1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "target/arm/idau.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/gdbstub.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "hw/semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/kvm.h" 28 #include "qemu/range.h" 29 #include "qapi/qapi-commands-machine-target.h" 30 #include "qapi/error.h" 31 #include "qemu/guest-random.h" 32 #ifdef CONFIG_TCG 33 #include "arm_ldst.h" 34 #include "exec/cpu_ldst.h" 35 #endif 36 37 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 38 39 #ifndef CONFIG_USER_ONLY 40 41 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 42 MMUAccessType access_type, ARMMMUIdx mmu_idx, 43 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 44 target_ulong *page_size_ptr, 45 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 46 #endif 47 48 static void switch_mode(CPUARMState *env, int mode); 49 50 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 51 { 52 int nregs; 53 54 /* VFP data registers are always little-endian. */ 55 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 56 if (reg < nregs) { 57 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 58 return 8; 59 } 60 if (arm_feature(env, ARM_FEATURE_NEON)) { 61 /* Aliases for Q regs. */ 62 nregs += 16; 63 if (reg < nregs) { 64 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 65 stq_le_p(buf, q[0]); 66 stq_le_p(buf + 8, q[1]); 67 return 16; 68 } 69 } 70 switch (reg - nregs) { 71 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 72 case 1: stl_p(buf, vfp_get_fpscr(env)); return 4; 73 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 74 } 75 return 0; 76 } 77 78 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 79 { 80 int nregs; 81 82 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 83 if (reg < nregs) { 84 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 85 return 8; 86 } 87 if (arm_feature(env, ARM_FEATURE_NEON)) { 88 nregs += 16; 89 if (reg < nregs) { 90 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 91 q[0] = ldq_le_p(buf); 92 q[1] = ldq_le_p(buf + 8); 93 return 16; 94 } 95 } 96 switch (reg - nregs) { 97 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 98 case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4; 99 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 100 } 101 return 0; 102 } 103 104 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 105 { 106 switch (reg) { 107 case 0 ... 31: 108 /* 128 bit FP register */ 109 { 110 uint64_t *q = aa64_vfp_qreg(env, reg); 111 stq_le_p(buf, q[0]); 112 stq_le_p(buf + 8, q[1]); 113 return 16; 114 } 115 case 32: 116 /* FPSR */ 117 stl_p(buf, vfp_get_fpsr(env)); 118 return 4; 119 case 33: 120 /* FPCR */ 121 stl_p(buf, vfp_get_fpcr(env)); 122 return 4; 123 default: 124 return 0; 125 } 126 } 127 128 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 129 { 130 switch (reg) { 131 case 0 ... 31: 132 /* 128 bit FP register */ 133 { 134 uint64_t *q = aa64_vfp_qreg(env, reg); 135 q[0] = ldq_le_p(buf); 136 q[1] = ldq_le_p(buf + 8); 137 return 16; 138 } 139 case 32: 140 /* FPSR */ 141 vfp_set_fpsr(env, ldl_p(buf)); 142 return 4; 143 case 33: 144 /* FPCR */ 145 vfp_set_fpcr(env, ldl_p(buf)); 146 return 4; 147 default: 148 return 0; 149 } 150 } 151 152 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 153 { 154 assert(ri->fieldoffset); 155 if (cpreg_field_is_64bit(ri)) { 156 return CPREG_FIELD64(env, ri); 157 } else { 158 return CPREG_FIELD32(env, ri); 159 } 160 } 161 162 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 163 uint64_t value) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 CPREG_FIELD64(env, ri) = value; 168 } else { 169 CPREG_FIELD32(env, ri) = value; 170 } 171 } 172 173 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 174 { 175 return (char *)env + ri->fieldoffset; 176 } 177 178 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 179 { 180 /* Raw read of a coprocessor register (as needed for migration, etc). */ 181 if (ri->type & ARM_CP_CONST) { 182 return ri->resetvalue; 183 } else if (ri->raw_readfn) { 184 return ri->raw_readfn(env, ri); 185 } else if (ri->readfn) { 186 return ri->readfn(env, ri); 187 } else { 188 return raw_read(env, ri); 189 } 190 } 191 192 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 193 uint64_t v) 194 { 195 /* Raw write of a coprocessor register (as needed for migration, etc). 196 * Note that constant registers are treated as write-ignored; the 197 * caller should check for success by whether a readback gives the 198 * value written. 199 */ 200 if (ri->type & ARM_CP_CONST) { 201 return; 202 } else if (ri->raw_writefn) { 203 ri->raw_writefn(env, ri, v); 204 } else if (ri->writefn) { 205 ri->writefn(env, ri, v); 206 } else { 207 raw_write(env, ri, v); 208 } 209 } 210 211 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 212 { 213 ARMCPU *cpu = env_archcpu(env); 214 const ARMCPRegInfo *ri; 215 uint32_t key; 216 217 key = cpu->dyn_xml.cpregs_keys[reg]; 218 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 219 if (ri) { 220 if (cpreg_field_is_64bit(ri)) { 221 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 222 } else { 223 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 224 } 225 } 226 return 0; 227 } 228 229 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 230 { 231 return 0; 232 } 233 234 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 235 { 236 /* Return true if the regdef would cause an assertion if you called 237 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 238 * program bug for it not to have the NO_RAW flag). 239 * NB that returning false here doesn't necessarily mean that calling 240 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 241 * read/write access functions which are safe for raw use" from "has 242 * read/write access functions which have side effects but has forgotten 243 * to provide raw access functions". 244 * The tests here line up with the conditions in read/write_raw_cp_reg() 245 * and assertions in raw_read()/raw_write(). 246 */ 247 if ((ri->type & ARM_CP_CONST) || 248 ri->fieldoffset || 249 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 250 return false; 251 } 252 return true; 253 } 254 255 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 256 { 257 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 258 int i; 259 bool ok = true; 260 261 for (i = 0; i < cpu->cpreg_array_len; i++) { 262 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 263 const ARMCPRegInfo *ri; 264 uint64_t newval; 265 266 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 267 if (!ri) { 268 ok = false; 269 continue; 270 } 271 if (ri->type & ARM_CP_NO_RAW) { 272 continue; 273 } 274 275 newval = read_raw_cp_reg(&cpu->env, ri); 276 if (kvm_sync) { 277 /* 278 * Only sync if the previous list->cpustate sync succeeded. 279 * Rather than tracking the success/failure state for every 280 * item in the list, we just recheck "does the raw write we must 281 * have made in write_list_to_cpustate() read back OK" here. 282 */ 283 uint64_t oldval = cpu->cpreg_values[i]; 284 285 if (oldval == newval) { 286 continue; 287 } 288 289 write_raw_cp_reg(&cpu->env, ri, oldval); 290 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 291 continue; 292 } 293 294 write_raw_cp_reg(&cpu->env, ri, newval); 295 } 296 cpu->cpreg_values[i] = newval; 297 } 298 return ok; 299 } 300 301 bool write_list_to_cpustate(ARMCPU *cpu) 302 { 303 int i; 304 bool ok = true; 305 306 for (i = 0; i < cpu->cpreg_array_len; i++) { 307 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 308 uint64_t v = cpu->cpreg_values[i]; 309 const ARMCPRegInfo *ri; 310 311 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 312 if (!ri) { 313 ok = false; 314 continue; 315 } 316 if (ri->type & ARM_CP_NO_RAW) { 317 continue; 318 } 319 /* Write value and confirm it reads back as written 320 * (to catch read-only registers and partially read-only 321 * registers where the incoming migration value doesn't match) 322 */ 323 write_raw_cp_reg(&cpu->env, ri, v); 324 if (read_raw_cp_reg(&cpu->env, ri) != v) { 325 ok = false; 326 } 327 } 328 return ok; 329 } 330 331 static void add_cpreg_to_list(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 342 /* The value array need not be initialized at this point */ 343 cpu->cpreg_array_len++; 344 } 345 } 346 347 static void count_cpreg(gpointer key, gpointer opaque) 348 { 349 ARMCPU *cpu = opaque; 350 uint64_t regidx; 351 const ARMCPRegInfo *ri; 352 353 regidx = *(uint32_t *)key; 354 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 355 356 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 357 cpu->cpreg_array_len++; 358 } 359 } 360 361 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 362 { 363 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 364 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 365 366 if (aidx > bidx) { 367 return 1; 368 } 369 if (aidx < bidx) { 370 return -1; 371 } 372 return 0; 373 } 374 375 void init_cpreg_list(ARMCPU *cpu) 376 { 377 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 378 * Note that we require cpreg_tuples[] to be sorted by key ID. 379 */ 380 GList *keys; 381 int arraylen; 382 383 keys = g_hash_table_get_keys(cpu->cp_regs); 384 keys = g_list_sort(keys, cpreg_key_compare); 385 386 cpu->cpreg_array_len = 0; 387 388 g_list_foreach(keys, count_cpreg, cpu); 389 390 arraylen = cpu->cpreg_array_len; 391 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 392 cpu->cpreg_values = g_new(uint64_t, arraylen); 393 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 394 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 395 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 396 cpu->cpreg_array_len = 0; 397 398 g_list_foreach(keys, add_cpreg_to_list, cpu); 399 400 assert(cpu->cpreg_array_len == arraylen); 401 402 g_list_free(keys); 403 } 404 405 /* 406 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 407 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 408 * 409 * access_el3_aa32ns: Used to check AArch32 register views. 410 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 411 */ 412 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 413 const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 bool secure = arm_is_secure_below_el3(env); 417 418 assert(!arm_el_is_aa64(env, 3)); 419 if (secure) { 420 return CP_ACCESS_TRAP_UNCATEGORIZED; 421 } 422 return CP_ACCESS_OK; 423 } 424 425 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 426 const ARMCPRegInfo *ri, 427 bool isread) 428 { 429 if (!arm_el_is_aa64(env, 3)) { 430 return access_el3_aa32ns(env, ri, isread); 431 } 432 return CP_ACCESS_OK; 433 } 434 435 /* Some secure-only AArch32 registers trap to EL3 if used from 436 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 437 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 438 * We assume that the .access field is set to PL1_RW. 439 */ 440 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 441 const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 3) { 445 return CP_ACCESS_OK; 446 } 447 if (arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL3; 449 } 450 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 451 return CP_ACCESS_TRAP_UNCATEGORIZED; 452 } 453 454 /* Check for traps to "powerdown debug" registers, which are controlled 455 * by MDCR.TDOSA 456 */ 457 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 458 bool isread) 459 { 460 int el = arm_current_el(env); 461 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 462 (env->cp15.mdcr_el2 & MDCR_TDE) || 463 (arm_hcr_el2_eff(env) & HCR_TGE); 464 465 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to "debug ROM" registers, which are controlled 475 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 482 (env->cp15.mdcr_el2 & MDCR_TDE) || 483 (arm_hcr_el2_eff(env) & HCR_TGE); 484 485 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 486 return CP_ACCESS_TRAP_EL2; 487 } 488 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 489 return CP_ACCESS_TRAP_EL3; 490 } 491 return CP_ACCESS_OK; 492 } 493 494 /* Check for traps to general debug registers, which are controlled 495 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 496 */ 497 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 498 bool isread) 499 { 500 int el = arm_current_el(env); 501 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 502 (env->cp15.mdcr_el2 & MDCR_TDE) || 503 (arm_hcr_el2_eff(env) & HCR_TGE); 504 505 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 506 return CP_ACCESS_TRAP_EL2; 507 } 508 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 509 return CP_ACCESS_TRAP_EL3; 510 } 511 return CP_ACCESS_OK; 512 } 513 514 /* Check for traps to performance monitor registers, which are controlled 515 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 516 */ 517 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 518 bool isread) 519 { 520 int el = arm_current_el(env); 521 522 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 523 && !arm_is_secure_below_el3(env)) { 524 return CP_ACCESS_TRAP_EL2; 525 } 526 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 527 return CP_ACCESS_TRAP_EL3; 528 } 529 return CP_ACCESS_OK; 530 } 531 532 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 533 { 534 ARMCPU *cpu = env_archcpu(env); 535 536 raw_write(env, ri, value); 537 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 538 } 539 540 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 541 { 542 ARMCPU *cpu = env_archcpu(env); 543 544 if (raw_read(env, ri) != value) { 545 /* Unlike real hardware the qemu TLB uses virtual addresses, 546 * not modified virtual addresses, so this causes a TLB flush. 547 */ 548 tlb_flush(CPU(cpu)); 549 raw_write(env, ri, value); 550 } 551 } 552 553 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 ARMCPU *cpu = env_archcpu(env); 557 558 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 559 && !extended_addresses_enabled(env)) { 560 /* For VMSA (when not using the LPAE long descriptor page table 561 * format) this register includes the ASID, so do a TLB flush. 562 * For PMSA it is purely a process ID and no action is needed. 563 */ 564 tlb_flush(CPU(cpu)); 565 } 566 raw_write(env, ri, value); 567 } 568 569 /* IS variants of TLB operations must affect all cores */ 570 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_all_cpus_synced(cs); 576 } 577 578 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_all_cpus_synced(cs); 584 } 585 586 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 591 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 592 } 593 594 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 595 uint64_t value) 596 { 597 CPUState *cs = env_cpu(env); 598 599 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 600 } 601 602 /* 603 * Non-IS variants of TLB operations are upgraded to 604 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 605 * force broadcast of these operations. 606 */ 607 static bool tlb_force_broadcast(CPUARMState *env) 608 { 609 return (env->cp15.hcr_el2 & HCR_FB) && 610 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 611 } 612 613 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 /* Invalidate all (TLBIALL) */ 617 ARMCPU *cpu = env_archcpu(env); 618 619 if (tlb_force_broadcast(env)) { 620 tlbiall_is_write(env, NULL, value); 621 return; 622 } 623 624 tlb_flush(CPU(cpu)); 625 } 626 627 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 631 ARMCPU *cpu = env_archcpu(env); 632 633 if (tlb_force_broadcast(env)) { 634 tlbimva_is_write(env, NULL, value); 635 return; 636 } 637 638 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 639 } 640 641 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 642 uint64_t value) 643 { 644 /* Invalidate by ASID (TLBIASID) */ 645 ARMCPU *cpu = env_archcpu(env); 646 647 if (tlb_force_broadcast(env)) { 648 tlbiasid_is_write(env, NULL, value); 649 return; 650 } 651 652 tlb_flush(CPU(cpu)); 653 } 654 655 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 659 ARMCPU *cpu = env_archcpu(env); 660 661 if (tlb_force_broadcast(env)) { 662 tlbimvaa_is_write(env, NULL, value); 663 return; 664 } 665 666 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 667 } 668 669 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 670 uint64_t value) 671 { 672 CPUState *cs = env_cpu(env); 673 674 tlb_flush_by_mmuidx(cs, 675 ARMMMUIdxBit_S12NSE1 | 676 ARMMMUIdxBit_S12NSE0 | 677 ARMMMUIdxBit_S2NS); 678 } 679 680 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 CPUState *cs = env_cpu(env); 684 685 tlb_flush_by_mmuidx_all_cpus_synced(cs, 686 ARMMMUIdxBit_S12NSE1 | 687 ARMMMUIdxBit_S12NSE0 | 688 ARMMMUIdxBit_S2NS); 689 } 690 691 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 /* Invalidate by IPA. This has to invalidate any structures that 695 * contain only stage 2 translation information, but does not need 696 * to apply to structures that contain combined stage 1 and stage 2 697 * translation information. 