1 #include "qemu/osdep.h" 2 #include "qemu/units.h" 3 #include "target/arm/idau.h" 4 #include "trace.h" 5 #include "cpu.h" 6 #include "internals.h" 7 #include "exec/gdbstub.h" 8 #include "exec/helper-proto.h" 9 #include "qemu/host-utils.h" 10 #include "sysemu/arch_init.h" 11 #include "sysemu/sysemu.h" 12 #include "qemu/bitops.h" 13 #include "qemu/crc32c.h" 14 #include "qemu/qemu-print.h" 15 #include "exec/exec-all.h" 16 #include "exec/cpu_ldst.h" 17 #include "arm_ldst.h" 18 #include <zlib.h> /* For crc32 */ 19 #include "hw/semihosting/semihost.h" 20 #include "sysemu/cpus.h" 21 #include "sysemu/kvm.h" 22 #include "fpu/softfloat.h" 23 #include "qemu/range.h" 24 #include "qapi/qapi-commands-target.h" 25 #include "qapi/error.h" 26 #include "qemu/guest-random.h" 27 28 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 29 30 #ifndef CONFIG_USER_ONLY 31 /* Cacheability and shareability attributes for a memory access */ 32 typedef struct ARMCacheAttrs { 33 unsigned int attrs:8; /* as in the MAIR register encoding */ 34 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 35 } ARMCacheAttrs; 36 37 static bool get_phys_addr(CPUARMState *env, target_ulong address, 38 MMUAccessType access_type, ARMMMUIdx mmu_idx, 39 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 40 target_ulong *page_size, 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 42 43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 44 MMUAccessType access_type, ARMMMUIdx mmu_idx, 45 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 46 target_ulong *page_size_ptr, 47 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 48 49 /* Security attributes for an address, as returned by v8m_security_lookup. */ 50 typedef struct V8M_SAttributes { 51 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 52 bool ns; 53 bool nsc; 54 uint8_t sregion; 55 bool srvalid; 56 uint8_t iregion; 57 bool irvalid; 58 } V8M_SAttributes; 59 60 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 61 MMUAccessType access_type, ARMMMUIdx mmu_idx, 62 V8M_SAttributes *sattrs); 63 #endif 64 65 static void switch_mode(CPUARMState *env, int mode); 66 67 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 68 { 69 int nregs; 70 71 /* VFP data registers are always little-endian. */ 72 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 73 if (reg < nregs) { 74 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 75 return 8; 76 } 77 if (arm_feature(env, ARM_FEATURE_NEON)) { 78 /* Aliases for Q regs. */ 79 nregs += 16; 80 if (reg < nregs) { 81 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 82 stq_le_p(buf, q[0]); 83 stq_le_p(buf + 8, q[1]); 84 return 16; 85 } 86 } 87 switch (reg - nregs) { 88 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 89 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 90 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 91 } 92 return 0; 93 } 94 95 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 96 { 97 int nregs; 98 99 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 100 if (reg < nregs) { 101 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 102 return 8; 103 } 104 if (arm_feature(env, ARM_FEATURE_NEON)) { 105 nregs += 16; 106 if (reg < nregs) { 107 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 108 q[0] = ldq_le_p(buf); 109 q[1] = ldq_le_p(buf + 8); 110 return 16; 111 } 112 } 113 switch (reg - nregs) { 114 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 115 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 116 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 117 } 118 return 0; 119 } 120 121 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 122 { 123 switch (reg) { 124 case 0 ... 31: 125 /* 128 bit FP register */ 126 { 127 uint64_t *q = aa64_vfp_qreg(env, reg); 128 stq_le_p(buf, q[0]); 129 stq_le_p(buf + 8, q[1]); 130 return 16; 131 } 132 case 32: 133 /* FPSR */ 134 stl_p(buf, vfp_get_fpsr(env)); 135 return 4; 136 case 33: 137 /* FPCR */ 138 stl_p(buf, vfp_get_fpcr(env)); 139 return 4; 140 default: 141 return 0; 142 } 143 } 144 145 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 146 { 147 switch (reg) { 148 case 0 ... 31: 149 /* 128 bit FP register */ 150 { 151 uint64_t *q = aa64_vfp_qreg(env, reg); 152 q[0] = ldq_le_p(buf); 153 q[1] = ldq_le_p(buf + 8); 154 return 16; 155 } 156 case 32: 157 /* FPSR */ 158 vfp_set_fpsr(env, ldl_p(buf)); 159 return 4; 160 case 33: 161 /* FPCR */ 162 vfp_set_fpcr(env, ldl_p(buf)); 163 return 4; 164 default: 165 return 0; 166 } 167 } 168 169 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 170 { 171 assert(ri->fieldoffset); 172 if (cpreg_field_is_64bit(ri)) { 173 return CPREG_FIELD64(env, ri); 174 } else { 175 return CPREG_FIELD32(env, ri); 176 } 177 } 178 179 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 180 uint64_t value) 181 { 182 assert(ri->fieldoffset); 183 if (cpreg_field_is_64bit(ri)) { 184 CPREG_FIELD64(env, ri) = value; 185 } else { 186 CPREG_FIELD32(env, ri) = value; 187 } 188 } 189 190 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 191 { 192 return (char *)env + ri->fieldoffset; 193 } 194 195 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 196 { 197 /* Raw read of a coprocessor register (as needed for migration, etc). */ 198 if (ri->type & ARM_CP_CONST) { 199 return ri->resetvalue; 200 } else if (ri->raw_readfn) { 201 return ri->raw_readfn(env, ri); 202 } else if (ri->readfn) { 203 return ri->readfn(env, ri); 204 } else { 205 return raw_read(env, ri); 206 } 207 } 208 209 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 210 uint64_t v) 211 { 212 /* Raw write of a coprocessor register (as needed for migration, etc). 213 * Note that constant registers are treated as write-ignored; the 214 * caller should check for success by whether a readback gives the 215 * value written. 216 */ 217 if (ri->type & ARM_CP_CONST) { 218 return; 219 } else if (ri->raw_writefn) { 220 ri->raw_writefn(env, ri, v); 221 } else if (ri->writefn) { 222 ri->writefn(env, ri, v); 223 } else { 224 raw_write(env, ri, v); 225 } 226 } 227 228 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 229 { 230 ARMCPU *cpu = env_archcpu(env); 231 const ARMCPRegInfo *ri; 232 uint32_t key; 233 234 key = cpu->dyn_xml.cpregs_keys[reg]; 235 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 236 if (ri) { 237 if (cpreg_field_is_64bit(ri)) { 238 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 239 } else { 240 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 241 } 242 } 243 return 0; 244 } 245 246 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 247 { 248 return 0; 249 } 250 251 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 252 { 253 /* Return true if the regdef would cause an assertion if you called 254 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 255 * program bug for it not to have the NO_RAW flag). 256 * NB that returning false here doesn't necessarily mean that calling 257 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 258 * read/write access functions which are safe for raw use" from "has 259 * read/write access functions which have side effects but has forgotten 260 * to provide raw access functions". 261 * The tests here line up with the conditions in read/write_raw_cp_reg() 262 * and assertions in raw_read()/raw_write(). 263 */ 264 if ((ri->type & ARM_CP_CONST) || 265 ri->fieldoffset || 266 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 267 return false; 268 } 269 return true; 270 } 271 272 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 273 { 274 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 275 int i; 276 bool ok = true; 277 278 for (i = 0; i < cpu->cpreg_array_len; i++) { 279 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 280 const ARMCPRegInfo *ri; 281 uint64_t newval; 282 283 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 284 if (!ri) { 285 ok = false; 286 continue; 287 } 288 if (ri->type & ARM_CP_NO_RAW) { 289 continue; 290 } 291 292 newval = read_raw_cp_reg(&cpu->env, ri); 293 if (kvm_sync) { 294 /* 295 * Only sync if the previous list->cpustate sync succeeded. 296 * Rather than tracking the success/failure state for every 297 * item in the list, we just recheck "does the raw write we must 298 * have made in write_list_to_cpustate() read back OK" here. 299 */ 300 uint64_t oldval = cpu->cpreg_values[i]; 301 302 if (oldval == newval) { 303 continue; 304 } 305 306 write_raw_cp_reg(&cpu->env, ri, oldval); 307 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 308 continue; 309 } 310 311 write_raw_cp_reg(&cpu->env, ri, newval); 312 } 313 cpu->cpreg_values[i] = newval; 314 } 315 return ok; 316 } 317 318 bool write_list_to_cpustate(ARMCPU *cpu) 319 { 320 int i; 321 bool ok = true; 322 323 for (i = 0; i < cpu->cpreg_array_len; i++) { 324 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 325 uint64_t v = cpu->cpreg_values[i]; 326 const ARMCPRegInfo *ri; 327 328 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 329 if (!ri) { 330 ok = false; 331 continue; 332 } 333 if (ri->type & ARM_CP_NO_RAW) { 334 continue; 335 } 336 /* Write value and confirm it reads back as written 337 * (to catch read-only registers and partially read-only 338 * registers where the incoming migration value doesn't match) 339 */ 340 write_raw_cp_reg(&cpu->env, ri, v); 341 if (read_raw_cp_reg(&cpu->env, ri) != v) { 342 ok = false; 343 } 344 } 345 return ok; 346 } 347 348 static void add_cpreg_to_list(gpointer key, gpointer opaque) 349 { 350 ARMCPU *cpu = opaque; 351 uint64_t regidx; 352 const ARMCPRegInfo *ri; 353 354 regidx = *(uint32_t *)key; 355 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 356 357 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 358 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 359 /* The value array need not be initialized at this point */ 360 cpu->cpreg_array_len++; 361 } 362 } 363 364 static void count_cpreg(gpointer key, gpointer opaque) 365 { 366 ARMCPU *cpu = opaque; 367 uint64_t regidx; 368 const ARMCPRegInfo *ri; 369 370 regidx = *(uint32_t *)key; 371 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 372 373 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 374 cpu->cpreg_array_len++; 375 } 376 } 377 378 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 379 { 380 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 381 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 382 383 if (aidx > bidx) { 384 return 1; 385 } 386 if (aidx < bidx) { 387 return -1; 388 } 389 return 0; 390 } 391 392 void init_cpreg_list(ARMCPU *cpu) 393 { 394 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 395 * Note that we require cpreg_tuples[] to be sorted by key ID. 396 */ 397 GList *keys; 398 int arraylen; 399 400 keys = g_hash_table_get_keys(cpu->cp_regs); 401 keys = g_list_sort(keys, cpreg_key_compare); 402 403 cpu->cpreg_array_len = 0; 404 405 g_list_foreach(keys, count_cpreg, cpu); 406 407 arraylen = cpu->cpreg_array_len; 408 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 409 cpu->cpreg_values = g_new(uint64_t, arraylen); 410 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 411 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 412 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 413 cpu->cpreg_array_len = 0; 414 415 g_list_foreach(keys, add_cpreg_to_list, cpu); 416 417 assert(cpu->cpreg_array_len == arraylen); 418 419 g_list_free(keys); 420 } 421 422 /* 423 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 424 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 425 * 426 * access_el3_aa32ns: Used to check AArch32 register views. 427 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 428 */ 429 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 430 const ARMCPRegInfo *ri, 431 bool isread) 432 { 433 bool secure = arm_is_secure_below_el3(env); 434 435 assert(!arm_el_is_aa64(env, 3)); 436 if (secure) { 437 return CP_ACCESS_TRAP_UNCATEGORIZED; 438 } 439 return CP_ACCESS_OK; 440 } 441 442 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 443 const ARMCPRegInfo *ri, 444 bool isread) 445 { 446 if (!arm_el_is_aa64(env, 3)) { 447 return access_el3_aa32ns(env, ri, isread); 448 } 449 return CP_ACCESS_OK; 450 } 451 452 /* Some secure-only AArch32 registers trap to EL3 if used from 453 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 454 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 455 * We assume that the .access field is set to PL1_RW. 456 */ 457 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 458 const ARMCPRegInfo *ri, 459 bool isread) 460 { 461 if (arm_current_el(env) == 3) { 462 return CP_ACCESS_OK; 463 } 464 if (arm_is_secure_below_el3(env)) { 465 return CP_ACCESS_TRAP_EL3; 466 } 467 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 468 return CP_ACCESS_TRAP_UNCATEGORIZED; 469 } 470 471 /* Check for traps to "powerdown debug" registers, which are controlled 472 * by MDCR.TDOSA 473 */ 474 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 475 bool isread) 476 { 477 int el = arm_current_el(env); 478 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 479 (env->cp15.mdcr_el2 & MDCR_TDE) || 480 (arm_hcr_el2_eff(env) & HCR_TGE); 481 482 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 483 return CP_ACCESS_TRAP_EL2; 484 } 485 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 486 return CP_ACCESS_TRAP_EL3; 487 } 488 return CP_ACCESS_OK; 489 } 490 491 /* Check for traps to "debug ROM" registers, which are controlled 492 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 493 */ 494 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 495 bool isread) 496 { 497 int el = arm_current_el(env); 498 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 499 (env->cp15.mdcr_el2 & MDCR_TDE) || 500 (arm_hcr_el2_eff(env) & HCR_TGE); 501 502 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 503 return CP_ACCESS_TRAP_EL2; 504 } 505 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 506 return CP_ACCESS_TRAP_EL3; 507 } 508 return CP_ACCESS_OK; 509 } 510 511 /* Check for traps to general debug registers, which are controlled 512 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 513 */ 514 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 515 bool isread) 516 { 517 int el = arm_current_el(env); 518 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 519 (env->cp15.mdcr_el2 & MDCR_TDE) || 520 (arm_hcr_el2_eff(env) & HCR_TGE); 521 522 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 523 return CP_ACCESS_TRAP_EL2; 524 } 525 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 526 return CP_ACCESS_TRAP_EL3; 527 } 528 return CP_ACCESS_OK; 529 } 530 531 /* Check for traps to performance monitor registers, which are controlled 532 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 533 */ 534 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 535 bool isread) 536 { 537 int el = arm_current_el(env); 538 539 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 540 && !arm_is_secure_below_el3(env)) { 541 return CP_ACCESS_TRAP_EL2; 542 } 543 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 544 return CP_ACCESS_TRAP_EL3; 545 } 546 return CP_ACCESS_OK; 547 } 548 549 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 550 { 551 ARMCPU *cpu = env_archcpu(env); 552 553 raw_write(env, ri, value); 554 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 555 } 556 557 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 558 { 559 ARMCPU *cpu = env_archcpu(env); 560 561 if (raw_read(env, ri) != value) { 562 /* Unlike real hardware the qemu TLB uses virtual addresses, 563 * not modified virtual addresses, so this causes a TLB flush. 564 */ 565 tlb_flush(CPU(cpu)); 566 raw_write(env, ri, value); 567 } 568 } 569 570 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 ARMCPU *cpu = env_archcpu(env); 574 575 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 576 && !extended_addresses_enabled(env)) { 577 /* For VMSA (when not using the LPAE long descriptor page table 578 * format) this register includes the ASID, so do a TLB flush. 579 * For PMSA it is purely a process ID and no action is needed. 580 */ 581 tlb_flush(CPU(cpu)); 582 } 583 raw_write(env, ri, value); 584 } 585 586 /* IS variants of TLB operations must affect all cores */ 587 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 588 uint64_t value) 589 { 590 CPUState *cs = env_cpu(env); 591 592 tlb_flush_all_cpus_synced(cs); 593 } 594 595 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_all_cpus_synced(cs); 601 } 602 603 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 604 uint64_t value) 605 { 606 CPUState *cs = env_cpu(env); 607 608 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 609 } 610 611 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 612 uint64_t value) 613 { 614 CPUState *cs = env_cpu(env); 615 616 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 617 } 618 619 /* 620 * Non-IS variants of TLB operations are upgraded to 621 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 622 * force broadcast of these operations. 623 */ 624 static bool tlb_force_broadcast(CPUARMState *env) 625 { 626 return (env->cp15.hcr_el2 & HCR_FB) && 627 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 628 } 629 630 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 631 uint64_t value) 632 { 633 /* Invalidate all (TLBIALL) */ 634 ARMCPU *cpu = env_archcpu(env); 635 636 if (tlb_force_broadcast(env)) { 637 tlbiall_is_write(env, NULL, value); 638 return; 639 } 640 641 tlb_flush(CPU(cpu)); 642 } 643 644 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 645 uint64_t value) 646 { 647 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 648 ARMCPU *cpu = env_archcpu(env); 649 650 if (tlb_force_broadcast(env)) { 651 tlbimva_is_write(env, NULL, value); 652 return; 653 } 654 655 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 656 } 657 658 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 659 uint64_t value) 660 { 661 /* Invalidate by ASID (TLBIASID) */ 662 ARMCPU *cpu = env_archcpu(env); 663 664 if (tlb_force_broadcast(env)) { 665 tlbiasid_is_write(env, NULL, value); 666 return; 667 } 668 669 tlb_flush(CPU(cpu)); 670 } 671 672 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 673 uint64_t value) 674 { 675 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 676 ARMCPU *cpu = env_archcpu(env); 677 678 if (tlb_force_broadcast(env)) { 679 tlbimvaa_is_write(env, NULL, value); 680 return; 681 } 682 683 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 684 } 685 686 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 687 uint64_t value) 688 { 689 CPUState *cs = env_cpu(env); 690 691 tlb_flush_by_mmuidx(cs, 692 ARMMMUIdxBit_S12NSE1 | 693 ARMMMUIdxBit_S12NSE0 | 694 ARMMMUIdxBit_S2NS); 695 } 696 697 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 698 uint64_t value) 699 { 700 CPUState *cs = env_cpu(env); 701 702 tlb_flush_by_mmuidx_all_cpus_synced(cs, 703 ARMMMUIdxBit_S12NSE1 | 704 ARMMMUIdxBit_S12NSE0 | 705 ARMMMUIdxBit_S2NS); 706 } 707 708 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 709 uint64_t value) 710 { 711 /* Invalidate by IPA. This has to invalidate any structures that 712 * contain only stage 2 translation information, but does not need 713 * to apply to structures that contain combined stage 1 and stage 2 714 * translation information. 715 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 716 */ 717 CPUState *cs = env_cpu(env); 718 uint64_t pageaddr; 719 720 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 721 return; 722 } 723 724 pageaddr = sextract64(value << 12, 0, 40); 725 726 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 727 } 728 729 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 730 uint64_t value) 731 { 732 CPUState *cs = env_cpu(env); 733 uint64_t pageaddr; 734 735 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 736 return; 737 } 738 739 pageaddr = sextract64(value << 12, 0, 40); 740 741 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 742 ARMMMUIdxBit_S2NS); 743 } 744 745 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 746 uint64_t value) 747 { 748 CPUState *cs = env_cpu(env); 749 750 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 758 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 759 } 760 761 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 762 uint64_t value) 763 { 764 CPUState *cs = env_cpu(env); 765 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 766 767 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 768 } 769 770 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 771 uint64_t value) 772 { 773 CPUState *cs = env_cpu(env); 774 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 775 776 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 777 ARMMMUIdxBit_S1E2); 778 } 779 780 static const ARMCPRegInfo cp_reginfo[] = { 781 /* Define the secure and non-secure FCSE identifier CP registers 782 * separately because there is no secure bank in V8 (no _EL3). This allows 783 * the secure register to be properly reset and migrated. There is also no 784 * v8 EL1 version of the register so the non-secure instance stands alone. 785 */ 786 { .name = "FCSEIDR", 787 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 788 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 789 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 790 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 791 { .name = "FCSEIDR_S", 792 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 793 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 794 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 795 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 796 /* Define the secure and non-secure context identifier CP registers 797 * separately because there is no secure bank in V8 (no _EL3). This allows 798 * the secure register to be properly reset and migrated. In the 799 * non-secure case, the 32-bit register will have reset and migration 800 * disabled during registration as it is handled by the 64-bit instance. 801 */ 802 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 803 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 804 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 805 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 806 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 807 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 808 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 809 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 810 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 811 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 812 REGINFO_SENTINEL 813 }; 814 815 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 816 /* NB: Some of these registers exist in v8 but with more precise 817 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 818 */ 819 /* MMU Domain access control / MPU write buffer control */ 820 { .name = "DACR", 821 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 822 .access = PL1_RW, .resetvalue = 0, 823 .writefn = dacr_write, .raw_writefn = raw_write, 824 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 825 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 826 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 827 * For v6 and v5, these mappings are overly broad. 828 */ 829 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 830 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 831 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 832 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 833 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 834 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 835 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 836 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 837 /* Cache maintenance ops; some of this space may be overridden later. */ 838 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 839 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 840 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 841 REGINFO_SENTINEL 842 }; 843 844 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 845 /* Not all pre-v6 cores implemented this WFI, so this is slightly 846 * over-broad. 847 */ 848 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 849 .access = PL1_W, .type = ARM_CP_WFI }, 850 REGINFO_SENTINEL 851 }; 852 853 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 854 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 855 * is UNPREDICTABLE; we choose to NOP as most implementations do). 856 */ 857 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 858 .access = PL1_W, .type = ARM_CP_WFI }, 859 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 860 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 861 * OMAPCP will override this space. 862 */ 863 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 864 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 865 .resetvalue = 0 }, 866 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 867 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 868 .resetvalue = 0 }, 869 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 870 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 871 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 872 .resetvalue = 0 }, 873 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 874 * implementing it as RAZ means the "debug architecture version" bits 875 * will read as a reserved value, which should cause Linux to not try 876 * to use the debug hardware. 877 */ 878 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 879 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 880 /* MMU TLB control. Note that the wildcarding means we cover not just 881 * the unified TLB ops but also the dside/iside/inner-shareable variants. 882 */ 883 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 884 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 885 .type = ARM_CP_NO_RAW }, 886 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 887 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 888 .type = ARM_CP_NO_RAW }, 889 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 890 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 891 .type = ARM_CP_NO_RAW }, 892 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 893 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 894 .type = ARM_CP_NO_RAW }, 895 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 896 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 897 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 898 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 899 REGINFO_SENTINEL 900 }; 901 902 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 903 uint64_t value) 904 { 905 uint32_t mask = 0; 906 907 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 908 if (!arm_feature(env, ARM_FEATURE_V8)) { 909 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 910 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 911 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 912 */ 913 if (arm_feature(env, ARM_FEATURE_VFP)) { 914 /* VFP coprocessor: cp10 & cp11 [23:20] */ 915 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 916 917 if (!arm_feature(env, ARM_FEATURE_NEON)) { 918 /* ASEDIS [31] bit is RAO/WI */ 919 value |= (1 << 31); 920 } 921 922 /* VFPv3 and upwards with NEON implement 32 double precision 923 * registers (D0-D31). 924 */ 925 if (!arm_feature(env, ARM_FEATURE_NEON) || 926 !arm_feature(env, ARM_FEATURE_VFP3)) { 927 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 928 value |= (1 << 30); 929 } 930 } 931 value &= mask; 932 } 933 934 /* 935 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 936 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 937 */ 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 value |= env->cp15.cpacr_el1 & (0xf << 20); 942 } 943 944 env->cp15.cpacr_el1 = value; 945 } 946 947 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 948 { 949 /* 950 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 951 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 952 */ 953 uint64_t value = env->cp15.cpacr_el1; 954 955 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 956 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 957 value &= ~(0xf << 20); 958 } 959 return value; 960 } 961 962 963 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 964 { 965 /* Call cpacr_write() so that we reset with the correct RAO bits set 966 * for our CPU features. 967 */ 968 cpacr_write(env, ri, 0); 969 } 970 971 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 972 bool isread) 973 { 974 if (arm_feature(env, ARM_FEATURE_V8)) { 975 /* Check if CPACR accesses are to be trapped to EL2 */ 976 if (arm_current_el(env) == 1 && 977 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 978 return CP_ACCESS_TRAP_EL2; 979 /* Check if CPACR accesses are to be trapped to EL3 */ 980 } else if (arm_current_el(env) < 3 && 981 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 982 return CP_ACCESS_TRAP_EL3; 983 } 984 } 985 986 return CP_ACCESS_OK; 987 } 988 989 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 990 bool isread) 991 { 992 /* Check if CPTR accesses are set to trap to EL3 */ 993 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 994 return CP_ACCESS_TRAP_EL3; 995 } 996 997 return CP_ACCESS_OK; 998 } 999 1000 static const ARMCPRegInfo v6_cp_reginfo[] = { 1001 /* prefetch by MVA in v6, NOP in v7 */ 1002 { .name = "MVA_prefetch", 1003 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 1004 .access = PL1_W, .type = ARM_CP_NOP }, 1005 /* We need to break the TB after ISB to execute self-modifying code 1006 * correctly and also to take any pending interrupts immediately. 1007 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 1008 */ 1009 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 1010 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 1011 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 1012 .access = PL0_W, .type = ARM_CP_NOP }, 1013 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 1014 .access = PL0_W, .type = ARM_CP_NOP }, 1015 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 1016 .access = PL1_RW, 1017 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1018 offsetof(CPUARMState, cp15.ifar_ns) }, 1019 .resetvalue = 0, }, 1020 /* Watchpoint Fault Address Register : should actually only be present 1021 * for 1136, 1176, 11MPCore. 1022 */ 1023 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1024 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1025 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1026 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1027 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1028 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1029 REGINFO_SENTINEL 1030 }; 1031 1032 /* Definitions for the PMU registers */ 1033 #define PMCRN_MASK 0xf800 1034 #define PMCRN_SHIFT 11 1035 #define PMCRLC 0x40 1036 #define PMCRDP 0x10 1037 #define PMCRD 0x8 1038 #define PMCRC 0x4 1039 #define PMCRP 0x2 1040 #define PMCRE 0x1 1041 1042 #define PMXEVTYPER_P 0x80000000 1043 #define PMXEVTYPER_U 0x40000000 1044 #define PMXEVTYPER_NSK 0x20000000 1045 #define PMXEVTYPER_NSU 0x10000000 1046 #define PMXEVTYPER_NSH 0x08000000 1047 #define PMXEVTYPER_M 0x04000000 1048 #define PMXEVTYPER_MT 0x02000000 1049 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1050 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1051 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1052 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1053 PMXEVTYPER_EVTCOUNT) 1054 1055 #define PMCCFILTR 0xf8000000 1056 #define PMCCFILTR_M PMXEVTYPER_M 1057 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1058 1059 static inline uint32_t pmu_num_counters(CPUARMState *env) 1060 { 1061 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1062 } 1063 1064 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1065 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1066 { 1067 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1068 } 1069 1070 typedef struct pm_event { 1071 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1072 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1073 bool (*supported)(CPUARMState *); 1074 /* 1075 * Retrieve the current count of the underlying event. The programmed 1076 * counters hold a difference from the return value from this function 1077 */ 1078 uint64_t (*get_count)(CPUARMState *); 1079 /* 1080 * Return how many nanoseconds it will take (at a minimum) for count events 1081 * to occur. A negative value indicates the counter will never overflow, or 1082 * that the counter has otherwise arranged for the overflow bit to be set 1083 * and the PMU interrupt to be raised on overflow. 1084 */ 1085 int64_t (*ns_per_count)(uint64_t); 1086 } pm_event; 1087 1088 static bool event_always_supported(CPUARMState *env) 1089 { 1090 return true; 1091 } 1092 1093 static uint64_t swinc_get_count(CPUARMState *env) 1094 { 1095 /* 1096 * SW_INCR events are written directly to the pmevcntr's by writes to 1097 * PMSWINC, so there is no underlying count maintained by the PMU itself 1098 */ 1099 return 0; 1100 } 1101 1102 static int64_t swinc_ns_per(uint64_t ignored) 1103 { 1104 return -1; 1105 } 1106 1107 /* 1108 * Return the underlying cycle count for the PMU cycle counters. If we're in 1109 * usermode, simply return 0. 1110 */ 1111 static uint64_t cycles_get_count(CPUARMState *env) 1112 { 1113 #ifndef CONFIG_USER_ONLY 1114 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1115 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1116 #else 1117 return cpu_get_host_ticks(); 1118 #endif 1119 } 1120 1121 #ifndef CONFIG_USER_ONLY 1122 static int64_t cycles_ns_per(uint64_t cycles) 1123 { 1124 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1125 } 1126 1127 static bool instructions_supported(CPUARMState *env) 1128 { 1129 return use_icount == 1 /* Precise instruction counting */; 1130 } 1131 1132 static uint64_t instructions_get_count(CPUARMState *env) 1133 { 1134 return (uint64_t)cpu_get_icount_raw(); 1135 } 1136 1137 static int64_t instructions_ns_per(uint64_t icount) 1138 { 1139 return cpu_icount_to_ns((int64_t)icount); 1140 } 1141 #endif 1142 1143 static const pm_event pm_events[] = { 1144 { .number = 0x000, /* SW_INCR */ 1145 .supported = event_always_supported, 1146 .get_count = swinc_get_count, 1147 .ns_per_count = swinc_ns_per, 1148 }, 1149 #ifndef CONFIG_USER_ONLY 1150 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1151 .supported = instructions_supported, 1152 .get_count = instructions_get_count, 1153 .ns_per_count = instructions_ns_per, 1154 }, 1155 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1156 .supported = event_always_supported, 1157 .get_count = cycles_get_count, 1158 .ns_per_count = cycles_ns_per, 1159 } 1160 #endif 1161 }; 1162 1163 /* 1164 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1165 * events (i.e. the statistical profiling extension), this implementation 1166 * should first be updated to something sparse instead of the current 1167 * supported_event_map[] array. 1168 */ 1169 #define MAX_EVENT_ID 0x11 1170 #define UNSUPPORTED_EVENT UINT16_MAX 1171 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1172 1173 /* 1174 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1175 * of ARM event numbers to indices in our pm_events array. 1176 * 1177 * Note: Events in the 0x40XX range are not currently supported. 1178 */ 1179 void pmu_init(ARMCPU *cpu) 1180 { 1181 unsigned int i; 1182 1183 /* 1184 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1185 * events to them 1186 */ 1187 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1188 supported_event_map[i] = UNSUPPORTED_EVENT; 1189 } 1190 cpu->pmceid0 = 0; 1191 cpu->pmceid1 = 0; 1192 1193 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1194 const pm_event *cnt = &pm_events[i]; 1195 assert(cnt->number <= MAX_EVENT_ID); 1196 /* We do not currently support events in the 0x40xx range */ 1197 assert(cnt->number <= 0x3f); 1198 1199 if (cnt->supported(&cpu->env)) { 1200 supported_event_map[cnt->number] = i; 1201 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1202 if (cnt->number & 0x20) { 1203 cpu->pmceid1 |= event_mask; 1204 } else { 1205 cpu->pmceid0 |= event_mask; 1206 } 1207 } 1208 } 1209 } 1210 1211 /* 1212 * Check at runtime whether a PMU event is supported for the current machine 1213 */ 1214 static bool event_supported(uint16_t number) 1215 { 1216 if (number > MAX_EVENT_ID) { 1217 return false; 1218 } 1219 return supported_event_map[number] != UNSUPPORTED_EVENT; 1220 } 1221 1222 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1223 bool isread) 1224 { 1225 /* Performance monitor registers user accessibility is controlled 1226 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1227 * trapping to EL2 or EL3 for other accesses. 1228 */ 1229 int el = arm_current_el(env); 1230 1231 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1232 return CP_ACCESS_TRAP; 1233 } 1234 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1235 && !arm_is_secure_below_el3(env)) { 1236 return CP_ACCESS_TRAP_EL2; 1237 } 1238 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1239 return CP_ACCESS_TRAP_EL3; 1240 } 1241 1242 return CP_ACCESS_OK; 1243 } 1244 1245 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1246 const ARMCPRegInfo *ri, 1247 bool isread) 1248 { 1249 /* ER: event counter read trap control */ 1250 if (arm_feature(env, ARM_FEATURE_V8) 1251 && arm_current_el(env) == 0 1252 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1253 && isread) { 1254 return CP_ACCESS_OK; 1255 } 1256 1257 return pmreg_access(env, ri, isread); 1258 } 1259 1260 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1261 const ARMCPRegInfo *ri, 1262 bool isread) 1263 { 1264 /* SW: software increment write trap control */ 1265 if (arm_feature(env, ARM_FEATURE_V8) 1266 && arm_current_el(env) == 0 1267 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1268 && !isread) { 1269 return CP_ACCESS_OK; 1270 } 1271 1272 return pmreg_access(env, ri, isread); 1273 } 1274 1275 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1276 const ARMCPRegInfo *ri, 1277 bool isread) 1278 { 1279 /* ER: event counter read trap control */ 1280 if (arm_feature(env, ARM_FEATURE_V8) 1281 && arm_current_el(env) == 0 1282 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1283 return CP_ACCESS_OK; 1284 } 1285 1286 return pmreg_access(env, ri, isread); 1287 } 1288 1289 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1290 const ARMCPRegInfo *ri, 1291 bool isread) 1292 { 1293 /* CR: cycle counter read trap control */ 1294 if (arm_feature(env, ARM_FEATURE_V8) 1295 && arm_current_el(env) == 0 1296 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1297 && isread) { 1298 return CP_ACCESS_OK; 1299 } 1300 1301 return pmreg_access(env, ri, isread); 1302 } 1303 1304 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1305 * the current EL, security state, and register configuration. 1306 */ 1307 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1308 { 1309 uint64_t filter; 1310 bool e, p, u, nsk, nsu, nsh, m; 1311 bool enabled, prohibited, filtered; 1312 bool secure = arm_is_secure(env); 1313 int el = arm_current_el(env); 1314 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1315 1316 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1317 return false; 1318 } 1319 1320 if (!arm_feature(env, ARM_FEATURE_EL2) || 1321 (counter < hpmn || counter == 31)) { 1322 e = env->cp15.c9_pmcr & PMCRE; 1323 } else { 1324 e = env->cp15.mdcr_el2 & MDCR_HPME; 1325 } 1326 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1327 1328 if (!secure) { 1329 if (el == 2 && (counter < hpmn || counter == 31)) { 1330 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1331 } else { 1332 prohibited = false; 1333 } 1334 } else { 1335 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1336 (env->cp15.mdcr_el3 & MDCR_SPME); 1337 } 1338 1339 if (prohibited && counter == 31) { 1340 prohibited = env->cp15.c9_pmcr & PMCRDP; 1341 } 1342 1343 if (counter == 31) { 1344 filter = env->cp15.pmccfiltr_el0; 1345 } else { 1346 filter = env->cp15.c14_pmevtyper[counter]; 1347 } 1348 1349 p = filter & PMXEVTYPER_P; 1350 u = filter & PMXEVTYPER_U; 1351 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1352 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1353 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1354 m = arm_el_is_aa64(env, 1) && 1355 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1356 1357 if (el == 0) { 1358 filtered = secure ? u : u != nsu; 1359 } else if (el == 1) { 1360 filtered = secure ? p : p != nsk; 1361 } else if (el == 2) { 1362 filtered = !nsh; 1363 } else { /* EL3 */ 1364 filtered = m != p; 1365 } 1366 1367 if (counter != 31) { 1368 /* 1369 * If not checking PMCCNTR, ensure the counter is setup to an event we 1370 * support 1371 */ 1372 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1373 if (!event_supported(event)) { 1374 return false; 1375 } 1376 } 1377 1378 return enabled && !prohibited && !filtered; 1379 } 1380 1381 static void pmu_update_irq(CPUARMState *env) 1382 { 1383 ARMCPU *cpu = env_archcpu(env); 1384 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1385 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1386 } 1387 1388 /* 1389 * Ensure c15_ccnt is the guest-visible count so that operations such as 1390 * enabling/disabling the counter or filtering, modifying the count itself, 1391 * etc. can be done logically. This is essentially a no-op if the counter is 1392 * not enabled at the time of the call. 1393 */ 1394 static void pmccntr_op_start(CPUARMState *env) 1395 { 1396 uint64_t cycles = cycles_get_count(env); 1397 1398 if (pmu_counter_enabled(env, 31)) { 1399 uint64_t eff_cycles = cycles; 1400 if (env->cp15.c9_pmcr & PMCRD) { 1401 /* Increment once every 64 processor clock cycles */ 1402 eff_cycles /= 64; 1403 } 1404 1405 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1406 1407 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1408 1ull << 63 : 1ull << 31; 1409 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1410 env->cp15.c9_pmovsr |= (1 << 31); 1411 pmu_update_irq(env); 1412 } 1413 1414 env->cp15.c15_ccnt = new_pmccntr; 1415 } 1416 env->cp15.c15_ccnt_delta = cycles; 1417 } 1418 1419 /* 1420 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1421 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1422 * pmccntr_op_start. 1423 */ 1424 static void pmccntr_op_finish(CPUARMState *env) 1425 { 1426 if (pmu_counter_enabled(env, 31)) { 1427 #ifndef CONFIG_USER_ONLY 1428 /* Calculate when the counter will next overflow */ 1429 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1430 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1431 remaining_cycles = (uint32_t)remaining_cycles; 1432 } 1433 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1434 1435 if (overflow_in > 0) { 1436 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1437 overflow_in; 1438 ARMCPU *cpu = env_archcpu(env); 1439 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1440 } 1441 #endif 1442 1443 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1444 if (env->cp15.c9_pmcr & PMCRD) { 1445 /* Increment once every 64 processor clock cycles */ 1446 prev_cycles /= 64; 1447 } 1448 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1449 } 1450 } 1451 1452 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1453 { 1454 1455 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1456 uint64_t count = 0; 1457 if (event_supported(event)) { 1458 uint16_t event_idx = supported_event_map[event]; 1459 count = pm_events[event_idx].get_count(env); 1460 } 1461 1462 if (pmu_counter_enabled(env, counter)) { 1463 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1464 1465 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1466 env->cp15.c9_pmovsr |= (1 << counter); 1467 pmu_update_irq(env); 1468 } 1469 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1470 } 1471 env->cp15.c14_pmevcntr_delta[counter] = count; 1472 } 1473 1474 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1475 { 1476 if (pmu_counter_enabled(env, counter)) { 1477 #ifndef CONFIG_USER_ONLY 1478 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1479 uint16_t event_idx = supported_event_map[event]; 1480 uint64_t delta = UINT32_MAX - 1481 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1482 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1483 1484 if (overflow_in > 0) { 1485 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1486 overflow_in; 1487 ARMCPU *cpu = env_archcpu(env); 1488 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1489 } 1490 #endif 1491 1492 env->cp15.c14_pmevcntr_delta[counter] -= 1493 env->cp15.c14_pmevcntr[counter]; 1494 } 1495 } 1496 1497 void pmu_op_start(CPUARMState *env) 1498 { 1499 unsigned int i; 1500 pmccntr_op_start(env); 1501 for (i = 0; i < pmu_num_counters(env); i++) { 1502 pmevcntr_op_start(env, i); 1503 } 1504 } 1505 1506 void pmu_op_finish(CPUARMState *env) 1507 { 1508 unsigned int i; 1509 pmccntr_op_finish(env); 1510 for (i = 0; i < pmu_num_counters(env); i++) { 1511 pmevcntr_op_finish(env, i); 1512 } 1513 } 1514 1515 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1516 { 1517 pmu_op_start(&cpu->env); 1518 } 1519 1520 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1521 { 1522 pmu_op_finish(&cpu->env); 1523 } 1524 1525 void arm_pmu_timer_cb(void *opaque) 1526 { 1527 ARMCPU *cpu = opaque; 1528 1529 /* 1530 * Update all the counter values based on the current underlying counts, 1531 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1532 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1533 * counter may expire. 1534 */ 1535 pmu_op_start(&cpu->env); 1536 pmu_op_finish(&cpu->env); 1537 } 1538 1539 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 pmu_op_start(env); 1543 1544 if (value & PMCRC) { 1545 /* The counter has been reset */ 1546 env->cp15.c15_ccnt = 0; 1547 } 1548 1549 if (value & PMCRP) { 1550 unsigned int i; 1551 for (i = 0; i < pmu_num_counters(env); i++) { 1552 env->cp15.c14_pmevcntr[i] = 0; 1553 } 1554 } 1555 1556 /* only the DP, X, D and E bits are writable */ 1557 env->cp15.c9_pmcr &= ~0x39; 1558 env->cp15.c9_pmcr |= (value & 0x39); 1559 1560 pmu_op_finish(env); 1561 } 1562 1563 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1564 uint64_t value) 1565 { 1566 unsigned int i; 1567 for (i = 0; i < pmu_num_counters(env); i++) { 1568 /* Increment a counter's count iff: */ 1569 if ((value & (1 << i)) && /* counter's bit is set */ 1570 /* counter is enabled and not filtered */ 1571 pmu_counter_enabled(env, i) && 1572 /* counter is SW_INCR */ 1573 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1574 pmevcntr_op_start(env, i); 1575 1576 /* 1577 * Detect if this write causes an overflow since we can't predict 1578 * PMSWINC overflows like we can for other events 1579 */ 1580 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1581 1582 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1583 env->cp15.c9_pmovsr |= (1 << i); 1584 pmu_update_irq(env); 1585 } 1586 1587 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1588 1589 pmevcntr_op_finish(env, i); 1590 } 1591 } 1592 } 1593 1594 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1595 { 1596 uint64_t ret; 1597 pmccntr_op_start(env); 1598 ret = env->cp15.c15_ccnt; 1599 pmccntr_op_finish(env); 1600 return ret; 1601 } 1602 1603 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1604 uint64_t value) 1605 { 1606 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1607 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1608 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1609 * accessed. 1610 */ 1611 env->cp15.c9_pmselr = value & 0x1f; 1612 } 1613 1614 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1615 uint64_t value) 1616 { 1617 pmccntr_op_start(env); 1618 env->cp15.c15_ccnt = value; 1619 pmccntr_op_finish(env); 1620 } 1621 1622 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1623 uint64_t value) 1624 { 1625 uint64_t cur_val = pmccntr_read(env, NULL); 1626 1627 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1628 } 1629 1630 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1631 uint64_t value) 1632 { 1633 pmccntr_op_start(env); 1634 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1635 pmccntr_op_finish(env); 1636 } 1637 1638 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1639 uint64_t value) 1640 { 1641 pmccntr_op_start(env); 1642 /* M is not accessible from AArch32 */ 1643 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1644 (value & PMCCFILTR); 1645 pmccntr_op_finish(env); 1646 } 1647 1648 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1649 { 1650 /* M is not visible in AArch32 */ 1651 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1652 } 1653 1654 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1655 uint64_t value) 1656 { 1657 value &= pmu_counter_mask(env); 1658 env->cp15.c9_pmcnten |= value; 1659 } 1660 1661 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 value &= pmu_counter_mask(env); 1665 env->cp15.c9_pmcnten &= ~value; 1666 } 1667 1668 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 value &= pmu_counter_mask(env); 1672 env->cp15.c9_pmovsr &= ~value; 1673 pmu_update_irq(env); 1674 } 1675 1676 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1677 uint64_t value) 1678 { 1679 value &= pmu_counter_mask(env); 1680 env->cp15.c9_pmovsr |= value; 1681 pmu_update_irq(env); 1682 } 1683 1684 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1685 uint64_t value, const uint8_t counter) 1686 { 1687 if (counter == 31) { 1688 pmccfiltr_write(env, ri, value); 1689 } else if (counter < pmu_num_counters(env)) { 1690 pmevcntr_op_start(env, counter); 1691 1692 /* 1693 * If this counter's event type is changing, store the current 1694 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1695 * pmevcntr_op_finish has the correct baseline when it converts back to 1696 * a delta. 1697 */ 1698 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1699 PMXEVTYPER_EVTCOUNT; 1700 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1701 if (old_event != new_event) { 1702 uint64_t count = 0; 1703 if (event_supported(new_event)) { 1704 uint16_t event_idx = supported_event_map[new_event]; 1705 count = pm_events[event_idx].get_count(env); 1706 } 1707 env->cp15.c14_pmevcntr_delta[counter] = count; 1708 } 1709 1710 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1711 pmevcntr_op_finish(env, counter); 1712 } 1713 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1714 * PMSELR value is equal to or greater than the number of implemented 1715 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1716 */ 1717 } 1718 1719 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1720 const uint8_t counter) 1721 { 1722 if (counter == 31) { 1723 return env->cp15.pmccfiltr_el0; 1724 } else if (counter < pmu_num_counters(env)) { 1725 return env->cp15.c14_pmevtyper[counter]; 1726 } else { 1727 /* 1728 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1729 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1730 */ 1731 return 0; 1732 } 1733 } 1734 1735 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1736 uint64_t value) 1737 { 1738 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1739 pmevtyper_write(env, ri, value, counter); 1740 } 1741 1742 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint64_t value) 1744 { 1745 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1746 env->cp15.c14_pmevtyper[counter] = value; 1747 1748 /* 1749 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1750 * pmu_op_finish calls when loading saved state for a migration. Because 1751 * we're potentially updating the type of event here, the value written to 1752 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1753 * different counter type. Therefore, we need to set this value to the 1754 * current count for the counter type we're writing so that pmu_op_finish 1755 * has the correct count for its calculation. 1756 */ 1757 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1758 if (event_supported(event)) { 1759 uint16_t event_idx = supported_event_map[event]; 1760 env->cp15.c14_pmevcntr_delta[counter] = 1761 pm_events[event_idx].get_count(env); 1762 } 1763 } 1764 1765 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1766 { 1767 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1768 return pmevtyper_read(env, ri, counter); 1769 } 1770 1771 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1772 uint64_t value) 1773 { 1774 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1775 } 1776 1777 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1778 { 1779 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1780 } 1781 1782 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1783 uint64_t value, uint8_t counter) 1784 { 1785 if (counter < pmu_num_counters(env)) { 1786 pmevcntr_op_start(env, counter); 1787 env->cp15.c14_pmevcntr[counter] = value; 1788 pmevcntr_op_finish(env, counter); 1789 } 1790 /* 1791 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1792 * are CONSTRAINED UNPREDICTABLE. 1793 */ 1794 } 1795 1796 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1797 uint8_t counter) 1798 { 1799 if (counter < pmu_num_counters(env)) { 1800 uint64_t ret; 1801 pmevcntr_op_start(env, counter); 1802 ret = env->cp15.c14_pmevcntr[counter]; 1803 pmevcntr_op_finish(env, counter); 1804 return ret; 1805 } else { 1806 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1807 * are CONSTRAINED UNPREDICTABLE. */ 1808 return 0; 1809 } 1810 } 1811 1812 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1813 uint64_t value) 1814 { 1815 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1816 pmevcntr_write(env, ri, value, counter); 1817 } 1818 1819 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1820 { 1821 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1822 return pmevcntr_read(env, ri, counter); 1823 } 1824 1825 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1826 uint64_t value) 1827 { 1828 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1829 assert(counter < pmu_num_counters(env)); 1830 env->cp15.c14_pmevcntr[counter] = value; 1831 pmevcntr_write(env, ri, value, counter); 1832 } 1833 1834 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1835 { 1836 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1837 assert(counter < pmu_num_counters(env)); 1838 return env->cp15.c14_pmevcntr[counter]; 1839 } 1840 1841 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1842 uint64_t value) 1843 { 1844 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1845 } 1846 1847 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1848 { 1849 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1850 } 1851 1852 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 if (arm_feature(env, ARM_FEATURE_V8)) { 1856 env->cp15.c9_pmuserenr = value & 0xf; 1857 } else { 1858 env->cp15.c9_pmuserenr = value & 1; 1859 } 1860 } 1861 1862 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* We have no event counters so only the C bit can be changed */ 1866 value &= pmu_counter_mask(env); 1867 env->cp15.c9_pminten |= value; 1868 pmu_update_irq(env); 1869 } 1870 1871 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 value &= pmu_counter_mask(env); 1875 env->cp15.c9_pminten &= ~value; 1876 pmu_update_irq(env); 1877 } 1878 1879 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1880 uint64_t value) 1881 { 1882 /* Note that even though the AArch64 view of this register has bits 1883 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1884 * architectural requirements for bits which are RES0 only in some 1885 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1886 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1887 */ 1888 raw_write(env, ri, value & ~0x1FULL); 1889 } 1890 1891 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1892 { 1893 /* Begin with base v8.0 state. */ 1894 uint32_t valid_mask = 0x3fff; 1895 ARMCPU *cpu = env_archcpu(env); 1896 1897 if (arm_el_is_aa64(env, 3)) { 1898 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1899 valid_mask &= ~SCR_NET; 1900 } else { 1901 valid_mask &= ~(SCR_RW | SCR_ST); 1902 } 1903 1904 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1905 valid_mask &= ~SCR_HCE; 1906 1907 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1908 * supported if EL2 exists. The bit is UNK/SBZP when 1909 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1910 * when EL2 is unavailable. 1911 * On ARMv8, this bit is always available. 1912 */ 1913 if (arm_feature(env, ARM_FEATURE_V7) && 1914 !arm_feature(env, ARM_FEATURE_V8)) { 1915 valid_mask &= ~SCR_SMD; 1916 } 1917 } 1918 if (cpu_isar_feature(aa64_lor, cpu)) { 1919 valid_mask |= SCR_TLOR; 1920 } 1921 if (cpu_isar_feature(aa64_pauth, cpu)) { 1922 valid_mask |= SCR_API | SCR_APK; 1923 } 1924 1925 /* Clear all-context RES0 bits. */ 1926 value &= valid_mask; 1927 raw_write(env, ri, value); 1928 } 1929 1930 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1931 { 1932 ARMCPU *cpu = env_archcpu(env); 1933 1934 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1935 * bank 1936 */ 1937 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1938 ri->secure & ARM_CP_SECSTATE_S); 1939 1940 return cpu->ccsidr[index]; 1941 } 1942 1943 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1944 uint64_t value) 1945 { 1946 raw_write(env, ri, value & 0xf); 1947 } 1948 1949 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1950 { 1951 CPUState *cs = env_cpu(env); 1952 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1953 uint64_t ret = 0; 1954 1955 if (hcr_el2 & HCR_IMO) { 1956 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1957 ret |= CPSR_I; 1958 } 1959 } else { 1960 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1961 ret |= CPSR_I; 1962 } 1963 } 1964 1965 if (hcr_el2 & HCR_FMO) { 1966 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1967 ret |= CPSR_F; 1968 } 1969 } else { 1970 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1971 ret |= CPSR_F; 1972 } 1973 } 1974 1975 /* External aborts are not possible in QEMU so A bit is always clear */ 1976 return ret; 1977 } 1978 1979 static const ARMCPRegInfo v7_cp_reginfo[] = { 1980 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1981 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1982 .access = PL1_W, .type = ARM_CP_NOP }, 1983 /* Performance monitors are implementation defined in v7, 1984 * but with an ARM recommended set of registers, which we 1985 * follow. 