     IMO      Non-secure         Secure
7458  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
7459  */
7460 static const int8_t target_el_table[2][2][2][2][2][4] = {
7461     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7462        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
7463       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
7464        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
7465      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7466        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
7467       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
7468        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
7469     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
7470        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
7471       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
7472        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
7473      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7474        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
7475       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
7476        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
7477 };
7478 
7479 /*
7480  * Determine the target EL for physical exceptions
7481  */
7482 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
7483                                  uint32_t cur_el, bool secure)
7484 {
7485     CPUARMState *env = cs->env_ptr;
7486     bool rw;
7487     bool scr;
7488     bool hcr;
7489     int target_el;
7490     /* Is the highest EL AArch64? */
7491     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
7492     uint64_t hcr_el2;
7493 
7494     if (arm_feature(env, ARM_FEATURE_EL3)) {
7495         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
7496     } else {
7497         /* Either EL2 is the highest EL (and so the EL2 register width
7498          * is given by is64); or there is no EL2 or EL3, in which case
7499          * the value of 'rw' does not affect the table lookup anyway.
7500          */
7501         rw = is64;
7502     }
7503 
7504     hcr_el2 = arm_hcr_el2_eff(env);
7505     switch (excp_idx) {
7506     case EXCP_IRQ:
7507         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
7508         hcr = hcr_el2 & HCR_IMO;
7509         break;
7510     case EXCP_FIQ:
7511         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
7512         hcr = hcr_el2 & HCR_FMO;
7513         break;
7514     default:
7515         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
7516         hcr = hcr_el2 & HCR_AMO;
7517         break;
7518     };
7519 
7520     /* Perform a table-lookup for the target EL given the current state */
7521     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
7522 
7523     assert(target_el > 0);
7524 
7525     return target_el;
7526 }
7527 
7528 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
7529                             ARMMMUIdx mmu_idx, bool ignfault)
7530 {
7531     CPUState *cs = CPU(cpu);
7532     CPUARMState *env = &cpu->env;
7533     MemTxAttrs attrs = {};
7534     MemTxResult txres;
7535     target_ulong page_size;
7536     hwaddr physaddr;
7537     int prot;
7538     ARMMMUFaultInfo fi = {};
7539     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7540     int exc;
7541     bool exc_secure;
7542 
7543     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
7544                       &attrs, &prot, &page_size, &fi, NULL)) {
7545         /* MPU/SAU lookup failed */
7546         if (fi.type == ARMFault_QEMU_SFault) {
7547             qemu_log_mask(CPU_LOG_INT,
7548                           "...SecureFault with SFSR.AUVIOL during stacking\n");
7549             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7550             env->v7m.sfar = addr;
7551             exc = ARMV7M_EXCP_SECURE;
7552             exc_secure = false;
7553         } else {
7554             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
7555             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
7556             exc = ARMV7M_EXCP_MEM;
7557             exc_secure = secure;
7558         }
7559         goto pend_fault;
7560     }
7561     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
7562                          attrs, &txres);
7563     if (txres != MEMTX_OK) {
7564         /* BusFault trying to write the data */
7565         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
7566         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
7567         exc = ARMV7M_EXCP_BUS;
7568         exc_secure = false;
7569         goto pend_fault;
7570     }
7571     return true;
7572 
7573 pend_fault:
7574     /* By pending the exception at this point we are making
7575      * the IMPDEF choice "overridden exceptions pended" (see the
7576      * MergeExcInfo() pseudocode). The other choice would be to not
7577      * pend them now and then make a choice about which to throw away
7578      * later if we have two derived exceptions.
7579      * The only case when we must not pend the exception but instead
7580      * throw it away is if we are doing the push of the callee registers
7581      * and we've already generated a derived exception. Even in this
7582      * case we will still update the fault status registers.
7583      */
7584     if (!ignfault) {
7585         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
7586     }
7587     return false;
7588 }
7589 
7590 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
7591                            ARMMMUIdx mmu_idx)
7592 {
7593     CPUState *cs = CPU(cpu);
7594     CPUARMState *env = &cpu->env;
7595     MemTxAttrs attrs = {};
7596     MemTxResult txres;
7597     target_ulong page_size;
7598     hwaddr physaddr;
7599     int prot;
7600     ARMMMUFaultInfo fi = {};
7601     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
7602     int exc;
7603     bool exc_secure;
7604     uint32_t value;
7605 
7606     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
7607                       &attrs, &prot, &page_size, &fi, NULL)) {
7608         /* MPU/SAU lookup failed */
7609         if (fi.type == ARMFault_QEMU_SFault) {
7610             qemu_log_mask(CPU_LOG_INT,
7611                           "...SecureFault with SFSR.AUVIOL during unstack\n");
7612             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
7613             env->v7m.sfar = addr;
7614             exc = ARMV7M_EXCP_SECURE;
7615             exc_secure = false;
7616         } else {
7617             qemu_log_mask(CPU_LOG_INT,
7618                           "...MemManageFault with CFSR.MUNSTKERR\n");
7619             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
7620             exc = ARMV7M_EXCP_MEM;
7621             exc_secure = secure;
7622         }
7623         goto pend_fault;
7624     }
7625 
7626     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
7627                               attrs, &txres);
7628     if (txres != MEMTX_OK) {
7629         /* BusFault trying to read the data */
7630         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
7631         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
7632         exc = ARMV7M_EXCP_BUS;
7633         exc_secure = false;
7634         goto pend_fault;
7635     }
7636 
7637     *dest = value;
7638     return true;
7639 
7640 pend_fault:
7641     /* By pending the exception at this point we are making
7642      * the IMPDEF choice "overridden exceptions pended" (see the
7643      * MergeExcInfo() pseudocode). The other choice would be to not
7644      * pend them now and then make a choice about which to throw away
7645      * later if we have two derived exceptions.
7646      */
7647     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
7648     return false;
7649 }
7650 
7651 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7652  * This may change the current stack pointer between Main and Process
7653  * stack pointers if it is done for the CONTROL register for the current
7654  * security state.
7655  */
7656 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
7657                                                  bool new_spsel,
7658                                                  bool secstate)
7659 {
7660     bool old_is_psp = v7m_using_psp(env);
7661 
7662     env->v7m.control[secstate] =
7663         deposit32(env->v7m.control[secstate],
7664                   R_V7M_CONTROL_SPSEL_SHIFT,
7665                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
7666 
7667     if (secstate == env->v7m.secure) {
7668         bool new_is_psp = v7m_using_psp(env);
7669         uint32_t tmp;
7670 
7671         if (old_is_psp != new_is_psp) {
7672             tmp = env->v7m.other_sp;
7673             env->v7m.other_sp = env->regs[13];
7674             env->regs[13] = tmp;
7675         }
7676     }
7677 }
7678 
7679 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7680  * stack pointer between Main and Process stack pointers.
7681  */
7682 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
7683 {
7684     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
7685 }
7686 
7687 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
7688 {
7689     /* Write a new value to v7m.exception, thus transitioning into or out
7690      * of Handler mode; this may result in a change of active stack pointer.
7691      */
7692     bool new_is_psp, old_is_psp = v7m_using_psp(env);
7693     uint32_t tmp;
7694 
7695     env->v7m.exception = new_exc;
7696 
7697     new_is_psp = v7m_using_psp(env);
7698 
7699     if (old_is_psp != new_is_psp) {
7700         tmp = env->v7m.other_sp;
7701         env->v7m.other_sp = env->regs[13];
7702         env->regs[13] = tmp;
7703     }
7704 }
7705 
7706 /* Switch M profile security state between NS and S */
7707 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
7708 {
7709     uint32_t new_ss_msp, new_ss_psp;
7710 
7711     if (env->v7m.secure == new_secstate) {
7712         return;
7713     }
7714 
7715     /* All the banked state is accessed by looking at env->v7m.secure
7716      * except for the stack pointer; rearrange the SP appropriately.
7717      */
7718     new_ss_msp = env->v7m.other_ss_msp;
7719     new_ss_psp = env->v7m.other_ss_psp;
7720 
7721     if (v7m_using_psp(env)) {
7722         env->v7m.other_ss_psp = env->regs[13];
7723         env->v7m.other_ss_msp = env->v7m.other_sp;
7724     } else {
7725         env->v7m.other_ss_msp = env->regs[13];
7726         env->v7m.other_ss_psp = env->v7m.other_sp;
7727     }
7728 
7729     env->v7m.secure = new_secstate;
7730 
7731     if (v7m_using_psp(env)) {
7732         env->regs[13] = new_ss_psp;
7733         env->v7m.other_sp = new_ss_msp;
7734     } else {
7735         env->regs[13] = new_ss_msp;
7736         env->v7m.other_sp = new_ss_psp;
7737     }
7738 }
7739 
7740 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
7741 {
7742     /* Handle v7M BXNS:
7743      *  - if the return value is a magic value, do exception return (like BX)
7744      *  - otherwise bit 0 of the return value is the target security state
7745      */
7746     uint32_t min_magic;
7747 
7748     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7749         /* Covers FNC_RETURN and EXC_RETURN magic */
7750         min_magic = FNC_RETURN_MIN_MAGIC;
7751     } else {
7752         /* EXC_RETURN magic only */
7753         min_magic = EXC_RETURN_MIN_MAGIC;
7754     }
7755 
7756     if (dest >= min_magic) {
7757         /* This is an exception return magic value; put it where
7758          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7759          * Note that if we ever add gen_ss_advance() singlestep support to
7760          * M profile this should count as an "instruction execution complete"
7761          * event (compare gen_bx_excret_final_code()).
7762          */
7763         env->regs[15] = dest & ~1;
7764         env->thumb = dest & 1;
7765         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
7766         /* notreached */
7767     }
7768 
7769     /* translate.c should have made BXNS UNDEF unless we're secure */
7770     assert(env->v7m.secure);
7771 
7772     switch_v7m_security_state(env, dest & 1);
7773     env->thumb = 1;
7774     env->regs[15] = dest & ~1;
7775 }
7776 
7777 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
7778 {
7779     /* Handle v7M BLXNS:
7780      *  - bit 0 of the destination address is the target security state
7781      */
7782 
7783     /* At this point regs[15] is the address just after the BLXNS */
7784     uint32_t nextinst = env->regs[15] | 1;
7785     uint32_t sp = env->regs[13] - 8;
7786     uint32_t saved_psr;
7787 
7788     /* translate.c will have made BLXNS UNDEF unless we're secure */
7789     assert(env->v7m.secure);
7790 
7791     if (dest & 1) {
7792         /* target is Secure, so this is just a normal BLX,
7793          * except that the low bit doesn't indicate Thumb/not.
7794          */
7795         env->regs[14] = nextinst;
7796         env->thumb = 1;
7797         env->regs[15] = dest & ~1;
7798         return;
7799     }
7800 
7801     /* Target is non-secure: first push a stack frame */
7802     if (!QEMU_IS_ALIGNED(sp, 8)) {
7803         qemu_log_mask(LOG_GUEST_ERROR,
7804                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
7805     }
7806 
7807     if (sp < v7m_sp_limit(env)) {
7808         raise_exception(env, EXCP_STKOF, 0, 1);
7809     }
7810 
7811     saved_psr = env->v7m.exception;
7812     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
7813         saved_psr |= XPSR_SFPA;
7814     }
7815 
7816     /* Note that these stores can throw exceptions on MPU faults */
7817     cpu_stl_data(env, sp, nextinst);
7818     cpu_stl_data(env, sp + 4, saved_psr);
7819 
7820     env->regs[13] = sp;
7821     env->regs[14] = 0xfeffffff;
7822     if (arm_v7m_is_handler_mode(env)) {
7823         /* Write a dummy value to IPSR, to avoid leaking the current secure
7824          * exception number to non-secure code. This is guaranteed not
7825          * to cause write_v7m_exception() to actually change stacks.
7826          */
7827         write_v7m_exception(env, 1);
7828     }
7829     switch_v7m_security_state(env, 0);
7830     env->thumb = 1;
7831     env->regs[15] = dest;
7832 }
7833 
7834 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
7835                                 bool spsel)
7836 {
7837     /* Return a pointer to the location where we currently store the
7838      * stack pointer for the requested security state and thread mode.
7839      * This pointer will become invalid if the CPU state is updated
7840      * such that the stack pointers are switched around (eg changing
7841      * the SPSEL control bit).
7842      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7843      * Unlike that pseudocode, we require the caller to pass us in the
7844      * SPSEL control bit value; this is because we also use this
7845      * function in handling of pushing of the callee-saves registers
7846      * part of the v8M stack frame (pseudocode PushCalleeStack()),
7847      * and in the tailchain codepath the SPSEL bit comes from the exception
7848      * return magic LR value from the previous exception. The pseudocode
7849      * opencodes the stack-selection in PushCalleeStack(), but we prefer
7850      * to make this utility function generic enough to do the job.
7851      */
7852     bool want_psp = threadmode && spsel;
7853 
7854     if (secure == env->v7m.secure) {
7855         if (want_psp == v7m_using_psp(env)) {
7856             return &env->regs[13];
7857         } else {
7858             return &env->v7m.other_sp;
7859         }
7860     } else {
7861         if (want_psp) {
7862             return &env->v7m.other_ss_psp;
7863         } else {
7864             return &env->v7m.other_ss_msp;
7865         }
7866     }
7867 }
7868 
7869 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
7870                                 uint32_t *pvec)
7871 {
7872     CPUState *cs = CPU(cpu);
7873     CPUARMState *env = &cpu->env;
7874     MemTxResult result;
7875     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
7876     uint32_t vector_entry;
7877     MemTxAttrs attrs = {};
7878     ARMMMUIdx mmu_idx;
7879     bool exc_secure;
7880 
7881     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
7882 
7883     /* We don't do a get_phys_addr() here because the rules for vector
7884      * loads are special: they always use the default memory map, and
7885      * the default memory map permits reads from all addresses.
7886      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7887      * that we want this special case which would always say "yes",
7888      * we just do the SAU lookup here followed by a direct physical load.
7889      */
7890     attrs.secure = targets_secure;
7891     attrs.user = false;
7892 
7893     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7894         V8M_SAttributes sattrs = {};
7895 
7896         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
7897         if (sattrs.ns) {
7898             attrs.secure = false;
7899         } else if (!targets_secure) {
7900             /* NS access to S memory */
7901             goto load_fail;
7902         }
7903     }
7904 
7905     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
7906                                      attrs, &result);
7907     if (result != MEMTX_OK) {
7908         goto load_fail;
7909     }
7910     *pvec = vector_entry;
7911     return true;
7912 
7913 load_fail:
7914     /* All vector table fetch fails are reported as HardFault, with
7915      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7916      * technically the underlying exception is a MemManage or BusFault
7917      * that is escalated to HardFault.) This is a terminal exception,
7918      * so we will either take the HardFault immediately or else enter
7919      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7920      */
7921     exc_secure = targets_secure ||
7922         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
7923     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
7924     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
7925     return false;
7926 }
7927 
7928 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7929                                   bool ignore_faults)
7930 {
7931     /* For v8M, push the callee-saves register part of the stack frame.
7932      * Compare the v8M pseudocode PushCalleeStack().
7933      * In the tailchaining case this may not be the current stack.
7934      */
7935     CPUARMState *env = &cpu->env;
7936     uint32_t *frame_sp_p;
7937     uint32_t frameptr;
7938     ARMMMUIdx mmu_idx;
7939     bool stacked_ok;
7940     uint32_t limit;
7941     bool want_psp;
7942 
7943     if (dotailchain) {
7944         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
7945         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
7946             !mode;
7947 
7948         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
7949         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
7950                                     lr & R_V7M_EXCRET_SPSEL_MASK);
7951         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
7952         if (want_psp) {
7953             limit = env->v7m.psplim[M_REG_S];
7954         } else {
7955             limit = env->v7m.msplim[M_REG_S];
7956         }
7957     } else {
7958         mmu_idx = arm_mmu_idx(env);
7959         frame_sp_p = &env->regs[13];
7960         limit = v7m_sp_limit(env);
7961     }
7962 
7963     frameptr = *frame_sp_p - 0x28;
7964     if (frameptr < limit) {
7965         /*
7966          * Stack limit failure: set SP to the limit value, and generate
7967          * STKOF UsageFault. Stack pushes below the limit must not be
7968          * performed. It is IMPDEF whether pushes above the limit are
7969          * performed; we choose not to.
7970          */
7971         qemu_log_mask(CPU_LOG_INT,
7972                       "...STKOF during callee-saves register stacking\n");
7973         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7974         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7975                                 env->v7m.secure);
7976         *frame_sp_p = limit;
7977         return true;
7978     }
7979 
7980     /* Write as much of the stack frame as we can. A write failure may
7981      * cause us to pend a derived exception.
7982      */
7983     stacked_ok =
7984         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7985         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7986                         ignore_faults) &&
7987         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7988                         ignore_faults) &&
7989         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7990                         ignore_faults) &&
7991         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7992                         ignore_faults) &&
7993         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7994                         ignore_faults) &&
7995         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7996                         ignore_faults) &&
7997         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7998                         ignore_faults) &&
7999         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
8000                         ignore_faults);
8001 
8002     /* Update SP regardless of whether any of the stack accesses failed. */
8003     *frame_sp_p = frameptr;
8004 
8005     return !stacked_ok;
8006 }
8007 
8008 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
8009                                 bool ignore_stackfaults)
8010 {
8011     /* Do the "take the exception" parts of exception entry,
8012      * but not the pushing of state to the stack. This is
8013      * similar to the pseudocode ExceptionTaken() function.
8014      */
8015     CPUARMState *env = &cpu->env;
8016     uint32_t addr;
8017     bool targets_secure;
8018     int exc;
8019     bool push_failed = false;
8020 
8021     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
8022     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
8023                   targets_secure ? "secure" : "nonsecure", exc);
8024 
8025     if (arm_feature(env, ARM_FEATURE_V8)) {
8026         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8027             (lr & R_V7M_EXCRET_S_MASK)) {
8028             /* The background code (the owner of the registers in the
8029              * exception frame) is Secure. This means it may either already
8030              * have or now needs to push callee-saves registers.
8031              */
8032             if (targets_secure) {
8033                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
8034                     /* We took an exception from Secure to NonSecure
8035                      * (which means the callee-saved registers got stacked)
8036                      * and are now tailchaining to a Secure exception.
8037                      * Clear DCRS so eventual return from this Secure
8038                      * exception unstacks the callee-saved registers.
8039                      */
8040                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
8041                 }
8042             } else {
8043                 /* We're going to a non-secure exception; push the
8044                  * callee-saves registers to the stack now, if they're
8045                  * not already saved.
8046                  */
8047                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
8048                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
8049                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
8050                                                         ignore_stackfaults);
8051                 }
8052                 lr |= R_V7M_EXCRET_DCRS_MASK;
8053             }
8054         }
8055 
8056         lr &= ~R_V7M_EXCRET_ES_MASK;
8057         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8058             lr |= R_V7M_EXCRET_ES_MASK;
8059         }
8060         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
8061         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
8062             lr |= R_V7M_EXCRET_SPSEL_MASK;
8063         }
8064 
8065         /* Clear registers if necessary to prevent non-secure exception
8066          * code being able to see register values from secure code.
8067          * Where register values become architecturally UNKNOWN we leave
8068          * them with their previous values.
8069          */
8070         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8071             if (!targets_secure) {
8072                 /* Always clear the caller-saved registers (they have been
8073                  * pushed to the stack earlier in v7m_push_stack()).
8074                  * Clear callee-saved registers if the background code is
8075                  * Secure (in which case these regs were saved in
8076                  * v7m_push_callee_stack()).
8077                  */
8078                 int i;
8079 
8080                 for (i = 0; i < 13; i++) {
8081                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8082                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
8083                         env->regs[i] = 0;
8084                     }
8085                 }
8086                 /* Clear EAPSR */
8087                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
8088             }
8089         }
8090     }
8091 
8092     if (push_failed && !ignore_stackfaults) {
8093         /* Derived exception on callee-saves register stacking:
8094          * we might now want to take a different exception which
8095          * targets a different security state, so try again from the top.
8096          */
8097         qemu_log_mask(CPU_LOG_INT,
8098                       "...derived exception on callee-saves register stacking");
8099         v7m_exception_taken(cpu, lr, true, true);
8100         return;
8101     }
8102 
8103     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
8104         /* Vector load failed: derived exception */
8105         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
8106         v7m_exception_taken(cpu, lr, true, true);
8107         return;
8108     }
8109 
8110     /* Now we've done everything that might cause a derived exception
8111      * we can go ahead and activate whichever exception we're going to
8112      * take (which might now be the derived exception).
8113      */
8114     armv7m_nvic_acknowledge_irq(env->nvic);
8115 
8116     /* Switch to target security state -- must do this before writing SPSEL */
8117     switch_v7m_security_state(env, targets_secure);
8118     write_v7m_control_spsel(env, 0);
8119     arm_clear_exclusive(env);
8120     /* Clear IT bits */
8121     env->condexec_bits = 0;
8122     env->regs[14] = lr;
8123     env->regs[15] = addr & 0xfffffffe;
8124     env->thumb = addr & 1;
8125 }
8126 
8127 static bool v7m_push_stack(ARMCPU *cpu)
8128 {
8129     /* Do the "set up stack frame" part of exception entry,
8130      * similar to pseudocode PushStack().
8131      * Return true if we generate a derived exception (and so
8132      * should ignore further stack faults trying to process
8133      * that derived exception.)
8134      */
8135     bool stacked_ok;
8136     CPUARMState *env = &cpu->env;
8137     uint32_t xpsr = xpsr_read(env);
8138     uint32_t frameptr = env->regs[13];
8139     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
8140 
8141     /* Align stack pointer if the guest wants that */
8142     if ((frameptr & 4) &&
8143         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
8144         frameptr -= 4;
8145         xpsr |= XPSR_SPREALIGN;
8146     }
8147 
8148     frameptr -= 0x20;
8149 
8150     if (arm_feature(env, ARM_FEATURE_V8)) {
8151         uint32_t limit = v7m_sp_limit(env);
8152 
8153         if (frameptr < limit) {
8154             /*
8155              * Stack limit failure: set SP to the limit value, and generate
8156              * STKOF UsageFault. Stack pushes below the limit must not be
8157              * performed. It is IMPDEF whether pushes above the limit are
8158              * performed; we choose not to.
8159              */
8160             qemu_log_mask(CPU_LOG_INT,
8161                           "...STKOF during stacking\n");
8162             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8163             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8164                                     env->v7m.secure);
8165             env->regs[13] = limit;
8166             return true;
8167         }
8168     }
8169 
8170     /* Write as much of the stack frame as we can. If we fail a stack
8171      * write this will result in a derived exception being pended
8172      * (which may be taken in preference to the one we started with
8173      * if it has higher priority).
8174      */
8175     stacked_ok =
8176         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
8177         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
8178         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
8179         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
8180         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
8181         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
8182         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
8183         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
8184 
8185     /* Update SP regardless of whether any of the stack accesses failed. */
8186     env->regs[13] = frameptr;
8187 
8188     return !stacked_ok;
8189 }
8190 
8191 static void do_v7m_exception_exit(ARMCPU *cpu)
8192 {
8193     CPUARMState *env = &cpu->env;
8194     uint32_t excret;
8195     uint32_t xpsr;
8196     bool ufault = false;
8197     bool sfault = false;
8198     bool return_to_sp_process;
8199     bool return_to_handler;
8200     bool rettobase = false;
8201     bool exc_secure = false;
8202     bool return_to_secure;
8203 
8204     /* If we're not in Handler mode then jumps to magic exception-exit
8205      * addresses don't have magic behaviour. However for the v8M
8206      * security extensions the magic secure-function-return has to
8207      * work in thread mode too, so to avoid doing an extra check in
8208      * the generated code we allow exception-exit magic to also cause the
8209      * internal exception and bring us here in thread mode. Correct code
8210      * will never try to do this (the following insn fetch will always
8211      * fault) so we the overhead of having taken an unnecessary exception
8212      * doesn't matter.
8213      */
8214     if (!arm_v7m_is_handler_mode(env)) {
8215         return;
8216     }
8217 
8218     /* In the spec pseudocode ExceptionReturn() is called directly
8219      * from BXWritePC() and gets the full target PC value including
8220      * bit zero. In QEMU's implementation we treat it as a normal
8221      * jump-to-register (which is then caught later on), and so split
8222      * the target value up between env->regs[15] and env->thumb in
8223      * gen_bx(). Reconstitute it.
8224      */
8225     excret = env->regs[15];
8226     if (env->thumb) {
8227         excret |= 1;
8228     }
8229 
8230     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
8231                   " previous exception %d\n",
8232                   excret, env->v7m.exception);
8233 
8234     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
8235         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
8236                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
8237                       excret);
8238     }
8239 
8240     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8241         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8242          * we pick which FAULTMASK to clear.
8243          */
8244         if (!env->v7m.secure &&
8245             ((excret & R_V7M_EXCRET_ES_MASK) ||
8246              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
8247             sfault = 1;
8248             /* For all other purposes, treat ES as 0 (R_HXSR) */
8249             excret &= ~R_V7M_EXCRET_ES_MASK;
8250         }
8251         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
8252     }
8253 
8254     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
8255         /* Auto-clear FAULTMASK on return from other than NMI.
8256          * If the security extension is implemented then this only
8257          * happens if the raw execution priority is >= 0; the
8258          * value of the ES bit in the exception return value indicates
8259          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8260          */
8261         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8262             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
8263                 env->v7m.faultmask[exc_secure] = 0;
8264             }
8265         } else {
8266             env->v7m.faultmask[M_REG_NS] = 0;
8267         }
8268     }
8269 
8270     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
8271                                      exc_secure)) {
8272     case -1:
8273         /* attempt to exit an exception that isn't active */
8274         ufault = true;
8275         break;
8276     case 0:
8277         /* still an irq active now */
8278         break;
8279     case 1:
8280         /* we returned to base exception level, no nesting.