698 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 699 */ 700 CPUState *cs = env_cpu(env); 701 uint64_t pageaddr; 702 703 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 704 return; 705 } 706 707 pageaddr = sextract64(value << 12, 0, 40); 708 709 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 710 } 711 712 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 713 uint64_t value) 714 { 715 CPUState *cs = env_cpu(env); 716 uint64_t pageaddr; 717 718 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 719 return; 720 } 721 722 pageaddr = sextract64(value << 12, 0, 40); 723 724 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 725 ARMMMUIdxBit_S2NS); 726 } 727 728 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 729 uint64_t value) 730 { 731 CPUState *cs = env_cpu(env); 732 733 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 734 } 735 736 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 737 uint64_t value) 738 { 739 CPUState *cs = env_cpu(env); 740 741 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 742 } 743 744 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 745 uint64_t value) 746 { 747 CPUState *cs = env_cpu(env); 748 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 749 750 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 751 } 752 753 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 754 uint64_t value) 755 { 756 CPUState *cs = env_cpu(env); 757 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 758 759 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 760 ARMMMUIdxBit_S1E2); 761 } 762 763 static const ARMCPRegInfo cp_reginfo[] = { 764 /* Define the secure and non-secure FCSE identifier CP registers 765 * separately because there is no secure bank in V8 (no _EL3). This allows 766 * the secure register to be properly reset and migrated. There is also no 767 * v8 EL1 version of the register so the non-secure instance stands alone. 768 */ 769 { .name = "FCSEIDR", 770 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 771 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 772 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 773 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 774 { .name = "FCSEIDR_S", 775 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 776 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 777 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 778 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 779 /* Define the secure and non-secure context identifier CP registers 780 * separately because there is no secure bank in V8 (no _EL3). This allows 781 * the secure register to be properly reset and migrated. In the 782 * non-secure case, the 32-bit register will have reset and migration 783 * disabled during registration as it is handled by the 64-bit instance. 784 */ 785 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 786 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 787 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 788 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 789 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 790 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 791 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 792 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 793 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 794 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 795 REGINFO_SENTINEL 796 }; 797 798 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 799 /* NB: Some of these registers exist in v8 but with more precise 800 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 801 */ 802 /* MMU Domain access control / MPU write buffer control */ 803 { .name = "DACR", 804 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 805 .access = PL1_RW, .resetvalue = 0, 806 .writefn = dacr_write, .raw_writefn = raw_write, 807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 808 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 809 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 810 * For v6 and v5, these mappings are overly broad. 811 */ 812 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 813 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 814 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 815 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 816 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 817 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 818 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 819 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 820 /* Cache maintenance ops; some of this space may be overridden later. */ 821 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 822 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 823 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 824 REGINFO_SENTINEL 825 }; 826 827 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 828 /* Not all pre-v6 cores implemented this WFI, so this is slightly 829 * over-broad. 830 */ 831 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 832 .access = PL1_W, .type = ARM_CP_WFI }, 833 REGINFO_SENTINEL 834 }; 835 836 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 837 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 838 * is UNPREDICTABLE; we choose to NOP as most implementations do). 839 */ 840 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 841 .access = PL1_W, .type = ARM_CP_WFI }, 842 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 843 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 844 * OMAPCP will override this space. 845 */ 846 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 847 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 848 .resetvalue = 0 }, 849 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 850 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 851 .resetvalue = 0 }, 852 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 853 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 854 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 855 .resetvalue = 0 }, 856 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 857 * implementing it as RAZ means the "debug architecture version" bits 858 * will read as a reserved value, which should cause Linux to not try 859 * to use the debug hardware. 860 */ 861 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 862 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 863 /* MMU TLB control. Note that the wildcarding means we cover not just 864 * the unified TLB ops but also the dside/iside/inner-shareable variants. 865 */ 866 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 867 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 868 .type = ARM_CP_NO_RAW }, 869 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 870 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 871 .type = ARM_CP_NO_RAW }, 872 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 873 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 874 .type = ARM_CP_NO_RAW }, 875 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 876 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 877 .type = ARM_CP_NO_RAW }, 878 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 879 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 880 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 881 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 882 REGINFO_SENTINEL 883 }; 884 885 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 886 uint64_t value) 887 { 888 uint32_t mask = 0; 889 890 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 891 if (!arm_feature(env, ARM_FEATURE_V8)) { 892 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 893 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 894 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 895 */ 896 if (arm_feature(env, ARM_FEATURE_VFP)) { 897 /* VFP coprocessor: cp10 & cp11 [23:20] */ 898 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 899 900 if (!arm_feature(env, ARM_FEATURE_NEON)) { 901 /* ASEDIS [31] bit is RAO/WI */ 902 value |= (1 << 31); 903 } 904 905 /* VFPv3 and upwards with NEON implement 32 double precision 906 * registers (D0-D31). 907 */ 908 if (!arm_feature(env, ARM_FEATURE_NEON) || 909 !arm_feature(env, ARM_FEATURE_VFP3)) { 910 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 911 value |= (1 << 30); 912 } 913 } 914 value &= mask; 915 } 916 917 /* 918 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 919 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 920 */ 921 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 922 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 923 value &= ~(0xf << 20); 924 value |= env->cp15.cpacr_el1 & (0xf << 20); 925 } 926 927 env->cp15.cpacr_el1 = value; 928 } 929 930 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 931 { 932 /* 933 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 934 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 935 */ 936 uint64_t value = env->cp15.cpacr_el1; 937 938 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 939 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 940 value &= ~(0xf << 20); 941 } 942 return value; 943 } 944 945 946 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 947 { 948 /* Call cpacr_write() so that we reset with the correct RAO bits set 949 * for our CPU features. 950 */ 951 cpacr_write(env, ri, 0); 952 } 953 954 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 955 bool isread) 956 { 957 if (arm_feature(env, ARM_FEATURE_V8)) { 958 /* Check if CPACR accesses are to be trapped to EL2 */ 959 if (arm_current_el(env) == 1 && 960 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 961 return CP_ACCESS_TRAP_EL2; 962 /* Check if CPACR accesses are to be trapped to EL3 */ 963 } else if (arm_current_el(env) < 3 && 964 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 965 return CP_ACCESS_TRAP_EL3; 966 } 967 } 968 969 return CP_ACCESS_OK; 970 } 971 972 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 973 bool isread) 974 { 975 /* Check if CPTR accesses are set to trap to EL3 */ 976 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 977 return CP_ACCESS_TRAP_EL3; 978 } 979 980 return CP_ACCESS_OK; 981 } 982 983 static const ARMCPRegInfo v6_cp_reginfo[] = { 984 /* prefetch by MVA in v6, NOP in v7 */ 985 { .name = "MVA_prefetch", 986 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 987 .access = PL1_W, .type = ARM_CP_NOP }, 988 /* We need to break the TB after ISB to execute self-modifying code 989 * correctly and also to take any pending interrupts immediately. 990 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 991 */ 992 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 993 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 994 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 995 .access = PL0_W, .type = ARM_CP_NOP }, 996 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 997 .access = PL0_W, .type = ARM_CP_NOP }, 998 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 999 .access = PL1_RW, 1000 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 1001 offsetof(CPUARMState, cp15.ifar_ns) }, 1002 .resetvalue = 0, }, 1003 /* Watchpoint Fault Address Register : should actually only be present 1004 * for 1136, 1176, 11MPCore. 1005 */ 1006 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 1007 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 1008 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 1009 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 1010 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 1011 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 1012 REGINFO_SENTINEL 1013 }; 1014 1015 /* Definitions for the PMU registers */ 1016 #define PMCRN_MASK 0xf800 1017 #define PMCRN_SHIFT 11 1018 #define PMCRLC 0x40 1019 #define PMCRDP 0x10 1020 #define PMCRD 0x8 1021 #define PMCRC 0x4 1022 #define PMCRP 0x2 1023 #define PMCRE 0x1 1024 1025 #define PMXEVTYPER_P 0x80000000 1026 #define PMXEVTYPER_U 0x40000000 1027 #define PMXEVTYPER_NSK 0x20000000 1028 #define PMXEVTYPER_NSU 0x10000000 1029 #define PMXEVTYPER_NSH 0x08000000 1030 #define PMXEVTYPER_M 0x04000000 1031 #define PMXEVTYPER_MT 0x02000000 1032 #define PMXEVTYPER_EVTCOUNT 0x0000ffff 1033 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \ 1034 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \ 1035 PMXEVTYPER_M | PMXEVTYPER_MT | \ 1036 PMXEVTYPER_EVTCOUNT) 1037 1038 #define PMCCFILTR 0xf8000000 1039 #define PMCCFILTR_M PMXEVTYPER_M 1040 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M) 1041 1042 static inline uint32_t pmu_num_counters(CPUARMState *env) 1043 { 1044 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 1045 } 1046 1047 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 1048 static inline uint64_t pmu_counter_mask(CPUARMState *env) 1049 { 1050 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 1051 } 1052 1053 typedef struct pm_event { 1054 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 1055 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 1056 bool (*supported)(CPUARMState *); 1057 /* 1058 * Retrieve the current count of the underlying event. The programmed 1059 * counters hold a difference from the return value from this function 1060 */ 1061 uint64_t (*get_count)(CPUARMState *); 1062 /* 1063 * Return how many nanoseconds it will take (at a minimum) for count events 1064 * to occur. A negative value indicates the counter will never overflow, or 1065 * that the counter has otherwise arranged for the overflow bit to be set 1066 * and the PMU interrupt to be raised on overflow. 1067 */ 1068 int64_t (*ns_per_count)(uint64_t); 1069 } pm_event; 1070 1071 static bool event_always_supported(CPUARMState *env) 1072 { 1073 return true; 1074 } 1075 1076 static uint64_t swinc_get_count(CPUARMState *env) 1077 { 1078 /* 1079 * SW_INCR events are written directly to the pmevcntr's by writes to 1080 * PMSWINC, so there is no underlying count maintained by the PMU itself 1081 */ 1082 return 0; 1083 } 1084 1085 static int64_t swinc_ns_per(uint64_t ignored) 1086 { 1087 return -1; 1088 } 1089 1090 /* 1091 * Return the underlying cycle count for the PMU cycle counters. If we're in 1092 * usermode, simply return 0. 1093 */ 1094 static uint64_t cycles_get_count(CPUARMState *env) 1095 { 1096 #ifndef CONFIG_USER_ONLY 1097 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1098 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1099 #else 1100 return cpu_get_host_ticks(); 1101 #endif 1102 } 1103 1104 #ifndef CONFIG_USER_ONLY 1105 static int64_t cycles_ns_per(uint64_t cycles) 1106 { 1107 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 1108 } 1109 1110 static bool instructions_supported(CPUARMState *env) 1111 { 1112 return use_icount == 1 /* Precise instruction counting */; 1113 } 1114 1115 static uint64_t instructions_get_count(CPUARMState *env) 1116 { 1117 return (uint64_t)cpu_get_icount_raw(); 1118 } 1119 1120 static int64_t instructions_ns_per(uint64_t icount) 1121 { 1122 return cpu_icount_to_ns((int64_t)icount); 1123 } 1124 #endif 1125 1126 static const pm_event pm_events[] = { 1127 { .number = 0x000, /* SW_INCR */ 1128 .supported = event_always_supported, 1129 .get_count = swinc_get_count, 1130 .ns_per_count = swinc_ns_per, 1131 }, 1132 #ifndef CONFIG_USER_ONLY 1133 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1134 .supported = instructions_supported, 1135 .get_count = instructions_get_count, 1136 .ns_per_count = instructions_ns_per, 1137 }, 1138 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1139 .supported = event_always_supported, 1140 .get_count = cycles_get_count, 1141 .ns_per_count = cycles_ns_per, 1142 } 1143 #endif 1144 }; 1145 1146 /* 1147 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1148 * events (i.e. the statistical profiling extension), this implementation 1149 * should first be updated to something sparse instead of the current 1150 * supported_event_map[] array. 1151 */ 1152 #define MAX_EVENT_ID 0x11 1153 #define UNSUPPORTED_EVENT UINT16_MAX 1154 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1155 1156 /* 1157 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1158 * of ARM event numbers to indices in our pm_events array. 1159 * 1160 * Note: Events in the 0x40XX range are not currently supported. 1161 */ 1162 void pmu_init(ARMCPU *cpu) 1163 { 1164 unsigned int i; 1165 1166 /* 1167 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1168 * events to them 1169 */ 1170 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1171 supported_event_map[i] = UNSUPPORTED_EVENT; 1172 } 1173 cpu->pmceid0 = 0; 1174 cpu->pmceid1 = 0; 1175 1176 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1177 const pm_event *cnt = &pm_events[i]; 1178 assert(cnt->number <= MAX_EVENT_ID); 1179 /* We do not currently support events in the 0x40xx range */ 1180 assert(cnt->number <= 0x3f); 1181 1182 if (cnt->supported(&cpu->env)) { 1183 supported_event_map[cnt->number] = i; 1184 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1185 if (cnt->number & 0x20) { 1186 cpu->pmceid1 |= event_mask; 1187 } else { 1188 cpu->pmceid0 |= event_mask; 1189 } 1190 } 1191 } 1192 } 1193 1194 /* 1195 * Check at runtime whether a PMU event is supported for the current machine 1196 */ 1197 static bool event_supported(uint16_t number) 1198 { 1199 if (number > MAX_EVENT_ID) { 1200 return false; 1201 } 1202 return supported_event_map[number] != UNSUPPORTED_EVENT; 1203 } 1204 1205 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1206 bool isread) 1207 { 1208 /* Performance monitor registers user accessibility is controlled 1209 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1210 * trapping to EL2 or EL3 for other accesses. 