1986 * 1987 * Performance registers fall into three categories: 1988 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1989 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1990 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1991 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1992 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1993 */ 1994 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1995 .access = PL0_RW, .type = ARM_CP_ALIAS, 1996 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1997 .writefn = pmcntenset_write, 1998 .accessfn = pmreg_access, 1999 .raw_writefn = raw_write }, 2000 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2002 .access = PL0_RW, .accessfn = pmreg_access, 2003 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2004 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2005 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2006 .access = PL0_RW, 2007 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2008 .accessfn = pmreg_access, 2009 .writefn = pmcntenclr_write, 2010 .type = ARM_CP_ALIAS }, 2011 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2012 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2013 .access = PL0_RW, .accessfn = pmreg_access, 2014 .type = ARM_CP_ALIAS, 2015 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2016 .writefn = pmcntenclr_write }, 2017 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2018 .access = PL0_RW, .type = ARM_CP_IO, 2019 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2020 .accessfn = pmreg_access, 2021 .writefn = pmovsr_write, 2022 .raw_writefn = raw_write }, 2023 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2024 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2025 .access = PL0_RW, .accessfn = pmreg_access, 2026 .type = ARM_CP_ALIAS | ARM_CP_IO, 2027 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2028 .writefn = pmovsr_write, 2029 .raw_writefn = raw_write }, 2030 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2031 .access = PL0_W, .accessfn = pmreg_access_swinc, 2032 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2033 .writefn = pmswinc_write }, 2034 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2036 .access = PL0_W, .accessfn = pmreg_access_swinc, 2037 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2038 .writefn = pmswinc_write }, 2039 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2040 .access = PL0_RW, .type = ARM_CP_ALIAS, 2041 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2042 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2043 .raw_writefn = raw_write}, 2044 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2045 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2046 .access = PL0_RW, .accessfn = pmreg_access_selr, 2047 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2048 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2049 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2050 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2051 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2052 .accessfn = pmreg_access_ccntr }, 2053 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2054 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2055 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2056 .type = ARM_CP_IO, 2057 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2058 .readfn = pmccntr_read, .writefn = pmccntr_write, 2059 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2060 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2061 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2062 .access = PL0_RW, .accessfn = pmreg_access, 2063 .type = ARM_CP_ALIAS | ARM_CP_IO, 2064 .resetvalue = 0, }, 2065 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2066 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2067 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2068 .access = PL0_RW, .accessfn = pmreg_access, 2069 .type = ARM_CP_IO, 2070 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2071 .resetvalue = 0, }, 2072 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2073 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2074 .accessfn = pmreg_access, 2075 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2076 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2078 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2079 .accessfn = pmreg_access, 2080 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2081 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2082 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2083 .accessfn = pmreg_access_xevcntr, 2084 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2085 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2086 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2087 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2088 .accessfn = pmreg_access_xevcntr, 2089 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2090 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2091 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2092 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2093 .resetvalue = 0, 2094 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2095 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2097 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2098 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2099 .resetvalue = 0, 2100 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2101 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2102 .access = PL1_RW, .accessfn = access_tpm, 2103 .type = ARM_CP_ALIAS | ARM_CP_IO, 2104 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2105 .resetvalue = 0, 2106 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2107 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2108 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2109 .access = PL1_RW, .accessfn = access_tpm, 2110 .type = ARM_CP_IO, 2111 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2112 .writefn = pmintenset_write, .raw_writefn = raw_write, 2113 .resetvalue = 0x0 }, 2114 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2115 .access = PL1_RW, .accessfn = access_tpm, 2116 .type = ARM_CP_ALIAS | ARM_CP_IO, 2117 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2118 .writefn = pmintenclr_write, }, 2119 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2120 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2121 .access = PL1_RW, .accessfn = access_tpm, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2124 .writefn = pmintenclr_write }, 2125 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2126 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2127 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2128 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2130 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 2131 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2132 offsetof(CPUARMState, cp15.csselr_ns) } }, 2133 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2134 * just RAZ for all cores: 2135 */ 2136 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2137 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2138 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 2139 /* Auxiliary fault status registers: these also are IMPDEF, and we 2140 * choose to RAZ/WI for all cores. 2141 */ 2142 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2143 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2144 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2145 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2146 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2147 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2148 /* MAIR can just read-as-written because we don't implement caches 2149 * and so don't need to care about memory attributes. 2150 */ 2151 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2152 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2153 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2154 .resetvalue = 0 }, 2155 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2156 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2157 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2158 .resetvalue = 0 }, 2159 /* For non-long-descriptor page tables these are PRRR and NMRR; 2160 * regardless they still act as reads-as-written for QEMU. 2161 */ 2162 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2163 * allows them to assign the correct fieldoffset based on the endianness 2164 * handled in the field definitions. 2165 */ 2166 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2167 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2168 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2169 offsetof(CPUARMState, cp15.mair0_ns) }, 2170 .resetfn = arm_cp_reset_ignore }, 2171 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2172 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2173 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2174 offsetof(CPUARMState, cp15.mair1_ns) }, 2175 .resetfn = arm_cp_reset_ignore }, 2176 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2178 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2179 /* 32 bit ITLB invalidates */ 2180 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2181 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2182 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2184 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2185 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2186 /* 32 bit DTLB invalidates */ 2187 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2188 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2189 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2190 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2191 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2192 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2193 /* 32 bit TLB invalidates */ 2194 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2195 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2196 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2197 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2198 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2199 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2200 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2201 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2202 REGINFO_SENTINEL 2203 }; 2204 2205 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2206 /* 32 bit TLB invalidates, Inner Shareable */ 2207 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2209 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2210 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2211 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2212 .type = ARM_CP_NO_RAW, .access = PL1_W, 2213 .writefn = tlbiasid_is_write }, 2214 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2215 .type = ARM_CP_NO_RAW, .access = PL1_W, 2216 .writefn = tlbimvaa_is_write }, 2217 REGINFO_SENTINEL 2218 }; 2219 2220 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2221 /* PMOVSSET is not implemented in v7 before v7ve */ 2222 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2223 .access = PL0_RW, .accessfn = pmreg_access, 2224 .type = ARM_CP_ALIAS | ARM_CP_IO, 2225 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2226 .writefn = pmovsset_write, 2227 .raw_writefn = raw_write }, 2228 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2229 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2230 .access = PL0_RW, .accessfn = pmreg_access, 2231 .type = ARM_CP_ALIAS | ARM_CP_IO, 2232 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2233 .writefn = pmovsset_write, 2234 .raw_writefn = raw_write }, 2235 REGINFO_SENTINEL 2236 }; 2237 2238 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2239 uint64_t value) 2240 { 2241 value &= 1; 2242 env->teecr = value; 2243 } 2244 2245 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2246 bool isread) 2247 { 2248 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2249 return CP_ACCESS_TRAP; 2250 } 2251 return CP_ACCESS_OK; 2252 } 2253 2254 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2255 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2256 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2257 .resetvalue = 0, 2258 .writefn = teecr_write }, 2259 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2260 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2261 .accessfn = teehbr_access, .resetvalue = 0 }, 2262 REGINFO_SENTINEL 2263 }; 2264 2265 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2266 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2267 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2268 .access = PL0_RW, 2269 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2270 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2271 .access = PL0_RW, 2272 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2273 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2274 .resetfn = arm_cp_reset_ignore }, 2275 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2276 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2277 .access = PL0_R|PL1_W, 2278 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2279 .resetvalue = 0}, 2280 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2281 .access = PL0_R|PL1_W, 2282 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2283 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2284 .resetfn = arm_cp_reset_ignore }, 2285 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2286 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2287 .access = PL1_RW, 2288 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2289 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2290 .access = PL1_RW, 2291 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2292 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2293 .resetvalue = 0 }, 2294 REGINFO_SENTINEL 2295 }; 2296 2297 #ifndef CONFIG_USER_ONLY 2298 2299 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2300 bool isread) 2301 { 2302 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2303 * Writable only at the highest implemented exception level. 2304 */ 2305 int el = arm_current_el(env); 2306 2307 switch (el) { 2308 case 0: 2309 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2310 return CP_ACCESS_TRAP; 2311 } 2312 break; 2313 case 1: 2314 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2315 arm_is_secure_below_el3(env)) { 2316 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2317 return CP_ACCESS_TRAP_UNCATEGORIZED; 2318 } 2319 break; 2320 case 2: 2321 case 3: 2322 break; 2323 } 2324 2325 if (!isread && el < arm_highest_el(env)) { 2326 return CP_ACCESS_TRAP_UNCATEGORIZED; 2327 } 2328 2329 return CP_ACCESS_OK; 2330 } 2331 2332 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2333 bool isread) 2334 { 2335 unsigned int cur_el = arm_current_el(env); 2336 bool secure = arm_is_secure(env); 2337 2338 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2339 if (cur_el == 0 && 2340 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2341 return CP_ACCESS_TRAP; 2342 } 2343 2344 if (arm_feature(env, ARM_FEATURE_EL2) && 2345 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2346 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2347 return CP_ACCESS_TRAP_EL2; 2348 } 2349 return CP_ACCESS_OK; 2350 } 2351 2352 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2353 bool isread) 2354 { 2355 unsigned int cur_el = arm_current_el(env); 2356 bool secure = arm_is_secure(env); 2357 2358 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2359 * EL0[PV]TEN is zero. 2360 */ 2361 if (cur_el == 0 && 2362 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2363 return CP_ACCESS_TRAP; 2364 } 2365 2366 if (arm_feature(env, ARM_FEATURE_EL2) && 2367 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2368 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2369 return CP_ACCESS_TRAP_EL2; 2370 } 2371 return CP_ACCESS_OK; 2372 } 2373 2374 static CPAccessResult gt_pct_access(CPUARMState *env, 2375 const ARMCPRegInfo *ri, 2376 bool isread) 2377 { 2378 return gt_counter_access(env, GTIMER_PHYS, isread); 2379 } 2380 2381 static CPAccessResult gt_vct_access(CPUARMState *env, 2382 const ARMCPRegInfo *ri, 2383 bool isread) 2384 { 2385 return gt_counter_access(env, GTIMER_VIRT, isread); 2386 } 2387 2388 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2389 bool isread) 2390 { 2391 return gt_timer_access(env, GTIMER_PHYS, isread); 2392 } 2393 2394 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2395 bool isread) 2396 { 2397 return gt_timer_access(env, GTIMER_VIRT, isread); 2398 } 2399 2400 static CPAccessResult gt_stimer_access(CPUARMState *env, 2401 const ARMCPRegInfo *ri, 2402 bool isread) 2403 { 2404 /* The AArch64 register view of the secure physical timer is 2405 * always accessible from EL3, and configurably accessible from 2406 * Secure EL1. 2407 */ 2408 switch (arm_current_el(env)) { 2409 case 1: 2410 if (!arm_is_secure(env)) { 2411 return CP_ACCESS_TRAP; 2412 } 2413 if (!(env->cp15.scr_el3 & SCR_ST)) { 2414 return CP_ACCESS_TRAP_EL3; 2415 } 2416 return CP_ACCESS_OK; 2417 case 0: 2418 case 2: 2419 return CP_ACCESS_TRAP; 2420 case 3: 2421 return CP_ACCESS_OK; 2422 default: 2423 g_assert_not_reached(); 2424 } 2425 } 2426 2427 static uint64_t gt_get_countervalue(CPUARMState *env) 2428 { 2429 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 2430 } 2431 2432 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2433 { 2434 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2435 2436 if (gt->ctl & 1) { 2437 /* Timer enabled: calculate and set current ISTATUS, irq, and 2438 * reset timer to when ISTATUS next has to change 2439 */ 2440 uint64_t offset = timeridx == GTIMER_VIRT ? 2441 cpu->env.cp15.cntvoff_el2 : 0; 2442 uint64_t count = gt_get_countervalue(&cpu->env); 2443 /* Note that this must be unsigned 64 bit arithmetic: */ 2444 int istatus = count - offset >= gt->cval; 2445 uint64_t nexttick; 2446 int irqstate; 2447 2448 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2449 2450 irqstate = (istatus && !(gt->ctl & 2)); 2451 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2452 2453 if (istatus) { 2454 /* Next transition is when count rolls back over to zero */ 2455 nexttick = UINT64_MAX; 2456 } else { 2457 /* Next transition is when we hit cval */ 2458 nexttick = gt->cval + offset; 2459 } 2460 /* Note that the desired next expiry time might be beyond the 2461 * signed-64-bit range of a QEMUTimer -- in this case we just 2462 * set the timer for as far in the future as possible. When the 2463 * timer expires we will reset the timer for any remaining period. 2464 */ 2465 if (nexttick > INT64_MAX / GTIMER_SCALE) { 2466 nexttick = INT64_MAX / GTIMER_SCALE; 2467 } 2468 timer_mod(cpu->gt_timer[timeridx], nexttick); 2469 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2470 } else { 2471 /* Timer disabled: ISTATUS and timer output always clear */ 2472 gt->ctl &= ~4; 2473 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2474 timer_del(cpu->gt_timer[timeridx]); 2475 trace_arm_gt_recalc_disabled(timeridx); 2476 } 2477 } 2478 2479 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2480 int timeridx) 2481 { 2482 ARMCPU *cpu = env_archcpu(env); 2483 2484 timer_del(cpu->gt_timer[timeridx]); 2485 } 2486 2487 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2488 { 2489 return gt_get_countervalue(env); 2490 } 2491 2492 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2493 { 2494 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2495 } 2496 2497 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2498 int timeridx, 2499 uint64_t value) 2500 { 2501 trace_arm_gt_cval_write(timeridx, value); 2502 env->cp15.c14_timer[timeridx].cval = value; 2503 gt_recalc_timer(env_archcpu(env), timeridx); 2504 } 2505 2506 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2507 int timeridx) 2508 { 2509 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2510 2511 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2512 (gt_get_countervalue(env) - offset)); 2513 } 2514 2515 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2516 int timeridx, 2517 uint64_t value) 2518 { 2519 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2520 2521 trace_arm_gt_tval_write(timeridx, value); 2522 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2523 sextract64(value, 0, 32); 2524 gt_recalc_timer(env_archcpu(env), timeridx); 2525 } 2526 2527 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2528 int timeridx, 2529 uint64_t value) 2530 { 2531 ARMCPU *cpu = env_archcpu(env); 2532 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2533 2534 trace_arm_gt_ctl_write(timeridx, value); 2535 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2536 if ((oldval ^ value) & 1) { 2537 /* Enable toggled */ 2538 gt_recalc_timer(cpu, timeridx); 2539 } else if ((oldval ^ value) & 2) { 2540 /* IMASK toggled: don't need to recalculate, 2541 * just set the interrupt line based on ISTATUS 2542 */ 2543 int irqstate = (oldval & 4) && !(value & 2); 2544 2545 trace_arm_gt_imask_toggle(timeridx, irqstate); 2546 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2547 } 2548 } 2549 2550 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2551 { 2552 gt_timer_reset(env, ri, GTIMER_PHYS); 2553 } 2554 2555 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 uint64_t value) 2557 { 2558 gt_cval_write(env, ri, GTIMER_PHYS, value); 2559 } 2560 2561 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 return gt_tval_read(env, ri, GTIMER_PHYS); 2564 } 2565 2566 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 uint64_t value) 2568 { 2569 gt_tval_write(env, ri, GTIMER_PHYS, value); 2570 } 2571 2572 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2573 uint64_t value) 2574 { 2575 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2576 } 2577 2578 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2579 { 2580 gt_timer_reset(env, ri, GTIMER_VIRT); 2581 } 2582 2583 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2584 uint64_t value) 2585 { 2586 gt_cval_write(env, ri, GTIMER_VIRT, value); 2587 } 2588 2589 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2590 { 2591 return gt_tval_read(env, ri, GTIMER_VIRT); 2592 } 2593 2594 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 uint64_t value) 2596 { 2597 gt_tval_write(env, ri, GTIMER_VIRT, value); 2598 } 2599 2600 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2601 uint64_t value) 2602 { 2603 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2604 } 2605 2606 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2607 uint64_t value) 2608 { 2609 ARMCPU *cpu = env_archcpu(env); 2610 2611 trace_arm_gt_cntvoff_write(value); 2612 raw_write(env, ri, value); 2613 gt_recalc_timer(cpu, GTIMER_VIRT); 2614 } 2615 2616 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2617 { 2618 gt_timer_reset(env, ri, GTIMER_HYP); 2619 } 2620 2621 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2622 uint64_t value) 2623 { 2624 gt_cval_write(env, ri, GTIMER_HYP, value); 2625 } 2626 2627 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2628 { 2629 return gt_tval_read(env, ri, GTIMER_HYP); 2630 } 2631 2632 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 gt_tval_write(env, ri, GTIMER_HYP, value); 2636 } 2637 2638 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2639 uint64_t value) 2640 { 2641 gt_ctl_write(env, ri, GTIMER_HYP, value); 2642 } 2643 2644 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2645 { 2646 gt_timer_reset(env, ri, GTIMER_SEC); 2647 } 2648 2649 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2650 uint64_t value) 2651 { 2652 gt_cval_write(env, ri, GTIMER_SEC, value); 2653 } 2654 2655 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2656 { 2657 return gt_tval_read(env, ri, GTIMER_SEC); 2658 } 2659 2660 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2661 uint64_t value) 2662 { 2663 gt_tval_write(env, ri, GTIMER_SEC, value); 2664 } 2665 2666 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2667 uint64_t value) 2668 { 2669 gt_ctl_write(env, ri, GTIMER_SEC, value); 2670 } 2671 2672 void arm_gt_ptimer_cb(void *opaque) 2673 { 2674 ARMCPU *cpu = opaque; 2675 2676 gt_recalc_timer(cpu, GTIMER_PHYS); 2677 } 2678 2679 void arm_gt_vtimer_cb(void *opaque) 2680 { 2681 ARMCPU *cpu = opaque; 2682 2683 gt_recalc_timer(cpu, GTIMER_VIRT); 2684 } 2685 2686 void arm_gt_htimer_cb(void *opaque) 2687 { 2688 ARMCPU *cpu = opaque; 2689 2690 gt_recalc_timer(cpu, GTIMER_HYP); 2691 } 2692 2693 void arm_gt_stimer_cb(void *opaque) 2694 { 2695 ARMCPU *cpu = opaque; 2696 2697 gt_recalc_timer(cpu, GTIMER_SEC); 2698 } 2699 2700 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2701 /* Note that CNTFRQ is purely reads-as-written for the benefit 2702 * of software; writing it doesn't actually change the timer frequency. 2703 * Our reset value matches the fixed frequency we implement the timer at. 2704 */ 2705 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2706 .type = ARM_CP_ALIAS, 2707 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2708 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2709 }, 2710 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2711 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2712 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2713 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2714 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2715 }, 2716 /* overall control: mostly access permissions */ 2717 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2718 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2719 .access = PL1_RW, 2720 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2721 .resetvalue = 0, 2722 }, 2723 /* per-timer control */ 2724 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2725 .secure = ARM_CP_SECSTATE_NS, 2726 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2727 .accessfn = gt_ptimer_access, 2728 .fieldoffset = offsetoflow32(CPUARMState, 2729 cp15.c14_timer[GTIMER_PHYS].ctl), 2730 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2731 }, 2732 { .name = "CNTP_CTL_S", 2733 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2734 .secure = ARM_CP_SECSTATE_S, 2735 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2736 .accessfn = gt_ptimer_access, 2737 .fieldoffset = offsetoflow32(CPUARMState, 2738 cp15.c14_timer[GTIMER_SEC].ctl), 2739 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2740 }, 2741 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2742 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2743 .type = ARM_CP_IO, .access = PL0_RW, 2744 .accessfn = gt_ptimer_access, 2745 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2746 .resetvalue = 0, 2747 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2748 }, 2749 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2750 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2751 .accessfn = gt_vtimer_access, 2752 .fieldoffset = offsetoflow32(CPUARMState, 2753 cp15.c14_timer[GTIMER_VIRT].ctl), 2754 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2755 }, 2756 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2757 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2758 .type = ARM_CP_IO, .access = PL0_RW, 2759 .accessfn = gt_vtimer_access, 2760 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2761 .resetvalue = 0, 2762 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2763 }, 2764 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2765 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2766 .secure = ARM_CP_SECSTATE_NS, 2767 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2768 .accessfn = gt_ptimer_access, 2769 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2770 }, 2771 { .name = "CNTP_TVAL_S", 2772 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2773 .secure = ARM_CP_SECSTATE_S, 2774 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2775 .accessfn = gt_ptimer_access, 2776 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2777 }, 2778 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2779 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2780 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2781 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2782 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2783 }, 2784 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2785 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2786 .accessfn = gt_vtimer_access, 2787 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2788 }, 2789 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2790 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2791 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2792 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2793 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2794 }, 2795 /* The counter itself */ 2796 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2797 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2798 .accessfn = gt_pct_access, 2799 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2800 }, 2801 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2802 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2803 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2804 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2805 }, 2806 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2807 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2808 .accessfn = gt_vct_access, 2809 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2810 }, 2811 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2812 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2813 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2814 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2815 }, 2816 /* Comparison value, indicating when the timer goes off */ 2817 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2818 .secure = ARM_CP_SECSTATE_NS, 2819 .access = PL0_RW, 2820 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2821 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2822 .accessfn = gt_ptimer_access, 2823 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2824 }, 2825 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2826 .secure = ARM_CP_SECSTATE_S, 2827 .access = PL0_RW, 2828 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2829 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2830 .accessfn = gt_ptimer_access, 2831 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2832 }, 2833 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2834 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2835 .access = PL0_RW, 2836 .type = ARM_CP_IO, 2837 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2838 .resetvalue = 0, .accessfn = gt_ptimer_access, 2839 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2840 }, 2841 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2842 .access = PL0_RW, 2843 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2844 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2845 .accessfn = gt_vtimer_access, 2846 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2847 }, 2848 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2849 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2850 .access = PL0_RW, 2851 .type = ARM_CP_IO, 2852 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2853 .resetvalue = 0, .accessfn = gt_vtimer_access, 2854 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2855 }, 2856 /* Secure timer -- this is actually restricted to only EL3 2857 * and configurably Secure-EL1 via the accessfn. 2858 */ 2859 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2860 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2861 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2862 .accessfn = gt_stimer_access, 2863 .readfn = gt_sec_tval_read, 2864 .writefn = gt_sec_tval_write, 2865 .resetfn = gt_sec_timer_reset, 2866 }, 2867 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2868 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2869 .type = ARM_CP_IO, .access = PL1_RW, 2870 .accessfn = gt_stimer_access, 2871 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2872 .resetvalue = 0, 2873 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2874 }, 2875 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2876 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2877 .type = ARM_CP_IO, .access = PL1_RW, 2878 .accessfn = gt_stimer_access, 2879 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2880 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2881 }, 2882 REGINFO_SENTINEL 2883 }; 2884 2885 #else 2886 2887 /* In user-mode most of the generic timer registers are inaccessible 2888 * however modern kernels (4.12+) allow access to cntvct_el0 2889 */ 2890 2891 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2892 { 2893 /* Currently we have no support for QEMUTimer in linux-user so we 2894 * can't call gt_get_countervalue(env), instead we directly 2895 * call the lower level functions. 2896 */ 2897 return cpu_get_clock() / GTIMER_SCALE; 2898 } 2899 2900 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2901 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2902 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2903 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2904 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2905 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2906 }, 2907 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2908 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2909 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2910 .readfn = gt_virt_cnt_read, 2911 }, 2912 REGINFO_SENTINEL 2913 }; 2914 2915 #endif 2916 2917 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2918 { 2919 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2920 raw_write(env, ri, value); 2921 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2922 raw_write(env, ri, value & 0xfffff6ff); 2923 } else { 2924 raw_write(env, ri, value & 0xfffff1ff); 2925 } 2926 } 2927 2928 #ifndef CONFIG_USER_ONLY 2929 /* get_phys_addr() isn't present for user-mode-only targets */ 2930 2931 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2932 bool isread) 2933 { 2934 if (ri->opc2 & 4) { 2935 /* The ATS12NSO* operations must trap to EL3 if executed in 2936 * Secure EL1 (which can only happen if EL3 is AArch64). 2937 * They are simply UNDEF if executed from NS EL1. 2938 * They function normally from EL2 or EL3. 2939 */ 2940 if (arm_current_el(env) == 1) { 2941 if (arm_is_secure_below_el3(env)) { 2942 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2943 } 2944 return CP_ACCESS_TRAP_UNCATEGORIZED; 2945 } 2946 } 2947 return CP_ACCESS_OK; 2948 } 2949 2950 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2951 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2952 { 2953 hwaddr phys_addr; 2954 target_ulong page_size; 2955 int prot; 2956 bool ret; 2957 uint64_t par64; 2958 bool format64 = false; 2959 MemTxAttrs attrs = {}; 2960 ARMMMUFaultInfo fi = {}; 2961 ARMCacheAttrs cacheattrs = {}; 2962 2963 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2964 &prot, &page_size, &fi, &cacheattrs); 2965 2966 if (is_a64(env)) { 2967 format64 = true; 2968 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2969 /* 2970 * ATS1Cxx: 2971 * * TTBCR.EAE determines whether the result is returned using the 2972 * 32-bit or the 64-bit PAR format 2973 * * Instructions executed in Hyp mode always use the 64bit format 2974 * 2975 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2976 * * The Non-secure TTBCR.EAE bit is set to 1 2977 * * The implementation includes EL2, and the value of HCR.VM is 1 2978 * 2979 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2980 * 2981 * ATS1Hx always uses the 64bit format. 2982 */ 2983 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2984 2985 if (arm_feature(env, ARM_FEATURE_EL2)) { 2986 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2987 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2988 } else { 2989 format64 |= arm_current_el(env) == 2; 2990 } 2991 } 2992 } 2993 2994 if (format64) { 2995 /* Create a 64-bit PAR */ 2996 par64 = (1 << 11); /* LPAE bit always set */ 2997 if (!ret) { 2998 par64 |= phys_addr & ~0xfffULL; 2999 if (!attrs.secure) { 3000 par64 |= (1 << 9); /* NS */ 3001 } 3002 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3003 par64 |= cacheattrs.shareability << 7; /* SH */ 3004 } else { 3005 uint32_t fsr = arm_fi_to_lfsc(&fi); 3006 3007 par64 |= 1; /* F */ 3008 par64 |= (fsr & 0x3f) << 1; /* FS */ 3009 if (fi.stage2) { 3010 par64 |= (1 << 9); /* S */ 3011 } 3012 if (fi.s1ptw) { 3013 par64 |= (1 << 8); /* PTW */ 3014 } 3015 } 3016 } else { 3017 /* fsr is a DFSR/IFSR value for the short descriptor 3018 * translation table format (with WnR always clear). 3019 * Convert it to a 32-bit PAR. 3020 */ 3021 if (!ret) { 3022 /* We do not set any attribute bits in the PAR */ 3023 if (page_size == (1 << 24) 3024 && arm_feature(env, ARM_FEATURE_V7)) { 3025 par64 = (phys_addr & 0xff000000) | (1 << 1); 3026 } else { 3027 par64 = phys_addr & 0xfffff000; 3028 } 3029 if (!attrs.secure) { 3030 par64 |= (1 << 9); /* NS */ 3031 } 3032 } else { 3033 uint32_t fsr = arm_fi_to_sfsc(&fi); 3034 3035 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3036 ((fsr & 0xf) << 1) | 1; 3037 } 3038 } 3039 return par64; 3040 } 3041 3042 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3043 { 3044 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3045 uint64_t par64; 3046 ARMMMUIdx mmu_idx; 3047 int el = arm_current_el(env); 3048 bool secure = arm_is_secure_below_el3(env); 3049 3050 switch (ri->opc2 & 6) { 3051 case 0: 3052 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3053 switch (el) { 3054 case 3: 3055 mmu_idx = ARMMMUIdx_S1E3; 3056 break; 3057 case 2: 3058 mmu_idx = ARMMMUIdx_S1NSE1; 3059 break; 3060 case 1: 3061 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3062 break; 3063 default: 3064 g_assert_not_reached(); 3065 } 3066 break; 3067 case 2: 3068 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3069 switch (el) { 3070 case 3: 3071 mmu_idx = ARMMMUIdx_S1SE0; 3072 break; 3073 case 2: 3074 mmu_idx = ARMMMUIdx_S1NSE0; 3075 break; 3076 case 1: 3077 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3078 break; 3079 default: 3080 g_assert_not_reached(); 3081 } 3082 break; 3083 case 4: 3084 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3085 mmu_idx = ARMMMUIdx_S12NSE1; 3086 break; 3087 case 6: 3088 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3089 mmu_idx = ARMMMUIdx_S12NSE0; 3090 break; 3091 default: 3092 g_assert_not_reached(); 3093 } 3094 3095 par64 = do_ats_write(env, value, access_type, mmu_idx); 3096 3097 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3098 } 3099 3100 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3101 uint64_t value) 3102 { 3103 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3104 uint64_t par64; 3105 3106 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3107 3108 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3109 } 3110 3111 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3112 bool isread) 3113 { 3114 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3115 return CP_ACCESS_TRAP; 3116 } 3117 return CP_ACCESS_OK; 3118 } 3119 3120 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3121 uint64_t value) 3122 { 3123 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3124 ARMMMUIdx mmu_idx; 3125 int secure = arm_is_secure_below_el3(env); 3126 3127 switch (ri->opc2 & 6) { 3128 case 0: 3129 switch (ri->opc1) { 3130 case 0: /* AT S1E1R, AT S1E1W */ 3131 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3132 break; 3133 case 4: /* AT S1E2R, AT S1E2W */ 3134 mmu_idx = ARMMMUIdx_S1E2; 3135 break; 3136 case 6: /* AT S1E3R, AT S1E3W */ 3137 mmu_idx = ARMMMUIdx_S1E3; 3138 break; 3139 default: 3140 g_assert_not_reached(); 3141 } 3142 break; 3143 case 2: /* AT S1E0R, AT S1E0W */ 3144 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3145 break; 3146 case 4: /* AT S12E1R, AT S12E1W */ 3147 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3148 break; 3149 case 6: /* AT S12E0R, AT S12E0W */ 3150 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3151 break; 3152 default: 3153 g_assert_not_reached(); 3154 } 3155 3156 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3157 } 3158 #endif 3159 3160 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3161 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3162 .access = PL1_RW, .resetvalue = 0, 3163 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3164 offsetoflow32(CPUARMState, cp15.par_ns) }, 3165 .writefn = par_write }, 3166 #ifndef CONFIG_USER_ONLY 3167 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3168 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3169 .access = PL1_W, .accessfn = ats_access, 3170 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 3171 #endif 3172 REGINFO_SENTINEL 3173 }; 3174 3175 /* Return basic MPU access permission bits. */ 3176 static uint32_t simple_mpu_ap_bits(uint32_t val) 3177 { 3178 uint32_t ret; 3179 uint32_t mask; 3180 int i; 3181 ret = 0; 3182 mask = 3; 3183 for (i = 0; i < 16; i += 2) { 3184 ret |= (val >> i) & mask; 3185 mask <<= 2; 3186 } 3187 return ret; 3188 } 3189 3190 /* Pad basic MPU access permission bits to extended format. */ 3191 static uint32_t extended_mpu_ap_bits(uint32_t val) 3192 { 3193 uint32_t ret; 3194 uint32_t mask; 3195 int i; 3196 ret = 0; 3197 mask = 3; 3198 for (i = 0; i < 16; i += 2) { 3199 ret |= (val & mask) << i; 3200 mask <<= 2; 3201 } 3202 return ret; 3203 } 3204 3205 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3206 uint64_t value) 3207 { 3208 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3209 } 3210 3211 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3212 { 3213 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3214 } 3215 3216 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3217 uint64_t value) 3218 { 3219 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3220 } 3221 3222 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3223 { 3224 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3225 } 3226 3227 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3228 { 3229 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3230 3231 if (!u32p) { 3232 return 0; 3233 } 3234 3235 u32p += env->pmsav7.rnr[M_REG_NS]; 3236 return *u32p; 3237 } 3238 3239 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3240 uint64_t value) 3241 { 3242 ARMCPU *cpu = env_archcpu(env); 3243 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3244 3245 if (!u32p) { 3246 return; 3247 } 3248 3249 u32p += env->pmsav7.rnr[M_REG_NS]; 3250 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3251 *u32p = value; 3252 } 3253 3254 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3255 uint64_t value) 3256 { 3257 ARMCPU *cpu = env_archcpu(env); 3258 uint32_t nrgs = cpu->pmsav7_dregion; 3259 3260 if (value >= nrgs) { 3261 qemu_log_mask(LOG_GUEST_ERROR, 3262 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3263 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3264 return; 3265 } 3266 3267 raw_write(env, ri, value); 3268 } 3269 3270 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3271 /* Reset for all these registers is handled in arm_cpu_reset(), 3272 * because the PMSAv7 is also used by M-profile CPUs, which do 3273 * not register cpregs but still need the state to be reset. 3274 */ 3275 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3276 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3277 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3278 .readfn = pmsav7_read, .writefn = pmsav7_write, 3279 .resetfn = arm_cp_reset_ignore }, 3280 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3281 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3282 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3283 .readfn = pmsav7_read, .writefn = pmsav7_write, 3284 .resetfn = arm_cp_reset_ignore }, 3285 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3286 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3287 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3288 .readfn = pmsav7_read, .writefn = pmsav7_write, 3289 .resetfn = arm_cp_reset_ignore }, 3290 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3291 .access = PL1_RW, 3292 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3293 .writefn = pmsav7_rgnr_write, 3294 .resetfn = arm_cp_reset_ignore }, 3295 REGINFO_SENTINEL 3296 }; 3297 3298 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3299 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3300 .access = PL1_RW, .type = ARM_CP_ALIAS, 3301 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3302 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3303 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3304 .access = PL1_RW, .type = ARM_CP_ALIAS, 3305 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3306 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3307 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3308 .access = PL1_RW, 3309 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3310 .resetvalue = 0, }, 3311 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3312 .access = PL1_RW, 3313 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3314 .resetvalue = 0, }, 3315 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3316 .access = PL1_RW, 3317 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3318 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3319 .access = PL1_RW, 3320 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3321 /* Protection region base and size registers */ 3322 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3325 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3326 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3327 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3328 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3329 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3330 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3331 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3332 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3333 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3334 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3335 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3336 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3337 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3338 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3339 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3340 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3341 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3342 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3343 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3344 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3345 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3346 REGINFO_SENTINEL 3347 }; 3348 3349 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3350 uint64_t value) 3351 { 3352 TCR *tcr = raw_ptr(env, ri); 3353 int maskshift = extract32(value, 0, 3); 3354 3355 if (!arm_feature(env, ARM_FEATURE_V8)) { 3356 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3357 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3358 * using Long-desciptor translation table format */ 3359 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3360 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3361 /* In an implementation that includes the Security Extensions 3362 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3363 * Short-descriptor translation table format. 3364 */ 3365 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3366 } else { 3367 value &= TTBCR_N; 3368 } 3369 } 3370 3371 /* Update the masks corresponding to the TCR bank being written 3372 * Note that we always calculate mask and base_mask, but 3373 * they are only used for short-descriptor tables (ie if EAE is 0); 3374 * for long-descriptor tables the TCR fields are used differently 3375 * and the mask and base_mask values are meaningless. 3376 */ 3377 tcr->raw_tcr = value; 3378 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3379 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3380 } 3381 3382 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3383 uint64_t value) 3384 { 3385 ARMCPU *cpu = env_archcpu(env); 3386 TCR *tcr = raw_ptr(env, ri); 3387 3388 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3389 /* With LPAE the TTBCR could result in a change of ASID 3390 * via the TTBCR.A1 bit, so do a TLB flush. 3391 */ 3392 tlb_flush(CPU(cpu)); 3393 } 3394 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3395 value = deposit64(tcr->raw_tcr, 0, 32, value); 3396 vmsa_ttbcr_raw_write(env, ri, value); 3397 } 3398 3399 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3400 { 3401 TCR *tcr = raw_ptr(env, ri); 3402 3403 /* Reset both the TCR as well as the masks corresponding to the bank of 3404 * the TCR being reset. 3405 */ 3406 tcr->raw_tcr = 0; 3407 tcr->mask = 0; 3408 tcr->base_mask = 0xffffc000u; 3409 } 3410 3411 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3412 uint64_t value) 3413 { 3414 ARMCPU *cpu = env_archcpu(env); 3415 TCR *tcr = raw_ptr(env, ri); 3416 3417 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3418 tlb_flush(CPU(cpu)); 3419 tcr->raw_tcr = value; 3420 } 3421 3422 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3423 uint64_t value) 3424 { 3425 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3426 if (cpreg_field_is_64bit(ri) && 3427 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3428 ARMCPU *cpu = env_archcpu(env); 3429 tlb_flush(CPU(cpu)); 3430 } 3431 raw_write(env, ri, value); 3432 } 3433 3434 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3435 uint64_t value) 3436 { 3437 ARMCPU *cpu = env_archcpu(env); 3438 CPUState *cs = CPU(cpu); 3439 3440 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3441 if (raw_read(env, ri) != value) { 3442 tlb_flush_by_mmuidx(cs, 3443 ARMMMUIdxBit_S12NSE1 | 3444 ARMMMUIdxBit_S12NSE0 | 3445 ARMMMUIdxBit_S2NS); 3446 raw_write(env, ri, value); 3447 } 3448 } 3449 3450 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3451 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3452 .access = PL1_RW, .type = ARM_CP_ALIAS, 3453 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3454 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3455 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3456 .access = PL1_RW, .resetvalue = 0, 3457 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3458 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3459 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3460 .access = PL1_RW, .resetvalue = 0, 3461 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3462 offsetof(CPUARMState, cp15.dfar_ns) } }, 3463 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3465 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3466 .resetvalue = 0, }, 3467 REGINFO_SENTINEL 3468 }; 3469 3470 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3471 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3472 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3473 .access = PL1_RW, 3474 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3475 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3476 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3477 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3478 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3479 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3480 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3481 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3482 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3483 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3484 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3485 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3486 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3487 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3488 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3489 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3490 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3491 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3492 .raw_writefn = vmsa_ttbcr_raw_write, 3493 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3494 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3495 REGINFO_SENTINEL 3496 }; 3497 3498 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3499 * qemu tlbs nor adjusting cached masks. 3500 */ 3501 static const ARMCPRegInfo ttbcr2_reginfo = { 3502 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3503 .access = PL1_RW, .type = ARM_CP_ALIAS, 3504 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3505 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3506 }; 3507 3508 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3509 uint64_t value) 3510 { 3511 env->cp15.c15_ticonfig = value & 0xe7; 3512 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3513 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3514 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3515 } 3516 3517 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3518 uint64_t value) 3519 { 3520 env->cp15.c15_threadid = value & 0xffff; 3521 } 3522 3523 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3524 uint64_t value) 3525 { 3526 /* Wait-for-interrupt (deprecated) */ 3527 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3528 } 3529 3530 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3531 uint64_t value) 3532 { 3533 /* On OMAP there are registers indicating the max/min index of dcache lines 3534 * containing a dirty line; cache flush operations have to reset these. 3535 */ 3536 env->cp15.c15_i_max = 0x000; 3537 env->cp15.c15_i_min = 0xff0; 3538 } 3539 3540 static const ARMCPRegInfo omap_cp_reginfo[] = { 3541 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3542 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3543 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3544 .resetvalue = 0, }, 3545 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3546 .access = PL1_RW, .type = ARM_CP_NOP }, 3547 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3548 .access = PL1_RW, 3549 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3550 .writefn = omap_ticonfig_write }, 3551 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3552 .access = PL1_RW, 3553 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3554 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3555 .access = PL1_RW, .resetvalue = 0xff0, 3556 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3557 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3558 .access = PL1_RW, 3559 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3560 .writefn = omap_threadid_write }, 3561 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3562 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3563 .type = ARM_CP_NO_RAW, 3564 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3565 /* TODO: Peripheral port remap register: 3566 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3567 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3568 * when MMU is off. 3569 */ 3570 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3571 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3572 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3573 .writefn = omap_cachemaint_write }, 3574 { .name = "C9", .cp = 15, .crn = 9, 3575 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3576 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3577 REGINFO_SENTINEL 3578 }; 3579 3580 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3581 uint64_t value) 3582 { 3583 env->cp15.c15_cpar = value & 0x3fff; 3584 } 3585 3586 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3587 { .name = "XSCALE_CPAR", 3588 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3589 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3590 .writefn = xscale_cpar_write, }, 3591 { .name = "XSCALE_AUXCR", 3592 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3593 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3594 .resetvalue = 0, }, 3595 /* XScale specific cache-lockdown: since we have no cache we NOP these 3596 * and hope the guest does not really rely on cache behaviour. 3597 */ 3598 { .name = "XSCALE_LOCK_ICACHE_LINE", 3599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3600 .access = PL1_W, .type = ARM_CP_NOP }, 3601 { .name = "XSCALE_UNLOCK_ICACHE", 3602 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3603 .access = PL1_W, .type = ARM_CP_NOP }, 3604 { .name = "XSCALE_DCACHE_LOCK", 3605 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3606 .access = PL1_RW, .type = ARM_CP_NOP }, 3607 { .name = "XSCALE_UNLOCK_DCACHE", 3608 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3609 .access = PL1_W, .type = ARM_CP_NOP }, 3610 REGINFO_SENTINEL 3611 }; 3612 3613 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3614 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3615 * implementation of this implementation-defined space. 3616 * Ideally this should eventually disappear in favour of actually 3617 * implementing the correct behaviour for all cores. 3618 */ 3619 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3620 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3621 .access = PL1_RW, 3622 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3623 .resetvalue = 0 }, 3624 REGINFO_SENTINEL 3625 }; 3626 3627 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3628 /* Cache status: RAZ because we have no cache so it's always clean */ 3629 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3630 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3631 .resetvalue = 0 }, 3632 REGINFO_SENTINEL 3633 }; 3634 3635 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3636 /* We never have a a block transfer operation in progress */ 3637 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3638 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3639 .resetvalue = 0 }, 3640 /* The cache ops themselves: these all NOP for QEMU */ 3641 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3642 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3643 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3644 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3645 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3646 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3647 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3648 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3649 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3650 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3651 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3652 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3653 REGINFO_SENTINEL 3654 }; 3655 3656 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3657 /* The cache test-and-clean instructions always return (1 << 30) 3658 * to indicate that there are no dirty cache lines. 