8281          * (In the pseudocode this is written using "NestedActivation != 1"
8282          * where we have 'rettobase == false'.)
8283          */
8284         rettobase = true;
8285         break;
8286     default:
8287         g_assert_not_reached();
8288     }
8289 
8290     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
8291     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
8292     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
8293         (excret & R_V7M_EXCRET_S_MASK);
8294 
8295     if (arm_feature(env, ARM_FEATURE_V8)) {
8296         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8297             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8298              * we choose to take the UsageFault.
8299              */
8300             if ((excret & R_V7M_EXCRET_S_MASK) ||
8301                 (excret & R_V7M_EXCRET_ES_MASK) ||
8302                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
8303                 ufault = true;
8304             }
8305         }
8306         if (excret & R_V7M_EXCRET_RES0_MASK) {
8307             ufault = true;
8308         }
8309     } else {
8310         /* For v7M we only recognize certain combinations of the low bits */
8311         switch (excret & 0xf) {
8312         case 1: /* Return to Handler */
8313             break;
8314         case 13: /* Return to Thread using Process stack */
8315         case 9: /* Return to Thread using Main stack */
8316             /* We only need to check NONBASETHRDENA for v7M, because in
8317              * v8M this bit does not exist (it is RES1).
8318              */
8319             if (!rettobase &&
8320                 !(env->v7m.ccr[env->v7m.secure] &
8321                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
8322                 ufault = true;
8323             }
8324             break;
8325         default:
8326             ufault = true;
8327         }
8328     }
8329 
8330     /*
8331      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8332      * Handler mode (and will be until we write the new XPSR.Interrupt
8333      * field) this does not switch around the current stack pointer.
8334      * We must do this before we do any kind of tailchaining, including
8335      * for the derived exceptions on integrity check failures, or we will
8336      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8337      */
8338     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
8339 
8340     if (sfault) {
8341         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
8342         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8343         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8344                       "stackframe: failed EXC_RETURN.ES validity check\n");
8345         v7m_exception_taken(cpu, excret, true, false);
8346         return;
8347     }
8348 
8349     if (ufault) {
8350         /* Bad exception return: instead of popping the exception
8351          * stack, directly take a usage fault on the current stack.
8352          */
8353         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8354         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8355         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8356                       "stackframe: failed exception return integrity check\n");
8357         v7m_exception_taken(cpu, excret, true, false);
8358         return;
8359     }
8360 
8361     /*
8362      * Tailchaining: if there is currently a pending exception that
8363      * is high enough priority to preempt execution at the level we're
8364      * about to return to, then just directly take that exception now,
8365      * avoiding an unstack-and-then-stack. Note that now we have
8366      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8367      * our current execution priority is already the execution priority we are
8368      * returning to -- none of the state we would unstack or set based on
8369      * the EXCRET value affects it.
8370      */
8371     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
8372         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
8373         v7m_exception_taken(cpu, excret, true, false);
8374         return;
8375     }
8376 
8377     switch_v7m_security_state(env, return_to_secure);
8378 
8379     {
8380         /* The stack pointer we should be reading the exception frame from
8381          * depends on bits in the magic exception return type value (and
8382          * for v8M isn't necessarily the stack pointer we will eventually
8383          * end up resuming execution with). Get a pointer to the location
8384          * in the CPU state struct where the SP we need is currently being
8385          * stored; we will use and modify it in place.
8386          * We use this limited C variable scope so we don't accidentally
8387          * use 'frame_sp_p' after we do something that makes it invalid.
8388          */
8389         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
8390                                               return_to_secure,
8391                                               !return_to_handler,
8392                                               return_to_sp_process);
8393         uint32_t frameptr = *frame_sp_p;
8394         bool pop_ok = true;
8395         ARMMMUIdx mmu_idx;
8396         bool return_to_priv = return_to_handler ||
8397             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
8398 
8399         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
8400                                                         return_to_priv);
8401 
8402         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
8403             arm_feature(env, ARM_FEATURE_V8)) {
8404             qemu_log_mask(LOG_GUEST_ERROR,
8405                           "M profile exception return with non-8-aligned SP "
8406                           "for destination state is UNPREDICTABLE\n");
8407         }
8408 
8409         /* Do we need to pop callee-saved registers? */
8410         if (return_to_secure &&
8411             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
8412              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
8413             uint32_t expected_sig = 0xfefa125b;
8414             uint32_t actual_sig;
8415 
8416             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
8417 
8418             if (pop_ok && expected_sig != actual_sig) {
8419                 /* Take a SecureFault on the current stack */
8420                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
8421                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8422                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
8423                               "stackframe: failed exception return integrity "
8424                               "signature check\n");
8425                 v7m_exception_taken(cpu, excret, true, false);
8426                 return;
8427             }
8428 
8429             pop_ok = pop_ok &&
8430                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
8431                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
8432                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
8433                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
8434                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
8435                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
8436                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
8437                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
8438 
8439             frameptr += 0x28;
8440         }
8441 
8442         /* Pop registers */
8443         pop_ok = pop_ok &&
8444             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
8445             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
8446             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
8447             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
8448             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
8449             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
8450             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
8451             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
8452 
8453         if (!pop_ok) {
8454             /* v7m_stack_read() pended a fault, so take it (as a tail
8455              * chained exception on the same stack frame)
8456              */
8457             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
8458             v7m_exception_taken(cpu, excret, true, false);
8459             return;
8460         }
8461 
8462         /* Returning from an exception with a PC with bit 0 set is defined
8463          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8464          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8465          * the lsbit, and there are several RTOSes out there which incorrectly
8466          * assume the r15 in the stack frame should be a Thumb-style "lsbit
8467          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8468          * complain about the badly behaved guest.
8469          */
8470         if (env->regs[15] & 1) {
8471             env->regs[15] &= ~1U;
8472             if (!arm_feature(env, ARM_FEATURE_V8)) {
8473                 qemu_log_mask(LOG_GUEST_ERROR,
8474                               "M profile return from interrupt with misaligned "
8475                               "PC is UNPREDICTABLE on v7M\n");
8476             }
8477         }
8478 
8479         if (arm_feature(env, ARM_FEATURE_V8)) {
8480             /* For v8M we have to check whether the xPSR exception field
8481              * matches the EXCRET value for return to handler/thread
8482              * before we commit to changing the SP and xPSR.
8483              */
8484             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
8485             if (return_to_handler != will_be_handler) {
8486                 /* Take an INVPC UsageFault on the current stack.
8487                  * By this point we will have switched to the security state
8488                  * for the background state, so this UsageFault will target
8489                  * that state.
8490                  */
8491                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8492                                         env->v7m.secure);
8493                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8494                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
8495                               "stackframe: failed exception return integrity "
8496                               "check\n");
8497                 v7m_exception_taken(cpu, excret, true, false);
8498                 return;
8499             }
8500         }
8501 
8502         /* Commit to consuming the stack frame */
8503         frameptr += 0x20;
8504         /* Undo stack alignment (the SPREALIGN bit indicates that the original
8505          * pre-exception SP was not 8-aligned and we added a padding word to
8506          * align it, so we undo this by ORing in the bit that increases it
8507          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8508          * would work too but a logical OR is how the pseudocode specifies it.)
8509          */
8510         if (xpsr & XPSR_SPREALIGN) {
8511             frameptr |= 4;
8512         }
8513         *frame_sp_p = frameptr;
8514     }
8515     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8516     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
8517 
8518     /* The restored xPSR exception field will be zero if we're
8519      * resuming in Thread mode. If that doesn't match what the
8520      * exception return excret specified then this is a UsageFault.
8521      * v7M requires we make this check here; v8M did it earlier.
8522      */
8523     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
8524         /* Take an INVPC UsageFault by pushing the stack again;
8525          * we know we're v7M so this is never a Secure UsageFault.
8526          */
8527         bool ignore_stackfaults;
8528 
8529         assert(!arm_feature(env, ARM_FEATURE_V8));
8530         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
8531         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8532         ignore_stackfaults = v7m_push_stack(cpu);
8533         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
8534                       "failed exception return integrity check\n");
8535         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
8536         return;
8537     }
8538 
8539     /* Otherwise, we have a successful exception exit. */
8540     arm_clear_exclusive(env);
8541     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
8542 }
8543 
8544 static bool do_v7m_function_return(ARMCPU *cpu)
8545 {
8546     /* v8M security extensions magic function return.
8547      * We may either:
8548      *  (1) throw an exception (longjump)
8549      *  (2) return true if we successfully handled the function return
8550      *  (3) return false if we failed a consistency check and have
8551      *      pended a UsageFault that needs to be taken now
8552      *
8553      * At this point the magic return value is split between env->regs[15]
8554      * and env->thumb. We don't bother to reconstitute it because we don't
8555      * need it (all values are handled the same way).
8556      */
8557     CPUARMState *env = &cpu->env;
8558     uint32_t newpc, newpsr, newpsr_exc;
8559 
8560     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
8561 
8562     {
8563         bool threadmode, spsel;
8564         TCGMemOpIdx oi;
8565         ARMMMUIdx mmu_idx;
8566         uint32_t *frame_sp_p;
8567         uint32_t frameptr;
8568 
8569         /* Pull the return address and IPSR from the Secure stack */
8570         threadmode = !arm_v7m_is_handler_mode(env);
8571         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
8572 
8573         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
8574         frameptr = *frame_sp_p;
8575 
8576         /* These loads may throw an exception (for MPU faults). We want to
8577          * do them as secure, so work out what MMU index that is.
8578          */
8579         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8580         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
8581         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
8582         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
8583 
8584         /* Consistency checks on new IPSR */
8585         newpsr_exc = newpsr & XPSR_EXCP;
8586         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
8587               (env->v7m.exception == 1 && newpsr_exc != 0))) {
8588             /* Pend the fault and tell our caller to take it */
8589             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
8590             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
8591                                     env->v7m.secure);
8592             qemu_log_mask(CPU_LOG_INT,
8593                           "...taking INVPC UsageFault: "
8594                           "IPSR consistency check failed\n");
8595             return false;
8596         }
8597 
8598         *frame_sp_p = frameptr + 8;
8599     }
8600 
8601     /* This invalidates frame_sp_p */
8602     switch_v7m_security_state(env, true);
8603     env->v7m.exception = newpsr_exc;
8604     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
8605     if (newpsr & XPSR_SFPA) {
8606         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
8607     }
8608     xpsr_write(env, 0, XPSR_IT);
8609     env->thumb = newpc & 1;
8610     env->regs[15] = newpc & ~1;
8611 
8612     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
8613     return true;
8614 }
8615 
8616 static void arm_log_exception(int idx)
8617 {
8618     if (qemu_loglevel_mask(CPU_LOG_INT)) {
8619         const char *exc = NULL;
8620         static const char * const excnames[] = {
8621             [EXCP_UDEF] = "Undefined Instruction",
8622             [EXCP_SWI] = "SVC",
8623             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
8624             [EXCP_DATA_ABORT] = "Data Abort",
8625             [EXCP_IRQ] = "IRQ",
8626             [EXCP_FIQ] = "FIQ",
8627             [EXCP_BKPT] = "Breakpoint",
8628             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
8629             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
8630             [EXCP_HVC] = "Hypervisor Call",
8631             [EXCP_HYP_TRAP] = "Hypervisor Trap",
8632             [EXCP_SMC] = "Secure Monitor Call",
8633             [EXCP_VIRQ] = "Virtual IRQ",
8634             [EXCP_VFIQ] = "Virtual FIQ",
8635             [EXCP_SEMIHOST] = "Semihosting call",
8636             [EXCP_NOCP] = "v7M NOCP UsageFault",
8637             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
8638             [EXCP_STKOF] = "v8M STKOF UsageFault",
8639         };
8640 
8641         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
8642             exc = excnames[idx];
8643         }
8644         if (!exc) {
8645             exc = "unknown";
8646         }
8647         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
8648     }
8649 }
8650 
8651 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
8652                                uint32_t addr, uint16_t *insn)
8653 {
8654     /* Load a 16-bit portion of a v7M instruction, returning true on success,
8655      * or false on failure (in which case we will have pended the appropriate
8656      * exception).
8657      * We need to do the instruction fetch's MPU and SAU checks
8658      * like this because there is no MMU index that would allow
8659      * doing the load with a single function call. Instead we must
8660      * first check that the security attributes permit the load
8661      * and that they don't mismatch on the two halves of the instruction,
8662      * and then we do the load as a secure load (ie using the security
8663      * attributes of the address, not the CPU, as architecturally required).
8664      */
8665     CPUState *cs = CPU(cpu);
8666     CPUARMState *env = &cpu->env;
8667     V8M_SAttributes sattrs = {};
8668     MemTxAttrs attrs = {};
8669     ARMMMUFaultInfo fi = {};
8670     MemTxResult txres;
8671     target_ulong page_size;
8672     hwaddr physaddr;
8673     int prot;
8674 
8675     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
8676     if (!sattrs.nsc || sattrs.ns) {
8677         /* This must be the second half of the insn, and it straddles a
8678          * region boundary with the second half not being S&NSC.
8679          */
8680         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8681         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8682         qemu_log_mask(CPU_LOG_INT,
8683                       "...really SecureFault with SFSR.INVEP\n");
8684         return false;
8685     }
8686     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
8687                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
8688         /* the MPU lookup failed */
8689         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8690         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
8691         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
8692         return false;
8693     }
8694     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
8695                                  attrs, &txres);
8696     if (txres != MEMTX_OK) {
8697         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8698         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8699         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
8700         return false;
8701     }
8702     return true;
8703 }
8704 
8705 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
8706 {
8707     /* Check whether this attempt to execute code in a Secure & NS-Callable
8708      * memory region is for an SG instruction; if so, then emulate the
8709      * effect of the SG instruction and return true. Otherwise pend
8710      * the correct kind of exception and return false.
8711      */
8712     CPUARMState *env = &cpu->env;
8713     ARMMMUIdx mmu_idx;
8714     uint16_t insn;
8715 
8716     /* We should never get here unless get_phys_addr_pmsav8() caused
8717      * an exception for NS executing in S&NSC memory.
8718      */
8719     assert(!env->v7m.secure);
8720     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8721 
8722     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8723     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
8724 
8725     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
8726         return false;
8727     }
8728 
8729     if (!env->thumb) {
8730         goto gen_invep;
8731     }
8732 
8733     if (insn != 0xe97f) {
8734         /* Not an SG instruction first half (we choose the IMPDEF
8735          * early-SG-check option).
8736          */
8737         goto gen_invep;
8738     }
8739 
8740     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
8741         return false;
8742     }
8743 
8744     if (insn != 0xe97f) {
8745         /* Not an SG instruction second half (yes, both halves of the SG
8746          * insn have the same hex value)
8747          */
8748         goto gen_invep;
8749     }
8750 
8751     /* OK, we have confirmed that we really have an SG instruction.
8752      * We know we're NS in S memory so don't need to repeat those checks.
8753      */
8754     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
8755                   ", executing it\n", env->regs[15]);
8756     env->regs[14] &= ~1;
8757     switch_v7m_security_state(env, true);
8758     xpsr_write(env, 0, XPSR_IT);
8759     env->regs[15] += 4;
8760     return true;
8761 
8762 gen_invep:
8763     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8764     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8765     qemu_log_mask(CPU_LOG_INT,
8766                   "...really SecureFault with SFSR.INVEP\n");
8767     return false;
8768 }
8769 
8770 void arm_v7m_cpu_do_interrupt(CPUState *cs)
8771 {
8772     ARMCPU *cpu = ARM_CPU(cs);
8773     CPUARMState *env = &cpu->env;
8774     uint32_t lr;
8775     bool ignore_stackfaults;
8776 
8777     arm_log_exception(cs->exception_index);
8778 
8779     /* For exceptions we just mark as pending on the NVIC, and let that
8780        handle it.  */
8781     switch (cs->exception_index) {
8782     case EXCP_UDEF:
8783         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8784         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
8785         break;
8786     case EXCP_NOCP:
8787         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8788         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
8789         break;
8790     case EXCP_INVSTATE:
8791         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8792         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
8793         break;
8794     case EXCP_STKOF:
8795         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
8796         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
8797         break;
8798     case EXCP_SWI:
8799         /* The PC already points to the next instruction.  */
8800         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
8801         break;
8802     case EXCP_PREFETCH_ABORT:
8803     case EXCP_DATA_ABORT:
8804         /* Note that for M profile we don't have a guest facing FSR, but
8805          * the env->exception.fsr will be populated by the code that
8806          * raises the fault, in the A profile short-descriptor format.
8807          */
8808         switch (env->exception.fsr & 0xf) {
8809         case M_FAKE_FSR_NSC_EXEC:
8810             /* Exception generated when we try to execute code at an address
8811              * which is marked as Secure & Non-Secure Callable and the CPU
8812              * is in the Non-Secure state. The only instruction which can
8813              * be executed like this is SG (and that only if both halves of
8814              * the SG instruction have the same security attributes.)
8815              * Everything else must generate an INVEP SecureFault, so we
8816              * emulate the SG instruction here.
8817              */
8818             if (v7m_handle_execute_nsc(cpu)) {
8819                 return;
8820             }
8821             break;
8822         case M_FAKE_FSR_SFAULT:
8823             /* Various flavours of SecureFault for attempts to execute or
8824              * access data in the wrong security state.
8825              */
8826             switch (cs->exception_index) {
8827             case EXCP_PREFETCH_ABORT:
8828                 if (env->v7m.secure) {
8829                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
8830                     qemu_log_mask(CPU_LOG_INT,
8831                                   "...really SecureFault with SFSR.INVTRAN\n");
8832                 } else {
8833                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
8834                     qemu_log_mask(CPU_LOG_INT,
8835                                   "...really SecureFault with SFSR.INVEP\n");
8836                 }
8837                 break;
8838             case EXCP_DATA_ABORT:
8839                 /* This must be an NS access to S memory */
8840                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
8841                 qemu_log_mask(CPU_LOG_INT,
8842                               "...really SecureFault with SFSR.AUVIOL\n");
8843                 break;
8844             }
8845             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
8846             break;
8847         case 0x8: /* External Abort */
8848             switch (cs->exception_index) {
8849             case EXCP_PREFETCH_ABORT:
8850                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
8851                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
8852                 break;
8853             case EXCP_DATA_ABORT:
8854                 env->v7m.cfsr[M_REG_NS] |=
8855                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
8856                 env->v7m.bfar = env->exception.vaddress;
8857                 qemu_log_mask(CPU_LOG_INT,
8858                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
8859                               env->v7m.bfar);
8860                 break;
8861             }
8862             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
8863             break;
8864         default:
8865             /* All other FSR values are either MPU faults or "can't happen
8866              * for M profile" cases.
8867              */
8868             switch (cs->exception_index) {
8869             case EXCP_PREFETCH_ABORT:
8870                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
8871                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
8872                 break;
8873             case EXCP_DATA_ABORT:
8874                 env->v7m.cfsr[env->v7m.secure] |=
8875                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
8876                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
8877                 qemu_log_mask(CPU_LOG_INT,
8878                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8879                               env->v7m.mmfar[env->v7m.secure]);
8880                 break;
8881             }
8882             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
8883                                     env->v7m.secure);
8884             break;
8885         }
8886         break;
8887     case EXCP_BKPT:
8888         if (semihosting_enabled()) {
8889             int nr;
8890             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
8891             if (nr == 0xab) {
8892                 env->regs[15] += 2;
8893                 qemu_log_mask(CPU_LOG_INT,
8894                               "...handling as semihosting call 0x%x\n",
8895                               env->regs[0]);
8896                 env->regs[0] = do_arm_semihosting(env);
8897                 return;
8898             }
8899         }
8900         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
8901         break;
8902     case EXCP_IRQ:
8903         break;
8904     case EXCP_EXCEPTION_EXIT:
8905         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
8906             /* Must be v8M security extension function return */
8907             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
8908             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
8909             if (do_v7m_function_return(cpu)) {
8910                 return;
8911             }
8912         } else {
8913             do_v7m_exception_exit(cpu);
8914             return;
8915         }
8916         break;
8917     default:
8918         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8919         return; /* Never happens.  Keep compiler happy.  */
8920     }
8921 
8922     if (arm_feature(env, ARM_FEATURE_V8)) {
8923         lr = R_V7M_EXCRET_RES1_MASK |
8924             R_V7M_EXCRET_DCRS_MASK |
8925             R_V7M_EXCRET_FTYPE_MASK;
8926         /* The S bit indicates whether we should return to Secure
8927          * or NonSecure (ie our current state).
8928          * The ES bit indicates whether we're taking this exception
8929          * to Secure or NonSecure (ie our target state). We set it
8930          * later, in v7m_exception_taken().
8931          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8932          * This corresponds to the ARM ARM pseudocode for v8M setting
8933          * some LR bits in PushStack() and some in ExceptionTaken();
8934          * the distinction matters for the tailchain cases where we
8935          * can take an exception without pushing the stack.
8936          */
8937         if (env->v7m.secure) {
8938             lr |= R_V7M_EXCRET_S_MASK;
8939         }
8940     } else {
8941         lr = R_V7M_EXCRET_RES1_MASK |
8942             R_V7M_EXCRET_S_MASK |
8943             R_V7M_EXCRET_DCRS_MASK |
8944             R_V7M_EXCRET_FTYPE_MASK |
8945             R_V7M_EXCRET_ES_MASK;
8946         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
8947             lr |= R_V7M_EXCRET_SPSEL_MASK;
8948         }
8949     }
8950     if (!arm_v7m_is_handler_mode(env)) {
8951         lr |= R_V7M_EXCRET_MODE_MASK;
8952     }
8953 
8954     ignore_stackfaults = v7m_push_stack(cpu);
8955     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
8956 }
8957 
8958 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8959  * register set.  This is necessary when switching between AArch32 and AArch64
8960  * execution state.
8961  */
8962 void aarch64_sync_32_to_64(CPUARMState *env)
8963 {
8964     int i;
8965     uint32_t mode = env->uncached_cpsr & CPSR_M;
8966 
8967     /* We can blanket copy R[0:7] to X[0:7] */
8968     for (i = 0; i < 8; i++) {
8969         env->xregs[i] = env->regs[i];
8970     }
8971 
8972     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8973      * Otherwise, they come from the banked user regs.
8974      */
8975     if (mode == ARM_CPU_MODE_FIQ) {
8976         for (i = 8; i < 13; i++) {
8977             env->xregs[i] = env->usr_regs[i - 8];
8978         }
8979     } else {
8980         for (i = 8; i < 13; i++) {
8981             env->xregs[i] = env->regs[i];
8982         }
8983     }
8984 
8985     /* Registers x13-x23 are the various mode SP and FP registers. Registers
8986      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8987      * from the mode banked register.
8988      */
8989     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8990         env->xregs[13] = env->regs[13];
8991         env->xregs[14] = env->regs[14];
8992     } else {
8993         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8994         /* HYP is an exception in that it is copied from r14 */
8995         if (mode == ARM_CPU_MODE_HYP) {
8996             env->xregs[14] = env->regs[14];
8997         } else {
8998             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
8999         }
9000     }
9001 
9002     if (mode == ARM_CPU_MODE_HYP) {
9003         env->xregs[15] = env->regs[13];
9004     } else {
9005         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9006     }
9007 
9008     if (mode == ARM_CPU_MODE_IRQ) {
9009         env->xregs[16] = env->regs[14];
9010         env->xregs[17] = env->regs[13];
9011     } else {
9012         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9013         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9014     }
9015 
9016     if (mode == ARM_CPU_MODE_SVC) {
9017         env->xregs[18] = env->regs[14];
9018         env->xregs[19] = env->regs[13];
9019     } else {
9020         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9021         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9022     }
9023 
9024     if (mode == ARM_CPU_MODE_ABT) {
9025         env->xregs[20] = env->regs[14];
9026         env->xregs[21] = env->regs[13];
9027     } else {
9028         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9029         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9030     }
9031 
9032     if (mode == ARM_CPU_MODE_UND) {
9033         env->xregs[22] = env->regs[14];
9034         env->xregs[23] = env->regs[13];
9035     } else {
9036         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9037         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9038     }
9039 
9040     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9041      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9042      * FIQ bank for r8-r14.
9043      */
9044     if (mode == ARM_CPU_MODE_FIQ) {
9045         for (i = 24; i < 31; i++) {
9046             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9047         }
9048     } else {
9049         for (i = 24; i < 29; i++) {
9050             env->xregs[i] = env->fiq_regs[i - 24];
9051         }
9052         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9053         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9054     }
9055 
9056     env->pc = env->regs[15];
9057 }
9058 
9059 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9060  * register set.  This is necessary when switching between AArch32 and AArch64
9061  * execution state.
9062  */
9063 void aarch64_sync_64_to_32(CPUARMState *env)
9064 {
9065     int i;
9066     uint32_t mode = env->uncached_cpsr & CPSR_M;
9067 
9068     /* We can blanket copy X[0:7] to R[0:7] */
9069     for (i = 0; i < 8; i++) {
9070         env->regs[i] = env->xregs[i];
9071     }
9072 
9073     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9074      * Otherwise, we copy x8-x12 into the banked user regs.
9075      */
9076     if (mode == ARM_CPU_MODE_FIQ) {
9077         for (i = 8; i < 13; i++) {
9078             env->usr_regs[i - 8] = env->xregs[i];
9079         }
9080     } else {
9081         for (i = 8; i < 13; i++) {
9082             env->regs[i] = env->xregs[i];
9083         }
9084     }
9085 
9086     /* Registers r13 & r14 depend on the current mode.
9087      * If we are in a given mode, we copy the corresponding x registers to r13
9088      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9089      * for the mode.