1211 */ 1212 int el = arm_current_el(env); 1213 1214 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1215 return CP_ACCESS_TRAP; 1216 } 1217 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1218 && !arm_is_secure_below_el3(env)) { 1219 return CP_ACCESS_TRAP_EL2; 1220 } 1221 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1222 return CP_ACCESS_TRAP_EL3; 1223 } 1224 1225 return CP_ACCESS_OK; 1226 } 1227 1228 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1229 const ARMCPRegInfo *ri, 1230 bool isread) 1231 { 1232 /* ER: event counter read trap control */ 1233 if (arm_feature(env, ARM_FEATURE_V8) 1234 && arm_current_el(env) == 0 1235 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1236 && isread) { 1237 return CP_ACCESS_OK; 1238 } 1239 1240 return pmreg_access(env, ri, isread); 1241 } 1242 1243 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1244 const ARMCPRegInfo *ri, 1245 bool isread) 1246 { 1247 /* SW: software increment write trap control */ 1248 if (arm_feature(env, ARM_FEATURE_V8) 1249 && arm_current_el(env) == 0 1250 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1251 && !isread) { 1252 return CP_ACCESS_OK; 1253 } 1254 1255 return pmreg_access(env, ri, isread); 1256 } 1257 1258 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1259 const ARMCPRegInfo *ri, 1260 bool isread) 1261 { 1262 /* ER: event counter read trap control */ 1263 if (arm_feature(env, ARM_FEATURE_V8) 1264 && arm_current_el(env) == 0 1265 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1266 return CP_ACCESS_OK; 1267 } 1268 1269 return pmreg_access(env, ri, isread); 1270 } 1271 1272 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1273 const ARMCPRegInfo *ri, 1274 bool isread) 1275 { 1276 /* CR: cycle counter read trap control */ 1277 if (arm_feature(env, ARM_FEATURE_V8) 1278 && arm_current_el(env) == 0 1279 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1280 && isread) { 1281 return CP_ACCESS_OK; 1282 } 1283 1284 return pmreg_access(env, ri, isread); 1285 } 1286 1287 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1288 * the current EL, security state, and register configuration. 1289 */ 1290 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1291 { 1292 uint64_t filter; 1293 bool e, p, u, nsk, nsu, nsh, m; 1294 bool enabled, prohibited, filtered; 1295 bool secure = arm_is_secure(env); 1296 int el = arm_current_el(env); 1297 uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1298 1299 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1300 return false; 1301 } 1302 1303 if (!arm_feature(env, ARM_FEATURE_EL2) || 1304 (counter < hpmn || counter == 31)) { 1305 e = env->cp15.c9_pmcr & PMCRE; 1306 } else { 1307 e = env->cp15.mdcr_el2 & MDCR_HPME; 1308 } 1309 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1310 1311 if (!secure) { 1312 if (el == 2 && (counter < hpmn || counter == 31)) { 1313 prohibited = env->cp15.mdcr_el2 & MDCR_HPMD; 1314 } else { 1315 prohibited = false; 1316 } 1317 } else { 1318 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1319 (env->cp15.mdcr_el3 & MDCR_SPME); 1320 } 1321 1322 if (prohibited && counter == 31) { 1323 prohibited = env->cp15.c9_pmcr & PMCRDP; 1324 } 1325 1326 if (counter == 31) { 1327 filter = env->cp15.pmccfiltr_el0; 1328 } else { 1329 filter = env->cp15.c14_pmevtyper[counter]; 1330 } 1331 1332 p = filter & PMXEVTYPER_P; 1333 u = filter & PMXEVTYPER_U; 1334 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1335 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1336 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1337 m = arm_el_is_aa64(env, 1) && 1338 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1339 1340 if (el == 0) { 1341 filtered = secure ? u : u != nsu; 1342 } else if (el == 1) { 1343 filtered = secure ? p : p != nsk; 1344 } else if (el == 2) { 1345 filtered = !nsh; 1346 } else { /* EL3 */ 1347 filtered = m != p; 1348 } 1349 1350 if (counter != 31) { 1351 /* 1352 * If not checking PMCCNTR, ensure the counter is setup to an event we 1353 * support 1354 */ 1355 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1356 if (!event_supported(event)) { 1357 return false; 1358 } 1359 } 1360 1361 return enabled && !prohibited && !filtered; 1362 } 1363 1364 static void pmu_update_irq(CPUARMState *env) 1365 { 1366 ARMCPU *cpu = env_archcpu(env); 1367 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1368 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1369 } 1370 1371 /* 1372 * Ensure c15_ccnt is the guest-visible count so that operations such as 1373 * enabling/disabling the counter or filtering, modifying the count itself, 1374 * etc. can be done logically. This is essentially a no-op if the counter is 1375 * not enabled at the time of the call. 1376 */ 1377 static void pmccntr_op_start(CPUARMState *env) 1378 { 1379 uint64_t cycles = cycles_get_count(env); 1380 1381 if (pmu_counter_enabled(env, 31)) { 1382 uint64_t eff_cycles = cycles; 1383 if (env->cp15.c9_pmcr & PMCRD) { 1384 /* Increment once every 64 processor clock cycles */ 1385 eff_cycles /= 64; 1386 } 1387 1388 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1389 1390 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1391 1ull << 63 : 1ull << 31; 1392 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1393 env->cp15.c9_pmovsr |= (1 << 31); 1394 pmu_update_irq(env); 1395 } 1396 1397 env->cp15.c15_ccnt = new_pmccntr; 1398 } 1399 env->cp15.c15_ccnt_delta = cycles; 1400 } 1401 1402 /* 1403 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1404 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1405 * pmccntr_op_start. 1406 */ 1407 static void pmccntr_op_finish(CPUARMState *env) 1408 { 1409 if (pmu_counter_enabled(env, 31)) { 1410 #ifndef CONFIG_USER_ONLY 1411 /* Calculate when the counter will next overflow */ 1412 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1413 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1414 remaining_cycles = (uint32_t)remaining_cycles; 1415 } 1416 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1417 1418 if (overflow_in > 0) { 1419 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1420 overflow_in; 1421 ARMCPU *cpu = env_archcpu(env); 1422 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1423 } 1424 #endif 1425 1426 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1427 if (env->cp15.c9_pmcr & PMCRD) { 1428 /* Increment once every 64 processor clock cycles */ 1429 prev_cycles /= 64; 1430 } 1431 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1432 } 1433 } 1434 1435 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1436 { 1437 1438 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1439 uint64_t count = 0; 1440 if (event_supported(event)) { 1441 uint16_t event_idx = supported_event_map[event]; 1442 count = pm_events[event_idx].get_count(env); 1443 } 1444 1445 if (pmu_counter_enabled(env, counter)) { 1446 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1447 1448 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1449 env->cp15.c9_pmovsr |= (1 << counter); 1450 pmu_update_irq(env); 1451 } 1452 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1453 } 1454 env->cp15.c14_pmevcntr_delta[counter] = count; 1455 } 1456 1457 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1458 { 1459 if (pmu_counter_enabled(env, counter)) { 1460 #ifndef CONFIG_USER_ONLY 1461 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1462 uint16_t event_idx = supported_event_map[event]; 1463 uint64_t delta = UINT32_MAX - 1464 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1465 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1466 1467 if (overflow_in > 0) { 1468 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1469 overflow_in; 1470 ARMCPU *cpu = env_archcpu(env); 1471 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1472 } 1473 #endif 1474 1475 env->cp15.c14_pmevcntr_delta[counter] -= 1476 env->cp15.c14_pmevcntr[counter]; 1477 } 1478 } 1479 1480 void pmu_op_start(CPUARMState *env) 1481 { 1482 unsigned int i; 1483 pmccntr_op_start(env); 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 pmevcntr_op_start(env, i); 1486 } 1487 } 1488 1489 void pmu_op_finish(CPUARMState *env) 1490 { 1491 unsigned int i; 1492 pmccntr_op_finish(env); 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 pmevcntr_op_finish(env, i); 1495 } 1496 } 1497 1498 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1499 { 1500 pmu_op_start(&cpu->env); 1501 } 1502 1503 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1504 { 1505 pmu_op_finish(&cpu->env); 1506 } 1507 1508 void arm_pmu_timer_cb(void *opaque) 1509 { 1510 ARMCPU *cpu = opaque; 1511 1512 /* 1513 * Update all the counter values based on the current underlying counts, 1514 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1515 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1516 * counter may expire. 1517 */ 1518 pmu_op_start(&cpu->env); 1519 pmu_op_finish(&cpu->env); 1520 } 1521 1522 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1523 uint64_t value) 1524 { 1525 pmu_op_start(env); 1526 1527 if (value & PMCRC) { 1528 /* The counter has been reset */ 1529 env->cp15.c15_ccnt = 0; 1530 } 1531 1532 if (value & PMCRP) { 1533 unsigned int i; 1534 for (i = 0; i < pmu_num_counters(env); i++) { 1535 env->cp15.c14_pmevcntr[i] = 0; 1536 } 1537 } 1538 1539 /* only the DP, X, D and E bits are writable */ 1540 env->cp15.c9_pmcr &= ~0x39; 1541 env->cp15.c9_pmcr |= (value & 0x39); 1542 1543 pmu_op_finish(env); 1544 } 1545 1546 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1547 uint64_t value) 1548 { 1549 unsigned int i; 1550 for (i = 0; i < pmu_num_counters(env); i++) { 1551 /* Increment a counter's count iff: */ 1552 if ((value & (1 << i)) && /* counter's bit is set */ 1553 /* counter is enabled and not filtered */ 1554 pmu_counter_enabled(env, i) && 1555 /* counter is SW_INCR */ 1556 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1557 pmevcntr_op_start(env, i); 1558 1559 /* 1560 * Detect if this write causes an overflow since we can't predict 1561 * PMSWINC overflows like we can for other events 1562 */ 1563 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1564 1565 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1566 env->cp15.c9_pmovsr |= (1 << i); 1567 pmu_update_irq(env); 1568 } 1569 1570 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1571 1572 pmevcntr_op_finish(env, i); 1573 } 1574 } 1575 } 1576 1577 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1578 { 1579 uint64_t ret; 1580 pmccntr_op_start(env); 1581 ret = env->cp15.c15_ccnt; 1582 pmccntr_op_finish(env); 1583 return ret; 1584 } 1585 1586 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1587 uint64_t value) 1588 { 1589 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1590 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1591 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1592 * accessed. 1593 */ 1594 env->cp15.c9_pmselr = value & 0x1f; 1595 } 1596 1597 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1598 uint64_t value) 1599 { 1600 pmccntr_op_start(env); 1601 env->cp15.c15_ccnt = value; 1602 pmccntr_op_finish(env); 1603 } 1604 1605 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1606 uint64_t value) 1607 { 1608 uint64_t cur_val = pmccntr_read(env, NULL); 1609 1610 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1611 } 1612 1613 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1614 uint64_t value) 1615 { 1616 pmccntr_op_start(env); 1617 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1618 pmccntr_op_finish(env); 1619 } 1620 1621 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1622 uint64_t value) 1623 { 1624 pmccntr_op_start(env); 1625 /* M is not accessible from AArch32 */ 1626 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1627 (value & PMCCFILTR); 1628 pmccntr_op_finish(env); 1629 } 1630 1631 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1632 { 1633 /* M is not visible in AArch32 */ 1634 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1635 } 1636 1637 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 value &= pmu_counter_mask(env); 1641 env->cp15.c9_pmcnten |= value; 1642 } 1643 1644 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 value &= pmu_counter_mask(env); 1648 env->cp15.c9_pmcnten &= ~value; 1649 } 1650 1651 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 value &= pmu_counter_mask(env); 1655 env->cp15.c9_pmovsr &= ~value; 1656 pmu_update_irq(env); 1657 } 1658 1659 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1660 uint64_t value) 1661 { 1662 value &= pmu_counter_mask(env); 1663 env->cp15.c9_pmovsr |= value; 1664 pmu_update_irq(env); 1665 } 1666 1667 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1668 uint64_t value, const uint8_t counter) 1669 { 1670 if (counter == 31) { 1671 pmccfiltr_write(env, ri, value); 1672 } else if (counter < pmu_num_counters(env)) { 1673 pmevcntr_op_start(env, counter); 1674 1675 /* 1676 * If this counter's event type is changing, store the current 1677 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1678 * pmevcntr_op_finish has the correct baseline when it converts back to 1679 * a delta. 1680 */ 1681 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1682 PMXEVTYPER_EVTCOUNT; 1683 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1684 if (old_event != new_event) { 1685 uint64_t count = 0; 1686 if (event_supported(new_event)) { 1687 uint16_t event_idx = supported_event_map[new_event]; 1688 count = pm_events[event_idx].get_count(env); 1689 } 1690 env->cp15.c14_pmevcntr_delta[counter] = count; 1691 } 1692 1693 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1694 pmevcntr_op_finish(env, counter); 1695 } 1696 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1697 * PMSELR value is equal to or greater than the number of implemented 1698 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1699 */ 1700 } 1701 1702 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1703 const uint8_t counter) 1704 { 1705 if (counter == 31) { 1706 return env->cp15.pmccfiltr_el0; 1707 } else if (counter < pmu_num_counters(env)) { 1708 return env->cp15.c14_pmevtyper[counter]; 1709 } else { 1710 /* 1711 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1712 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1713 */ 1714 return 0; 1715 } 1716 } 1717 1718 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1719 uint64_t value) 1720 { 1721 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1722 pmevtyper_write(env, ri, value, counter); 1723 } 1724 1725 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1726 uint64_t value) 1727 { 1728 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1729 env->cp15.c14_pmevtyper[counter] = value; 1730 1731 /* 1732 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1733 * pmu_op_finish calls when loading saved state for a migration. Because 1734 * we're potentially updating the type of event here, the value written to 1735 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1736 * different counter type. Therefore, we need to set this value to the 1737 * current count for the counter type we're writing so that pmu_op_finish 1738 * has the correct count for its calculation. 1739 */ 1740 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1741 if (event_supported(event)) { 1742 uint16_t event_idx = supported_event_map[event]; 1743 env->cp15.c14_pmevcntr_delta[counter] = 1744 pm_events[event_idx].get_count(env); 1745 } 1746 } 1747 1748 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1751 return pmevtyper_read(env, ri, counter); 1752 } 1753 1754 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1758 } 1759 1760 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1763 } 1764 1765 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1766 uint64_t value, uint8_t counter) 1767 { 1768 if (counter < pmu_num_counters(env)) { 1769 pmevcntr_op_start(env, counter); 1770 env->cp15.c14_pmevcntr[counter] = value; 1771 pmevcntr_op_finish(env, counter); 1772 } 1773 /* 1774 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1775 * are CONSTRAINED UNPREDICTABLE. 1776 */ 1777 } 1778 1779 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1780 uint8_t counter) 1781 { 1782 if (counter < pmu_num_counters(env)) { 1783 uint64_t ret; 1784 pmevcntr_op_start(env, counter); 1785 ret = env->cp15.c14_pmevcntr[counter]; 1786 pmevcntr_op_finish(env, counter); 1787 return ret; 1788 } else { 1789 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1790 * are CONSTRAINED UNPREDICTABLE. */ 1791 return 0; 1792 } 1793 } 1794 1795 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1796 uint64_t value) 1797 { 1798 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1799 pmevcntr_write(env, ri, value, counter); 1800 } 1801 1802 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1805 return pmevcntr_read(env, ri, counter); 1806 } 1807 1808 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1809 uint64_t value) 1810 { 1811 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1812 assert(counter < pmu_num_counters(env)); 1813 env->cp15.c14_pmevcntr[counter] = value; 1814 pmevcntr_write(env, ri, value, counter); 1815 } 1816 1817 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1820 assert(counter < pmu_num_counters(env)); 1821 return env->cp15.c14_pmevcntr[counter]; 1822 } 1823 1824 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1833 } 1834 1835 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 if (arm_feature(env, ARM_FEATURE_V8)) { 1839 env->cp15.c9_pmuserenr = value & 0xf; 1840 } else { 1841 env->cp15.c9_pmuserenr = value & 1; 1842 } 1843 } 1844 1845 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1846 uint64_t value) 1847 { 1848 /* We have no event counters so only the C bit can be changed */ 1849 value &= pmu_counter_mask(env); 1850 env->cp15.c9_pminten |= value; 1851 pmu_update_irq(env); 1852 } 1853 1854 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 value &= pmu_counter_mask(env); 1858 env->cp15.c9_pminten &= ~value; 1859 pmu_update_irq(env); 1860 } 1861 1862 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Note that even though the AArch64 view of this register has bits 1866 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1867 * architectural requirements for bits which are RES0 only in some 1868 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1869 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1870 */ 1871 raw_write(env, ri, value & ~0x1FULL); 1872 } 1873 1874 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1875 { 1876 /* Begin with base v8.0 state. */ 1877 uint32_t valid_mask = 0x3fff; 1878 ARMCPU *cpu = env_archcpu(env); 1879 1880 if (arm_el_is_aa64(env, 3)) { 1881 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1882 valid_mask &= ~SCR_NET; 1883 } else { 1884 valid_mask &= ~(SCR_RW | SCR_ST); 1885 } 1886 1887 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1888 valid_mask &= ~SCR_HCE; 1889 1890 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1891 * supported if EL2 exists. The bit is UNK/SBZP when 1892 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1893 * when EL2 is unavailable. 