3659 */ 3660 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3661 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3662 .resetvalue = (1 << 30) }, 3663 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3664 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3665 .resetvalue = (1 << 30) }, 3666 REGINFO_SENTINEL 3667 }; 3668 3669 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3670 /* Ignore ReadBuffer accesses */ 3671 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3672 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3673 .access = PL1_RW, .resetvalue = 0, 3674 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3675 REGINFO_SENTINEL 3676 }; 3677 3678 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3679 { 3680 ARMCPU *cpu = env_archcpu(env); 3681 unsigned int cur_el = arm_current_el(env); 3682 bool secure = arm_is_secure(env); 3683 3684 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3685 return env->cp15.vpidr_el2; 3686 } 3687 return raw_read(env, ri); 3688 } 3689 3690 static uint64_t mpidr_read_val(CPUARMState *env) 3691 { 3692 ARMCPU *cpu = env_archcpu(env); 3693 uint64_t mpidr = cpu->mp_affinity; 3694 3695 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3696 mpidr |= (1U << 31); 3697 /* Cores which are uniprocessor (non-coherent) 3698 * but still implement the MP extensions set 3699 * bit 30. (For instance, Cortex-R5). 3700 */ 3701 if (cpu->mp_is_up) { 3702 mpidr |= (1u << 30); 3703 } 3704 } 3705 return mpidr; 3706 } 3707 3708 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3709 { 3710 unsigned int cur_el = arm_current_el(env); 3711 bool secure = arm_is_secure(env); 3712 3713 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3714 return env->cp15.vmpidr_el2; 3715 } 3716 return mpidr_read_val(env); 3717 } 3718 3719 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3720 /* NOP AMAIR0/1 */ 3721 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3722 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3723 .access = PL1_RW, .type = ARM_CP_CONST, 3724 .resetvalue = 0 }, 3725 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3726 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3727 .access = PL1_RW, .type = ARM_CP_CONST, 3728 .resetvalue = 0 }, 3729 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3730 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3731 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3732 offsetof(CPUARMState, cp15.par_ns)} }, 3733 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3734 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3735 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3736 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3737 .writefn = vmsa_ttbr_write, }, 3738 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3739 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3740 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3741 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3742 .writefn = vmsa_ttbr_write, }, 3743 REGINFO_SENTINEL 3744 }; 3745 3746 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3747 { 3748 return vfp_get_fpcr(env); 3749 } 3750 3751 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3752 uint64_t value) 3753 { 3754 vfp_set_fpcr(env, value); 3755 } 3756 3757 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3758 { 3759 return vfp_get_fpsr(env); 3760 } 3761 3762 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3763 uint64_t value) 3764 { 3765 vfp_set_fpsr(env, value); 3766 } 3767 3768 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3769 bool isread) 3770 { 3771 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3772 return CP_ACCESS_TRAP; 3773 } 3774 return CP_ACCESS_OK; 3775 } 3776 3777 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3778 uint64_t value) 3779 { 3780 env->daif = value & PSTATE_DAIF; 3781 } 3782 3783 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3784 const ARMCPRegInfo *ri, 3785 bool isread) 3786 { 3787 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3788 * SCTLR_EL1.UCI is set. 3789 */ 3790 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3791 return CP_ACCESS_TRAP; 3792 } 3793 return CP_ACCESS_OK; 3794 } 3795 3796 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3797 * Page D4-1736 (DDI0487A.b) 3798 */ 3799 3800 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3801 uint64_t value) 3802 { 3803 CPUState *cs = env_cpu(env); 3804 bool sec = arm_is_secure_below_el3(env); 3805 3806 if (sec) { 3807 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3808 ARMMMUIdxBit_S1SE1 | 3809 ARMMMUIdxBit_S1SE0); 3810 } else { 3811 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3812 ARMMMUIdxBit_S12NSE1 | 3813 ARMMMUIdxBit_S12NSE0); 3814 } 3815 } 3816 3817 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3818 uint64_t value) 3819 { 3820 CPUState *cs = env_cpu(env); 3821 3822 if (tlb_force_broadcast(env)) { 3823 tlbi_aa64_vmalle1is_write(env, NULL, value); 3824 return; 3825 } 3826 3827 if (arm_is_secure_below_el3(env)) { 3828 tlb_flush_by_mmuidx(cs, 3829 ARMMMUIdxBit_S1SE1 | 3830 ARMMMUIdxBit_S1SE0); 3831 } else { 3832 tlb_flush_by_mmuidx(cs, 3833 ARMMMUIdxBit_S12NSE1 | 3834 ARMMMUIdxBit_S12NSE0); 3835 } 3836 } 3837 3838 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3839 uint64_t value) 3840 { 3841 /* Note that the 'ALL' scope must invalidate both stage 1 and 3842 * stage 2 translations, whereas most other scopes only invalidate 3843 * stage 1 translations. 3844 */ 3845 ARMCPU *cpu = env_archcpu(env); 3846 CPUState *cs = CPU(cpu); 3847 3848 if (arm_is_secure_below_el3(env)) { 3849 tlb_flush_by_mmuidx(cs, 3850 ARMMMUIdxBit_S1SE1 | 3851 ARMMMUIdxBit_S1SE0); 3852 } else { 3853 if (arm_feature(env, ARM_FEATURE_EL2)) { 3854 tlb_flush_by_mmuidx(cs, 3855 ARMMMUIdxBit_S12NSE1 | 3856 ARMMMUIdxBit_S12NSE0 | 3857 ARMMMUIdxBit_S2NS); 3858 } else { 3859 tlb_flush_by_mmuidx(cs, 3860 ARMMMUIdxBit_S12NSE1 | 3861 ARMMMUIdxBit_S12NSE0); 3862 } 3863 } 3864 } 3865 3866 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3867 uint64_t value) 3868 { 3869 ARMCPU *cpu = env_archcpu(env); 3870 CPUState *cs = CPU(cpu); 3871 3872 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3873 } 3874 3875 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3876 uint64_t value) 3877 { 3878 ARMCPU *cpu = env_archcpu(env); 3879 CPUState *cs = CPU(cpu); 3880 3881 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3882 } 3883 3884 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3885 uint64_t value) 3886 { 3887 /* Note that the 'ALL' scope must invalidate both stage 1 and 3888 * stage 2 translations, whereas most other scopes only invalidate 3889 * stage 1 translations. 3890 */ 3891 CPUState *cs = env_cpu(env); 3892 bool sec = arm_is_secure_below_el3(env); 3893 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3894 3895 if (sec) { 3896 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3897 ARMMMUIdxBit_S1SE1 | 3898 ARMMMUIdxBit_S1SE0); 3899 } else if (has_el2) { 3900 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3901 ARMMMUIdxBit_S12NSE1 | 3902 ARMMMUIdxBit_S12NSE0 | 3903 ARMMMUIdxBit_S2NS); 3904 } else { 3905 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3906 ARMMMUIdxBit_S12NSE1 | 3907 ARMMMUIdxBit_S12NSE0); 3908 } 3909 } 3910 3911 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3912 uint64_t value) 3913 { 3914 CPUState *cs = env_cpu(env); 3915 3916 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3917 } 3918 3919 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3920 uint64_t value) 3921 { 3922 CPUState *cs = env_cpu(env); 3923 3924 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3925 } 3926 3927 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3928 uint64_t value) 3929 { 3930 /* Invalidate by VA, EL2 3931 * Currently handles both VAE2 and VALE2, since we don't support 3932 * flush-last-level-only. 3933 */ 3934 ARMCPU *cpu = env_archcpu(env); 3935 CPUState *cs = CPU(cpu); 3936 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3937 3938 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3939 } 3940 3941 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3942 uint64_t value) 3943 { 3944 /* Invalidate by VA, EL3 3945 * Currently handles both VAE3 and VALE3, since we don't support 3946 * flush-last-level-only. 3947 */ 3948 ARMCPU *cpu = env_archcpu(env); 3949 CPUState *cs = CPU(cpu); 3950 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3951 3952 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3953 } 3954 3955 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3956 uint64_t value) 3957 { 3958 ARMCPU *cpu = env_archcpu(env); 3959 CPUState *cs = CPU(cpu); 3960 bool sec = arm_is_secure_below_el3(env); 3961 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3962 3963 if (sec) { 3964 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3965 ARMMMUIdxBit_S1SE1 | 3966 ARMMMUIdxBit_S1SE0); 3967 } else { 3968 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3969 ARMMMUIdxBit_S12NSE1 | 3970 ARMMMUIdxBit_S12NSE0); 3971 } 3972 } 3973 3974 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3975 uint64_t value) 3976 { 3977 /* Invalidate by VA, EL1&0 (AArch64 version). 3978 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3979 * since we don't support flush-for-specific-ASID-only or 3980 * flush-last-level-only. 3981 */ 3982 ARMCPU *cpu = env_archcpu(env); 3983 CPUState *cs = CPU(cpu); 3984 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3985 3986 if (tlb_force_broadcast(env)) { 3987 tlbi_aa64_vae1is_write(env, NULL, value); 3988 return; 3989 } 3990 3991 if (arm_is_secure_below_el3(env)) { 3992 tlb_flush_page_by_mmuidx(cs, pageaddr, 3993 ARMMMUIdxBit_S1SE1 | 3994 ARMMMUIdxBit_S1SE0); 3995 } else { 3996 tlb_flush_page_by_mmuidx(cs, pageaddr, 3997 ARMMMUIdxBit_S12NSE1 | 3998 ARMMMUIdxBit_S12NSE0); 3999 } 4000 } 4001 4002 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4003 uint64_t value) 4004 { 4005 CPUState *cs = env_cpu(env); 4006 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4007 4008 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4009 ARMMMUIdxBit_S1E2); 4010 } 4011 4012 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4013 uint64_t value) 4014 { 4015 CPUState *cs = env_cpu(env); 4016 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4017 4018 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4019 ARMMMUIdxBit_S1E3); 4020 } 4021 4022 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4023 uint64_t value) 4024 { 4025 /* Invalidate by IPA. This has to invalidate any structures that 4026 * contain only stage 2 translation information, but does not need 4027 * to apply to structures that contain combined stage 1 and stage 2 4028 * translation information. 4029 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4030 */ 4031 ARMCPU *cpu = env_archcpu(env); 4032 CPUState *cs = CPU(cpu); 4033 uint64_t pageaddr; 4034 4035 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4036 return; 4037 } 4038 4039 pageaddr = sextract64(value << 12, 0, 48); 4040 4041 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4042 } 4043 4044 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4045 uint64_t value) 4046 { 4047 CPUState *cs = env_cpu(env); 4048 uint64_t pageaddr; 4049 4050 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4051 return; 4052 } 4053 4054 pageaddr = sextract64(value << 12, 0, 48); 4055 4056 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4057 ARMMMUIdxBit_S2NS); 4058 } 4059 4060 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4061 bool isread) 4062 { 4063 /* We don't implement EL2, so the only control on DC ZVA is the 4064 * bit in the SCTLR which can prohibit access for EL0. 4065 */ 4066 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4067 return CP_ACCESS_TRAP; 4068 } 4069 return CP_ACCESS_OK; 4070 } 4071 4072 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4073 { 4074 ARMCPU *cpu = env_archcpu(env); 4075 int dzp_bit = 1 << 4; 4076 4077 /* DZP indicates whether DC ZVA access is allowed */ 4078 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4079 dzp_bit = 0; 4080 } 4081 return cpu->dcz_blocksize | dzp_bit; 4082 } 4083 4084 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4085 bool isread) 4086 { 4087 if (!(env->pstate & PSTATE_SP)) { 4088 /* Access to SP_EL0 is undefined if it's being used as 4089 * the stack pointer. 4090 */ 4091 return CP_ACCESS_TRAP_UNCATEGORIZED; 4092 } 4093 return CP_ACCESS_OK; 4094 } 4095 4096 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4097 { 4098 return env->pstate & PSTATE_SP; 4099 } 4100 4101 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4102 { 4103 update_spsel(env, val); 4104 } 4105 4106 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4107 uint64_t value) 4108 { 4109 ARMCPU *cpu = env_archcpu(env); 4110 4111 if (raw_read(env, ri) == value) { 4112 /* Skip the TLB flush if nothing actually changed; Linux likes 4113 * to do a lot of pointless SCTLR writes. 4114 */ 4115 return; 4116 } 4117 4118 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4119 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4120 value &= ~SCTLR_M; 4121 } 4122 4123 raw_write(env, ri, value); 4124 /* ??? Lots of these bits are not implemented. */ 4125 /* This may enable/disable the MMU, so do a TLB flush. */ 4126 tlb_flush(CPU(cpu)); 4127 } 4128 4129 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4130 bool isread) 4131 { 4132 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4133 return CP_ACCESS_TRAP_FP_EL2; 4134 } 4135 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4136 return CP_ACCESS_TRAP_FP_EL3; 4137 } 4138 return CP_ACCESS_OK; 4139 } 4140 4141 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4142 uint64_t value) 4143 { 4144 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4145 } 4146 4147 static const ARMCPRegInfo v8_cp_reginfo[] = { 4148 /* Minimal set of EL0-visible registers. This will need to be expanded 4149 * significantly for system emulation of AArch64 CPUs. 4150 */ 4151 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4152 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4153 .access = PL0_RW, .type = ARM_CP_NZCV }, 4154 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4155 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4156 .type = ARM_CP_NO_RAW, 4157 .access = PL0_RW, .accessfn = aa64_daif_access, 4158 .fieldoffset = offsetof(CPUARMState, daif), 4159 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4160 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4161 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4162 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4163 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4164 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4165 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4166 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4167 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4168 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4169 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4170 .access = PL0_R, .type = ARM_CP_NO_RAW, 4171 .readfn = aa64_dczid_read }, 4172 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4173 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4174 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4175 #ifndef CONFIG_USER_ONLY 4176 /* Avoid overhead of an access check that always passes in user-mode */ 4177 .accessfn = aa64_zva_access, 4178 #endif 4179 }, 4180 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4182 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4183 /* Cache ops: all NOPs since we don't emulate caches */ 4184 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4185 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4186 .access = PL1_W, .type = ARM_CP_NOP }, 4187 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4188 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4189 .access = PL1_W, .type = ARM_CP_NOP }, 4190 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4191 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4192 .access = PL0_W, .type = ARM_CP_NOP, 4193 .accessfn = aa64_cacheop_access }, 4194 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4195 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4196 .access = PL1_W, .type = ARM_CP_NOP }, 4197 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4199 .access = PL1_W, .type = ARM_CP_NOP }, 4200 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4201 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4202 .access = PL0_W, .type = ARM_CP_NOP, 4203 .accessfn = aa64_cacheop_access }, 4204 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4205 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4206 .access = PL1_W, .type = ARM_CP_NOP }, 4207 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4208 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4209 .access = PL0_W, .type = ARM_CP_NOP, 4210 .accessfn = aa64_cacheop_access }, 4211 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4212 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4213 .access = PL0_W, .type = ARM_CP_NOP, 4214 .accessfn = aa64_cacheop_access }, 4215 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4216 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4217 .access = PL1_W, .type = ARM_CP_NOP }, 4218 /* TLBI operations */ 4219 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4220 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4221 .access = PL1_W, .type = ARM_CP_NO_RAW, 4222 .writefn = tlbi_aa64_vmalle1is_write }, 4223 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4224 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4225 .access = PL1_W, .type = ARM_CP_NO_RAW, 4226 .writefn = tlbi_aa64_vae1is_write }, 4227 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4228 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4229 .access = PL1_W, .type = ARM_CP_NO_RAW, 4230 .writefn = tlbi_aa64_vmalle1is_write }, 4231 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4233 .access = PL1_W, .type = ARM_CP_NO_RAW, 4234 .writefn = tlbi_aa64_vae1is_write }, 4235 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4236 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4237 .access = PL1_W, .type = ARM_CP_NO_RAW, 4238 .writefn = tlbi_aa64_vae1is_write }, 4239 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4240 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4241 .access = PL1_W, .type = ARM_CP_NO_RAW, 4242 .writefn = tlbi_aa64_vae1is_write }, 4243 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4244 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4245 .access = PL1_W, .type = ARM_CP_NO_RAW, 4246 .writefn = tlbi_aa64_vmalle1_write }, 4247 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4248 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4249 .access = PL1_W, .type = ARM_CP_NO_RAW, 4250 .writefn = tlbi_aa64_vae1_write }, 4251 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4252 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4253 .access = PL1_W, .type = ARM_CP_NO_RAW, 4254 .writefn = tlbi_aa64_vmalle1_write }, 4255 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4256 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4257 .access = PL1_W, .type = ARM_CP_NO_RAW, 4258 .writefn = tlbi_aa64_vae1_write }, 4259 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4260 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4261 .access = PL1_W, .type = ARM_CP_NO_RAW, 4262 .writefn = tlbi_aa64_vae1_write }, 4263 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4264 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4265 .access = PL1_W, .type = ARM_CP_NO_RAW, 4266 .writefn = tlbi_aa64_vae1_write }, 4267 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4268 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4269 .access = PL2_W, .type = ARM_CP_NO_RAW, 4270 .writefn = tlbi_aa64_ipas2e1is_write }, 4271 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4272 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4273 .access = PL2_W, .type = ARM_CP_NO_RAW, 4274 .writefn = tlbi_aa64_ipas2e1is_write }, 4275 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4276 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4277 .access = PL2_W, .type = ARM_CP_NO_RAW, 4278 .writefn = tlbi_aa64_alle1is_write }, 4279 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4280 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4281 .access = PL2_W, .type = ARM_CP_NO_RAW, 4282 .writefn = tlbi_aa64_alle1is_write }, 4283 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4284 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4285 .access = PL2_W, .type = ARM_CP_NO_RAW, 4286 .writefn = tlbi_aa64_ipas2e1_write }, 4287 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4288 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4289 .access = PL2_W, .type = ARM_CP_NO_RAW, 4290 .writefn = tlbi_aa64_ipas2e1_write }, 4291 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4292 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4293 .access = PL2_W, .type = ARM_CP_NO_RAW, 4294 .writefn = tlbi_aa64_alle1_write }, 4295 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4296 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4297 .access = PL2_W, .type = ARM_CP_NO_RAW, 4298 .writefn = tlbi_aa64_alle1is_write }, 4299 #ifndef CONFIG_USER_ONLY 4300 /* 64 bit address translation operations */ 4301 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4302 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4303 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4304 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4305 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4306 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4307 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4308 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4309 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4310 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4311 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4312 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4313 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4314 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4315 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4316 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4317 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4318 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4319 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4320 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4321 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4322 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4323 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4324 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4325 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4326 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4327 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4328 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4329 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4330 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4331 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4332 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4333 .type = ARM_CP_ALIAS, 4334 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4335 .access = PL1_RW, .resetvalue = 0, 4336 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4337 .writefn = par_write }, 4338 #endif 4339 /* TLB invalidate last level of translation table walk */ 4340 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4341 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4342 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4343 .type = ARM_CP_NO_RAW, .access = PL1_W, 4344 .writefn = tlbimvaa_is_write }, 4345 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4346 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4347 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4348 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4349 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4350 .type = ARM_CP_NO_RAW, .access = PL2_W, 4351 .writefn = tlbimva_hyp_write }, 4352 { .name = "TLBIMVALHIS", 4353 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4354 .type = ARM_CP_NO_RAW, .access = PL2_W, 4355 .writefn = tlbimva_hyp_is_write }, 4356 { .name = "TLBIIPAS2", 4357 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4358 .type = ARM_CP_NO_RAW, .access = PL2_W, 4359 .writefn = tlbiipas2_write }, 4360 { .name = "TLBIIPAS2IS", 4361 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4362 .type = ARM_CP_NO_RAW, .access = PL2_W, 4363 .writefn = tlbiipas2_is_write }, 4364 { .name = "TLBIIPAS2L", 4365 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4366 .type = ARM_CP_NO_RAW, .access = PL2_W, 4367 .writefn = tlbiipas2_write }, 4368 { .name = "TLBIIPAS2LIS", 4369 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4370 .type = ARM_CP_NO_RAW, .access = PL2_W, 4371 .writefn = tlbiipas2_is_write }, 4372 /* 32 bit cache operations */ 4373 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4374 .type = ARM_CP_NOP, .access = PL1_W }, 4375 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4376 .type = ARM_CP_NOP, .access = PL1_W }, 4377 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4378 .type = ARM_CP_NOP, .access = PL1_W }, 4379 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4380 .type = ARM_CP_NOP, .access = PL1_W }, 4381 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4382 .type = ARM_CP_NOP, .access = PL1_W }, 4383 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4384 .type = ARM_CP_NOP, .access = PL1_W }, 4385 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4386 .type = ARM_CP_NOP, .access = PL1_W }, 4387 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4388 .type = ARM_CP_NOP, .access = PL1_W }, 4389 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4390 .type = ARM_CP_NOP, .access = PL1_W }, 4391 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4392 .type = ARM_CP_NOP, .access = PL1_W }, 4393 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4394 .type = ARM_CP_NOP, .access = PL1_W }, 4395 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4396 .type = ARM_CP_NOP, .access = PL1_W }, 4397 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4398 .type = ARM_CP_NOP, .access = PL1_W }, 4399 /* MMU Domain access control / MPU write buffer control */ 4400 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4401 .access = PL1_RW, .resetvalue = 0, 4402 .writefn = dacr_write, .raw_writefn = raw_write, 4403 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4404 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4405 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4406 .type = ARM_CP_ALIAS, 4407 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4408 .access = PL1_RW, 4409 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4410 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4411 .type = ARM_CP_ALIAS, 4412 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4413 .access = PL1_RW, 4414 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4415 /* We rely on the access checks not allowing the guest to write to the 4416 * state field when SPSel indicates that it's being used as the stack 4417 * pointer. 4418 */ 4419 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4420 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4421 .access = PL1_RW, .accessfn = sp_el0_access, 4422 .type = ARM_CP_ALIAS, 4423 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4424 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4425 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4426 .access = PL2_RW, .type = ARM_CP_ALIAS, 4427 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4428 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4429 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4430 .type = ARM_CP_NO_RAW, 4431 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4432 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4433 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4434 .type = ARM_CP_ALIAS, 4435 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4436 .access = PL2_RW, .accessfn = fpexc32_access }, 4437 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4438 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4439 .access = PL2_RW, .resetvalue = 0, 4440 .writefn = dacr_write, .raw_writefn = raw_write, 4441 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4442 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4443 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4444 .access = PL2_RW, .resetvalue = 0, 4445 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4446 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4447 .type = ARM_CP_ALIAS, 4448 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4449 .access = PL2_RW, 4450 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4451 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4452 .type = ARM_CP_ALIAS, 4453 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4454 .access = PL2_RW, 4455 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4456 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4457 .type = ARM_CP_ALIAS, 4458 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4459 .access = PL2_RW, 4460 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4461 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4462 .type = ARM_CP_ALIAS, 4463 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4464 .access = PL2_RW, 4465 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4466 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4467 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4468 .resetvalue = 0, 4469 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4470 { .name = "SDCR", .type = ARM_CP_ALIAS, 4471 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4472 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4473 .writefn = sdcr_write, 4474 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4475 REGINFO_SENTINEL 4476 }; 4477 4478 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4479 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4480 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4481 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4482 .access = PL2_RW, 4483 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4484 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4485 .type = ARM_CP_NO_RAW, 4486 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4487 .access = PL2_RW, 4488 .type = ARM_CP_CONST, .resetvalue = 0 }, 4489 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4490 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4491 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4492 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4493 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4494 .access = PL2_RW, 4495 .type = ARM_CP_CONST, .resetvalue = 0 }, 4496 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4497 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4498 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4499 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4500 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4501 .access = PL2_RW, .type = ARM_CP_CONST, 4502 .resetvalue = 0 }, 4503 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4504 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4505 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4506 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4507 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4508 .access = PL2_RW, .type = ARM_CP_CONST, 4509 .resetvalue = 0 }, 4510 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4511 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4512 .access = PL2_RW, .type = ARM_CP_CONST, 4513 .resetvalue = 0 }, 4514 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4515 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4516 .access = PL2_RW, .type = ARM_CP_CONST, 4517 .resetvalue = 0 }, 4518 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4519 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4520 .access = PL2_RW, .type = ARM_CP_CONST, 4521 .resetvalue = 0 }, 4522 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4523 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4524 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4525 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4526 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4527 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4528 .type = ARM_CP_CONST, .resetvalue = 0 }, 4529 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4530 .cp = 15, .opc1 = 6, .crm = 2, 4531 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4532 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4533 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4534 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4535 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4536 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4537 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4538 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4539 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4540 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4541 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4542 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4543 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4544 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4545 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4546 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4547 .resetvalue = 0 }, 4548 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4549 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4550 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4551 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4552 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4553 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4554 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4555 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4556 .resetvalue = 0 }, 4557 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4558 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4559 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4560 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4561 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4562 .resetvalue = 0 }, 4563 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4564 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4565 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4566 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4567 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4568 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4569 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4570 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4571 .access = PL2_RW, .accessfn = access_tda, 4572 .type = ARM_CP_CONST, .resetvalue = 0 }, 4573 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4574 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4575 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4576 .type = ARM_CP_CONST, .resetvalue = 0 }, 4577 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4578 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4579 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4580 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4581 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4582 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4583 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4584 .type = ARM_CP_CONST, 4585 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4586 .access = PL2_RW, .resetvalue = 0 }, 4587 REGINFO_SENTINEL 4588 }; 4589 4590 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4591 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4592 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4593 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4594 .access = PL2_RW, 4595 .type = ARM_CP_CONST, .resetvalue = 0 }, 4596 REGINFO_SENTINEL 4597 }; 4598 4599 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4600 { 4601 ARMCPU *cpu = env_archcpu(env); 4602 uint64_t valid_mask = HCR_MASK; 4603 4604 if (arm_feature(env, ARM_FEATURE_EL3)) { 4605 valid_mask &= ~HCR_HCD; 4606 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4607 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4608 * However, if we're using the SMC PSCI conduit then QEMU is 4609 * effectively acting like EL3 firmware and so the guest at 4610 * EL2 should retain the ability to prevent EL1 from being 4611 * able to make SMC calls into the ersatz firmware, so in 4612 * that case HCR.TSC should be read/write. 4613 */ 4614 valid_mask &= ~HCR_TSC; 4615 } 4616 if (cpu_isar_feature(aa64_lor, cpu)) { 4617 valid_mask |= HCR_TLOR; 4618 } 4619 if (cpu_isar_feature(aa64_pauth, cpu)) { 4620 valid_mask |= HCR_API | HCR_APK; 4621 } 4622 4623 /* Clear RES0 bits. */ 4624 value &= valid_mask; 4625 4626 /* These bits change the MMU setup: 4627 * HCR_VM enables stage 2 translation 4628 * HCR_PTW forbids certain page-table setups 4629 * HCR_DC Disables stage1 and enables stage2 translation 4630 */ 4631 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4632 tlb_flush(CPU(cpu)); 4633 } 4634 env->cp15.hcr_el2 = value; 4635 4636 /* 4637 * Updates to VI and VF require us to update the status of 4638 * virtual interrupts, which are the logical OR of these bits 4639 * and the state of the input lines from the GIC. (This requires 4640 * that we have the iothread lock, which is done by marking the 4641 * reginfo structs as ARM_CP_IO.) 4642 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4643 * possible for it to be taken immediately, because VIRQ and 4644 * VFIQ are masked unless running at EL0 or EL1, and HCR 4645 * can only be written at EL2. 4646 */ 4647 g_assert(qemu_mutex_iothread_locked()); 4648 arm_cpu_update_virq(cpu); 4649 arm_cpu_update_vfiq(cpu); 4650 } 4651 4652 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4653 uint64_t value) 4654 { 4655 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4656 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4657 hcr_write(env, NULL, value); 4658 } 4659 4660 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4661 uint64_t value) 4662 { 4663 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4664 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4665 hcr_write(env, NULL, value); 4666 } 4667 4668 /* 4669 * Return the effective value of HCR_EL2. 4670 * Bits that are not included here: 4671 * RW (read from SCR_EL3.RW as needed) 4672 */ 4673 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4674 { 4675 uint64_t ret = env->cp15.hcr_el2; 4676 4677 if (arm_is_secure_below_el3(env)) { 4678 /* 4679 * "This register has no effect if EL2 is not enabled in the 4680 * current Security state". This is ARMv8.4-SecEL2 speak for 4681 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4682 * 4683 * Prior to that, the language was "In an implementation that 4684 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4685 * as if this field is 0 for all purposes other than a direct 4686 * read or write access of HCR_EL2". With lots of enumeration 4687 * on a per-field basis. In current QEMU, this is condition 4688 * is arm_is_secure_below_el3. 4689 * 4690 * Since the v8.4 language applies to the entire register, and 4691 * appears to be backward compatible, use that. 4692 */ 4693 ret = 0; 4694 } else if (ret & HCR_TGE) { 4695 /* These bits are up-to-date as of ARMv8.4. */ 4696 if (ret & HCR_E2H) { 4697 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4698 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4699 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4700 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4701 } else { 4702 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4703 } 4704 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4705 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4706 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4707 HCR_TLOR); 4708 } 4709 4710 return ret; 4711 } 4712 4713 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4714 uint64_t value) 4715 { 4716 /* 4717 * For A-profile AArch32 EL3, if NSACR.CP10 4718 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4719 */ 4720 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4721 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4722 value &= ~(0x3 << 10); 4723 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4724 } 4725 env->cp15.cptr_el[2] = value; 4726 } 4727 4728 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4729 { 4730 /* 4731 * For A-profile AArch32 EL3, if NSACR.CP10 4732 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4733 */ 4734 uint64_t value = env->cp15.cptr_el[2]; 4735 4736 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4737 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4738 value |= 0x3 << 10; 4739 } 4740 return value; 4741 } 4742 4743 static const ARMCPRegInfo el2_cp_reginfo[] = { 4744 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4745 .type = ARM_CP_IO, 4746 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4747 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4748 .writefn = hcr_write }, 4749 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4750 .type = ARM_CP_ALIAS | ARM_CP_IO, 4751 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4752 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4753 .writefn = hcr_writelow }, 4754 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4755 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4756 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4757 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4758 .type = ARM_CP_ALIAS, 4759 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4760 .access = PL2_RW, 4761 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4762 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4763 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4764 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4765 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4766 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4767 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4768 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4769 .type = ARM_CP_ALIAS, 4770 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4771 .access = PL2_RW, 4772 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4773 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4774 .type = ARM_CP_ALIAS, 4775 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4776 .access = PL2_RW, 4777 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4778 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4779 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4780 .access = PL2_RW, .writefn = vbar_write, 4781 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4782 .resetvalue = 0 }, 4783 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4785 .access = PL3_RW, .type = ARM_CP_ALIAS, 4786 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4787 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4788 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4789 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4790 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4791 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4792 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4793 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4794 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4795 .resetvalue = 0 }, 4796 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4797 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4798 .access = PL2_RW, .type = ARM_CP_ALIAS, 4799 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4800 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4801 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4802 .access = PL2_RW, .type = ARM_CP_CONST, 4803 .resetvalue = 0 }, 4804 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4805 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4806 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4807 .access = PL2_RW, .type = ARM_CP_CONST, 4808 .resetvalue = 0 }, 4809 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4810 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4811 .access = PL2_RW, .type = ARM_CP_CONST, 4812 .resetvalue = 0 }, 4813 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4814 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4815 .access = PL2_RW, .type = ARM_CP_CONST, 4816 .resetvalue = 0 }, 4817 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4818 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4819 .access = PL2_RW, 4820 /* no .writefn needed as this can't cause an ASID change; 4821 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4822 */ 4823 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4824 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4825 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4826 .type = ARM_CP_ALIAS, 4827 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4828 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4829 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4830 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4831 .access = PL2_RW, 4832 /* no .writefn needed as this can't cause an ASID change; 4833 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4834 */ 4835 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4836 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4837 .cp = 15, .opc1 = 6, .crm = 2, 4838 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4839 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4840 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4841 .writefn = vttbr_write }, 4842 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4843 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4844 .access = PL2_RW, .writefn = vttbr_write, 4845 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4846 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4847 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4848 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4849 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4850 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4851 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4852 .access = PL2_RW, .resetvalue = 0, 4853 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4854 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4855 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4856 .access = PL2_RW, .resetvalue = 0, 4857 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4858 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4859 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4860 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4861 { .name = "TLBIALLNSNH", 4862 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4863 .type = ARM_CP_NO_RAW, .access = PL2_W, 4864 .writefn = tlbiall_nsnh_write }, 4865 { .name = "TLBIALLNSNHIS", 4866 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4867 .type = ARM_CP_NO_RAW, .access = PL2_W, 4868 .writefn = tlbiall_nsnh_is_write }, 4869 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4870 .type = ARM_CP_NO_RAW, .access = PL2_W, 4871 .writefn = tlbiall_hyp_write }, 4872 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4873 .type = ARM_CP_NO_RAW, .access = PL2_W, 4874 .writefn = tlbiall_hyp_is_write }, 4875 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4876 .type = ARM_CP_NO_RAW, .access = PL2_W, 4877 .writefn = tlbimva_hyp_write }, 4878 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4879 .type = ARM_CP_NO_RAW, .access = PL2_W, 4880 .writefn = tlbimva_hyp_is_write }, 4881 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4883 .type = ARM_CP_NO_RAW, .access = PL2_W, 4884 .writefn = tlbi_aa64_alle2_write }, 4885 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4887 .type = ARM_CP_NO_RAW, .access = PL2_W, 4888 .writefn = tlbi_aa64_vae2_write }, 4889 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4891 .access = PL2_W, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vae2_write }, 4893 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4895 .access = PL2_W, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_alle2is_write }, 4897 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4899 .type = ARM_CP_NO_RAW, .access = PL2_W, 4900 .writefn = tlbi_aa64_vae2is_write }, 4901 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4903 .access = PL2_W, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vae2is_write }, 4905 #ifndef CONFIG_USER_ONLY 4906 /* Unlike the other EL2-related AT operations, these must 4907 * UNDEF from EL3 if EL2 is not implemented, which is why we 4908 * define them here rather than with the rest of the AT ops. 4909 */ 4910 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4912 .access = PL2_W, .accessfn = at_s1e2_access, 4913 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4914 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4916 .access = PL2_W, .accessfn = at_s1e2_access, 4917 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4918 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4919 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4920 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4921 * to behave as if SCR.NS was 1. 4922 */ 4923 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4924 .access = PL2_W, 4925 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4926 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4927 .access = PL2_W, 4928 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4929 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4930 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4931 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4932 * reset values as IMPDEF. We choose to reset to 3 to comply with 4933 * both ARMv7 and ARMv8. 4934 */ 4935 .access = PL2_RW, .resetvalue = 3, 4936 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4937 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4939 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4940 .writefn = gt_cntvoff_write, 4941 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4942 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4943 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4944 .writefn = gt_cntvoff_write, 4945 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4946 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4948 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4949 .type = ARM_CP_IO, .access = PL2_RW, 4950 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4951 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4952 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4953 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4954 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4955 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4956 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4957 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4958 .resetfn = gt_hyp_timer_reset, 4959 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4960 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4961 .type = ARM_CP_IO, 4962 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4963 .access = PL2_RW, 4964 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4965 .resetvalue = 0, 4966 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4967 #endif 4968 /* The only field of MDCR_EL2 that has a defined architectural reset value 4969 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4970 * don't implement any PMU event counters, so using zero as a reset 4971 * value for MDCR_EL2 is okay 4972 */ 4973 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4974 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4975 .access = PL2_RW, .resetvalue = 0, 4976 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4977 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4978 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4979 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4980 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4981 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4983 .access = PL2_RW, 4984 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4985 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4986 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4987 .access = PL2_RW, 4988 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4989 REGINFO_SENTINEL 4990 }; 4991 4992 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4993 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4994 .type = ARM_CP_ALIAS | ARM_CP_IO, 4995 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4996 .access = PL2_RW, 4997 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4998 .writefn = hcr_writehigh }, 4999 REGINFO_SENTINEL 5000 }; 5001 5002 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5003 bool isread) 5004 { 5005 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5006 * At Secure EL1 it traps to EL3. 5007 */ 5008 if (arm_current_el(env) == 3) { 5009 return CP_ACCESS_OK; 5010 } 5011 if (arm_is_secure_below_el3(env)) { 5012 return CP_ACCESS_TRAP_EL3; 5013 } 5014 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5015 if (isread) { 5016 return CP_ACCESS_OK; 5017 } 5018 return CP_ACCESS_TRAP_UNCATEGORIZED; 5019 } 5020 5021 static const ARMCPRegInfo el3_cp_reginfo[] = { 5022 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5023 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5024 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5025 .resetvalue = 0, .writefn = scr_write }, 5026 { .name = "SCR", .type = ARM_CP_ALIAS, 5027 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5028 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5029 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5030 .writefn = scr_write }, 5031 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5032 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5033 .access = PL3_RW, .resetvalue = 0, 5034 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5035 { .name = "SDER", 5036 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5037 .access = PL3_RW, .resetvalue = 0, 5038 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5039 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5040 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5041 .writefn = vbar_write, .resetvalue = 0, 5042 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5043 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5044 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5045 .access = PL3_RW, .resetvalue = 0, 5046 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5047 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5048 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5049 .access = PL3_RW, 5050 /* no .writefn needed as this can't cause an ASID change; 5051 * we must provide a .raw_writefn and .resetfn because we handle 5052 * reset and migration for the AArch32 TTBCR(S), which might be 5053 * using mask and base_mask. 5054 */ 5055 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5056 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5057 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5058 .type = ARM_CP_ALIAS, 5059 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5060 .access = PL3_RW, 5061 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5062 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5064 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5065 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5067 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5068 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5069 .type = ARM_CP_ALIAS, 5070 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5071 .access = PL3_RW, 5072 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5073 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5074 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5075 .access = PL3_RW, .writefn = vbar_write, 5076 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5077 .resetvalue = 0 }, 5078 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5079 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5080 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5081 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5082 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5083 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5084 .access = PL3_RW, .resetvalue = 0, 5085 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5086 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5088 .access = PL3_RW, .type = ARM_CP_CONST, 5089 .resetvalue = 0 }, 5090 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5091 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5092 .access = PL3_RW, .type = ARM_CP_CONST, 5093 .resetvalue = 0 }, 5094 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5095 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5096 .access = PL3_RW, .type = ARM_CP_CONST, 5097 .resetvalue = 0 }, 5098 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5100 .access = PL3_W, .type = ARM_CP_NO_RAW, 5101 .writefn = tlbi_aa64_alle3is_write }, 5102 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5103 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5104 .access = PL3_W, .type = ARM_CP_NO_RAW, 5105 .writefn = tlbi_aa64_vae3is_write }, 5106 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5107 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5108 .access = PL3_W, .type = ARM_CP_NO_RAW, 5109 .writefn = tlbi_aa64_vae3is_write }, 5110 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5111 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5112 .access = PL3_W, .type = ARM_CP_NO_RAW, 5113 .writefn = tlbi_aa64_alle3_write }, 5114 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5115 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5116 .access = PL3_W, .type = ARM_CP_NO_RAW, 5117 .writefn = tlbi_aa64_vae3_write }, 5118 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5119 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5120 .access = PL3_W, .type = ARM_CP_NO_RAW, 5121 .writefn = tlbi_aa64_vae3_write }, 5122 REGINFO_SENTINEL 5123 }; 5124 5125 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5126 bool isread) 5127 { 5128 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5129 * but the AArch32 CTR has its own reginfo struct) 5130 */ 5131 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5132 return CP_ACCESS_TRAP; 5133 } 5134 return CP_ACCESS_OK; 5135 } 5136 5137 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5138 uint64_t value) 5139 { 5140 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5141 * read via a bit in OSLSR_EL1. 