9090      */
9091     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9092         env->regs[13] = env->xregs[13];
9093         env->regs[14] = env->xregs[14];
9094     } else {
9095         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9096 
9097         /* HYP is an exception in that it does not have its own banked r14 but
9098          * shares the USR r14
9099          */
9100         if (mode == ARM_CPU_MODE_HYP) {
9101             env->regs[14] = env->xregs[14];
9102         } else {
9103             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9104         }
9105     }
9106 
9107     if (mode == ARM_CPU_MODE_HYP) {
9108         env->regs[13] = env->xregs[15];
9109     } else {
9110         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9111     }
9112 
9113     if (mode == ARM_CPU_MODE_IRQ) {
9114         env->regs[14] = env->xregs[16];
9115         env->regs[13] = env->xregs[17];
9116     } else {
9117         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9118         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9119     }
9120 
9121     if (mode == ARM_CPU_MODE_SVC) {
9122         env->regs[14] = env->xregs[18];
9123         env->regs[13] = env->xregs[19];
9124     } else {
9125         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9126         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9127     }
9128 
9129     if (mode == ARM_CPU_MODE_ABT) {
9130         env->regs[14] = env->xregs[20];
9131         env->regs[13] = env->xregs[21];
9132     } else {
9133         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9134         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9135     }
9136 
9137     if (mode == ARM_CPU_MODE_UND) {
9138         env->regs[14] = env->xregs[22];
9139         env->regs[13] = env->xregs[23];
9140     } else {
9141         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9142         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9143     }
9144 
9145     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9146      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9147      * FIQ bank for r8-r14.
9148      */
9149     if (mode == ARM_CPU_MODE_FIQ) {
9150         for (i = 24; i < 31; i++) {
9151             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9152         }
9153     } else {
9154         for (i = 24; i < 29; i++) {
9155             env->fiq_regs[i - 24] = env->xregs[i];
9156         }
9157         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9158         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9159     }
9160 
9161     env->regs[15] = env->pc;
9162 }
9163 
9164 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9165                                    uint32_t mask, uint32_t offset,
9166                                    uint32_t newpc)
9167 {
9168     /* Change the CPU state so as to actually take the exception. */
9169     switch_mode(env, new_mode);
9170     /*
9171      * For exceptions taken to AArch32 we must clear the SS bit in both
9172      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9173      */
9174     env->uncached_cpsr &= ~PSTATE_SS;
9175     env->spsr = cpsr_read(env);
9176     /* Clear IT bits.  */
9177     env->condexec_bits = 0;
9178     /* Switch to the new mode, and to the correct instruction set.  */
9179     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9180     /* Set new mode endianness */
9181     env->uncached_cpsr &= ~CPSR_E;
9182     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
9183         env->uncached_cpsr |= CPSR_E;
9184     }
9185     /* J and IL must always be cleared for exception entry */
9186     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9187     env->daif |= mask;
9188 
9189     if (new_mode == ARM_CPU_MODE_HYP) {
9190         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9191         env->elr_el[2] = env->regs[15];
9192     } else {
9193         /*
9194          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9195          * and we should just guard the thumb mode on V4
9196          */
9197         if (arm_feature(env, ARM_FEATURE_V4T)) {
9198             env->thumb =
9199                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9200         }
9201         env->regs[14] = env->regs[15] + offset;
9202     }
9203     env->regs[15] = newpc;
9204 }
9205 
9206 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9207 {
9208     /*
9209      * Handle exception entry to Hyp mode; this is sufficiently
9210      * different to entry to other AArch32 modes that we handle it
9211      * separately here.
9212      *
9213      * The vector table entry used is always the 0x14 Hyp mode entry point,
9214      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9215      * The offset applied to the preferred return address is always zero
9216      * (see DDI0487C.a section G1.12.3).
9217      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9218      */
9219     uint32_t addr, mask;
9220     ARMCPU *cpu = ARM_CPU(cs);
9221     CPUARMState *env = &cpu->env;
9222 
9223     switch (cs->exception_index) {
9224     case EXCP_UDEF:
9225         addr = 0x04;
9226         break;
9227     case EXCP_SWI:
9228         addr = 0x14;
9229         break;
9230     case EXCP_BKPT:
9231         /* Fall through to prefetch abort.  */
9232     case EXCP_PREFETCH_ABORT:
9233         env->cp15.ifar_s = env->exception.vaddress;
9234         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9235                       (uint32_t)env->exception.vaddress);
9236         addr = 0x0c;
9237         break;
9238     case EXCP_DATA_ABORT:
9239         env->cp15.dfar_s = env->exception.vaddress;
9240         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9241                       (uint32_t)env->exception.vaddress);
9242         addr = 0x10;
9243         break;
9244     case EXCP_IRQ:
9245         addr = 0x18;
9246         break;
9247     case EXCP_FIQ:
9248         addr = 0x1c;
9249         break;
9250     case EXCP_HVC:
9251         addr = 0x08;
9252         break;
9253     case EXCP_HYP_TRAP:
9254         addr = 0x14;
9255     default:
9256         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9257     }
9258 
9259     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9260         if (!arm_feature(env, ARM_FEATURE_V8)) {
9261             /*
9262              * QEMU syndrome values are v8-style. v7 has the IL bit
9263              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9264              * If this is a v7 CPU, squash the IL bit in those cases.
9265              */
9266             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9267                 (cs->exception_index == EXCP_DATA_ABORT &&
9268                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9269                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9270                 env->exception.syndrome &= ~ARM_EL_IL;
9271             }
9272         }
9273         env->cp15.esr_el[2] = env->exception.syndrome;
9274     }
9275 
9276     if (arm_current_el(env) != 2 && addr < 0x14) {
9277         addr = 0x14;
9278     }
9279 
9280     mask = 0;
9281     if (!(env->cp15.scr_el3 & SCR_EA)) {
9282         mask |= CPSR_A;
9283     }
9284     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9285         mask |= CPSR_I;
9286     }
9287     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9288         mask |= CPSR_F;
9289     }
9290 
9291     addr += env->cp15.hvbar;
9292 
9293     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9294 }
9295 
9296 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9297 {
9298     ARMCPU *cpu = ARM_CPU(cs);
9299     CPUARMState *env = &cpu->env;
9300     uint32_t addr;
9301     uint32_t mask;
9302     int new_mode;
9303     uint32_t offset;
9304     uint32_t moe;
9305 
9306     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9307     switch (syn_get_ec(env->exception.syndrome)) {
9308     case EC_BREAKPOINT:
9309     case EC_BREAKPOINT_SAME_EL:
9310         moe = 1;
9311         break;
9312     case EC_WATCHPOINT:
9313     case EC_WATCHPOINT_SAME_EL:
9314         moe = 10;
9315         break;
9316     case EC_AA32_BKPT:
9317         moe = 3;
9318         break;
9319     case EC_VECTORCATCH:
9320         moe = 5;
9321         break;
9322     default:
9323         moe = 0;
9324         break;
9325     }
9326 
9327     if (moe) {
9328         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9329     }
9330 
9331     if (env->exception.target_el == 2) {
9332         arm_cpu_do_interrupt_aarch32_hyp(cs);
9333         return;
9334     }
9335 
9336     switch (cs->exception_index) {
9337     case EXCP_UDEF:
9338         new_mode = ARM_CPU_MODE_UND;
9339         addr = 0x04;
9340         mask = CPSR_I;
9341         if (env->thumb)
9342             offset = 2;
9343         else
9344             offset = 4;
9345         break;
9346     case EXCP_SWI:
9347         new_mode = ARM_CPU_MODE_SVC;
9348         addr = 0x08;
9349         mask = CPSR_I;
9350         /* The PC already points to the next instruction.  */
9351         offset = 0;
9352         break;
9353     case EXCP_BKPT:
9354         /* Fall through to prefetch abort.  */
9355     case EXCP_PREFETCH_ABORT:
9356         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9357         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9358         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9359                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9360         new_mode = ARM_CPU_MODE_ABT;
9361         addr = 0x0c;
9362         mask = CPSR_A | CPSR_I;
9363         offset = 4;
9364         break;
9365     case EXCP_DATA_ABORT:
9366         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9367         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9368         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9369                       env->exception.fsr,
9370                       (uint32_t)env->exception.vaddress);
9371         new_mode = ARM_CPU_MODE_ABT;
9372         addr = 0x10;
9373         mask = CPSR_A | CPSR_I;
9374         offset = 8;
9375         break;
9376     case EXCP_IRQ:
9377         new_mode = ARM_CPU_MODE_IRQ;
9378         addr = 0x18;
9379         /* Disable IRQ and imprecise data aborts.  */
9380         mask = CPSR_A | CPSR_I;
9381         offset = 4;
9382         if (env->cp15.scr_el3 & SCR_IRQ) {
9383             /* IRQ routed to monitor mode */
9384             new_mode = ARM_CPU_MODE_MON;
9385             mask |= CPSR_F;
9386         }
9387         break;
9388     case EXCP_FIQ:
9389         new_mode = ARM_CPU_MODE_FIQ;
9390         addr = 0x1c;
9391         /* Disable FIQ, IRQ and imprecise data aborts.  */
9392         mask = CPSR_A | CPSR_I | CPSR_F;
9393         if (env->cp15.scr_el3 & SCR_FIQ) {
9394             /* FIQ routed to monitor mode */
9395             new_mode = ARM_CPU_MODE_MON;
9396         }
9397         offset = 4;
9398         break;
9399     case EXCP_VIRQ:
9400         new_mode = ARM_CPU_MODE_IRQ;
9401         addr = 0x18;
9402         /* Disable IRQ and imprecise data aborts.  */
9403         mask = CPSR_A | CPSR_I;
9404         offset = 4;
9405         break;
9406     case EXCP_VFIQ:
9407         new_mode = ARM_CPU_MODE_FIQ;
9408         addr = 0x1c;
9409         /* Disable FIQ, IRQ and imprecise data aborts.  */
9410         mask = CPSR_A | CPSR_I | CPSR_F;
9411         offset = 4;
9412         break;
9413     case EXCP_SMC:
9414         new_mode = ARM_CPU_MODE_MON;
9415         addr = 0x08;
9416         mask = CPSR_A | CPSR_I | CPSR_F;
9417         offset = 0;
9418         break;
9419     default:
9420         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9421         return; /* Never happens.  Keep compiler happy.  */
9422     }
9423 
9424     if (new_mode == ARM_CPU_MODE_MON) {
9425         addr += env->cp15.mvbar;
9426     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9427         /* High vectors. When enabled, base address cannot be remapped. */
9428         addr += 0xffff0000;
9429     } else {
9430         /* ARM v7 architectures provide a vector base address register to remap
9431          * the interrupt vector table.
9432          * This register is only followed in non-monitor mode, and is banked.
9433          * Note: only bits 31:5 are valid.
9434          */
9435         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9436     }
9437 
9438     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9439         env->cp15.scr_el3 &= ~SCR_NS;
9440     }
9441 
9442     take_aarch32_exception(env, new_mode, mask, offset, addr);
9443 }
9444 
9445 /* Handle exception entry to a target EL which is using AArch64 */
9446 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9447 {
9448     ARMCPU *cpu = ARM_CPU(cs);
9449     CPUARMState *env = &cpu->env;
9450     unsigned int new_el = env->exception.target_el;
9451     target_ulong addr = env->cp15.vbar_el[new_el];
9452     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9453     unsigned int cur_el = arm_current_el(env);
9454 
9455     /*
9456      * Note that new_el can never be 0.  If cur_el is 0, then
9457      * el0_a64 is is_a64(), else el0_a64 is ignored.
9458      */
9459     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9460 
9461     if (cur_el < new_el) {
9462         /* Entry vector offset depends on whether the implemented EL
9463          * immediately lower than the target level is using AArch32 or AArch64
9464          */
9465         bool is_aa64;
9466 
9467         switch (new_el) {
9468         case 3:
9469             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9470             break;
9471         case 2:
9472             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
9473             break;
9474         case 1:
9475             is_aa64 = is_a64(env);
9476             break;
9477         default:
9478             g_assert_not_reached();
9479         }
9480 
9481         if (is_aa64) {
9482             addr += 0x400;
9483         } else {
9484             addr += 0x600;
9485         }
9486     } else if (pstate_read(env) & PSTATE_SP) {
9487         addr += 0x200;
9488     }
9489 
9490     switch (cs->exception_index) {
9491     case EXCP_PREFETCH_ABORT:
9492     case EXCP_DATA_ABORT:
9493         env->cp15.far_el[new_el] = env->exception.vaddress;
9494         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9495                       env->cp15.far_el[new_el]);
9496         /* fall through */
9497     case EXCP_BKPT:
9498     case EXCP_UDEF:
9499     case EXCP_SWI:
9500     case EXCP_HVC:
9501     case EXCP_HYP_TRAP:
9502     case EXCP_SMC:
9503         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
9504             /*
9505              * QEMU internal FP/SIMD syndromes from AArch32 include the
9506              * TA and coproc fields which are only exposed if the exception
9507              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9508              * AArch64 format syndrome.
9509              */
9510             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9511         }
9512         env->cp15.esr_el[new_el] = env->exception.syndrome;
9513         break;
9514     case EXCP_IRQ:
9515     case EXCP_VIRQ:
9516         addr += 0x80;
9517         break;
9518     case EXCP_FIQ:
9519     case EXCP_VFIQ:
9520         addr += 0x100;
9521         break;
9522     case EXCP_SEMIHOST:
9523         qemu_log_mask(CPU_LOG_INT,
9524                       "...handling as semihosting call 0x%" PRIx64 "\n",
9525                       env->xregs[0]);
9526         env->xregs[0] = do_arm_semihosting(env);
9527         return;
9528     default:
9529         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9530     }
9531 
9532     if (is_a64(env)) {
9533         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
9534         aarch64_save_sp(env, arm_current_el(env));
9535         env->elr_el[new_el] = env->pc;
9536     } else {
9537         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
9538         env->elr_el[new_el] = env->regs[15];
9539 
9540         aarch64_sync_32_to_64(env);
9541 
9542         env->condexec_bits = 0;
9543     }
9544     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9545                   env->elr_el[new_el]);
9546 
9547     pstate_write(env, PSTATE_DAIF | new_mode);
9548     env->aarch64 = 1;
9549     aarch64_restore_sp(env, new_el);
9550 
9551     env->pc = addr;
9552 
9553     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9554                   new_el, env->pc, pstate_read(env));
9555 }
9556 
9557 static inline bool check_for_semihosting(CPUState *cs)
9558 {
9559     /* Check whether this exception is a semihosting call; if so
9560      * then handle it and return true; otherwise return false.
9561      */
9562     ARMCPU *cpu = ARM_CPU(cs);
9563     CPUARMState *env = &cpu->env;
9564 
9565     if (is_a64(env)) {
9566         if (cs->exception_index == EXCP_SEMIHOST) {
9567             /* This is always the 64-bit semihosting exception.
9568              * The "is this usermode" and "is semihosting enabled"
9569              * checks have been done at translate time.
9570              */
9571             qemu_log_mask(CPU_LOG_INT,
9572                           "...handling as semihosting call 0x%" PRIx64 "\n",
9573                           env->xregs[0]);
9574             env->xregs[0] = do_arm_semihosting(env);
9575             return true;
9576         }
9577         return false;
9578     } else {
9579         uint32_t imm;
9580 
9581         /* Only intercept calls from privileged modes, to provide some
9582          * semblance of security.
9583          */
9584         if (cs->exception_index != EXCP_SEMIHOST &&
9585             (!semihosting_enabled() ||
9586              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
9587             return false;
9588         }
9589 
9590         switch (cs->exception_index) {
9591         case EXCP_SEMIHOST:
9592             /* This is always a semihosting call; the "is this usermode"
9593              * and "is semihosting enabled" checks have been done at
9594              * translate time.
9595              */
9596             break;
9597         case EXCP_SWI:
9598             /* Check for semihosting interrupt.  */
9599             if (env->thumb) {
9600                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
9601                     & 0xff;
9602                 if (imm == 0xab) {
9603                     break;
9604                 }
9605             } else {
9606                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
9607                     & 0xffffff;
9608                 if (imm == 0x123456) {
9609                     break;
9610                 }
9611             }
9612             return false;
9613         case EXCP_BKPT:
9614             /* See if this is a semihosting syscall.  */
9615             if (env->thumb) {
9616                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
9617                     & 0xff;
9618                 if (imm == 0xab) {
9619                     env->regs[15] += 2;
9620                     break;
9621                 }
9622             }
9623             return false;
9624         default:
9625             return false;
9626         }
9627 
9628         qemu_log_mask(CPU_LOG_INT,
9629                       "...handling as semihosting call 0x%x\n",
9630                       env->regs[0]);
9631         env->regs[0] = do_arm_semihosting(env);
9632         return true;
9633     }
9634 }
9635 
9636 /* Handle a CPU exception for A and R profile CPUs.
9637  * Do any appropriate logging, handle PSCI calls, and then hand off
9638  * to the AArch64-entry or AArch32-entry function depending on the
9639  * target exception level's register width.
9640  */
9641 void arm_cpu_do_interrupt(CPUState *cs)
9642 {
9643     ARMCPU *cpu = ARM_CPU(cs);
9644     CPUARMState *env = &cpu->env;
9645     unsigned int new_el = env->exception.target_el;
9646 
9647     assert(!arm_feature(env, ARM_FEATURE_M));
9648 
9649     arm_log_exception(cs->exception_index);
9650     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9651                   new_el);
9652     if (qemu_loglevel_mask(CPU_LOG_INT)
9653         && !excp_is_internal(cs->exception_index)) {
9654         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9655                       syn_get_ec(env->exception.syndrome),
9656                       env->exception.syndrome);
9657     }
9658 
9659     if (arm_is_psci_call(cpu, cs->exception_index)) {
9660         arm_handle_psci_call(cpu);
9661         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9662         return;
9663     }
9664 
9665     /* Semihosting semantics depend on the register width of the
9666      * code that caused the exception, not the target exception level,
9667      * so must be handled here.
9668      */
9669     if (check_for_semihosting(cs)) {
9670         return;
9671     }
9672 
9673     /* Hooks may change global state so BQL should be held, also the
9674      * BQL needs to be held for any modification of
9675      * cs->interrupt_request.
9676      */
9677     g_assert(qemu_mutex_iothread_locked());
9678 
9679     arm_call_pre_el_change_hook(cpu);
9680 
9681     assert(!excp_is_internal(cs->exception_index));
9682     if (arm_el_is_aa64(env, new_el)) {
9683         arm_cpu_do_interrupt_aarch64(cs);
9684     } else {
9685         arm_cpu_do_interrupt_aarch32(cs);
9686     }
9687 
9688     arm_call_el_change_hook(cpu);
9689 
9690     if (!kvm_enabled()) {
9691         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9692     }
9693 }
9694 #endif /* !CONFIG_USER_ONLY */
9695 
9696 /* Return the exception level which controls this address translation regime */
9697 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
9698 {
9699     switch (mmu_idx) {
9700     case ARMMMUIdx_S2NS:
9701     case ARMMMUIdx_S1E2:
9702         return 2;
9703     case ARMMMUIdx_S1E3:
9704         return 3;
9705     case ARMMMUIdx_S1SE0:
9706         return arm_el_is_aa64(env, 3) ? 1 : 3;
9707     case ARMMMUIdx_S1SE1:
9708     case ARMMMUIdx_S1NSE0:
9709     case ARMMMUIdx_S1NSE1:
9710     case ARMMMUIdx_MPrivNegPri:
9711     case ARMMMUIdx_MUserNegPri:
9712     case ARMMMUIdx_MPriv:
9713     case ARMMMUIdx_MUser:
9714     case ARMMMUIdx_MSPrivNegPri:
9715     case ARMMMUIdx_MSUserNegPri:
9716     case ARMMMUIdx_MSPriv:
9717     case ARMMMUIdx_MSUser:
9718         return 1;
9719     default:
9720         g_assert_not_reached();
9721     }
9722 }
9723 
9724 #ifndef CONFIG_USER_ONLY
9725 
9726 /* Return the SCTLR value which controls this address translation regime */
9727 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9728 {
9729     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9730 }
9731 
9732 /* Return true if the specified stage of address translation is disabled */
9733 static inline bool regime_translation_disabled(CPUARMState *env,
9734                                                ARMMMUIdx mmu_idx)
9735 {
9736     if (arm_feature(env, ARM_FEATURE_M)) {
9737         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9738                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9739         case R_V7M_MPU_CTRL_ENABLE_MASK:
9740             /* Enabled, but not for HardFault and NMI */
9741             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9742         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9743             /* Enabled for all cases */
9744             return false;
9745         case 0:
9746         default:
9747             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9748              * we warned about that in armv7m_nvic.c when the guest set it.
9749              */
9750             return true;
9751         }
9752     }
9753 
9754     if (mmu_idx == ARMMMUIdx_S2NS) {
9755         /* HCR.DC means HCR.VM behaves as 1 */
9756         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
9757     }
9758 
9759     if (env->cp15.hcr_el2 & HCR_TGE) {
9760         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9761         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
9762             return true;
9763         }
9764     }
9765 
9766     if ((env->cp15.hcr_el2 & HCR_DC) &&
9767         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
9768         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9769         return true;
9770     }
9771 
9772     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
9773 }
9774 
9775 static inline bool regime_translation_big_endian(CPUARMState *env,
9776                                                  ARMMMUIdx mmu_idx)
9777 {
9778     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
9779 }
9780 
9781 /* Return the TTBR associated with this translation regime */
9782 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
9783                                    int ttbrn)
9784 {
9785     if (mmu_idx == ARMMMUIdx_S2NS) {
9786         return env->cp15.vttbr_el2;
9787     }
9788     if (ttbrn == 0) {
9789         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
9790     } else {
9791         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
9792     }
9793 }
9794 
9795 #endif /* !CONFIG_USER_ONLY */
9796 
9797 /* Return the TCR controlling this translation regime */
9798 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
9799 {
9800     if (mmu_idx == ARMMMUIdx_S2NS) {
9801         return &env->cp15.vtcr_el2;
9802     }
9803     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
9804 }
9805 
9806 /* Convert a possible stage1+2 MMU index into the appropriate
9807  * stage 1 MMU index
9808  */
9809 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
9810 {
9811     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9812         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
9813     }
9814     return mmu_idx;
9815 }
9816 
9817 /* Return true if the translation regime is using LPAE format page tables */
9818 static inline bool regime_using_lpae_format(CPUARMState *env,
9819                                             ARMMMUIdx mmu_idx)
9820 {
9821     int el = regime_el(env, mmu_idx);
9822     if (el == 2 || arm_el_is_aa64(env, el)) {
9823         return true;
9824     }
9825     if (arm_feature(env, ARM_FEATURE_LPAE)
9826         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
9827         return true;
9828     }
9829     return false;
9830 }
9831 
9832 /* Returns true if the stage 1 translation regime is using LPAE format page
9833  * tables. Used when raising alignment exceptions, whose FSR changes depending
9834  * on whether the long or short descriptor format is in use. */
9835 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
9836 {
9837     mmu_idx = stage_1_mmu_idx(mmu_idx);
9838 
9839     return regime_using_lpae_format(env, mmu_idx);
9840 }
9841 
9842 #ifndef CONFIG_USER_ONLY
9843 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
9844 {
9845     switch (mmu_idx) {
9846     case ARMMMUIdx_S1SE0:
9847     case ARMMMUIdx_S1NSE0:
9848     case ARMMMUIdx_MUser:
9849     case ARMMMUIdx_MSUser:
9850     case ARMMMUIdx_MUserNegPri:
9851     case ARMMMUIdx_MSUserNegPri:
9852         return true;
9853     default:
9854         return false;
9855     case ARMMMUIdx_S12NSE0:
9856     case ARMMMUIdx_S12NSE1:
9857         g_assert_not_reached();
9858     }
9859 }
9860 
9861 /* Translate section/page access permissions to page
9862  * R/W protection flags
9863  *
9864  * @env:         CPUARMState
9865  * @mmu_idx:     MMU index indicating required translation regime
9866  * @ap:          The 3-bit access permissions (AP[2:0])
9867  * @domain_prot: The 2-bit domain access permissions
9868  */
9869 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
9870                                 int ap, int domain_prot)
9871 {
9872     bool is_user = regime_is_user(env, mmu_idx);
9873 
9874     if (domain_prot == 3) {
9875         return PAGE_READ | PAGE_WRITE;
9876     }
9877 
9878     switch (ap) {
9879     case 0:
9880         if (arm_feature(env, ARM_FEATURE_V7)) {
9881             return 0;
9882         }
9883         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
9884         case SCTLR_S:
9885             return is_user ? 0 : PAGE_READ;
9886         case SCTLR_R:
9887             return PAGE_READ;
9888         default:
9889             return 0;
9890         }
9891     case 1:
9892         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9893     case 2:
9894         if (is_user) {
9895             return PAGE_READ;
9896         } else {
9897             return PAGE_READ | PAGE_WRITE;
9898         }
9899     case 3:
9900         return PAGE_READ | PAGE_WRITE;
9901     case 4: /* Reserved.  */
9902         return 0;
9903     case 5:
9904         return is_user ? 0 : PAGE_READ;
9905     case 6:
9906         return PAGE_READ;
9907     case 7:
9908         if (!arm_feature(env, ARM_FEATURE_V6K)) {
9909             return 0;
9910         }
9911         return PAGE_READ;
9912     default:
9913         g_assert_not_reached();
9914     }
9915 }
9916 
9917 /* Translate section/page access permissions to page
9918  * R/W protection flags.