1894 * On ARMv8, this bit is always available. 1895 */ 1896 if (arm_feature(env, ARM_FEATURE_V7) && 1897 !arm_feature(env, ARM_FEATURE_V8)) { 1898 valid_mask &= ~SCR_SMD; 1899 } 1900 } 1901 if (cpu_isar_feature(aa64_lor, cpu)) { 1902 valid_mask |= SCR_TLOR; 1903 } 1904 if (cpu_isar_feature(aa64_pauth, cpu)) { 1905 valid_mask |= SCR_API | SCR_APK; 1906 } 1907 1908 /* Clear all-context RES0 bits. */ 1909 value &= valid_mask; 1910 raw_write(env, ri, value); 1911 } 1912 1913 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1914 const ARMCPRegInfo *ri, 1915 bool isread) 1916 { 1917 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1918 return CP_ACCESS_TRAP_EL2; 1919 } 1920 1921 return CP_ACCESS_OK; 1922 } 1923 1924 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1925 { 1926 ARMCPU *cpu = env_archcpu(env); 1927 1928 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1929 * bank 1930 */ 1931 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1932 ri->secure & ARM_CP_SECSTATE_S); 1933 1934 return cpu->ccsidr[index]; 1935 } 1936 1937 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1938 uint64_t value) 1939 { 1940 raw_write(env, ri, value & 0xf); 1941 } 1942 1943 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1944 { 1945 CPUState *cs = env_cpu(env); 1946 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1947 uint64_t ret = 0; 1948 bool allow_virt = (arm_current_el(env) == 1 && 1949 (!arm_is_secure_below_el3(env) || 1950 (env->cp15.scr_el3 & SCR_EEL2))); 1951 1952 if (allow_virt && (hcr_el2 & HCR_IMO)) { 1953 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1954 ret |= CPSR_I; 1955 } 1956 } else { 1957 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1958 ret |= CPSR_I; 1959 } 1960 } 1961 1962 if (allow_virt && (hcr_el2 & HCR_FMO)) { 1963 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1964 ret |= CPSR_F; 1965 } 1966 } else { 1967 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1968 ret |= CPSR_F; 1969 } 1970 } 1971 1972 /* External aborts are not possible in QEMU so A bit is always clear */ 1973 return ret; 1974 } 1975 1976 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1977 bool isread) 1978 { 1979 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1980 return CP_ACCESS_TRAP_EL2; 1981 } 1982 1983 return CP_ACCESS_OK; 1984 } 1985 1986 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1987 bool isread) 1988 { 1989 if (arm_feature(env, ARM_FEATURE_V8)) { 1990 return access_aa64_tid1(env, ri, isread); 1991 } 1992 1993 return CP_ACCESS_OK; 1994 } 1995 1996 static const ARMCPRegInfo v7_cp_reginfo[] = { 1997 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1998 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1999 .access = PL1_W, .type = ARM_CP_NOP }, 2000 /* Performance monitors are implementation defined in v7, 2001 * but with an ARM recommended set of registers, which we 2002 * follow. 2003 * 2004 * Performance registers fall into three categories: 2005 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2006 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2007 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2008 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2009 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2010 */ 2011 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2012 .access = PL0_RW, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2014 .writefn = pmcntenset_write, 2015 .accessfn = pmreg_access, 2016 .raw_writefn = raw_write }, 2017 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2019 .access = PL0_RW, .accessfn = pmreg_access, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2021 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2023 .access = PL0_RW, 2024 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2025 .accessfn = pmreg_access, 2026 .writefn = pmcntenclr_write, 2027 .type = ARM_CP_ALIAS }, 2028 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2029 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2030 .access = PL0_RW, .accessfn = pmreg_access, 2031 .type = ARM_CP_ALIAS, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2033 .writefn = pmcntenclr_write }, 2034 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2035 .access = PL0_RW, .type = ARM_CP_IO, 2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2037 .accessfn = pmreg_access, 2038 .writefn = pmovsr_write, 2039 .raw_writefn = raw_write }, 2040 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2041 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2042 .access = PL0_RW, .accessfn = pmreg_access, 2043 .type = ARM_CP_ALIAS | ARM_CP_IO, 2044 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2045 .writefn = pmovsr_write, 2046 .raw_writefn = raw_write }, 2047 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2048 .access = PL0_W, .accessfn = pmreg_access_swinc, 2049 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2050 .writefn = pmswinc_write }, 2051 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2052 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2053 .access = PL0_W, .accessfn = pmreg_access_swinc, 2054 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2055 .writefn = pmswinc_write }, 2056 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2057 .access = PL0_RW, .type = ARM_CP_ALIAS, 2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2059 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2060 .raw_writefn = raw_write}, 2061 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2063 .access = PL0_RW, .accessfn = pmreg_access_selr, 2064 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2065 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2066 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2067 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2068 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2069 .accessfn = pmreg_access_ccntr }, 2070 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2071 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2072 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2073 .type = ARM_CP_IO, 2074 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2075 .readfn = pmccntr_read, .writefn = pmccntr_write, 2076 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2077 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2078 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2079 .access = PL0_RW, .accessfn = pmreg_access, 2080 .type = ARM_CP_ALIAS | ARM_CP_IO, 2081 .resetvalue = 0, }, 2082 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2083 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2084 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2085 .access = PL0_RW, .accessfn = pmreg_access, 2086 .type = ARM_CP_IO, 2087 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2088 .resetvalue = 0, }, 2089 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2090 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2091 .accessfn = pmreg_access, 2092 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2093 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2095 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2096 .accessfn = pmreg_access, 2097 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2098 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2099 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2100 .accessfn = pmreg_access_xevcntr, 2101 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2102 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2103 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2104 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2105 .accessfn = pmreg_access_xevcntr, 2106 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2107 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2108 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2109 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2110 .resetvalue = 0, 2111 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2112 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2113 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2114 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2115 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2116 .resetvalue = 0, 2117 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2118 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2119 .access = PL1_RW, .accessfn = access_tpm, 2120 .type = ARM_CP_ALIAS | ARM_CP_IO, 2121 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2122 .resetvalue = 0, 2123 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2124 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2125 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2126 .access = PL1_RW, .accessfn = access_tpm, 2127 .type = ARM_CP_IO, 2128 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2129 .writefn = pmintenset_write, .raw_writefn = raw_write, 2130 .resetvalue = 0x0 }, 2131 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2132 .access = PL1_RW, .accessfn = access_tpm, 2133 .type = ARM_CP_ALIAS | ARM_CP_IO, 2134 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2135 .writefn = pmintenclr_write, }, 2136 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2137 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2138 .access = PL1_RW, .accessfn = access_tpm, 2139 .type = ARM_CP_ALIAS | ARM_CP_IO, 2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2141 .writefn = pmintenclr_write }, 2142 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2143 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2144 .access = PL1_R, 2145 .accessfn = access_aa64_tid2, 2146 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2147 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2148 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2149 .access = PL1_RW, 2150 .accessfn = access_aa64_tid2, 2151 .writefn = csselr_write, .resetvalue = 0, 2152 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2153 offsetof(CPUARMState, cp15.csselr_ns) } }, 2154 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2155 * just RAZ for all cores: 2156 */ 2157 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2158 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2159 .access = PL1_R, .type = ARM_CP_CONST, 2160 .accessfn = access_aa64_tid1, 2161 .resetvalue = 0 }, 2162 /* Auxiliary fault status registers: these also are IMPDEF, and we 2163 * choose to RAZ/WI for all cores. 2164 */ 2165 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2166 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2167 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2168 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2169 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2170 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 2171 /* MAIR can just read-as-written because we don't implement caches 2172 * and so don't need to care about memory attributes. 2173 */ 2174 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2175 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2176 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2177 .resetvalue = 0 }, 2178 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2179 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2180 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2181 .resetvalue = 0 }, 2182 /* For non-long-descriptor page tables these are PRRR and NMRR; 2183 * regardless they still act as reads-as-written for QEMU. 2184 */ 2185 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2186 * allows them to assign the correct fieldoffset based on the endianness 2187 * handled in the field definitions. 2188 */ 2189 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2190 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 2191 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2192 offsetof(CPUARMState, cp15.mair0_ns) }, 2193 .resetfn = arm_cp_reset_ignore }, 2194 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2195 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 2196 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2197 offsetof(CPUARMState, cp15.mair1_ns) }, 2198 .resetfn = arm_cp_reset_ignore }, 2199 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2200 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2201 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2202 /* 32 bit ITLB invalidates */ 2203 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2204 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2205 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2206 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2207 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2208 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2209 /* 32 bit DTLB invalidates */ 2210 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2211 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2212 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2213 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2214 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2216 /* 32 bit TLB invalidates */ 2217 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 2219 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2220 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 2221 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2222 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 2223 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2224 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 2225 REGINFO_SENTINEL 2226 }; 2227 2228 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2229 /* 32 bit TLB invalidates, Inner Shareable */ 2230 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2231 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 2232 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2233 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 2234 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2235 .type = ARM_CP_NO_RAW, .access = PL1_W, 2236 .writefn = tlbiasid_is_write }, 2237 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2238 .type = ARM_CP_NO_RAW, .access = PL1_W, 2239 .writefn = tlbimvaa_is_write }, 2240 REGINFO_SENTINEL 2241 }; 2242 2243 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2244 /* PMOVSSET is not implemented in v7 before v7ve */ 2245 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2246 .access = PL0_RW, .accessfn = pmreg_access, 2247 .type = ARM_CP_ALIAS | ARM_CP_IO, 2248 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2249 .writefn = pmovsset_write, 2250 .raw_writefn = raw_write }, 2251 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2252 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2253 .access = PL0_RW, .accessfn = pmreg_access, 2254 .type = ARM_CP_ALIAS | ARM_CP_IO, 2255 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2256 .writefn = pmovsset_write, 2257 .raw_writefn = raw_write }, 2258 REGINFO_SENTINEL 2259 }; 2260 2261 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2262 uint64_t value) 2263 { 2264 value &= 1; 2265 env->teecr = value; 2266 } 2267 2268 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2269 bool isread) 2270 { 2271 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2272 return CP_ACCESS_TRAP; 2273 } 2274 return CP_ACCESS_OK; 2275 } 2276 2277 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2278 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2279 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2280 .resetvalue = 0, 2281 .writefn = teecr_write }, 2282 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2283 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2284 .accessfn = teehbr_access, .resetvalue = 0 }, 2285 REGINFO_SENTINEL 2286 }; 2287 2288 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2289 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2291 .access = PL0_RW, 2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2293 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2294 .access = PL0_RW, 2295 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2296 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2297 .resetfn = arm_cp_reset_ignore }, 2298 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2299 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2300 .access = PL0_R|PL1_W, 2301 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2302 .resetvalue = 0}, 2303 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2304 .access = PL0_R|PL1_W, 2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2306 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2307 .resetfn = arm_cp_reset_ignore }, 2308 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2309 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2310 .access = PL1_RW, 2311 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2312 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2313 .access = PL1_RW, 2314 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2315 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2316 .resetvalue = 0 }, 2317 REGINFO_SENTINEL 2318 }; 2319 2320 #ifndef CONFIG_USER_ONLY 2321 2322 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2323 bool isread) 2324 { 2325 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2326 * Writable only at the highest implemented exception level. 