5142 */ 5143 int oslock; 5144 5145 if (ri->state == ARM_CP_STATE_AA32) { 5146 oslock = (value == 0xC5ACCE55); 5147 } else { 5148 oslock = value & 1; 5149 } 5150 5151 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5152 } 5153 5154 static const ARMCPRegInfo debug_cp_reginfo[] = { 5155 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5156 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5157 * unlike DBGDRAR it is never accessible from EL0. 5158 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5159 * accessor. 5160 */ 5161 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5162 .access = PL0_R, .accessfn = access_tdra, 5163 .type = ARM_CP_CONST, .resetvalue = 0 }, 5164 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5165 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5166 .access = PL1_R, .accessfn = access_tdra, 5167 .type = ARM_CP_CONST, .resetvalue = 0 }, 5168 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5169 .access = PL0_R, .accessfn = access_tdra, 5170 .type = ARM_CP_CONST, .resetvalue = 0 }, 5171 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5172 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5173 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5174 .access = PL1_RW, .accessfn = access_tda, 5175 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5176 .resetvalue = 0 }, 5177 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5178 * We don't implement the configurable EL0 access. 5179 */ 5180 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5181 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5182 .type = ARM_CP_ALIAS, 5183 .access = PL1_R, .accessfn = access_tda, 5184 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5185 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5186 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5187 .access = PL1_W, .type = ARM_CP_NO_RAW, 5188 .accessfn = access_tdosa, 5189 .writefn = oslar_write }, 5190 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5191 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5192 .access = PL1_R, .resetvalue = 10, 5193 .accessfn = access_tdosa, 5194 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5195 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5196 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5197 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5198 .access = PL1_RW, .accessfn = access_tdosa, 5199 .type = ARM_CP_NOP }, 5200 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5201 * implement vector catch debug events yet. 5202 */ 5203 { .name = "DBGVCR", 5204 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5205 .access = PL1_RW, .accessfn = access_tda, 5206 .type = ARM_CP_NOP }, 5207 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5208 * to save and restore a 32-bit guest's DBGVCR) 5209 */ 5210 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5211 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5212 .access = PL2_RW, .accessfn = access_tda, 5213 .type = ARM_CP_NOP }, 5214 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5215 * Channel but Linux may try to access this register. The 32-bit 5216 * alias is DBGDCCINT. 5217 */ 5218 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5219 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5220 .access = PL1_RW, .accessfn = access_tda, 5221 .type = ARM_CP_NOP }, 5222 REGINFO_SENTINEL 5223 }; 5224 5225 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5226 /* 64 bit access versions of the (dummy) debug registers */ 5227 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5228 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5229 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5230 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5231 REGINFO_SENTINEL 5232 }; 5233 5234 /* Return the exception level to which exceptions should be taken 5235 * via SVEAccessTrap. If an exception should be routed through 5236 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5237 * take care of raising that exception. 5238 * C.f. the ARM pseudocode function CheckSVEEnabled. 5239 */ 5240 int sve_exception_el(CPUARMState *env, int el) 5241 { 5242 #ifndef CONFIG_USER_ONLY 5243 if (el <= 1) { 5244 bool disabled = false; 5245 5246 /* The CPACR.ZEN controls traps to EL1: 5247 * 0, 2 : trap EL0 and EL1 accesses 5248 * 1 : trap only EL0 accesses 5249 * 3 : trap no accesses 5250 */ 5251 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5252 disabled = true; 5253 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5254 disabled = el == 0; 5255 } 5256 if (disabled) { 5257 /* route_to_el2 */ 5258 return (arm_feature(env, ARM_FEATURE_EL2) 5259 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5260 } 5261 5262 /* Check CPACR.FPEN. */ 5263 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5264 disabled = true; 5265 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5266 disabled = el == 0; 5267 } 5268 if (disabled) { 5269 return 0; 5270 } 5271 } 5272 5273 /* CPTR_EL2. Since TZ and TFP are positive, 5274 * they will be zero when EL2 is not present. 5275 */ 5276 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5277 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5278 return 2; 5279 } 5280 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5281 return 0; 5282 } 5283 } 5284 5285 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5286 if (arm_feature(env, ARM_FEATURE_EL3) 5287 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5288 return 3; 5289 } 5290 #endif 5291 return 0; 5292 } 5293 5294 /* 5295 * Given that SVE is enabled, return the vector length for EL. 5296 */ 5297 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5298 { 5299 ARMCPU *cpu = env_archcpu(env); 5300 uint32_t zcr_len = cpu->sve_max_vq - 1; 5301 5302 if (el <= 1) { 5303 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5304 } 5305 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5306 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5307 } 5308 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 5309 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5310 } 5311 return zcr_len; 5312 } 5313 5314 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5315 uint64_t value) 5316 { 5317 int cur_el = arm_current_el(env); 5318 int old_len = sve_zcr_len_for_el(env, cur_el); 5319 int new_len; 5320 5321 /* Bits other than [3:0] are RAZ/WI. */ 5322 raw_write(env, ri, value & 0xf); 5323 5324 /* 5325 * Because we arrived here, we know both FP and SVE are enabled; 5326 * otherwise we would have trapped access to the ZCR_ELn register. 5327 */ 5328 new_len = sve_zcr_len_for_el(env, cur_el); 5329 if (new_len < old_len) { 5330 aarch64_sve_narrow_vq(env, new_len + 1); 5331 } 5332 } 5333 5334 static const ARMCPRegInfo zcr_el1_reginfo = { 5335 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5336 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5337 .access = PL1_RW, .type = ARM_CP_SVE, 5338 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5339 .writefn = zcr_write, .raw_writefn = raw_write 5340 }; 5341 5342 static const ARMCPRegInfo zcr_el2_reginfo = { 5343 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5344 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5345 .access = PL2_RW, .type = ARM_CP_SVE, 5346 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5347 .writefn = zcr_write, .raw_writefn = raw_write 5348 }; 5349 5350 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5351 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5352 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5353 .access = PL2_RW, .type = ARM_CP_SVE, 5354 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5355 }; 5356 5357 static const ARMCPRegInfo zcr_el3_reginfo = { 5358 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5359 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5360 .access = PL3_RW, .type = ARM_CP_SVE, 5361 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5362 .writefn = zcr_write, .raw_writefn = raw_write 5363 }; 5364 5365 void hw_watchpoint_update(ARMCPU *cpu, int n) 5366 { 5367 CPUARMState *env = &cpu->env; 5368 vaddr len = 0; 5369 vaddr wvr = env->cp15.dbgwvr[n]; 5370 uint64_t wcr = env->cp15.dbgwcr[n]; 5371 int mask; 5372 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5373 5374 if (env->cpu_watchpoint[n]) { 5375 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5376 env->cpu_watchpoint[n] = NULL; 5377 } 5378 5379 if (!extract64(wcr, 0, 1)) { 5380 /* E bit clear : watchpoint disabled */ 5381 return; 5382 } 5383 5384 switch (extract64(wcr, 3, 2)) { 5385 case 0: 5386 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5387 return; 5388 case 1: 5389 flags |= BP_MEM_READ; 5390 break; 5391 case 2: 5392 flags |= BP_MEM_WRITE; 5393 break; 5394 case 3: 5395 flags |= BP_MEM_ACCESS; 5396 break; 5397 } 5398 5399 /* Attempts to use both MASK and BAS fields simultaneously are 5400 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5401 * thus generating a watchpoint for every byte in the masked region. 5402 */ 5403 mask = extract64(wcr, 24, 4); 5404 if (mask == 1 || mask == 2) { 5405 /* Reserved values of MASK; we must act as if the mask value was 5406 * some non-reserved value, or as if the watchpoint were disabled. 5407 * We choose the latter. 5408 */ 5409 return; 5410 } else if (mask) { 5411 /* Watchpoint covers an aligned area up to 2GB in size */ 5412 len = 1ULL << mask; 5413 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5414 * whether the watchpoint fires when the unmasked bits match; we opt 5415 * to generate the exceptions. 5416 */ 5417 wvr &= ~(len - 1); 5418 } else { 5419 /* Watchpoint covers bytes defined by the byte address select bits */ 5420 int bas = extract64(wcr, 5, 8); 5421 int basstart; 5422 5423 if (bas == 0) { 5424 /* This must act as if the watchpoint is disabled */ 5425 return; 5426 } 5427 5428 if (extract64(wvr, 2, 1)) { 5429 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5430 * ignored, and BAS[3:0] define which bytes to watch. 5431 */ 5432 bas &= 0xf; 5433 } 5434 /* The BAS bits are supposed to be programmed to indicate a contiguous 5435 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5436 * we fire for each byte in the word/doubleword addressed by the WVR. 5437 * We choose to ignore any non-zero bits after the first range of 1s. 5438 */ 5439 basstart = ctz32(bas); 5440 len = cto32(bas >> basstart); 5441 wvr += basstart; 5442 } 5443 5444 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5445 &env->cpu_watchpoint[n]); 5446 } 5447 5448 void hw_watchpoint_update_all(ARMCPU *cpu) 5449 { 5450 int i; 5451 CPUARMState *env = &cpu->env; 5452 5453 /* Completely clear out existing QEMU watchpoints and our array, to 5454 * avoid possible stale entries following migration load. 5455 */ 5456 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5457 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5458 5459 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5460 hw_watchpoint_update(cpu, i); 5461 } 5462 } 5463 5464 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5465 uint64_t value) 5466 { 5467 ARMCPU *cpu = env_archcpu(env); 5468 int i = ri->crm; 5469 5470 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5471 * register reads and behaves as if values written are sign extended. 5472 * Bits [1:0] are RES0. 5473 */ 5474 value = sextract64(value, 0, 49) & ~3ULL; 5475 5476 raw_write(env, ri, value); 5477 hw_watchpoint_update(cpu, i); 5478 } 5479 5480 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5481 uint64_t value) 5482 { 5483 ARMCPU *cpu = env_archcpu(env); 5484 int i = ri->crm; 5485 5486 raw_write(env, ri, value); 5487 hw_watchpoint_update(cpu, i); 5488 } 5489 5490 void hw_breakpoint_update(ARMCPU *cpu, int n) 5491 { 5492 CPUARMState *env = &cpu->env; 5493 uint64_t bvr = env->cp15.dbgbvr[n]; 5494 uint64_t bcr = env->cp15.dbgbcr[n]; 5495 vaddr addr; 5496 int bt; 5497 int flags = BP_CPU; 5498 5499 if (env->cpu_breakpoint[n]) { 5500 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5501 env->cpu_breakpoint[n] = NULL; 5502 } 5503 5504 if (!extract64(bcr, 0, 1)) { 5505 /* E bit clear : watchpoint disabled */ 5506 return; 5507 } 5508 5509 bt = extract64(bcr, 20, 4); 5510 5511 switch (bt) { 5512 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5513 case 5: /* linked address mismatch (reserved if AArch64) */ 5514 qemu_log_mask(LOG_UNIMP, 5515 "arm: address mismatch breakpoint types not implemented\n"); 5516 return; 5517 case 0: /* unlinked address match */ 5518 case 1: /* linked address match */ 5519 { 5520 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5521 * we behave as if the register was sign extended. Bits [1:0] are 5522 * RES0. The BAS field is used to allow setting breakpoints on 16 5523 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5524 * a bp will fire if the addresses covered by the bp and the addresses 5525 * covered by the insn overlap but the insn doesn't start at the 5526 * start of the bp address range. We choose to require the insn and 5527 * the bp to have the same address. The constraints on writing to 5528 * BAS enforced in dbgbcr_write mean we have only four cases: 5529 * 0b0000 => no breakpoint 5530 * 0b0011 => breakpoint on addr 5531 * 0b1100 => breakpoint on addr + 2 5532 * 0b1111 => breakpoint on addr 5533 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5534 */ 5535 int bas = extract64(bcr, 5, 4); 5536 addr = sextract64(bvr, 0, 49) & ~3ULL; 5537 if (bas == 0) { 5538 return; 5539 } 5540 if (bas == 0xc) { 5541 addr += 2; 5542 } 5543 break; 5544 } 5545 case 2: /* unlinked context ID match */ 5546 case 8: /* unlinked VMID match (reserved if no EL2) */ 5547 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5548 qemu_log_mask(LOG_UNIMP, 5549 "arm: unlinked context breakpoint types not implemented\n"); 5550 return; 5551 case 9: /* linked VMID match (reserved if no EL2) */ 5552 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5553 case 3: /* linked context ID match */ 5554 default: 5555 /* We must generate no events for Linked context matches (unless 5556 * they are linked to by some other bp/wp, which is handled in 5557 * updates for the linking bp/wp). We choose to also generate no events 5558 * for reserved values. 5559 */ 5560 return; 5561 } 5562 5563 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5564 } 5565 5566 void hw_breakpoint_update_all(ARMCPU *cpu) 5567 { 5568 int i; 5569 CPUARMState *env = &cpu->env; 5570 5571 /* Completely clear out existing QEMU breakpoints and our array, to 5572 * avoid possible stale entries following migration load. 5573 */ 5574 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5575 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5576 5577 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5578 hw_breakpoint_update(cpu, i); 5579 } 5580 } 5581 5582 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5583 uint64_t value) 5584 { 5585 ARMCPU *cpu = env_archcpu(env); 5586 int i = ri->crm; 5587 5588 raw_write(env, ri, value); 5589 hw_breakpoint_update(cpu, i); 5590 } 5591 5592 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5593 uint64_t value) 5594 { 5595 ARMCPU *cpu = env_archcpu(env); 5596 int i = ri->crm; 5597 5598 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5599 * copy of BAS[0]. 5600 */ 5601 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5602 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5603 5604 raw_write(env, ri, value); 5605 hw_breakpoint_update(cpu, i); 5606 } 5607 5608 static void define_debug_regs(ARMCPU *cpu) 5609 { 5610 /* Define v7 and v8 architectural debug registers. 5611 * These are just dummy implementations for now. 5612 */ 5613 int i; 5614 int wrps, brps, ctx_cmps; 5615 ARMCPRegInfo dbgdidr = { 5616 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5617 .access = PL0_R, .accessfn = access_tda, 5618 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5619 }; 5620 5621 /* Note that all these register fields hold "number of Xs minus 1". */ 5622 brps = extract32(cpu->dbgdidr, 24, 4); 5623 wrps = extract32(cpu->dbgdidr, 28, 4); 5624 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5625 5626 assert(ctx_cmps <= brps); 5627 5628 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5629 * of the debug registers such as number of breakpoints; 5630 * check that if they both exist then they agree. 5631 */ 5632 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5633 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5634 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5635 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5636 } 5637 5638 define_one_arm_cp_reg(cpu, &dbgdidr); 5639 define_arm_cp_regs(cpu, debug_cp_reginfo); 5640 5641 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5642 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5643 } 5644 5645 for (i = 0; i < brps + 1; i++) { 5646 ARMCPRegInfo dbgregs[] = { 5647 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5648 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5649 .access = PL1_RW, .accessfn = access_tda, 5650 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5651 .writefn = dbgbvr_write, .raw_writefn = raw_write 5652 }, 5653 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5654 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5655 .access = PL1_RW, .accessfn = access_tda, 5656 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5657 .writefn = dbgbcr_write, .raw_writefn = raw_write 5658 }, 5659 REGINFO_SENTINEL 5660 }; 5661 define_arm_cp_regs(cpu, dbgregs); 5662 } 5663 5664 for (i = 0; i < wrps + 1; i++) { 5665 ARMCPRegInfo dbgregs[] = { 5666 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5667 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5668 .access = PL1_RW, .accessfn = access_tda, 5669 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5670 .writefn = dbgwvr_write, .raw_writefn = raw_write 5671 }, 5672 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5673 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5674 .access = PL1_RW, .accessfn = access_tda, 5675 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5676 .writefn = dbgwcr_write, .raw_writefn = raw_write 5677 }, 5678 REGINFO_SENTINEL 5679 }; 5680 define_arm_cp_regs(cpu, dbgregs); 5681 } 5682 } 5683 5684 /* We don't know until after realize whether there's a GICv3 5685 * attached, and that is what registers the gicv3 sysregs. 5686 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5687 * at runtime. 5688 */ 5689 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5690 { 5691 ARMCPU *cpu = env_archcpu(env); 5692 uint64_t pfr1 = cpu->id_pfr1; 5693 5694 if (env->gicv3state) { 5695 pfr1 |= 1 << 28; 5696 } 5697 return pfr1; 5698 } 5699 5700 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5701 { 5702 ARMCPU *cpu = env_archcpu(env); 5703 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5704 5705 if (env->gicv3state) { 5706 pfr0 |= 1 << 24; 5707 } 5708 return pfr0; 5709 } 5710 5711 /* Shared logic between LORID and the rest of the LOR* registers. 5712 * Secure state has already been delt with. 5713 */ 5714 static CPAccessResult access_lor_ns(CPUARMState *env) 5715 { 5716 int el = arm_current_el(env); 5717 5718 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5719 return CP_ACCESS_TRAP_EL2; 5720 } 5721 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5722 return CP_ACCESS_TRAP_EL3; 5723 } 5724 return CP_ACCESS_OK; 5725 } 5726 5727 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5728 bool isread) 5729 { 5730 if (arm_is_secure_below_el3(env)) { 5731 /* Access ok in secure mode. */ 5732 return CP_ACCESS_OK; 5733 } 5734 return access_lor_ns(env); 5735 } 5736 5737 static CPAccessResult access_lor_other(CPUARMState *env, 5738 const ARMCPRegInfo *ri, bool isread) 5739 { 5740 if (arm_is_secure_below_el3(env)) { 5741 /* Access denied in secure mode. */ 5742 return CP_ACCESS_TRAP; 5743 } 5744 return access_lor_ns(env); 5745 } 5746 5747 #ifdef TARGET_AARCH64 5748 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5749 bool isread) 5750 { 5751 int el = arm_current_el(env); 5752 5753 if (el < 2 && 5754 arm_feature(env, ARM_FEATURE_EL2) && 5755 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5756 return CP_ACCESS_TRAP_EL2; 5757 } 5758 if (el < 3 && 5759 arm_feature(env, ARM_FEATURE_EL3) && 5760 !(env->cp15.scr_el3 & SCR_APK)) { 5761 return CP_ACCESS_TRAP_EL3; 5762 } 5763 return CP_ACCESS_OK; 5764 } 5765 5766 static const ARMCPRegInfo pauth_reginfo[] = { 5767 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5768 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5769 .access = PL1_RW, .accessfn = access_pauth, 5770 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5771 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5772 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5773 .access = PL1_RW, .accessfn = access_pauth, 5774 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5775 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5776 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5777 .access = PL1_RW, .accessfn = access_pauth, 5778 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5779 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5781 .access = PL1_RW, .accessfn = access_pauth, 5782 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5783 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5784 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5785 .access = PL1_RW, .accessfn = access_pauth, 5786 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5787 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5788 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5789 .access = PL1_RW, .accessfn = access_pauth, 5790 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5791 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5792 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5793 .access = PL1_RW, .accessfn = access_pauth, 5794 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5795 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5796 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5797 .access = PL1_RW, .accessfn = access_pauth, 5798 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5799 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5800 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5801 .access = PL1_RW, .accessfn = access_pauth, 5802 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5803 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5805 .access = PL1_RW, .accessfn = access_pauth, 5806 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5807 REGINFO_SENTINEL 5808 }; 5809 5810 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5811 { 5812 Error *err = NULL; 5813 uint64_t ret; 5814 5815 /* Success sets NZCV = 0000. */ 5816 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5817 5818 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5819 /* 5820 * ??? Failed, for unknown reasons in the crypto subsystem. 5821 * The best we can do is log the reason and return the 5822 * timed-out indication to the guest. There is no reason 5823 * we know to expect this failure to be transitory, so the 5824 * guest may well hang retrying the operation. 5825 */ 5826 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5827 ri->name, error_get_pretty(err)); 5828 error_free(err); 5829 5830 env->ZF = 0; /* NZCF = 0100 */ 5831 return 0; 5832 } 5833 return ret; 5834 } 5835 5836 /* We do not support re-seeding, so the two registers operate the same. */ 5837 static const ARMCPRegInfo rndr_reginfo[] = { 5838 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5839 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5840 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5841 .access = PL0_R, .readfn = rndr_readfn }, 5842 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5843 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5844 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5845 .access = PL0_R, .readfn = rndr_readfn }, 5846 REGINFO_SENTINEL 5847 }; 5848 #endif 5849 5850 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 5851 bool isread) 5852 { 5853 int el = arm_current_el(env); 5854 5855 if (el == 0) { 5856 uint64_t sctlr = arm_sctlr(env, el); 5857 if (!(sctlr & SCTLR_EnRCTX)) { 5858 return CP_ACCESS_TRAP; 5859 } 5860 } else if (el == 1) { 5861 uint64_t hcr = arm_hcr_el2_eff(env); 5862 if (hcr & HCR_NV) { 5863 return CP_ACCESS_TRAP_EL2; 5864 } 5865 } 5866 return CP_ACCESS_OK; 5867 } 5868 5869 static const ARMCPRegInfo predinv_reginfo[] = { 5870 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 5871 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 5872 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5873 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 5874 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 5875 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5876 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 5877 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 5878 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5879 /* 5880 * Note the AArch32 opcodes have a different OPC1. 5881 */ 5882 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 5883 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 5884 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5885 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 5886 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 5887 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5888 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 5889 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 5890 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 5891 REGINFO_SENTINEL 5892 }; 5893 5894 void register_cp_regs_for_features(ARMCPU *cpu) 5895 { 5896 /* Register all the coprocessor registers based on feature bits */ 5897 CPUARMState *env = &cpu->env; 5898 if (arm_feature(env, ARM_FEATURE_M)) { 5899 /* M profile has no coprocessor registers */ 5900 return; 5901 } 5902 5903 define_arm_cp_regs(cpu, cp_reginfo); 5904 if (!arm_feature(env, ARM_FEATURE_V8)) { 5905 /* Must go early as it is full of wildcards that may be 5906 * overridden by later definitions. 5907 */ 5908 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5909 } 5910 5911 if (arm_feature(env, ARM_FEATURE_V6)) { 5912 /* The ID registers all have impdef reset values */ 5913 ARMCPRegInfo v6_idregs[] = { 5914 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5916 .access = PL1_R, .type = ARM_CP_CONST, 5917 .resetvalue = cpu->id_pfr0 }, 5918 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5919 * the value of the GIC field until after we define these regs. 5920 */ 5921 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5923 .access = PL1_R, .type = ARM_CP_NO_RAW, 5924 .readfn = id_pfr1_read, 5925 .writefn = arm_cp_write_ignore }, 5926 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5928 .access = PL1_R, .type = ARM_CP_CONST, 5929 .resetvalue = cpu->id_dfr0 }, 5930 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5932 .access = PL1_R, .type = ARM_CP_CONST, 5933 .resetvalue = cpu->id_afr0 }, 5934 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5936 .access = PL1_R, .type = ARM_CP_CONST, 5937 .resetvalue = cpu->id_mmfr0 }, 5938 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5940 .access = PL1_R, .type = ARM_CP_CONST, 5941 .resetvalue = cpu->id_mmfr1 }, 5942 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5944 .access = PL1_R, .type = ARM_CP_CONST, 5945 .resetvalue = cpu->id_mmfr2 }, 5946 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5948 .access = PL1_R, .type = ARM_CP_CONST, 5949 .resetvalue = cpu->id_mmfr3 }, 5950 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5952 .access = PL1_R, .type = ARM_CP_CONST, 5953 .resetvalue = cpu->isar.id_isar0 }, 5954 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5956 .access = PL1_R, .type = ARM_CP_CONST, 5957 .resetvalue = cpu->isar.id_isar1 }, 5958 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5960 .access = PL1_R, .type = ARM_CP_CONST, 5961 .resetvalue = cpu->isar.id_isar2 }, 5962 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5964 .access = PL1_R, .type = ARM_CP_CONST, 5965 .resetvalue = cpu->isar.id_isar3 }, 5966 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5968 .access = PL1_R, .type = ARM_CP_CONST, 5969 .resetvalue = cpu->isar.id_isar4 }, 5970 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5972 .access = PL1_R, .type = ARM_CP_CONST, 5973 .resetvalue = cpu->isar.id_isar5 }, 5974 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5976 .access = PL1_R, .type = ARM_CP_CONST, 5977 .resetvalue = cpu->id_mmfr4 }, 5978 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5980 .access = PL1_R, .type = ARM_CP_CONST, 5981 .resetvalue = cpu->isar.id_isar6 }, 5982 REGINFO_SENTINEL 5983 }; 5984 define_arm_cp_regs(cpu, v6_idregs); 5985 define_arm_cp_regs(cpu, v6_cp_reginfo); 5986 } else { 5987 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5988 } 5989 if (arm_feature(env, ARM_FEATURE_V6K)) { 5990 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5991 } 5992 if (arm_feature(env, ARM_FEATURE_V7MP) && 5993 !arm_feature(env, ARM_FEATURE_PMSA)) { 5994 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5995 } 5996 if (arm_feature(env, ARM_FEATURE_V7VE)) { 5997 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 5998 } 5999 if (arm_feature(env, ARM_FEATURE_V7)) { 6000 /* v7 performance monitor control register: same implementor 6001 * field as main ID register, and we implement four counters in 6002 * addition to the cycle count register. 6003 */ 6004 unsigned int i, pmcrn = 4; 6005 ARMCPRegInfo pmcr = { 6006 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6007 .access = PL0_RW, 6008 .type = ARM_CP_IO | ARM_CP_ALIAS, 6009 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6010 .accessfn = pmreg_access, .writefn = pmcr_write, 6011 .raw_writefn = raw_write, 6012 }; 6013 ARMCPRegInfo pmcr64 = { 6014 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6015 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6016 .access = PL0_RW, .accessfn = pmreg_access, 6017 .type = ARM_CP_IO, 6018 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6019 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6020 .writefn = pmcr_write, .raw_writefn = raw_write, 6021 }; 6022 define_one_arm_cp_reg(cpu, &pmcr); 6023 define_one_arm_cp_reg(cpu, &pmcr64); 6024 for (i = 0; i < pmcrn; i++) { 6025 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6026 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6027 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6028 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6029 ARMCPRegInfo pmev_regs[] = { 6030 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6031 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6032 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6033 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6034 .accessfn = pmreg_access }, 6035 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6036 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6037 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6038 .type = ARM_CP_IO, 6039 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6040 .raw_readfn = pmevcntr_rawread, 6041 .raw_writefn = pmevcntr_rawwrite }, 6042 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6043 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6044 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6045 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6046 .accessfn = pmreg_access }, 6047 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6048 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6049 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6050 .type = ARM_CP_IO, 6051 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6052 .raw_writefn = pmevtyper_rawwrite }, 6053 REGINFO_SENTINEL 6054 }; 6055 define_arm_cp_regs(cpu, pmev_regs); 6056 g_free(pmevcntr_name); 6057 g_free(pmevcntr_el0_name); 6058 g_free(pmevtyper_name); 6059 g_free(pmevtyper_el0_name); 6060 } 6061 ARMCPRegInfo clidr = { 6062 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6063 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6064 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 6065 }; 6066 define_one_arm_cp_reg(cpu, &clidr); 6067 define_arm_cp_regs(cpu, v7_cp_reginfo); 6068 define_debug_regs(cpu); 6069 } else { 6070 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6071 } 6072 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6073 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6074 ARMCPRegInfo v81_pmu_regs[] = { 6075 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6076 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6077 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6078 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6079 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6080 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6081 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6082 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6083 REGINFO_SENTINEL 6084 }; 6085 define_arm_cp_regs(cpu, v81_pmu_regs); 6086 } 6087 if (arm_feature(env, ARM_FEATURE_V8)) { 6088 /* AArch64 ID registers, which all have impdef reset values. 6089 * Note that within the ID register ranges the unused slots 6090 * must all RAZ, not UNDEF; future architecture versions may 6091 * define new registers here. 6092 */ 6093 ARMCPRegInfo v8_idregs[] = { 6094 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6095 * know the right value for the GIC field until after we 6096 * define these regs. 6097 */ 6098 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6099 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6100 .access = PL1_R, .type = ARM_CP_NO_RAW, 6101 .readfn = id_aa64pfr0_read, 6102 .writefn = arm_cp_write_ignore }, 6103 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6104 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6105 .access = PL1_R, .type = ARM_CP_CONST, 6106 .resetvalue = cpu->isar.id_aa64pfr1}, 6107 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6108 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6109 .access = PL1_R, .type = ARM_CP_CONST, 6110 .resetvalue = 0 }, 6111 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6112 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6113 .access = PL1_R, .type = ARM_CP_CONST, 6114 .resetvalue = 0 }, 6115 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6116 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6117 .access = PL1_R, .type = ARM_CP_CONST, 6118 /* At present, only SVEver == 0 is defined anyway. */ 6119 .resetvalue = 0 }, 6120 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6122 .access = PL1_R, .type = ARM_CP_CONST, 6123 .resetvalue = 0 }, 6124 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6126 .access = PL1_R, .type = ARM_CP_CONST, 6127 .resetvalue = 0 }, 6128 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6130 .access = PL1_R, .type = ARM_CP_CONST, 6131 .resetvalue = 0 }, 6132 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6134 .access = PL1_R, .type = ARM_CP_CONST, 6135 .resetvalue = cpu->id_aa64dfr0 }, 6136 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6138 .access = PL1_R, .type = ARM_CP_CONST, 6139 .resetvalue = cpu->id_aa64dfr1 }, 6140 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6142 .access = PL1_R, .type = ARM_CP_CONST, 6143 .resetvalue = 0 }, 6144 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6146 .access = PL1_R, .type = ARM_CP_CONST, 6147 .resetvalue = 0 }, 6148 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6149 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6150 .access = PL1_R, .type = ARM_CP_CONST, 6151 .resetvalue = cpu->id_aa64afr0 }, 6152 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6153 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6154 .access = PL1_R, .type = ARM_CP_CONST, 6155 .resetvalue = cpu->id_aa64afr1 }, 6156 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6157 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6158 .access = PL1_R, .type = ARM_CP_CONST, 6159 .resetvalue = 0 }, 6160 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6161 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6162 .access = PL1_R, .type = ARM_CP_CONST, 6163 .resetvalue = 0 }, 6164 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6166 .access = PL1_R, .type = ARM_CP_CONST, 6167 .resetvalue = cpu->isar.id_aa64isar0 }, 6168 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6169 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6170 .access = PL1_R, .type = ARM_CP_CONST, 6171 .resetvalue = cpu->isar.id_aa64isar1 }, 6172 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6173 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6174 .access = PL1_R, .type = ARM_CP_CONST, 6175 .resetvalue = 0 }, 6176 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6178 .access = PL1_R, .type = ARM_CP_CONST, 6179 .resetvalue = 0 }, 6180 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6181 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6182 .access = PL1_R, .type = ARM_CP_CONST, 6183 .resetvalue = 0 }, 6184 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6186 .access = PL1_R, .type = ARM_CP_CONST, 6187 .resetvalue = 0 }, 6188 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6189 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6190 .access = PL1_R, .type = ARM_CP_CONST, 6191 .resetvalue = 0 }, 6192 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6193 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6194 .access = PL1_R, .type = ARM_CP_CONST, 6195 .resetvalue = 0 }, 6196 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6198 .access = PL1_R, .type = ARM_CP_CONST, 6199 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6200 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6201 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6202 .access = PL1_R, .type = ARM_CP_CONST, 6203 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6204 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6205 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6206 .access = PL1_R, .type = ARM_CP_CONST, 6207 .resetvalue = 0 }, 6208 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6209 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6210 .access = PL1_R, .type = ARM_CP_CONST, 6211 .resetvalue = 0 }, 6212 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6214 .access = PL1_R, .type = ARM_CP_CONST, 6215 .resetvalue = 0 }, 6216 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6218 .access = PL1_R, .type = ARM_CP_CONST, 6219 .resetvalue = 0 }, 6220 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6221 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6222 .access = PL1_R, .type = ARM_CP_CONST, 6223 .resetvalue = 0 }, 6224 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6226 .access = PL1_R, .type = ARM_CP_CONST, 6227 .resetvalue = 0 }, 6228 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6229 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6230 .access = PL1_R, .type = ARM_CP_CONST, 6231 .resetvalue = cpu->isar.mvfr0 }, 6232 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6233 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6234 .access = PL1_R, .type = ARM_CP_CONST, 6235 .resetvalue = cpu->isar.mvfr1 }, 6236 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6238 .access = PL1_R, .type = ARM_CP_CONST, 6239 .resetvalue = cpu->isar.mvfr2 }, 6240 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6242 .access = PL1_R, .type = ARM_CP_CONST, 6243 .resetvalue = 0 }, 6244 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6245 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6246 .access = PL1_R, .type = ARM_CP_CONST, 6247 .resetvalue = 0 }, 6248 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6250 .access = PL1_R, .type = ARM_CP_CONST, 6251 .resetvalue = 0 }, 6252 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6254 .access = PL1_R, .type = ARM_CP_CONST, 6255 .resetvalue = 0 }, 6256 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6258 .access = PL1_R, .type = ARM_CP_CONST, 6259 .resetvalue = 0 }, 6260 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6261 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6262 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6263 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6264 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6265 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6266 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6267 .resetvalue = cpu->pmceid0 }, 6268 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6269 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6270 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6271 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6272 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6273 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6274 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6275 .resetvalue = cpu->pmceid1 }, 6276 REGINFO_SENTINEL 6277 }; 6278 #ifdef CONFIG_USER_ONLY 6279 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6280 { .name = "ID_AA64PFR0_EL1", 6281 .exported_bits = 0x000f000f00ff0000, 6282 .fixed_bits = 0x0000000000000011 }, 6283 { .name = "ID_AA64PFR1_EL1", 6284 .exported_bits = 0x00000000000000f0 }, 6285 { .name = "ID_AA64PFR*_EL1_RESERVED", 6286 .is_glob = true }, 6287 { .name = "ID_AA64ZFR0_EL1" }, 6288 { .name = "ID_AA64MMFR0_EL1", 6289 .fixed_bits = 0x00000000ff000000 }, 6290 { .name = "ID_AA64MMFR1_EL1" }, 6291 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6292 .is_glob = true }, 6293 { .name = "ID_AA64DFR0_EL1", 6294 .fixed_bits = 0x0000000000000006 }, 6295 { .name = "ID_AA64DFR1_EL1" }, 6296 { .name = "ID_AA64DFR*_EL1_RESERVED", 6297 .is_glob = true }, 6298 { .name = "ID_AA64AFR*", 6299 .is_glob = true }, 6300 { .name = "ID_AA64ISAR0_EL1", 6301 .exported_bits = 0x00fffffff0fffff0 }, 6302 { .name = "ID_AA64ISAR1_EL1", 6303 .exported_bits = 0x000000f0ffffffff }, 6304 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6305 .is_glob = true }, 6306 REGUSERINFO_SENTINEL 6307 }; 6308 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6309 #endif 6310 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6311 if (!arm_feature(env, ARM_FEATURE_EL3) && 6312 !arm_feature(env, ARM_FEATURE_EL2)) { 6313 ARMCPRegInfo rvbar = { 6314 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6315 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6316 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6317 }; 6318 define_one_arm_cp_reg(cpu, &rvbar); 6319 } 6320 define_arm_cp_regs(cpu, v8_idregs); 6321 define_arm_cp_regs(cpu, v8_cp_reginfo); 6322 } 6323 if (arm_feature(env, ARM_FEATURE_EL2)) { 6324 uint64_t vmpidr_def = mpidr_read_val(env); 6325 ARMCPRegInfo vpidr_regs[] = { 6326 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6327 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6328 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6329 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6330 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6331 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6332 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6333 .access = PL2_RW, .resetvalue = cpu->midr, 6334 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6335 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6336 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6337 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6338 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6339 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6340 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6341 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6342 .access = PL2_RW, 6343 .resetvalue = vmpidr_def, 6344 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6345 REGINFO_SENTINEL 6346 }; 6347 define_arm_cp_regs(cpu, vpidr_regs); 6348 define_arm_cp_regs(cpu, el2_cp_reginfo); 6349 if (arm_feature(env, ARM_FEATURE_V8)) { 6350 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6351 } 6352 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6353 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6354 ARMCPRegInfo rvbar = { 6355 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6356 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6357 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6358 }; 6359 define_one_arm_cp_reg(cpu, &rvbar); 6360 } 6361 } else { 6362 /* If EL2 is missing but higher ELs are enabled, we need to 6363 * register the no_el2 reginfos. 6364 */ 6365 if (arm_feature(env, ARM_FEATURE_EL3)) { 6366 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6367 * of MIDR_EL1 and MPIDR_EL1. 6368 */ 6369 ARMCPRegInfo vpidr_regs[] = { 6370 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6371 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6372 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6373 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6374 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6375 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6376 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6377 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6378 .type = ARM_CP_NO_RAW, 6379 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6380 REGINFO_SENTINEL 6381 }; 6382 define_arm_cp_regs(cpu, vpidr_regs); 6383 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6384 if (arm_feature(env, ARM_FEATURE_V8)) { 6385 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6386 } 6387 } 6388 } 6389 if (arm_feature(env, ARM_FEATURE_EL3)) { 6390 define_arm_cp_regs(cpu, el3_cp_reginfo); 6391 ARMCPRegInfo el3_regs[] = { 6392 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6393 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6394 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6395 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6396 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6397 .access = PL3_RW, 6398 .raw_writefn = raw_write, .writefn = sctlr_write, 6399 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6400 .resetvalue = cpu->reset_sctlr }, 6401 REGINFO_SENTINEL 6402 }; 6403 6404 define_arm_cp_regs(cpu, el3_regs); 6405 } 6406 /* The behaviour of NSACR is sufficiently various that we don't 6407 * try to describe it in a single reginfo: 6408 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6409 * reads as constant 0xc00 from NS EL1 and NS EL2 6410 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6411 * if v7 without EL3, register doesn't exist 6412 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6413 */ 6414 if (arm_feature(env, ARM_FEATURE_EL3)) { 6415 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6416 ARMCPRegInfo nsacr = { 6417 .name = "NSACR", .type = ARM_CP_CONST, 6418 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6419 .access = PL1_RW, .accessfn = nsacr_access, 6420 .resetvalue = 0xc00 6421 }; 6422 define_one_arm_cp_reg(cpu, &nsacr); 6423 } else { 6424 ARMCPRegInfo nsacr = { 6425 .name = "NSACR", 6426 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6427 .access = PL3_RW | PL1_R, 6428 .resetvalue = 0, 6429 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6430 }; 6431 define_one_arm_cp_reg(cpu, &nsacr); 6432 } 6433 } else { 6434 if (arm_feature(env, ARM_FEATURE_V8)) { 6435 ARMCPRegInfo nsacr = { 6436 .name = "NSACR", .type = ARM_CP_CONST, 6437 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6438 .access = PL1_R, 6439 .resetvalue = 0xc00 6440 }; 6441 define_one_arm_cp_reg(cpu, &nsacr); 6442 } 6443 } 6444 6445 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6446 if (arm_feature(env, ARM_FEATURE_V6)) { 6447 /* PMSAv6 not implemented */ 6448 assert(arm_feature(env, ARM_FEATURE_V7)); 6449 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6450 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6451 } else { 6452 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6453 } 6454 } else { 6455 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6456 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6457 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6458 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6459 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6460 } 6461 } 6462 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6463 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6464 } 6465 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6466 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6467 } 6468 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6469 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6470 } 6471 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6472 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6473 } 6474 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6475 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6476 } 6477 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6478 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6479 } 6480 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6481 define_arm_cp_regs(cpu, omap_cp_reginfo); 6482 } 6483 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6484 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6485 } 6486 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6487 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6488 } 6489 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6490 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6491 } 6492 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6493 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6494 } 6495 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6496 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6497 * be read-only (ie write causes UNDEF exception). 6498 */ 6499 { 6500 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6501 /* Pre-v8 MIDR space. 6502 * Note that the MIDR isn't a simple constant register because 6503 * of the TI925 behaviour where writes to another register can 6504 * cause the MIDR value to change. 6505 * 6506 * Unimplemented registers in the c15 0 0 0 space default to 6507 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6508 * and friends override accordingly. 6509 */ 6510 { .name = "MIDR", 6511 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6512 .access = PL1_R, .resetvalue = cpu->midr, 6513 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6514 .readfn = midr_read, 6515 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6516 .type = ARM_CP_OVERRIDE }, 6517 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6518 { .name = "DUMMY", 6519 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6520 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6521 { .name = "DUMMY", 6522 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6523 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6524 { .name = "DUMMY", 6525 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6526 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6527 { .name = "DUMMY", 6528 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6529 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6530 { .name = "DUMMY", 6531 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6532 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6533 REGINFO_SENTINEL 6534 }; 6535 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6536 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6537 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6538 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6539 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6540 .readfn = midr_read }, 6541 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6542 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6543 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6544 .access = PL1_R, .resetvalue = cpu->midr }, 6545 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6546 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6547 .access = PL1_R, .resetvalue = cpu->midr }, 6548 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6550 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6551 REGINFO_SENTINEL 6552 }; 6553 ARMCPRegInfo id_cp_reginfo[] = { 6554 /* These are common to v8 and pre-v8 */ 6555 { .name = "CTR", 6556 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6557 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6558 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6559 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6560 .access = PL0_R, .accessfn = ctr_el0_access, 6561 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6562 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6563 { .name = "TCMTR", 6564 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6565 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6566 REGINFO_SENTINEL 6567 }; 6568 /* TLBTR is specific to VMSA */ 6569 ARMCPRegInfo id_tlbtr_reginfo = { 6570 .name = "TLBTR", 6571 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6572 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 6573 }; 6574 /* MPUIR is specific to PMSA V6+ */ 6575 ARMCPRegInfo id_mpuir_reginfo = { 6576 .name = "MPUIR", 6577 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6578 .access = PL1_R, .type = ARM_CP_CONST, 6579 .resetvalue = cpu->pmsav7_dregion << 8 6580 }; 6581 ARMCPRegInfo crn0_wi_reginfo = { 6582 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6583 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6584 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6585 }; 6586 #ifdef CONFIG_USER_ONLY 6587 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6588 { .name = "MIDR_EL1", 6589 .exported_bits = 0x00000000ffffffff }, 6590 { .name = "REVIDR_EL1" }, 6591 REGUSERINFO_SENTINEL 6592 }; 6593 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6594 #endif 6595 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6596 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6597 ARMCPRegInfo *r; 6598 /* Register the blanket "writes ignored" value first to cover the 6599 * whole space. Then update the specific ID registers to allow write 6600 * access, so that they ignore writes rather than causing them to 6601 * UNDEF. 6602 */ 6603 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6604 for (r = id_pre_v8_midr_cp_reginfo; 6605 r->type != ARM_CP_SENTINEL; r++) { 6606 r->access = PL1_RW; 6607 } 6608 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6609 r->access = PL1_RW; 6610 } 6611 id_mpuir_reginfo.access = PL1_RW; 6612 id_tlbtr_reginfo.access = PL1_RW; 6613 } 6614 if (arm_feature(env, ARM_FEATURE_V8)) { 6615 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6616 } else { 6617 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6618 } 6619 define_arm_cp_regs(cpu, id_cp_reginfo); 6620 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6621 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6622 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6623 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6624 } 6625 } 6626 6627 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6628 ARMCPRegInfo mpidr_cp_reginfo[] = { 6629 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6630 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6631 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6632 REGINFO_SENTINEL 6633 }; 6634 #ifdef CONFIG_USER_ONLY 6635 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6636 { .name = "MPIDR_EL1", 6637 .fixed_bits = 0x0000000080000000 }, 6638 REGUSERINFO_SENTINEL 6639 }; 6640 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6641 #endif 6642 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6643 } 6644 6645 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6646 ARMCPRegInfo auxcr_reginfo[] = { 6647 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6648 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6649 .access = PL1_RW, .type = ARM_CP_CONST, 6650 .resetvalue = cpu->reset_auxcr }, 6651 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6652 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6653 .access = PL2_RW, .type = ARM_CP_CONST, 6654 .resetvalue = 0 }, 6655 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6656 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6657 .access = PL3_RW, .type = ARM_CP_CONST, 6658 .resetvalue = 0 }, 6659 REGINFO_SENTINEL 6660 }; 6661 define_arm_cp_regs(cpu, auxcr_reginfo); 6662 if (arm_feature(env, ARM_FEATURE_V8)) { 6663 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6664 ARMCPRegInfo hactlr2_reginfo = { 6665 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6666 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6667 .access = PL2_RW, .type = ARM_CP_CONST, 6668 .resetvalue = 0 6669 }; 6670 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6671 } 6672 } 6673 6674 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6675 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6676 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6677 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6678 | extract64(cpu->reset_cbar, 32, 12); 6679 ARMCPRegInfo cbar_reginfo[] = { 6680 { .name = "CBAR", 6681 .type = ARM_CP_CONST, 6682 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6683 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 6684 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6685 .type = ARM_CP_CONST, 6686 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6687 .access = PL1_R, .resetvalue = cbar32 }, 6688 REGINFO_SENTINEL 6689 }; 6690 /* We don't implement a r/w 64 bit CBAR currently */ 6691 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 6692 define_arm_cp_regs(cpu, cbar_reginfo); 6693 } else { 6694 ARMCPRegInfo cbar = { 6695 .name = "CBAR", 6696 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 6697 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 6698 .fieldoffset = offsetof(CPUARMState, 6699 cp15.c15_config_base_address) 6700 }; 6701 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 6702 cbar.access = PL1_R; 6703 cbar.fieldoffset = 0; 6704 cbar.type = ARM_CP_CONST; 6705 } 6706 define_one_arm_cp_reg(cpu, &cbar); 6707 } 6708 } 6709 6710 if (arm_feature(env, ARM_FEATURE_VBAR)) { 6711 ARMCPRegInfo vbar_cp_reginfo[] = { 6712 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 6713 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 6714 .access = PL1_RW, .writefn = vbar_write, 6715 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 6716 offsetof(CPUARMState, cp15.vbar_ns) }, 6717 .resetvalue = 0 }, 6718 REGINFO_SENTINEL 6719 }; 6720 define_arm_cp_regs(cpu, vbar_cp_reginfo); 6721 } 6722 6723 /* Generic registers whose values depend on the implementation */ 6724 { 6725 ARMCPRegInfo sctlr = { 6726 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 6727 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6728 .access = PL1_RW, 6729 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 6730 offsetof(CPUARMState, cp15.sctlr_ns) }, 6731 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 6732 .raw_writefn = raw_write, 6733 }; 6734 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6735 /* Normally we would always end the TB on an SCTLR write, but Linux 6736 * arch/arm/mach-pxa/sleep.S expects two instructions following 6737 * an MMU enable to execute from cache. Imitate this behaviour. 