9919  *
9920  * @ap:      The 2-bit simple AP (AP[2:1])
9921  * @is_user: TRUE if accessing from PL0
9922  */
9923 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9924 {
9925     switch (ap) {
9926     case 0:
9927         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9928     case 1:
9929         return PAGE_READ | PAGE_WRITE;
9930     case 2:
9931         return is_user ? 0 : PAGE_READ;
9932     case 3:
9933         return PAGE_READ;
9934     default:
9935         g_assert_not_reached();
9936     }
9937 }
9938 
9939 static inline int
9940 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9941 {
9942     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9943 }
9944 
9945 /* Translate S2 section/page access permissions to protection flags
9946  *
9947  * @env:     CPUARMState
9948  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9949  * @xn:      XN (execute-never) bit
9950  */
9951 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9952 {
9953     int prot = 0;
9954 
9955     if (s2ap & 1) {
9956         prot |= PAGE_READ;
9957     }
9958     if (s2ap & 2) {
9959         prot |= PAGE_WRITE;
9960     }
9961     if (!xn) {
9962         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9963             prot |= PAGE_EXEC;
9964         }
9965     }
9966     return prot;
9967 }
9968 
9969 /* Translate section/page access permissions to protection flags
9970  *
9971  * @env:     CPUARMState
9972  * @mmu_idx: MMU index indicating required translation regime
9973  * @is_aa64: TRUE if AArch64
9974  * @ap:      The 2-bit simple AP (AP[2:1])
9975  * @ns:      NS (non-secure) bit
9976  * @xn:      XN (execute-never) bit
9977  * @pxn:     PXN (privileged execute-never) bit
9978  */
9979 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9980                       int ap, int ns, int xn, int pxn)
9981 {
9982     bool is_user = regime_is_user(env, mmu_idx);
9983     int prot_rw, user_rw;
9984     bool have_wxn;
9985     int wxn = 0;
9986 
9987     assert(mmu_idx != ARMMMUIdx_S2NS);
9988 
9989     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9990     if (is_user) {
9991         prot_rw = user_rw;
9992     } else {
9993         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9994     }
9995 
9996     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9997         return prot_rw;
9998     }
9999 
10000     /* TODO have_wxn should be replaced with
10001      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10002      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10003      * compatible processors have EL2, which is required for [U]WXN.
10004      */
10005     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10006 
10007     if (have_wxn) {
10008         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10009     }
10010 
10011     if (is_aa64) {
10012         switch (regime_el(env, mmu_idx)) {
10013         case 1:
10014             if (!is_user) {
10015                 xn = pxn || (user_rw & PAGE_WRITE);
10016             }
10017             break;
10018         case 2:
10019         case 3:
10020             break;
10021         }
10022     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10023         switch (regime_el(env, mmu_idx)) {
10024         case 1:
10025         case 3:
10026             if (is_user) {
10027                 xn = xn || !(user_rw & PAGE_READ);
10028             } else {
10029                 int uwxn = 0;
10030                 if (have_wxn) {
10031                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10032                 }
10033                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10034                      (uwxn && (user_rw & PAGE_WRITE));
10035             }
10036             break;
10037         case 2:
10038             break;
10039         }
10040     } else {
10041         xn = wxn = 0;
10042     }
10043 
10044     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10045         return prot_rw;
10046     }
10047     return prot_rw | PAGE_EXEC;
10048 }
10049 
10050 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10051                                      uint32_t *table, uint32_t address)
10052 {
10053     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10054     TCR *tcr = regime_tcr(env, mmu_idx);
10055 
10056     if (address & tcr->mask) {
10057         if (tcr->raw_tcr & TTBCR_PD1) {
10058             /* Translation table walk disabled for TTBR1 */
10059             return false;
10060         }
10061         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10062     } else {
10063         if (tcr->raw_tcr & TTBCR_PD0) {
10064             /* Translation table walk disabled for TTBR0 */
10065             return false;
10066         }
10067         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10068     }
10069     *table |= (address >> 18) & 0x3ffc;
10070     return true;
10071 }
10072 
10073 /* Translate a S1 pagetable walk through S2 if needed.  */
10074 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10075                                hwaddr addr, MemTxAttrs txattrs,
10076                                ARMMMUFaultInfo *fi)
10077 {
10078     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
10079         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10080         target_ulong s2size;
10081         hwaddr s2pa;
10082         int s2prot;
10083         int ret;
10084         ARMCacheAttrs cacheattrs = {};
10085         ARMCacheAttrs *pcacheattrs = NULL;
10086 
10087         if (env->cp15.hcr_el2 & HCR_PTW) {
10088             /*
10089              * PTW means we must fault if this S1 walk touches S2 Device
10090              * memory; otherwise we don't care about the attributes and can
10091              * save the S2 translation the effort of computing them.
10092              */
10093             pcacheattrs = &cacheattrs;
10094         }
10095 
10096         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
10097                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
10098         if (ret) {
10099             assert(fi->type != ARMFault_None);
10100             fi->s2addr = addr;
10101             fi->stage2 = true;
10102             fi->s1ptw = true;
10103             return ~0;
10104         }
10105         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
10106             /* Access was to Device memory: generate Permission fault */
10107             fi->type = ARMFault_Permission;
10108             fi->s2addr = addr;
10109             fi->stage2 = true;
10110             fi->s1ptw = true;
10111             return ~0;
10112         }
10113         addr = s2pa;
10114     }
10115     return addr;
10116 }
10117 
10118 /* All loads done in the course of a page table walk go through here. */
10119 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10120                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10121 {
10122     ARMCPU *cpu = ARM_CPU(cs);
10123     CPUARMState *env = &cpu->env;
10124     MemTxAttrs attrs = {};
10125     MemTxResult result = MEMTX_OK;
10126     AddressSpace *as;
10127     uint32_t data;
10128 
10129     attrs.secure = is_secure;
10130     as = arm_addressspace(cs, attrs);
10131     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10132     if (fi->s1ptw) {
10133         return 0;
10134     }
10135     if (regime_translation_big_endian(env, mmu_idx)) {
10136         data = address_space_ldl_be(as, addr, attrs, &result);
10137     } else {
10138         data = address_space_ldl_le(as, addr, attrs, &result);
10139     }
10140     if (result == MEMTX_OK) {
10141         return data;
10142     }
10143     fi->type = ARMFault_SyncExternalOnWalk;
10144     fi->ea = arm_extabort_type(result);
10145     return 0;
10146 }
10147 
10148 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10149                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10150 {
10151     ARMCPU *cpu = ARM_CPU(cs);
10152     CPUARMState *env = &cpu->env;
10153     MemTxAttrs attrs = {};
10154     MemTxResult result = MEMTX_OK;
10155     AddressSpace *as;
10156     uint64_t data;
10157 
10158     attrs.secure = is_secure;
10159     as = arm_addressspace(cs, attrs);
10160     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10161     if (fi->s1ptw) {
10162         return 0;
10163     }
10164     if (regime_translation_big_endian(env, mmu_idx)) {
10165         data = address_space_ldq_be(as, addr, attrs, &result);
10166     } else {
10167         data = address_space_ldq_le(as, addr, attrs, &result);
10168     }
10169     if (result == MEMTX_OK) {
10170         return data;
10171     }
10172     fi->type = ARMFault_SyncExternalOnWalk;
10173     fi->ea = arm_extabort_type(result);
10174     return 0;
10175 }
10176 
10177 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10178                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10179                              hwaddr *phys_ptr, int *prot,
10180                              target_ulong *page_size,
10181                              ARMMMUFaultInfo *fi)
10182 {
10183     CPUState *cs = CPU(arm_env_get_cpu(env));
10184     int level = 1;
10185     uint32_t table;
10186     uint32_t desc;
10187     int type;
10188     int ap;
10189     int domain = 0;
10190     int domain_prot;
10191     hwaddr phys_addr;
10192     uint32_t dacr;
10193 
10194     /* Pagetable walk.  */
10195     /* Lookup l1 descriptor.  */
10196     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10197         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10198         fi->type = ARMFault_Translation;
10199         goto do_fault;
10200     }
10201     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10202                        mmu_idx, fi);
10203     if (fi->type != ARMFault_None) {
10204         goto do_fault;
10205     }
10206     type = (desc & 3);
10207     domain = (desc >> 5) & 0x0f;
10208     if (regime_el(env, mmu_idx) == 1) {
10209         dacr = env->cp15.dacr_ns;
10210     } else {
10211         dacr = env->cp15.dacr_s;
10212     }
10213     domain_prot = (dacr >> (domain * 2)) & 3;
10214     if (type == 0) {
10215         /* Section translation fault.  */
10216         fi->type = ARMFault_Translation;
10217         goto do_fault;
10218     }
10219     if (type != 2) {
10220         level = 2;
10221     }
10222     if (domain_prot == 0 || domain_prot == 2) {
10223         fi->type = ARMFault_Domain;
10224         goto do_fault;
10225     }
10226     if (type == 2) {
10227         /* 1Mb section.  */
10228         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10229         ap = (desc >> 10) & 3;
10230         *page_size = 1024 * 1024;
10231     } else {
10232         /* Lookup l2 entry.  */
10233         if (type == 1) {
10234             /* Coarse pagetable.  */
10235             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10236         } else {
10237             /* Fine pagetable.  */
10238             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10239         }
10240         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10241                            mmu_idx, fi);
10242         if (fi->type != ARMFault_None) {
10243             goto do_fault;
10244         }
10245         switch (desc & 3) {
10246         case 0: /* Page translation fault.  */
10247             fi->type = ARMFault_Translation;
10248             goto do_fault;
10249         case 1: /* 64k page.  */
10250             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10251             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10252             *page_size = 0x10000;
10253             break;
10254         case 2: /* 4k page.  */
10255             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10256             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10257             *page_size = 0x1000;
10258             break;
10259         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10260             if (type == 1) {
10261                 /* ARMv6/XScale extended small page format */
10262                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10263                     || arm_feature(env, ARM_FEATURE_V6)) {
10264                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10265                     *page_size = 0x1000;
10266                 } else {
10267                     /* UNPREDICTABLE in ARMv5; we choose to take a
10268                      * page translation fault.
10269                      */
10270                     fi->type = ARMFault_Translation;
10271                     goto do_fault;
10272                 }
10273             } else {
10274                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10275                 *page_size = 0x400;
10276             }
10277             ap = (desc >> 4) & 3;
10278             break;
10279         default:
10280             /* Never happens, but compiler isn't smart enough to tell.  */
10281             abort();
10282         }
10283     }
10284     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10285     *prot |= *prot ? PAGE_EXEC : 0;
10286     if (!(*prot & (1 << access_type))) {
10287         /* Access permission fault.  */
10288         fi->type = ARMFault_Permission;
10289         goto do_fault;
10290     }
10291     *phys_ptr = phys_addr;
10292     return false;
10293 do_fault:
10294     fi->domain = domain;
10295     fi->level = level;
10296     return true;
10297 }
10298 
10299 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10300                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10301                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10302                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10303 {
10304     CPUState *cs = CPU(arm_env_get_cpu(env));
10305     int level = 1;
10306     uint32_t table;
10307     uint32_t desc;
10308     uint32_t xn;
10309     uint32_t pxn = 0;
10310     int type;
10311     int ap;
10312     int domain = 0;
10313     int domain_prot;
10314     hwaddr phys_addr;
10315     uint32_t dacr;
10316     bool ns;
10317 
10318     /* Pagetable walk.  */
10319     /* Lookup l1 descriptor.  */
10320     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10321         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10322         fi->type = ARMFault_Translation;
10323         goto do_fault;
10324     }
10325     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10326                        mmu_idx, fi);
10327     if (fi->type != ARMFault_None) {
10328         goto do_fault;
10329     }
10330     type = (desc & 3);
10331     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
10332         /* Section translation fault, or attempt to use the encoding
10333          * which is Reserved on implementations without PXN.
10334          */
10335         fi->type = ARMFault_Translation;
10336         goto do_fault;
10337     }
10338     if ((type == 1) || !(desc & (1 << 18))) {
10339         /* Page or Section.  */
10340         domain = (desc >> 5) & 0x0f;
10341     }
10342     if (regime_el(env, mmu_idx) == 1) {
10343         dacr = env->cp15.dacr_ns;
10344     } else {
10345         dacr = env->cp15.dacr_s;
10346     }
10347     if (type == 1) {
10348         level = 2;
10349     }
10350     domain_prot = (dacr >> (domain * 2)) & 3;
10351     if (domain_prot == 0 || domain_prot == 2) {
10352         /* Section or Page domain fault */
10353         fi->type = ARMFault_Domain;
10354         goto do_fault;
10355     }
10356     if (type != 1) {
10357         if (desc & (1 << 18)) {
10358             /* Supersection.  */
10359             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10360             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10361             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10362             *page_size = 0x1000000;
10363         } else {
10364             /* Section.  */
10365             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10366             *page_size = 0x100000;
10367         }
10368         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10369         xn = desc & (1 << 4);
10370         pxn = desc & 1;
10371         ns = extract32(desc, 19, 1);
10372     } else {
10373         if (arm_feature(env, ARM_FEATURE_PXN)) {
10374             pxn = (desc >> 2) & 1;
10375         }
10376         ns = extract32(desc, 3, 1);
10377         /* Lookup l2 entry.  */
10378         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10379         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10380                            mmu_idx, fi);
10381         if (fi->type != ARMFault_None) {
10382             goto do_fault;
10383         }
10384         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10385         switch (desc & 3) {
10386         case 0: /* Page translation fault.  */
10387             fi->type = ARMFault_Translation;
10388             goto do_fault;
10389         case 1: /* 64k page.  */
10390             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10391             xn = desc & (1 << 15);
10392             *page_size = 0x10000;
10393             break;
10394         case 2: case 3: /* 4k page.  */
10395             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10396             xn = desc & 1;
10397             *page_size = 0x1000;
10398             break;
10399         default:
10400             /* Never happens, but compiler isn't smart enough to tell.  */
10401             abort();
10402         }
10403     }
10404     if (domain_prot == 3) {
10405         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10406     } else {
10407         if (pxn && !regime_is_user(env, mmu_idx)) {
10408             xn = 1;
10409         }
10410         if (xn && access_type == MMU_INST_FETCH) {
10411             fi->type = ARMFault_Permission;
10412             goto do_fault;
10413         }
10414 
10415         if (arm_feature(env, ARM_FEATURE_V6K) &&
10416                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10417             /* The simplified model uses AP[0] as an access control bit.  */
10418             if ((ap & 1) == 0) {
10419                 /* Access flag fault.  */
10420                 fi->type = ARMFault_AccessFlag;
10421                 goto do_fault;
10422             }
10423             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10424         } else {
10425             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10426         }
10427         if (*prot && !xn) {
10428             *prot |= PAGE_EXEC;
10429         }
10430         if (!(*prot & (1 << access_type))) {
10431             /* Access permission fault.  */
10432             fi->type = ARMFault_Permission;
10433             goto do_fault;
10434         }
10435     }
10436     if (ns) {
10437         /* The NS bit will (as required by the architecture) have no effect if
10438          * the CPU doesn't support TZ or this is a non-secure translation
10439          * regime, because the attribute will already be non-secure.
10440          */
10441         attrs->secure = false;
10442     }
10443     *phys_ptr = phys_addr;
10444     return false;
10445 do_fault:
10446     fi->domain = domain;
10447     fi->level = level;
10448     return true;
10449 }
10450 
10451 /*
10452  * check_s2_mmu_setup
10453  * @cpu:        ARMCPU
10454  * @is_aa64:    True if the translation regime is in AArch64 state
10455  * @startlevel: Suggested starting level
10456  * @inputsize:  Bitsize of IPAs
10457  * @stride:     Page-table stride (See the ARM ARM)
10458  *
10459  * Returns true if the suggested S2 translation parameters are OK and
10460  * false otherwise.
10461  */
10462 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10463                                int inputsize, int stride)
10464 {
10465     const int grainsize = stride + 3;
10466     int startsizecheck;
10467 
10468     /* Negative levels are never allowed.  */
10469     if (level < 0) {
10470         return false;
10471     }
10472 
10473     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10474     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10475         return false;
10476     }
10477 
10478     if (is_aa64) {
10479         CPUARMState *env = &cpu->env;
10480         unsigned int pamax = arm_pamax(cpu);
10481 
10482         switch (stride) {
10483         case 13: /* 64KB Pages.  */
10484             if (level == 0 || (level == 1 && pamax <= 42)) {
10485                 return false;
10486             }
10487             break;
10488         case 11: /* 16KB Pages.  */
10489             if (level == 0 || (level == 1 && pamax <= 40)) {
10490                 return false;
10491             }
10492             break;
10493         case 9: /* 4KB Pages.  */
10494             if (level == 0 && pamax <= 42) {
10495                 return false;
10496             }
10497             break;
10498         default:
10499             g_assert_not_reached();
10500         }
10501 
10502         /* Inputsize checks.  */
10503         if (inputsize > pamax &&
10504             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10505             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10506             return false;
10507         }
10508     } else {
10509         /* AArch32 only supports 4KB pages. Assert on that.  */
10510         assert(stride == 9);
10511 
10512         if (level == 0) {
10513             return false;
10514         }
10515     }
10516     return true;
10517 }
10518 
10519 /* Translate from the 4-bit stage 2 representation of
10520  * memory attributes (without cache-allocation hints) to
10521  * the 8-bit representation of the stage 1 MAIR registers
10522  * (which includes allocation hints).
10523  *
10524  * ref: shared/translation/attrs/S2AttrDecode()
10525  *      .../S2ConvertAttrsHints()
10526  */
10527 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10528 {
10529     uint8_t hiattr = extract32(s2attrs, 2, 2);
10530     uint8_t loattr = extract32(s2attrs, 0, 2);
10531     uint8_t hihint = 0, lohint = 0;
10532 
10533     if (hiattr != 0) { /* normal memory */
10534         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10535             hiattr = loattr = 1; /* non-cacheable */
10536         } else {
10537             if (hiattr != 1) { /* Write-through or write-back */
10538                 hihint = 3; /* RW allocate */
10539             }
10540             if (loattr != 1) { /* Write-through or write-back */
10541                 lohint = 3; /* RW allocate */
10542             }
10543         }
10544     }
10545 
10546     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10547 }
10548 #endif /* !CONFIG_USER_ONLY */
10549 
10550 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va,
10551                                         ARMMMUIdx mmu_idx)
10552 {
10553     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10554     uint32_t el = regime_el(env, mmu_idx);
10555     bool tbi, tbid, epd, hpd, using16k, using64k;
10556     int select, tsz;
10557 
10558     /*
10559      * Bit 55 is always between the two regions, and is canonical for
10560      * determining if address tagging is enabled.
10561      */
10562     select = extract64(va, 55, 1);
10563 
10564     if (el > 1) {
10565         tsz = extract32(tcr, 0, 6);
10566         using64k = extract32(tcr, 14, 1);
10567         using16k = extract32(tcr, 15, 1);
10568         if (mmu_idx == ARMMMUIdx_S2NS) {
10569             /* VTCR_EL2 */
10570             tbi = tbid = hpd = false;
10571         } else {
10572             tbi = extract32(tcr, 20, 1);
10573             hpd = extract32(tcr, 24, 1);
10574             tbid = extract32(tcr, 29, 1);
10575         }
10576         epd = false;
10577     } else if (!select) {
10578         tsz = extract32(tcr, 0, 6);
10579         epd = extract32(tcr, 7, 1);
10580         using64k = extract32(tcr, 14, 1);
10581         using16k = extract32(tcr, 15, 1);
10582         tbi = extract64(tcr, 37, 1);
10583         hpd = extract64(tcr, 41, 1);
10584         tbid = extract64(tcr, 51, 1);
10585     } else {
10586         int tg = extract32(tcr, 30, 2);
10587         using16k = tg == 1;
10588         using64k = tg == 3;
10589         tsz = extract32(tcr, 16, 6);
10590         epd = extract32(tcr, 23, 1);
10591         tbi = extract64(tcr, 38, 1);
10592         hpd = extract64(tcr, 42, 1);
10593         tbid = extract64(tcr, 52, 1);
10594     }
10595     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10596     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10597 
10598     return (ARMVAParameters) {
10599         .tsz = tsz,
10600         .select = select,
10601         .tbi = tbi,
10602         .tbid = tbid,
10603         .epd = epd,
10604         .hpd = hpd,
10605         .using16k = using16k,
10606         .using64k = using64k,
10607     };
10608 }
10609 
10610 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10611                                    ARMMMUIdx mmu_idx, bool data)
10612 {
10613     ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx);
10614 
10615     /* Present TBI as a composite with TBID.  */
10616     ret.tbi &= (data || !ret.tbid);
10617     return ret;
10618 }
10619 
10620 #ifndef CONFIG_USER_ONLY
10621 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10622                                           ARMMMUIdx mmu_idx)
10623 {
10624     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10625     uint32_t el = regime_el(env, mmu_idx);
10626     int select, tsz;
10627     bool epd, hpd;
10628 
10629     if (mmu_idx == ARMMMUIdx_S2NS) {
10630         /* VTCR */
10631         bool sext = extract32(tcr, 4, 1);
10632         bool sign = extract32(tcr, 3, 1);
10633 
10634         /*
10635          * If the sign-extend bit is not the same as t0sz[3], the result
10636          * is unpredictable. Flag this as a guest error.
10637          */
10638         if (sign != sext) {
10639             qemu_log_mask(LOG_GUEST_ERROR,
10640                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10641         }
10642         tsz = sextract32(tcr, 0, 4) + 8;
10643         select = 0;
10644         hpd = false;
10645         epd = false;
10646     } else if (el == 2) {
10647         /* HTCR */
10648         tsz = extract32(tcr, 0, 3);
10649         select = 0;
10650         hpd = extract64(tcr, 24, 1);
10651         epd = false;
10652     } else {
10653         int t0sz = extract32(tcr, 0, 3);
10654         int t1sz = extract32(tcr, 16, 3);
10655 
10656         if (t1sz == 0) {
10657             select = va > (0xffffffffu >> t0sz);
10658         } else {
10659             /* Note that we will detect errors later.  */
10660             select = va >= ~(0xffffffffu >> t1sz);
10661         }
10662         if (!select) {
10663             tsz = t0sz;
10664             epd = extract32(tcr, 7, 1);
10665             hpd = extract64(tcr, 41, 1);
10666         } else {
10667             tsz = t1sz;
10668             epd = extract32(tcr, 23, 1);
10669             hpd = extract64(tcr, 42, 1);
10670         }
10671         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10672         hpd &= extract32(tcr, 6, 1);
10673     }
10674 
10675     return (ARMVAParameters) {
10676         .tsz = tsz,
10677         .select = select,
10678         .epd = epd,
10679         .hpd = hpd,
10680     };
10681 }
10682 
10683 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10684                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10685                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10686                                target_ulong *page_size_ptr,
10687                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10688 {
10689     ARMCPU *cpu = arm_env_get_cpu(env);
10690     CPUState *cs = CPU(cpu);
10691     /* Read an LPAE long-descriptor translation table. */
10692     ARMFaultType fault_type = ARMFault_Translation;
10693     uint32_t level;
10694     ARMVAParameters param;
10695     uint64_t ttbr;
10696     hwaddr descaddr, indexmask, indexmask_grainsize;
10697     uint32_t tableattrs;
10698     target_ulong page_size;
10699     uint32_t attrs;
10700     int32_t stride;
10701     int addrsize, inputsize;
10702     TCR *tcr = regime_tcr(env, mmu_idx);
10703     int ap, ns, xn, pxn;
10704     uint32_t el = regime_el(env, mmu_idx);
10705     bool ttbr1_valid;
10706     uint64_t descaddrmask;
10707     bool aarch64 = arm_el_is_aa64(env, el);
10708     bool guarded = false;
10709 
10710     /* TODO:
10711      * This code does not handle the different format TCR for VTCR_EL2.
10712      * This code also does not support shareability levels.
10713      * Attribute and permission bit handling should also be checked when adding
10714      * support for those page table walks.
10715      */
10716     if (aarch64) {
10717         param = aa64_va_parameters(env, address, mmu_idx,
10718                                    access_type != MMU_INST_FETCH);
10719         level = 0;
10720         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10721          * invalid.
10722          */
10723         ttbr1_valid = (el < 2);
10724         addrsize = 64 - 8 * param.tbi;
10725         inputsize = 64 - param.tsz;
10726     } else {
10727         param = aa32_va_parameters(env, address, mmu_idx);
10728         level = 1;
10729         /* There is no TTBR1 for EL2 */
10730         ttbr1_valid = (el != 2);
10731         addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32);
10732         inputsize = addrsize - param.tsz;
10733     }
10734 
10735     /*
10736      * We determined the region when collecting the parameters, but we
10737      * have not yet validated that the address is valid for the region.
10738      * Extract the top bits and verify that they all match select.
10739      *
10740      * For aa32, if inputsize == addrsize, then we have selected the
10741      * region by exclusion in aa32_va_parameters and there is no more
10742      * validation to do here.
10743      */
10744     if (inputsize < addrsize) {
10745         target_ulong top_bits = sextract64(address, inputsize,
10746                                            addrsize - inputsize);
10747         if (-top_bits != param.select || (param.select && !ttbr1_valid)) {
10748             /* The gap between the two regions is a Translation fault */
10749             fault_type = ARMFault_Translation;
10750             goto do_fault;
10751         }
10752     }
10753 
10754     if (param.using64k) {
10755         stride = 13;
10756     } else if (param.using16k) {
10757         stride = 11;
10758     } else {
10759         stride = 9;
10760     }
10761 
10762     /* Note that QEMU ignores shareability and cacheability attributes,
10763      * so we don't need to do anything with the SH, ORGN, IRGN fields
10764      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
10765      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10766      * implement any ASID-like capability so we can ignore it (instead
10767      * we will always flush the TLB any time the ASID is changed).
10768      */
10769     ttbr = regime_ttbr(env, mmu_idx, param.select);
10770 
10771     /* Here we should have set up all the parameters for the translation:
10772      * inputsize, ttbr, epd, stride, tbi
10773      */
10774 
10775     if (param.epd) {
10776         /* Translation table walk disabled => Translation fault on TLB miss
10777          * Note: This is always 0 on 64-bit EL2 and EL3.
10778          */
10779         goto do_fault;
10780     }
10781 
10782     if (mmu_idx != ARMMMUIdx_S2NS) {
10783         /* The starting level depends on the virtual address size (which can
10784          * be up to 48 bits) and the translation granule size. It indicates
10785          * the number of strides (stride bits at a time) needed to
10786          * consume the bits of the input address. In the pseudocode this is:
10787          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
10788          * where their 'inputsize' is our 'inputsize', 'grainsize' is
10789          * our 'stride + 3' and 'stride' is our 'stride'.