2327 */ 2328 int el = arm_current_el(env); 2329 2330 switch (el) { 2331 case 0: 2332 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 2333 return CP_ACCESS_TRAP; 2334 } 2335 break; 2336 case 1: 2337 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2338 arm_is_secure_below_el3(env)) { 2339 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2340 return CP_ACCESS_TRAP_UNCATEGORIZED; 2341 } 2342 break; 2343 case 2: 2344 case 3: 2345 break; 2346 } 2347 2348 if (!isread && el < arm_highest_el(env)) { 2349 return CP_ACCESS_TRAP_UNCATEGORIZED; 2350 } 2351 2352 return CP_ACCESS_OK; 2353 } 2354 2355 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2356 bool isread) 2357 { 2358 unsigned int cur_el = arm_current_el(env); 2359 bool secure = arm_is_secure(env); 2360 2361 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 2362 if (cur_el == 0 && 2363 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2364 return CP_ACCESS_TRAP; 2365 } 2366 2367 if (arm_feature(env, ARM_FEATURE_EL2) && 2368 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2369 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 2370 return CP_ACCESS_TRAP_EL2; 2371 } 2372 return CP_ACCESS_OK; 2373 } 2374 2375 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2376 bool isread) 2377 { 2378 unsigned int cur_el = arm_current_el(env); 2379 bool secure = arm_is_secure(env); 2380 2381 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 2382 * EL0[PV]TEN is zero. 2383 */ 2384 if (cur_el == 0 && 2385 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2386 return CP_ACCESS_TRAP; 2387 } 2388 2389 if (arm_feature(env, ARM_FEATURE_EL2) && 2390 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 2391 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2392 return CP_ACCESS_TRAP_EL2; 2393 } 2394 return CP_ACCESS_OK; 2395 } 2396 2397 static CPAccessResult gt_pct_access(CPUARMState *env, 2398 const ARMCPRegInfo *ri, 2399 bool isread) 2400 { 2401 return gt_counter_access(env, GTIMER_PHYS, isread); 2402 } 2403 2404 static CPAccessResult gt_vct_access(CPUARMState *env, 2405 const ARMCPRegInfo *ri, 2406 bool isread) 2407 { 2408 return gt_counter_access(env, GTIMER_VIRT, isread); 2409 } 2410 2411 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2412 bool isread) 2413 { 2414 return gt_timer_access(env, GTIMER_PHYS, isread); 2415 } 2416 2417 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2418 bool isread) 2419 { 2420 return gt_timer_access(env, GTIMER_VIRT, isread); 2421 } 2422 2423 static CPAccessResult gt_stimer_access(CPUARMState *env, 2424 const ARMCPRegInfo *ri, 2425 bool isread) 2426 { 2427 /* The AArch64 register view of the secure physical timer is 2428 * always accessible from EL3, and configurably accessible from 2429 * Secure EL1. 2430 */ 2431 switch (arm_current_el(env)) { 2432 case 1: 2433 if (!arm_is_secure(env)) { 2434 return CP_ACCESS_TRAP; 2435 } 2436 if (!(env->cp15.scr_el3 & SCR_ST)) { 2437 return CP_ACCESS_TRAP_EL3; 2438 } 2439 return CP_ACCESS_OK; 2440 case 0: 2441 case 2: 2442 return CP_ACCESS_TRAP; 2443 case 3: 2444 return CP_ACCESS_OK; 2445 default: 2446 g_assert_not_reached(); 2447 } 2448 } 2449 2450 static uint64_t gt_get_countervalue(CPUARMState *env) 2451 { 2452 ARMCPU *cpu = env_archcpu(env); 2453 2454 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2455 } 2456 2457 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2458 { 2459 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2460 2461 if (gt->ctl & 1) { 2462 /* Timer enabled: calculate and set current ISTATUS, irq, and 2463 * reset timer to when ISTATUS next has to change 2464 */ 2465 uint64_t offset = timeridx == GTIMER_VIRT ? 2466 cpu->env.cp15.cntvoff_el2 : 0; 2467 uint64_t count = gt_get_countervalue(&cpu->env); 2468 /* Note that this must be unsigned 64 bit arithmetic: */ 2469 int istatus = count - offset >= gt->cval; 2470 uint64_t nexttick; 2471 int irqstate; 2472 2473 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2474 2475 irqstate = (istatus && !(gt->ctl & 2)); 2476 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2477 2478 if (istatus) { 2479 /* Next transition is when count rolls back over to zero */ 2480 nexttick = UINT64_MAX; 2481 } else { 2482 /* Next transition is when we hit cval */ 2483 nexttick = gt->cval + offset; 2484 } 2485 /* Note that the desired next expiry time might be beyond the 2486 * signed-64-bit range of a QEMUTimer -- in this case we just 2487 * set the timer for as far in the future as possible. When the 2488 * timer expires we will reset the timer for any remaining period. 2489 */ 2490 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2491 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2492 } else { 2493 timer_mod(cpu->gt_timer[timeridx], nexttick); 2494 } 2495 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2496 } else { 2497 /* Timer disabled: ISTATUS and timer output always clear */ 2498 gt->ctl &= ~4; 2499 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2500 timer_del(cpu->gt_timer[timeridx]); 2501 trace_arm_gt_recalc_disabled(timeridx); 2502 } 2503 } 2504 2505 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2506 int timeridx) 2507 { 2508 ARMCPU *cpu = env_archcpu(env); 2509 2510 timer_del(cpu->gt_timer[timeridx]); 2511 } 2512 2513 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2514 { 2515 return gt_get_countervalue(env); 2516 } 2517 2518 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2519 { 2520 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 2521 } 2522 2523 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2524 int timeridx, 2525 uint64_t value) 2526 { 2527 trace_arm_gt_cval_write(timeridx, value); 2528 env->cp15.c14_timer[timeridx].cval = value; 2529 gt_recalc_timer(env_archcpu(env), timeridx); 2530 } 2531 2532 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2533 int timeridx) 2534 { 2535 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2536 2537 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2538 (gt_get_countervalue(env) - offset)); 2539 } 2540 2541 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2542 int timeridx, 2543 uint64_t value) 2544 { 2545 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 2546 2547 trace_arm_gt_tval_write(timeridx, value); 2548 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2549 sextract64(value, 0, 32); 2550 gt_recalc_timer(env_archcpu(env), timeridx); 2551 } 2552 2553 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2554 int timeridx, 2555 uint64_t value) 2556 { 2557 ARMCPU *cpu = env_archcpu(env); 2558 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2559 2560 trace_arm_gt_ctl_write(timeridx, value); 2561 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2562 if ((oldval ^ value) & 1) { 2563 /* Enable toggled */ 2564 gt_recalc_timer(cpu, timeridx); 2565 } else if ((oldval ^ value) & 2) { 2566 /* IMASK toggled: don't need to recalculate, 2567 * just set the interrupt line based on ISTATUS 2568 */ 2569 int irqstate = (oldval & 4) && !(value & 2); 2570 2571 trace_arm_gt_imask_toggle(timeridx, irqstate); 2572 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2573 } 2574 } 2575 2576 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2577 { 2578 gt_timer_reset(env, ri, GTIMER_PHYS); 2579 } 2580 2581 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2582 uint64_t value) 2583 { 2584 gt_cval_write(env, ri, GTIMER_PHYS, value); 2585 } 2586 2587 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2588 { 2589 return gt_tval_read(env, ri, GTIMER_PHYS); 2590 } 2591 2592 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2593 uint64_t value) 2594 { 2595 gt_tval_write(env, ri, GTIMER_PHYS, value); 2596 } 2597 2598 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2599 uint64_t value) 2600 { 2601 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2602 } 2603 2604 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2605 { 2606 gt_timer_reset(env, ri, GTIMER_VIRT); 2607 } 2608 2609 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2610 uint64_t value) 2611 { 2612 gt_cval_write(env, ri, GTIMER_VIRT, value); 2613 } 2614 2615 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2616 { 2617 return gt_tval_read(env, ri, GTIMER_VIRT); 2618 } 2619 2620 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_tval_write(env, ri, GTIMER_VIRT, value); 2624 } 2625 2626 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2627 uint64_t value) 2628 { 2629 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2630 } 2631 2632 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 ARMCPU *cpu = env_archcpu(env); 2636 2637 trace_arm_gt_cntvoff_write(value); 2638 raw_write(env, ri, value); 2639 gt_recalc_timer(cpu, GTIMER_VIRT); 2640 } 2641 2642 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2643 { 2644 gt_timer_reset(env, ri, GTIMER_HYP); 2645 } 2646 2647 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2648 uint64_t value) 2649 { 2650 gt_cval_write(env, ri, GTIMER_HYP, value); 2651 } 2652 2653 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2654 { 2655 return gt_tval_read(env, ri, GTIMER_HYP); 2656 } 2657 2658 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2659 uint64_t value) 2660 { 2661 gt_tval_write(env, ri, GTIMER_HYP, value); 2662 } 2663 2664 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2665 uint64_t value) 2666 { 2667 gt_ctl_write(env, ri, GTIMER_HYP, value); 2668 } 2669 2670 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2671 { 2672 gt_timer_reset(env, ri, GTIMER_SEC); 2673 } 2674 2675 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2676 uint64_t value) 2677 { 2678 gt_cval_write(env, ri, GTIMER_SEC, value); 2679 } 2680 2681 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2682 { 2683 return gt_tval_read(env, ri, GTIMER_SEC); 2684 } 2685 2686 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2687 uint64_t value) 2688 { 2689 gt_tval_write(env, ri, GTIMER_SEC, value); 2690 } 2691 2692 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2693 uint64_t value) 2694 { 2695 gt_ctl_write(env, ri, GTIMER_SEC, value); 2696 } 2697 2698 void arm_gt_ptimer_cb(void *opaque) 2699 { 2700 ARMCPU *cpu = opaque; 2701 2702 gt_recalc_timer(cpu, GTIMER_PHYS); 2703 } 2704 2705 void arm_gt_vtimer_cb(void *opaque) 2706 { 2707 ARMCPU *cpu = opaque; 2708 2709 gt_recalc_timer(cpu, GTIMER_VIRT); 2710 } 2711 2712 void arm_gt_htimer_cb(void *opaque) 2713 { 2714 ARMCPU *cpu = opaque; 2715 2716 gt_recalc_timer(cpu, GTIMER_HYP); 2717 } 2718 2719 void arm_gt_stimer_cb(void *opaque) 2720 { 2721 ARMCPU *cpu = opaque; 2722 2723 gt_recalc_timer(cpu, GTIMER_SEC); 2724 } 2725 2726 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2727 { 2728 ARMCPU *cpu = env_archcpu(env); 2729 2730 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2731 } 2732 2733 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2734 /* Note that CNTFRQ is purely reads-as-written for the benefit 2735 * of software; writing it doesn't actually change the timer frequency. 2736 * Our reset value matches the fixed frequency we implement the timer at. 2737 */ 2738 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2739 .type = ARM_CP_ALIAS, 2740 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2741 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2742 }, 2743 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2744 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2745 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2746 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2747 .resetfn = arm_gt_cntfrq_reset, 2748 }, 2749 /* overall control: mostly access permissions */ 2750 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2751 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2752 .access = PL1_RW, 2753 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2754 .resetvalue = 0, 2755 }, 2756 /* per-timer control */ 2757 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2758 .secure = ARM_CP_SECSTATE_NS, 2759 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2760 .accessfn = gt_ptimer_access, 2761 .fieldoffset = offsetoflow32(CPUARMState, 2762 cp15.c14_timer[GTIMER_PHYS].ctl), 2763 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2764 }, 2765 { .name = "CNTP_CTL_S", 2766 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2767 .secure = ARM_CP_SECSTATE_S, 2768 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2769 .accessfn = gt_ptimer_access, 2770 .fieldoffset = offsetoflow32(CPUARMState, 2771 cp15.c14_timer[GTIMER_SEC].ctl), 2772 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2773 }, 2774 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2775 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2776 .type = ARM_CP_IO, .access = PL0_RW, 2777 .accessfn = gt_ptimer_access, 2778 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2779 .resetvalue = 0, 2780 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2781 }, 2782 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2783 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2784 .accessfn = gt_vtimer_access, 2785 .fieldoffset = offsetoflow32(CPUARMState, 2786 cp15.c14_timer[GTIMER_VIRT].ctl), 2787 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2788 }, 2789 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2790 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2791 .type = ARM_CP_IO, .access = PL0_RW, 2792 .accessfn = gt_vtimer_access, 2793 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2794 .resetvalue = 0, 2795 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2796 }, 2797 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2798 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2799 .secure = ARM_CP_SECSTATE_NS, 2800 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2801 .accessfn = gt_ptimer_access, 2802 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2803 }, 2804 { .name = "CNTP_TVAL_S", 2805 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2806 .secure = ARM_CP_SECSTATE_S, 2807 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2808 .accessfn = gt_ptimer_access, 2809 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2810 }, 2811 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2812 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2813 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2814 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2815 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2816 }, 2817 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2818 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2819 .accessfn = gt_vtimer_access, 2820 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2821 }, 2822 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2823 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2824 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2825 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2826 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2827 }, 2828 /* The counter itself */ 2829 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2830 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2831 .accessfn = gt_pct_access, 2832 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2833 }, 2834 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2835 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2836 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2837 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2838 }, 2839 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2840 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2841 .accessfn = gt_vct_access, 2842 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2843 }, 2844 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2845 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2846 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2847 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2848 }, 2849 /* Comparison value, indicating when the timer goes off */ 2850 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2851 .secure = ARM_CP_SECSTATE_NS, 2852 .access = PL0_RW, 2853 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2854 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2855 .accessfn = gt_ptimer_access, 2856 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2857 }, 2858 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2859 .secure = ARM_CP_SECSTATE_S, 2860 .access = PL0_RW, 2861 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2862 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2863 .accessfn = gt_ptimer_access, 2864 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2865 }, 2866 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2867 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2868 .access = PL0_RW, 2869 .type = ARM_CP_IO, 2870 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2871 .resetvalue = 0, .accessfn = gt_ptimer_access, 2872 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2873 }, 2874 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2875 .access = PL0_RW, 2876 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2877 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2878 .accessfn = gt_vtimer_access, 2879 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2880 }, 2881 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2882 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2883 .access = PL0_RW, 2884 .type = ARM_CP_IO, 2885 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2886 .resetvalue = 0, .accessfn = gt_vtimer_access, 2887 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2888 }, 2889 /* Secure timer -- this is actually restricted to only EL3 2890 * and configurably Secure-EL1 via the accessfn. 