6738 */ 6739 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 6740 } 6741 define_one_arm_cp_reg(cpu, &sctlr); 6742 } 6743 6744 if (cpu_isar_feature(aa64_lor, cpu)) { 6745 /* 6746 * A trivial implementation of ARMv8.1-LOR leaves all of these 6747 * registers fixed at 0, which indicates that there are zero 6748 * supported Limited Ordering regions. 6749 */ 6750 static const ARMCPRegInfo lor_reginfo[] = { 6751 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6752 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6753 .access = PL1_RW, .accessfn = access_lor_other, 6754 .type = ARM_CP_CONST, .resetvalue = 0 }, 6755 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6756 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6757 .access = PL1_RW, .accessfn = access_lor_other, 6758 .type = ARM_CP_CONST, .resetvalue = 0 }, 6759 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6760 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6761 .access = PL1_RW, .accessfn = access_lor_other, 6762 .type = ARM_CP_CONST, .resetvalue = 0 }, 6763 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6764 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6765 .access = PL1_RW, .accessfn = access_lor_other, 6766 .type = ARM_CP_CONST, .resetvalue = 0 }, 6767 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6768 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6769 .access = PL1_R, .accessfn = access_lorid, 6770 .type = ARM_CP_CONST, .resetvalue = 0 }, 6771 REGINFO_SENTINEL 6772 }; 6773 define_arm_cp_regs(cpu, lor_reginfo); 6774 } 6775 6776 if (cpu_isar_feature(aa64_sve, cpu)) { 6777 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 6778 if (arm_feature(env, ARM_FEATURE_EL2)) { 6779 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 6780 } else { 6781 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 6782 } 6783 if (arm_feature(env, ARM_FEATURE_EL3)) { 6784 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 6785 } 6786 } 6787 6788 #ifdef TARGET_AARCH64 6789 if (cpu_isar_feature(aa64_pauth, cpu)) { 6790 define_arm_cp_regs(cpu, pauth_reginfo); 6791 } 6792 if (cpu_isar_feature(aa64_rndr, cpu)) { 6793 define_arm_cp_regs(cpu, rndr_reginfo); 6794 } 6795 #endif 6796 6797 /* 6798 * While all v8.0 cpus support aarch64, QEMU does have configurations 6799 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 6800 * which will set ID_ISAR6. 6801 */ 6802 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 6803 ? cpu_isar_feature(aa64_predinv, cpu) 6804 : cpu_isar_feature(aa32_predinv, cpu)) { 6805 define_arm_cp_regs(cpu, predinv_reginfo); 6806 } 6807 } 6808 6809 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 6810 { 6811 CPUState *cs = CPU(cpu); 6812 CPUARMState *env = &cpu->env; 6813 6814 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6815 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 6816 aarch64_fpu_gdb_set_reg, 6817 34, "aarch64-fpu.xml", 0); 6818 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 6819 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6820 51, "arm-neon.xml", 0); 6821 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 6822 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6823 35, "arm-vfp3.xml", 0); 6824 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 6825 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 6826 19, "arm-vfp.xml", 0); 6827 } 6828 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 6829 arm_gen_dynamic_xml(cs), 6830 "system-registers.xml", 0); 6831 } 6832 6833 /* Sort alphabetically by type name, except for "any". */ 6834 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 6835 { 6836 ObjectClass *class_a = (ObjectClass *)a; 6837 ObjectClass *class_b = (ObjectClass *)b; 6838 const char *name_a, *name_b; 6839 6840 name_a = object_class_get_name(class_a); 6841 name_b = object_class_get_name(class_b); 6842 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 6843 return 1; 6844 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 6845 return -1; 6846 } else { 6847 return strcmp(name_a, name_b); 6848 } 6849 } 6850 6851 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 6852 { 6853 ObjectClass *oc = data; 6854 const char *typename; 6855 char *name; 6856 6857 typename = object_class_get_name(oc); 6858 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6859 qemu_printf(" %s\n", name); 6860 g_free(name); 6861 } 6862 6863 void arm_cpu_list(void) 6864 { 6865 GSList *list; 6866 6867 list = object_class_get_list(TYPE_ARM_CPU, false); 6868 list = g_slist_sort(list, arm_cpu_list_compare); 6869 qemu_printf("Available CPUs:\n"); 6870 g_slist_foreach(list, arm_cpu_list_entry, NULL); 6871 g_slist_free(list); 6872 } 6873 6874 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 6875 { 6876 ObjectClass *oc = data; 6877 CpuDefinitionInfoList **cpu_list = user_data; 6878 CpuDefinitionInfoList *entry; 6879 CpuDefinitionInfo *info; 6880 const char *typename; 6881 6882 typename = object_class_get_name(oc); 6883 info = g_malloc0(sizeof(*info)); 6884 info->name = g_strndup(typename, 6885 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 6886 info->q_typename = g_strdup(typename); 6887 6888 entry = g_malloc0(sizeof(*entry)); 6889 entry->value = info; 6890 entry->next = *cpu_list; 6891 *cpu_list = entry; 6892 } 6893 6894 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 6895 { 6896 CpuDefinitionInfoList *cpu_list = NULL; 6897 GSList *list; 6898 6899 list = object_class_get_list(TYPE_ARM_CPU, false); 6900 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 6901 g_slist_free(list); 6902 6903 return cpu_list; 6904 } 6905 6906 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 6907 void *opaque, int state, int secstate, 6908 int crm, int opc1, int opc2, 6909 const char *name) 6910 { 6911 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 6912 * add a single reginfo struct to the hash table. 6913 */ 6914 uint32_t *key = g_new(uint32_t, 1); 6915 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 6916 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 6917 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 6918 6919 r2->name = g_strdup(name); 6920 /* Reset the secure state to the specific incoming state. This is 6921 * necessary as the register may have been defined with both states. 6922 */ 6923 r2->secure = secstate; 6924 6925 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6926 /* Register is banked (using both entries in array). 6927 * Overwriting fieldoffset as the array is only used to define 6928 * banked registers but later only fieldoffset is used. 6929 */ 6930 r2->fieldoffset = r->bank_fieldoffsets[ns]; 6931 } 6932 6933 if (state == ARM_CP_STATE_AA32) { 6934 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 6935 /* If the register is banked then we don't need to migrate or 6936 * reset the 32-bit instance in certain cases: 6937 * 6938 * 1) If the register has both 32-bit and 64-bit instances then we 6939 * can count on the 64-bit instance taking care of the 6940 * non-secure bank. 6941 * 2) If ARMv8 is enabled then we can count on a 64-bit version 6942 * taking care of the secure bank. This requires that separate 6943 * 32 and 64-bit definitions are provided. 6944 */ 6945 if ((r->state == ARM_CP_STATE_BOTH && ns) || 6946 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 6947 r2->type |= ARM_CP_ALIAS; 6948 } 6949 } else if ((secstate != r->secure) && !ns) { 6950 /* The register is not banked so we only want to allow migration of 6951 * the non-secure instance. 6952 */ 6953 r2->type |= ARM_CP_ALIAS; 6954 } 6955 6956 if (r->state == ARM_CP_STATE_BOTH) { 6957 /* We assume it is a cp15 register if the .cp field is left unset. 6958 */ 6959 if (r2->cp == 0) { 6960 r2->cp = 15; 6961 } 6962 6963 #ifdef HOST_WORDS_BIGENDIAN 6964 if (r2->fieldoffset) { 6965 r2->fieldoffset += sizeof(uint32_t); 6966 } 6967 #endif 6968 } 6969 } 6970 if (state == ARM_CP_STATE_AA64) { 6971 /* To allow abbreviation of ARMCPRegInfo 6972 * definitions, we treat cp == 0 as equivalent to 6973 * the value for "standard guest-visible sysreg". 6974 * STATE_BOTH definitions are also always "standard 6975 * sysreg" in their AArch64 view (the .cp value may 6976 * be non-zero for the benefit of the AArch32 view). 6977 */ 6978 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 6979 r2->cp = CP_REG_ARM64_SYSREG_CP; 6980 } 6981 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 6982 r2->opc0, opc1, opc2); 6983 } else { 6984 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 6985 } 6986 if (opaque) { 6987 r2->opaque = opaque; 6988 } 6989 /* reginfo passed to helpers is correct for the actual access, 6990 * and is never ARM_CP_STATE_BOTH: 6991 */ 6992 r2->state = state; 6993 /* Make sure reginfo passed to helpers for wildcarded regs 6994 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 6995 */ 6996 r2->crm = crm; 6997 r2->opc1 = opc1; 6998 r2->opc2 = opc2; 6999 /* By convention, for wildcarded registers only the first 7000 * entry is used for migration; the others are marked as 7001 * ALIAS so we don't try to transfer the register 7002 * multiple times. Special registers (ie NOP/WFI) are 7003 * never migratable and not even raw-accessible. 7004 */ 7005 if ((r->type & ARM_CP_SPECIAL)) { 7006 r2->type |= ARM_CP_NO_RAW; 7007 } 7008 if (((r->crm == CP_ANY) && crm != 0) || 7009 ((r->opc1 == CP_ANY) && opc1 != 0) || 7010 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7011 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7012 } 7013 7014 /* Check that raw accesses are either forbidden or handled. Note that 7015 * we can't assert this earlier because the setup of fieldoffset for 7016 * banked registers has to be done first. 7017 */ 7018 if (!(r2->type & ARM_CP_NO_RAW)) { 7019 assert(!raw_accessors_invalid(r2)); 7020 } 7021 7022 /* Overriding of an existing definition must be explicitly 7023 * requested. 7024 */ 7025 if (!(r->type & ARM_CP_OVERRIDE)) { 7026 ARMCPRegInfo *oldreg; 7027 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7028 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7029 fprintf(stderr, "Register redefined: cp=%d %d bit " 7030 "crn=%d crm=%d opc1=%d opc2=%d, " 7031 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7032 r2->crn, r2->crm, r2->opc1, r2->opc2, 7033 oldreg->name, r2->name); 7034 g_assert_not_reached(); 7035 } 7036 } 7037 g_hash_table_insert(cpu->cp_regs, key, r2); 7038 } 7039 7040 7041 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7042 const ARMCPRegInfo *r, void *opaque) 7043 { 7044 /* Define implementations of coprocessor registers. 7045 * We store these in a hashtable because typically 7046 * there are less than 150 registers in a space which 7047 * is 16*16*16*8*8 = 262144 in size. 7048 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7049 * If a register is defined twice then the second definition is 7050 * used, so this can be used to define some generic registers and 7051 * then override them with implementation specific variations. 7052 * At least one of the original and the second definition should 7053 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7054 * against accidental use. 7055 * 7056 * The state field defines whether the register is to be 7057 * visible in the AArch32 or AArch64 execution state. If the 7058 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7059 * reginfo structure for the AArch32 view, which sees the lower 7060 * 32 bits of the 64 bit register. 7061 * 7062 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7063 * be wildcarded. AArch64 registers are always considered to be 64 7064 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7065 * the register, if any. 7066 */ 7067 int crm, opc1, opc2, state; 7068 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7069 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7070 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7071 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7072 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7073 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7074 /* 64 bit registers have only CRm and Opc1 fields */ 7075 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7076 /* op0 only exists in the AArch64 encodings */ 7077 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7078 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7079 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7080 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7081 * encodes a minimum access level for the register. We roll this 7082 * runtime check into our general permission check code, so check 7083 * here that the reginfo's specified permissions are strict enough 7084 * to encompass the generic architectural permission check. 7085 */ 7086 if (r->state != ARM_CP_STATE_AA32) { 7087 int mask = 0; 7088 switch (r->opc1) { 7089 case 0: 7090 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7091 mask = PL0U_R | PL1_RW; 7092 break; 7093 case 1: case 2: 7094 /* min_EL EL1 */ 7095 mask = PL1_RW; 7096 break; 7097 case 3: 7098 /* min_EL EL0 */ 7099 mask = PL0_RW; 7100 break; 7101 case 4: 7102 /* min_EL EL2 */ 7103 mask = PL2_RW; 7104 break; 7105 case 5: 7106 /* unallocated encoding, so not possible */ 7107 assert(false); 7108 break; 7109 case 6: 7110 /* min_EL EL3 */ 7111 mask = PL3_RW; 7112 break; 7113 case 7: 7114 /* min_EL EL1, secure mode only (we don't check the latter) */ 7115 mask = PL1_RW; 7116 break; 7117 default: 7118 /* broken reginfo with out-of-range opc1 */ 7119 assert(false); 7120 break; 7121 } 7122 /* assert our permissions are not too lax (stricter is fine) */ 7123 assert((r->access & ~mask) == 0); 7124 } 7125 7126 /* Check that the register definition has enough info to handle 7127 * reads and writes if they are permitted. 7128 */ 7129 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7130 if (r->access & PL3_R) { 7131 assert((r->fieldoffset || 7132 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7133 r->readfn); 7134 } 7135 if (r->access & PL3_W) { 7136 assert((r->fieldoffset || 7137 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7138 r->writefn); 7139 } 7140 } 7141 /* Bad type field probably means missing sentinel at end of reg list */ 7142 assert(cptype_valid(r->type)); 7143 for (crm = crmmin; crm <= crmmax; crm++) { 7144 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7145 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7146 for (state = ARM_CP_STATE_AA32; 7147 state <= ARM_CP_STATE_AA64; state++) { 7148 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7149 continue; 7150 } 7151 if (state == ARM_CP_STATE_AA32) { 7152 /* Under AArch32 CP registers can be common 7153 * (same for secure and non-secure world) or banked. 7154 */ 7155 char *name; 7156 7157 switch (r->secure) { 7158 case ARM_CP_SECSTATE_S: 7159 case ARM_CP_SECSTATE_NS: 7160 add_cpreg_to_hashtable(cpu, r, opaque, state, 7161 r->secure, crm, opc1, opc2, 7162 r->name); 7163 break; 7164 default: 7165 name = g_strdup_printf("%s_S", r->name); 7166 add_cpreg_to_hashtable(cpu, r, opaque, state, 7167 ARM_CP_SECSTATE_S, 7168 crm, opc1, opc2, name); 7169 g_free(name); 7170 add_cpreg_to_hashtable(cpu, r, opaque, state, 7171 ARM_CP_SECSTATE_NS, 7172 crm, opc1, opc2, r->name); 7173 break; 7174 } 7175 } else { 7176 /* AArch64 registers get mapped to non-secure instance 7177 * of AArch32 */ 7178 add_cpreg_to_hashtable(cpu, r, opaque, state, 7179 ARM_CP_SECSTATE_NS, 7180 crm, opc1, opc2, r->name); 7181 } 7182 } 7183 } 7184 } 7185 } 7186 } 7187 7188 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7189 const ARMCPRegInfo *regs, void *opaque) 7190 { 7191 /* Define a whole list of registers */ 7192 const ARMCPRegInfo *r; 7193 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7194 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7195 } 7196 } 7197 7198 /* 7199 * Modify ARMCPRegInfo for access from userspace. 7200 * 7201 * This is a data driven modification directed by 7202 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7203 * user-space cannot alter any values and dynamic values pertaining to 7204 * execution state are hidden from user space view anyway. 7205 */ 7206 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7207 { 7208 const ARMCPRegUserSpaceInfo *m; 7209 ARMCPRegInfo *r; 7210 7211 for (m = mods; m->name; m++) { 7212 GPatternSpec *pat = NULL; 7213 if (m->is_glob) { 7214 pat = g_pattern_spec_new(m->name); 7215 } 7216 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7217 if (pat && g_pattern_match_string(pat, r->name)) { 7218 r->type = ARM_CP_CONST; 7219 r->access = PL0U_R; 7220 r->resetvalue = 0; 7221 /* continue */ 7222 } else if (strcmp(r->name, m->name) == 0) { 7223 r->type = ARM_CP_CONST; 7224 r->access = PL0U_R; 7225 r->resetvalue &= m->exported_bits; 7226 r->resetvalue |= m->fixed_bits; 7227 break; 7228 } 7229 } 7230 if (pat) { 7231 g_pattern_spec_free(pat); 7232 } 7233 } 7234 } 7235 7236 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7237 { 7238 return g_hash_table_lookup(cpregs, &encoded_cp); 7239 } 7240 7241 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7242 uint64_t value) 7243 { 7244 /* Helper coprocessor write function for write-ignore registers */ 7245 } 7246 7247 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7248 { 7249 /* Helper coprocessor write function for read-as-zero registers */ 7250 return 0; 7251 } 7252 7253 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7254 { 7255 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7256 } 7257 7258 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7259 { 7260 /* Return true if it is not valid for us to switch to 7261 * this CPU mode (ie all the UNPREDICTABLE cases in 7262 * the ARM ARM CPSRWriteByInstr pseudocode). 7263 */ 7264 7265 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7266 if (write_type == CPSRWriteByInstr && 7267 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7268 mode == ARM_CPU_MODE_HYP)) { 7269 return 1; 7270 } 7271 7272 switch (mode) { 7273 case ARM_CPU_MODE_USR: 7274 return 0; 7275 case ARM_CPU_MODE_SYS: 7276 case ARM_CPU_MODE_SVC: 7277 case ARM_CPU_MODE_ABT: 7278 case ARM_CPU_MODE_UND: 7279 case ARM_CPU_MODE_IRQ: 7280 case ARM_CPU_MODE_FIQ: 7281 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7282 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7283 */ 7284 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7285 * and CPS are treated as illegal mode changes. 7286 */ 7287 if (write_type == CPSRWriteByInstr && 7288 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7289 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7290 return 1; 7291 } 7292 return 0; 7293 case ARM_CPU_MODE_HYP: 7294 return !arm_feature(env, ARM_FEATURE_EL2) 7295 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7296 case ARM_CPU_MODE_MON: 7297 return arm_current_el(env) < 3; 7298 default: 7299 return 1; 7300 } 7301 } 7302 7303 uint32_t cpsr_read(CPUARMState *env) 7304 { 7305 int ZF; 7306 ZF = (env->ZF == 0); 7307 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7308 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7309 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7310 | ((env->condexec_bits & 0xfc) << 8) 7311 | (env->GE << 16) | (env->daif & CPSR_AIF); 7312 } 7313 7314 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7315 CPSRWriteType write_type) 7316 { 7317 uint32_t changed_daif; 7318 7319 if (mask & CPSR_NZCV) { 7320 env->ZF = (~val) & CPSR_Z; 7321 env->NF = val; 7322 env->CF = (val >> 29) & 1; 7323 env->VF = (val << 3) & 0x80000000; 7324 } 7325 if (mask & CPSR_Q) 7326 env->QF = ((val & CPSR_Q) != 0); 7327 if (mask & CPSR_T) 7328 env->thumb = ((val & CPSR_T) != 0); 7329 if (mask & CPSR_IT_0_1) { 7330 env->condexec_bits &= ~3; 7331 env->condexec_bits |= (val >> 25) & 3; 7332 } 7333 if (mask & CPSR_IT_2_7) { 7334 env->condexec_bits &= 3; 7335 env->condexec_bits |= (val >> 8) & 0xfc; 7336 } 7337 if (mask & CPSR_GE) { 7338 env->GE = (val >> 16) & 0xf; 7339 } 7340 7341 /* In a V7 implementation that includes the security extensions but does 7342 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7343 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7344 * bits respectively. 7345 * 7346 * In a V8 implementation, it is permitted for privileged software to 7347 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7348 */ 7349 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7350 arm_feature(env, ARM_FEATURE_EL3) && 7351 !arm_feature(env, ARM_FEATURE_EL2) && 7352 !arm_is_secure(env)) { 7353 7354 changed_daif = (env->daif ^ val) & mask; 7355 7356 if (changed_daif & CPSR_A) { 7357 /* Check to see if we are allowed to change the masking of async 7358 * abort exceptions from a non-secure state. 7359 */ 7360 if (!(env->cp15.scr_el3 & SCR_AW)) { 7361 qemu_log_mask(LOG_GUEST_ERROR, 7362 "Ignoring attempt to switch CPSR_A flag from " 7363 "non-secure world with SCR.AW bit clear\n"); 7364 mask &= ~CPSR_A; 7365 } 7366 } 7367 7368 if (changed_daif & CPSR_F) { 7369 /* Check to see if we are allowed to change the masking of FIQ 7370 * exceptions from a non-secure state. 7371 */ 7372 if (!(env->cp15.scr_el3 & SCR_FW)) { 7373 qemu_log_mask(LOG_GUEST_ERROR, 7374 "Ignoring attempt to switch CPSR_F flag from " 7375 "non-secure world with SCR.FW bit clear\n"); 7376 mask &= ~CPSR_F; 7377 } 7378 7379 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7380 * If this bit is set software is not allowed to mask 7381 * FIQs, but is allowed to set CPSR_F to 0. 7382 */ 7383 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7384 (val & CPSR_F)) { 7385 qemu_log_mask(LOG_GUEST_ERROR, 7386 "Ignoring attempt to enable CPSR_F flag " 7387 "(non-maskable FIQ [NMFI] support enabled)\n"); 7388 mask &= ~CPSR_F; 7389 } 7390 } 7391 } 7392 7393 env->daif &= ~(CPSR_AIF & mask); 7394 env->daif |= val & CPSR_AIF & mask; 7395 7396 if (write_type != CPSRWriteRaw && 7397 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7398 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7399 /* Note that we can only get here in USR mode if this is a 7400 * gdb stub write; for this case we follow the architectural 7401 * behaviour for guest writes in USR mode of ignoring an attempt 7402 * to switch mode. (Those are caught by translate.c for writes 7403 * triggered by guest instructions.) 7404 */ 7405 mask &= ~CPSR_M; 7406 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7407 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7408 * v7, and has defined behaviour in v8: 7409 * + leave CPSR.M untouched 7410 * + allow changes to the other CPSR fields 7411 * + set PSTATE.IL 7412 * For user changes via the GDB stub, we don't set PSTATE.IL, 7413 * as this would be unnecessarily harsh for a user error. 7414 */ 7415 mask &= ~CPSR_M; 7416 if (write_type != CPSRWriteByGDBStub && 7417 arm_feature(env, ARM_FEATURE_V8)) { 7418 mask |= CPSR_IL; 7419 val |= CPSR_IL; 7420 } 7421 qemu_log_mask(LOG_GUEST_ERROR, 7422 "Illegal AArch32 mode switch attempt from %s to %s\n", 7423 aarch32_mode_name(env->uncached_cpsr), 7424 aarch32_mode_name(val)); 7425 } else { 7426 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7427 write_type == CPSRWriteExceptionReturn ? 7428 "Exception return from AArch32" : 7429 "AArch32 mode switch from", 7430 aarch32_mode_name(env->uncached_cpsr), 7431 aarch32_mode_name(val), env->regs[15]); 7432 switch_mode(env, val & CPSR_M); 7433 } 7434 } 7435 mask &= ~CACHED_CPSR_BITS; 7436 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7437 } 7438 7439 /* Sign/zero extend */ 7440 uint32_t HELPER(sxtb16)(uint32_t x) 7441 { 7442 uint32_t res; 7443 res = (uint16_t)(int8_t)x; 7444 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7445 return res; 7446 } 7447 7448 uint32_t HELPER(uxtb16)(uint32_t x) 7449 { 7450 uint32_t res; 7451 res = (uint16_t)(uint8_t)x; 7452 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7453 return res; 7454 } 7455 7456 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7457 { 7458 if (den == 0) 7459 return 0; 7460 if (num == INT_MIN && den == -1) 7461 return INT_MIN; 7462 return num / den; 7463 } 7464 7465 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7466 { 7467 if (den == 0) 7468 return 0; 7469 return num / den; 7470 } 7471 7472 uint32_t HELPER(rbit)(uint32_t x) 7473 { 7474 return revbit32(x); 7475 } 7476 7477 #ifdef CONFIG_USER_ONLY 7478 7479 /* These should probably raise undefined insn exceptions. */ 7480 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 7481 { 7482 ARMCPU *cpu = env_archcpu(env); 7483 7484 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 7485 } 7486 7487 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 7488 { 7489 ARMCPU *cpu = env_archcpu(env); 7490 7491 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 7492 return 0; 7493 } 7494 7495 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 7496 { 7497 /* translate.c should never generate calls here in user-only mode */ 7498 g_assert_not_reached(); 7499 } 7500 7501 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 7502 { 7503 /* translate.c should never generate calls here in user-only mode */ 7504 g_assert_not_reached(); 7505 } 7506 7507 void HELPER(v7m_preserve_fp_state)(CPUARMState *env) 7508 { 7509 /* translate.c should never generate calls here in user-only mode */ 7510 g_assert_not_reached(); 7511 } 7512 7513 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr) 7514 { 7515 /* translate.c should never generate calls here in user-only mode */ 7516 g_assert_not_reached(); 7517 } 7518 7519 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) 7520 { 7521 /* translate.c should never generate calls here in user-only mode */ 7522 g_assert_not_reached(); 7523 } 7524 7525 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 7526 { 7527 /* The TT instructions can be used by unprivileged code, but in 7528 * user-only emulation we don't have the MPU. 7529 * Luckily since we know we are NonSecure unprivileged (and that in 7530 * turn means that the A flag wasn't specified), all the bits in the 7531 * register must be zero: 7532 * IREGION: 0 because IRVALID is 0 7533 * IRVALID: 0 because NS 7534 * S: 0 because NS 7535 * NSRW: 0 because NS 7536 * NSR: 0 because NS 7537 * RW: 0 because unpriv and A flag not set 7538 * R: 0 because unpriv and A flag not set 7539 * SRVALID: 0 because NS 7540 * MRVALID: 0 because unpriv and A flag not set 7541 * SREGION: 0 becaus SRVALID is 0 7542 * MREGION: 0 because MRVALID is 0 7543 */ 7544 return 0; 7545 } 7546 7547 static void switch_mode(CPUARMState *env, int mode) 7548 { 7549 ARMCPU *cpu = env_archcpu(env); 7550 7551 if (mode != ARM_CPU_MODE_USR) { 7552 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7553 } 7554 } 7555 7556 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7557 uint32_t cur_el, bool secure) 7558 { 7559 return 1; 7560 } 7561 7562 void aarch64_sync_64_to_32(CPUARMState *env) 7563 { 7564 g_assert_not_reached(); 7565 } 7566 7567 #else 7568 7569 static void switch_mode(CPUARMState *env, int mode) 7570 { 7571 int old_mode; 7572 int i; 7573 7574 old_mode = env->uncached_cpsr & CPSR_M; 7575 if (mode == old_mode) 7576 return; 7577 7578 if (old_mode == ARM_CPU_MODE_FIQ) { 7579 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7580 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7581 } else if (mode == ARM_CPU_MODE_FIQ) { 7582 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7583 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7584 } 7585 7586 i = bank_number(old_mode); 7587 env->banked_r13[i] = env->regs[13]; 7588 env->banked_spsr[i] = env->spsr; 7589 7590 i = bank_number(mode); 7591 env->regs[13] = env->banked_r13[i]; 7592 env->spsr = env->banked_spsr[i]; 7593 7594 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7595 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7596 } 7597 7598 /* Physical Interrupt Target EL Lookup Table 7599 * 7600 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7601 * 7602 * The below multi-dimensional table is used for looking up the target 7603 * exception level given numerous condition criteria. Specifically, the 7604 * target EL is based on SCR and HCR routing controls as well as the 7605 * currently executing EL and secure state. 7606 * 7607 * Dimensions: 7608 * target_el_table[2][2][2][2][2][4] 7609 * | | | | | +--- Current EL 7610 * | | | | +------ Non-secure(0)/Secure(1) 7611 * | | | +--------- HCR mask override 7612 * | | +------------ SCR exec state control 7613 * | +--------------- SCR mask override 7614 * +------------------ 32-bit(0)/64-bit(1) EL3 7615 * 7616 * The table values are as such: 7617 * 0-3 = EL0-EL3 7618 * -1 = Cannot occur 7619 * 7620 * The ARM ARM target EL table includes entries indicating that an "exception 7621 * is not taken". The two cases where this is applicable are: 7622 * 1) An exception is taken from EL3 but the SCR does not have the exception 7623 * routed to EL3. 7624 * 2) An exception is taken from EL2 but the HCR does not have the exception 7625 * routed to EL2. 7626 * In these two cases, the below table contain a target of EL1. This value is 7627 * returned as it is expected that the consumer of the table data will check 7628 * for "target EL >= current EL" to ensure the exception is not taken. 7629 * 7630 * SCR HCR 7631 * 64 EA AMO From 7632 * BIT IRQ IMO Non-secure Secure 7633 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7634 */ 7635 static const int8_t target_el_table[2][2][2][2][2][4] = { 7636 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7637 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7638 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7639 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7640 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7641 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7642 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7643 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7644 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7645 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7646 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7647 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7648 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7649 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7650 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7651 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7652 }; 7653 7654 /* 7655 * Determine the target EL for physical exceptions 7656 */ 7657 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7658 uint32_t cur_el, bool secure) 7659 { 7660 CPUARMState *env = cs->env_ptr; 7661 bool rw; 7662 bool scr; 7663 bool hcr; 7664 int target_el; 7665 /* Is the highest EL AArch64? */ 7666 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7667 uint64_t hcr_el2; 7668 7669 if (arm_feature(env, ARM_FEATURE_EL3)) { 7670 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7671 } else { 7672 /* Either EL2 is the highest EL (and so the EL2 register width 7673 * is given by is64); or there is no EL2 or EL3, in which case 7674 * the value of 'rw' does not affect the table lookup anyway. 7675 */ 7676 rw = is64; 7677 } 7678 7679 hcr_el2 = arm_hcr_el2_eff(env); 7680 switch (excp_idx) { 7681 case EXCP_IRQ: 7682 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7683 hcr = hcr_el2 & HCR_IMO; 7684 break; 7685 case EXCP_FIQ: 7686 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7687 hcr = hcr_el2 & HCR_FMO; 7688 break; 7689 default: 7690 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7691 hcr = hcr_el2 & HCR_AMO; 7692 break; 7693 }; 7694 7695 /* Perform a table-lookup for the target EL given the current state */ 7696 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7697 7698 assert(target_el > 0); 7699 7700 return target_el; 7701 } 7702 7703 /* 7704 * Return true if the v7M CPACR permits access to the FPU for the specified 7705 * security state and privilege level. 7706 */ 7707 static bool v7m_cpacr_pass(CPUARMState *env, bool is_secure, bool is_priv) 7708 { 7709 switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) { 7710 case 0: 7711 case 2: /* UNPREDICTABLE: we treat like 0 */ 7712 return false; 7713 case 1: 7714 return is_priv; 7715 case 3: 7716 return true; 7717 default: 7718 g_assert_not_reached(); 7719 } 7720 } 7721 7722 /* 7723 * What kind of stack write are we doing? This affects how exceptions 7724 * generated during the stacking are treated. 7725 */ 7726 typedef enum StackingMode { 7727 STACK_NORMAL, 7728 STACK_IGNFAULTS, 7729 STACK_LAZYFP, 7730 } StackingMode; 7731 7732 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 7733 ARMMMUIdx mmu_idx, StackingMode mode) 7734 { 7735 CPUState *cs = CPU(cpu); 7736 CPUARMState *env = &cpu->env; 7737 MemTxAttrs attrs = {}; 7738 MemTxResult txres; 7739 target_ulong page_size; 7740 hwaddr physaddr; 7741 int prot; 7742 ARMMMUFaultInfo fi = {}; 7743 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7744 int exc; 7745 bool exc_secure; 7746 7747 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 7748 &attrs, &prot, &page_size, &fi, NULL)) { 7749 /* MPU/SAU lookup failed */ 7750 if (fi.type == ARMFault_QEMU_SFault) { 7751 if (mode == STACK_LAZYFP) { 7752 qemu_log_mask(CPU_LOG_INT, 7753 "...SecureFault with SFSR.LSPERR " 7754 "during lazy stacking\n"); 7755 env->v7m.sfsr |= R_V7M_SFSR_LSPERR_MASK; 7756 } else { 7757 qemu_log_mask(CPU_LOG_INT, 7758 "...SecureFault with SFSR.AUVIOL " 7759 "during stacking\n"); 7760 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7761 } 7762 env->v7m.sfsr |= R_V7M_SFSR_SFARVALID_MASK; 7763 env->v7m.sfar = addr; 7764 exc = ARMV7M_EXCP_SECURE; 7765 exc_secure = false; 7766 } else { 7767 if (mode == STACK_LAZYFP) { 7768 qemu_log_mask(CPU_LOG_INT, 7769 "...MemManageFault with CFSR.MLSPERR\n"); 7770 env->v7m.cfsr[secure] |= R_V7M_CFSR_MLSPERR_MASK; 7771 } else { 7772 qemu_log_mask(CPU_LOG_INT, 7773 "...MemManageFault with CFSR.MSTKERR\n"); 7774 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 7775 } 7776 exc = ARMV7M_EXCP_MEM; 7777 exc_secure = secure; 7778 } 7779 goto pend_fault; 7780 } 7781 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 7782 attrs, &txres); 7783 if (txres != MEMTX_OK) { 7784 /* BusFault trying to write the data */ 7785 if (mode == STACK_LAZYFP) { 7786 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.LSPERR\n"); 7787 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_LSPERR_MASK; 7788 } else { 7789 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 7790 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 7791 } 7792 exc = ARMV7M_EXCP_BUS; 7793 exc_secure = false; 7794 goto pend_fault; 7795 } 7796 return true; 7797 7798 pend_fault: 7799 /* By pending the exception at this point we are making 7800 * the IMPDEF choice "overridden exceptions pended" (see the 7801 * MergeExcInfo() pseudocode). The other choice would be to not 7802 * pend them now and then make a choice about which to throw away 7803 * later if we have two derived exceptions. 7804 * The only case when we must not pend the exception but instead 7805 * throw it away is if we are doing the push of the callee registers 7806 * and we've already generated a derived exception (this is indicated 7807 * by the caller passing STACK_IGNFAULTS). Even in this case we will 7808 * still update the fault status registers. 7809 */ 7810 switch (mode) { 7811 case STACK_NORMAL: 7812 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 7813 break; 7814 case STACK_LAZYFP: 7815 armv7m_nvic_set_pending_lazyfp(env->nvic, exc, exc_secure); 7816 break; 7817 case STACK_IGNFAULTS: 7818 break; 7819 } 7820 return false; 7821 } 7822 7823 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 7824 ARMMMUIdx mmu_idx) 7825 { 7826 CPUState *cs = CPU(cpu); 7827 CPUARMState *env = &cpu->env; 7828 MemTxAttrs attrs = {}; 7829 MemTxResult txres; 7830 target_ulong page_size; 7831 hwaddr physaddr; 7832 int prot; 7833 ARMMMUFaultInfo fi = {}; 7834 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 7835 int exc; 7836 bool exc_secure; 7837 uint32_t value; 7838 7839 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 7840 &attrs, &prot, &page_size, &fi, NULL)) { 7841 /* MPU/SAU lookup failed */ 7842 if (fi.type == ARMFault_QEMU_SFault) { 7843 qemu_log_mask(CPU_LOG_INT, 7844 "...SecureFault with SFSR.AUVIOL during unstack\n"); 7845 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 7846 env->v7m.sfar = addr; 7847 exc = ARMV7M_EXCP_SECURE; 7848 exc_secure = false; 7849 } else { 7850 qemu_log_mask(CPU_LOG_INT, 7851 "...MemManageFault with CFSR.MUNSTKERR\n"); 7852 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 7853 exc = ARMV7M_EXCP_MEM; 7854 exc_secure = secure; 7855 } 7856 goto pend_fault; 7857 } 7858 7859 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 7860 attrs, &txres); 7861 if (txres != MEMTX_OK) { 7862 /* BusFault trying to read the data */ 7863 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 7864 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 7865 exc = ARMV7M_EXCP_BUS; 7866 exc_secure = false; 7867 goto pend_fault; 7868 } 7869 7870 *dest = value; 7871 return true; 7872 7873 pend_fault: 7874 /* By pending the exception at this point we are making 7875 * the IMPDEF choice "overridden exceptions pended" (see the 7876 * MergeExcInfo() pseudocode). The other choice would be to not 7877 * pend them now and then make a choice about which to throw away 7878 * later if we have two derived exceptions. 7879 */ 7880 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 7881 return false; 7882 } 7883 7884 void HELPER(v7m_preserve_fp_state)(CPUARMState *env) 7885 { 7886 /* 7887 * Preserve FP state (because LSPACT was set and we are about 7888 * to execute an FP instruction). This corresponds to the 7889 * PreserveFPState() pseudocode. 7890 * We may throw an exception if the stacking fails. 7891 */ 7892 ARMCPU *cpu = env_archcpu(env); 7893 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 7894 bool negpri = !(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_HFRDY_MASK); 7895 bool is_priv = !(env->v7m.fpccr[is_secure] & R_V7M_FPCCR_USER_MASK); 7896 bool splimviol = env->v7m.fpccr[is_secure] & R_V7M_FPCCR_SPLIMVIOL_MASK; 7897 uint32_t fpcar = env->v7m.fpcar[is_secure]; 7898 bool stacked_ok = true; 7899 bool ts = is_secure && (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK); 7900 bool take_exception; 7901 7902 /* Take the iothread lock as we are going to touch the NVIC */ 7903 qemu_mutex_lock_iothread(); 7904 7905 /* Check the background context had access to the FPU */ 7906 if (!v7m_cpacr_pass(env, is_secure, is_priv)) { 7907 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, is_secure); 7908 env->v7m.cfsr[is_secure] |= R_V7M_CFSR_NOCP_MASK; 7909 stacked_ok = false; 7910 } else if (!is_secure && !extract32(env->v7m.nsacr, 10, 1)) { 7911 armv7m_nvic_set_pending_lazyfp(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S); 7912 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK; 7913 stacked_ok = false; 7914 } 7915 7916 if (!splimviol && stacked_ok) { 7917 /* We only stack if the stack limit wasn't violated */ 7918 int i; 7919 ARMMMUIdx mmu_idx; 7920 7921 mmu_idx = arm_v7m_mmu_idx_all(env, is_secure, is_priv, negpri); 7922 for (i = 0; i < (ts ? 32 : 16); i += 2) { 7923 uint64_t dn = *aa32_vfp_dreg(env, i / 2); 7924 uint32_t faddr = fpcar + 4 * i; 7925 uint32_t slo = extract64(dn, 0, 32); 7926 uint32_t shi = extract64(dn, 32, 32); 7927 7928 if (i >= 16) { 7929 faddr += 8; /* skip the slot for the FPSCR */ 7930 } 7931 stacked_ok = stacked_ok && 7932 v7m_stack_write(cpu, faddr, slo, mmu_idx, STACK_LAZYFP) && 7933 v7m_stack_write(cpu, faddr + 4, shi, mmu_idx, STACK_LAZYFP); 7934 } 7935 7936 stacked_ok = stacked_ok && 7937 v7m_stack_write(cpu, fpcar + 0x40, 7938 vfp_get_fpscr(env), mmu_idx, STACK_LAZYFP); 7939 } 7940 7941 /* 7942 * We definitely pended an exception, but it's possible that it 7943 * might not be able to be taken now. If its priority permits us 7944 * to take it now, then we must not update the LSPACT or FP regs, 7945 * but instead jump out to take the exception immediately. 7946 * If it's just pending and won't be taken until the current 7947 * handler exits, then we do update LSPACT and the FP regs. 7948 */ 7949 take_exception = !stacked_ok && 7950 armv7m_nvic_can_take_pending_exception(env->nvic); 7951 7952 qemu_mutex_unlock_iothread(); 7953 7954 if (take_exception) { 7955 raise_exception_ra(env, EXCP_LAZYFP, 0, 1, GETPC()); 7956 } 7957 7958 env->v7m.fpccr[is_secure] &= ~R_V7M_FPCCR_LSPACT_MASK; 7959 7960 if (ts) { 7961 /* Clear s0 to s31 and the FPSCR */ 7962 int i; 7963 7964 for (i = 0; i < 32; i += 2) { 7965 *aa32_vfp_dreg(env, i / 2) = 0; 7966 } 7967 vfp_set_fpscr(env, 0); 7968 } 7969 /* 7970 * Otherwise s0 to s15 and FPSCR are UNKNOWN; we choose to leave them 7971 * unchanged. 7972 */ 7973 } 7974 7975 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 7976 * This may change the current stack pointer between Main and Process 7977 * stack pointers if it is done for the CONTROL register for the current 7978 * security state. 7979 */ 7980 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 7981 bool new_spsel, 7982 bool secstate) 7983 { 7984 bool old_is_psp = v7m_using_psp(env); 7985 7986 env->v7m.control[secstate] = 7987 deposit32(env->v7m.control[secstate], 7988 R_V7M_CONTROL_SPSEL_SHIFT, 7989 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 7990 7991 if (secstate == env->v7m.secure) { 7992 bool new_is_psp = v7m_using_psp(env); 7993 uint32_t tmp; 7994 7995 if (old_is_psp != new_is_psp) { 7996 tmp = env->v7m.other_sp; 7997 env->v7m.other_sp = env->regs[13]; 7998 env->regs[13] = tmp; 7999 } 8000 } 8001 } 8002 8003 /* Write to v7M CONTROL.SPSEL bit. This may change the current 8004 * stack pointer between Main and Process stack pointers. 8005 */ 8006 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 8007 { 8008 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 8009 } 8010 8011 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 8012 { 8013 /* Write a new value to v7m.exception, thus transitioning into or out 8014 * of Handler mode; this may result in a change of active stack pointer. 8015 */ 8016 bool new_is_psp, old_is_psp = v7m_using_psp(env); 8017 uint32_t tmp; 8018 8019 env->v7m.exception = new_exc; 8020 8021 new_is_psp = v7m_using_psp(env); 8022 8023 if (old_is_psp != new_is_psp) { 8024 tmp = env->v7m.other_sp; 8025 env->v7m.other_sp = env->regs[13]; 8026 env->regs[13] = tmp; 8027 } 8028 } 8029 8030 /* Switch M profile security state between NS and S */ 8031 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 8032 { 8033 uint32_t new_ss_msp, new_ss_psp; 8034 8035 if (env->v7m.secure == new_secstate) { 8036 return; 8037 } 8038 8039 /* All the banked state is accessed by looking at env->v7m.secure 8040 * except for the stack pointer; rearrange the SP appropriately. 8041 */ 8042 new_ss_msp = env->v7m.other_ss_msp; 8043 new_ss_psp = env->v7m.other_ss_psp; 8044 8045 if (v7m_using_psp(env)) { 8046 env->v7m.other_ss_psp = env->regs[13]; 8047 env->v7m.other_ss_msp = env->v7m.other_sp; 8048 } else { 8049 env->v7m.other_ss_msp = env->regs[13]; 8050 env->v7m.other_ss_psp = env->v7m.other_sp; 8051 } 8052 8053 env->v7m.secure = new_secstate; 8054 8055 if (v7m_using_psp(env)) { 8056 env->regs[13] = new_ss_psp; 8057 env->v7m.other_sp = new_ss_msp; 8058 } else { 8059 env->regs[13] = new_ss_msp; 8060 env->v7m.other_sp = new_ss_psp; 8061 } 8062 } 8063 8064 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 8065 { 8066 /* Handle v7M BXNS: 8067 * - if the return value is a magic value, do exception return (like BX) 8068 * - otherwise bit 0 of the return value is the target security state 8069 */ 8070 uint32_t min_magic; 8071 8072 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8073 /* Covers FNC_RETURN and EXC_RETURN magic */ 8074 min_magic = FNC_RETURN_MIN_MAGIC; 8075 } else { 8076 /* EXC_RETURN magic only */ 8077 min_magic = EXC_RETURN_MIN_MAGIC; 8078 } 8079 8080 if (dest >= min_magic) { 8081 /* This is an exception return magic value; put it where 8082 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 8083 * Note that if we ever add gen_ss_advance() singlestep support to 8084 * M profile this should count as an "instruction execution complete" 8085 * event (compare gen_bx_excret_final_code()). 8086 */ 8087 env->regs[15] = dest & ~1; 8088 env->thumb = dest & 1; 8089 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 8090 /* notreached */ 8091 } 8092 8093 /* translate.c should have made BXNS UNDEF unless we're secure */ 8094 assert(env->v7m.secure); 8095 8096 if (!(dest & 1)) { 8097 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 8098 } 8099 switch_v7m_security_state(env, dest & 1); 8100 env->thumb = 1; 8101 env->regs[15] = dest & ~1; 8102 } 8103 8104 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 8105 { 8106 /* Handle v7M BLXNS: 8107 * - bit 0 of the destination address is the target security state 8108 */ 8109 8110 /* At this point regs[15] is the address just after the BLXNS */ 8111 uint32_t nextinst = env->regs[15] | 1; 8112 uint32_t sp = env->regs[13] - 8; 8113 uint32_t saved_psr; 8114 8115 /* translate.c will have made BLXNS UNDEF unless we're secure */ 8116 assert(env->v7m.secure); 8117 8118 if (dest & 1) { 8119 /* target is Secure, so this is just a normal BLX, 8120 * except that the low bit doesn't indicate Thumb/not. 8121 */ 8122 env->regs[14] = nextinst; 8123 env->thumb = 1; 8124 env->regs[15] = dest & ~1; 8125 return; 8126 } 8127 8128 /* Target is non-secure: first push a stack frame */ 8129 if (!QEMU_IS_ALIGNED(sp, 8)) { 8130 qemu_log_mask(LOG_GUEST_ERROR, 8131 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 8132 } 8133 8134 if (sp < v7m_sp_limit(env)) { 8135 raise_exception(env, EXCP_STKOF, 0, 1); 8136 } 8137 8138 saved_psr = env->v7m.exception; 8139 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 8140 saved_psr |= XPSR_SFPA; 8141 } 8142 8143 /* Note that these stores can throw exceptions on MPU faults */ 8144 cpu_stl_data(env, sp, nextinst); 8145 cpu_stl_data(env, sp + 4, saved_psr); 8146 8147 env->regs[13] = sp; 8148 env->regs[14] = 0xfeffffff; 8149 if (arm_v7m_is_handler_mode(env)) { 8150 /* Write a dummy value to IPSR, to avoid leaking the current secure 8151 * exception number to non-secure code. This is guaranteed not 8152 * to cause write_v7m_exception() to actually change stacks. 8153 */ 8154 write_v7m_exception(env, 1); 8155 } 8156 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 8157 switch_v7m_security_state(env, 0); 8158 env->thumb = 1; 8159 env->regs[15] = dest; 8160 } 8161 8162 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 8163 bool spsel) 8164 { 8165 /* Return a pointer to the location where we currently store the 8166 * stack pointer for the requested security state and thread mode. 8167 * This pointer will become invalid if the CPU state is updated 8168 * such that the stack pointers are switched around (eg changing 8169 * the SPSEL control bit). 8170 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 8171 * Unlike that pseudocode, we require the caller to pass us in the 8172 * SPSEL control bit value; this is because we also use this 8173 * function in handling of pushing of the callee-saves registers 8174 * part of the v8M stack frame (pseudocode PushCalleeStack()), 8175 * and in the tailchain codepath the SPSEL bit comes from the exception 8176 * return magic LR value from the previous exception. The pseudocode 8177 * opencodes the stack-selection in PushCalleeStack(), but we prefer 8178 * to make this utility function generic enough to do the job. 8179 */ 8180 bool want_psp = threadmode && spsel; 8181 8182 if (secure == env->v7m.secure) { 8183 if (want_psp == v7m_using_psp(env)) { 8184 return &env->regs[13]; 8185 } else { 8186 return &env->v7m.other_sp; 8187 } 8188 } else { 8189 if (want_psp) { 8190 return &env->v7m.other_ss_psp; 8191 } else { 8192 return &env->v7m.other_ss_msp; 8193 } 8194 } 8195 } 8196 8197 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 8198 uint32_t *pvec) 8199 { 8200 CPUState *cs = CPU(cpu); 8201 CPUARMState *env = &cpu->env; 8202 MemTxResult result; 8203 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 8204 uint32_t vector_entry; 8205 MemTxAttrs attrs = {}; 8206 ARMMMUIdx mmu_idx; 8207 bool exc_secure; 8208 8209 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 8210 8211 /* We don't do a get_phys_addr() here because the rules for vector 8212 * loads are special: they always use the default memory map, and 8213 * the default memory map permits reads from all addresses. 8214 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 8215 * that we want this special case which would always say "yes", 8216 * we just do the SAU lookup here followed by a direct physical load. 8217 */ 8218 attrs.secure = targets_secure; 8219 attrs.user = false; 8220 8221 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8222 V8M_SAttributes sattrs = {}; 8223 8224 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 8225 if (sattrs.ns) { 8226 attrs.secure = false; 8227 } else if (!targets_secure) { 8228 /* NS access to S memory */ 8229 goto load_fail; 8230 } 8231 } 8232 8233 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 8234 attrs, &result); 8235 if (result != MEMTX_OK) { 8236 goto load_fail; 8237 } 8238 *pvec = vector_entry; 8239 return true; 8240 8241 load_fail: 8242 /* All vector table fetch fails are reported as HardFault, with 8243 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 8244 * technically the underlying exception is a MemManage or BusFault 8245 * that is escalated to HardFault.) This is a terminal exception, 8246 * so we will either take the HardFault immediately or else enter 8247 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 8248 */ 8249 exc_secure = targets_secure || 8250 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 8251 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 8252 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 8253 return false; 8254 } 8255 8256 static uint32_t v7m_integrity_sig(CPUARMState *env, uint32_t lr) 8257 { 8258 /* 8259 * Return the integrity signature value for the callee-saves 8260 * stack frame section. @lr is the exception return payload/LR value 8261 * whose FType bit forms bit 0 of the signature if FP is present. 8262 */ 8263 uint32_t sig = 0xfefa125a; 8264 8265 if (!arm_feature(env, ARM_FEATURE_VFP) || (lr & R_V7M_EXCRET_FTYPE_MASK)) { 8266 sig |= 1; 8267 } 8268 return sig; 8269 } 8270 8271 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 8272 bool ignore_faults) 8273 { 8274 /* For v8M, push the callee-saves register part of the stack frame. 8275 * Compare the v8M pseudocode PushCalleeStack(). 8276 * In the tailchaining case this may not be the current stack. 8277 */ 8278 CPUARMState *env = &cpu->env; 8279 uint32_t *frame_sp_p; 8280 uint32_t frameptr; 8281 ARMMMUIdx mmu_idx; 8282 bool stacked_ok; 8283 uint32_t limit; 8284 bool want_psp; 8285 uint32_t sig; 8286 StackingMode smode = ignore_faults ? STACK_IGNFAULTS : STACK_NORMAL; 8287 8288 if (dotailchain) { 8289 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 8290 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 8291 !mode; 8292 8293 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 8294 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 8295 lr & R_V7M_EXCRET_SPSEL_MASK); 8296 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 8297 if (want_psp) { 8298 limit = env->v7m.psplim[M_REG_S]; 8299 } else { 8300 limit = env->v7m.msplim[M_REG_S]; 8301 } 8302 } else { 8303 mmu_idx = arm_mmu_idx(env); 8304 frame_sp_p = &env->regs[13]; 8305 limit = v7m_sp_limit(env); 8306 } 8307 8308 frameptr = *frame_sp_p - 0x28; 8309 if (frameptr < limit) { 8310 /* 8311 * Stack limit failure: set SP to the limit value, and generate 8312 * STKOF UsageFault. Stack pushes below the limit must not be 8313 * performed. It is IMPDEF whether pushes above the limit are 8314 * performed; we choose not to. 8315 */ 8316 qemu_log_mask(CPU_LOG_INT, 8317 "...STKOF during callee-saves register stacking\n"); 8318 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8319 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8320 env->v7m.secure); 8321 *frame_sp_p = limit; 8322 return true; 8323 } 8324 8325 /* Write as much of the stack frame as we can. A write failure may 8326 * cause us to pend a derived exception. 8327 */ 8328 sig = v7m_integrity_sig(env, lr); 8329 stacked_ok = 8330 v7m_stack_write(cpu, frameptr, sig, mmu_idx, smode) && 8331 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, smode) && 8332 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, smode) && 8333 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, smode) && 8334 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, smode) && 8335 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, smode) && 8336 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, smode) && 8337 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, smode) && 8338 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, smode); 8339 8340 /* Update SP regardless of whether any of the stack accesses failed. */ 8341 *frame_sp_p = frameptr; 8342 8343 return !stacked_ok; 8344 } 8345 8346 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 8347 bool ignore_stackfaults) 8348 { 8349 /* Do the "take the exception" parts of exception entry, 8350 * but not the pushing of state to the stack. This is 8351 * similar to the pseudocode ExceptionTaken() function. 8352 */ 8353 CPUARMState *env = &cpu->env; 8354 uint32_t addr; 8355 bool targets_secure; 8356 int exc; 8357 bool push_failed = false; 8358 8359 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 8360 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 8361 targets_secure ? "secure" : "nonsecure", exc); 8362 8363 if (dotailchain) { 8364 /* Sanitize LR FType and PREFIX bits */ 8365 if (!arm_feature(env, ARM_FEATURE_VFP)) { 8366 lr |= R_V7M_EXCRET_FTYPE_MASK; 8367 } 8368 lr = deposit32(lr, 24, 8, 0xff); 8369 } 8370 8371 if (arm_feature(env, ARM_FEATURE_V8)) { 8372 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 8373 (lr & R_V7M_EXCRET_S_MASK)) { 8374 /* The background code (the owner of the registers in the 8375 * exception frame) is Secure. This means it may either already 8376 * have or now needs to push callee-saves registers. 8377 */ 8378 if (targets_secure) { 8379 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 8380 /* We took an exception from Secure to NonSecure 8381 * (which means the callee-saved registers got stacked) 8382 * and are now tailchaining to a Secure exception. 8383 * Clear DCRS so eventual return from this Secure 8384 * exception unstacks the callee-saved registers. 8385 */ 8386 lr &= ~R_V7M_EXCRET_DCRS_MASK; 8387 } 8388 } else { 8389 /* We're going to a non-secure exception; push the 8390 * callee-saves registers to the stack now, if they're 8391 * not already saved. 8392 */ 8393 if (lr & R_V7M_EXCRET_DCRS_MASK && 8394 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 8395 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 8396 ignore_stackfaults); 8397 } 8398 lr |= R_V7M_EXCRET_DCRS_MASK; 8399 } 8400 } 8401 8402 lr &= ~R_V7M_EXCRET_ES_MASK; 8403 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8404 lr |= R_V7M_EXCRET_ES_MASK; 8405 } 8406 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 8407 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 8408 lr |= R_V7M_EXCRET_SPSEL_MASK; 8409 } 8410 8411 /* Clear registers if necessary to prevent non-secure exception 8412 * code being able to see register values from secure code. 8413 * Where register values become architecturally UNKNOWN we leave 8414 * them with their previous values. 8415 */ 8416 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8417 if (!targets_secure) { 8418 /* Always clear the caller-saved registers (they have been 8419 * pushed to the stack earlier in v7m_push_stack()). 8420 * Clear callee-saved registers if the background code is 8421 * Secure (in which case these regs were saved in 8422 * v7m_push_callee_stack()). 8423 */ 8424 int i; 8425 8426 for (i = 0; i < 13; i++) { 8427 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 8428 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 8429 env->regs[i] = 0; 8430 } 8431 } 8432 /* Clear EAPSR */ 8433 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 8434 } 8435 } 8436 } 8437 8438 if (push_failed && !ignore_stackfaults) { 8439 /* Derived exception on callee-saves register stacking: 8440 * we might now want to take a different exception which 8441 * targets a different security state, so try again from the top. 8442 */ 8443 qemu_log_mask(CPU_LOG_INT, 8444 "...derived exception on callee-saves register stacking"); 8445 v7m_exception_taken(cpu, lr, true, true); 8446 return; 8447 } 8448 8449 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 8450 /* Vector load failed: derived exception */ 8451 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 8452 v7m_exception_taken(cpu, lr, true, true); 8453 return; 8454 } 8455 8456 /* Now we've done everything that might cause a derived exception 8457 * we can go ahead and activate whichever exception we're going to 8458 * take (which might now be the derived exception). 8459 */ 8460 armv7m_nvic_acknowledge_irq(env->nvic); 8461 8462 /* Switch to target security state -- must do this before writing SPSEL */ 8463 switch_v7m_security_state(env, targets_secure); 8464 write_v7m_control_spsel(env, 0); 8465 arm_clear_exclusive(env); 8466 /* Clear SFPA and FPCA (has no effect if no FPU) */ 8467 env->v7m.control[M_REG_S] &= 8468 ~(R_V7M_CONTROL_FPCA_MASK | R_V7M_CONTROL_SFPA_MASK); 8469 /* Clear IT bits */ 8470 env->condexec_bits = 0; 8471 env->regs[14] = lr; 8472 env->regs[15] = addr & 0xfffffffe; 8473 env->thumb = addr & 1; 8474 } 8475 8476 static void v7m_update_fpccr(CPUARMState *env, uint32_t frameptr, 8477 bool apply_splim) 8478 { 8479 /* 8480 * Like the pseudocode UpdateFPCCR: save state in FPCAR and FPCCR 8481 * that we will need later in order to do lazy FP reg stacking. 