10790          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10791          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10792          * = 4 - (inputsize - 4) / stride;
10793          */
10794         level = 4 - (inputsize - 4) / stride;
10795     } else {
10796         /* For stage 2 translations the starting level is specified by the
10797          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10798          */
10799         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
10800         uint32_t startlevel;
10801         bool ok;
10802 
10803         if (!aarch64 || stride == 9) {
10804             /* AArch32 or 4KB pages */
10805             startlevel = 2 - sl0;
10806         } else {
10807             /* 16KB or 64KB pages */
10808             startlevel = 3 - sl0;
10809         }
10810 
10811         /* Check that the starting level is valid. */
10812         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
10813                                 inputsize, stride);
10814         if (!ok) {
10815             fault_type = ARMFault_Translation;
10816             goto do_fault;
10817         }
10818         level = startlevel;
10819     }
10820 
10821     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
10822     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
10823 
10824     /* Now we can extract the actual base address from the TTBR */
10825     descaddr = extract64(ttbr, 0, 48);
10826     descaddr &= ~indexmask;
10827 
10828     /* The address field in the descriptor goes up to bit 39 for ARMv7
10829      * but up to bit 47 for ARMv8, but we use the descaddrmask
10830      * up to bit 39 for AArch32, because we don't need other bits in that case
10831      * to construct next descriptor address (anyway they should be all zeroes).
10832      */
10833     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
10834                    ~indexmask_grainsize;
10835 
10836     /* Secure accesses start with the page table in secure memory and
10837      * can be downgraded to non-secure at any step. Non-secure accesses
10838      * remain non-secure. We implement this by just ORing in the NSTable/NS
10839      * bits at each step.
10840      */
10841     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
10842     for (;;) {
10843         uint64_t descriptor;
10844         bool nstable;
10845 
10846         descaddr |= (address >> (stride * (4 - level))) & indexmask;
10847         descaddr &= ~7ULL;
10848         nstable = extract32(tableattrs, 4, 1);
10849         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
10850         if (fi->type != ARMFault_None) {
10851             goto do_fault;
10852         }
10853 
10854         if (!(descriptor & 1) ||
10855             (!(descriptor & 2) && (level == 3))) {
10856             /* Invalid, or the Reserved level 3 encoding */
10857             goto do_fault;
10858         }
10859         descaddr = descriptor & descaddrmask;
10860 
10861         if ((descriptor & 2) && (level < 3)) {
10862             /* Table entry. The top five bits are attributes which may
10863              * propagate down through lower levels of the table (and
10864              * which are all arranged so that 0 means "no effect", so
10865              * we can gather them up by ORing in the bits at each level).
10866              */
10867             tableattrs |= extract64(descriptor, 59, 5);
10868             level++;
10869             indexmask = indexmask_grainsize;
10870             continue;
10871         }
10872         /* Block entry at level 1 or 2, or page entry at level 3.
10873          * These are basically the same thing, although the number
10874          * of bits we pull in from the vaddr varies.
10875          */
10876         page_size = (1ULL << ((stride * (4 - level)) + 3));
10877         descaddr |= (address & (page_size - 1));
10878         /* Extract attributes from the descriptor */
10879         attrs = extract64(descriptor, 2, 10)
10880             | (extract64(descriptor, 52, 12) << 10);
10881 
10882         if (mmu_idx == ARMMMUIdx_S2NS) {
10883             /* Stage 2 table descriptors do not include any attribute fields */
10884             break;
10885         }
10886         /* Merge in attributes from table descriptors */
10887         attrs |= nstable << 3; /* NS */
10888         guarded = extract64(descriptor, 50, 1);  /* GP */
10889         if (param.hpd) {
10890             /* HPD disables all the table attributes except NSTable.  */
10891             break;
10892         }
10893         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
10894         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10895          * means "force PL1 access only", which means forcing AP[1] to 0.
10896          */
10897         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
10898         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
10899         break;
10900     }
10901     /* Here descaddr is the final physical address, and attributes
10902      * are all in attrs.
10903      */
10904     fault_type = ARMFault_AccessFlag;
10905     if ((attrs & (1 << 8)) == 0) {
10906         /* Access flag */
10907         goto do_fault;
10908     }
10909 
10910     ap = extract32(attrs, 4, 2);
10911     xn = extract32(attrs, 12, 1);
10912 
10913     if (mmu_idx == ARMMMUIdx_S2NS) {
10914         ns = true;
10915         *prot = get_S2prot(env, ap, xn);
10916     } else {
10917         ns = extract32(attrs, 3, 1);
10918         pxn = extract32(attrs, 11, 1);
10919         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
10920     }
10921 
10922     fault_type = ARMFault_Permission;
10923     if (!(*prot & (1 << access_type))) {
10924         goto do_fault;
10925     }
10926 
10927     if (ns) {
10928         /* The NS bit will (as required by the architecture) have no effect if
10929          * the CPU doesn't support TZ or this is a non-secure translation
10930          * regime, because the attribute will already be non-secure.
10931          */
10932         txattrs->secure = false;
10933     }
10934     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
10935     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
10936         txattrs->target_tlb_bit0 = true;
10937     }
10938 
10939     if (cacheattrs != NULL) {
10940         if (mmu_idx == ARMMMUIdx_S2NS) {
10941             cacheattrs->attrs = convert_stage2_attrs(env,
10942                                                      extract32(attrs, 0, 4));
10943         } else {
10944             /* Index into MAIR registers for cache attributes */
10945             uint8_t attrindx = extract32(attrs, 0, 3);
10946             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
10947             assert(attrindx <= 7);
10948             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
10949         }
10950         cacheattrs->shareability = extract32(attrs, 6, 2);
10951     }
10952 
10953     *phys_ptr = descaddr;
10954     *page_size_ptr = page_size;
10955     return false;
10956 
10957 do_fault:
10958     fi->type = fault_type;
10959     fi->level = level;
10960     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
10961     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
10962     return true;
10963 }
10964 
10965 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
10966                                                 ARMMMUIdx mmu_idx,
10967                                                 int32_t address, int *prot)
10968 {
10969     if (!arm_feature(env, ARM_FEATURE_M)) {
10970         *prot = PAGE_READ | PAGE_WRITE;
10971         switch (address) {
10972         case 0xF0000000 ... 0xFFFFFFFF:
10973             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
10974                 /* hivecs execing is ok */
10975                 *prot |= PAGE_EXEC;
10976             }
10977             break;
10978         case 0x00000000 ... 0x7FFFFFFF:
10979             *prot |= PAGE_EXEC;
10980             break;
10981         }
10982     } else {
10983         /* Default system address map for M profile cores.
10984          * The architecture specifies which regions are execute-never;
10985          * at the MPU level no other checks are defined.
10986          */
10987         switch (address) {
10988         case 0x00000000 ... 0x1fffffff: /* ROM */
10989         case 0x20000000 ... 0x3fffffff: /* SRAM */
10990         case 0x60000000 ... 0x7fffffff: /* RAM */
10991         case 0x80000000 ... 0x9fffffff: /* RAM */
10992             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10993             break;
10994         case 0x40000000 ... 0x5fffffff: /* Peripheral */
10995         case 0xa0000000 ... 0xbfffffff: /* Device */
10996         case 0xc0000000 ... 0xdfffffff: /* Device */
10997         case 0xe0000000 ... 0xffffffff: /* System */
10998             *prot = PAGE_READ | PAGE_WRITE;
10999             break;
11000         default:
11001             g_assert_not_reached();
11002         }
11003     }
11004 }
11005 
11006 static bool pmsav7_use_background_region(ARMCPU *cpu,
11007                                          ARMMMUIdx mmu_idx, bool is_user)
11008 {
11009     /* Return true if we should use the default memory map as a
11010      * "background" region if there are no hits against any MPU regions.
11011      */
11012     CPUARMState *env = &cpu->env;
11013 
11014     if (is_user) {
11015         return false;
11016     }
11017 
11018     if (arm_feature(env, ARM_FEATURE_M)) {
11019         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11020             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11021     } else {
11022         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11023     }
11024 }
11025 
11026 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11027 {
11028     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11029     return arm_feature(env, ARM_FEATURE_M) &&
11030         extract32(address, 20, 12) == 0xe00;
11031 }
11032 
11033 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11034 {
11035     /* True if address is in the M profile system region
11036      * 0xe0000000 - 0xffffffff
11037      */
11038     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11039 }
11040 
11041 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11042                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11043                                  hwaddr *phys_ptr, int *prot,
11044                                  target_ulong *page_size,
11045                                  ARMMMUFaultInfo *fi)
11046 {
11047     ARMCPU *cpu = arm_env_get_cpu(env);
11048     int n;
11049     bool is_user = regime_is_user(env, mmu_idx);
11050 
11051     *phys_ptr = address;
11052     *page_size = TARGET_PAGE_SIZE;
11053     *prot = 0;
11054 
11055     if (regime_translation_disabled(env, mmu_idx) ||
11056         m_is_ppb_region(env, address)) {
11057         /* MPU disabled or M profile PPB access: use default memory map.
11058          * The other case which uses the default memory map in the
11059          * v7M ARM ARM pseudocode is exception vector reads from the vector
11060          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11061          * which always does a direct read using address_space_ldl(), rather
11062          * than going via this function, so we don't need to check that here.
11063          */
11064         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11065     } else { /* MPU enabled */
11066         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11067             /* region search */
11068             uint32_t base = env->pmsav7.drbar[n];
11069             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11070             uint32_t rmask;
11071             bool srdis = false;
11072 
11073             if (!(env->pmsav7.drsr[n] & 0x1)) {
11074                 continue;
11075             }
11076 
11077             if (!rsize) {
11078                 qemu_log_mask(LOG_GUEST_ERROR,
11079                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11080                 continue;
11081             }
11082             rsize++;
11083             rmask = (1ull << rsize) - 1;
11084 
11085             if (base & rmask) {
11086                 qemu_log_mask(LOG_GUEST_ERROR,
11087                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11088                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11089                               n, base, rmask);
11090                 continue;
11091             }
11092 
11093             if (address < base || address > base + rmask) {
11094                 /*
11095                  * Address not in this region. We must check whether the
11096                  * region covers addresses in the same page as our address.
11097                  * In that case we must not report a size that covers the
11098                  * whole page for a subsequent hit against a different MPU
11099                  * region or the background region, because it would result in
11100                  * incorrect TLB hits for subsequent accesses to addresses that
11101                  * are in this MPU region.
11102                  */
11103                 if (ranges_overlap(base, rmask,
11104                                    address & TARGET_PAGE_MASK,
11105                                    TARGET_PAGE_SIZE)) {
11106                     *page_size = 1;
11107                 }
11108                 continue;
11109             }
11110 
11111             /* Region matched */
11112 
11113             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11114                 int i, snd;
11115                 uint32_t srdis_mask;
11116 
11117                 rsize -= 3; /* sub region size (power of 2) */
11118                 snd = ((address - base) >> rsize) & 0x7;
11119                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11120 
11121                 srdis_mask = srdis ? 0x3 : 0x0;
11122                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11123                     /* This will check in groups of 2, 4 and then 8, whether
11124                      * the subregion bits are consistent. rsize is incremented
11125                      * back up to give the region size, considering consistent
11126                      * adjacent subregions as one region. Stop testing if rsize
11127                      * is already big enough for an entire QEMU page.
11128                      */
11129                     int snd_rounded = snd & ~(i - 1);
11130                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11131                                                      snd_rounded + 8, i);
11132                     if (srdis_mask ^ srdis_multi) {
11133                         break;
11134                     }
11135                     srdis_mask = (srdis_mask << i) | srdis_mask;
11136                     rsize++;
11137                 }
11138             }
11139             if (srdis) {
11140                 continue;
11141             }
11142             if (rsize < TARGET_PAGE_BITS) {
11143                 *page_size = 1 << rsize;
11144             }
11145             break;
11146         }
11147 
11148         if (n == -1) { /* no hits */
11149             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11150                 /* background fault */
11151                 fi->type = ARMFault_Background;
11152                 return true;
11153             }
11154             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11155         } else { /* a MPU hit! */
11156             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11157             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11158 
11159             if (m_is_system_region(env, address)) {
11160                 /* System space is always execute never */
11161                 xn = 1;
11162             }
11163 
11164             if (is_user) { /* User mode AP bit decoding */
11165                 switch (ap) {
11166                 case 0:
11167                 case 1:
11168                 case 5:
11169                     break; /* no access */
11170                 case 3:
11171                     *prot |= PAGE_WRITE;
11172                     /* fall through */
11173                 case 2:
11174                 case 6:
11175                     *prot |= PAGE_READ | PAGE_EXEC;
11176                     break;
11177                 case 7:
11178                     /* for v7M, same as 6; for R profile a reserved value */
11179                     if (arm_feature(env, ARM_FEATURE_M)) {
11180                         *prot |= PAGE_READ | PAGE_EXEC;
11181                         break;
11182                     }
11183                     /* fall through */
11184                 default:
11185                     qemu_log_mask(LOG_GUEST_ERROR,
11186                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11187                                   PRIx32 "\n", n, ap);
11188                 }
11189             } else { /* Priv. mode AP bits decoding */
11190                 switch (ap) {
11191                 case 0:
11192                     break; /* no access */
11193                 case 1:
11194                 case 2:
11195                 case 3:
11196                     *prot |= PAGE_WRITE;
11197                     /* fall through */
11198                 case 5:
11199                 case 6:
11200                     *prot |= PAGE_READ | PAGE_EXEC;
11201                     break;
11202                 case 7:
11203                     /* for v7M, same as 6; for R profile a reserved value */
11204                     if (arm_feature(env, ARM_FEATURE_M)) {
11205                         *prot |= PAGE_READ | PAGE_EXEC;
11206                         break;
11207                     }
11208                     /* fall through */
11209                 default:
11210                     qemu_log_mask(LOG_GUEST_ERROR,
11211                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11212                                   PRIx32 "\n", n, ap);
11213                 }
11214             }
11215 
11216             /* execute never */
11217             if (xn) {
11218                 *prot &= ~PAGE_EXEC;
11219             }
11220         }
11221     }
11222 
11223     fi->type = ARMFault_Permission;
11224     fi->level = 1;
11225     return !(*prot & (1 << access_type));
11226 }
11227 
11228 static bool v8m_is_sau_exempt(CPUARMState *env,
11229                               uint32_t address, MMUAccessType access_type)
11230 {
11231     /* The architecture specifies that certain address ranges are
11232      * exempt from v8M SAU/IDAU checks.
11233      */
11234     return
11235         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11236         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11237         (address >= 0xe000e000 && address <= 0xe000efff) ||
11238         (address >= 0xe002e000 && address <= 0xe002efff) ||
11239         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11240         (address >= 0xe00ff000 && address <= 0xe00fffff);
11241 }
11242 
11243 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
11244                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11245                                 V8M_SAttributes *sattrs)
11246 {
11247     /* Look up the security attributes for this address. Compare the
11248      * pseudocode SecurityCheck() function.
11249      * We assume the caller has zero-initialized *sattrs.
11250      */
11251     ARMCPU *cpu = arm_env_get_cpu(env);
11252     int r;
11253     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11254     int idau_region = IREGION_NOTVALID;
11255     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11256     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11257 
11258     if (cpu->idau) {
11259         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11260         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11261 
11262         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11263                    &idau_nsc);
11264     }
11265 
11266     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11267         /* 0xf0000000..0xffffffff is always S for insn fetches */
11268         return;
11269     }
11270 
11271     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11272         sattrs->ns = !regime_is_secure(env, mmu_idx);
11273         return;
11274     }
11275 
11276     if (idau_region != IREGION_NOTVALID) {
11277         sattrs->irvalid = true;
11278         sattrs->iregion = idau_region;
11279     }
11280 
11281     switch (env->sau.ctrl & 3) {
11282     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11283         break;
11284     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11285         sattrs->ns = true;
11286         break;
11287     default: /* SAU.ENABLE == 1 */
11288         for (r = 0; r < cpu->sau_sregion; r++) {
11289             if (env->sau.rlar[r] & 1) {
11290                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11291                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11292 
11293                 if (base <= address && limit >= address) {
11294                     if (base > addr_page_base || limit < addr_page_limit) {
11295                         sattrs->subpage = true;
11296                     }
11297                     if (sattrs->srvalid) {
11298                         /* If we hit in more than one region then we must report
11299                          * as Secure, not NS-Callable, with no valid region
11300                          * number info.
11301                          */
11302                         sattrs->ns = false;
11303                         sattrs->nsc = false;
11304                         sattrs->sregion = 0;
11305                         sattrs->srvalid = false;
11306                         break;
11307                     } else {
11308                         if (env->sau.rlar[r] & 2) {
11309                             sattrs->nsc = true;
11310                         } else {
11311                             sattrs->ns = true;
11312                         }
11313                         sattrs->srvalid = true;
11314                         sattrs->sregion = r;
11315                     }
11316                 } else {
11317                     /*
11318                      * Address not in this region. We must check whether the
11319                      * region covers addresses in the same page as our address.
11320                      * In that case we must not report a size that covers the
11321                      * whole page for a subsequent hit against a different MPU
11322                      * region or the background region, because it would result
11323                      * in incorrect TLB hits for subsequent accesses to
11324                      * addresses that are in this MPU region.
11325                      */
11326                     if (limit >= base &&
11327                         ranges_overlap(base, limit - base + 1,
11328                                        addr_page_base,
11329                                        TARGET_PAGE_SIZE)) {
11330                         sattrs->subpage = true;
11331                     }
11332                 }
11333             }
11334         }
11335         break;
11336     }
11337 
11338     /*
11339      * The IDAU will override the SAU lookup results if it specifies
11340      * higher security than the SAU does.
11341      */
11342     if (!idau_ns) {
11343         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11344             sattrs->ns = false;
11345             sattrs->nsc = idau_nsc;
11346         }
11347     }
11348 }
11349 
11350 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11351                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11352                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11353                               int *prot, bool *is_subpage,
11354                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11355 {
11356     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11357      * that a full phys-to-virt translation does).
11358      * mregion is (if not NULL) set to the region number which matched,
11359      * or -1 if no region number is returned (MPU off, address did not
11360      * hit a region, address hit in multiple regions).
11361      * We set is_subpage to true if the region hit doesn't cover the
11362      * entire TARGET_PAGE the address is within.
11363      */
11364     ARMCPU *cpu = arm_env_get_cpu(env);
11365     bool is_user = regime_is_user(env, mmu_idx);
11366     uint32_t secure = regime_is_secure(env, mmu_idx);
11367     int n;
11368     int matchregion = -1;
11369     bool hit = false;
11370     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11371     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11372 
11373     *is_subpage = false;
11374     *phys_ptr = address;
11375     *prot = 0;
11376     if (mregion) {
11377         *mregion = -1;
11378     }
11379 
11380     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11381      * was an exception vector read from the vector table (which is always
11382      * done using the default system address map), because those accesses
11383      * are done in arm_v7m_load_vector(), which always does a direct
11384      * read using address_space_ldl(), rather than going via this function.
11385      */
11386     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11387         hit = true;
11388     } else if (m_is_ppb_region(env, address)) {
11389         hit = true;
11390     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11391         hit = true;
11392     } else {
11393         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11394             /* region search */
11395             /* Note that the base address is bits [31:5] from the register
11396              * with bits [4:0] all zeroes, but the limit address is bits
11397              * [31:5] from the register with bits [4:0] all ones.
11398              */
11399             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11400             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11401 
11402             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11403                 /* Region disabled */
11404                 continue;
11405             }
11406 
11407             if (address < base || address > limit) {
11408                 /*
11409                  * Address not in this region. We must check whether the
11410                  * region covers addresses in the same page as our address.
11411                  * In that case we must not report a size that covers the
11412                  * whole page for a subsequent hit against a different MPU
11413                  * region or the background region, because it would result in
11414                  * incorrect TLB hits for subsequent accesses to addresses that
11415                  * are in this MPU region.
11416                  */
11417                 if (limit >= base &&
11418                     ranges_overlap(base, limit - base + 1,
11419                                    addr_page_base,
11420                                    TARGET_PAGE_SIZE)) {
11421                     *is_subpage = true;
11422                 }
11423                 continue;
11424             }
11425 
11426             if (base > addr_page_base || limit < addr_page_limit) {
11427                 *is_subpage = true;
11428             }
11429 
11430             if (hit) {
11431                 /* Multiple regions match -- always a failure (unlike
11432                  * PMSAv7 where highest-numbered-region wins)
11433                  */
11434                 fi->type = ARMFault_Permission;
11435                 fi->level = 1;
11436                 return true;
11437             }
11438 
11439             matchregion = n;
11440             hit = true;
11441         }
11442     }
11443 
11444     if (!hit) {
11445         /* background fault */
11446         fi->type = ARMFault_Background;
11447         return true;
11448     }
11449 
11450     if (matchregion == -1) {
11451         /* hit using the background region */
11452         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11453     } else {
11454         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11455         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11456 
11457         if (m_is_system_region(env, address)) {
11458             /* System space is always execute never */
11459             xn = 1;
11460         }
11461 
11462         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11463         if (*prot && !xn) {
11464             *prot |= PAGE_EXEC;
11465         }
11466         /* We don't need to look the attribute up in the MAIR0/MAIR1
11467          * registers because that only tells us about cacheability.
11468          */
11469         if (mregion) {
11470             *mregion = matchregion;
11471         }
11472     }
11473 
11474     fi->type = ARMFault_Permission;
11475     fi->level = 1;
11476     return !(*prot & (1 << access_type));
11477 }
11478 
11479 
11480 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11481                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11482                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11483                                  int *prot, target_ulong *page_size,
11484                                  ARMMMUFaultInfo *fi)
11485 {
11486     uint32_t secure = regime_is_secure(env, mmu_idx);
11487     V8M_SAttributes sattrs = {};
11488     bool ret;
11489     bool mpu_is_subpage;
11490 
11491     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11492         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11493         if (access_type == MMU_INST_FETCH) {
11494             /* Instruction fetches always use the MMU bank and the
11495              * transaction attribute determined by the fetch address,
11496              * regardless of CPU state. This is painful for QEMU
11497              * to handle, because it would mean we need to encode
11498              * into the mmu_idx not just the (user, negpri) information
11499              * for the current security state but also that for the
11500              * other security state, which would balloon the number
11501              * of mmu_idx values needed alarmingly.
11502              * Fortunately we can avoid this because it's not actually
11503              * possible to arbitrarily execute code from memory with
11504              * the wrong security attribute: it will always generate
11505              * an exception of some kind or another, apart from the
11506              * special case of an NS CPU executing an SG instruction
11507              * in S&NSC memory. So we always just fail the translation
11508              * here and sort things out in the exception handler
11509              * (including possibly emulating an SG instruction).
11510              */
11511             if (sattrs.ns != !secure) {
11512                 if (sattrs.nsc) {
11513                     fi->type = ARMFault_QEMU_NSCExec;
11514                 } else {
11515                     fi->type = ARMFault_QEMU_SFault;
11516                 }
11517                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11518                 *phys_ptr = address;
11519                 *prot = 0;
11520                 return true;
11521             }
11522         } else {
11523             /* For data accesses we always use the MMU bank indicated
11524              * by the current CPU state, but the security attributes
11525              * might downgrade a secure access to nonsecure.
11526              */
11527             if (sattrs.ns) {
11528                 txattrs->secure = false;
11529             } else if (!secure) {
11530                 /* NS access to S memory must fault.
11531                  * Architecturally we should first check whether the
11532                  * MPU information for this address indicates that we
11533                  * are doing an unaligned access to Device memory, which
11534                  * should generate a UsageFault instead. QEMU does not
11535                  * currently check for that kind of unaligned access though.
11536                  * If we added it we would need to do so as a special case
11537                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11538                  */
11539                 fi->type = ARMFault_QEMU_SFault;
11540                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11541                 *phys_ptr = address;
11542                 *prot = 0;
11543                 return true;
11544             }
11545         }
11546     }
11547 
11548     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11549                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11550     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11551     return ret;
11552 }
11553 
11554 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11555                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11556                                  hwaddr *phys_ptr, int *prot,
11557                                  ARMMMUFaultInfo *fi)
11558 {
11559     int n;
11560     uint32_t mask;
11561     uint32_t base;
11562     bool is_user = regime_is_user(env, mmu_idx);
11563 
11564     if (regime_translation_disabled(env, mmu_idx)) {
11565         /* MPU disabled.  */
11566         *phys_ptr = address;
11567         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11568         return false;
11569     }
11570 
11571     *phys_ptr = address;
11572     for (n = 7; n >= 0; n--) {
11573         base = env->cp15.c6_region[n];
11574         if ((base & 1) == 0) {
11575             continue;
11576         }
11577         mask = 1 << ((base >> 1) & 0x1f);
11578         /* Keep this shift separate from the above to avoid an
11579            (undefined) << 32.  */
11580         mask = (mask << 1) - 1;
11581         if (((base ^ address) & ~mask) == 0) {
11582             break;
11583         }
11584     }
11585     if (n < 0) {
11586         fi->type = ARMFault_Background;
11587         return true;
11588     }
11589 
11590     if (access_type == MMU_INST_FETCH) {
11591         mask = env->cp15.pmsav5_insn_ap;
11592     } else {
11593         mask = env->cp15.pmsav5_data_ap;
11594     }
11595     mask = (mask >> (n * 4)) & 0xf;
11596     switch (mask) {
11597     case 0:
11598         fi->type = ARMFault_Permission;
11599         fi->level = 1;
11600         return true;
11601     case 1:
11602         if (is_user) {
11603             fi->type = ARMFault_Permission;
11604             fi->level = 1;
11605             return true;
11606         }
11607         *prot = PAGE_READ | PAGE_WRITE;
11608         break;
11609     case 2:
11610         *prot = PAGE_READ;
11611         if (!is_user) {
11612             *prot |= PAGE_WRITE;
11613         }
11614         break;
11615     case 3:
11616         *prot = PAGE_READ | PAGE_WRITE;
11617         break;
11618     case 5:
11619         if (is_user) {
11620             fi->type = ARMFault_Permission;
11621             fi->level = 1;
11622             return true;
11623         }
11624         *prot = PAGE_READ;
11625         break;
11626     case 6:
11627         *prot = PAGE_READ;
11628         break;
11629     default:
11630         /* Bad permission.  */
11631         fi->type = ARMFault_Permission;
11632         fi->level = 1;
11633         return true;
11634     }
11635     *prot |= PAGE_EXEC;
11636     return false;
11637 }
11638 
11639 /* Combine either inner or outer cacheability attributes for normal
11640  * memory, according to table D4-42 and pseudocode procedure
11641  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11642  *
11643  * NB: only stage 1 includes allocation hints (RW bits), leading to
11644  * some asymmetry.