2891 */ 2892 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2893 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2894 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2895 .accessfn = gt_stimer_access, 2896 .readfn = gt_sec_tval_read, 2897 .writefn = gt_sec_tval_write, 2898 .resetfn = gt_sec_timer_reset, 2899 }, 2900 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2901 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2902 .type = ARM_CP_IO, .access = PL1_RW, 2903 .accessfn = gt_stimer_access, 2904 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2905 .resetvalue = 0, 2906 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2907 }, 2908 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2909 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2910 .type = ARM_CP_IO, .access = PL1_RW, 2911 .accessfn = gt_stimer_access, 2912 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2913 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2914 }, 2915 REGINFO_SENTINEL 2916 }; 2917 2918 #else 2919 2920 /* In user-mode most of the generic timer registers are inaccessible 2921 * however modern kernels (4.12+) allow access to cntvct_el0 2922 */ 2923 2924 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2925 { 2926 ARMCPU *cpu = env_archcpu(env); 2927 2928 /* Currently we have no support for QEMUTimer in linux-user so we 2929 * can't call gt_get_countervalue(env), instead we directly 2930 * call the lower level functions. 2931 */ 2932 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 2933 } 2934 2935 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2936 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2937 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2938 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2939 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2940 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2941 }, 2942 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2943 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2944 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2945 .readfn = gt_virt_cnt_read, 2946 }, 2947 REGINFO_SENTINEL 2948 }; 2949 2950 #endif 2951 2952 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2953 { 2954 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2955 raw_write(env, ri, value); 2956 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2957 raw_write(env, ri, value & 0xfffff6ff); 2958 } else { 2959 raw_write(env, ri, value & 0xfffff1ff); 2960 } 2961 } 2962 2963 #ifndef CONFIG_USER_ONLY 2964 /* get_phys_addr() isn't present for user-mode-only targets */ 2965 2966 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2967 bool isread) 2968 { 2969 if (ri->opc2 & 4) { 2970 /* The ATS12NSO* operations must trap to EL3 if executed in 2971 * Secure EL1 (which can only happen if EL3 is AArch64). 2972 * They are simply UNDEF if executed from NS EL1. 2973 * They function normally from EL2 or EL3. 2974 */ 2975 if (arm_current_el(env) == 1) { 2976 if (arm_is_secure_below_el3(env)) { 2977 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2978 } 2979 return CP_ACCESS_TRAP_UNCATEGORIZED; 2980 } 2981 } 2982 return CP_ACCESS_OK; 2983 } 2984 2985 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2986 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2987 { 2988 hwaddr phys_addr; 2989 target_ulong page_size; 2990 int prot; 2991 bool ret; 2992 uint64_t par64; 2993 bool format64 = false; 2994 MemTxAttrs attrs = {}; 2995 ARMMMUFaultInfo fi = {}; 2996 ARMCacheAttrs cacheattrs = {}; 2997 2998 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2999 &prot, &page_size, &fi, &cacheattrs); 3000 3001 if (ret) { 3002 /* 3003 * Some kinds of translation fault must cause exceptions rather 3004 * than being reported in the PAR. 3005 */ 3006 int current_el = arm_current_el(env); 3007 int target_el; 3008 uint32_t syn, fsr, fsc; 3009 bool take_exc = false; 3010 3011 if (fi.s1ptw && current_el == 1 && !arm_is_secure(env) 3012 && (mmu_idx == ARMMMUIdx_S1NSE1 || mmu_idx == ARMMMUIdx_S1NSE0)) { 3013 /* 3014 * Synchronous stage 2 fault on an access made as part of the 3015 * translation table walk for AT S1E0* or AT S1E1* insn 3016 * executed from NS EL1. If this is a synchronous external abort 3017 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3018 * to EL3. Otherwise the fault is taken as an exception to EL2, 3019 * and HPFAR_EL2 holds the faulting IPA. 3020 */ 3021 if (fi.type == ARMFault_SyncExternalOnWalk && 3022 (env->cp15.scr_el3 & SCR_EA)) { 3023 target_el = 3; 3024 } else { 3025 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3026 target_el = 2; 3027 } 3028 take_exc = true; 3029 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3030 /* 3031 * Synchronous external aborts during a translation table walk 3032 * are taken as Data Abort exceptions. 3033 */ 3034 if (fi.stage2) { 3035 if (current_el == 3) { 3036 target_el = 3; 3037 } else { 3038 target_el = 2; 3039 } 3040 } else { 3041 target_el = exception_target_el(env); 3042 } 3043 take_exc = true; 3044 } 3045 3046 if (take_exc) { 3047 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3048 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3049 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3050 fsr = arm_fi_to_lfsc(&fi); 3051 fsc = extract32(fsr, 0, 6); 3052 } else { 3053 fsr = arm_fi_to_sfsc(&fi); 3054 fsc = 0x3f; 3055 } 3056 /* 3057 * Report exception with ESR indicating a fault due to a 3058 * translation table walk for a cache maintenance instruction. 3059 */ 3060 syn = syn_data_abort_no_iss(current_el == target_el, 3061 fi.ea, 1, fi.s1ptw, 1, fsc); 3062 env->exception.vaddress = value; 3063 env->exception.fsr = fsr; 3064 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3065 } 3066 } 3067 3068 if (is_a64(env)) { 3069 format64 = true; 3070 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3071 /* 3072 * ATS1Cxx: 3073 * * TTBCR.EAE determines whether the result is returned using the 3074 * 32-bit or the 64-bit PAR format 3075 * * Instructions executed in Hyp mode always use the 64bit format 3076 * 3077 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3078 * * The Non-secure TTBCR.EAE bit is set to 1 3079 * * The implementation includes EL2, and the value of HCR.VM is 1 3080 * 3081 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3082 * 3083 * ATS1Hx always uses the 64bit format. 3084 */ 3085 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3086 3087 if (arm_feature(env, ARM_FEATURE_EL2)) { 3088 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 3089 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3090 } else { 3091 format64 |= arm_current_el(env) == 2; 3092 } 3093 } 3094 } 3095 3096 if (format64) { 3097 /* Create a 64-bit PAR */ 3098 par64 = (1 << 11); /* LPAE bit always set */ 3099 if (!ret) { 3100 par64 |= phys_addr & ~0xfffULL; 3101 if (!attrs.secure) { 3102 par64 |= (1 << 9); /* NS */ 3103 } 3104 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3105 par64 |= cacheattrs.shareability << 7; /* SH */ 3106 } else { 3107 uint32_t fsr = arm_fi_to_lfsc(&fi); 3108 3109 par64 |= 1; /* F */ 3110 par64 |= (fsr & 0x3f) << 1; /* FS */ 3111 if (fi.stage2) { 3112 par64 |= (1 << 9); /* S */ 3113 } 3114 if (fi.s1ptw) { 3115 par64 |= (1 << 8); /* PTW */ 3116 } 3117 } 3118 } else { 3119 /* fsr is a DFSR/IFSR value for the short descriptor 3120 * translation table format (with WnR always clear). 3121 * Convert it to a 32-bit PAR. 3122 */ 3123 if (!ret) { 3124 /* We do not set any attribute bits in the PAR */ 3125 if (page_size == (1 << 24) 3126 && arm_feature(env, ARM_FEATURE_V7)) { 3127 par64 = (phys_addr & 0xff000000) | (1 << 1); 3128 } else { 3129 par64 = phys_addr & 0xfffff000; 3130 } 3131 if (!attrs.secure) { 3132 par64 |= (1 << 9); /* NS */ 3133 } 3134 } else { 3135 uint32_t fsr = arm_fi_to_sfsc(&fi); 3136 3137 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3138 ((fsr & 0xf) << 1) | 1; 3139 } 3140 } 3141 return par64; 3142 } 3143 3144 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3145 { 3146 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3147 uint64_t par64; 3148 ARMMMUIdx mmu_idx; 3149 int el = arm_current_el(env); 3150 bool secure = arm_is_secure_below_el3(env); 3151 3152 switch (ri->opc2 & 6) { 3153 case 0: 3154 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 3155 switch (el) { 3156 case 3: 3157 mmu_idx = ARMMMUIdx_S1E3; 3158 break; 3159 case 2: 3160 mmu_idx = ARMMMUIdx_S1NSE1; 3161 break; 3162 case 1: 3163 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3164 break; 3165 default: 3166 g_assert_not_reached(); 3167 } 3168 break; 3169 case 2: 3170 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3171 switch (el) { 3172 case 3: 3173 mmu_idx = ARMMMUIdx_S1SE0; 3174 break; 3175 case 2: 3176 mmu_idx = ARMMMUIdx_S1NSE0; 3177 break; 3178 case 1: 3179 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3180 break; 3181 default: 3182 g_assert_not_reached(); 3183 } 3184 break; 3185 case 4: 3186 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3187 mmu_idx = ARMMMUIdx_S12NSE1; 3188 break; 3189 case 6: 3190 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3191 mmu_idx = ARMMMUIdx_S12NSE0; 3192 break; 3193 default: 3194 g_assert_not_reached(); 3195 } 3196 3197 par64 = do_ats_write(env, value, access_type, mmu_idx); 3198 3199 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3200 } 3201 3202 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3203 uint64_t value) 3204 { 3205 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3206 uint64_t par64; 3207 3208 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 3209 3210 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3211 } 3212 3213 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3214 bool isread) 3215 { 3216 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 3217 return CP_ACCESS_TRAP; 3218 } 3219 return CP_ACCESS_OK; 3220 } 3221 3222 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3223 uint64_t value) 3224 { 3225 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3226 ARMMMUIdx mmu_idx; 3227 int secure = arm_is_secure_below_el3(env); 3228 3229 switch (ri->opc2 & 6) { 3230 case 0: 3231 switch (ri->opc1) { 3232 case 0: /* AT S1E1R, AT S1E1W */ 3233 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 3234 break; 3235 case 4: /* AT S1E2R, AT S1E2W */ 3236 mmu_idx = ARMMMUIdx_S1E2; 3237 break; 3238 case 6: /* AT S1E3R, AT S1E3W */ 3239 mmu_idx = ARMMMUIdx_S1E3; 3240 break; 3241 default: 3242 g_assert_not_reached(); 3243 } 3244 break; 3245 case 2: /* AT S1E0R, AT S1E0W */ 3246 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 3247 break; 3248 case 4: /* AT S12E1R, AT S12E1W */ 3249 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 3250 break; 3251 case 6: /* AT S12E0R, AT S12E0W */ 3252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 3253 break; 3254 default: 3255 g_assert_not_reached(); 3256 } 3257 3258 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3259 } 3260 #endif 3261 3262 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3263 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3264 .access = PL1_RW, .resetvalue = 0, 3265 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3266 offsetoflow32(CPUARMState, cp15.par_ns) }, 3267 .writefn = par_write }, 3268 #ifndef CONFIG_USER_ONLY 3269 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3270 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3271 .access = PL1_W, .accessfn = ats_access, 3272 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3273 #endif 3274 REGINFO_SENTINEL 3275 }; 3276 3277 /* Return basic MPU access permission bits. */ 3278 static uint32_t simple_mpu_ap_bits(uint32_t val) 3279 { 3280 uint32_t ret; 3281 uint32_t mask; 3282 int i; 3283 ret = 0; 3284 mask = 3; 3285 for (i = 0; i < 16; i += 2) { 3286 ret |= (val >> i) & mask; 3287 mask <<= 2; 3288 } 3289 return ret; 3290 } 3291 3292 /* Pad basic MPU access permission bits to extended format. */ 3293 static uint32_t extended_mpu_ap_bits(uint32_t val) 3294 { 3295 uint32_t ret; 3296 uint32_t mask; 3297 int i; 3298 ret = 0; 3299 mask = 3; 3300 for (i = 0; i < 16; i += 2) { 3301 ret |= (val & mask) << i; 3302 mask <<= 2; 3303 } 3304 return ret; 3305 } 3306 3307 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3308 uint64_t value) 3309 { 3310 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3311 } 3312 3313 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3314 { 3315 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3316 } 3317 3318 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3319 uint64_t value) 3320 { 3321 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3322 } 3323 3324 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3325 { 3326 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3327 } 3328 3329 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3330 { 3331 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3332 3333 if (!u32p) { 3334 return 0; 3335 } 3336 3337 u32p += env->pmsav7.rnr[M_REG_NS]; 3338 return *u32p; 3339 } 3340 3341 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3342 uint64_t value) 3343 { 3344 ARMCPU *cpu = env_archcpu(env); 3345 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3346 3347 if (!u32p) { 3348 return; 3349 } 3350 3351 u32p += env->pmsav7.rnr[M_REG_NS]; 3352 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3353 *u32p = value; 3354 } 3355 3356 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3357 uint64_t value) 3358 { 3359 ARMCPU *cpu = env_archcpu(env); 3360 uint32_t nrgs = cpu->pmsav7_dregion; 3361 3362 if (value >= nrgs) { 3363 qemu_log_mask(LOG_GUEST_ERROR, 3364 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3365 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3366 return; 3367 } 3368 3369 raw_write(env, ri, value); 3370 } 3371 3372 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3373 /* Reset for all these registers is handled in arm_cpu_reset(), 3374 * because the PMSAv7 is also used by M-profile CPUs, which do 3375 * not register cpregs but still need the state to be reset. 3376 */ 3377 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3378 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3379 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3380 .readfn = pmsav7_read, .writefn = pmsav7_write, 3381 .resetfn = arm_cp_reset_ignore }, 3382 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3383 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3384 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3385 .readfn = pmsav7_read, .writefn = pmsav7_write, 3386 .resetfn = arm_cp_reset_ignore }, 3387 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3388 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3389 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3390 .readfn = pmsav7_read, .writefn = pmsav7_write, 3391 .resetfn = arm_cp_reset_ignore }, 3392 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3393 .access = PL1_RW, 3394 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3395 .writefn = pmsav7_rgnr_write, 3396 .resetfn = arm_cp_reset_ignore }, 3397 REGINFO_SENTINEL 3398 }; 3399 3400 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3401 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3402 .access = PL1_RW, .type = ARM_CP_ALIAS, 3403 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3404 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3405 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3406 .access = PL1_RW, .type = ARM_CP_ALIAS, 3407 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3408 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3409 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3410 .access = PL1_RW, 3411 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3412 .resetvalue = 0, }, 3413 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3414 .access = PL1_RW, 3415 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3416 .resetvalue = 0, }, 3417 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3418 .access = PL1_RW, 3419 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3420 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3421 .access = PL1_RW, 3422 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3423 /* Protection region base and size registers */ 3424 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3425 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3426 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3427 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3428 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3429 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3430 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3431 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3432 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3433 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3434 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3435 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3436 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3437 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3438 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3439 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3440 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3441 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3442 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3443 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3444 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3445 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3446 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3447 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3448 REGINFO_SENTINEL 3449 }; 3450 3451 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3452 uint64_t value) 3453 { 3454 TCR *tcr = raw_ptr(env, ri); 3455 int maskshift = extract32(value, 0, 3); 3456 3457 if (!arm_feature(env, ARM_FEATURE_V8)) { 3458 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3459 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3460 * using Long-desciptor translation table format */ 3461 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3462 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3463 /* In an implementation that includes the Security Extensions 3464 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3465 * Short-descriptor translation table format. 