8482 */ 8483 bool is_secure = env->v7m.secure; 8484 void *nvic = env->nvic; 8485 /* 8486 * Some bits are unbanked and live always in fpccr[M_REG_S]; some bits 8487 * are banked and we want to update the bit in the bank for the 8488 * current security state; and in one case we want to specifically 8489 * update the NS banked version of a bit even if we are secure. 8490 */ 8491 uint32_t *fpccr_s = &env->v7m.fpccr[M_REG_S]; 8492 uint32_t *fpccr_ns = &env->v7m.fpccr[M_REG_NS]; 8493 uint32_t *fpccr = &env->v7m.fpccr[is_secure]; 8494 bool hfrdy, bfrdy, mmrdy, ns_ufrdy, s_ufrdy, sfrdy, monrdy; 8495 8496 env->v7m.fpcar[is_secure] = frameptr & ~0x7; 8497 8498 if (apply_splim && arm_feature(env, ARM_FEATURE_V8)) { 8499 bool splimviol; 8500 uint32_t splim = v7m_sp_limit(env); 8501 bool ign = armv7m_nvic_neg_prio_requested(nvic, is_secure) && 8502 (env->v7m.ccr[is_secure] & R_V7M_CCR_STKOFHFNMIGN_MASK); 8503 8504 splimviol = !ign && frameptr < splim; 8505 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, SPLIMVIOL, splimviol); 8506 } 8507 8508 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, LSPACT, 1); 8509 8510 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, S, is_secure); 8511 8512 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, USER, arm_current_el(env) == 0); 8513 8514 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, THREAD, 8515 !arm_v7m_is_handler_mode(env)); 8516 8517 hfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_HARD, false); 8518 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 8519 8520 bfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_BUS, false); 8521 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 8522 8523 mmrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_MEM, is_secure); 8524 *fpccr = FIELD_DP32(*fpccr, V7M_FPCCR, MMRDY, mmrdy); 8525 8526 ns_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, false); 8527 *fpccr_ns = FIELD_DP32(*fpccr_ns, V7M_FPCCR, UFRDY, ns_ufrdy); 8528 8529 monrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_DEBUG, false); 8530 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, MONRDY, monrdy); 8531 8532 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8533 s_ufrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_USAGE, true); 8534 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, UFRDY, s_ufrdy); 8535 8536 sfrdy = armv7m_nvic_get_ready_status(nvic, ARMV7M_EXCP_SECURE, false); 8537 *fpccr_s = FIELD_DP32(*fpccr_s, V7M_FPCCR, SFRDY, sfrdy); 8538 } 8539 } 8540 8541 void HELPER(v7m_vlstm)(CPUARMState *env, uint32_t fptr) 8542 { 8543 /* fptr is the value of Rn, the frame pointer we store the FP regs to */ 8544 bool s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 8545 bool lspact = env->v7m.fpccr[s] & R_V7M_FPCCR_LSPACT_MASK; 8546 8547 assert(env->v7m.secure); 8548 8549 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { 8550 return; 8551 } 8552 8553 /* Check access to the coprocessor is permitted */ 8554 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) { 8555 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC()); 8556 } 8557 8558 if (lspact) { 8559 /* LSPACT should not be active when there is active FP state */ 8560 raise_exception_ra(env, EXCP_LSERR, 0, 1, GETPC()); 8561 } 8562 8563 if (fptr & 7) { 8564 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC()); 8565 } 8566 8567 /* 8568 * Note that we do not use v7m_stack_write() here, because the 8569 * accesses should not set the FSR bits for stacking errors if they 8570 * fail. (In pseudocode terms, they are AccType_NORMAL, not AccType_STACK 8571 * or AccType_LAZYFP). Faults in cpu_stl_data() will throw exceptions 8572 * and longjmp out. 8573 */ 8574 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) { 8575 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK; 8576 int i; 8577 8578 for (i = 0; i < (ts ? 32 : 16); i += 2) { 8579 uint64_t dn = *aa32_vfp_dreg(env, i / 2); 8580 uint32_t faddr = fptr + 4 * i; 8581 uint32_t slo = extract64(dn, 0, 32); 8582 uint32_t shi = extract64(dn, 32, 32); 8583 8584 if (i >= 16) { 8585 faddr += 8; /* skip the slot for the FPSCR */ 8586 } 8587 cpu_stl_data(env, faddr, slo); 8588 cpu_stl_data(env, faddr + 4, shi); 8589 } 8590 cpu_stl_data(env, fptr + 0x40, vfp_get_fpscr(env)); 8591 8592 /* 8593 * If TS is 0 then s0 to s15 and FPSCR are UNKNOWN; we choose to 8594 * leave them unchanged, matching our choice in v7m_preserve_fp_state. 8595 */ 8596 if (ts) { 8597 for (i = 0; i < 32; i += 2) { 8598 *aa32_vfp_dreg(env, i / 2) = 0; 8599 } 8600 vfp_set_fpscr(env, 0); 8601 } 8602 } else { 8603 v7m_update_fpccr(env, fptr, false); 8604 } 8605 8606 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; 8607 } 8608 8609 void HELPER(v7m_vlldm)(CPUARMState *env, uint32_t fptr) 8610 { 8611 /* fptr is the value of Rn, the frame pointer we load the FP regs from */ 8612 assert(env->v7m.secure); 8613 8614 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { 8615 return; 8616 } 8617 8618 /* Check access to the coprocessor is permitted */ 8619 if (!v7m_cpacr_pass(env, true, arm_current_el(env) != 0)) { 8620 raise_exception_ra(env, EXCP_NOCP, 0, 1, GETPC()); 8621 } 8622 8623 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) { 8624 /* State in FP is still valid */ 8625 env->v7m.fpccr[M_REG_S] &= ~R_V7M_FPCCR_LSPACT_MASK; 8626 } else { 8627 bool ts = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK; 8628 int i; 8629 uint32_t fpscr; 8630 8631 if (fptr & 7) { 8632 raise_exception_ra(env, EXCP_UNALIGNED, 0, 1, GETPC()); 8633 } 8634 8635 for (i = 0; i < (ts ? 32 : 16); i += 2) { 8636 uint32_t slo, shi; 8637 uint64_t dn; 8638 uint32_t faddr = fptr + 4 * i; 8639 8640 if (i >= 16) { 8641 faddr += 8; /* skip the slot for the FPSCR */ 8642 } 8643 8644 slo = cpu_ldl_data(env, faddr); 8645 shi = cpu_ldl_data(env, faddr + 4); 8646 8647 dn = (uint64_t) shi << 32 | slo; 8648 *aa32_vfp_dreg(env, i / 2) = dn; 8649 } 8650 fpscr = cpu_ldl_data(env, fptr + 0x40); 8651 vfp_set_fpscr(env, fpscr); 8652 } 8653 8654 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK; 8655 } 8656 8657 static bool v7m_push_stack(ARMCPU *cpu) 8658 { 8659 /* Do the "set up stack frame" part of exception entry, 8660 * similar to pseudocode PushStack(). 8661 * Return true if we generate a derived exception (and so 8662 * should ignore further stack faults trying to process 8663 * that derived exception.) 8664 */ 8665 bool stacked_ok = true, limitviol = false; 8666 CPUARMState *env = &cpu->env; 8667 uint32_t xpsr = xpsr_read(env); 8668 uint32_t frameptr = env->regs[13]; 8669 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 8670 uint32_t framesize; 8671 bool nsacr_cp10 = extract32(env->v7m.nsacr, 10, 1); 8672 8673 if ((env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) && 8674 (env->v7m.secure || nsacr_cp10)) { 8675 if (env->v7m.secure && 8676 env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK) { 8677 framesize = 0xa8; 8678 } else { 8679 framesize = 0x68; 8680 } 8681 } else { 8682 framesize = 0x20; 8683 } 8684 8685 /* Align stack pointer if the guest wants that */ 8686 if ((frameptr & 4) && 8687 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 8688 frameptr -= 4; 8689 xpsr |= XPSR_SPREALIGN; 8690 } 8691 8692 xpsr &= ~XPSR_SFPA; 8693 if (env->v7m.secure && 8694 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)) { 8695 xpsr |= XPSR_SFPA; 8696 } 8697 8698 frameptr -= framesize; 8699 8700 if (arm_feature(env, ARM_FEATURE_V8)) { 8701 uint32_t limit = v7m_sp_limit(env); 8702 8703 if (frameptr < limit) { 8704 /* 8705 * Stack limit failure: set SP to the limit value, and generate 8706 * STKOF UsageFault. Stack pushes below the limit must not be 8707 * performed. It is IMPDEF whether pushes above the limit are 8708 * performed; we choose not to. 8709 */ 8710 qemu_log_mask(CPU_LOG_INT, 8711 "...STKOF during stacking\n"); 8712 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 8713 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8714 env->v7m.secure); 8715 env->regs[13] = limit; 8716 /* 8717 * We won't try to perform any further memory accesses but 8718 * we must continue through the following code to check for 8719 * permission faults during FPU state preservation, and we 8720 * must update FPCCR if lazy stacking is enabled. 8721 */ 8722 limitviol = true; 8723 stacked_ok = false; 8724 } 8725 } 8726 8727 /* Write as much of the stack frame as we can. If we fail a stack 8728 * write this will result in a derived exception being pended 8729 * (which may be taken in preference to the one we started with 8730 * if it has higher priority). 8731 */ 8732 stacked_ok = stacked_ok && 8733 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, STACK_NORMAL) && 8734 v7m_stack_write(cpu, frameptr + 4, env->regs[1], 8735 mmu_idx, STACK_NORMAL) && 8736 v7m_stack_write(cpu, frameptr + 8, env->regs[2], 8737 mmu_idx, STACK_NORMAL) && 8738 v7m_stack_write(cpu, frameptr + 12, env->regs[3], 8739 mmu_idx, STACK_NORMAL) && 8740 v7m_stack_write(cpu, frameptr + 16, env->regs[12], 8741 mmu_idx, STACK_NORMAL) && 8742 v7m_stack_write(cpu, frameptr + 20, env->regs[14], 8743 mmu_idx, STACK_NORMAL) && 8744 v7m_stack_write(cpu, frameptr + 24, env->regs[15], 8745 mmu_idx, STACK_NORMAL) && 8746 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, STACK_NORMAL); 8747 8748 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) { 8749 /* FPU is active, try to save its registers */ 8750 bool fpccr_s = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 8751 bool lspact = env->v7m.fpccr[fpccr_s] & R_V7M_FPCCR_LSPACT_MASK; 8752 8753 if (lspact && arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8754 qemu_log_mask(CPU_LOG_INT, 8755 "...SecureFault because LSPACT and FPCA both set\n"); 8756 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 8757 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8758 } else if (!env->v7m.secure && !nsacr_cp10) { 8759 qemu_log_mask(CPU_LOG_INT, 8760 "...Secure UsageFault with CFSR.NOCP because " 8761 "NSACR.CP10 prevents stacking FP regs\n"); 8762 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, M_REG_S); 8763 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_NOCP_MASK; 8764 } else { 8765 if (!(env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPEN_MASK)) { 8766 /* Lazy stacking disabled, save registers now */ 8767 int i; 8768 bool cpacr_pass = v7m_cpacr_pass(env, env->v7m.secure, 8769 arm_current_el(env) != 0); 8770 8771 if (stacked_ok && !cpacr_pass) { 8772 /* 8773 * Take UsageFault if CPACR forbids access. The pseudocode 8774 * here does a full CheckCPEnabled() but we know the NSACR 8775 * check can never fail as we have already handled that. 8776 */ 8777 qemu_log_mask(CPU_LOG_INT, 8778 "...UsageFault with CFSR.NOCP because " 8779 "CPACR.CP10 prevents stacking FP regs\n"); 8780 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 8781 env->v7m.secure); 8782 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 8783 stacked_ok = false; 8784 } 8785 8786 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) { 8787 uint64_t dn = *aa32_vfp_dreg(env, i / 2); 8788 uint32_t faddr = frameptr + 0x20 + 4 * i; 8789 uint32_t slo = extract64(dn, 0, 32); 8790 uint32_t shi = extract64(dn, 32, 32); 8791 8792 if (i >= 16) { 8793 faddr += 8; /* skip the slot for the FPSCR */ 8794 } 8795 stacked_ok = stacked_ok && 8796 v7m_stack_write(cpu, faddr, slo, 8797 mmu_idx, STACK_NORMAL) && 8798 v7m_stack_write(cpu, faddr + 4, shi, 8799 mmu_idx, STACK_NORMAL); 8800 } 8801 stacked_ok = stacked_ok && 8802 v7m_stack_write(cpu, frameptr + 0x60, 8803 vfp_get_fpscr(env), mmu_idx, STACK_NORMAL); 8804 if (cpacr_pass) { 8805 for (i = 0; i < ((framesize == 0xa8) ? 32 : 16); i += 2) { 8806 *aa32_vfp_dreg(env, i / 2) = 0; 8807 } 8808 vfp_set_fpscr(env, 0); 8809 } 8810 } else { 8811 /* Lazy stacking enabled, save necessary info to stack later */ 8812 v7m_update_fpccr(env, frameptr + 0x20, true); 8813 } 8814 } 8815 } 8816 8817 /* 8818 * If we broke a stack limit then SP was already updated earlier; 8819 * otherwise we update SP regardless of whether any of the stack 8820 * accesses failed or we took some other kind of fault. 8821 */ 8822 if (!limitviol) { 8823 env->regs[13] = frameptr; 8824 } 8825 8826 return !stacked_ok; 8827 } 8828 8829 static void do_v7m_exception_exit(ARMCPU *cpu) 8830 { 8831 CPUARMState *env = &cpu->env; 8832 uint32_t excret; 8833 uint32_t xpsr, xpsr_mask; 8834 bool ufault = false; 8835 bool sfault = false; 8836 bool return_to_sp_process; 8837 bool return_to_handler; 8838 bool rettobase = false; 8839 bool exc_secure = false; 8840 bool return_to_secure; 8841 bool ftype; 8842 bool restore_s16_s31; 8843 8844 /* If we're not in Handler mode then jumps to magic exception-exit 8845 * addresses don't have magic behaviour. However for the v8M 8846 * security extensions the magic secure-function-return has to 8847 * work in thread mode too, so to avoid doing an extra check in 8848 * the generated code we allow exception-exit magic to also cause the 8849 * internal exception and bring us here in thread mode. Correct code 8850 * will never try to do this (the following insn fetch will always 8851 * fault) so we the overhead of having taken an unnecessary exception 8852 * doesn't matter. 8853 */ 8854 if (!arm_v7m_is_handler_mode(env)) { 8855 return; 8856 } 8857 8858 /* In the spec pseudocode ExceptionReturn() is called directly 8859 * from BXWritePC() and gets the full target PC value including 8860 * bit zero. In QEMU's implementation we treat it as a normal 8861 * jump-to-register (which is then caught later on), and so split 8862 * the target value up between env->regs[15] and env->thumb in 8863 * gen_bx(). Reconstitute it. 8864 */ 8865 excret = env->regs[15]; 8866 if (env->thumb) { 8867 excret |= 1; 8868 } 8869 8870 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 8871 " previous exception %d\n", 8872 excret, env->v7m.exception); 8873 8874 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 8875 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 8876 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 8877 excret); 8878 } 8879 8880 ftype = excret & R_V7M_EXCRET_FTYPE_MASK; 8881 8882 if (!arm_feature(env, ARM_FEATURE_VFP) && !ftype) { 8883 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero FTYPE in exception " 8884 "exit PC value 0x%" PRIx32 " is UNPREDICTABLE " 8885 "if FPU not present\n", 8886 excret); 8887 ftype = true; 8888 } 8889 8890 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8891 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 8892 * we pick which FAULTMASK to clear. 8893 */ 8894 if (!env->v7m.secure && 8895 ((excret & R_V7M_EXCRET_ES_MASK) || 8896 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 8897 sfault = 1; 8898 /* For all other purposes, treat ES as 0 (R_HXSR) */ 8899 excret &= ~R_V7M_EXCRET_ES_MASK; 8900 } 8901 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 8902 } 8903 8904 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 8905 /* Auto-clear FAULTMASK on return from other than NMI. 8906 * If the security extension is implemented then this only 8907 * happens if the raw execution priority is >= 0; the 8908 * value of the ES bit in the exception return value indicates 8909 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 8910 */ 8911 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8912 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 8913 env->v7m.faultmask[exc_secure] = 0; 8914 } 8915 } else { 8916 env->v7m.faultmask[M_REG_NS] = 0; 8917 } 8918 } 8919 8920 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 8921 exc_secure)) { 8922 case -1: 8923 /* attempt to exit an exception that isn't active */ 8924 ufault = true; 8925 break; 8926 case 0: 8927 /* still an irq active now */ 8928 break; 8929 case 1: 8930 /* we returned to base exception level, no nesting. 8931 * (In the pseudocode this is written using "NestedActivation != 1" 8932 * where we have 'rettobase == false'.) 8933 */ 8934 rettobase = true; 8935 break; 8936 default: 8937 g_assert_not_reached(); 8938 } 8939 8940 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 8941 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 8942 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 8943 (excret & R_V7M_EXCRET_S_MASK); 8944 8945 if (arm_feature(env, ARM_FEATURE_V8)) { 8946 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 8947 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 8948 * we choose to take the UsageFault. 8949 */ 8950 if ((excret & R_V7M_EXCRET_S_MASK) || 8951 (excret & R_V7M_EXCRET_ES_MASK) || 8952 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 8953 ufault = true; 8954 } 8955 } 8956 if (excret & R_V7M_EXCRET_RES0_MASK) { 8957 ufault = true; 8958 } 8959 } else { 8960 /* For v7M we only recognize certain combinations of the low bits */ 8961 switch (excret & 0xf) { 8962 case 1: /* Return to Handler */ 8963 break; 8964 case 13: /* Return to Thread using Process stack */ 8965 case 9: /* Return to Thread using Main stack */ 8966 /* We only need to check NONBASETHRDENA for v7M, because in 8967 * v8M this bit does not exist (it is RES1). 8968 */ 8969 if (!rettobase && 8970 !(env->v7m.ccr[env->v7m.secure] & 8971 R_V7M_CCR_NONBASETHRDENA_MASK)) { 8972 ufault = true; 8973 } 8974 break; 8975 default: 8976 ufault = true; 8977 } 8978 } 8979 8980 /* 8981 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 8982 * Handler mode (and will be until we write the new XPSR.Interrupt 8983 * field) this does not switch around the current stack pointer. 8984 * We must do this before we do any kind of tailchaining, including 8985 * for the derived exceptions on integrity check failures, or we will 8986 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 8987 */ 8988 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 8989 8990 /* 8991 * Clear scratch FP values left in caller saved registers; this 8992 * must happen before any kind of tail chaining. 8993 */ 8994 if ((env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_CLRONRET_MASK) && 8995 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) { 8996 if (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK) { 8997 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 8998 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8999 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 9000 "stackframe: error during lazy state deactivation\n"); 9001 v7m_exception_taken(cpu, excret, true, false); 9002 return; 9003 } else { 9004 /* Clear s0..s15 and FPSCR */ 9005 int i; 9006 9007 for (i = 0; i < 16; i += 2) { 9008 *aa32_vfp_dreg(env, i / 2) = 0; 9009 } 9010 vfp_set_fpscr(env, 0); 9011 } 9012 } 9013 9014 if (sfault) { 9015 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 9016 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9017 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 9018 "stackframe: failed EXC_RETURN.ES validity check\n"); 9019 v7m_exception_taken(cpu, excret, true, false); 9020 return; 9021 } 9022 9023 if (ufault) { 9024 /* Bad exception return: instead of popping the exception 9025 * stack, directly take a usage fault on the current stack. 9026 */ 9027 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9028 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9029 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 9030 "stackframe: failed exception return integrity check\n"); 9031 v7m_exception_taken(cpu, excret, true, false); 9032 return; 9033 } 9034 9035 /* 9036 * Tailchaining: if there is currently a pending exception that 9037 * is high enough priority to preempt execution at the level we're 9038 * about to return to, then just directly take that exception now, 9039 * avoiding an unstack-and-then-stack. Note that now we have 9040 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 9041 * our current execution priority is already the execution priority we are 9042 * returning to -- none of the state we would unstack or set based on 9043 * the EXCRET value affects it. 9044 */ 9045 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 9046 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 9047 v7m_exception_taken(cpu, excret, true, false); 9048 return; 9049 } 9050 9051 switch_v7m_security_state(env, return_to_secure); 9052 9053 { 9054 /* The stack pointer we should be reading the exception frame from 9055 * depends on bits in the magic exception return type value (and 9056 * for v8M isn't necessarily the stack pointer we will eventually 9057 * end up resuming execution with). Get a pointer to the location 9058 * in the CPU state struct where the SP we need is currently being 9059 * stored; we will use and modify it in place. 9060 * We use this limited C variable scope so we don't accidentally 9061 * use 'frame_sp_p' after we do something that makes it invalid. 9062 */ 9063 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 9064 return_to_secure, 9065 !return_to_handler, 9066 return_to_sp_process); 9067 uint32_t frameptr = *frame_sp_p; 9068 bool pop_ok = true; 9069 ARMMMUIdx mmu_idx; 9070 bool return_to_priv = return_to_handler || 9071 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 9072 9073 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 9074 return_to_priv); 9075 9076 if (!QEMU_IS_ALIGNED(frameptr, 8) && 9077 arm_feature(env, ARM_FEATURE_V8)) { 9078 qemu_log_mask(LOG_GUEST_ERROR, 9079 "M profile exception return with non-8-aligned SP " 9080 "for destination state is UNPREDICTABLE\n"); 9081 } 9082 9083 /* Do we need to pop callee-saved registers? */ 9084 if (return_to_secure && 9085 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 9086 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 9087 uint32_t actual_sig; 9088 9089 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 9090 9091 if (pop_ok && v7m_integrity_sig(env, excret) != actual_sig) { 9092 /* Take a SecureFault on the current stack */ 9093 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 9094 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9095 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 9096 "stackframe: failed exception return integrity " 9097 "signature check\n"); 9098 v7m_exception_taken(cpu, excret, true, false); 9099 return; 9100 } 9101 9102 pop_ok = pop_ok && 9103 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 9104 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 9105 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 9106 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 9107 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 9108 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 9109 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 9110 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 9111 9112 frameptr += 0x28; 9113 } 9114 9115 /* Pop registers */ 9116 pop_ok = pop_ok && 9117 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 9118 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 9119 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 9120 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 9121 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 9122 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 9123 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 9124 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 9125 9126 if (!pop_ok) { 9127 /* v7m_stack_read() pended a fault, so take it (as a tail 9128 * chained exception on the same stack frame) 9129 */ 9130 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 9131 v7m_exception_taken(cpu, excret, true, false); 9132 return; 9133 } 9134 9135 /* Returning from an exception with a PC with bit 0 set is defined 9136 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 9137 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 9138 * the lsbit, and there are several RTOSes out there which incorrectly 9139 * assume the r15 in the stack frame should be a Thumb-style "lsbit 9140 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 9141 * complain about the badly behaved guest. 9142 */ 9143 if (env->regs[15] & 1) { 9144 env->regs[15] &= ~1U; 9145 if (!arm_feature(env, ARM_FEATURE_V8)) { 9146 qemu_log_mask(LOG_GUEST_ERROR, 9147 "M profile return from interrupt with misaligned " 9148 "PC is UNPREDICTABLE on v7M\n"); 9149 } 9150 } 9151 9152 if (arm_feature(env, ARM_FEATURE_V8)) { 9153 /* For v8M we have to check whether the xPSR exception field 9154 * matches the EXCRET value for return to handler/thread 9155 * before we commit to changing the SP and xPSR. 9156 */ 9157 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 9158 if (return_to_handler != will_be_handler) { 9159 /* Take an INVPC UsageFault on the current stack. 9160 * By this point we will have switched to the security state 9161 * for the background state, so this UsageFault will target 9162 * that state. 9163 */ 9164 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 9165 env->v7m.secure); 9166 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9167 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 9168 "stackframe: failed exception return integrity " 9169 "check\n"); 9170 v7m_exception_taken(cpu, excret, true, false); 9171 return; 9172 } 9173 } 9174 9175 if (!ftype) { 9176 /* FP present and we need to handle it */ 9177 if (!return_to_secure && 9178 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_LSPACT_MASK)) { 9179 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9180 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 9181 qemu_log_mask(CPU_LOG_INT, 9182 "...taking SecureFault on existing stackframe: " 9183 "Secure LSPACT set but exception return is " 9184 "not to secure state\n"); 9185 v7m_exception_taken(cpu, excret, true, false); 9186 return; 9187 } 9188 9189 restore_s16_s31 = return_to_secure && 9190 (env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_TS_MASK); 9191 9192 if (env->v7m.fpccr[return_to_secure] & R_V7M_FPCCR_LSPACT_MASK) { 9193 /* State in FPU is still valid, just clear LSPACT */ 9194 env->v7m.fpccr[return_to_secure] &= ~R_V7M_FPCCR_LSPACT_MASK; 9195 } else { 9196 int i; 9197 uint32_t fpscr; 9198 bool cpacr_pass, nsacr_pass; 9199 9200 cpacr_pass = v7m_cpacr_pass(env, return_to_secure, 9201 return_to_priv); 9202 nsacr_pass = return_to_secure || 9203 extract32(env->v7m.nsacr, 10, 1); 9204 9205 if (!cpacr_pass) { 9206 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 9207 return_to_secure); 9208 env->v7m.cfsr[return_to_secure] |= R_V7M_CFSR_NOCP_MASK; 9209 qemu_log_mask(CPU_LOG_INT, 9210 "...taking UsageFault on existing " 9211 "stackframe: CPACR.CP10 prevents unstacking " 9212 "FP regs\n"); 9213 v7m_exception_taken(cpu, excret, true, false); 9214 return; 9215 } else if (!nsacr_pass) { 9216 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, true); 9217 env->v7m.cfsr[M_REG_S] |= R_V7M_CFSR_INVPC_MASK; 9218 qemu_log_mask(CPU_LOG_INT, 9219 "...taking Secure UsageFault on existing " 9220 "stackframe: NSACR.CP10 prevents unstacking " 9221 "FP regs\n"); 9222 v7m_exception_taken(cpu, excret, true, false); 9223 return; 9224 } 9225 9226 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) { 9227 uint32_t slo, shi; 9228 uint64_t dn; 9229 uint32_t faddr = frameptr + 0x20 + 4 * i; 9230 9231 if (i >= 16) { 9232 faddr += 8; /* Skip the slot for the FPSCR */ 9233 } 9234 9235 pop_ok = pop_ok && 9236 v7m_stack_read(cpu, &slo, faddr, mmu_idx) && 9237 v7m_stack_read(cpu, &shi, faddr + 4, mmu_idx); 9238 9239 if (!pop_ok) { 9240 break; 9241 } 9242 9243 dn = (uint64_t)shi << 32 | slo; 9244 *aa32_vfp_dreg(env, i / 2) = dn; 9245 } 9246 pop_ok = pop_ok && 9247 v7m_stack_read(cpu, &fpscr, frameptr + 0x60, mmu_idx); 9248 if (pop_ok) { 9249 vfp_set_fpscr(env, fpscr); 9250 } 9251 if (!pop_ok) { 9252 /* 9253 * These regs are 0 if security extension present; 9254 * otherwise merely UNKNOWN. We zero always. 9255 */ 9256 for (i = 0; i < (restore_s16_s31 ? 32 : 16); i += 2) { 9257 *aa32_vfp_dreg(env, i / 2) = 0; 9258 } 9259 vfp_set_fpscr(env, 0); 9260 } 9261 } 9262 } 9263 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S], 9264 V7M_CONTROL, FPCA, !ftype); 9265 9266 /* Commit to consuming the stack frame */ 9267 frameptr += 0x20; 9268 if (!ftype) { 9269 frameptr += 0x48; 9270 if (restore_s16_s31) { 9271 frameptr += 0x40; 9272 } 9273 } 9274 /* Undo stack alignment (the SPREALIGN bit indicates that the original 9275 * pre-exception SP was not 8-aligned and we added a padding word to 9276 * align it, so we undo this by ORing in the bit that increases it 9277 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 9278 * would work too but a logical OR is how the pseudocode specifies it.) 9279 */ 9280 if (xpsr & XPSR_SPREALIGN) { 9281 frameptr |= 4; 9282 } 9283 *frame_sp_p = frameptr; 9284 } 9285 9286 xpsr_mask = ~(XPSR_SPREALIGN | XPSR_SFPA); 9287 if (!arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 9288 xpsr_mask &= ~XPSR_GE; 9289 } 9290 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 9291 xpsr_write(env, xpsr, xpsr_mask); 9292 9293 if (env->v7m.secure) { 9294 bool sfpa = xpsr & XPSR_SFPA; 9295 9296 env->v7m.control[M_REG_S] = FIELD_DP32(env->v7m.control[M_REG_S], 9297 V7M_CONTROL, SFPA, sfpa); 9298 } 9299 9300 /* The restored xPSR exception field will be zero if we're 9301 * resuming in Thread mode. If that doesn't match what the 9302 * exception return excret specified then this is a UsageFault. 9303 * v7M requires we make this check here; v8M did it earlier. 9304 */ 9305 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 9306 /* Take an INVPC UsageFault by pushing the stack again; 9307 * we know we're v7M so this is never a Secure UsageFault. 9308 */ 9309 bool ignore_stackfaults; 9310 9311 assert(!arm_feature(env, ARM_FEATURE_V8)); 9312 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 9313 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9314 ignore_stackfaults = v7m_push_stack(cpu); 9315 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 9316 "failed exception return integrity check\n"); 9317 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 9318 return; 9319 } 9320 9321 /* Otherwise, we have a successful exception exit. */ 9322 arm_clear_exclusive(env); 9323 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 9324 } 9325 9326 static bool do_v7m_function_return(ARMCPU *cpu) 9327 { 9328 /* v8M security extensions magic function return. 9329 * We may either: 9330 * (1) throw an exception (longjump) 9331 * (2) return true if we successfully handled the function return 9332 * (3) return false if we failed a consistency check and have 9333 * pended a UsageFault that needs to be taken now 9334 * 9335 * At this point the magic return value is split between env->regs[15] 9336 * and env->thumb. We don't bother to reconstitute it because we don't 9337 * need it (all values are handled the same way). 9338 */ 9339 CPUARMState *env = &cpu->env; 9340 uint32_t newpc, newpsr, newpsr_exc; 9341 9342 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 9343 9344 { 9345 bool threadmode, spsel; 9346 TCGMemOpIdx oi; 9347 ARMMMUIdx mmu_idx; 9348 uint32_t *frame_sp_p; 9349 uint32_t frameptr; 9350 9351 /* Pull the return address and IPSR from the Secure stack */ 9352 threadmode = !arm_v7m_is_handler_mode(env); 9353 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 9354 9355 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 9356 frameptr = *frame_sp_p; 9357 9358 /* These loads may throw an exception (for MPU faults). We want to 9359 * do them as secure, so work out what MMU index that is. 9360 */ 9361 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 9362 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 9363 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 9364 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 9365 9366 /* Consistency checks on new IPSR */ 9367 newpsr_exc = newpsr & XPSR_EXCP; 9368 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 9369 (env->v7m.exception == 1 && newpsr_exc != 0))) { 9370 /* Pend the fault and tell our caller to take it */ 9371 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 9372 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 9373 env->v7m.secure); 9374 qemu_log_mask(CPU_LOG_INT, 9375 "...taking INVPC UsageFault: " 9376 "IPSR consistency check failed\n"); 9377 return false; 9378 } 9379 9380 *frame_sp_p = frameptr + 8; 9381 } 9382 9383 /* This invalidates frame_sp_p */ 9384 switch_v7m_security_state(env, true); 9385 env->v7m.exception = newpsr_exc; 9386 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 9387 if (newpsr & XPSR_SFPA) { 9388 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 9389 } 9390 xpsr_write(env, 0, XPSR_IT); 9391 env->thumb = newpc & 1; 9392 env->regs[15] = newpc & ~1; 9393 9394 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 9395 return true; 9396 } 9397 9398 static void arm_log_exception(int idx) 9399 { 9400 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9401 const char *exc = NULL; 9402 static const char * const excnames[] = { 9403 [EXCP_UDEF] = "Undefined Instruction", 9404 [EXCP_SWI] = "SVC", 9405 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9406 [EXCP_DATA_ABORT] = "Data Abort", 9407 [EXCP_IRQ] = "IRQ", 9408 [EXCP_FIQ] = "FIQ", 9409 [EXCP_BKPT] = "Breakpoint", 9410 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9411 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9412 [EXCP_HVC] = "Hypervisor Call", 9413 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9414 [EXCP_SMC] = "Secure Monitor Call", 9415 [EXCP_VIRQ] = "Virtual IRQ", 9416 [EXCP_VFIQ] = "Virtual FIQ", 9417 [EXCP_SEMIHOST] = "Semihosting call", 9418 [EXCP_NOCP] = "v7M NOCP UsageFault", 9419 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9420 [EXCP_STKOF] = "v8M STKOF UsageFault", 9421 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9422 [EXCP_LSERR] = "v8M LSERR UsageFault", 9423 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9424 }; 9425 9426 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9427 exc = excnames[idx]; 9428 } 9429 if (!exc) { 9430 exc = "unknown"; 9431 } 9432 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 9433 } 9434 } 9435 9436 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 9437 uint32_t addr, uint16_t *insn) 9438 { 9439 /* Load a 16-bit portion of a v7M instruction, returning true on success, 9440 * or false on failure (in which case we will have pended the appropriate 9441 * exception). 9442 * We need to do the instruction fetch's MPU and SAU checks 9443 * like this because there is no MMU index that would allow 9444 * doing the load with a single function call. Instead we must 9445 * first check that the security attributes permit the load 9446 * and that they don't mismatch on the two halves of the instruction, 9447 * and then we do the load as a secure load (ie using the security 9448 * attributes of the address, not the CPU, as architecturally required). 9449 */ 9450 CPUState *cs = CPU(cpu); 9451 CPUARMState *env = &cpu->env; 9452 V8M_SAttributes sattrs = {}; 9453 MemTxAttrs attrs = {}; 9454 ARMMMUFaultInfo fi = {}; 9455 MemTxResult txres; 9456 target_ulong page_size; 9457 hwaddr physaddr; 9458 int prot; 9459 9460 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 9461 if (!sattrs.nsc || sattrs.ns) { 9462 /* This must be the second half of the insn, and it straddles a 9463 * region boundary with the second half not being S&NSC. 9464 */ 9465 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 9466 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9467 qemu_log_mask(CPU_LOG_INT, 9468 "...really SecureFault with SFSR.INVEP\n"); 9469 return false; 9470 } 9471 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 9472 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 9473 /* the MPU lookup failed */ 9474 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 9475 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 9476 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 9477 return false; 9478 } 9479 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 9480 attrs, &txres); 9481 if (txres != MEMTX_OK) { 9482 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 9483 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 9484 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 9485 return false; 9486 } 9487 return true; 9488 } 9489 9490 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 9491 { 9492 /* Check whether this attempt to execute code in a Secure & NS-Callable 9493 * memory region is for an SG instruction; if so, then emulate the 9494 * effect of the SG instruction and return true. Otherwise pend 9495 * the correct kind of exception and return false. 9496 */ 9497 CPUARMState *env = &cpu->env; 9498 ARMMMUIdx mmu_idx; 9499 uint16_t insn; 9500 9501 /* We should never get here unless get_phys_addr_pmsav8() caused 9502 * an exception for NS executing in S&NSC memory. 9503 */ 9504 assert(!env->v7m.secure); 9505 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 9506 9507 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 9508 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 9509 9510 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 9511 return false; 9512 } 9513 9514 if (!env->thumb) { 9515 goto gen_invep; 9516 } 9517 9518 if (insn != 0xe97f) { 9519 /* Not an SG instruction first half (we choose the IMPDEF 9520 * early-SG-check option). 9521 */ 9522 goto gen_invep; 9523 } 9524 9525 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 9526 return false; 9527 } 9528 9529 if (insn != 0xe97f) { 9530 /* Not an SG instruction second half (yes, both halves of the SG 9531 * insn have the same hex value) 9532 */ 9533 goto gen_invep; 9534 } 9535 9536 /* OK, we have confirmed that we really have an SG instruction. 9537 * We know we're NS in S memory so don't need to repeat those checks. 9538 */ 9539 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 9540 ", executing it\n", env->regs[15]); 9541 env->regs[14] &= ~1; 9542 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 9543 switch_v7m_security_state(env, true); 9544 xpsr_write(env, 0, XPSR_IT); 9545 env->regs[15] += 4; 9546 return true; 9547 9548 gen_invep: 9549 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 9550 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9551 qemu_log_mask(CPU_LOG_INT, 9552 "...really SecureFault with SFSR.INVEP\n"); 9553 return false; 9554 } 9555 9556 void arm_v7m_cpu_do_interrupt(CPUState *cs) 9557 { 9558 ARMCPU *cpu = ARM_CPU(cs); 9559 CPUARMState *env = &cpu->env; 9560 uint32_t lr; 9561 bool ignore_stackfaults; 9562 9563 arm_log_exception(cs->exception_index); 9564 9565 /* For exceptions we just mark as pending on the NVIC, and let that 9566 handle it. */ 9567 switch (cs->exception_index) { 9568 case EXCP_UDEF: 9569 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9570 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 9571 break; 9572 case EXCP_NOCP: 9573 { 9574 /* 9575 * NOCP might be directed to something other than the current 9576 * security state if this fault is because of NSACR; we indicate 9577 * the target security state using exception.target_el. 9578 */ 9579 int target_secstate; 9580 9581 if (env->exception.target_el == 3) { 9582 target_secstate = M_REG_S; 9583 } else { 9584 target_secstate = env->v7m.secure; 9585 } 9586 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, target_secstate); 9587 env->v7m.cfsr[target_secstate] |= R_V7M_CFSR_NOCP_MASK; 9588 break; 9589 } 9590 case EXCP_INVSTATE: 9591 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9592 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 9593 break; 9594 case EXCP_STKOF: 9595 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9596 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 9597 break; 9598 case EXCP_LSERR: 9599 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9600 env->v7m.sfsr |= R_V7M_SFSR_LSERR_MASK; 9601 break; 9602 case EXCP_UNALIGNED: 9603 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 9604 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNALIGNED_MASK; 9605 break; 9606 case EXCP_SWI: 9607 /* The PC already points to the next instruction. */ 9608 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 9609 break; 9610 case EXCP_PREFETCH_ABORT: 9611 case EXCP_DATA_ABORT: 9612 /* Note that for M profile we don't have a guest facing FSR, but 9613 * the env->exception.fsr will be populated by the code that 9614 * raises the fault, in the A profile short-descriptor format. 9615 */ 9616 switch (env->exception.fsr & 0xf) { 9617 case M_FAKE_FSR_NSC_EXEC: 9618 /* Exception generated when we try to execute code at an address 9619 * which is marked as Secure & Non-Secure Callable and the CPU 9620 * is in the Non-Secure state. The only instruction which can 9621 * be executed like this is SG (and that only if both halves of 9622 * the SG instruction have the same security attributes.) 9623 * Everything else must generate an INVEP SecureFault, so we 9624 * emulate the SG instruction here. 9625 */ 9626 if (v7m_handle_execute_nsc(cpu)) { 9627 return; 9628 } 9629 break; 9630 case M_FAKE_FSR_SFAULT: 9631 /* Various flavours of SecureFault for attempts to execute or 9632 * access data in the wrong security state. 9633 */ 9634 switch (cs->exception_index) { 9635 case EXCP_PREFETCH_ABORT: 9636 if (env->v7m.secure) { 9637 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 9638 qemu_log_mask(CPU_LOG_INT, 9639 "...really SecureFault with SFSR.INVTRAN\n"); 9640 } else { 9641 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 9642 qemu_log_mask(CPU_LOG_INT, 9643 "...really SecureFault with SFSR.INVEP\n"); 9644 } 9645 break; 9646 case EXCP_DATA_ABORT: 9647 /* This must be an NS access to S memory */ 9648 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 9649 qemu_log_mask(CPU_LOG_INT, 9650 "...really SecureFault with SFSR.AUVIOL\n"); 9651 break; 9652 } 9653 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 9654 break; 9655 case 0x8: /* External Abort */ 9656 switch (cs->exception_index) { 9657 case EXCP_PREFETCH_ABORT: 9658 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 9659 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 9660 break; 9661 case EXCP_DATA_ABORT: 9662 env->v7m.cfsr[M_REG_NS] |= 9663 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 9664 env->v7m.bfar = env->exception.vaddress; 9665 qemu_log_mask(CPU_LOG_INT, 9666 "...with CFSR.PRECISERR and BFAR 0x%x\n", 9667 env->v7m.bfar); 9668 break; 9669 } 9670 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 9671 break; 9672 default: 9673 /* All other FSR values are either MPU faults or "can't happen 9674 * for M profile" cases. 9675 */ 9676 switch (cs->exception_index) { 9677 case EXCP_PREFETCH_ABORT: 9678 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 9679 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 9680 break; 9681 case EXCP_DATA_ABORT: 9682 env->v7m.cfsr[env->v7m.secure] |= 9683 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 9684 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 9685 qemu_log_mask(CPU_LOG_INT, 9686 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 9687 env->v7m.mmfar[env->v7m.secure]); 9688 break; 9689 } 9690 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 9691 env->v7m.secure); 9692 break; 9693 } 9694 break; 9695 case EXCP_BKPT: 9696 if (semihosting_enabled()) { 9697 int nr; 9698 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 9699 if (nr == 0xab) { 9700 env->regs[15] += 2; 9701 qemu_log_mask(CPU_LOG_INT, 9702 "...handling as semihosting call 0x%x\n", 9703 env->regs[0]); 9704 env->regs[0] = do_arm_semihosting(env); 9705 return; 9706 } 9707 } 9708 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 9709 break; 9710 case EXCP_IRQ: 9711 break; 9712 case EXCP_EXCEPTION_EXIT: 9713 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 9714 /* Must be v8M security extension function return */ 9715 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 9716 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 9717 if (do_v7m_function_return(cpu)) { 9718 return; 9719 } 9720 } else { 9721 do_v7m_exception_exit(cpu); 9722 return; 9723 } 9724 break; 9725 case EXCP_LAZYFP: 9726 /* 9727 * We already pended the specific exception in the NVIC in the 9728 * v7m_preserve_fp_state() helper function. 9729 */ 9730 break; 9731 default: 9732 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9733 return; /* Never happens. Keep compiler happy. */ 9734 } 9735 9736 if (arm_feature(env, ARM_FEATURE_V8)) { 9737 lr = R_V7M_EXCRET_RES1_MASK | 9738 R_V7M_EXCRET_DCRS_MASK; 9739 /* The S bit indicates whether we should return to Secure 9740 * or NonSecure (ie our current state). 9741 * The ES bit indicates whether we're taking this exception 9742 * to Secure or NonSecure (ie our target state). We set it 9743 * later, in v7m_exception_taken(). 9744 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 9745 * This corresponds to the ARM ARM pseudocode for v8M setting 9746 * some LR bits in PushStack() and some in ExceptionTaken(); 9747 * the distinction matters for the tailchain cases where we 9748 * can take an exception without pushing the stack. 9749 */ 9750 if (env->v7m.secure) { 9751 lr |= R_V7M_EXCRET_S_MASK; 9752 } 9753 if (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK)) { 9754 lr |= R_V7M_EXCRET_FTYPE_MASK; 9755 } 9756 } else { 9757 lr = R_V7M_EXCRET_RES1_MASK | 9758 R_V7M_EXCRET_S_MASK | 9759 R_V7M_EXCRET_DCRS_MASK | 9760 R_V7M_EXCRET_FTYPE_MASK | 9761 R_V7M_EXCRET_ES_MASK; 9762 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 9763 lr |= R_V7M_EXCRET_SPSEL_MASK; 9764 } 9765 } 9766 if (!arm_v7m_is_handler_mode(env)) { 9767 lr |= R_V7M_EXCRET_MODE_MASK; 9768 } 9769 9770 ignore_stackfaults = v7m_push_stack(cpu); 9771 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 9772 } 9773 9774 /* Function used to synchronize QEMU's AArch64 register set with AArch32 9775 * register set. This is necessary when switching between AArch32 and AArch64 9776 * execution state. 9777 */ 9778 void aarch64_sync_32_to_64(CPUARMState *env) 9779 { 9780 int i; 9781 uint32_t mode = env->uncached_cpsr & CPSR_M; 9782 9783 /* We can blanket copy R[0:7] to X[0:7] */ 9784 for (i = 0; i < 8; i++) { 9785 env->xregs[i] = env->regs[i]; 9786 } 9787 9788 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9789 * Otherwise, they come from the banked user regs. 9790 */ 9791 if (mode == ARM_CPU_MODE_FIQ) { 9792 for (i = 8; i < 13; i++) { 9793 env->xregs[i] = env->usr_regs[i - 8]; 9794 } 9795 } else { 9796 for (i = 8; i < 13; i++) { 9797 env->xregs[i] = env->regs[i]; 9798 } 9799 } 9800 9801 /* Registers x13-x23 are the various mode SP and FP registers. Registers 9802 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9803 * from the mode banked register. 9804 */ 9805 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9806 env->xregs[13] = env->regs[13]; 9807 env->xregs[14] = env->regs[14]; 9808 } else { 9809 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9810 /* HYP is an exception in that it is copied from r14 */ 9811 if (mode == ARM_CPU_MODE_HYP) { 9812 env->xregs[14] = env->regs[14]; 9813 } else { 9814 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9815 } 9816 } 9817 9818 if (mode == ARM_CPU_MODE_HYP) { 9819 env->xregs[15] = env->regs[13]; 9820 } else { 9821 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9822 } 9823 9824 if (mode == ARM_CPU_MODE_IRQ) { 9825 env->xregs[16] = env->regs[14]; 9826 env->xregs[17] = env->regs[13]; 9827 } else { 9828 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9829 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9830 } 9831 9832 if (mode == ARM_CPU_MODE_SVC) { 9833 env->xregs[18] = env->regs[14]; 9834 env->xregs[19] = env->regs[13]; 9835 } else { 9836 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9837 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9838 } 9839 9840 if (mode == ARM_CPU_MODE_ABT) { 9841 env->xregs[20] = env->regs[14]; 9842 env->xregs[21] = env->regs[13]; 9843 } else { 9844 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9845 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9846 } 9847 9848 if (mode == ARM_CPU_MODE_UND) { 9849 env->xregs[22] = env->regs[14]; 9850 env->xregs[23] = env->regs[13]; 9851 } else { 9852 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9853 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9854 } 9855 9856 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9857 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9858 * FIQ bank for r8-r14. 9859 */ 9860 if (mode == ARM_CPU_MODE_FIQ) { 9861 for (i = 24; i < 31; i++) { 9862 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9863 } 9864 } else { 9865 for (i = 24; i < 29; i++) { 9866 env->xregs[i] = env->fiq_regs[i - 24]; 9867 } 9868 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9869 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9870 } 9871 9872 env->pc = env->regs[15]; 9873 } 9874 9875 /* Function used to synchronize QEMU's AArch32 register set with AArch64 9876 * register set. This is necessary when switching between AArch32 and AArch64 9877 * execution state. 9878 */ 9879 void aarch64_sync_64_to_32(CPUARMState *env) 9880 { 9881 int i; 9882 uint32_t mode = env->uncached_cpsr & CPSR_M; 9883 9884 /* We can blanket copy X[0:7] to R[0:7] */ 9885 for (i = 0; i < 8; i++) { 9886 env->regs[i] = env->xregs[i]; 9887 } 9888 9889 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9890 * Otherwise, we copy x8-x12 into the banked user regs. 9891 */ 9892 if (mode == ARM_CPU_MODE_FIQ) { 9893 for (i = 8; i < 13; i++) { 9894 env->usr_regs[i - 8] = env->xregs[i]; 9895 } 9896 } else { 9897 for (i = 8; i < 13; i++) { 9898 env->regs[i] = env->xregs[i]; 9899 } 9900 } 9901 9902 /* Registers r13 & r14 depend on the current mode. 9903 * If we are in a given mode, we copy the corresponding x registers to r13 9904 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9905 * for the mode. 9906 */ 9907 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9908 env->regs[13] = env->xregs[13]; 9909 env->regs[14] = env->xregs[14]; 9910 } else { 9911 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9912 9913 /* HYP is an exception in that it does not have its own banked r14 but 9914 * shares the USR r14 9915 */ 9916 if (mode == ARM_CPU_MODE_HYP) { 9917 env->regs[14] = env->xregs[14]; 9918 } else { 9919 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9920 } 9921 } 9922 9923 if (mode == ARM_CPU_MODE_HYP) { 9924 env->regs[13] = env->xregs[15]; 9925 } else { 9926 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9927 } 9928 9929 if (mode == ARM_CPU_MODE_IRQ) { 9930 env->regs[14] = env->xregs[16]; 9931 env->regs[13] = env->xregs[17]; 9932 } else { 9933 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9934 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9935 } 9936 9937 if (mode == ARM_CPU_MODE_SVC) { 9938 env->regs[14] = env->xregs[18]; 9939 env->regs[13] = env->xregs[19]; 9940 } else { 9941 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9942 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9943 } 9944 9945 if (mode == ARM_CPU_MODE_ABT) { 9946 env->regs[14] = env->xregs[20]; 9947 env->regs[13] = env->xregs[21]; 9948 } else { 9949 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9950 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9951 } 9952 9953 if (mode == ARM_CPU_MODE_UND) { 9954 env->regs[14] = env->xregs[22]; 9955 env->regs[13] = env->xregs[23]; 9956 } else { 9957 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9958 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9959 } 9960 9961 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9962 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9963 * FIQ bank for r8-r14. 9964 */ 9965 if (mode == ARM_CPU_MODE_FIQ) { 9966 for (i = 24; i < 31; i++) { 9967 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9968 } 9969 } else { 9970 for (i = 24; i < 29; i++) { 9971 env->fiq_regs[i - 24] = env->xregs[i]; 9972 } 9973 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9974 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9975 } 9976 9977 env->regs[15] = env->pc; 9978 } 9979 9980 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9981 uint32_t mask, uint32_t offset, 9982 uint32_t newpc) 9983 { 9984 /* Change the CPU state so as to actually take the exception. */ 9985 switch_mode(env, new_mode); 9986 /* 9987 * For exceptions taken to AArch32 we must clear the SS bit in both 9988 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9989 */ 9990 env->uncached_cpsr &= ~PSTATE_SS; 9991 env->spsr = cpsr_read(env); 9992 /* Clear IT bits. */ 9993 env->condexec_bits = 0; 9994 /* Switch to the new mode, and to the correct instruction set. */ 9995 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9996 /* Set new mode endianness */ 9997 env->uncached_cpsr &= ~CPSR_E; 9998 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 9999 env->uncached_cpsr |= CPSR_E; 10000 } 10001 /* J and IL must always be cleared for exception entry */ 10002 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10003 env->daif |= mask; 10004 10005 if (new_mode == ARM_CPU_MODE_HYP) { 10006 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10007 env->elr_el[2] = env->regs[15]; 10008 } else { 10009 /* 10010 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10011 * and we should just guard the thumb mode on V4 10012 */ 10013 if (arm_feature(env, ARM_FEATURE_V4T)) { 10014 env->thumb = 10015 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10016 } 10017 env->regs[14] = env->regs[15] + offset; 10018 } 10019 env->regs[15] = newpc; 10020 } 10021 10022 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10023 { 10024 /* 10025 * Handle exception entry to Hyp mode; this is sufficiently 10026 * different to entry to other AArch32 modes that we handle it 10027 * separately here. 10028 * 10029 * The vector table entry used is always the 0x14 Hyp mode entry point, 10030 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 10031 * The offset applied to the preferred return address is always zero 10032 * (see DDI0487C.a section G1.12.3). 10033 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10034 */ 10035 uint32_t addr, mask; 10036 ARMCPU *cpu = ARM_CPU(cs); 10037 CPUARMState *env = &cpu->env; 10038 10039 switch (cs->exception_index) { 10040 case EXCP_UDEF: 10041 addr = 0x04; 10042 break; 10043 case EXCP_SWI: 10044 addr = 0x14; 10045 break; 10046 case EXCP_BKPT: 10047 /* Fall through to prefetch abort. */ 10048 case EXCP_PREFETCH_ABORT: 10049 env->cp15.ifar_s = env->exception.vaddress; 10050 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10051 (uint32_t)env->exception.vaddress); 10052 addr = 0x0c; 10053 break; 10054 case EXCP_DATA_ABORT: 10055 env->cp15.dfar_s = env->exception.vaddress; 10056 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10057 (uint32_t)env->exception.vaddress); 10058 addr = 0x10; 10059 break; 10060 case EXCP_IRQ: 10061 addr = 0x18; 10062 break; 10063 case EXCP_FIQ: 10064 addr = 0x1c; 10065 break; 10066 case EXCP_HVC: 10067 addr = 0x08; 10068 break; 10069 case EXCP_HYP_TRAP: 10070 addr = 0x14; 10071 default: 10072 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10073 } 10074 10075 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10076 if (!arm_feature(env, ARM_FEATURE_V8)) { 10077 /* 10078 * QEMU syndrome values are v8-style. v7 has the IL bit 10079 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10080 * If this is a v7 CPU, squash the IL bit in those cases. 10081 */ 10082 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10083 (cs->exception_index == EXCP_DATA_ABORT && 10084 !(env->exception.syndrome & ARM_EL_ISV)) || 10085 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10086 env->exception.syndrome &= ~ARM_EL_IL; 10087 } 10088 } 10089 env->cp15.esr_el[2] = env->exception.syndrome; 10090 } 10091 10092 if (arm_current_el(env) != 2 && addr < 0x14) { 10093 addr = 0x14; 10094 } 10095 10096 mask = 0; 10097 if (!(env->cp15.scr_el3 & SCR_EA)) { 10098 mask |= CPSR_A; 10099 } 10100 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10101 mask |= CPSR_I; 10102 } 10103 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10104 mask |= CPSR_F; 10105 } 10106 10107 addr += env->cp15.hvbar; 10108 10109 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10110 } 10111 10112 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10113 { 10114 ARMCPU *cpu = ARM_CPU(cs); 10115 CPUARMState *env = &cpu->env; 10116 uint32_t addr; 10117 uint32_t mask; 10118 int new_mode; 10119 uint32_t offset; 10120 uint32_t moe; 10121 10122 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10123 switch (syn_get_ec(env->exception.syndrome)) { 10124 case EC_BREAKPOINT: 10125 case EC_BREAKPOINT_SAME_EL: 10126 moe = 1; 10127 break; 10128 case EC_WATCHPOINT: 10129 case EC_WATCHPOINT_SAME_EL: 10130 moe = 10; 10131 break; 10132 case EC_AA32_BKPT: 10133 moe = 3; 10134 break; 10135 case EC_VECTORCATCH: 10136 moe = 5; 10137 break; 10138 default: 10139 moe = 0; 10140 break; 10141 } 10142 10143 if (moe) { 10144 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10145 } 10146 10147 if (env->exception.target_el == 2) { 10148 arm_cpu_do_interrupt_aarch32_hyp(cs); 10149 return; 10150 } 10151 10152 switch (cs->exception_index) { 10153 case EXCP_UDEF: 10154 new_mode = ARM_CPU_MODE_UND; 10155 addr = 0x04; 10156 mask = CPSR_I; 10157 if (env->thumb) 10158 offset = 2; 10159 else 10160 offset = 4; 10161 break; 10162 case EXCP_SWI: 10163 new_mode = ARM_CPU_MODE_SVC; 10164 addr = 0x08; 10165 mask = CPSR_I; 10166 /* The PC already points to the next instruction. */ 10167 offset = 0; 10168 break; 10169 case EXCP_BKPT: 10170 /* Fall through to prefetch abort. */ 10171 case EXCP_PREFETCH_ABORT: 10172 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10173 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10174 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10175 env->exception.fsr, (uint32_t)env->exception.vaddress); 10176 new_mode = ARM_CPU_MODE_ABT; 10177 addr = 0x0c; 10178 mask = CPSR_A | CPSR_I; 10179 offset = 4; 10180 break; 10181 case EXCP_DATA_ABORT: 10182 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10183 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10184 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10185 env->exception.fsr, 10186 (uint32_t)env->exception.vaddress); 10187 new_mode = ARM_CPU_MODE_ABT; 10188 addr = 0x10; 10189 mask = CPSR_A | CPSR_I; 10190 offset = 8; 10191 break; 10192 case EXCP_IRQ: 10193 new_mode = ARM_CPU_MODE_IRQ; 10194 addr = 0x18; 10195 /* Disable IRQ and imprecise data aborts. */ 10196 mask = CPSR_A | CPSR_I; 10197 offset = 4; 10198 if (env->cp15.scr_el3 & SCR_IRQ) { 10199 /* IRQ routed to monitor mode */ 10200 new_mode = ARM_CPU_MODE_MON; 10201 mask |= CPSR_F; 10202 } 10203 break; 10204 case EXCP_FIQ: 10205 new_mode = ARM_CPU_MODE_FIQ; 10206 addr = 0x1c; 10207 /* Disable FIQ, IRQ and imprecise data aborts. */ 10208 mask = CPSR_A | CPSR_I | CPSR_F; 10209 if (env->cp15.scr_el3 & SCR_FIQ) { 10210 /* FIQ routed to monitor mode */ 10211 new_mode = ARM_CPU_MODE_MON; 10212 } 10213 offset = 4; 10214 break; 10215 case EXCP_VIRQ: 10216 new_mode = ARM_CPU_MODE_IRQ; 10217 addr = 0x18; 10218 /* Disable IRQ and imprecise data aborts. */ 10219 mask = CPSR_A | CPSR_I; 10220 offset = 4; 10221 break; 10222 case EXCP_VFIQ: 10223 new_mode = ARM_CPU_MODE_FIQ; 10224 addr = 0x1c; 10225 /* Disable FIQ, IRQ and imprecise data aborts. */ 10226 mask = CPSR_A | CPSR_I | CPSR_F; 10227 offset = 4; 10228 break; 10229 case EXCP_SMC: 10230 new_mode = ARM_CPU_MODE_MON; 10231 addr = 0x08; 10232 mask = CPSR_A | CPSR_I | CPSR_F; 10233 offset = 0; 10234 break; 10235 default: 10236 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10237 return; /* Never happens. Keep compiler happy. */ 10238 } 10239 10240 if (new_mode == ARM_CPU_MODE_MON) { 10241 addr += env->cp15.mvbar; 10242 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10243 /* High vectors. When enabled, base address cannot be remapped. */ 10244 addr += 0xffff0000; 10245 } else { 10246 /* ARM v7 architectures provide a vector base address register to remap 10247 * the interrupt vector table. 