11645  */
11646 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11647 {
11648     if (s1 == 4 || s2 == 4) {
11649         /* non-cacheable has precedence */
11650         return 4;
11651     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11652         /* stage 1 write-through takes precedence */
11653         return s1;
11654     } else if (extract32(s2, 2, 2) == 2) {
11655         /* stage 2 write-through takes precedence, but the allocation hint
11656          * is still taken from stage 1
11657          */
11658         return (2 << 2) | extract32(s1, 0, 2);
11659     } else { /* write-back */
11660         return s1;
11661     }
11662 }
11663 
11664 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11665  * and CombineS1S2Desc()
11666  *
11667  * @s1:      Attributes from stage 1 walk
11668  * @s2:      Attributes from stage 2 walk
11669  */
11670 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11671 {
11672     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
11673     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
11674     ARMCacheAttrs ret;
11675 
11676     /* Combine shareability attributes (table D4-43) */
11677     if (s1.shareability == 2 || s2.shareability == 2) {
11678         /* if either are outer-shareable, the result is outer-shareable */
11679         ret.shareability = 2;
11680     } else if (s1.shareability == 3 || s2.shareability == 3) {
11681         /* if either are inner-shareable, the result is inner-shareable */
11682         ret.shareability = 3;
11683     } else {
11684         /* both non-shareable */
11685         ret.shareability = 0;
11686     }
11687 
11688     /* Combine memory type and cacheability attributes */
11689     if (s1hi == 0 || s2hi == 0) {
11690         /* Device has precedence over normal */
11691         if (s1lo == 0 || s2lo == 0) {
11692             /* nGnRnE has precedence over anything */
11693             ret.attrs = 0;
11694         } else if (s1lo == 4 || s2lo == 4) {
11695             /* non-Reordering has precedence over Reordering */
11696             ret.attrs = 4;  /* nGnRE */
11697         } else if (s1lo == 8 || s2lo == 8) {
11698             /* non-Gathering has precedence over Gathering */
11699             ret.attrs = 8;  /* nGRE */
11700         } else {
11701             ret.attrs = 0xc; /* GRE */
11702         }
11703 
11704         /* Any location for which the resultant memory type is any
11705          * type of Device memory is always treated as Outer Shareable.
11706          */
11707         ret.shareability = 2;
11708     } else { /* Normal memory */
11709         /* Outer/inner cacheability combine independently */
11710         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
11711                   | combine_cacheattr_nibble(s1lo, s2lo);
11712 
11713         if (ret.attrs == 0x44) {
11714             /* Any location for which the resultant memory type is Normal
11715              * Inner Non-cacheable, Outer Non-cacheable is always treated
11716              * as Outer Shareable.
11717              */
11718             ret.shareability = 2;
11719         }
11720     }
11721 
11722     return ret;
11723 }
11724 
11725 
11726 /* get_phys_addr - get the physical address for this virtual address
11727  *
11728  * Find the physical address corresponding to the given virtual address,
11729  * by doing a translation table walk on MMU based systems or using the
11730  * MPU state on MPU based systems.
11731  *
11732  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11733  * prot and page_size may not be filled in, and the populated fsr value provides
11734  * information on why the translation aborted, in the format of a
11735  * DFSR/IFSR fault register, with the following caveats:
11736  *  * we honour the short vs long DFSR format differences.
11737  *  * the WnR bit is never set (the caller must do this).
11738  *  * for PSMAv5 based systems we don't bother to return a full FSR format
11739  *    value.
11740  *
11741  * @env: CPUARMState
11742  * @address: virtual address to get physical address for
11743  * @access_type: 0 for read, 1 for write, 2 for execute
11744  * @mmu_idx: MMU index indicating required translation regime
11745  * @phys_ptr: set to the physical address corresponding to the virtual address
11746  * @attrs: set to the memory transaction attributes to use
11747  * @prot: set to the permissions for the page containing phys_ptr
11748  * @page_size: set to the size of the page containing phys_ptr
11749  * @fi: set to fault info if the translation fails
11750  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11751  */
11752 static bool get_phys_addr(CPUARMState *env, target_ulong address,
11753                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
11754                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
11755                           target_ulong *page_size,
11756                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
11757 {
11758     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
11759         /* Call ourselves recursively to do the stage 1 and then stage 2
11760          * translations.
11761          */
11762         if (arm_feature(env, ARM_FEATURE_EL2)) {
11763             hwaddr ipa;
11764             int s2_prot;
11765             int ret;
11766             ARMCacheAttrs cacheattrs2 = {};
11767 
11768             ret = get_phys_addr(env, address, access_type,
11769                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
11770                                 prot, page_size, fi, cacheattrs);
11771 
11772             /* If S1 fails or S2 is disabled, return early.  */
11773             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
11774                 *phys_ptr = ipa;
11775                 return ret;
11776             }
11777 
11778             /* S1 is done. Now do S2 translation.  */
11779             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
11780                                      phys_ptr, attrs, &s2_prot,
11781                                      page_size, fi,
11782                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
11783             fi->s2addr = ipa;
11784             /* Combine the S1 and S2 perms.  */
11785             *prot &= s2_prot;
11786 
11787             /* Combine the S1 and S2 cache attributes, if needed */
11788             if (!ret && cacheattrs != NULL) {
11789                 if (env->cp15.hcr_el2 & HCR_DC) {
11790                     /*
11791                      * HCR.DC forces the first stage attributes to
11792                      *  Normal Non-Shareable,
11793                      *  Inner Write-Back Read-Allocate Write-Allocate,
11794                      *  Outer Write-Back Read-Allocate Write-Allocate.
11795                      */
11796                     cacheattrs->attrs = 0xff;
11797                     cacheattrs->shareability = 0;
11798                 }
11799                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
11800             }
11801 
11802             return ret;
11803         } else {
11804             /*
11805              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11806              */
11807             mmu_idx = stage_1_mmu_idx(mmu_idx);
11808         }
11809     }
11810 
11811     /* The page table entries may downgrade secure to non-secure, but
11812      * cannot upgrade an non-secure translation regime's attributes
11813      * to secure.
11814      */
11815     attrs->secure = regime_is_secure(env, mmu_idx);
11816     attrs->user = regime_is_user(env, mmu_idx);
11817 
11818     /* Fast Context Switch Extension. This doesn't exist at all in v8.
11819      * In v7 and earlier it affects all stage 1 translations.
11820      */
11821     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
11822         && !arm_feature(env, ARM_FEATURE_V8)) {
11823         if (regime_el(env, mmu_idx) == 3) {
11824             address += env->cp15.fcseidr_s;
11825         } else {
11826             address += env->cp15.fcseidr_ns;
11827         }
11828     }
11829 
11830     if (arm_feature(env, ARM_FEATURE_PMSA)) {
11831         bool ret;
11832         *page_size = TARGET_PAGE_SIZE;
11833 
11834         if (arm_feature(env, ARM_FEATURE_V8)) {
11835             /* PMSAv8 */
11836             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
11837                                        phys_ptr, attrs, prot, page_size, fi);
11838         } else if (arm_feature(env, ARM_FEATURE_V7)) {
11839             /* PMSAv7 */
11840             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
11841                                        phys_ptr, prot, page_size, fi);
11842         } else {
11843             /* Pre-v7 MPU */
11844             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
11845                                        phys_ptr, prot, fi);
11846         }
11847         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
11848                       " mmu_idx %u -> %s (prot %c%c%c)\n",
11849                       access_type == MMU_DATA_LOAD ? "reading" :
11850                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
11851                       (uint32_t)address, mmu_idx,
11852                       ret ? "Miss" : "Hit",
11853                       *prot & PAGE_READ ? 'r' : '-',
11854                       *prot & PAGE_WRITE ? 'w' : '-',
11855                       *prot & PAGE_EXEC ? 'x' : '-');
11856 
11857         return ret;
11858     }
11859 
11860     /* Definitely a real MMU, not an MPU */
11861 
11862     if (regime_translation_disabled(env, mmu_idx)) {
11863         /* MMU disabled. */
11864         *phys_ptr = address;
11865         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11866         *page_size = TARGET_PAGE_SIZE;
11867         return 0;
11868     }
11869 
11870     if (regime_using_lpae_format(env, mmu_idx)) {
11871         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
11872                                   phys_ptr, attrs, prot, page_size,
11873                                   fi, cacheattrs);
11874     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
11875         return get_phys_addr_v6(env, address, access_type, mmu_idx,
11876                                 phys_ptr, attrs, prot, page_size, fi);
11877     } else {
11878         return get_phys_addr_v5(env, address, access_type, mmu_idx,
11879                                     phys_ptr, prot, page_size, fi);
11880     }
11881 }
11882 
11883 /* Walk the page table and (if the mapping exists) add the page
11884  * to the TLB. Return false on success, or true on failure. Populate
11885  * fsr with ARM DFSR/IFSR fault register format value on failure.
11886  */
11887 bool arm_tlb_fill(CPUState *cs, vaddr address,
11888                   MMUAccessType access_type, int mmu_idx,
11889                   ARMMMUFaultInfo *fi)
11890 {
11891     ARMCPU *cpu = ARM_CPU(cs);
11892     CPUARMState *env = &cpu->env;
11893     hwaddr phys_addr;
11894     target_ulong page_size;
11895     int prot;
11896     int ret;
11897     MemTxAttrs attrs = {};
11898 
11899     ret = get_phys_addr(env, address, access_type,
11900                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
11901                         &attrs, &prot, &page_size, fi, NULL);
11902     if (!ret) {
11903         /*
11904          * Map a single [sub]page. Regions smaller than our declared
11905          * target page size are handled specially, so for those we
11906          * pass in the exact addresses.
11907          */
11908         if (page_size >= TARGET_PAGE_SIZE) {
11909             phys_addr &= TARGET_PAGE_MASK;
11910             address &= TARGET_PAGE_MASK;
11911         }
11912         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
11913                                 prot, mmu_idx, page_size);
11914         return 0;
11915     }
11916 
11917     return ret;
11918 }
11919 
11920 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
11921                                          MemTxAttrs *attrs)
11922 {
11923     ARMCPU *cpu = ARM_CPU(cs);
11924     CPUARMState *env = &cpu->env;
11925     hwaddr phys_addr;
11926     target_ulong page_size;
11927     int prot;
11928     bool ret;
11929     ARMMMUFaultInfo fi = {};
11930     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
11931 
11932     *attrs = (MemTxAttrs) {};
11933 
11934     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
11935                         attrs, &prot, &page_size, &fi, NULL);
11936 
11937     if (ret) {
11938         return -1;
11939     }
11940     return phys_addr;
11941 }
11942 
11943 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
11944 {
11945     uint32_t mask;
11946     unsigned el = arm_current_el(env);
11947 
11948     /* First handle registers which unprivileged can read */
11949 
11950     switch (reg) {
11951     case 0 ... 7: /* xPSR sub-fields */
11952         mask = 0;
11953         if ((reg & 1) && el) {
11954             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
11955         }
11956         if (!(reg & 4)) {
11957             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
11958         }
11959         /* EPSR reads as zero */
11960         return xpsr_read(env) & mask;
11961         break;
11962     case 20: /* CONTROL */
11963         return env->v7m.control[env->v7m.secure];
11964     case 0x94: /* CONTROL_NS */
11965         /* We have to handle this here because unprivileged Secure code
11966          * can read the NS CONTROL register.
11967          */
11968         if (!env->v7m.secure) {
11969             return 0;
11970         }
11971         return env->v7m.control[M_REG_NS];
11972     }
11973 
11974     if (el == 0) {
11975         return 0; /* unprivileged reads others as zero */
11976     }
11977 
11978     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11979         switch (reg) {
11980         case 0x88: /* MSP_NS */
11981             if (!env->v7m.secure) {
11982                 return 0;
11983             }
11984             return env->v7m.other_ss_msp;
11985         case 0x89: /* PSP_NS */
11986             if (!env->v7m.secure) {
11987                 return 0;
11988             }
11989             return env->v7m.other_ss_psp;
11990         case 0x8a: /* MSPLIM_NS */
11991             if (!env->v7m.secure) {
11992                 return 0;
11993             }
11994             return env->v7m.msplim[M_REG_NS];
11995         case 0x8b: /* PSPLIM_NS */
11996             if (!env->v7m.secure) {
11997                 return 0;
11998             }
11999             return env->v7m.psplim[M_REG_NS];
12000         case 0x90: /* PRIMASK_NS */
12001             if (!env->v7m.secure) {
12002                 return 0;
12003             }
12004             return env->v7m.primask[M_REG_NS];
12005         case 0x91: /* BASEPRI_NS */
12006             if (!env->v7m.secure) {
12007                 return 0;
12008             }
12009             return env->v7m.basepri[M_REG_NS];
12010         case 0x93: /* FAULTMASK_NS */
12011             if (!env->v7m.secure) {
12012                 return 0;
12013             }
12014             return env->v7m.faultmask[M_REG_NS];
12015         case 0x98: /* SP_NS */
12016         {
12017             /* This gives the non-secure SP selected based on whether we're
12018              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12019              */
12020             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12021 
12022             if (!env->v7m.secure) {
12023                 return 0;
12024             }
12025             if (!arm_v7m_is_handler_mode(env) && spsel) {
12026                 return env->v7m.other_ss_psp;
12027             } else {
12028                 return env->v7m.other_ss_msp;
12029             }
12030         }
12031         default:
12032             break;
12033         }
12034     }
12035 
12036     switch (reg) {
12037     case 8: /* MSP */
12038         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
12039     case 9: /* PSP */
12040         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
12041     case 10: /* MSPLIM */
12042         if (!arm_feature(env, ARM_FEATURE_V8)) {
12043             goto bad_reg;
12044         }
12045         return env->v7m.msplim[env->v7m.secure];
12046     case 11: /* PSPLIM */
12047         if (!arm_feature(env, ARM_FEATURE_V8)) {
12048             goto bad_reg;
12049         }
12050         return env->v7m.psplim[env->v7m.secure];
12051     case 16: /* PRIMASK */
12052         return env->v7m.primask[env->v7m.secure];
12053     case 17: /* BASEPRI */
12054     case 18: /* BASEPRI_MAX */
12055         return env->v7m.basepri[env->v7m.secure];
12056     case 19: /* FAULTMASK */
12057         return env->v7m.faultmask[env->v7m.secure];
12058     default:
12059     bad_reg:
12060         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
12061                                        " register %d\n", reg);
12062         return 0;
12063     }
12064 }
12065 
12066 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
12067 {
12068     /* We're passed bits [11..0] of the instruction; extract
12069      * SYSm and the mask bits.
12070      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12071      * we choose to treat them as if the mask bits were valid.
12072      * NB that the pseudocode 'mask' variable is bits [11..10],
12073      * whereas ours is [11..8].
12074      */
12075     uint32_t mask = extract32(maskreg, 8, 4);
12076     uint32_t reg = extract32(maskreg, 0, 8);
12077 
12078     if (arm_current_el(env) == 0 && reg > 7) {
12079         /* only xPSR sub-fields may be written by unprivileged */
12080         return;
12081     }
12082 
12083     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
12084         switch (reg) {
12085         case 0x88: /* MSP_NS */
12086             if (!env->v7m.secure) {
12087                 return;
12088             }
12089             env->v7m.other_ss_msp = val;
12090             return;
12091         case 0x89: /* PSP_NS */
12092             if (!env->v7m.secure) {
12093                 return;
12094             }
12095             env->v7m.other_ss_psp = val;
12096             return;
12097         case 0x8a: /* MSPLIM_NS */
12098             if (!env->v7m.secure) {
12099                 return;
12100             }
12101             env->v7m.msplim[M_REG_NS] = val & ~7;
12102             return;
12103         case 0x8b: /* PSPLIM_NS */
12104             if (!env->v7m.secure) {
12105                 return;
12106             }
12107             env->v7m.psplim[M_REG_NS] = val & ~7;
12108             return;
12109         case 0x90: /* PRIMASK_NS */
12110             if (!env->v7m.secure) {
12111                 return;
12112             }
12113             env->v7m.primask[M_REG_NS] = val & 1;
12114             return;
12115         case 0x91: /* BASEPRI_NS */
12116             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12117                 return;
12118             }
12119             env->v7m.basepri[M_REG_NS] = val & 0xff;
12120             return;
12121         case 0x93: /* FAULTMASK_NS */
12122             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
12123                 return;
12124             }
12125             env->v7m.faultmask[M_REG_NS] = val & 1;
12126             return;
12127         case 0x94: /* CONTROL_NS */
12128             if (!env->v7m.secure) {
12129                 return;
12130             }
12131             write_v7m_control_spsel_for_secstate(env,
12132                                                  val & R_V7M_CONTROL_SPSEL_MASK,
12133                                                  M_REG_NS);
12134             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12135                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
12136                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
12137             }
12138             return;
12139         case 0x98: /* SP_NS */
12140         {
12141             /* This gives the non-secure SP selected based on whether we're
12142              * currently in handler mode or not, using the NS CONTROL.SPSEL.
12143              */
12144             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
12145             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
12146             uint32_t limit;
12147 
12148             if (!env->v7m.secure) {
12149                 return;
12150             }
12151 
12152             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
12153 
12154             if (val < limit) {
12155                 CPUState *cs = CPU(arm_env_get_cpu(env));
12156 
12157                 cpu_restore_state(cs, GETPC(), true);
12158                 raise_exception(env, EXCP_STKOF, 0, 1);
12159             }
12160 
12161             if (is_psp) {
12162                 env->v7m.other_ss_psp = val;
12163             } else {
12164                 env->v7m.other_ss_msp = val;
12165             }
12166             return;
12167         }
12168         default:
12169             break;
12170         }
12171     }
12172 
12173     switch (reg) {
12174     case 0 ... 7: /* xPSR sub-fields */
12175         /* only APSR is actually writable */
12176         if (!(reg & 4)) {
12177             uint32_t apsrmask = 0;
12178 
12179             if (mask & 8) {
12180                 apsrmask |= XPSR_NZCV | XPSR_Q;
12181             }
12182             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
12183                 apsrmask |= XPSR_GE;
12184             }
12185             xpsr_write(env, val, apsrmask);
12186         }
12187         break;
12188     case 8: /* MSP */
12189         if (v7m_using_psp(env)) {
12190             env->v7m.other_sp = val;
12191         } else {
12192             env->regs[13] = val;
12193         }
12194         break;
12195     case 9: /* PSP */
12196         if (v7m_using_psp(env)) {
12197             env->regs[13] = val;
12198         } else {
12199             env->v7m.other_sp = val;
12200         }
12201         break;
12202     case 10: /* MSPLIM */
12203         if (!arm_feature(env, ARM_FEATURE_V8)) {
12204             goto bad_reg;
12205         }
12206         env->v7m.msplim[env->v7m.secure] = val & ~7;
12207         break;
12208     case 11: /* PSPLIM */
12209         if (!arm_feature(env, ARM_FEATURE_V8)) {
12210             goto bad_reg;
12211         }
12212         env->v7m.psplim[env->v7m.secure] = val & ~7;
12213         break;
12214     case 16: /* PRIMASK */
12215         env->v7m.primask[env->v7m.secure] = val & 1;
12216         break;
12217     case 17: /* BASEPRI */
12218         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12219             goto bad_reg;
12220         }
12221         env->v7m.basepri[env->v7m.secure] = val & 0xff;
12222         break;
12223     case 18: /* BASEPRI_MAX */
12224         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12225             goto bad_reg;
12226         }
12227         val &= 0xff;
12228         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
12229                          || env->v7m.basepri[env->v7m.secure] == 0)) {
12230             env->v7m.basepri[env->v7m.secure] = val;
12231         }
12232         break;
12233     case 19: /* FAULTMASK */
12234         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
12235             goto bad_reg;
12236         }
12237         env->v7m.faultmask[env->v7m.secure] = val & 1;
12238         break;
12239     case 20: /* CONTROL */
12240         /* Writing to the SPSEL bit only has an effect if we are in
12241          * thread mode; other bits can be updated by any privileged code.
12242          * write_v7m_control_spsel() deals with updating the SPSEL bit in
12243          * env->v7m.control, so we only need update the others.
12244          * For v7M, we must just ignore explicit writes to SPSEL in handler
12245          * mode; for v8M the write is permitted but will have no effect.
12246          */
12247         if (arm_feature(env, ARM_FEATURE_V8) ||
12248             !arm_v7m_is_handler_mode(env)) {
12249             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
12250         }
12251         if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
12252             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
12253             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
12254         }
12255         break;
12256     default:
12257     bad_reg:
12258         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
12259                                        " register %d\n", reg);
12260         return;
12261     }
12262 }
12263 
12264 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
12265 {
12266     /* Implement the TT instruction. op is bits [7:6] of the insn. */
12267     bool forceunpriv = op & 1;
12268     bool alt = op & 2;
12269     V8M_SAttributes sattrs = {};
12270     uint32_t tt_resp;
12271     bool r, rw, nsr, nsrw, mrvalid;
12272     int prot;
12273     ARMMMUFaultInfo fi = {};
12274     MemTxAttrs attrs = {};
12275     hwaddr phys_addr;
12276     ARMMMUIdx mmu_idx;
12277     uint32_t mregion;
12278     bool targetpriv;
12279     bool targetsec = env->v7m.secure;
12280     bool is_subpage;
12281 
12282     /* Work out what the security state and privilege level we're
12283      * interested in is...
12284      */
12285     if (alt) {
12286         targetsec = !targetsec;
12287     }
12288 
12289     if (forceunpriv) {
12290         targetpriv = false;
12291     } else {
12292         targetpriv = arm_v7m_is_handler_mode(env) ||
12293             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
12294     }
12295 
12296     /* ...and then figure out which MMU index this is */
12297     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
12298 
12299     /* We know that the MPU and SAU don't care about the access type
12300      * for our purposes beyond that we don't want to claim to be
12301      * an insn fetch, so we arbitrarily call this a read.
12302      */
12303 
12304     /* MPU region info only available for privileged or if
12305      * inspecting the other MPU state.
12306      */
12307     if (arm_current_el(env) != 0 || alt) {
12308         /* We can ignore the return value as prot is always set */
12309         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
12310                           &phys_addr, &attrs, &prot, &is_subpage,
12311                           &fi, &mregion);
12312         if (mregion == -1) {
12313             mrvalid = false;
12314             mregion = 0;
12315         } else {
12316             mrvalid = true;
12317         }
12318         r = prot & PAGE_READ;
12319         rw = prot & PAGE_WRITE;
12320     } else {
12321         r = false;
12322         rw = false;
12323         mrvalid = false;
12324         mregion = 0;
12325     }
12326 
12327     if (env->v7m.secure) {
12328         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
12329         nsr = sattrs.ns && r;
12330         nsrw = sattrs.ns && rw;
12331     } else {
12332         sattrs.ns = true;
12333         nsr = false;
12334         nsrw = false;
12335     }
12336 
12337     tt_resp = (sattrs.iregion << 24) |
12338         (sattrs.irvalid << 23) |
12339         ((!sattrs.ns) << 22) |
12340         (nsrw << 21) |
12341         (nsr << 20) |
12342         (rw << 19) |
12343         (r << 18) |
12344         (sattrs.srvalid << 17) |
12345         (mrvalid << 16) |
12346         (sattrs.sregion << 8) |
12347         mregion;
12348 
12349     return tt_resp;
12350 }
12351 
12352 #endif
12353 
12354 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
12355 {
12356     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12357      * Note that we do not implement the (architecturally mandated)
12358      * alignment fault for attempts to use this on Device memory
12359      * (which matches the usual QEMU behaviour of not implementing either
12360      * alignment faults or any memory attribute handling).
12361      */
12362 
12363     ARMCPU *cpu = arm_env_get_cpu(env);
12364     uint64_t blocklen = 4 << cpu->dcz_blocksize;
12365     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
12366 
12367 #ifndef CONFIG_USER_ONLY
12368     {
12369         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12370          * the block size so we might have to do more than one TLB lookup.
12371          * We know that in fact for any v8 CPU the page size is at least 4K
12372          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12373          * 1K as an artefact of legacy v5 subpage support being present in the
12374          * same QEMU executable.
12375          */
12376         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
12377         void *hostaddr[maxidx];
12378         int try, i;
12379         unsigned mmu_idx = cpu_mmu_index(env, false);
12380         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
12381 
12382         for (try = 0; try < 2; try++) {
12383 
12384             for (i = 0; i < maxidx; i++) {
12385                 hostaddr[i] = tlb_vaddr_to_host(env,
12386                                                 vaddr + TARGET_PAGE_SIZE * i,
12387                                                 1, mmu_idx);
12388                 if (!hostaddr[i]) {
12389                     break;
12390                 }
12391             }
12392             if (i == maxidx) {
12393                 /* If it's all in the TLB it's fair game for just writing to;
12394                  * we know we don't need to update dirty status, etc.
12395                  */
12396                 for (i = 0; i < maxidx - 1; i++) {
12397                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
12398                 }
12399                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
12400                 return;
12401             }
12402             /* OK, try a store and see if we can populate the tlb. This
12403              * might cause an exception if the memory isn't writable,
12404              * in which case we will longjmp out of here. We must for
12405              * this purpose use the actual register value passed to us
12406              * so that we get the fault address right.