3466 */ 3467 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3468 } else { 3469 value &= TTBCR_N; 3470 } 3471 } 3472 3473 /* Update the masks corresponding to the TCR bank being written 3474 * Note that we always calculate mask and base_mask, but 3475 * they are only used for short-descriptor tables (ie if EAE is 0); 3476 * for long-descriptor tables the TCR fields are used differently 3477 * and the mask and base_mask values are meaningless. 3478 */ 3479 tcr->raw_tcr = value; 3480 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3481 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3482 } 3483 3484 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3485 uint64_t value) 3486 { 3487 ARMCPU *cpu = env_archcpu(env); 3488 TCR *tcr = raw_ptr(env, ri); 3489 3490 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3491 /* With LPAE the TTBCR could result in a change of ASID 3492 * via the TTBCR.A1 bit, so do a TLB flush. 3493 */ 3494 tlb_flush(CPU(cpu)); 3495 } 3496 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3497 value = deposit64(tcr->raw_tcr, 0, 32, value); 3498 vmsa_ttbcr_raw_write(env, ri, value); 3499 } 3500 3501 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3502 { 3503 TCR *tcr = raw_ptr(env, ri); 3504 3505 /* Reset both the TCR as well as the masks corresponding to the bank of 3506 * the TCR being reset. 3507 */ 3508 tcr->raw_tcr = 0; 3509 tcr->mask = 0; 3510 tcr->base_mask = 0xffffc000u; 3511 } 3512 3513 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3514 uint64_t value) 3515 { 3516 ARMCPU *cpu = env_archcpu(env); 3517 TCR *tcr = raw_ptr(env, ri); 3518 3519 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3520 tlb_flush(CPU(cpu)); 3521 tcr->raw_tcr = value; 3522 } 3523 3524 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3525 uint64_t value) 3526 { 3527 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3528 if (cpreg_field_is_64bit(ri) && 3529 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3530 ARMCPU *cpu = env_archcpu(env); 3531 tlb_flush(CPU(cpu)); 3532 } 3533 raw_write(env, ri, value); 3534 } 3535 3536 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3537 uint64_t value) 3538 { 3539 ARMCPU *cpu = env_archcpu(env); 3540 CPUState *cs = CPU(cpu); 3541 3542 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 3543 if (raw_read(env, ri) != value) { 3544 tlb_flush_by_mmuidx(cs, 3545 ARMMMUIdxBit_S12NSE1 | 3546 ARMMMUIdxBit_S12NSE0 | 3547 ARMMMUIdxBit_S2NS); 3548 raw_write(env, ri, value); 3549 } 3550 } 3551 3552 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3553 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3554 .access = PL1_RW, .type = ARM_CP_ALIAS, 3555 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3556 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3557 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3558 .access = PL1_RW, .resetvalue = 0, 3559 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3560 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3561 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3562 .access = PL1_RW, .resetvalue = 0, 3563 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3564 offsetof(CPUARMState, cp15.dfar_ns) } }, 3565 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3566 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3567 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3568 .resetvalue = 0, }, 3569 REGINFO_SENTINEL 3570 }; 3571 3572 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3573 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3574 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3575 .access = PL1_RW, 3576 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3577 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3578 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3579 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3580 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3581 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3582 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3583 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3584 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 3585 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3586 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3587 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3588 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3589 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 3590 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3591 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3592 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3593 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3594 .raw_writefn = vmsa_ttbcr_raw_write, 3595 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3596 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3597 REGINFO_SENTINEL 3598 }; 3599 3600 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3601 * qemu tlbs nor adjusting cached masks. 3602 */ 3603 static const ARMCPRegInfo ttbcr2_reginfo = { 3604 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3605 .access = PL1_RW, .type = ARM_CP_ALIAS, 3606 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3607 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 3608 }; 3609 3610 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3611 uint64_t value) 3612 { 3613 env->cp15.c15_ticonfig = value & 0xe7; 3614 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3615 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3616 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3617 } 3618 3619 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3620 uint64_t value) 3621 { 3622 env->cp15.c15_threadid = value & 0xffff; 3623 } 3624 3625 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3626 uint64_t value) 3627 { 3628 /* Wait-for-interrupt (deprecated) */ 3629 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3630 } 3631 3632 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3633 uint64_t value) 3634 { 3635 /* On OMAP there are registers indicating the max/min index of dcache lines 3636 * containing a dirty line; cache flush operations have to reset these. 3637 */ 3638 env->cp15.c15_i_max = 0x000; 3639 env->cp15.c15_i_min = 0xff0; 3640 } 3641 3642 static const ARMCPRegInfo omap_cp_reginfo[] = { 3643 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3644 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3645 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3646 .resetvalue = 0, }, 3647 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3648 .access = PL1_RW, .type = ARM_CP_NOP }, 3649 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3650 .access = PL1_RW, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3652 .writefn = omap_ticonfig_write }, 3653 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3654 .access = PL1_RW, 3655 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3656 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3657 .access = PL1_RW, .resetvalue = 0xff0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3659 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3660 .access = PL1_RW, 3661 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3662 .writefn = omap_threadid_write }, 3663 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3664 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3665 .type = ARM_CP_NO_RAW, 3666 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3667 /* TODO: Peripheral port remap register: 3668 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3669 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3670 * when MMU is off. 3671 */ 3672 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3673 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3674 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3675 .writefn = omap_cachemaint_write }, 3676 { .name = "C9", .cp = 15, .crn = 9, 3677 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3678 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3679 REGINFO_SENTINEL 3680 }; 3681 3682 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3683 uint64_t value) 3684 { 3685 env->cp15.c15_cpar = value & 0x3fff; 3686 } 3687 3688 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3689 { .name = "XSCALE_CPAR", 3690 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3691 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3692 .writefn = xscale_cpar_write, }, 3693 { .name = "XSCALE_AUXCR", 3694 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3695 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3696 .resetvalue = 0, }, 3697 /* XScale specific cache-lockdown: since we have no cache we NOP these 3698 * and hope the guest does not really rely on cache behaviour. 3699 */ 3700 { .name = "XSCALE_LOCK_ICACHE_LINE", 3701 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3702 .access = PL1_W, .type = ARM_CP_NOP }, 3703 { .name = "XSCALE_UNLOCK_ICACHE", 3704 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3705 .access = PL1_W, .type = ARM_CP_NOP }, 3706 { .name = "XSCALE_DCACHE_LOCK", 3707 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3708 .access = PL1_RW, .type = ARM_CP_NOP }, 3709 { .name = "XSCALE_UNLOCK_DCACHE", 3710 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3711 .access = PL1_W, .type = ARM_CP_NOP }, 3712 REGINFO_SENTINEL 3713 }; 3714 3715 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3716 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3717 * implementation of this implementation-defined space. 3718 * Ideally this should eventually disappear in favour of actually 3719 * implementing the correct behaviour for all cores. 3720 */ 3721 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3722 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3723 .access = PL1_RW, 3724 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3725 .resetvalue = 0 }, 3726 REGINFO_SENTINEL 3727 }; 3728 3729 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3730 /* Cache status: RAZ because we have no cache so it's always clean */ 3731 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3732 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3733 .resetvalue = 0 }, 3734 REGINFO_SENTINEL 3735 }; 3736 3737 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 3738 /* We never have a a block transfer operation in progress */ 3739 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 3740 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3741 .resetvalue = 0 }, 3742 /* The cache ops themselves: these all NOP for QEMU */ 3743 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 3744 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3745 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 3746 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3747 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 3748 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3749 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 3750 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3751 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3752 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3753 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3754 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3755 REGINFO_SENTINEL 3756 }; 3757 3758 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3759 /* The cache test-and-clean instructions always return (1 << 30) 3760 * to indicate that there are no dirty cache lines. 3761 */ 3762 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3763 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3764 .resetvalue = (1 << 30) }, 3765 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3766 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3767 .resetvalue = (1 << 30) }, 3768 REGINFO_SENTINEL 3769 }; 3770 3771 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3772 /* Ignore ReadBuffer accesses */ 3773 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3774 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3775 .access = PL1_RW, .resetvalue = 0, 3776 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3777 REGINFO_SENTINEL 3778 }; 3779 3780 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3781 { 3782 ARMCPU *cpu = env_archcpu(env); 3783 unsigned int cur_el = arm_current_el(env); 3784 bool secure = arm_is_secure(env); 3785 3786 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3787 return env->cp15.vpidr_el2; 3788 } 3789 return raw_read(env, ri); 3790 } 3791 3792 static uint64_t mpidr_read_val(CPUARMState *env) 3793 { 3794 ARMCPU *cpu = env_archcpu(env); 3795 uint64_t mpidr = cpu->mp_affinity; 3796 3797 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3798 mpidr |= (1U << 31); 3799 /* Cores which are uniprocessor (non-coherent) 3800 * but still implement the MP extensions set 3801 * bit 30. (For instance, Cortex-R5). 3802 */ 3803 if (cpu->mp_is_up) { 3804 mpidr |= (1u << 30); 3805 } 3806 } 3807 return mpidr; 3808 } 3809 3810 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3811 { 3812 unsigned int cur_el = arm_current_el(env); 3813 bool secure = arm_is_secure(env); 3814 3815 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3816 return env->cp15.vmpidr_el2; 3817 } 3818 return mpidr_read_val(env); 3819 } 3820 3821 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3822 /* NOP AMAIR0/1 */ 3823 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3824 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3825 .access = PL1_RW, .type = ARM_CP_CONST, 3826 .resetvalue = 0 }, 3827 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3828 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3829 .access = PL1_RW, .type = ARM_CP_CONST, 3830 .resetvalue = 0 }, 3831 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3832 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3834 offsetof(CPUARMState, cp15.par_ns)} }, 3835 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3836 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3837 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3838 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3839 .writefn = vmsa_ttbr_write, }, 3840 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3841 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3842 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3843 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3844 .writefn = vmsa_ttbr_write, }, 3845 REGINFO_SENTINEL 3846 }; 3847 3848 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3849 { 3850 return vfp_get_fpcr(env); 3851 } 3852 3853 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3854 uint64_t value) 3855 { 3856 vfp_set_fpcr(env, value); 3857 } 3858 3859 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3860 { 3861 return vfp_get_fpsr(env); 3862 } 3863 3864 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3865 uint64_t value) 3866 { 3867 vfp_set_fpsr(env, value); 3868 } 3869 3870 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3871 bool isread) 3872 { 3873 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3874 return CP_ACCESS_TRAP; 3875 } 3876 return CP_ACCESS_OK; 3877 } 3878 3879 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3880 uint64_t value) 3881 { 3882 env->daif = value & PSTATE_DAIF; 3883 } 3884 3885 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3886 const ARMCPRegInfo *ri, 3887 bool isread) 3888 { 3889 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3890 * SCTLR_EL1.UCI is set. 3891 */ 3892 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3893 return CP_ACCESS_TRAP; 3894 } 3895 return CP_ACCESS_OK; 3896 } 3897 3898 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3899 * Page D4-1736 (DDI0487A.b) 3900 */ 3901 3902 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3903 uint64_t value) 3904 { 3905 CPUState *cs = env_cpu(env); 3906 bool sec = arm_is_secure_below_el3(env); 3907 3908 if (sec) { 3909 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3910 ARMMMUIdxBit_S1SE1 | 3911 ARMMMUIdxBit_S1SE0); 3912 } else { 3913 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3914 ARMMMUIdxBit_S12NSE1 | 3915 ARMMMUIdxBit_S12NSE0); 3916 } 3917 } 3918 3919 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3920 uint64_t value) 3921 { 3922 CPUState *cs = env_cpu(env); 3923 3924 if (tlb_force_broadcast(env)) { 3925 tlbi_aa64_vmalle1is_write(env, NULL, value); 3926 return; 3927 } 3928 3929 if (arm_is_secure_below_el3(env)) { 3930 tlb_flush_by_mmuidx(cs, 3931 ARMMMUIdxBit_S1SE1 | 3932 ARMMMUIdxBit_S1SE0); 3933 } else { 3934 tlb_flush_by_mmuidx(cs, 3935 ARMMMUIdxBit_S12NSE1 | 3936 ARMMMUIdxBit_S12NSE0); 3937 } 3938 } 3939 3940 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3941 uint64_t value) 3942 { 3943 /* Note that the 'ALL' scope must invalidate both stage 1 and 3944 * stage 2 translations, whereas most other scopes only invalidate 3945 * stage 1 translations. 