10248 * This register is only followed in non-monitor mode, and is banked. 10249 * Note: only bits 31:5 are valid. 10250 */ 10251 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10252 } 10253 10254 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10255 env->cp15.scr_el3 &= ~SCR_NS; 10256 } 10257 10258 take_aarch32_exception(env, new_mode, mask, offset, addr); 10259 } 10260 10261 /* Handle exception entry to a target EL which is using AArch64 */ 10262 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10263 { 10264 ARMCPU *cpu = ARM_CPU(cs); 10265 CPUARMState *env = &cpu->env; 10266 unsigned int new_el = env->exception.target_el; 10267 target_ulong addr = env->cp15.vbar_el[new_el]; 10268 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10269 unsigned int cur_el = arm_current_el(env); 10270 10271 /* 10272 * Note that new_el can never be 0. If cur_el is 0, then 10273 * el0_a64 is is_a64(), else el0_a64 is ignored. 10274 */ 10275 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10276 10277 if (cur_el < new_el) { 10278 /* Entry vector offset depends on whether the implemented EL 10279 * immediately lower than the target level is using AArch32 or AArch64 10280 */ 10281 bool is_aa64; 10282 10283 switch (new_el) { 10284 case 3: 10285 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10286 break; 10287 case 2: 10288 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 10289 break; 10290 case 1: 10291 is_aa64 = is_a64(env); 10292 break; 10293 default: 10294 g_assert_not_reached(); 10295 } 10296 10297 if (is_aa64) { 10298 addr += 0x400; 10299 } else { 10300 addr += 0x600; 10301 } 10302 } else if (pstate_read(env) & PSTATE_SP) { 10303 addr += 0x200; 10304 } 10305 10306 switch (cs->exception_index) { 10307 case EXCP_PREFETCH_ABORT: 10308 case EXCP_DATA_ABORT: 10309 env->cp15.far_el[new_el] = env->exception.vaddress; 10310 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10311 env->cp15.far_el[new_el]); 10312 /* fall through */ 10313 case EXCP_BKPT: 10314 case EXCP_UDEF: 10315 case EXCP_SWI: 10316 case EXCP_HVC: 10317 case EXCP_HYP_TRAP: 10318 case EXCP_SMC: 10319 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 10320 /* 10321 * QEMU internal FP/SIMD syndromes from AArch32 include the 10322 * TA and coproc fields which are only exposed if the exception 10323 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10324 * AArch64 format syndrome. 10325 */ 10326 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10327 } 10328 env->cp15.esr_el[new_el] = env->exception.syndrome; 10329 break; 10330 case EXCP_IRQ: 10331 case EXCP_VIRQ: 10332 addr += 0x80; 10333 break; 10334 case EXCP_FIQ: 10335 case EXCP_VFIQ: 10336 addr += 0x100; 10337 break; 10338 case EXCP_SEMIHOST: 10339 qemu_log_mask(CPU_LOG_INT, 10340 "...handling as semihosting call 0x%" PRIx64 "\n", 10341 env->xregs[0]); 10342 env->xregs[0] = do_arm_semihosting(env); 10343 return; 10344 default: 10345 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10346 } 10347 10348 if (is_a64(env)) { 10349 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 10350 aarch64_save_sp(env, arm_current_el(env)); 10351 env->elr_el[new_el] = env->pc; 10352 } else { 10353 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 10354 env->elr_el[new_el] = env->regs[15]; 10355 10356 aarch64_sync_32_to_64(env); 10357 10358 env->condexec_bits = 0; 10359 } 10360 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10361 env->elr_el[new_el]); 10362 10363 pstate_write(env, PSTATE_DAIF | new_mode); 10364 env->aarch64 = 1; 10365 aarch64_restore_sp(env, new_el); 10366 10367 env->pc = addr; 10368 10369 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10370 new_el, env->pc, pstate_read(env)); 10371 } 10372 10373 static inline bool check_for_semihosting(CPUState *cs) 10374 { 10375 /* Check whether this exception is a semihosting call; if so 10376 * then handle it and return true; otherwise return false. 10377 */ 10378 ARMCPU *cpu = ARM_CPU(cs); 10379 CPUARMState *env = &cpu->env; 10380 10381 if (is_a64(env)) { 10382 if (cs->exception_index == EXCP_SEMIHOST) { 10383 /* This is always the 64-bit semihosting exception. 10384 * The "is this usermode" and "is semihosting enabled" 10385 * checks have been done at translate time. 10386 */ 10387 qemu_log_mask(CPU_LOG_INT, 10388 "...handling as semihosting call 0x%" PRIx64 "\n", 10389 env->xregs[0]); 10390 env->xregs[0] = do_arm_semihosting(env); 10391 return true; 10392 } 10393 return false; 10394 } else { 10395 uint32_t imm; 10396 10397 /* Only intercept calls from privileged modes, to provide some 10398 * semblance of security. 10399 */ 10400 if (cs->exception_index != EXCP_SEMIHOST && 10401 (!semihosting_enabled() || 10402 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 10403 return false; 10404 } 10405 10406 switch (cs->exception_index) { 10407 case EXCP_SEMIHOST: 10408 /* This is always a semihosting call; the "is this usermode" 10409 * and "is semihosting enabled" checks have been done at 10410 * translate time. 10411 */ 10412 break; 10413 case EXCP_SWI: 10414 /* Check for semihosting interrupt. */ 10415 if (env->thumb) { 10416 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 10417 & 0xff; 10418 if (imm == 0xab) { 10419 break; 10420 } 10421 } else { 10422 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 10423 & 0xffffff; 10424 if (imm == 0x123456) { 10425 break; 10426 } 10427 } 10428 return false; 10429 case EXCP_BKPT: 10430 /* See if this is a semihosting syscall. */ 10431 if (env->thumb) { 10432 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 10433 & 0xff; 10434 if (imm == 0xab) { 10435 env->regs[15] += 2; 10436 break; 10437 } 10438 } 10439 return false; 10440 default: 10441 return false; 10442 } 10443 10444 qemu_log_mask(CPU_LOG_INT, 10445 "...handling as semihosting call 0x%x\n", 10446 env->regs[0]); 10447 env->regs[0] = do_arm_semihosting(env); 10448 return true; 10449 } 10450 } 10451 10452 /* Handle a CPU exception for A and R profile CPUs. 10453 * Do any appropriate logging, handle PSCI calls, and then hand off 10454 * to the AArch64-entry or AArch32-entry function depending on the 10455 * target exception level's register width. 10456 */ 10457 void arm_cpu_do_interrupt(CPUState *cs) 10458 { 10459 ARMCPU *cpu = ARM_CPU(cs); 10460 CPUARMState *env = &cpu->env; 10461 unsigned int new_el = env->exception.target_el; 10462 10463 assert(!arm_feature(env, ARM_FEATURE_M)); 10464 10465 arm_log_exception(cs->exception_index); 10466 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10467 new_el); 10468 if (qemu_loglevel_mask(CPU_LOG_INT) 10469 && !excp_is_internal(cs->exception_index)) { 10470 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10471 syn_get_ec(env->exception.syndrome), 10472 env->exception.syndrome); 10473 } 10474 10475 if (arm_is_psci_call(cpu, cs->exception_index)) { 10476 arm_handle_psci_call(cpu); 10477 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10478 return; 10479 } 10480 10481 /* Semihosting semantics depend on the register width of the 10482 * code that caused the exception, not the target exception level, 10483 * so must be handled here. 10484 */ 10485 if (check_for_semihosting(cs)) { 10486 return; 10487 } 10488 10489 /* Hooks may change global state so BQL should be held, also the 10490 * BQL needs to be held for any modification of 10491 * cs->interrupt_request. 10492 */ 10493 g_assert(qemu_mutex_iothread_locked()); 10494 10495 arm_call_pre_el_change_hook(cpu); 10496 10497 assert(!excp_is_internal(cs->exception_index)); 10498 if (arm_el_is_aa64(env, new_el)) { 10499 arm_cpu_do_interrupt_aarch64(cs); 10500 } else { 10501 arm_cpu_do_interrupt_aarch32(cs); 10502 } 10503 10504 arm_call_el_change_hook(cpu); 10505 10506 if (!kvm_enabled()) { 10507 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10508 } 10509 } 10510 #endif /* !CONFIG_USER_ONLY */ 10511 10512 /* Return the exception level which controls this address translation regime */ 10513 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 10514 { 10515 switch (mmu_idx) { 10516 case ARMMMUIdx_S2NS: 10517 case ARMMMUIdx_S1E2: 10518 return 2; 10519 case ARMMMUIdx_S1E3: 10520 return 3; 10521 case ARMMMUIdx_S1SE0: 10522 return arm_el_is_aa64(env, 3) ? 1 : 3; 10523 case ARMMMUIdx_S1SE1: 10524 case ARMMMUIdx_S1NSE0: 10525 case ARMMMUIdx_S1NSE1: 10526 case ARMMMUIdx_MPrivNegPri: 10527 case ARMMMUIdx_MUserNegPri: 10528 case ARMMMUIdx_MPriv: 10529 case ARMMMUIdx_MUser: 10530 case ARMMMUIdx_MSPrivNegPri: 10531 case ARMMMUIdx_MSUserNegPri: 10532 case ARMMMUIdx_MSPriv: 10533 case ARMMMUIdx_MSUser: 10534 return 1; 10535 default: 10536 g_assert_not_reached(); 10537 } 10538 } 10539 10540 #ifndef CONFIG_USER_ONLY 10541 10542 /* Return the SCTLR value which controls this address translation regime */ 10543 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10544 { 10545 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10546 } 10547 10548 /* Return true if the specified stage of address translation is disabled */ 10549 static inline bool regime_translation_disabled(CPUARMState *env, 10550 ARMMMUIdx mmu_idx) 10551 { 10552 if (arm_feature(env, ARM_FEATURE_M)) { 10553 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10554 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10555 case R_V7M_MPU_CTRL_ENABLE_MASK: 10556 /* Enabled, but not for HardFault and NMI */ 10557 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10558 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10559 /* Enabled for all cases */ 10560 return false; 10561 case 0: 10562 default: 10563 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10564 * we warned about that in armv7m_nvic.c when the guest set it. 10565 */ 10566 return true; 10567 } 10568 } 10569 10570 if (mmu_idx == ARMMMUIdx_S2NS) { 10571 /* HCR.DC means HCR.VM behaves as 1 */ 10572 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10573 } 10574 10575 if (env->cp15.hcr_el2 & HCR_TGE) { 10576 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10577 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10578 return true; 10579 } 10580 } 10581 10582 if ((env->cp15.hcr_el2 & HCR_DC) && 10583 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 10584 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10585 return true; 10586 } 10587 10588 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10589 } 10590 10591 static inline bool regime_translation_big_endian(CPUARMState *env, 10592 ARMMMUIdx mmu_idx) 10593 { 10594 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10595 } 10596 10597 /* Return the TTBR associated with this translation regime */ 10598 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10599 int ttbrn) 10600 { 10601 if (mmu_idx == ARMMMUIdx_S2NS) { 10602 return env->cp15.vttbr_el2; 10603 } 10604 if (ttbrn == 0) { 10605 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10606 } else { 10607 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10608 } 10609 } 10610 10611 #endif /* !CONFIG_USER_ONLY */ 10612 10613 /* Return the TCR controlling this translation regime */ 10614 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 10615 { 10616 if (mmu_idx == ARMMMUIdx_S2NS) { 10617 return &env->cp15.vtcr_el2; 10618 } 10619 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 10620 } 10621 10622 /* Convert a possible stage1+2 MMU index into the appropriate 10623 * stage 1 MMU index 10624 */ 10625 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10626 { 10627 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10628 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 10629 } 10630 return mmu_idx; 10631 } 10632 10633 /* Return true if the translation regime is using LPAE format page tables */ 10634 static inline bool regime_using_lpae_format(CPUARMState *env, 10635 ARMMMUIdx mmu_idx) 10636 { 10637 int el = regime_el(env, mmu_idx); 10638 if (el == 2 || arm_el_is_aa64(env, el)) { 10639 return true; 10640 } 10641 if (arm_feature(env, ARM_FEATURE_LPAE) 10642 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10643 return true; 10644 } 10645 return false; 10646 } 10647 10648 /* Returns true if the stage 1 translation regime is using LPAE format page 10649 * tables. Used when raising alignment exceptions, whose FSR changes depending 10650 * on whether the long or short descriptor format is in use. */ 10651 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10652 { 10653 mmu_idx = stage_1_mmu_idx(mmu_idx); 10654 10655 return regime_using_lpae_format(env, mmu_idx); 10656 } 10657 10658 #ifndef CONFIG_USER_ONLY 10659 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10660 { 10661 switch (mmu_idx) { 10662 case ARMMMUIdx_S1SE0: 10663 case ARMMMUIdx_S1NSE0: 10664 case ARMMMUIdx_MUser: 10665 case ARMMMUIdx_MSUser: 10666 case ARMMMUIdx_MUserNegPri: 10667 case ARMMMUIdx_MSUserNegPri: 10668 return true; 10669 default: 10670 return false; 10671 case ARMMMUIdx_S12NSE0: 10672 case ARMMMUIdx_S12NSE1: 10673 g_assert_not_reached(); 10674 } 10675 } 10676 10677 /* Translate section/page access permissions to page 10678 * R/W protection flags 10679 * 10680 * @env: CPUARMState 10681 * @mmu_idx: MMU index indicating required translation regime 10682 * @ap: The 3-bit access permissions (AP[2:0]) 10683 * @domain_prot: The 2-bit domain access permissions 10684 */ 10685 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10686 int ap, int domain_prot) 10687 { 10688 bool is_user = regime_is_user(env, mmu_idx); 10689 10690 if (domain_prot == 3) { 10691 return PAGE_READ | PAGE_WRITE; 10692 } 10693 10694 switch (ap) { 10695 case 0: 10696 if (arm_feature(env, ARM_FEATURE_V7)) { 10697 return 0; 10698 } 10699 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10700 case SCTLR_S: 10701 return is_user ? 0 : PAGE_READ; 10702 case SCTLR_R: 10703 return PAGE_READ; 10704 default: 10705 return 0; 10706 } 10707 case 1: 10708 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10709 case 2: 10710 if (is_user) { 10711 return PAGE_READ; 10712 } else { 10713 return PAGE_READ | PAGE_WRITE; 10714 } 10715 case 3: 10716 return PAGE_READ | PAGE_WRITE; 10717 case 4: /* Reserved. */ 10718 return 0; 10719 case 5: 10720 return is_user ? 0 : PAGE_READ; 10721 case 6: 10722 return PAGE_READ; 10723 case 7: 10724 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10725 return 0; 10726 } 10727 return PAGE_READ; 10728 default: 10729 g_assert_not_reached(); 10730 } 10731 } 10732 10733 /* Translate section/page access permissions to page 10734 * R/W protection flags. 10735 * 10736 * @ap: The 2-bit simple AP (AP[2:1]) 10737 * @is_user: TRUE if accessing from PL0 10738 */ 10739 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10740 { 10741 switch (ap) { 10742 case 0: 10743 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10744 case 1: 10745 return PAGE_READ | PAGE_WRITE; 10746 case 2: 10747 return is_user ? 0 : PAGE_READ; 10748 case 3: 10749 return PAGE_READ; 10750 default: 10751 g_assert_not_reached(); 10752 } 10753 } 10754 10755 static inline int 10756 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10757 { 10758 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10759 } 10760 10761 /* Translate S2 section/page access permissions to protection flags 10762 * 10763 * @env: CPUARMState 10764 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10765 * @xn: XN (execute-never) bit 10766 */ 10767 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 10768 { 10769 int prot = 0; 10770 10771 if (s2ap & 1) { 10772 prot |= PAGE_READ; 10773 } 10774 if (s2ap & 2) { 10775 prot |= PAGE_WRITE; 10776 } 10777 if (!xn) { 10778 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10779 prot |= PAGE_EXEC; 10780 } 10781 } 10782 return prot; 10783 } 10784 10785 /* Translate section/page access permissions to protection flags 10786 * 10787 * @env: CPUARMState 10788 * @mmu_idx: MMU index indicating required translation regime 10789 * @is_aa64: TRUE if AArch64 10790 * @ap: The 2-bit simple AP (AP[2:1]) 10791 * @ns: NS (non-secure) bit 10792 * @xn: XN (execute-never) bit 10793 * @pxn: PXN (privileged execute-never) bit 10794 */ 10795 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10796 int ap, int ns, int xn, int pxn) 10797 { 10798 bool is_user = regime_is_user(env, mmu_idx); 10799 int prot_rw, user_rw; 10800 bool have_wxn; 10801 int wxn = 0; 10802 10803 assert(mmu_idx != ARMMMUIdx_S2NS); 10804 10805 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10806 if (is_user) { 10807 prot_rw = user_rw; 10808 } else { 10809 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10810 } 10811 10812 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10813 return prot_rw; 10814 } 10815 10816 /* TODO have_wxn should be replaced with 10817 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10818 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10819 * compatible processors have EL2, which is required for [U]WXN. 10820 */ 10821 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10822 10823 if (have_wxn) { 10824 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10825 } 10826 10827 if (is_aa64) { 10828 switch (regime_el(env, mmu_idx)) { 10829 case 1: 10830 if (!is_user) { 10831 xn = pxn || (user_rw & PAGE_WRITE); 10832 } 10833 break; 10834 case 2: 10835 case 3: 10836 break; 10837 } 10838 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10839 switch (regime_el(env, mmu_idx)) { 10840 case 1: 10841 case 3: 10842 if (is_user) { 10843 xn = xn || !(user_rw & PAGE_READ); 10844 } else { 10845 int uwxn = 0; 10846 if (have_wxn) { 10847 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10848 } 10849 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10850 (uwxn && (user_rw & PAGE_WRITE)); 10851 } 10852 break; 10853 case 2: 10854 break; 10855 } 10856 } else { 10857 xn = wxn = 0; 10858 } 10859 10860 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10861 return prot_rw; 10862 } 10863 return prot_rw | PAGE_EXEC; 10864 } 10865 10866 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10867 uint32_t *table, uint32_t address) 10868 { 10869 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10870 TCR *tcr = regime_tcr(env, mmu_idx); 10871 10872 if (address & tcr->mask) { 10873 if (tcr->raw_tcr & TTBCR_PD1) { 10874 /* Translation table walk disabled for TTBR1 */ 10875 return false; 10876 } 10877 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10878 } else { 10879 if (tcr->raw_tcr & TTBCR_PD0) { 10880 /* Translation table walk disabled for TTBR0 */ 10881 return false; 10882 } 10883 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10884 } 10885 *table |= (address >> 18) & 0x3ffc; 10886 return true; 10887 } 10888 10889 /* Translate a S1 pagetable walk through S2 if needed. */ 10890 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10891 hwaddr addr, MemTxAttrs txattrs, 10892 ARMMMUFaultInfo *fi) 10893 { 10894 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 10895 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10896 target_ulong s2size; 10897 hwaddr s2pa; 10898 int s2prot; 10899 int ret; 10900 ARMCacheAttrs cacheattrs = {}; 10901 ARMCacheAttrs *pcacheattrs = NULL; 10902 10903 if (env->cp15.hcr_el2 & HCR_PTW) { 10904 /* 10905 * PTW means we must fault if this S1 walk touches S2 Device 10906 * memory; otherwise we don't care about the attributes and can 10907 * save the S2 translation the effort of computing them. 10908 */ 10909 pcacheattrs = &cacheattrs; 10910 } 10911 10912 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 10913 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 10914 if (ret) { 10915 assert(fi->type != ARMFault_None); 10916 fi->s2addr = addr; 10917 fi->stage2 = true; 10918 fi->s1ptw = true; 10919 return ~0; 10920 } 10921 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 10922 /* Access was to Device memory: generate Permission fault */ 10923 fi->type = ARMFault_Permission; 10924 fi->s2addr = addr; 10925 fi->stage2 = true; 10926 fi->s1ptw = true; 10927 return ~0; 10928 } 10929 addr = s2pa; 10930 } 10931 return addr; 10932 } 10933 10934 /* All loads done in the course of a page table walk go through here. */ 10935 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10936 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10937 { 10938 ARMCPU *cpu = ARM_CPU(cs); 10939 CPUARMState *env = &cpu->env; 10940 MemTxAttrs attrs = {}; 10941 MemTxResult result = MEMTX_OK; 10942 AddressSpace *as; 10943 uint32_t data; 10944 10945 attrs.secure = is_secure; 10946 as = arm_addressspace(cs, attrs); 10947 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10948 if (fi->s1ptw) { 10949 return 0; 10950 } 10951 if (regime_translation_big_endian(env, mmu_idx)) { 10952 data = address_space_ldl_be(as, addr, attrs, &result); 10953 } else { 10954 data = address_space_ldl_le(as, addr, attrs, &result); 10955 } 10956 if (result == MEMTX_OK) { 10957 return data; 10958 } 10959 fi->type = ARMFault_SyncExternalOnWalk; 10960 fi->ea = arm_extabort_type(result); 10961 return 0; 10962 } 10963 10964 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10965 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10966 { 10967 ARMCPU *cpu = ARM_CPU(cs); 10968 CPUARMState *env = &cpu->env; 10969 MemTxAttrs attrs = {}; 10970 MemTxResult result = MEMTX_OK; 10971 AddressSpace *as; 10972 uint64_t data; 10973 10974 attrs.secure = is_secure; 10975 as = arm_addressspace(cs, attrs); 10976 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 10977 if (fi->s1ptw) { 10978 return 0; 10979 } 10980 if (regime_translation_big_endian(env, mmu_idx)) { 10981 data = address_space_ldq_be(as, addr, attrs, &result); 10982 } else { 10983 data = address_space_ldq_le(as, addr, attrs, &result); 10984 } 10985 if (result == MEMTX_OK) { 10986 return data; 10987 } 10988 fi->type = ARMFault_SyncExternalOnWalk; 10989 fi->ea = arm_extabort_type(result); 10990 return 0; 10991 } 10992 10993 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10994 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10995 hwaddr *phys_ptr, int *prot, 10996 target_ulong *page_size, 10997 ARMMMUFaultInfo *fi) 10998 { 10999 CPUState *cs = env_cpu(env); 11000 int level = 1; 11001 uint32_t table; 11002 uint32_t desc; 11003 int type; 11004 int ap; 11005 int domain = 0; 11006 int domain_prot; 11007 hwaddr phys_addr; 11008 uint32_t dacr; 11009 11010 /* Pagetable walk. */ 11011 /* Lookup l1 descriptor. */ 11012 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11013 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11014 fi->type = ARMFault_Translation; 11015 goto do_fault; 11016 } 11017 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11018 mmu_idx, fi); 11019 if (fi->type != ARMFault_None) { 11020 goto do_fault; 11021 } 11022 type = (desc & 3); 11023 domain = (desc >> 5) & 0x0f; 11024 if (regime_el(env, mmu_idx) == 1) { 11025 dacr = env->cp15.dacr_ns; 11026 } else { 11027 dacr = env->cp15.dacr_s; 11028 } 11029 domain_prot = (dacr >> (domain * 2)) & 3; 11030 if (type == 0) { 11031 /* Section translation fault. */ 11032 fi->type = ARMFault_Translation; 11033 goto do_fault; 11034 } 11035 if (type != 2) { 11036 level = 2; 11037 } 11038 if (domain_prot == 0 || domain_prot == 2) { 11039 fi->type = ARMFault_Domain; 11040 goto do_fault; 11041 } 11042 if (type == 2) { 11043 /* 1Mb section. */ 11044 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11045 ap = (desc >> 10) & 3; 11046 *page_size = 1024 * 1024; 11047 } else { 11048 /* Lookup l2 entry. */ 11049 if (type == 1) { 11050 /* Coarse pagetable. */ 11051 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11052 } else { 11053 /* Fine pagetable. */ 11054 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 11055 } 11056 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11057 mmu_idx, fi); 11058 if (fi->type != ARMFault_None) { 11059 goto do_fault; 11060 } 11061 switch (desc & 3) { 11062 case 0: /* Page translation fault. */ 11063 fi->type = ARMFault_Translation; 11064 goto do_fault; 11065 case 1: /* 64k page. */ 11066 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11067 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 11068 *page_size = 0x10000; 11069 break; 11070 case 2: /* 4k page. */ 11071 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11072 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 11073 *page_size = 0x1000; 11074 break; 11075 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 11076 if (type == 1) { 11077 /* ARMv6/XScale extended small page format */ 11078 if (arm_feature(env, ARM_FEATURE_XSCALE) 11079 || arm_feature(env, ARM_FEATURE_V6)) { 11080 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11081 *page_size = 0x1000; 11082 } else { 11083 /* UNPREDICTABLE in ARMv5; we choose to take a 11084 * page translation fault. 11085 */ 11086 fi->type = ARMFault_Translation; 11087 goto do_fault; 11088 } 11089 } else { 11090 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 11091 *page_size = 0x400; 11092 } 11093 ap = (desc >> 4) & 3; 11094 break; 11095 default: 11096 /* Never happens, but compiler isn't smart enough to tell. */ 11097 abort(); 11098 } 11099 } 11100 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11101 *prot |= *prot ? PAGE_EXEC : 0; 11102 if (!(*prot & (1 << access_type))) { 11103 /* Access permission fault. */ 11104 fi->type = ARMFault_Permission; 11105 goto do_fault; 11106 } 11107 *phys_ptr = phys_addr; 11108 return false; 11109 do_fault: 11110 fi->domain = domain; 11111 fi->level = level; 11112 return true; 11113 } 11114 11115 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 11116 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11117 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 11118 target_ulong *page_size, ARMMMUFaultInfo *fi) 11119 { 11120 CPUState *cs = env_cpu(env); 11121 int level = 1; 11122 uint32_t table; 11123 uint32_t desc; 11124 uint32_t xn; 11125 uint32_t pxn = 0; 11126 int type; 11127 int ap; 11128 int domain = 0; 11129 int domain_prot; 11130 hwaddr phys_addr; 11131 uint32_t dacr; 11132 bool ns; 11133 11134 /* Pagetable walk. */ 11135 /* Lookup l1 descriptor. */ 11136 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 11137 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 11138 fi->type = ARMFault_Translation; 11139 goto do_fault; 11140 } 11141 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11142 mmu_idx, fi); 11143 if (fi->type != ARMFault_None) { 11144 goto do_fault; 11145 } 11146 type = (desc & 3); 11147 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 11148 /* Section translation fault, or attempt to use the encoding 11149 * which is Reserved on implementations without PXN. 11150 */ 11151 fi->type = ARMFault_Translation; 11152 goto do_fault; 11153 } 11154 if ((type == 1) || !(desc & (1 << 18))) { 11155 /* Page or Section. */ 11156 domain = (desc >> 5) & 0x0f; 11157 } 11158 if (regime_el(env, mmu_idx) == 1) { 11159 dacr = env->cp15.dacr_ns; 11160 } else { 11161 dacr = env->cp15.dacr_s; 11162 } 11163 if (type == 1) { 11164 level = 2; 11165 } 11166 domain_prot = (dacr >> (domain * 2)) & 3; 11167 if (domain_prot == 0 || domain_prot == 2) { 11168 /* Section or Page domain fault */ 11169 fi->type = ARMFault_Domain; 11170 goto do_fault; 11171 } 11172 if (type != 1) { 11173 if (desc & (1 << 18)) { 11174 /* Supersection. */ 11175 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 11176 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 11177 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 11178 *page_size = 0x1000000; 11179 } else { 11180 /* Section. */ 11181 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 11182 *page_size = 0x100000; 11183 } 11184 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 11185 xn = desc & (1 << 4); 11186 pxn = desc & 1; 11187 ns = extract32(desc, 19, 1); 11188 } else { 11189 if (arm_feature(env, ARM_FEATURE_PXN)) { 11190 pxn = (desc >> 2) & 1; 11191 } 11192 ns = extract32(desc, 3, 1); 11193 /* Lookup l2 entry. */ 11194 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11195 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11196 mmu_idx, fi); 11197 if (fi->type != ARMFault_None) { 11198 goto do_fault; 11199 } 11200 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11201 switch (desc & 3) { 11202 case 0: /* Page translation fault. */ 11203 fi->type = ARMFault_Translation; 11204 goto do_fault; 11205 case 1: /* 64k page. */ 11206 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11207 xn = desc & (1 << 15); 11208 *page_size = 0x10000; 11209 break; 11210 case 2: case 3: /* 4k page. */ 11211 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11212 xn = desc & 1; 11213 *page_size = 0x1000; 11214 break; 11215 default: 11216 /* Never happens, but compiler isn't smart enough to tell. */ 11217 abort(); 11218 } 11219 } 11220 if (domain_prot == 3) { 11221 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11222 } else { 11223 if (pxn && !regime_is_user(env, mmu_idx)) { 11224 xn = 1; 11225 } 11226 if (xn && access_type == MMU_INST_FETCH) { 11227 fi->type = ARMFault_Permission; 11228 goto do_fault; 11229 } 11230 11231 if (arm_feature(env, ARM_FEATURE_V6K) && 11232 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11233 /* The simplified model uses AP[0] as an access control bit. */ 11234 if ((ap & 1) == 0) { 11235 /* Access flag fault. */ 11236 fi->type = ARMFault_AccessFlag; 11237 goto do_fault; 11238 } 11239 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11240 } else { 11241 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11242 } 11243 if (*prot && !xn) { 11244 *prot |= PAGE_EXEC; 11245 } 11246 if (!(*prot & (1 << access_type))) { 11247 /* Access permission fault. */ 11248 fi->type = ARMFault_Permission; 11249 goto do_fault; 11250 } 11251 } 11252 if (ns) { 11253 /* The NS bit will (as required by the architecture) have no effect if 11254 * the CPU doesn't support TZ or this is a non-secure translation 11255 * regime, because the attribute will already be non-secure. 11256 */ 11257 attrs->secure = false; 11258 } 11259 *phys_ptr = phys_addr; 11260 return false; 11261 do_fault: 11262 fi->domain = domain; 11263 fi->level = level; 11264 return true; 11265 } 11266 11267 /* 11268 * check_s2_mmu_setup 11269 * @cpu: ARMCPU 11270 * @is_aa64: True if the translation regime is in AArch64 state 11271 * @startlevel: Suggested starting level 11272 * @inputsize: Bitsize of IPAs 11273 * @stride: Page-table stride (See the ARM ARM) 11274 * 11275 * Returns true if the suggested S2 translation parameters are OK and 11276 * false otherwise. 11277 */ 11278 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11279 int inputsize, int stride) 11280 { 11281 const int grainsize = stride + 3; 11282 int startsizecheck; 11283 11284 /* Negative levels are never allowed. */ 11285 if (level < 0) { 11286 return false; 11287 } 11288 11289 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11290 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11291 return false; 11292 } 11293 11294 if (is_aa64) { 11295 CPUARMState *env = &cpu->env; 11296 unsigned int pamax = arm_pamax(cpu); 11297 11298 switch (stride) { 11299 case 13: /* 64KB Pages. */ 11300 if (level == 0 || (level == 1 && pamax <= 42)) { 11301 return false; 11302 } 11303 break; 11304 case 11: /* 16KB Pages. */ 11305 if (level == 0 || (level == 1 && pamax <= 40)) { 11306 return false; 11307 } 11308 break; 11309 case 9: /* 4KB Pages. */ 11310 if (level == 0 && pamax <= 42) { 11311 return false; 11312 } 11313 break; 11314 default: 11315 g_assert_not_reached(); 11316 } 11317 11318 /* Inputsize checks. */ 11319 if (inputsize > pamax && 11320 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 11321 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11322 return false; 11323 } 11324 } else { 11325 /* AArch32 only supports 4KB pages. Assert on that. */ 11326 assert(stride == 9); 11327 11328 if (level == 0) { 11329 return false; 11330 } 11331 } 11332 return true; 11333 } 11334 11335 /* Translate from the 4-bit stage 2 representation of 11336 * memory attributes (without cache-allocation hints) to 11337 * the 8-bit representation of the stage 1 MAIR registers 11338 * (which includes allocation hints). 11339 * 11340 * ref: shared/translation/attrs/S2AttrDecode() 11341 * .../S2ConvertAttrsHints() 11342 */ 11343 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11344 { 11345 uint8_t hiattr = extract32(s2attrs, 2, 2); 11346 uint8_t loattr = extract32(s2attrs, 0, 2); 11347 uint8_t hihint = 0, lohint = 0; 11348 11349 if (hiattr != 0) { /* normal memory */ 11350 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 11351 hiattr = loattr = 1; /* non-cacheable */ 11352 } else { 11353 if (hiattr != 1) { /* Write-through or write-back */ 11354 hihint = 3; /* RW allocate */ 11355 } 11356 if (loattr != 1) { /* Write-through or write-back */ 11357 lohint = 3; /* RW allocate */ 11358 } 11359 } 11360 } 11361 11362 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11363 } 11364 #endif /* !CONFIG_USER_ONLY */ 11365 11366 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 11367 ARMMMUIdx mmu_idx) 11368 { 11369 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11370 uint32_t el = regime_el(env, mmu_idx); 11371 bool tbi, tbid, epd, hpd, using16k, using64k; 11372 int select, tsz; 11373 11374 /* 11375 * Bit 55 is always between the two regions, and is canonical for 11376 * determining if address tagging is enabled. 11377 */ 11378 select = extract64(va, 55, 1); 11379 11380 if (el > 1) { 11381 tsz = extract32(tcr, 0, 6); 11382 using64k = extract32(tcr, 14, 1); 11383 using16k = extract32(tcr, 15, 1); 11384 if (mmu_idx == ARMMMUIdx_S2NS) { 11385 /* VTCR_EL2 */ 11386 tbi = tbid = hpd = false; 11387 } else { 11388 tbi = extract32(tcr, 20, 1); 11389 hpd = extract32(tcr, 24, 1); 11390 tbid = extract32(tcr, 29, 1); 11391 } 11392 epd = false; 11393 } else if (!select) { 11394 tsz = extract32(tcr, 0, 6); 11395 epd = extract32(tcr, 7, 1); 11396 using64k = extract32(tcr, 14, 1); 11397 using16k = extract32(tcr, 15, 1); 11398 tbi = extract64(tcr, 37, 1); 11399 hpd = extract64(tcr, 41, 1); 11400 tbid = extract64(tcr, 51, 1); 11401 } else { 11402 int tg = extract32(tcr, 30, 2); 11403 using16k = tg == 1; 11404 using64k = tg == 3; 11405 tsz = extract32(tcr, 16, 6); 11406 epd = extract32(tcr, 23, 1); 11407 tbi = extract64(tcr, 38, 1); 11408 hpd = extract64(tcr, 42, 1); 11409 tbid = extract64(tcr, 52, 1); 11410 } 11411 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 11412 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 11413 11414 return (ARMVAParameters) { 11415 .tsz = tsz, 11416 .select = select, 11417 .tbi = tbi, 11418 .tbid = tbid, 11419 .epd = epd, 11420 .hpd = hpd, 11421 .using16k = using16k, 11422 .using64k = using64k, 11423 }; 11424 } 11425 11426 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11427 ARMMMUIdx mmu_idx, bool data) 11428 { 11429 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 11430 11431 /* Present TBI as a composite with TBID. */ 11432 ret.tbi &= (data || !ret.tbid); 11433 return ret; 11434 } 11435 11436 #ifndef CONFIG_USER_ONLY 11437 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11438 ARMMMUIdx mmu_idx) 11439 { 11440 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11441 uint32_t el = regime_el(env, mmu_idx); 11442 int select, tsz; 11443 bool epd, hpd; 11444 11445 if (mmu_idx == ARMMMUIdx_S2NS) { 11446 /* VTCR */ 11447 bool sext = extract32(tcr, 4, 1); 11448 bool sign = extract32(tcr, 3, 1); 11449 11450 /* 11451 * If the sign-extend bit is not the same as t0sz[3], the result 11452 * is unpredictable. Flag this as a guest error. 11453 */ 11454 if (sign != sext) { 11455 qemu_log_mask(LOG_GUEST_ERROR, 11456 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11457 } 11458 tsz = sextract32(tcr, 0, 4) + 8; 11459 select = 0; 11460 hpd = false; 11461 epd = false; 11462 } else if (el == 2) { 11463 /* HTCR */ 11464 tsz = extract32(tcr, 0, 3); 11465 select = 0; 11466 hpd = extract64(tcr, 24, 1); 11467 epd = false; 11468 } else { 11469 int t0sz = extract32(tcr, 0, 3); 11470 int t1sz = extract32(tcr, 16, 3); 11471 11472 if (t1sz == 0) { 11473 select = va > (0xffffffffu >> t0sz); 11474 } else { 11475 /* Note that we will detect errors later. */ 11476 select = va >= ~(0xffffffffu >> t1sz); 11477 } 11478 if (!select) { 11479 tsz = t0sz; 11480 epd = extract32(tcr, 7, 1); 11481 hpd = extract64(tcr, 41, 1); 11482 } else { 11483 tsz = t1sz; 11484 epd = extract32(tcr, 23, 1); 11485 hpd = extract64(tcr, 42, 1); 11486 } 11487 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11488 hpd &= extract32(tcr, 6, 1); 11489 } 11490 11491 return (ARMVAParameters) { 11492 .tsz = tsz, 11493 .select = select, 11494 .epd = epd, 11495 .hpd = hpd, 11496 }; 11497 } 11498 11499 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 11500 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11501 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11502 target_ulong *page_size_ptr, 11503 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11504 { 11505 ARMCPU *cpu = env_archcpu(env); 11506 CPUState *cs = CPU(cpu); 11507 /* Read an LPAE long-descriptor translation table. */ 11508 ARMFaultType fault_type = ARMFault_Translation; 11509 uint32_t level; 11510 ARMVAParameters param; 11511 uint64_t ttbr; 11512 hwaddr descaddr, indexmask, indexmask_grainsize; 11513 uint32_t tableattrs; 11514 target_ulong page_size; 11515 uint32_t attrs; 11516 int32_t stride; 11517 int addrsize, inputsize; 11518 TCR *tcr = regime_tcr(env, mmu_idx); 11519 int ap, ns, xn, pxn; 11520 uint32_t el = regime_el(env, mmu_idx); 11521 bool ttbr1_valid; 11522 uint64_t descaddrmask; 11523 bool aarch64 = arm_el_is_aa64(env, el); 11524 bool guarded = false; 11525 11526 /* TODO: 11527 * This code does not handle the different format TCR for VTCR_EL2. 11528 * This code also does not support shareability levels. 11529 * Attribute and permission bit handling should also be checked when adding 11530 * support for those page table walks. 11531 */ 11532 if (aarch64) { 11533 param = aa64_va_parameters(env, address, mmu_idx, 11534 access_type != MMU_INST_FETCH); 11535 level = 0; 11536 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 11537 * invalid. 11538 */ 11539 ttbr1_valid = (el < 2); 11540 addrsize = 64 - 8 * param.tbi; 11541 inputsize = 64 - param.tsz; 11542 } else { 11543 param = aa32_va_parameters(env, address, mmu_idx); 11544 level = 1; 11545 /* There is no TTBR1 for EL2 */ 11546 ttbr1_valid = (el != 2); 11547 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 11548 inputsize = addrsize - param.tsz; 11549 } 11550 11551 /* 11552 * We determined the region when collecting the parameters, but we 11553 * have not yet validated that the address is valid for the region. 11554 * Extract the top bits and verify that they all match select. 11555 * 11556 * For aa32, if inputsize == addrsize, then we have selected the 11557 * region by exclusion in aa32_va_parameters and there is no more 11558 * validation to do here. 11559 */ 11560 if (inputsize < addrsize) { 11561 target_ulong top_bits = sextract64(address, inputsize, 11562 addrsize - inputsize); 11563 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 11564 /* The gap between the two regions is a Translation fault */ 11565 fault_type = ARMFault_Translation; 11566 goto do_fault; 11567 } 11568 } 11569 11570 if (param.using64k) { 11571 stride = 13; 11572 } else if (param.using16k) { 11573 stride = 11; 11574 } else { 11575 stride = 9; 11576 } 11577 11578 /* Note that QEMU ignores shareability and cacheability attributes, 11579 * so we don't need to do anything with the SH, ORGN, IRGN fields 11580 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11581 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11582 * implement any ASID-like capability so we can ignore it (instead 11583 * we will always flush the TLB any time the ASID is changed). 11584 */ 11585 ttbr = regime_ttbr(env, mmu_idx, param.select); 11586 11587 /* Here we should have set up all the parameters for the translation: 11588 * inputsize, ttbr, epd, stride, tbi 11589 */ 11590 11591 if (param.epd) { 11592 /* Translation table walk disabled => Translation fault on TLB miss 11593 * Note: This is always 0 on 64-bit EL2 and EL3. 11594 */ 11595 goto do_fault; 11596 } 11597 11598 if (mmu_idx != ARMMMUIdx_S2NS) { 11599 /* The starting level depends on the virtual address size (which can 11600 * be up to 48 bits) and the translation granule size. It indicates 11601 * the number of strides (stride bits at a time) needed to 11602 * consume the bits of the input address. In the pseudocode this is: 11603 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11604 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11605 * our 'stride + 3' and 'stride' is our 'stride'. 11606 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11607 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11608 * = 4 - (inputsize - 4) / stride; 11609 */ 11610 level = 4 - (inputsize - 4) / stride; 11611 } else { 11612 /* For stage 2 translations the starting level is specified by the 11613 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11614 */ 11615 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11616 uint32_t startlevel; 11617 bool ok; 11618 11619 if (!aarch64 || stride == 9) { 11620 /* AArch32 or 4KB pages */ 11621 startlevel = 2 - sl0; 11622 } else { 11623 /* 16KB or 64KB pages */ 11624 startlevel = 3 - sl0; 11625 } 11626 11627 /* Check that the starting level is valid. */ 11628 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11629 inputsize, stride); 11630 if (!ok) { 11631 fault_type = ARMFault_Translation; 11632 goto do_fault; 11633 } 11634 level = startlevel; 11635 } 11636 11637 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 11638 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 11639 11640 /* Now we can extract the actual base address from the TTBR */ 11641 descaddr = extract64(ttbr, 0, 48); 11642 descaddr &= ~indexmask; 11643 11644 /* The address field in the descriptor goes up to bit 39 for ARMv7 11645 * but up to bit 47 for ARMv8, but we use the descaddrmask 11646 * up to bit 39 for AArch32, because we don't need other bits in that case 11647 * to construct next descriptor address (anyway they should be all zeroes). 11648 */ 11649 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 11650 ~indexmask_grainsize; 11651 11652 /* Secure accesses start with the page table in secure memory and 11653 * can be downgraded to non-secure at any step. Non-secure accesses 11654 * remain non-secure. We implement this by just ORing in the NSTable/NS 11655 * bits at each step. 11656 */ 11657 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11658 for (;;) { 11659 uint64_t descriptor; 11660 bool nstable; 11661 11662 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11663 descaddr &= ~7ULL; 11664 nstable = extract32(tableattrs, 4, 1); 11665 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11666 if (fi->type != ARMFault_None) { 11667 goto do_fault; 11668 } 11669 11670 if (!(descriptor & 1) || 11671 (!(descriptor & 2) && (level == 3))) { 11672 /* Invalid, or the Reserved level 3 encoding */ 11673 goto do_fault; 11674 } 11675 descaddr = descriptor & descaddrmask; 11676 11677 if ((descriptor & 2) && (level < 3)) { 11678 /* Table entry. The top five bits are attributes which may 11679 * propagate down through lower levels of the table (and 11680 * which are all arranged so that 0 means "no effect", so 11681 * we can gather them up by ORing in the bits at each level). 11682 */ 11683 tableattrs |= extract64(descriptor, 59, 5); 11684 level++; 11685 indexmask = indexmask_grainsize; 11686 continue; 11687 } 11688 /* Block entry at level 1 or 2, or page entry at level 3. 11689 * These are basically the same thing, although the number 11690 * of bits we pull in from the vaddr varies. 11691 */ 11692 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11693 descaddr |= (address & (page_size - 1)); 11694 /* Extract attributes from the descriptor */ 11695 attrs = extract64(descriptor, 2, 10) 11696 | (extract64(descriptor, 52, 12) << 10); 11697 11698 if (mmu_idx == ARMMMUIdx_S2NS) { 11699 /* Stage 2 table descriptors do not include any attribute fields */ 11700 break; 11701 } 11702 /* Merge in attributes from table descriptors */ 11703 attrs |= nstable << 3; /* NS */ 11704 guarded = extract64(descriptor, 50, 1); /* GP */ 11705 if (param.hpd) { 11706 /* HPD disables all the table attributes except NSTable. */ 11707 break; 11708 } 11709 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11710 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11711 * means "force PL1 access only", which means forcing AP[1] to 0. 11712 */ 11713 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11714 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11715 break; 11716 } 11717 /* Here descaddr is the final physical address, and attributes 11718 * are all in attrs. 11719 */ 11720 fault_type = ARMFault_AccessFlag; 11721 if ((attrs & (1 << 8)) == 0) { 11722 /* Access flag */ 11723 goto do_fault; 11724 } 11725 11726 ap = extract32(attrs, 4, 2); 11727 xn = extract32(attrs, 12, 1); 11728 11729 if (mmu_idx == ARMMMUIdx_S2NS) { 11730 ns = true; 11731 *prot = get_S2prot(env, ap, xn); 11732 } else { 11733 ns = extract32(attrs, 3, 1); 11734 pxn = extract32(attrs, 11, 1); 11735 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11736 } 11737 11738 fault_type = ARMFault_Permission; 11739 if (!(*prot & (1 << access_type))) { 11740 goto do_fault; 11741 } 11742 11743 if (ns) { 11744 /* The NS bit will (as required by the architecture) have no effect if 11745 * the CPU doesn't support TZ or this is a non-secure translation 11746 * regime, because the attribute will already be non-secure. 11747 */ 11748 txattrs->secure = false; 11749 } 11750 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11751 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11752 txattrs->target_tlb_bit0 = true; 11753 } 11754 11755 if (cacheattrs != NULL) { 11756 if (mmu_idx == ARMMMUIdx_S2NS) { 11757 cacheattrs->attrs = convert_stage2_attrs(env, 11758 extract32(attrs, 0, 4)); 11759 } else { 11760 /* Index into MAIR registers for cache attributes */ 11761 uint8_t attrindx = extract32(attrs, 0, 3); 11762 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11763 assert(attrindx <= 7); 11764 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11765 } 11766 cacheattrs->shareability = extract32(attrs, 6, 2); 11767 } 11768 11769 *phys_ptr = descaddr; 11770 *page_size_ptr = page_size; 11771 return false; 11772 11773 do_fault: 11774 fi->type = fault_type; 11775 fi->level = level; 11776 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11777 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 11778 return true; 11779 } 11780 11781 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11782 ARMMMUIdx mmu_idx, 11783 int32_t address, int *prot) 11784 { 11785 if (!arm_feature(env, ARM_FEATURE_M)) { 11786 *prot = PAGE_READ | PAGE_WRITE; 11787 switch (address) { 11788 case 0xF0000000 ... 0xFFFFFFFF: 11789 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11790 /* hivecs execing is ok */ 11791 *prot |= PAGE_EXEC; 11792 } 11793 break; 11794 case 0x00000000 ... 0x7FFFFFFF: 11795 *prot |= PAGE_EXEC; 11796 break; 11797 } 11798 } else { 11799 /* Default system address map for M profile cores. 11800 * The architecture specifies which regions are execute-never; 11801 * at the MPU level no other checks are defined. 11802 */ 11803 switch (address) { 11804 case 0x00000000 ... 0x1fffffff: /* ROM */ 11805 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11806 case 0x60000000 ... 0x7fffffff: /* RAM */ 11807 case 0x80000000 ... 0x9fffffff: /* RAM */ 11808 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11809 break; 11810 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11811 case 0xa0000000 ... 0xbfffffff: /* Device */ 11812 case 0xc0000000 ... 0xdfffffff: /* Device */ 11813 case 0xe0000000 ... 0xffffffff: /* System */ 11814 *prot = PAGE_READ | PAGE_WRITE; 11815 break; 11816 default: 11817 g_assert_not_reached(); 11818 } 11819 } 11820 } 11821 11822 static bool pmsav7_use_background_region(ARMCPU *cpu, 11823 ARMMMUIdx mmu_idx, bool is_user) 11824 { 11825 /* Return true if we should use the default memory map as a 11826 * "background" region if there are no hits against any MPU regions. 11827 */ 11828 CPUARMState *env = &cpu->env; 11829 11830 if (is_user) { 11831 return false; 11832 } 11833 11834 if (arm_feature(env, ARM_FEATURE_M)) { 11835 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11836 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11837 } else { 11838 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11839 } 11840 } 11841 11842 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11843 { 11844 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11845 return arm_feature(env, ARM_FEATURE_M) && 11846 extract32(address, 20, 12) == 0xe00; 11847 } 11848 11849 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11850 { 11851 /* True if address is in the M profile system region 11852 * 0xe0000000 - 0xffffffff 11853 */ 11854 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11855 } 11856 11857 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11858 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11859 hwaddr *phys_ptr, int *prot, 11860 target_ulong *page_size, 11861 ARMMMUFaultInfo *fi) 11862 { 11863 ARMCPU *cpu = env_archcpu(env); 11864 int n; 11865 bool is_user = regime_is_user(env, mmu_idx); 11866 11867 *phys_ptr = address; 11868 *page_size = TARGET_PAGE_SIZE; 11869 *prot = 0; 11870 11871 if (regime_translation_disabled(env, mmu_idx) || 11872 m_is_ppb_region(env, address)) { 11873 /* MPU disabled or M profile PPB access: use default memory map. 11874 * The other case which uses the default memory map in the 11875 * v7M ARM ARM pseudocode is exception vector reads from the vector 11876 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11877 * which always does a direct read using address_space_ldl(), rather 11878 * than going via this function, so we don't need to check that here. 11879 */ 11880 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11881 } else { /* MPU enabled */ 11882 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11883 /* region search */ 11884 uint32_t base = env->pmsav7.drbar[n]; 11885 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11886 uint32_t rmask; 11887 bool srdis = false; 11888 11889 if (!(env->pmsav7.drsr[n] & 0x1)) { 11890 continue; 11891 } 11892 11893 if (!rsize) { 11894 qemu_log_mask(LOG_GUEST_ERROR, 11895 "DRSR[%d]: Rsize field cannot be 0\n", n); 11896 continue; 11897 } 11898 rsize++; 11899 rmask = (1ull << rsize) - 1; 11900 11901 if (base & rmask) { 11902 qemu_log_mask(LOG_GUEST_ERROR, 11903 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11904 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11905 n, base, rmask); 11906 continue; 11907 } 11908 11909 if (address < base || address > base + rmask) { 11910 /* 11911 * Address not in this region. We must check whether the 11912 * region covers addresses in the same page as our address. 11913 * In that case we must not report a size that covers the 11914 * whole page for a subsequent hit against a different MPU 11915 * region or the background region, because it would result in 11916 * incorrect TLB hits for subsequent accesses to addresses that 11917 * are in this MPU region. 11918 */ 11919 if (ranges_overlap(base, rmask, 11920 address & TARGET_PAGE_MASK, 11921 TARGET_PAGE_SIZE)) { 11922 *page_size = 1; 11923 } 11924 continue; 11925 } 11926 11927 /* Region matched */ 11928 11929 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11930 int i, snd; 11931 uint32_t srdis_mask; 11932 11933 rsize -= 3; /* sub region size (power of 2) */ 11934 snd = ((address - base) >> rsize) & 0x7; 11935 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11936 11937 srdis_mask = srdis ? 0x3 : 0x0; 11938 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11939 /* This will check in groups of 2, 4 and then 8, whether 11940 * the subregion bits are consistent. rsize is incremented 11941 * back up to give the region size, considering consistent 11942 * adjacent subregions as one region. Stop testing if rsize 11943 * is already big enough for an entire QEMU page. 11944 */ 11945 int snd_rounded = snd & ~(i - 1); 11946 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11947 snd_rounded + 8, i); 11948 if (srdis_mask ^ srdis_multi) { 11949 break; 11950 } 11951 srdis_mask = (srdis_mask << i) | srdis_mask; 11952 rsize++; 11953 } 11954 } 11955 if (srdis) { 11956 continue; 11957 } 11958 if (rsize < TARGET_PAGE_BITS) { 11959 *page_size = 1 << rsize; 11960 } 11961 break; 11962 } 11963 11964 if (n == -1) { /* no hits */ 11965 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 11966 /* background fault */ 11967 fi->type = ARMFault_Background; 11968 return true; 11969 } 11970 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11971 } else { /* a MPU hit! */ 11972 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 11973 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 11974 11975 if (m_is_system_region(env, address)) { 11976 /* System space is always execute never */ 11977 xn = 1; 11978 } 11979 11980 if (is_user) { /* User mode AP bit decoding */ 11981 switch (ap) { 11982 case 0: 11983 case 1: 11984 case 5: 11985 break; /* no access */ 11986 case 3: 11987 *prot |= PAGE_WRITE; 11988 /* fall through */ 11989 case 2: 11990 case 6: 11991 *prot |= PAGE_READ | PAGE_EXEC; 11992 break; 11993 case 7: 11994 /* for v7M, same as 6; for R profile a reserved value */ 11995 if (arm_feature(env, ARM_FEATURE_M)) { 11996 *prot |= PAGE_READ | PAGE_EXEC; 11997 break; 11998 } 11999 /* fall through */ 12000 default: 12001 qemu_log_mask(LOG_GUEST_ERROR, 12002 "DRACR[%d]: Bad value for AP bits: 0x%" 12003 PRIx32 "\n", n, ap); 12004 } 12005 } else { /* Priv. mode AP bits decoding */ 12006 switch (ap) { 12007 case 0: 12008 break; /* no access */ 12009 case 1: 12010 case 2: 12011 case 3: 12012 *prot |= PAGE_WRITE; 12013 /* fall through */ 12014 case 5: 12015 case 6: 12016 *prot |= PAGE_READ | PAGE_EXEC; 12017 break; 12018 case 7: 12019 /* for v7M, same as 6; for R profile a reserved value */ 12020 if (arm_feature(env, ARM_FEATURE_M)) { 12021 *prot |= PAGE_READ | PAGE_EXEC; 12022 break; 12023 } 12024 /* fall through */ 12025 default: 12026 qemu_log_mask(LOG_GUEST_ERROR, 12027 "DRACR[%d]: Bad value for AP bits: 0x%" 12028 PRIx32 "\n", n, ap); 12029 } 12030 } 12031 12032 /* execute never */ 12033 if (xn) { 12034 *prot &= ~PAGE_EXEC; 12035 } 12036 } 12037 } 12038 12039 fi->type = ARMFault_Permission; 12040 fi->level = 1; 12041 return !(*prot & (1 << access_type)); 12042 } 12043 12044 static bool v8m_is_sau_exempt(CPUARMState *env, 12045 uint32_t address, MMUAccessType access_type) 12046 { 12047 /* The architecture specifies that certain address ranges are 12048 * exempt from v8M SAU/IDAU checks. 12049 */ 12050 return 12051 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12052 (address >= 0xe0000000 && address <= 0xe0002fff) || 12053 (address >= 0xe000e000 && address <= 0xe000efff) || 12054 (address >= 0xe002e000 && address <= 0xe002efff) || 12055 (address >= 0xe0040000 && address <= 0xe0041fff) || 12056 (address >= 0xe00ff000 && address <= 0xe00fffff); 12057 } 12058 12059 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 12060 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12061 V8M_SAttributes *sattrs) 12062 { 12063 /* Look up the security attributes for this address. Compare the 12064 * pseudocode SecurityCheck() function. 12065 * We assume the caller has zero-initialized *sattrs. 12066 */ 12067 ARMCPU *cpu = env_archcpu(env); 12068 int r; 12069 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12070 int idau_region = IREGION_NOTVALID; 12071 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12072 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12073 12074 if (cpu->idau) { 12075 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12076 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12077 12078 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12079 &idau_nsc); 12080 } 12081 12082 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12083 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12084 return; 12085 } 12086 12087 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12088 sattrs->ns = !regime_is_secure(env, mmu_idx); 12089 return; 12090 } 12091 12092 if (idau_region != IREGION_NOTVALID) { 12093 sattrs->irvalid = true; 12094 sattrs->iregion = idau_region; 12095 } 12096 12097 switch (env->sau.ctrl & 3) { 12098 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12099 break; 12100 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12101 sattrs->ns = true; 12102 break; 12103 default: /* SAU.ENABLE == 1 */ 12104 for (r = 0; r < cpu->sau_sregion; r++) { 12105 if (env->sau.rlar[r] & 1) { 12106 uint32_t base = env->sau.rbar[r] & ~0x1f; 12107 uint32_t limit = env->sau.rlar[r] | 0x1f; 12108 12109 if (base <= address && limit >= address) { 12110 if (base > addr_page_base || limit < addr_page_limit) { 12111 sattrs->subpage = true; 12112 } 12113 if (sattrs->srvalid) { 12114 /* If we hit in more than one region then we must report 12115 * as Secure, not NS-Callable, with no valid region 12116 * number info. 12117 */ 12118 sattrs->ns = false; 12119 sattrs->nsc = false; 12120 sattrs->sregion = 0; 12121 sattrs->srvalid = false; 12122 break; 12123 } else { 12124 if (env->sau.rlar[r] & 2) { 12125 sattrs->nsc = true; 12126 } else { 12127 sattrs->ns = true; 12128 } 12129 sattrs->srvalid = true; 12130 sattrs->sregion = r; 12131 } 12132 } else { 12133 /* 12134 * Address not in this region. We must check whether the 12135 * region covers addresses in the same page as our address. 