12407              */
12408             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
12409             /* Now we can populate the other TLB entries, if any */
12410             for (i = 0; i < maxidx; i++) {
12411                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
12412                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
12413                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
12414                 }
12415             }
12416         }
12417 
12418         /* Slow path (probably attempt to do this to an I/O device or
12419          * similar, or clearing of a block of code we have translations
12420          * cached for). Just do a series of byte writes as the architecture
12421          * demands. It's not worth trying to use a cpu_physical_memory_map(),
12422          * memset(), unmap() sequence here because:
12423          *  + we'd need to account for the blocksize being larger than a page
12424          *  + the direct-RAM access case is almost always going to be dealt
12425          *    with in the fastpath code above, so there's no speed benefit
12426          *  + we would have to deal with the map returning NULL because the
12427          *    bounce buffer was in use
12428          */
12429         for (i = 0; i < blocklen; i++) {
12430             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
12431         }
12432     }
12433 #else
12434     memset(g2h(vaddr), 0, blocklen);
12435 #endif
12436 }
12437 
12438 /* Note that signed overflow is undefined in C.  The following routines are
12439    careful to use unsigned types where modulo arithmetic is required.
12440    Failure to do so _will_ break on newer gcc.  */
12441 
12442 /* Signed saturating arithmetic.  */
12443 
12444 /* Perform 16-bit signed saturating addition.  */
12445 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12446 {
12447     uint16_t res;
12448 
12449     res = a + b;
12450     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12451         if (a & 0x8000)
12452             res = 0x8000;
12453         else
12454             res = 0x7fff;
12455     }
12456     return res;
12457 }
12458 
12459 /* Perform 8-bit signed saturating addition.  */
12460 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12461 {
12462     uint8_t res;
12463 
12464     res = a + b;
12465     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12466         if (a & 0x80)
12467             res = 0x80;
12468         else
12469             res = 0x7f;
12470     }
12471     return res;
12472 }
12473 
12474 /* Perform 16-bit signed saturating subtraction.  */
12475 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12476 {
12477     uint16_t res;
12478 
12479     res = a - b;
12480     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12481         if (a & 0x8000)
12482             res = 0x8000;
12483         else
12484             res = 0x7fff;
12485     }
12486     return res;
12487 }
12488 
12489 /* Perform 8-bit signed saturating subtraction.  */
12490 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12491 {
12492     uint8_t res;
12493 
12494     res = a - b;
12495     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12496         if (a & 0x80)
12497             res = 0x80;
12498         else
12499             res = 0x7f;
12500     }
12501     return res;
12502 }
12503 
12504 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12505 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12506 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12507 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12508 #define PFX q
12509 
12510 #include "op_addsub.h"
12511 
12512 /* Unsigned saturating arithmetic.  */
12513 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12514 {
12515     uint16_t res;
12516     res = a + b;
12517     if (res < a)
12518         res = 0xffff;
12519     return res;
12520 }
12521 
12522 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12523 {
12524     if (a > b)
12525         return a - b;
12526     else
12527         return 0;
12528 }
12529 
12530 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12531 {
12532     uint8_t res;
12533     res = a + b;
12534     if (res < a)
12535         res = 0xff;
12536     return res;
12537 }
12538 
12539 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12540 {
12541     if (a > b)
12542         return a - b;
12543     else
12544         return 0;
12545 }
12546 
12547 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12548 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12549 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12550 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12551 #define PFX uq
12552 
12553 #include "op_addsub.h"
12554 
12555 /* Signed modulo arithmetic.  */
12556 #define SARITH16(a, b, n, op) do { \
12557     int32_t sum; \
12558     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12559     RESULT(sum, n, 16); \
12560     if (sum >= 0) \
12561         ge |= 3 << (n * 2); \
12562     } while(0)
12563 
12564 #define SARITH8(a, b, n, op) do { \
12565     int32_t sum; \
12566     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12567     RESULT(sum, n, 8); \
12568     if (sum >= 0) \
12569         ge |= 1 << n; \
12570     } while(0)
12571 
12572 
12573 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12574 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12575 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12576 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12577 #define PFX s
12578 #define ARITH_GE
12579 
12580 #include "op_addsub.h"
12581 
12582 /* Unsigned modulo arithmetic.  */
12583 #define ADD16(a, b, n) do { \
12584     uint32_t sum; \
12585     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12586     RESULT(sum, n, 16); \
12587     if ((sum >> 16) == 1) \
12588         ge |= 3 << (n * 2); \
12589     } while(0)
12590 
12591 #define ADD8(a, b, n) do { \
12592     uint32_t sum; \
12593     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12594     RESULT(sum, n, 8); \
12595     if ((sum >> 8) == 1) \
12596         ge |= 1 << n; \
12597     } while(0)
12598 
12599 #define SUB16(a, b, n) do { \
12600     uint32_t sum; \
12601     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12602     RESULT(sum, n, 16); \
12603     if ((sum >> 16) == 0) \
12604         ge |= 3 << (n * 2); \
12605     } while(0)
12606 
12607 #define SUB8(a, b, n) do { \
12608     uint32_t sum; \
12609     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12610     RESULT(sum, n, 8); \
12611     if ((sum >> 8) == 0) \
12612         ge |= 1 << n; \
12613     } while(0)
12614 
12615 #define PFX u
12616 #define ARITH_GE
12617 
12618 #include "op_addsub.h"
12619 
12620 /* Halved signed arithmetic.  */
12621 #define ADD16(a, b, n) \
12622   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12623 #define SUB16(a, b, n) \
12624   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12625 #define ADD8(a, b, n) \
12626   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12627 #define SUB8(a, b, n) \
12628   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12629 #define PFX sh
12630 
12631 #include "op_addsub.h"
12632 
12633 /* Halved unsigned arithmetic.  */
12634 #define ADD16(a, b, n) \
12635   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12636 #define SUB16(a, b, n) \
12637   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12638 #define ADD8(a, b, n) \
12639   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12640 #define SUB8(a, b, n) \
12641   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12642 #define PFX uh
12643 
12644 #include "op_addsub.h"
12645 
12646 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12647 {
12648     if (a > b)
12649         return a - b;
12650     else
12651         return b - a;
12652 }
12653 
12654 /* Unsigned sum of absolute byte differences.  */
12655 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12656 {
12657     uint32_t sum;
12658     sum = do_usad(a, b);
12659     sum += do_usad(a >> 8, b >> 8);
12660     sum += do_usad(a >> 16, b >>16);
12661     sum += do_usad(a >> 24, b >> 24);
12662     return sum;
12663 }
12664 
12665 /* For ARMv6 SEL instruction.  */
12666 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12667 {
12668     uint32_t mask;
12669 
12670     mask = 0;
12671     if (flags & 1)
12672         mask |= 0xff;
12673     if (flags & 2)
12674         mask |= 0xff00;
12675     if (flags & 4)
12676         mask |= 0xff0000;
12677     if (flags & 8)
12678         mask |= 0xff000000;
12679     return (a & mask) | (b & ~mask);
12680 }
12681 
12682 /* VFP support.  We follow the convention used for VFP instructions:
12683    Single precision routines have a "s" suffix, double precision a
12684    "d" suffix.  */
12685 
12686 /* Convert host exception flags to vfp form.  */
12687 static inline int vfp_exceptbits_from_host(int host_bits)
12688 {
12689     int target_bits = 0;
12690 
12691     if (host_bits & float_flag_invalid)
12692         target_bits |= 1;
12693     if (host_bits & float_flag_divbyzero)
12694         target_bits |= 2;
12695     if (host_bits & float_flag_overflow)
12696         target_bits |= 4;
12697     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
12698         target_bits |= 8;
12699     if (host_bits & float_flag_inexact)
12700         target_bits |= 0x10;
12701     if (host_bits & float_flag_input_denormal)
12702         target_bits |= 0x80;
12703     return target_bits;
12704 }
12705 
12706 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
12707 {
12708     uint32_t i, fpscr;
12709 
12710     fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
12711             | (env->vfp.vec_len << 16)
12712             | (env->vfp.vec_stride << 20);
12713 
12714     i = get_float_exception_flags(&env->vfp.fp_status);
12715     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
12716     /* FZ16 does not generate an input denormal exception.  */
12717     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
12718           & ~float_flag_input_denormal);
12719     fpscr |= vfp_exceptbits_from_host(i);
12720 
12721     i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
12722     fpscr |= i ? FPCR_QC : 0;
12723 
12724     return fpscr;
12725 }
12726 
12727 uint32_t vfp_get_fpscr(CPUARMState *env)
12728 {
12729     return HELPER(vfp_get_fpscr)(env);
12730 }
12731 
12732 /* Convert vfp exception flags to target form.  */
12733 static inline int vfp_exceptbits_to_host(int target_bits)
12734 {
12735     int host_bits = 0;
12736 
12737     if (target_bits & 1)
12738         host_bits |= float_flag_invalid;
12739     if (target_bits & 2)
12740         host_bits |= float_flag_divbyzero;
12741     if (target_bits & 4)
12742         host_bits |= float_flag_overflow;
12743     if (target_bits & 8)
12744         host_bits |= float_flag_underflow;
12745     if (target_bits & 0x10)
12746         host_bits |= float_flag_inexact;
12747     if (target_bits & 0x80)
12748         host_bits |= float_flag_input_denormal;
12749     return host_bits;
12750 }
12751 
12752 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
12753 {
12754     int i;
12755     uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];
12756 
12757     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
12758     if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
12759         val &= ~FPCR_FZ16;
12760     }
12761 
12762     /*
12763      * We don't implement trapped exception handling, so the
12764      * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
12765      *
12766      * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
12767      * (which are stored in fp_status), and the other RES0 bits
12768      * in between, then we clear all of the low 16 bits.
12769      */
12770     env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
12771     env->vfp.vec_len = (val >> 16) & 7;
12772     env->vfp.vec_stride = (val >> 20) & 3;
12773 
12774     /*
12775      * The bit we set within fpscr_q is arbitrary; the register as a
12776      * whole being zero/non-zero is what counts.
12777      */
12778     env->vfp.qc[0] = val & FPCR_QC;
12779     env->vfp.qc[1] = 0;
12780     env->vfp.qc[2] = 0;
12781     env->vfp.qc[3] = 0;
12782 
12783     changed ^= val;
12784     if (changed & (3 << 22)) {
12785         i = (val >> 22) & 3;
12786         switch (i) {
12787         case FPROUNDING_TIEEVEN:
12788             i = float_round_nearest_even;
12789             break;
12790         case FPROUNDING_POSINF:
12791             i = float_round_up;
12792             break;
12793         case FPROUNDING_NEGINF:
12794             i = float_round_down;
12795             break;
12796         case FPROUNDING_ZERO:
12797             i = float_round_to_zero;
12798             break;
12799         }
12800         set_float_rounding_mode(i, &env->vfp.fp_status);
12801         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
12802     }
12803     if (changed & FPCR_FZ16) {
12804         bool ftz_enabled = val & FPCR_FZ16;
12805         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12806         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
12807     }
12808     if (changed & FPCR_FZ) {
12809         bool ftz_enabled = val & FPCR_FZ;
12810         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
12811         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
12812     }
12813     if (changed & FPCR_DN) {
12814         bool dnan_enabled = val & FPCR_DN;
12815         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
12816         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
12817     }
12818 
12819     /* The exception flags are ORed together when we read fpscr so we
12820      * only need to preserve the current state in one of our
12821      * float_status values.
12822      */
12823     i = vfp_exceptbits_to_host(val);
12824     set_float_exception_flags(i, &env->vfp.fp_status);
12825     set_float_exception_flags(0, &env->vfp.fp_status_f16);
12826     set_float_exception_flags(0, &env->vfp.standard_fp_status);
12827 }
12828 
12829 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
12830 {
12831     HELPER(vfp_set_fpscr)(env, val);
12832 }
12833 
12834 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
12835 
12836 #define VFP_BINOP(name) \
12837 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
12838 { \
12839     float_status *fpst = fpstp; \
12840     return float32_ ## name(a, b, fpst); \
12841 } \
12842 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
12843 { \
12844     float_status *fpst = fpstp; \
12845     return float64_ ## name(a, b, fpst); \
12846 }
12847 VFP_BINOP(add)
12848 VFP_BINOP(sub)
12849 VFP_BINOP(mul)
12850 VFP_BINOP(div)
12851 VFP_BINOP(min)
12852 VFP_BINOP(max)
12853 VFP_BINOP(minnum)
12854 VFP_BINOP(maxnum)
12855 #undef VFP_BINOP
12856 
12857 float32 VFP_HELPER(neg, s)(float32 a)
12858 {
12859     return float32_chs(a);
12860 }
12861 
12862 float64 VFP_HELPER(neg, d)(float64 a)
12863 {
12864     return float64_chs(a);
12865 }
12866 
12867 float32 VFP_HELPER(abs, s)(float32 a)
12868 {
12869     return float32_abs(a);
12870 }
12871 
12872 float64 VFP_HELPER(abs, d)(float64 a)
12873 {
12874     return float64_abs(a);
12875 }
12876 
12877 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
12878 {
12879     return float32_sqrt(a, &env->vfp.fp_status);
12880 }
12881 
12882 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
12883 {
12884     return float64_sqrt(a, &env->vfp.fp_status);
12885 }
12886 
12887 static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
12888 {
12889     uint32_t flags;
12890     switch (cmp) {
12891     case float_relation_equal:
12892         flags = 0x6;
12893         break;
12894     case float_relation_less:
12895         flags = 0x8;
12896         break;
12897     case float_relation_greater:
12898         flags = 0x2;
12899         break;
12900     case float_relation_unordered:
12901         flags = 0x3;
12902         break;
12903     default:
12904         g_assert_not_reached();
12905     }
12906     env->vfp.xregs[ARM_VFP_FPSCR] =
12907         deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
12908 }
12909 
12910 /* XXX: check quiet/signaling case */
12911 #define DO_VFP_cmp(p, type) \
12912 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
12913 { \
12914     softfloat_to_vfp_compare(env, \
12915         type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
12916 } \
12917 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12918 { \
12919     softfloat_to_vfp_compare(env, \
12920         type ## _compare(a, b, &env->vfp.fp_status)); \
12921 }
12922 DO_VFP_cmp(s, float32)
12923 DO_VFP_cmp(d, float64)
12924 #undef DO_VFP_cmp
12925 
12926 /* Integer to float and float to integer conversions */
12927 
12928 #define CONV_ITOF(name, ftype, fsz, sign)                           \
12929 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
12930 {                                                                   \
12931     float_status *fpst = fpstp;                                     \
12932     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
12933 }
12934 
12935 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
12936 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
12937 {                                                               \
12938     float_status *fpst = fpstp;                                 \
12939     if (float##fsz##_is_any_nan(x)) {                           \
12940         float_raise(float_flag_invalid, fpst);                  \
12941         return 0;                                               \
12942     }                                                           \
12943     return float##fsz##_to_##sign##int32##round(x, fpst);       \
12944 }
12945 
12946 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
12947     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
12948     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
12949     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12950 
12951 FLOAT_CONVS(si, h, uint32_t, 16, )
12952 FLOAT_CONVS(si, s, float32, 32, )
12953 FLOAT_CONVS(si, d, float64, 64, )
12954 FLOAT_CONVS(ui, h, uint32_t, 16, u)
12955 FLOAT_CONVS(ui, s, float32, 32, u)
12956 FLOAT_CONVS(ui, d, float64, 64, u)
12957 
12958 #undef CONV_ITOF
12959 #undef CONV_FTOI
12960 #undef FLOAT_CONVS
12961 
12962 /* floating point conversion */
12963 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
12964 {
12965     return float32_to_float64(x, &env->vfp.fp_status);
12966 }
12967 
12968 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
12969 {
12970     return float64_to_float32(x, &env->vfp.fp_status);
12971 }
12972 
12973 /* VFP3 fixed point conversion.  */
12974 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12975 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
12976                                      void *fpstp) \
12977 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12978 
12979 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
12980 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12981                                             void *fpst)                   \
12982 {                                                                         \
12983     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
12984         float_raise(float_flag_invalid, fpst);                            \
12985         return 0;                                                         \
12986     }                                                                     \
12987     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
12988 }
12989 
12990 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
12991 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
12992 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
12993                          float_round_to_zero, _round_to_zero)    \
12994 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
12995                          get_float_rounding_mode(fpst), )
12996 
12997 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
12998 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
12999 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
13000                          get_float_rounding_mode(fpst), )
13001 
13002 VFP_CONV_FIX(sh, d, 64, 64, int16)
13003 VFP_CONV_FIX(sl, d, 64, 64, int32)
13004 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
13005 VFP_CONV_FIX(uh, d, 64, 64, uint16)
13006 VFP_CONV_FIX(ul, d, 64, 64, uint32)
13007 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
13008 VFP_CONV_FIX(sh, s, 32, 32, int16)
13009 VFP_CONV_FIX(sl, s, 32, 32, int32)
13010 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
13011 VFP_CONV_FIX(uh, s, 32, 32, uint16)
13012 VFP_CONV_FIX(ul, s, 32, 32, uint32)
13013 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
13014 
13015 #undef VFP_CONV_FIX
13016 #undef VFP_CONV_FIX_FLOAT
13017 #undef VFP_CONV_FLOAT_FIX_ROUND
13018 #undef VFP_CONV_FIX_A64
13019 
13020 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
13021 {
13022     return int32_to_float16_scalbn(x, -shift, fpst);
13023 }
13024 
13025 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
13026 {
13027     return uint32_to_float16_scalbn(x, -shift, fpst);
13028 }
13029 
13030 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
13031 {
13032     return int64_to_float16_scalbn(x, -shift, fpst);
13033 }
13034 
13035 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
13036 {
13037     return uint64_to_float16_scalbn(x, -shift, fpst);
13038 }
13039 
13040 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
13041 {
13042     if (unlikely(float16_is_any_nan(x))) {
13043         float_raise(float_flag_invalid, fpst);
13044         return 0;
13045     }
13046     return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
13047                                    shift, fpst);
13048 }
13049 
13050 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
13051 {
13052     if (unlikely(float16_is_any_nan(x))) {
13053         float_raise(float_flag_invalid, fpst);
13054         return 0;
13055     }
13056     return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
13057                                     shift, fpst);
13058 }
13059 
13060 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
13061 {
13062     if (unlikely(float16_is_any_nan(x))) {
13063         float_raise(float_flag_invalid, fpst);
13064         return 0;
13065     }
13066     return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
13067                                    shift, fpst);
13068 }
13069 
13070 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
13071 {
13072     if (unlikely(float16_is_any_nan(x))) {
13073         float_raise(float_flag_invalid, fpst);
13074         return 0;
13075     }
13076     return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
13077                                     shift, fpst);
13078 }
13079 
13080 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
13081 {
13082     if (unlikely(float16_is_any_nan(x))) {
13083         float_raise(float_flag_invalid, fpst);
13084         return 0;
13085     }
13086     return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
13087                                    shift, fpst);
13088 }
13089 
13090 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
13091 {
13092     if (unlikely(float16_is_any_nan(x))) {
13093         float_raise(float_flag_invalid, fpst);
13094         return 0;
13095     }
13096     return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
13097                                     shift, fpst);
13098 }
13099 
13100 /* Set the current fp rounding mode and return the old one.
13101  * The argument is a softfloat float_round_ value.
13102  */
13103 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
13104 {
13105     float_status *fp_status = fpstp;
13106 
13107     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
13108     set_float_rounding_mode(rmode, fp_status);
13109 
13110     return prev_rmode;
13111 }
13112 
13113 /* Set the current fp rounding mode in the standard fp status and return
13114  * the old one. This is for NEON instructions that need to change the
13115  * rounding mode but wish to use the standard FPSCR values for everything
13116  * else. Always set the rounding mode back to the correct value after
13117  * modifying it.
13118  * The argument is a softfloat float_round_ value.
13119  */
13120 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
13121 {
13122     float_status *fp_status = &env->vfp.standard_fp_status;
13123 
13124     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
13125     set_float_rounding_mode(rmode, fp_status);
13126 
13127     return prev_rmode;
13128 }
13129 
13130 /* Half precision conversions.  */
13131 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13132 {
13133     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13134      * it would affect flushing input denormals.
13135      */
13136     float_status *fpst = fpstp;
13137     flag save = get_flush_inputs_to_zero(fpst);
13138     set_flush_inputs_to_zero(false, fpst);
13139     float32 r = float16_to_float32(a, !ahp_mode, fpst);
13140     set_flush_inputs_to_zero(save, fpst);
13141     return r;
13142 }
13143 
13144 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
13145 {
13146     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13147      * it would affect flushing output denormals.
13148      */
13149     float_status *fpst = fpstp;
13150     flag save = get_flush_to_zero(fpst);
13151     set_flush_to_zero(false, fpst);
13152     float16 r = float32_to_float16(a, !ahp_mode, fpst);
13153     set_flush_to_zero(save, fpst);
13154     return r;
13155 }
13156 
13157 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
13158 {
13159     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13160      * it would affect flushing input denormals.
13161      */
13162     float_status *fpst = fpstp;
13163     flag save = get_flush_inputs_to_zero(fpst);
13164     set_flush_inputs_to_zero(false, fpst);
13165     float64 r = float16_to_float64(a, !ahp_mode, fpst);
13166     set_flush_inputs_to_zero(save, fpst);
13167     return r;
13168 }
13169 
13170 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
13171 {
13172     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
13173      * it would affect flushing output denormals.
13174      */
13175     float_status *fpst = fpstp;
13176     flag save = get_flush_to_zero(fpst);
13177     set_flush_to_zero(false, fpst);
13178     float16 r = float64_to_float16(a, !ahp_mode, fpst);
13179     set_flush_to_zero(save, fpst);
13180     return r;
13181 }
13182 
13183 #define float32_two make_float32(0x40000000)
13184 #define float32_three make_float32(0x40400000)
13185 #define float32_one_point_five make_float32(0x3fc00000)
13186 
13187 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
13188 {
13189     float_status *s = &env->vfp.standard_fp_status;
13190     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13191         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13192         if (!(float32_is_zero(a) || float32_is_zero(b))) {
13193             float_raise(float_flag_input_denormal, s);
13194         }
13195         return float32_two;
13196     }
13197     return float32_sub(float32_two, float32_mul(a, b, s), s);
13198 }
13199 
13200 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
13201 {
13202     float_status *s = &env->vfp.standard_fp_status;
13203     float32 product;
13204     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
13205         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
13206         if (!(float32_is_zero(a) || float32_is_zero(b))) {
13207             float_raise(float_flag_input_denormal, s);
13208         }
13209         return float32_one_point_five;
13210     }
13211     product = float32_mul(a, b, s);
13212     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
13213 }
13214 
13215 /* NEON helpers.  */
13216 
13217 /* Constants 256 and 512 are used in some helpers; we avoid relying on
13218  * int->float conversions at run-time.  */
13219 #define float64_256 make_float64(0x4070000000000000LL)
13220 #define float64_512 make_float64(0x4080000000000000LL)
13221 #define float16_maxnorm make_float16(0x7bff)
13222 #define float32_maxnorm make_float32(0x7f7fffff)
13223 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
13224 
13225 /* Reciprocal functions
13226  *
13227  * The algorithm that must be used to calculate the estimate
13228  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
13229  */
13230 
13231 /* See RecipEstimate()
13232  *
13233  * input is a 9 bit fixed point number
13234  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
13235  * result range 256 .. 511 for a number from 1.0 to 511/256.
13236  */
13237 
13238 static int recip_estimate(int input)
13239 {
13240     int a, b, r;
13241     assert(256 <= input && input < 512);
13242     a = (input * 2) + 1;
13243     b = (1 << 19) / a;
13244     r = (b + 1) >> 1;
13245     assert(256 <= r && r < 512);
13246     return r;
13247 }
13248 
13249 /*
13250  * Common wrapper to call recip_estimate
13251  *
13252  * The parameters are exponent and 64 bit fraction (without implicit
13253  * bit) where the binary point is nominally at bit 52. Returns a
13254  * float64 which can then be rounded to the appropriate size by the
13255  * callee.