12136 * In that case we must not report a size that covers the 12137 * whole page for a subsequent hit against a different MPU 12138 * region or the background region, because it would result 12139 * in incorrect TLB hits for subsequent accesses to 12140 * addresses that are in this MPU region. 12141 */ 12142 if (limit >= base && 12143 ranges_overlap(base, limit - base + 1, 12144 addr_page_base, 12145 TARGET_PAGE_SIZE)) { 12146 sattrs->subpage = true; 12147 } 12148 } 12149 } 12150 } 12151 break; 12152 } 12153 12154 /* 12155 * The IDAU will override the SAU lookup results if it specifies 12156 * higher security than the SAU does. 12157 */ 12158 if (!idau_ns) { 12159 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12160 sattrs->ns = false; 12161 sattrs->nsc = idau_nsc; 12162 } 12163 } 12164 } 12165 12166 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12167 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12168 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12169 int *prot, bool *is_subpage, 12170 ARMMMUFaultInfo *fi, uint32_t *mregion) 12171 { 12172 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12173 * that a full phys-to-virt translation does). 12174 * mregion is (if not NULL) set to the region number which matched, 12175 * or -1 if no region number is returned (MPU off, address did not 12176 * hit a region, address hit in multiple regions). 12177 * We set is_subpage to true if the region hit doesn't cover the 12178 * entire TARGET_PAGE the address is within. 12179 */ 12180 ARMCPU *cpu = env_archcpu(env); 12181 bool is_user = regime_is_user(env, mmu_idx); 12182 uint32_t secure = regime_is_secure(env, mmu_idx); 12183 int n; 12184 int matchregion = -1; 12185 bool hit = false; 12186 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12187 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12188 12189 *is_subpage = false; 12190 *phys_ptr = address; 12191 *prot = 0; 12192 if (mregion) { 12193 *mregion = -1; 12194 } 12195 12196 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12197 * was an exception vector read from the vector table (which is always 12198 * done using the default system address map), because those accesses 12199 * are done in arm_v7m_load_vector(), which always does a direct 12200 * read using address_space_ldl(), rather than going via this function. 12201 */ 12202 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12203 hit = true; 12204 } else if (m_is_ppb_region(env, address)) { 12205 hit = true; 12206 } else { 12207 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12208 hit = true; 12209 } 12210 12211 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12212 /* region search */ 12213 /* Note that the base address is bits [31:5] from the register 12214 * with bits [4:0] all zeroes, but the limit address is bits 12215 * [31:5] from the register with bits [4:0] all ones. 12216 */ 12217 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12218 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12219 12220 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12221 /* Region disabled */ 12222 continue; 12223 } 12224 12225 if (address < base || address > limit) { 12226 /* 12227 * Address not in this region. We must check whether the 12228 * region covers addresses in the same page as our address. 12229 * In that case we must not report a size that covers the 12230 * whole page for a subsequent hit against a different MPU 12231 * region or the background region, because it would result in 12232 * incorrect TLB hits for subsequent accesses to addresses that 12233 * are in this MPU region. 12234 */ 12235 if (limit >= base && 12236 ranges_overlap(base, limit - base + 1, 12237 addr_page_base, 12238 TARGET_PAGE_SIZE)) { 12239 *is_subpage = true; 12240 } 12241 continue; 12242 } 12243 12244 if (base > addr_page_base || limit < addr_page_limit) { 12245 *is_subpage = true; 12246 } 12247 12248 if (matchregion != -1) { 12249 /* Multiple regions match -- always a failure (unlike 12250 * PMSAv7 where highest-numbered-region wins) 12251 */ 12252 fi->type = ARMFault_Permission; 12253 fi->level = 1; 12254 return true; 12255 } 12256 12257 matchregion = n; 12258 hit = true; 12259 } 12260 } 12261 12262 if (!hit) { 12263 /* background fault */ 12264 fi->type = ARMFault_Background; 12265 return true; 12266 } 12267 12268 if (matchregion == -1) { 12269 /* hit using the background region */ 12270 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12271 } else { 12272 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12273 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12274 12275 if (m_is_system_region(env, address)) { 12276 /* System space is always execute never */ 12277 xn = 1; 12278 } 12279 12280 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12281 if (*prot && !xn) { 12282 *prot |= PAGE_EXEC; 12283 } 12284 /* We don't need to look the attribute up in the MAIR0/MAIR1 12285 * registers because that only tells us about cacheability. 12286 */ 12287 if (mregion) { 12288 *mregion = matchregion; 12289 } 12290 } 12291 12292 fi->type = ARMFault_Permission; 12293 fi->level = 1; 12294 return !(*prot & (1 << access_type)); 12295 } 12296 12297 12298 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12299 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12300 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12301 int *prot, target_ulong *page_size, 12302 ARMMMUFaultInfo *fi) 12303 { 12304 uint32_t secure = regime_is_secure(env, mmu_idx); 12305 V8M_SAttributes sattrs = {}; 12306 bool ret; 12307 bool mpu_is_subpage; 12308 12309 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12310 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12311 if (access_type == MMU_INST_FETCH) { 12312 /* Instruction fetches always use the MMU bank and the 12313 * transaction attribute determined by the fetch address, 12314 * regardless of CPU state. This is painful for QEMU 12315 * to handle, because it would mean we need to encode 12316 * into the mmu_idx not just the (user, negpri) information 12317 * for the current security state but also that for the 12318 * other security state, which would balloon the number 12319 * of mmu_idx values needed alarmingly. 12320 * Fortunately we can avoid this because it's not actually 12321 * possible to arbitrarily execute code from memory with 12322 * the wrong security attribute: it will always generate 12323 * an exception of some kind or another, apart from the 12324 * special case of an NS CPU executing an SG instruction 12325 * in S&NSC memory. So we always just fail the translation 12326 * here and sort things out in the exception handler 12327 * (including possibly emulating an SG instruction). 12328 */ 12329 if (sattrs.ns != !secure) { 12330 if (sattrs.nsc) { 12331 fi->type = ARMFault_QEMU_NSCExec; 12332 } else { 12333 fi->type = ARMFault_QEMU_SFault; 12334 } 12335 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12336 *phys_ptr = address; 12337 *prot = 0; 12338 return true; 12339 } 12340 } else { 12341 /* For data accesses we always use the MMU bank indicated 12342 * by the current CPU state, but the security attributes 12343 * might downgrade a secure access to nonsecure. 12344 */ 12345 if (sattrs.ns) { 12346 txattrs->secure = false; 12347 } else if (!secure) { 12348 /* NS access to S memory must fault. 12349 * Architecturally we should first check whether the 12350 * MPU information for this address indicates that we 12351 * are doing an unaligned access to Device memory, which 12352 * should generate a UsageFault instead. QEMU does not 12353 * currently check for that kind of unaligned access though. 12354 * If we added it we would need to do so as a special case 12355 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12356 */ 12357 fi->type = ARMFault_QEMU_SFault; 12358 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12359 *phys_ptr = address; 12360 *prot = 0; 12361 return true; 12362 } 12363 } 12364 } 12365 12366 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12367 txattrs, prot, &mpu_is_subpage, fi, NULL); 12368 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12369 return ret; 12370 } 12371 12372 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12373 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12374 hwaddr *phys_ptr, int *prot, 12375 ARMMMUFaultInfo *fi) 12376 { 12377 int n; 12378 uint32_t mask; 12379 uint32_t base; 12380 bool is_user = regime_is_user(env, mmu_idx); 12381 12382 if (regime_translation_disabled(env, mmu_idx)) { 12383 /* MPU disabled. */ 12384 *phys_ptr = address; 12385 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12386 return false; 12387 } 12388 12389 *phys_ptr = address; 12390 for (n = 7; n >= 0; n--) { 12391 base = env->cp15.c6_region[n]; 12392 if ((base & 1) == 0) { 12393 continue; 12394 } 12395 mask = 1 << ((base >> 1) & 0x1f); 12396 /* Keep this shift separate from the above to avoid an 12397 (undefined) << 32. */ 12398 mask = (mask << 1) - 1; 12399 if (((base ^ address) & ~mask) == 0) { 12400 break; 12401 } 12402 } 12403 if (n < 0) { 12404 fi->type = ARMFault_Background; 12405 return true; 12406 } 12407 12408 if (access_type == MMU_INST_FETCH) { 12409 mask = env->cp15.pmsav5_insn_ap; 12410 } else { 12411 mask = env->cp15.pmsav5_data_ap; 12412 } 12413 mask = (mask >> (n * 4)) & 0xf; 12414 switch (mask) { 12415 case 0: 12416 fi->type = ARMFault_Permission; 12417 fi->level = 1; 12418 return true; 12419 case 1: 12420 if (is_user) { 12421 fi->type = ARMFault_Permission; 12422 fi->level = 1; 12423 return true; 12424 } 12425 *prot = PAGE_READ | PAGE_WRITE; 12426 break; 12427 case 2: 12428 *prot = PAGE_READ; 12429 if (!is_user) { 12430 *prot |= PAGE_WRITE; 12431 } 12432 break; 12433 case 3: 12434 *prot = PAGE_READ | PAGE_WRITE; 12435 break; 12436 case 5: 12437 if (is_user) { 12438 fi->type = ARMFault_Permission; 12439 fi->level = 1; 12440 return true; 12441 } 12442 *prot = PAGE_READ; 12443 break; 12444 case 6: 12445 *prot = PAGE_READ; 12446 break; 12447 default: 12448 /* Bad permission. */ 12449 fi->type = ARMFault_Permission; 12450 fi->level = 1; 12451 return true; 12452 } 12453 *prot |= PAGE_EXEC; 12454 return false; 12455 } 12456 12457 /* Combine either inner or outer cacheability attributes for normal 12458 * memory, according to table D4-42 and pseudocode procedure 12459 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12460 * 12461 * NB: only stage 1 includes allocation hints (RW bits), leading to 12462 * some asymmetry. 12463 */ 12464 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12465 { 12466 if (s1 == 4 || s2 == 4) { 12467 /* non-cacheable has precedence */ 12468 return 4; 12469 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12470 /* stage 1 write-through takes precedence */ 12471 return s1; 12472 } else if (extract32(s2, 2, 2) == 2) { 12473 /* stage 2 write-through takes precedence, but the allocation hint 12474 * is still taken from stage 1 12475 */ 12476 return (2 << 2) | extract32(s1, 0, 2); 12477 } else { /* write-back */ 12478 return s1; 12479 } 12480 } 12481 12482 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12483 * and CombineS1S2Desc() 12484 * 12485 * @s1: Attributes from stage 1 walk 12486 * @s2: Attributes from stage 2 walk 12487 */ 12488 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12489 { 12490 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 12491 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 12492 ARMCacheAttrs ret; 12493 12494 /* Combine shareability attributes (table D4-43) */ 12495 if (s1.shareability == 2 || s2.shareability == 2) { 12496 /* if either are outer-shareable, the result is outer-shareable */ 12497 ret.shareability = 2; 12498 } else if (s1.shareability == 3 || s2.shareability == 3) { 12499 /* if either are inner-shareable, the result is inner-shareable */ 12500 ret.shareability = 3; 12501 } else { 12502 /* both non-shareable */ 12503 ret.shareability = 0; 12504 } 12505 12506 /* Combine memory type and cacheability attributes */ 12507 if (s1hi == 0 || s2hi == 0) { 12508 /* Device has precedence over normal */ 12509 if (s1lo == 0 || s2lo == 0) { 12510 /* nGnRnE has precedence over anything */ 12511 ret.attrs = 0; 12512 } else if (s1lo == 4 || s2lo == 4) { 12513 /* non-Reordering has precedence over Reordering */ 12514 ret.attrs = 4; /* nGnRE */ 12515 } else if (s1lo == 8 || s2lo == 8) { 12516 /* non-Gathering has precedence over Gathering */ 12517 ret.attrs = 8; /* nGRE */ 12518 } else { 12519 ret.attrs = 0xc; /* GRE */ 12520 } 12521 12522 /* Any location for which the resultant memory type is any 12523 * type of Device memory is always treated as Outer Shareable. 12524 */ 12525 ret.shareability = 2; 12526 } else { /* Normal memory */ 12527 /* Outer/inner cacheability combine independently */ 12528 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12529 | combine_cacheattr_nibble(s1lo, s2lo); 12530 12531 if (ret.attrs == 0x44) { 12532 /* Any location for which the resultant memory type is Normal 12533 * Inner Non-cacheable, Outer Non-cacheable is always treated 12534 * as Outer Shareable. 12535 */ 12536 ret.shareability = 2; 12537 } 12538 } 12539 12540 return ret; 12541 } 12542 12543 12544 /* get_phys_addr - get the physical address for this virtual address 12545 * 12546 * Find the physical address corresponding to the given virtual address, 12547 * by doing a translation table walk on MMU based systems or using the 12548 * MPU state on MPU based systems. 12549 * 12550 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12551 * prot and page_size may not be filled in, and the populated fsr value provides 12552 * information on why the translation aborted, in the format of a 12553 * DFSR/IFSR fault register, with the following caveats: 12554 * * we honour the short vs long DFSR format differences. 12555 * * the WnR bit is never set (the caller must do this). 12556 * * for PSMAv5 based systems we don't bother to return a full FSR format 12557 * value. 12558 * 12559 * @env: CPUARMState 12560 * @address: virtual address to get physical address for 12561 * @access_type: 0 for read, 1 for write, 2 for execute 12562 * @mmu_idx: MMU index indicating required translation regime 12563 * @phys_ptr: set to the physical address corresponding to the virtual address 12564 * @attrs: set to the memory transaction attributes to use 12565 * @prot: set to the permissions for the page containing phys_ptr 12566 * @page_size: set to the size of the page containing phys_ptr 12567 * @fi: set to fault info if the translation fails 12568 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12569 */ 12570 static bool get_phys_addr(CPUARMState *env, target_ulong address, 12571 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12572 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12573 target_ulong *page_size, 12574 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12575 { 12576 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 12577 /* Call ourselves recursively to do the stage 1 and then stage 2 12578 * translations. 12579 */ 12580 if (arm_feature(env, ARM_FEATURE_EL2)) { 12581 hwaddr ipa; 12582 int s2_prot; 12583 int ret; 12584 ARMCacheAttrs cacheattrs2 = {}; 12585 12586 ret = get_phys_addr(env, address, access_type, 12587 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 12588 prot, page_size, fi, cacheattrs); 12589 12590 /* If S1 fails or S2 is disabled, return early. */ 12591 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 12592 *phys_ptr = ipa; 12593 return ret; 12594 } 12595 12596 /* S1 is done. Now do S2 translation. */ 12597 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 12598 phys_ptr, attrs, &s2_prot, 12599 page_size, fi, 12600 cacheattrs != NULL ? &cacheattrs2 : NULL); 12601 fi->s2addr = ipa; 12602 /* Combine the S1 and S2 perms. */ 12603 *prot &= s2_prot; 12604 12605 /* Combine the S1 and S2 cache attributes, if needed */ 12606 if (!ret && cacheattrs != NULL) { 12607 if (env->cp15.hcr_el2 & HCR_DC) { 12608 /* 12609 * HCR.DC forces the first stage attributes to 12610 * Normal Non-Shareable, 12611 * Inner Write-Back Read-Allocate Write-Allocate, 12612 * Outer Write-Back Read-Allocate Write-Allocate. 12613 */ 12614 cacheattrs->attrs = 0xff; 12615 cacheattrs->shareability = 0; 12616 } 12617 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12618 } 12619 12620 return ret; 12621 } else { 12622 /* 12623 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12624 */ 12625 mmu_idx = stage_1_mmu_idx(mmu_idx); 12626 } 12627 } 12628 12629 /* The page table entries may downgrade secure to non-secure, but 12630 * cannot upgrade an non-secure translation regime's attributes 12631 * to secure. 12632 */ 12633 attrs->secure = regime_is_secure(env, mmu_idx); 12634 attrs->user = regime_is_user(env, mmu_idx); 12635 12636 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12637 * In v7 and earlier it affects all stage 1 translations. 12638 */ 12639 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 12640 && !arm_feature(env, ARM_FEATURE_V8)) { 12641 if (regime_el(env, mmu_idx) == 3) { 12642 address += env->cp15.fcseidr_s; 12643 } else { 12644 address += env->cp15.fcseidr_ns; 12645 } 12646 } 12647 12648 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12649 bool ret; 12650 *page_size = TARGET_PAGE_SIZE; 12651 12652 if (arm_feature(env, ARM_FEATURE_V8)) { 12653 /* PMSAv8 */ 12654 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12655 phys_ptr, attrs, prot, page_size, fi); 12656 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12657 /* PMSAv7 */ 12658 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12659 phys_ptr, prot, page_size, fi); 12660 } else { 12661 /* Pre-v7 MPU */ 12662 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12663 phys_ptr, prot, fi); 12664 } 12665 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12666 " mmu_idx %u -> %s (prot %c%c%c)\n", 12667 access_type == MMU_DATA_LOAD ? "reading" : 12668 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12669 (uint32_t)address, mmu_idx, 12670 ret ? "Miss" : "Hit", 12671 *prot & PAGE_READ ? 'r' : '-', 12672 *prot & PAGE_WRITE ? 'w' : '-', 12673 *prot & PAGE_EXEC ? 'x' : '-'); 12674 12675 return ret; 12676 } 12677 12678 /* Definitely a real MMU, not an MPU */ 12679 12680 if (regime_translation_disabled(env, mmu_idx)) { 12681 /* MMU disabled. */ 12682 *phys_ptr = address; 12683 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12684 *page_size = TARGET_PAGE_SIZE; 12685 return 0; 12686 } 12687 12688 if (regime_using_lpae_format(env, mmu_idx)) { 12689 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 12690 phys_ptr, attrs, prot, page_size, 12691 fi, cacheattrs); 12692 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12693 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12694 phys_ptr, attrs, prot, page_size, fi); 12695 } else { 12696 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12697 phys_ptr, prot, page_size, fi); 12698 } 12699 } 12700 12701 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12702 MemTxAttrs *attrs) 12703 { 12704 ARMCPU *cpu = ARM_CPU(cs); 12705 CPUARMState *env = &cpu->env; 12706 hwaddr phys_addr; 12707 target_ulong page_size; 12708 int prot; 12709 bool ret; 12710 ARMMMUFaultInfo fi = {}; 12711 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12712 12713 *attrs = (MemTxAttrs) {}; 12714 12715 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 12716 attrs, &prot, &page_size, &fi, NULL); 12717 12718 if (ret) { 12719 return -1; 12720 } 12721 return phys_addr; 12722 } 12723 12724 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 12725 { 12726 uint32_t mask; 12727 unsigned el = arm_current_el(env); 12728 12729 /* First handle registers which unprivileged can read */ 12730 12731 switch (reg) { 12732 case 0 ... 7: /* xPSR sub-fields */ 12733 mask = 0; 12734 if ((reg & 1) && el) { 12735 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 12736 } 12737 if (!(reg & 4)) { 12738 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 12739 if (arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 12740 mask |= XPSR_GE; 12741 } 12742 } 12743 /* EPSR reads as zero */ 12744 return xpsr_read(env) & mask; 12745 break; 12746 case 20: /* CONTROL */ 12747 { 12748 uint32_t value = env->v7m.control[env->v7m.secure]; 12749 if (!env->v7m.secure) { 12750 /* SFPA is RAZ/WI from NS; FPCA is stored in the M_REG_S bank */ 12751 value |= env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK; 12752 } 12753 return value; 12754 } 12755 case 0x94: /* CONTROL_NS */ 12756 /* We have to handle this here because unprivileged Secure code 12757 * can read the NS CONTROL register. 12758 */ 12759 if (!env->v7m.secure) { 12760 return 0; 12761 } 12762 return env->v7m.control[M_REG_NS] | 12763 (env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK); 12764 } 12765 12766 if (el == 0) { 12767 return 0; /* unprivileged reads others as zero */ 12768 } 12769 12770 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12771 switch (reg) { 12772 case 0x88: /* MSP_NS */ 12773 if (!env->v7m.secure) { 12774 return 0; 12775 } 12776 return env->v7m.other_ss_msp; 12777 case 0x89: /* PSP_NS */ 12778 if (!env->v7m.secure) { 12779 return 0; 12780 } 12781 return env->v7m.other_ss_psp; 12782 case 0x8a: /* MSPLIM_NS */ 12783 if (!env->v7m.secure) { 12784 return 0; 12785 } 12786 return env->v7m.msplim[M_REG_NS]; 12787 case 0x8b: /* PSPLIM_NS */ 12788 if (!env->v7m.secure) { 12789 return 0; 12790 } 12791 return env->v7m.psplim[M_REG_NS]; 12792 case 0x90: /* PRIMASK_NS */ 12793 if (!env->v7m.secure) { 12794 return 0; 12795 } 12796 return env->v7m.primask[M_REG_NS]; 12797 case 0x91: /* BASEPRI_NS */ 12798 if (!env->v7m.secure) { 12799 return 0; 12800 } 12801 return env->v7m.basepri[M_REG_NS]; 12802 case 0x93: /* FAULTMASK_NS */ 12803 if (!env->v7m.secure) { 12804 return 0; 12805 } 12806 return env->v7m.faultmask[M_REG_NS]; 12807 case 0x98: /* SP_NS */ 12808 { 12809 /* This gives the non-secure SP selected based on whether we're 12810 * currently in handler mode or not, using the NS CONTROL.SPSEL. 12811 */ 12812 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 12813 12814 if (!env->v7m.secure) { 12815 return 0; 12816 } 12817 if (!arm_v7m_is_handler_mode(env) && spsel) { 12818 return env->v7m.other_ss_psp; 12819 } else { 12820 return env->v7m.other_ss_msp; 12821 } 12822 } 12823 default: 12824 break; 12825 } 12826 } 12827 12828 switch (reg) { 12829 case 8: /* MSP */ 12830 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 12831 case 9: /* PSP */ 12832 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 12833 case 10: /* MSPLIM */ 12834 if (!arm_feature(env, ARM_FEATURE_V8)) { 12835 goto bad_reg; 12836 } 12837 return env->v7m.msplim[env->v7m.secure]; 12838 case 11: /* PSPLIM */ 12839 if (!arm_feature(env, ARM_FEATURE_V8)) { 12840 goto bad_reg; 12841 } 12842 return env->v7m.psplim[env->v7m.secure]; 12843 case 16: /* PRIMASK */ 12844 return env->v7m.primask[env->v7m.secure]; 12845 case 17: /* BASEPRI */ 12846 case 18: /* BASEPRI_MAX */ 12847 return env->v7m.basepri[env->v7m.secure]; 12848 case 19: /* FAULTMASK */ 12849 return env->v7m.faultmask[env->v7m.secure]; 12850 default: 12851 bad_reg: 12852 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 12853 " register %d\n", reg); 12854 return 0; 12855 } 12856 } 12857 12858 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 12859 { 12860 /* We're passed bits [11..0] of the instruction; extract 12861 * SYSm and the mask bits. 12862 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 12863 * we choose to treat them as if the mask bits were valid. 12864 * NB that the pseudocode 'mask' variable is bits [11..10], 12865 * whereas ours is [11..8]. 12866 */ 12867 uint32_t mask = extract32(maskreg, 8, 4); 12868 uint32_t reg = extract32(maskreg, 0, 8); 12869 int cur_el = arm_current_el(env); 12870 12871 if (cur_el == 0 && reg > 7 && reg != 20) { 12872 /* 12873 * only xPSR sub-fields and CONTROL.SFPA may be written by 12874 * unprivileged code 12875 */ 12876 return; 12877 } 12878 12879 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12880 switch (reg) { 12881 case 0x88: /* MSP_NS */ 12882 if (!env->v7m.secure) { 12883 return; 12884 } 12885 env->v7m.other_ss_msp = val; 12886 return; 12887 case 0x89: /* PSP_NS */ 12888 if (!env->v7m.secure) { 12889 return; 12890 } 12891 env->v7m.other_ss_psp = val; 12892 return; 12893 case 0x8a: /* MSPLIM_NS */ 12894 if (!env->v7m.secure) { 12895 return; 12896 } 12897 env->v7m.msplim[M_REG_NS] = val & ~7; 12898 return; 12899 case 0x8b: /* PSPLIM_NS */ 12900 if (!env->v7m.secure) { 12901 return; 12902 } 12903 env->v7m.psplim[M_REG_NS] = val & ~7; 12904 return; 12905 case 0x90: /* PRIMASK_NS */ 12906 if (!env->v7m.secure) { 12907 return; 12908 } 12909 env->v7m.primask[M_REG_NS] = val & 1; 12910 return; 12911 case 0x91: /* BASEPRI_NS */ 12912 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 12913 return; 12914 } 12915 env->v7m.basepri[M_REG_NS] = val & 0xff; 12916 return; 12917 case 0x93: /* FAULTMASK_NS */ 12918 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 12919 return; 12920 } 12921 env->v7m.faultmask[M_REG_NS] = val & 1; 12922 return; 12923 case 0x94: /* CONTROL_NS */ 12924 if (!env->v7m.secure) { 12925 return; 12926 } 12927 write_v7m_control_spsel_for_secstate(env, 12928 val & R_V7M_CONTROL_SPSEL_MASK, 12929 M_REG_NS); 12930 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 12931 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 12932 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 12933 } 12934 /* 12935 * SFPA is RAZ/WI from NS. FPCA is RO if NSACR.CP10 == 0, 12936 * RES0 if the FPU is not present, and is stored in the S bank 12937 */ 12938 if (arm_feature(env, ARM_FEATURE_VFP) && 12939 extract32(env->v7m.nsacr, 10, 1)) { 12940 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; 12941 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK; 12942 } 12943 return; 12944 case 0x98: /* SP_NS */ 12945 { 12946 /* This gives the non-secure SP selected based on whether we're 12947 * currently in handler mode or not, using the NS CONTROL.SPSEL. 12948 */ 12949 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 12950 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 12951 uint32_t limit; 12952 12953 if (!env->v7m.secure) { 12954 return; 12955 } 12956 12957 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 12958 12959 if (val < limit) { 12960 CPUState *cs = env_cpu(env); 12961 12962 cpu_restore_state(cs, GETPC(), true); 12963 raise_exception(env, EXCP_STKOF, 0, 1); 12964 } 12965 12966 if (is_psp) { 12967 env->v7m.other_ss_psp = val; 12968 } else { 12969 env->v7m.other_ss_msp = val; 12970 } 12971 return; 12972 } 12973 default: 12974 break; 12975 } 12976 } 12977 12978 switch (reg) { 12979 case 0 ... 7: /* xPSR sub-fields */ 12980 /* only APSR is actually writable */ 12981 if (!(reg & 4)) { 12982 uint32_t apsrmask = 0; 12983 12984 if (mask & 8) { 12985 apsrmask |= XPSR_NZCV | XPSR_Q; 12986 } 12987 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 12988 apsrmask |= XPSR_GE; 12989 } 12990 xpsr_write(env, val, apsrmask); 12991 } 12992 break; 12993 case 8: /* MSP */ 12994 if (v7m_using_psp(env)) { 12995 env->v7m.other_sp = val; 12996 } else { 12997 env->regs[13] = val; 12998 } 12999 break; 13000 case 9: /* PSP */ 13001 if (v7m_using_psp(env)) { 13002 env->regs[13] = val; 13003 } else { 13004 env->v7m.other_sp = val; 13005 } 13006 break; 13007 case 10: /* MSPLIM */ 13008 if (!arm_feature(env, ARM_FEATURE_V8)) { 13009 goto bad_reg; 13010 } 13011 env->v7m.msplim[env->v7m.secure] = val & ~7; 13012 break; 13013 case 11: /* PSPLIM */ 13014 if (!arm_feature(env, ARM_FEATURE_V8)) { 13015 goto bad_reg; 13016 } 13017 env->v7m.psplim[env->v7m.secure] = val & ~7; 13018 break; 13019 case 16: /* PRIMASK */ 13020 env->v7m.primask[env->v7m.secure] = val & 1; 13021 break; 13022 case 17: /* BASEPRI */ 13023 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 13024 goto bad_reg; 13025 } 13026 env->v7m.basepri[env->v7m.secure] = val & 0xff; 13027 break; 13028 case 18: /* BASEPRI_MAX */ 13029 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 13030 goto bad_reg; 13031 } 13032 val &= 0xff; 13033 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 13034 || env->v7m.basepri[env->v7m.secure] == 0)) { 13035 env->v7m.basepri[env->v7m.secure] = val; 13036 } 13037 break; 13038 case 19: /* FAULTMASK */ 13039 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 13040 goto bad_reg; 13041 } 13042 env->v7m.faultmask[env->v7m.secure] = val & 1; 13043 break; 13044 case 20: /* CONTROL */ 13045 /* 13046 * Writing to the SPSEL bit only has an effect if we are in 13047 * thread mode; other bits can be updated by any privileged code. 13048 * write_v7m_control_spsel() deals with updating the SPSEL bit in 13049 * env->v7m.control, so we only need update the others. 13050 * For v7M, we must just ignore explicit writes to SPSEL in handler 13051 * mode; for v8M the write is permitted but will have no effect. 13052 * All these bits are writes-ignored from non-privileged code, 13053 * except for SFPA. 13054 */ 13055 if (cur_el > 0 && (arm_feature(env, ARM_FEATURE_V8) || 13056 !arm_v7m_is_handler_mode(env))) { 13057 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 13058 } 13059 if (cur_el > 0 && arm_feature(env, ARM_FEATURE_M_MAIN)) { 13060 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 13061 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 13062 } 13063 if (arm_feature(env, ARM_FEATURE_VFP)) { 13064 /* 13065 * SFPA is RAZ/WI from NS or if no FPU. 13066 * FPCA is RO if NSACR.CP10 == 0, RES0 if the FPU is not present. 13067 * Both are stored in the S bank. 13068 */ 13069 if (env->v7m.secure) { 13070 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 13071 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_SFPA_MASK; 13072 } 13073 if (cur_el > 0 && 13074 (env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_SECURITY) || 13075 extract32(env->v7m.nsacr, 10, 1))) { 13076 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_FPCA_MASK; 13077 env->v7m.control[M_REG_S] |= val & R_V7M_CONTROL_FPCA_MASK; 13078 } 13079 } 13080 break; 13081 default: 13082 bad_reg: 13083 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 13084 " register %d\n", reg); 13085 return; 13086 } 13087 } 13088 13089 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 13090 { 13091 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 13092 bool forceunpriv = op & 1; 13093 bool alt = op & 2; 13094 V8M_SAttributes sattrs = {}; 13095 uint32_t tt_resp; 13096 bool r, rw, nsr, nsrw, mrvalid; 13097 int prot; 13098 ARMMMUFaultInfo fi = {}; 13099 MemTxAttrs attrs = {}; 13100 hwaddr phys_addr; 13101 ARMMMUIdx mmu_idx; 13102 uint32_t mregion; 13103 bool targetpriv; 13104 bool targetsec = env->v7m.secure; 13105 bool is_subpage; 13106 13107 /* Work out what the security state and privilege level we're 13108 * interested in is... 13109 */ 13110 if (alt) { 13111 targetsec = !targetsec; 13112 } 13113 13114 if (forceunpriv) { 13115 targetpriv = false; 13116 } else { 13117 targetpriv = arm_v7m_is_handler_mode(env) || 13118 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 13119 } 13120 13121 /* ...and then figure out which MMU index this is */ 13122 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 13123 13124 /* We know that the MPU and SAU don't care about the access type 13125 * for our purposes beyond that we don't want to claim to be 13126 * an insn fetch, so we arbitrarily call this a read. 13127 */ 13128 13129 /* MPU region info only available for privileged or if 13130 * inspecting the other MPU state. 13131 */ 13132 if (arm_current_el(env) != 0 || alt) { 13133 /* We can ignore the return value as prot is always set */ 13134 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 13135 &phys_addr, &attrs, &prot, &is_subpage, 13136 &fi, &mregion); 13137 if (mregion == -1) { 13138 mrvalid = false; 13139 mregion = 0; 13140 } else { 13141 mrvalid = true; 13142 } 13143 r = prot & PAGE_READ; 13144 rw = prot & PAGE_WRITE; 13145 } else { 13146 r = false; 13147 rw = false; 13148 mrvalid = false; 13149 mregion = 0; 13150 } 13151 13152 if (env->v7m.secure) { 13153 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 13154 nsr = sattrs.ns && r; 13155 nsrw = sattrs.ns && rw; 13156 } else { 13157 sattrs.ns = true; 13158 nsr = false; 13159 nsrw = false; 13160 } 13161 13162 tt_resp = (sattrs.iregion << 24) | 13163 (sattrs.irvalid << 23) | 13164 ((!sattrs.ns) << 22) | 13165 (nsrw << 21) | 13166 (nsr << 20) | 13167 (rw << 19) | 13168 (r << 18) | 13169 (sattrs.srvalid << 17) | 13170 (mrvalid << 16) | 13171 (sattrs.sregion << 8) | 13172 mregion; 13173 13174 return tt_resp; 13175 } 13176 13177 #endif 13178 13179 bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size, 13180 MMUAccessType access_type, int mmu_idx, 13181 bool probe, uintptr_t retaddr) 13182 { 13183 ARMCPU *cpu = ARM_CPU(cs); 13184 13185 #ifdef CONFIG_USER_ONLY 13186 cpu->env.exception.vaddress = address; 13187 if (access_type == MMU_INST_FETCH) { 13188 cs->exception_index = EXCP_PREFETCH_ABORT; 13189 } else { 13190 cs->exception_index = EXCP_DATA_ABORT; 13191 } 13192 cpu_loop_exit_restore(cs, retaddr); 13193 #else 13194 hwaddr phys_addr; 13195 target_ulong page_size; 13196 int prot, ret; 13197 MemTxAttrs attrs = {}; 13198 ARMMMUFaultInfo fi = {}; 13199 13200 /* 13201 * Walk the page table and (if the mapping exists) add the page 13202 * to the TLB. On success, return true. Otherwise, if probing, 13203 * return false. Otherwise populate fsr with ARM DFSR/IFSR fault 13204 * register format, and signal the fault. 13205 */ 13206 ret = get_phys_addr(&cpu->env, address, access_type, 13207 core_to_arm_mmu_idx(&cpu->env, mmu_idx), 13208 &phys_addr, &attrs, &prot, &page_size, &fi, NULL); 13209 if (likely(!ret)) { 13210 /* 13211 * Map a single [sub]page. Regions smaller than our declared 13212 * target page size are handled specially, so for those we 13213 * pass in the exact addresses. 13214 */ 13215 if (page_size >= TARGET_PAGE_SIZE) { 13216 phys_addr &= TARGET_PAGE_MASK; 13217 address &= TARGET_PAGE_MASK; 13218 } 13219 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 13220 prot, mmu_idx, page_size); 13221 return true; 13222 } else if (probe) { 13223 return false; 13224 } else { 13225 /* now we have a real cpu fault */ 13226 cpu_restore_state(cs, retaddr, true); 13227 arm_deliver_fault(cpu, address, access_type, mmu_idx, &fi); 13228 } 13229 #endif 13230 } 13231 13232 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 13233 { 13234 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 13235 * Note that we do not implement the (architecturally mandated) 13236 * alignment fault for attempts to use this on Device memory 13237 * (which matches the usual QEMU behaviour of not implementing either 13238 * alignment faults or any memory attribute handling). 13239 */ 13240 13241 ARMCPU *cpu = env_archcpu(env); 13242 uint64_t blocklen = 4 << cpu->dcz_blocksize; 13243 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 13244 13245 #ifndef CONFIG_USER_ONLY 13246 { 13247 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 13248 * the block size so we might have to do more than one TLB lookup. 13249 * We know that in fact for any v8 CPU the page size is at least 4K 13250 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 13251 * 1K as an artefact of legacy v5 subpage support being present in the 13252 * same QEMU executable. So in practice the hostaddr[] array has 13253 * two entries, given the current setting of TARGET_PAGE_BITS_MIN. 13254 */ 13255 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 13256 void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)]; 13257 int try, i; 13258 unsigned mmu_idx = cpu_mmu_index(env, false); 13259 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 13260 13261 assert(maxidx <= ARRAY_SIZE(hostaddr)); 13262 13263 for (try = 0; try < 2; try++) { 13264 13265 for (i = 0; i < maxidx; i++) { 13266 hostaddr[i] = tlb_vaddr_to_host(env, 13267 vaddr + TARGET_PAGE_SIZE * i, 13268 1, mmu_idx); 13269 if (!hostaddr[i]) { 13270 break; 13271 } 13272 } 13273 if (i == maxidx) { 13274 /* If it's all in the TLB it's fair game for just writing to; 13275 * we know we don't need to update dirty status, etc. 13276 */ 13277 for (i = 0; i < maxidx - 1; i++) { 13278 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 13279 } 13280 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 13281 return; 13282 } 13283 /* OK, try a store and see if we can populate the tlb. This 13284 * might cause an exception if the memory isn't writable, 13285 * in which case we will longjmp out of here. We must for 13286 * this purpose use the actual register value passed to us 13287 * so that we get the fault address right. 13288 */ 13289 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 13290 /* Now we can populate the other TLB entries, if any */ 13291 for (i = 0; i < maxidx; i++) { 13292 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 13293 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 13294 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 13295 } 13296 } 13297 } 13298 13299 /* Slow path (probably attempt to do this to an I/O device or 13300 * similar, or clearing of a block of code we have translations 13301 * cached for). Just do a series of byte writes as the architecture 13302 * demands. It's not worth trying to use a cpu_physical_memory_map(), 13303 * memset(), unmap() sequence here because: 13304 * + we'd need to account for the blocksize being larger than a page 13305 * + the direct-RAM access case is almost always going to be dealt 13306 * with in the fastpath code above, so there's no speed benefit 13307 * + we would have to deal with the map returning NULL because the 13308 * bounce buffer was in use 13309 */ 13310 for (i = 0; i < blocklen; i++) { 13311 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 13312 } 13313 } 13314 #else 13315 memset(g2h(vaddr), 0, blocklen); 13316 #endif 13317 } 13318 13319 /* Note that signed overflow is undefined in C. The following routines are 13320 careful to use unsigned types where modulo arithmetic is required. 13321 Failure to do so _will_ break on newer gcc. */ 13322 13323 /* Signed saturating arithmetic. */ 13324 13325 /* Perform 16-bit signed saturating addition. */ 13326 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 13327 { 13328 uint16_t res; 13329 13330 res = a + b; 13331 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 13332 if (a & 0x8000) 13333 res = 0x8000; 13334 else 13335 res = 0x7fff; 13336 } 13337 return res; 13338 } 13339 13340 /* Perform 8-bit signed saturating addition. */ 13341 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 13342 { 13343 uint8_t res; 13344 13345 res = a + b; 13346 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 13347 if (a & 0x80) 13348 res = 0x80; 13349 else 13350 res = 0x7f; 13351 } 13352 return res; 13353 } 13354 13355 /* Perform 16-bit signed saturating subtraction. */ 13356 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 13357 { 13358 uint16_t res; 13359 13360 res = a - b; 13361 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 13362 if (a & 0x8000) 13363 res = 0x8000; 13364 else 13365 res = 0x7fff; 13366 } 13367 return res; 13368 } 13369 13370 /* Perform 8-bit signed saturating subtraction. */ 13371 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 13372 { 13373 uint8_t res; 13374 13375 res = a - b; 13376 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 13377 if (a & 0x80) 13378 res = 0x80; 13379 else 13380 res = 0x7f; 13381 } 13382 return res; 13383 } 13384 13385 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 13386 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 13387 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 13388 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 13389 #define PFX q 13390 13391 #include "op_addsub.h" 13392 13393 /* Unsigned saturating arithmetic. */ 13394 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 13395 { 13396 uint16_t res; 13397 res = a + b; 13398 if (res < a) 13399 res = 0xffff; 13400 return res; 13401 } 13402 13403 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 13404 { 13405 if (a > b) 13406 return a - b; 13407 else 13408 return 0; 13409 } 13410 13411 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 13412 { 13413 uint8_t res; 13414 res = a + b; 13415 if (res < a) 13416 res = 0xff; 13417 return res; 13418 } 13419 13420 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 13421 { 13422 if (a > b) 13423 return a - b; 13424 else 13425 return 0; 13426 } 13427 13428 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 13429 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 13430 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 13431 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 13432 #define PFX uq 13433 13434 #include "op_addsub.h" 13435 13436 /* Signed modulo arithmetic. */ 13437 #define SARITH16(a, b, n, op) do { \ 13438 int32_t sum; \ 13439 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 13440 RESULT(sum, n, 16); \ 13441 if (sum >= 0) \ 13442 ge |= 3 << (n * 2); \ 13443 } while(0) 13444 13445 #define SARITH8(a, b, n, op) do { \ 13446 int32_t sum; \ 13447 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 13448 RESULT(sum, n, 8); \ 13449 if (sum >= 0) \ 13450 ge |= 1 << n; \ 13451 } while(0) 13452 13453 13454 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13455 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13456 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13457 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13458 #define PFX s 13459 #define ARITH_GE 13460 13461 #include "op_addsub.h" 13462 13463 /* Unsigned modulo arithmetic. */ 13464 #define ADD16(a, b, n) do { \ 13465 uint32_t sum; \ 13466 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13467 RESULT(sum, n, 16); \ 13468 if ((sum >> 16) == 1) \ 13469 ge |= 3 << (n * 2); \ 13470 } while(0) 13471 13472 #define ADD8(a, b, n) do { \ 13473 uint32_t sum; \ 13474 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13475 RESULT(sum, n, 8); \ 13476 if ((sum >> 8) == 1) \ 13477 ge |= 1 << n; \ 13478 } while(0) 13479 13480 #define SUB16(a, b, n) do { \ 13481 uint32_t sum; \ 13482 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13483 RESULT(sum, n, 16); \ 13484 if ((sum >> 16) == 0) \ 13485 ge |= 3 << (n * 2); \ 13486 } while(0) 13487 13488 #define SUB8(a, b, n) do { \ 13489 uint32_t sum; \ 13490 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13491 RESULT(sum, n, 8); \ 13492 if ((sum >> 8) == 0) \ 13493 ge |= 1 << n; \ 13494 } while(0) 13495 13496 #define PFX u 13497 #define ARITH_GE 13498 13499 #include "op_addsub.h" 13500 13501 /* Halved signed arithmetic. */ 13502 #define ADD16(a, b, n) \ 13503 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13504 #define SUB16(a, b, n) \ 13505 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13506 #define ADD8(a, b, n) \ 13507 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13508 #define SUB8(a, b, n) \ 13509 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13510 #define PFX sh 13511 13512 #include "op_addsub.h" 13513 13514 /* Halved unsigned arithmetic. */ 13515 #define ADD16(a, b, n) \ 13516 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13517 #define SUB16(a, b, n) \ 13518 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13519 #define ADD8(a, b, n) \ 13520 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13521 #define SUB8(a, b, n) \ 13522 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13523 #define PFX uh 13524 13525 #include "op_addsub.h" 13526 13527 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13528 { 13529 if (a > b) 13530 return a - b; 13531 else 13532 return b - a; 13533 } 13534 13535 /* Unsigned sum of absolute byte differences. */ 13536 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13537 { 13538 uint32_t sum; 13539 sum = do_usad(a, b); 13540 sum += do_usad(a >> 8, b >> 8); 13541 sum += do_usad(a >> 16, b >>16); 13542 sum += do_usad(a >> 24, b >> 24); 13543 return sum; 13544 } 13545 13546 /* For ARMv6 SEL instruction. */ 13547 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13548 { 13549 uint32_t mask; 13550 13551 mask = 0; 13552 if (flags & 1) 13553 mask |= 0xff; 13554 if (flags & 2) 13555 mask |= 0xff00; 13556 if (flags & 4) 13557 mask |= 0xff0000; 13558 if (flags & 8) 13559 mask |= 0xff000000; 13560 return (a & mask) | (b & ~mask); 13561 } 13562 13563 /* CRC helpers. 13564 * The upper bytes of val (above the number specified by 'bytes') must have 13565 * been zeroed out by the caller. 13566 */ 13567 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13568 { 13569 uint8_t buf[4]; 13570 13571 stl_le_p(buf, val); 13572 13573 /* zlib crc32 converts the accumulator and output to one's complement. */ 13574 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13575 } 13576 13577 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13578 { 13579 uint8_t buf[4]; 13580 13581 stl_le_p(buf, val); 13582 13583 /* Linux crc32c converts the output to one's complement. */ 13584 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13585 } 13586 13587 /* Return the exception level to which FP-disabled exceptions should 13588 * be taken, or 0 if FP is enabled. 13589 */ 13590 int fp_exception_el(CPUARMState *env, int cur_el) 13591 { 13592 #ifndef CONFIG_USER_ONLY 13593 int fpen; 13594 13595 /* CPACR and the CPTR registers don't exist before v6, so FP is 13596 * always accessible 13597 */ 13598 if (!arm_feature(env, ARM_FEATURE_V6)) { 13599 return 0; 13600 } 13601 13602 if (arm_feature(env, ARM_FEATURE_M)) { 13603 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13604 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13605 return 1; 13606 } 13607 13608 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13609 if (!extract32(env->v7m.nsacr, 10, 1)) { 13610 /* FP insns cause a NOCP UsageFault taken to Secure */ 13611 return 3; 13612 } 13613 } 13614 13615 return 0; 13616 } 13617 13618 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13619 * 0, 2 : trap EL0 and EL1/PL1 accesses 13620 * 1 : trap only EL0 accesses 13621 * 3 : trap no accesses 13622 */ 13623 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13624 switch (fpen) { 13625 case 0: 13626 case 2: 13627 if (cur_el == 0 || cur_el == 1) { 13628 /* Trap to PL1, which might be EL1 or EL3 */ 13629 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13630 return 3; 13631 } 13632 return 1; 13633 } 13634 if (cur_el == 3 && !is_a64(env)) { 13635 /* Secure PL1 running at EL3 */ 13636 return 3; 13637 } 13638 break; 13639 case 1: 13640 if (cur_el == 0) { 13641 return 1; 13642 } 13643 break; 13644 case 3: 13645 break; 13646 } 13647 13648 /* 13649 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13650 * to control non-secure access to the FPU. It doesn't have any 13651 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13652 */ 13653 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13654 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13655 if (!extract32(env->cp15.nsacr, 10, 1)) { 13656 /* FP insns act as UNDEF */ 13657 return cur_el == 2 ? 2 : 1; 13658 } 13659 } 13660 13661 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 13662 * check because zero bits in the registers mean "don't trap". 13663 */ 13664 13665 /* CPTR_EL2 : present in v7VE or v8 */ 13666 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 13667 && !arm_is_secure_below_el3(env)) { 13668 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 13669 return 2; 13670 } 13671 13672 /* CPTR_EL3 : present in v8 */ 13673 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 13674 /* Trap all FP ops to EL3 */ 13675 return 3; 13676 } 13677 #endif 13678 return 0; 13679 } 13680 13681 ARMMMUIdx arm_v7m_mmu_idx_all(CPUARMState *env, 13682 bool secstate, bool priv, bool negpri) 13683 { 13684 ARMMMUIdx mmu_idx = ARM_MMU_IDX_M; 13685 13686 if (priv) { 13687 mmu_idx |= ARM_MMU_IDX_M_PRIV; 13688 } 13689 13690 if (negpri) { 13691 mmu_idx |= ARM_MMU_IDX_M_NEGPRI; 13692 } 13693 13694 if (secstate) { 13695 mmu_idx |= ARM_MMU_IDX_M_S; 13696 } 13697 13698 return mmu_idx; 13699 } 13700 13701 ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env, 13702 bool secstate, bool priv) 13703 { 13704 bool negpri = armv7m_nvic_neg_prio_requested(env->nvic, secstate); 13705 13706 return arm_v7m_mmu_idx_all(env, secstate, priv, negpri); 13707 } 13708 13709 /* Return the MMU index for a v7M CPU in the specified security state */ 13710 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13711 { 13712 bool priv = arm_current_el(env) != 0; 13713 13714 return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv); 13715 } 13716 13717 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13718 { 13719 int el; 13720 13721 if (arm_feature(env, ARM_FEATURE_M)) { 13722 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13723 } 13724 13725 el = arm_current_el(env); 13726 if (el < 2 && arm_is_secure_below_el3(env)) { 13727 return ARMMMUIdx_S1SE0 + el; 13728 } else { 13729 return ARMMMUIdx_S12NSE0 + el; 13730 } 13731 } 13732 13733 int cpu_mmu_index(CPUARMState *env, bool ifetch) 13734 { 13735 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 13736 } 13737 13738 #ifndef CONFIG_USER_ONLY 13739 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13740 { 13741 return stage_1_mmu_idx(arm_mmu_idx(env)); 13742 } 13743 #endif 13744 13745 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13746 target_ulong *cs_base, uint32_t *pflags) 13747 { 13748 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 13749 int current_el = arm_current_el(env); 13750 int fp_el = fp_exception_el(env, current_el); 13751 uint32_t flags = 0; 13752 13753 if (is_a64(env)) { 13754 ARMCPU *cpu = env_archcpu(env); 13755 uint64_t sctlr; 13756 13757 *pc = env->pc; 13758 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 13759 13760 /* Get control bits for tagged addresses. */ 13761 { 13762 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13763 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 13764 int tbii, tbid; 13765 13766 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 13767 if (regime_el(env, stage1) < 2) { 13768 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 13769 tbid = (p1.tbi << 1) | p0.tbi; 13770 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 13771 } else { 13772 tbid = p0.tbi; 13773 tbii = tbid & !p0.tbid; 13774 } 13775 13776 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 13777 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 13778 } 13779 13780 if (cpu_isar_feature(aa64_sve, cpu)) { 13781 int sve_el = sve_exception_el(env, current_el); 13782 uint32_t zcr_len; 13783 13784 /* If SVE is disabled, but FP is enabled, 13785 * then the effective len is 0. 13786 */ 13787 if (sve_el != 0 && fp_el == 0) { 13788 zcr_len = 0; 13789 } else { 13790 zcr_len = sve_zcr_len_for_el(env, current_el); 13791 } 13792 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 13793 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 13794 } 13795 13796 sctlr = arm_sctlr(env, current_el); 13797 13798 if (cpu_isar_feature(aa64_pauth, cpu)) { 13799 /* 13800 * In order to save space in flags, we record only whether 13801 * pauth is "inactive", meaning all insns are implemented as 13802 * a nop, or "active" when some action must be performed. 13803 * The decision of which action to take is left to a helper. 13804 */ 13805 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13806 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 13807 } 13808 } 13809 13810 if (cpu_isar_feature(aa64_bti, cpu)) { 13811 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13812 if (sctlr & (current_el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13813 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 13814 } 13815 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 13816 } 13817 } else { 13818 *pc = env->regs[15]; 13819 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 13820 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, env->vfp.vec_len); 13821 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, env->vfp.vec_stride); 13822 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 13823 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, arm_sctlr_b(env)); 13824 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 13825 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 13826 || arm_el_is_aa64(env, 1) || arm_feature(env, ARM_FEATURE_M)) { 13827 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 13828 } 13829 /* Note that XSCALE_CPAR shares bits with VECSTRIDE */ 13830 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13831 flags = FIELD_DP32(flags, TBFLAG_A32, 13832 XSCALE_CPAR, env->cp15.c15_cpar); 13833 } 13834 } 13835 13836 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13837 13838 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13839 * states defined in the ARM ARM for software singlestep: 13840 * SS_ACTIVE PSTATE.SS State 13841 * 0 x Inactive (the TB flag for SS is always 0) 13842 * 1 0 Active-pending 13843 * 1 1 Active-not-pending 13844 */ 13845 if (arm_singlestep_active(env)) { 13846 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 13847 if (is_a64(env)) { 13848 if (env->pstate & PSTATE_SS) { 13849 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13850 } 13851 } else { 13852 if (env->uncached_cpsr & PSTATE_SS) { 13853 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 13854 } 13855 } 13856 } 13857 if (arm_cpu_data_is_big_endian(env)) { 13858 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 13859 } 13860 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 13861 13862 if (arm_v7m_is_handler_mode(env)) { 13863 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 13864 } 13865 13866 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 13867 * suppressing them because the requested execution priority is less than 0. 13868 */ 13869 if (arm_feature(env, ARM_FEATURE_V8) && 13870 arm_feature(env, ARM_FEATURE_M) && 13871 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13872 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13873 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 13874 } 13875 13876 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13877 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) != env->v7m.secure) { 13878 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 13879 } 13880 13881 if (arm_feature(env, ARM_FEATURE_M) && 13882 (env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13883 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13884 (env->v7m.secure && 13885 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13886 /* 13887 * ASPEN is set, but FPCA/SFPA indicate that there is no active 13888 * FP context; we must create a new FP context before executing 13889 * any FP insn. 13890 */ 13891 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 13892 } 13893 13894 if (arm_feature(env, ARM_FEATURE_M)) { 13895 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13896 13897 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13898 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 13899 } 13900 } 13901 13902 *pflags = flags; 13903 *cs_base = 0; 13904 } 13905 13906 #ifdef TARGET_AARCH64 13907 /* 13908 * The manual says that when SVE is enabled and VQ is widened the 13909 * implementation is allowed to zero the previously inaccessible 13910 * portion of the registers. The corollary to that is that when 13911 * SVE is enabled and VQ is narrowed we are also allowed to zero 13912 * the now inaccessible portion of the registers. 13913 * 13914 * The intent of this is that no predicate bit beyond VQ is ever set. 13915 * Which means that some operations on predicate registers themselves 13916 * may operate on full uint64_t or even unrolled across the maximum 13917 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13918 * may well be cheaper than conditionals to restrict the operation 13919 * to the relevant portion of a uint16_t[16]. 13920 */ 13921 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13922 { 13923 int i, j; 13924 uint64_t pmask; 13925 13926 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13927 assert(vq <= env_archcpu(env)->sve_max_vq); 13928 13929 /* Zap the high bits of the zregs. */ 13930 for (i = 0; i < 32; i++) { 13931 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13932 } 13933 13934 /* Zap the high bits of the pregs and ffr. */ 13935 pmask = 0; 13936 if (vq & 3) { 13937 pmask = ~(-1ULL << (16 * (vq & 3))); 13938 } 13939 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13940 for (i = 0; i < 17; ++i) { 13941 env->vfp.pregs[i].p[j] &= pmask; 13942 } 13943 pmask = 0; 13944 } 13945 } 13946 13947 /* 13948 * Notice a change in SVE vector size when changing EL. 13949 */ 13950 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13951 int new_el, bool el0_a64) 13952 { 13953 ARMCPU *cpu = env_archcpu(env); 13954 int old_len, new_len; 13955 bool old_a64, new_a64; 13956 13957 /* Nothing to do if no SVE. */ 13958 if (!cpu_isar_feature(aa64_sve, cpu)) { 13959 return; 13960 } 13961 13962 /* Nothing to do if FP is disabled in either EL. */ 13963 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13964 return; 13965 } 13966 13967 /* 13968 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13969 * at ELx, or not available because the EL is in AArch32 state, then 13970 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13971 * has an effective value of 0". 13972 * 13973 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13974 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13975 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13976 * we already have the correct register contents when encountering the 13977 * vq0->vq0 transition between EL0->EL1. 13978 */ 13979 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13980 old_len = (old_a64 && !sve_exception_el(env, old_el) 13981 ? sve_zcr_len_for_el(env, old_el) : 0); 13982 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13983 new_len = (new_a64 && !sve_exception_el(env, new_el) 13984 ? sve_zcr_len_for_el(env, new_el) : 0); 13985 13986 /* When changing vector length, clear inaccessible state. */ 13987 if (new_len < old_len) { 13988 aarch64_sve_narrow_vq(env, new_len + 1); 13989 } 13990 } 13991 #endif 13992