13256  */
13257 
13258 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
13259 {
13260     uint32_t scaled, estimate;
13261     uint64_t result_frac;
13262     int result_exp;
13263 
13264     /* Handle sub-normals */
13265     if (*exp == 0) {
13266         if (extract64(frac, 51, 1) == 0) {
13267             *exp = -1;
13268             frac <<= 2;
13269         } else {
13270             frac <<= 1;
13271         }
13272     }
13273 
13274     /* scaled = UInt('1':fraction<51:44>) */
13275     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13276     estimate = recip_estimate(scaled);
13277 
13278     result_exp = exp_off - *exp;
13279     result_frac = deposit64(0, 44, 8, estimate);
13280     if (result_exp == 0) {
13281         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
13282     } else if (result_exp == -1) {
13283         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
13284         result_exp = 0;
13285     }
13286 
13287     *exp = result_exp;
13288 
13289     return result_frac;
13290 }
13291 
13292 static bool round_to_inf(float_status *fpst, bool sign_bit)
13293 {
13294     switch (fpst->float_rounding_mode) {
13295     case float_round_nearest_even: /* Round to Nearest */
13296         return true;
13297     case float_round_up: /* Round to +Inf */
13298         return !sign_bit;
13299     case float_round_down: /* Round to -Inf */
13300         return sign_bit;
13301     case float_round_to_zero: /* Round to Zero */
13302         return false;
13303     }
13304 
13305     g_assert_not_reached();
13306 }
13307 
13308 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
13309 {
13310     float_status *fpst = fpstp;
13311     float16 f16 = float16_squash_input_denormal(input, fpst);
13312     uint32_t f16_val = float16_val(f16);
13313     uint32_t f16_sign = float16_is_neg(f16);
13314     int f16_exp = extract32(f16_val, 10, 5);
13315     uint32_t f16_frac = extract32(f16_val, 0, 10);
13316     uint64_t f64_frac;
13317 
13318     if (float16_is_any_nan(f16)) {
13319         float16 nan = f16;
13320         if (float16_is_signaling_nan(f16, fpst)) {
13321             float_raise(float_flag_invalid, fpst);
13322             nan = float16_silence_nan(f16, fpst);
13323         }
13324         if (fpst->default_nan_mode) {
13325             nan =  float16_default_nan(fpst);
13326         }
13327         return nan;
13328     } else if (float16_is_infinity(f16)) {
13329         return float16_set_sign(float16_zero, float16_is_neg(f16));
13330     } else if (float16_is_zero(f16)) {
13331         float_raise(float_flag_divbyzero, fpst);
13332         return float16_set_sign(float16_infinity, float16_is_neg(f16));
13333     } else if (float16_abs(f16) < (1 << 8)) {
13334         /* Abs(value) < 2.0^-16 */
13335         float_raise(float_flag_overflow | float_flag_inexact, fpst);
13336         if (round_to_inf(fpst, f16_sign)) {
13337             return float16_set_sign(float16_infinity, f16_sign);
13338         } else {
13339             return float16_set_sign(float16_maxnorm, f16_sign);
13340         }
13341     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
13342         float_raise(float_flag_underflow, fpst);
13343         return float16_set_sign(float16_zero, float16_is_neg(f16));
13344     }
13345 
13346     f64_frac = call_recip_estimate(&f16_exp, 29,
13347                                    ((uint64_t) f16_frac) << (52 - 10));
13348 
13349     /* result = sign : result_exp<4:0> : fraction<51:42> */
13350     f16_val = deposit32(0, 15, 1, f16_sign);
13351     f16_val = deposit32(f16_val, 10, 5, f16_exp);
13352     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
13353     return make_float16(f16_val);
13354 }
13355 
13356 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
13357 {
13358     float_status *fpst = fpstp;
13359     float32 f32 = float32_squash_input_denormal(input, fpst);
13360     uint32_t f32_val = float32_val(f32);
13361     bool f32_sign = float32_is_neg(f32);
13362     int f32_exp = extract32(f32_val, 23, 8);
13363     uint32_t f32_frac = extract32(f32_val, 0, 23);
13364     uint64_t f64_frac;
13365 
13366     if (float32_is_any_nan(f32)) {
13367         float32 nan = f32;
13368         if (float32_is_signaling_nan(f32, fpst)) {
13369             float_raise(float_flag_invalid, fpst);
13370             nan = float32_silence_nan(f32, fpst);
13371         }
13372         if (fpst->default_nan_mode) {
13373             nan =  float32_default_nan(fpst);
13374         }
13375         return nan;
13376     } else if (float32_is_infinity(f32)) {
13377         return float32_set_sign(float32_zero, float32_is_neg(f32));
13378     } else if (float32_is_zero(f32)) {
13379         float_raise(float_flag_divbyzero, fpst);
13380         return float32_set_sign(float32_infinity, float32_is_neg(f32));
13381     } else if (float32_abs(f32) < (1ULL << 21)) {
13382         /* Abs(value) < 2.0^-128 */
13383         float_raise(float_flag_overflow | float_flag_inexact, fpst);
13384         if (round_to_inf(fpst, f32_sign)) {
13385             return float32_set_sign(float32_infinity, f32_sign);
13386         } else {
13387             return float32_set_sign(float32_maxnorm, f32_sign);
13388         }
13389     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
13390         float_raise(float_flag_underflow, fpst);
13391         return float32_set_sign(float32_zero, float32_is_neg(f32));
13392     }
13393 
13394     f64_frac = call_recip_estimate(&f32_exp, 253,
13395                                    ((uint64_t) f32_frac) << (52 - 23));
13396 
13397     /* result = sign : result_exp<7:0> : fraction<51:29> */
13398     f32_val = deposit32(0, 31, 1, f32_sign);
13399     f32_val = deposit32(f32_val, 23, 8, f32_exp);
13400     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
13401     return make_float32(f32_val);
13402 }
13403 
13404 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
13405 {
13406     float_status *fpst = fpstp;
13407     float64 f64 = float64_squash_input_denormal(input, fpst);
13408     uint64_t f64_val = float64_val(f64);
13409     bool f64_sign = float64_is_neg(f64);
13410     int f64_exp = extract64(f64_val, 52, 11);
13411     uint64_t f64_frac = extract64(f64_val, 0, 52);
13412 
13413     /* Deal with any special cases */
13414     if (float64_is_any_nan(f64)) {
13415         float64 nan = f64;
13416         if (float64_is_signaling_nan(f64, fpst)) {
13417             float_raise(float_flag_invalid, fpst);
13418             nan = float64_silence_nan(f64, fpst);
13419         }
13420         if (fpst->default_nan_mode) {
13421             nan =  float64_default_nan(fpst);
13422         }
13423         return nan;
13424     } else if (float64_is_infinity(f64)) {
13425         return float64_set_sign(float64_zero, float64_is_neg(f64));
13426     } else if (float64_is_zero(f64)) {
13427         float_raise(float_flag_divbyzero, fpst);
13428         return float64_set_sign(float64_infinity, float64_is_neg(f64));
13429     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
13430         /* Abs(value) < 2.0^-1024 */
13431         float_raise(float_flag_overflow | float_flag_inexact, fpst);
13432         if (round_to_inf(fpst, f64_sign)) {
13433             return float64_set_sign(float64_infinity, f64_sign);
13434         } else {
13435             return float64_set_sign(float64_maxnorm, f64_sign);
13436         }
13437     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
13438         float_raise(float_flag_underflow, fpst);
13439         return float64_set_sign(float64_zero, float64_is_neg(f64));
13440     }
13441 
13442     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
13443 
13444     /* result = sign : result_exp<10:0> : fraction<51:0>; */
13445     f64_val = deposit64(0, 63, 1, f64_sign);
13446     f64_val = deposit64(f64_val, 52, 11, f64_exp);
13447     f64_val = deposit64(f64_val, 0, 52, f64_frac);
13448     return make_float64(f64_val);
13449 }
13450 
13451 /* The algorithm that must be used to calculate the estimate
13452  * is specified by the ARM ARM.
13453  */
13454 
13455 static int do_recip_sqrt_estimate(int a)
13456 {
13457     int b, estimate;
13458 
13459     assert(128 <= a && a < 512);
13460     if (a < 256) {
13461         a = a * 2 + 1;
13462     } else {
13463         a = (a >> 1) << 1;
13464         a = (a + 1) * 2;
13465     }
13466     b = 512;
13467     while (a * (b + 1) * (b + 1) < (1 << 28)) {
13468         b += 1;
13469     }
13470     estimate = (b + 1) / 2;
13471     assert(256 <= estimate && estimate < 512);
13472 
13473     return estimate;
13474 }
13475 
13476 
13477 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
13478 {
13479     int estimate;
13480     uint32_t scaled;
13481 
13482     if (*exp == 0) {
13483         while (extract64(frac, 51, 1) == 0) {
13484             frac = frac << 1;
13485             *exp -= 1;
13486         }
13487         frac = extract64(frac, 0, 51) << 1;
13488     }
13489 
13490     if (*exp & 1) {
13491         /* scaled = UInt('01':fraction<51:45>) */
13492         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
13493     } else {
13494         /* scaled = UInt('1':fraction<51:44>) */
13495         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
13496     }
13497     estimate = do_recip_sqrt_estimate(scaled);
13498 
13499     *exp = (exp_off - *exp) / 2;
13500     return extract64(estimate, 0, 8) << 44;
13501 }
13502 
13503 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
13504 {
13505     float_status *s = fpstp;
13506     float16 f16 = float16_squash_input_denormal(input, s);
13507     uint16_t val = float16_val(f16);
13508     bool f16_sign = float16_is_neg(f16);
13509     int f16_exp = extract32(val, 10, 5);
13510     uint16_t f16_frac = extract32(val, 0, 10);
13511     uint64_t f64_frac;
13512 
13513     if (float16_is_any_nan(f16)) {
13514         float16 nan = f16;
13515         if (float16_is_signaling_nan(f16, s)) {
13516             float_raise(float_flag_invalid, s);
13517             nan = float16_silence_nan(f16, s);
13518         }
13519         if (s->default_nan_mode) {
13520             nan =  float16_default_nan(s);
13521         }
13522         return nan;
13523     } else if (float16_is_zero(f16)) {
13524         float_raise(float_flag_divbyzero, s);
13525         return float16_set_sign(float16_infinity, f16_sign);
13526     } else if (f16_sign) {
13527         float_raise(float_flag_invalid, s);
13528         return float16_default_nan(s);
13529     } else if (float16_is_infinity(f16)) {
13530         return float16_zero;
13531     }
13532 
13533     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13534      * preserving the parity of the exponent.  */
13535 
13536     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
13537 
13538     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
13539 
13540     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
13541     val = deposit32(0, 15, 1, f16_sign);
13542     val = deposit32(val, 10, 5, f16_exp);
13543     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
13544     return make_float16(val);
13545 }
13546 
13547 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
13548 {
13549     float_status *s = fpstp;
13550     float32 f32 = float32_squash_input_denormal(input, s);
13551     uint32_t val = float32_val(f32);
13552     uint32_t f32_sign = float32_is_neg(f32);
13553     int f32_exp = extract32(val, 23, 8);
13554     uint32_t f32_frac = extract32(val, 0, 23);
13555     uint64_t f64_frac;
13556 
13557     if (float32_is_any_nan(f32)) {
13558         float32 nan = f32;
13559         if (float32_is_signaling_nan(f32, s)) {
13560             float_raise(float_flag_invalid, s);
13561             nan = float32_silence_nan(f32, s);
13562         }
13563         if (s->default_nan_mode) {
13564             nan =  float32_default_nan(s);
13565         }
13566         return nan;
13567     } else if (float32_is_zero(f32)) {
13568         float_raise(float_flag_divbyzero, s);
13569         return float32_set_sign(float32_infinity, float32_is_neg(f32));
13570     } else if (float32_is_neg(f32)) {
13571         float_raise(float_flag_invalid, s);
13572         return float32_default_nan(s);
13573     } else if (float32_is_infinity(f32)) {
13574         return float32_zero;
13575     }
13576 
13577     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13578      * preserving the parity of the exponent.  */
13579 
13580     f64_frac = ((uint64_t) f32_frac) << 29;
13581 
13582     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
13583 
13584     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
13585     val = deposit32(0, 31, 1, f32_sign);
13586     val = deposit32(val, 23, 8, f32_exp);
13587     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
13588     return make_float32(val);
13589 }
13590 
13591 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
13592 {
13593     float_status *s = fpstp;
13594     float64 f64 = float64_squash_input_denormal(input, s);
13595     uint64_t val = float64_val(f64);
13596     bool f64_sign = float64_is_neg(f64);
13597     int f64_exp = extract64(val, 52, 11);
13598     uint64_t f64_frac = extract64(val, 0, 52);
13599 
13600     if (float64_is_any_nan(f64)) {
13601         float64 nan = f64;
13602         if (float64_is_signaling_nan(f64, s)) {
13603             float_raise(float_flag_invalid, s);
13604             nan = float64_silence_nan(f64, s);
13605         }
13606         if (s->default_nan_mode) {
13607             nan =  float64_default_nan(s);
13608         }
13609         return nan;
13610     } else if (float64_is_zero(f64)) {
13611         float_raise(float_flag_divbyzero, s);
13612         return float64_set_sign(float64_infinity, float64_is_neg(f64));
13613     } else if (float64_is_neg(f64)) {
13614         float_raise(float_flag_invalid, s);
13615         return float64_default_nan(s);
13616     } else if (float64_is_infinity(f64)) {
13617         return float64_zero;
13618     }
13619 
13620     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
13621 
13622     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
13623     val = deposit64(0, 61, 1, f64_sign);
13624     val = deposit64(val, 52, 11, f64_exp);
13625     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
13626     return make_float64(val);
13627 }
13628 
13629 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
13630 {
13631     /* float_status *s = fpstp; */
13632     int input, estimate;
13633 
13634     if ((a & 0x80000000) == 0) {
13635         return 0xffffffff;
13636     }
13637 
13638     input = extract32(a, 23, 9);
13639     estimate = recip_estimate(input);
13640 
13641     return deposit32(0, (32 - 9), 9, estimate);
13642 }
13643 
13644 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
13645 {
13646     int estimate;
13647 
13648     if ((a & 0xc0000000) == 0) {
13649         return 0xffffffff;
13650     }
13651 
13652     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
13653 
13654     return deposit32(0, 23, 9, estimate);
13655 }
13656 
13657 /* VFPv4 fused multiply-accumulate */
13658 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
13659 {
13660     float_status *fpst = fpstp;
13661     return float32_muladd(a, b, c, 0, fpst);
13662 }
13663 
13664 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
13665 {
13666     float_status *fpst = fpstp;
13667     return float64_muladd(a, b, c, 0, fpst);
13668 }
13669 
13670 /* ARMv8 round to integral */
13671 float32 HELPER(rints_exact)(float32 x, void *fp_status)
13672 {
13673     return float32_round_to_int(x, fp_status);
13674 }
13675 
13676 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
13677 {
13678     return float64_round_to_int(x, fp_status);
13679 }
13680 
13681 float32 HELPER(rints)(float32 x, void *fp_status)
13682 {
13683     int old_flags = get_float_exception_flags(fp_status), new_flags;
13684     float32 ret;
13685 
13686     ret = float32_round_to_int(x, fp_status);
13687 
13688     /* Suppress any inexact exceptions the conversion produced */
13689     if (!(old_flags & float_flag_inexact)) {
13690         new_flags = get_float_exception_flags(fp_status);
13691         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13692     }
13693 
13694     return ret;
13695 }
13696 
13697 float64 HELPER(rintd)(float64 x, void *fp_status)
13698 {
13699     int old_flags = get_float_exception_flags(fp_status), new_flags;
13700     float64 ret;
13701 
13702     ret = float64_round_to_int(x, fp_status);
13703 
13704     new_flags = get_float_exception_flags(fp_status);
13705 
13706     /* Suppress any inexact exceptions the conversion produced */
13707     if (!(old_flags & float_flag_inexact)) {
13708         new_flags = get_float_exception_flags(fp_status);
13709         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
13710     }
13711 
13712     return ret;
13713 }
13714 
13715 /* Convert ARM rounding mode to softfloat */
13716 int arm_rmode_to_sf(int rmode)
13717 {
13718     switch (rmode) {
13719     case FPROUNDING_TIEAWAY:
13720         rmode = float_round_ties_away;
13721         break;
13722     case FPROUNDING_ODD:
13723         /* FIXME: add support for TIEAWAY and ODD */
13724         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
13725                       rmode);
13726         /* fall through for now */
13727     case FPROUNDING_TIEEVEN:
13728     default:
13729         rmode = float_round_nearest_even;
13730         break;
13731     case FPROUNDING_POSINF:
13732         rmode = float_round_up;
13733         break;
13734     case FPROUNDING_NEGINF:
13735         rmode = float_round_down;
13736         break;
13737     case FPROUNDING_ZERO:
13738         rmode = float_round_to_zero;
13739         break;
13740     }
13741     return rmode;
13742 }
13743 
13744 /* CRC helpers.
13745  * The upper bytes of val (above the number specified by 'bytes') must have
13746  * been zeroed out by the caller.
13747  */
13748 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
13749 {
13750     uint8_t buf[4];
13751 
13752     stl_le_p(buf, val);
13753 
13754     /* zlib crc32 converts the accumulator and output to one's complement.  */
13755     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
13756 }
13757 
13758 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
13759 {
13760     uint8_t buf[4];
13761 
13762     stl_le_p(buf, val);
13763 
13764     /* Linux crc32c converts the output to one's complement.  */
13765     return crc32c(acc, buf, bytes) ^ 0xffffffff;
13766 }
13767 
13768 /* Return the exception level to which FP-disabled exceptions should
13769  * be taken, or 0 if FP is enabled.
13770  */
13771 int fp_exception_el(CPUARMState *env, int cur_el)
13772 {
13773 #ifndef CONFIG_USER_ONLY
13774     int fpen;
13775 
13776     /* CPACR and the CPTR registers don't exist before v6, so FP is
13777      * always accessible
13778      */
13779     if (!arm_feature(env, ARM_FEATURE_V6)) {
13780         return 0;
13781     }
13782 
13783     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13784      * 0, 2 : trap EL0 and EL1/PL1 accesses
13785      * 1    : trap only EL0 accesses
13786      * 3    : trap no accesses
13787      */
13788     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
13789     switch (fpen) {
13790     case 0:
13791     case 2:
13792         if (cur_el == 0 || cur_el == 1) {
13793             /* Trap to PL1, which might be EL1 or EL3 */
13794             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
13795                 return 3;
13796             }
13797             return 1;
13798         }
13799         if (cur_el == 3 && !is_a64(env)) {
13800             /* Secure PL1 running at EL3 */
13801             return 3;
13802         }
13803         break;
13804     case 1:
13805         if (cur_el == 0) {
13806             return 1;
13807         }
13808         break;
13809     case 3:
13810         break;
13811     }
13812 
13813     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13814      * check because zero bits in the registers mean "don't trap".
13815      */
13816 
13817     /* CPTR_EL2 : present in v7VE or v8 */
13818     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
13819         && !arm_is_secure_below_el3(env)) {
13820         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13821         return 2;
13822     }
13823 
13824     /* CPTR_EL3 : present in v8 */
13825     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
13826         /* Trap all FP ops to EL3 */
13827         return 3;
13828     }
13829 #endif
13830     return 0;
13831 }
13832 
13833 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
13834                                                 bool secstate, bool priv)
13835 {
13836     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
13837 
13838     if (priv) {
13839         mmu_idx |= ARM_MMU_IDX_M_PRIV;
13840     }
13841 
13842     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
13843         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
13844     }
13845 
13846     if (secstate) {
13847         mmu_idx |= ARM_MMU_IDX_M_S;
13848     }
13849 
13850     return mmu_idx;
13851 }
13852 
13853 /* Return the MMU index for a v7M CPU in the specified security state */
13854 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
13855 {
13856     bool priv = arm_current_el(env) != 0;
13857 
13858     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
13859 }
13860 
13861 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
13862 {
13863     int el;
13864 
13865     if (arm_feature(env, ARM_FEATURE_M)) {
13866         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
13867     }
13868 
13869     el = arm_current_el(env);
13870     if (el < 2 && arm_is_secure_below_el3(env)) {
13871         return ARMMMUIdx_S1SE0 + el;
13872     } else {
13873         return ARMMMUIdx_S12NSE0 + el;
13874     }
13875 }
13876 
13877 int cpu_mmu_index(CPUARMState *env, bool ifetch)
13878 {
13879     return arm_to_core_mmu_idx(arm_mmu_idx(env));
13880 }
13881 
13882 #ifndef CONFIG_USER_ONLY
13883 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
13884 {
13885     return stage_1_mmu_idx(arm_mmu_idx(env));
13886 }
13887 #endif
13888 
13889 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13890                           target_ulong *cs_base, uint32_t *pflags)
13891 {
13892     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
13893     int current_el = arm_current_el(env);
13894     int fp_el = fp_exception_el(env, current_el);
13895     uint32_t flags = 0;
13896 
13897     if (is_a64(env)) {
13898         ARMCPU *cpu = arm_env_get_cpu(env);
13899         uint64_t sctlr;
13900 
13901         *pc = env->pc;
13902         flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
13903 
13904         /* Get control bits for tagged addresses.  */
13905         {
13906             ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
13907             ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1);
13908             int tbii, tbid;
13909 
13910             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
13911             if (regime_el(env, stage1) < 2) {
13912                 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1);
13913                 tbid = (p1.tbi << 1) | p0.tbi;
13914                 tbii = tbid & ~((p1.tbid << 1) | p0.tbid);
13915             } else {
13916                 tbid = p0.tbi;
13917                 tbii = tbid & !p0.tbid;
13918             }
13919 
13920             flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
13921             flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
13922         }
13923 
13924         if (cpu_isar_feature(aa64_sve, cpu)) {
13925             int sve_el = sve_exception_el(env, current_el);
13926             uint32_t zcr_len;
13927 
13928             /* If SVE is disabled, but FP is enabled,
13929              * then the effective len is 0.
13930              */
13931             if (sve_el != 0 && fp_el == 0) {
13932                 zcr_len = 0;
13933             } else {
13934                 zcr_len = sve_zcr_len_for_el(env, current_el);
13935             }
13936             flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
13937             flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
13938         }
13939 
13940         if (current_el == 0) {
13941             /* FIXME: ARMv8.1-VHE S2 translation regime.  */
13942             sctlr = env->cp15.sctlr_el[1];
13943         } else {
13944             sctlr = env->cp15.sctlr_el[current_el];
13945         }
13946         if (cpu_isar_feature(aa64_pauth, cpu)) {
13947             /*
13948              * In order to save space in flags, we record only whether
13949              * pauth is "inactive", meaning all insns are implemented as
13950              * a nop, or "active" when some action must be performed.
13951              * The decision of which action to take is left to a helper.
13952              */
13953             if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
13954                 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
13955             }
13956         }
13957 
13958         if (cpu_isar_feature(aa64_bti, cpu)) {
13959             /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
13960             if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
13961                 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
13962             }
13963             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13964         }
13965     } else {
13966         *pc = env->regs[15];
13967         flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb);
13968         flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len);
13969         flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride);
13970         flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits);
13971         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env));
13972         flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
13973         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
13974             || arm_el_is_aa64(env, 1)) {
13975             flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13976         }
13977         flags = FIELD_DP32(flags, TBFLAG_A32, XSCALE_CPAR, env->cp15.c15_cpar);
13978     }
13979 
13980     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
13981 
13982     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13983      * states defined in the ARM ARM for software singlestep:
13984      *  SS_ACTIVE   PSTATE.SS   State
13985      *     0            x       Inactive (the TB flag for SS is always 0)
13986      *     1            0       Active-pending
13987      *     1            1       Active-not-pending
13988      */
13989     if (arm_singlestep_active(env)) {
13990         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
13991         if (is_a64(env)) {
13992             if (env->pstate & PSTATE_SS) {
13993                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13994             }
13995         } else {
13996             if (env->uncached_cpsr & PSTATE_SS) {
13997                 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13998             }
13999         }
14000     }
14001     if (arm_cpu_data_is_big_endian(env)) {
14002         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
14003     }
14004     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
14005 
14006     if (arm_v7m_is_handler_mode(env)) {
14007         flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1);
14008     }
14009 
14010     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
14011      * suppressing them because the requested execution priority is less than 0.
14012      */
14013     if (arm_feature(env, ARM_FEATURE_V8) &&
14014         arm_feature(env, ARM_FEATURE_M) &&
14015         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
14016           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
14017         flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1);
14018     }
14019 
14020     *pflags = flags;
14021     *cs_base = 0;
14022 }
14023 
14024 #ifdef TARGET_AARCH64
14025 /*
14026  * The manual says that when SVE is enabled and VQ is widened the
14027  * implementation is allowed to zero the previously inaccessible
14028  * portion of the registers.  The corollary to that is that when
14029  * SVE is enabled and VQ is narrowed we are also allowed to zero
14030  * the now inaccessible portion of the registers.
14031  *
14032  * The intent of this is that no predicate bit beyond VQ is ever set.
14033  * Which means that some operations on predicate registers themselves
14034  * may operate on full uint64_t or even unrolled across the maximum
14035  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
14036  * may well be cheaper than conditionals to restrict the operation
14037  * to the relevant portion of a uint16_t[16].
14038  */
14039 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
14040 {
14041     int i, j;
14042     uint64_t pmask;
14043 
14044     assert(vq >= 1 && vq <= ARM_MAX_VQ);
14045     assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
14046 
14047     /* Zap the high bits of the zregs.  */
14048     for (i = 0; i < 32; i++) {
14049         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
14050     }
14051 
14052     /* Zap the high bits of the pregs and ffr.  */
14053     pmask = 0;
14054     if (vq & 3) {
14055         pmask = ~(-1ULL << (16 * (vq & 3)));
14056     }
14057     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
14058         for (i = 0; i < 17; ++i) {
14059             env->vfp.pregs[i].p[j] &= pmask;
14060         }
14061         pmask = 0;
14062     }
14063 }
14064 
14065 /*
14066  * Notice a change in SVE vector size when changing EL.
14067  */
14068 void aarch64_sve_change_el(CPUARMState *env, int old_el,
14069                            int new_el, bool el0_a64)
14070 {
14071     ARMCPU *cpu = arm_env_get_cpu(env);
14072     int old_len, new_len;
14073     bool old_a64, new_a64;
14074 
14075     /* Nothing to do if no SVE.  */
14076     if (!cpu_isar_feature(aa64_sve, cpu)) {
14077         return;
14078     }
14079 
14080     /* Nothing to do if FP is disabled in either EL.  */
14081     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
14082         return;
14083     }
14084 
14085     /*
14086      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
14087      * at ELx, or not available because the EL is in AArch32 state, then
14088      * for all purposes other than a direct read, the ZCR_ELx.LEN field
14089      * has an effective value of 0".
14090      *
14091      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
14092      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
14093      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
14094      * we already have the correct register contents when encountering the
14095      * vq0->vq0 transition between EL0->EL1.
14096      */
14097     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
14098     old_len = (old_a64 && !sve_exception_el(env, old_el)
14099                ? sve_zcr_len_for_el(env, old_el) : 0);
14100     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
14101     new_len = (new_a64 && !sve_exception_el(env, new_el)
14102                ? sve_zcr_len_for_el(env, new_el) : 0);
14103 
14104     /* When changing vector length, clear inaccessible state.  */
14105     if (new_len < old_len) {
14106         aarch64_sve_narrow_vq(env, new_len + 1);
14107     }
14108 }
14109 #endif
14110