3946 */ 3947 ARMCPU *cpu = env_archcpu(env); 3948 CPUState *cs = CPU(cpu); 3949 3950 if (arm_is_secure_below_el3(env)) { 3951 tlb_flush_by_mmuidx(cs, 3952 ARMMMUIdxBit_S1SE1 | 3953 ARMMMUIdxBit_S1SE0); 3954 } else { 3955 if (arm_feature(env, ARM_FEATURE_EL2)) { 3956 tlb_flush_by_mmuidx(cs, 3957 ARMMMUIdxBit_S12NSE1 | 3958 ARMMMUIdxBit_S12NSE0 | 3959 ARMMMUIdxBit_S2NS); 3960 } else { 3961 tlb_flush_by_mmuidx(cs, 3962 ARMMMUIdxBit_S12NSE1 | 3963 ARMMMUIdxBit_S12NSE0); 3964 } 3965 } 3966 } 3967 3968 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3969 uint64_t value) 3970 { 3971 ARMCPU *cpu = env_archcpu(env); 3972 CPUState *cs = CPU(cpu); 3973 3974 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3975 } 3976 3977 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3978 uint64_t value) 3979 { 3980 ARMCPU *cpu = env_archcpu(env); 3981 CPUState *cs = CPU(cpu); 3982 3983 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3984 } 3985 3986 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3987 uint64_t value) 3988 { 3989 /* Note that the 'ALL' scope must invalidate both stage 1 and 3990 * stage 2 translations, whereas most other scopes only invalidate 3991 * stage 1 translations. 3992 */ 3993 CPUState *cs = env_cpu(env); 3994 bool sec = arm_is_secure_below_el3(env); 3995 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3996 3997 if (sec) { 3998 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3999 ARMMMUIdxBit_S1SE1 | 4000 ARMMMUIdxBit_S1SE0); 4001 } else if (has_el2) { 4002 tlb_flush_by_mmuidx_all_cpus_synced(cs, 4003 ARMMMUIdxBit_S12NSE1 | 4004 ARMMMUIdxBit_S12NSE0 | 4005 ARMMMUIdxBit_S2NS); 4006 } else { 4007 tlb_flush_by_mmuidx_all_cpus_synced(cs, 4008 ARMMMUIdxBit_S12NSE1 | 4009 ARMMMUIdxBit_S12NSE0); 4010 } 4011 } 4012 4013 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 CPUState *cs = env_cpu(env); 4017 4018 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 4019 } 4020 4021 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4022 uint64_t value) 4023 { 4024 CPUState *cs = env_cpu(env); 4025 4026 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 4027 } 4028 4029 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4030 uint64_t value) 4031 { 4032 /* Invalidate by VA, EL2 4033 * Currently handles both VAE2 and VALE2, since we don't support 4034 * flush-last-level-only. 4035 */ 4036 ARMCPU *cpu = env_archcpu(env); 4037 CPUState *cs = CPU(cpu); 4038 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4039 4040 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 4041 } 4042 4043 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4044 uint64_t value) 4045 { 4046 /* Invalidate by VA, EL3 4047 * Currently handles both VAE3 and VALE3, since we don't support 4048 * flush-last-level-only. 4049 */ 4050 ARMCPU *cpu = env_archcpu(env); 4051 CPUState *cs = CPU(cpu); 4052 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4053 4054 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 4055 } 4056 4057 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4058 uint64_t value) 4059 { 4060 ARMCPU *cpu = env_archcpu(env); 4061 CPUState *cs = CPU(cpu); 4062 bool sec = arm_is_secure_below_el3(env); 4063 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4064 4065 if (sec) { 4066 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4067 ARMMMUIdxBit_S1SE1 | 4068 ARMMMUIdxBit_S1SE0); 4069 } else { 4070 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4071 ARMMMUIdxBit_S12NSE1 | 4072 ARMMMUIdxBit_S12NSE0); 4073 } 4074 } 4075 4076 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4077 uint64_t value) 4078 { 4079 /* Invalidate by VA, EL1&0 (AArch64 version). 4080 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4081 * since we don't support flush-for-specific-ASID-only or 4082 * flush-last-level-only. 4083 */ 4084 ARMCPU *cpu = env_archcpu(env); 4085 CPUState *cs = CPU(cpu); 4086 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4087 4088 if (tlb_force_broadcast(env)) { 4089 tlbi_aa64_vae1is_write(env, NULL, value); 4090 return; 4091 } 4092 4093 if (arm_is_secure_below_el3(env)) { 4094 tlb_flush_page_by_mmuidx(cs, pageaddr, 4095 ARMMMUIdxBit_S1SE1 | 4096 ARMMMUIdxBit_S1SE0); 4097 } else { 4098 tlb_flush_page_by_mmuidx(cs, pageaddr, 4099 ARMMMUIdxBit_S12NSE1 | 4100 ARMMMUIdxBit_S12NSE0); 4101 } 4102 } 4103 4104 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4105 uint64_t value) 4106 { 4107 CPUState *cs = env_cpu(env); 4108 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4109 4110 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4111 ARMMMUIdxBit_S1E2); 4112 } 4113 4114 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4115 uint64_t value) 4116 { 4117 CPUState *cs = env_cpu(env); 4118 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4119 4120 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4121 ARMMMUIdxBit_S1E3); 4122 } 4123 4124 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4125 uint64_t value) 4126 { 4127 /* Invalidate by IPA. This has to invalidate any structures that 4128 * contain only stage 2 translation information, but does not need 4129 * to apply to structures that contain combined stage 1 and stage 2 4130 * translation information. 4131 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 4132 */ 4133 ARMCPU *cpu = env_archcpu(env); 4134 CPUState *cs = CPU(cpu); 4135 uint64_t pageaddr; 4136 4137 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4138 return; 4139 } 4140 4141 pageaddr = sextract64(value << 12, 0, 48); 4142 4143 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 4144 } 4145 4146 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4147 uint64_t value) 4148 { 4149 CPUState *cs = env_cpu(env); 4150 uint64_t pageaddr; 4151 4152 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 4153 return; 4154 } 4155 4156 pageaddr = sextract64(value << 12, 0, 48); 4157 4158 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 4159 ARMMMUIdxBit_S2NS); 4160 } 4161 4162 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4163 bool isread) 4164 { 4165 /* We don't implement EL2, so the only control on DC ZVA is the 4166 * bit in the SCTLR which can prohibit access for EL0. 4167 */ 4168 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4169 return CP_ACCESS_TRAP; 4170 } 4171 return CP_ACCESS_OK; 4172 } 4173 4174 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4175 { 4176 ARMCPU *cpu = env_archcpu(env); 4177 int dzp_bit = 1 << 4; 4178 4179 /* DZP indicates whether DC ZVA access is allowed */ 4180 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4181 dzp_bit = 0; 4182 } 4183 return cpu->dcz_blocksize | dzp_bit; 4184 } 4185 4186 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4187 bool isread) 4188 { 4189 if (!(env->pstate & PSTATE_SP)) { 4190 /* Access to SP_EL0 is undefined if it's being used as 4191 * the stack pointer. 4192 */ 4193 return CP_ACCESS_TRAP_UNCATEGORIZED; 4194 } 4195 return CP_ACCESS_OK; 4196 } 4197 4198 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4199 { 4200 return env->pstate & PSTATE_SP; 4201 } 4202 4203 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4204 { 4205 update_spsel(env, val); 4206 } 4207 4208 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4209 uint64_t value) 4210 { 4211 ARMCPU *cpu = env_archcpu(env); 4212 4213 if (raw_read(env, ri) == value) { 4214 /* Skip the TLB flush if nothing actually changed; Linux likes 4215 * to do a lot of pointless SCTLR writes. 4216 */ 4217 return; 4218 } 4219 4220 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4221 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4222 value &= ~SCTLR_M; 4223 } 4224 4225 raw_write(env, ri, value); 4226 /* ??? Lots of these bits are not implemented. */ 4227 /* This may enable/disable the MMU, so do a TLB flush. */ 4228 tlb_flush(CPU(cpu)); 4229 4230 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4231 /* 4232 * Normally we would always end the TB on an SCTLR write; see the 4233 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4234 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4235 * of hflags from the translator, so do it here. 4236 */ 4237 arm_rebuild_hflags(env); 4238 } 4239 } 4240 4241 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4242 bool isread) 4243 { 4244 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4245 return CP_ACCESS_TRAP_FP_EL2; 4246 } 4247 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4248 return CP_ACCESS_TRAP_FP_EL3; 4249 } 4250 return CP_ACCESS_OK; 4251 } 4252 4253 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4254 uint64_t value) 4255 { 4256 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4257 } 4258 4259 static const ARMCPRegInfo v8_cp_reginfo[] = { 4260 /* Minimal set of EL0-visible registers. This will need to be expanded 4261 * significantly for system emulation of AArch64 CPUs. 4262 */ 4263 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4264 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4265 .access = PL0_RW, .type = ARM_CP_NZCV }, 4266 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4267 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4268 .type = ARM_CP_NO_RAW, 4269 .access = PL0_RW, .accessfn = aa64_daif_access, 4270 .fieldoffset = offsetof(CPUARMState, daif), 4271 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4272 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4273 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4274 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4275 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4276 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4277 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4278 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4279 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4280 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4281 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4282 .access = PL0_R, .type = ARM_CP_NO_RAW, 4283 .readfn = aa64_dczid_read }, 4284 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4285 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4286 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4287 #ifndef CONFIG_USER_ONLY 4288 /* Avoid overhead of an access check that always passes in user-mode */ 4289 .accessfn = aa64_zva_access, 4290 #endif 4291 }, 4292 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4293 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4294 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4295 /* Cache ops: all NOPs since we don't emulate caches */ 4296 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4297 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4298 .access = PL1_W, .type = ARM_CP_NOP }, 4299 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4300 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4301 .access = PL1_W, .type = ARM_CP_NOP }, 4302 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4303 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4304 .access = PL0_W, .type = ARM_CP_NOP, 4305 .accessfn = aa64_cacheop_access }, 4306 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4307 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4308 .access = PL1_W, .type = ARM_CP_NOP }, 4309 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4310 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4311 .access = PL1_W, .type = ARM_CP_NOP }, 4312 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4313 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4314 .access = PL0_W, .type = ARM_CP_NOP, 4315 .accessfn = aa64_cacheop_access }, 4316 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4317 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4318 .access = PL1_W, .type = ARM_CP_NOP }, 4319 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4321 .access = PL0_W, .type = ARM_CP_NOP, 4322 .accessfn = aa64_cacheop_access }, 4323 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4324 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4325 .access = PL0_W, .type = ARM_CP_NOP, 4326 .accessfn = aa64_cacheop_access }, 4327 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4328 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4329 .access = PL1_W, .type = ARM_CP_NOP }, 4330 /* TLBI operations */ 4331 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4332 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4333 .access = PL1_W, .type = ARM_CP_NO_RAW, 4334 .writefn = tlbi_aa64_vmalle1is_write }, 4335 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4337 .access = PL1_W, .type = ARM_CP_NO_RAW, 4338 .writefn = tlbi_aa64_vae1is_write }, 4339 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4340 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4341 .access = PL1_W, .type = ARM_CP_NO_RAW, 4342 .writefn = tlbi_aa64_vmalle1is_write }, 4343 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4344 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4345 .access = PL1_W, .type = ARM_CP_NO_RAW, 4346 .writefn = tlbi_aa64_vae1is_write }, 4347 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4348 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4349 .access = PL1_W, .type = ARM_CP_NO_RAW, 4350 .writefn = tlbi_aa64_vae1is_write }, 4351 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4352 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4353 .access = PL1_W, .type = ARM_CP_NO_RAW, 4354 .writefn = tlbi_aa64_vae1is_write }, 4355 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4357 .access = PL1_W, .type = ARM_CP_NO_RAW, 4358 .writefn = tlbi_aa64_vmalle1_write }, 4359 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4360 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4361 .access = PL1_W, .type = ARM_CP_NO_RAW, 4362 .writefn = tlbi_aa64_vae1_write }, 4363 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4364 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4365 .access = PL1_W, .type = ARM_CP_NO_RAW, 4366 .writefn = tlbi_aa64_vmalle1_write }, 4367 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4368 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4369 .access = PL1_W, .type = ARM_CP_NO_RAW, 4370 .writefn = tlbi_aa64_vae1_write }, 4371 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4372 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4373 .access = PL1_W, .type = ARM_CP_NO_RAW, 4374 .writefn = tlbi_aa64_vae1_write }, 4375 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4377 .access = PL1_W, .type = ARM_CP_NO_RAW, 4378 .writefn = tlbi_aa64_vae1_write }, 4379 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4380 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4381 .access = PL2_W, .type = ARM_CP_NO_RAW, 4382 .writefn = tlbi_aa64_ipas2e1is_write }, 4383 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4384 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4385 .access = PL2_W, .type = ARM_CP_NO_RAW, 4386 .writefn = tlbi_aa64_ipas2e1is_write }, 4387 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4388 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4389 .access = PL2_W, .type = ARM_CP_NO_RAW, 4390 .writefn = tlbi_aa64_alle1is_write }, 4391 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4392 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4393 .access = PL2_W, .type = ARM_CP_NO_RAW, 4394 .writefn = tlbi_aa64_alle1is_write }, 4395 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4396 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4397 .access = PL2_W, .type = ARM_CP_NO_RAW, 4398 .writefn = tlbi_aa64_ipas2e1_write }, 4399 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4400 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4401 .access = PL2_W, .type = ARM_CP_NO_RAW, 4402 .writefn = tlbi_aa64_ipas2e1_write }, 4403 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4404 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4405 .access = PL2_W, .type = ARM_CP_NO_RAW, 4406 .writefn = tlbi_aa64_alle1_write }, 4407 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4408 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4409 .access = PL2_W, .type = ARM_CP_NO_RAW, 4410 .writefn = tlbi_aa64_alle1is_write }, 4411 #ifndef CONFIG_USER_ONLY 4412 /* 64 bit address translation operations */ 4413 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4414 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4415 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4416 .writefn = ats_write64 }, 4417 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4419 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4420 .writefn = ats_write64 }, 4421 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4422 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4423 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4424 .writefn = ats_write64 }, 4425 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4426 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4427 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4428 .writefn = ats_write64 }, 4429 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4430 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4431 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4432 .writefn = ats_write64 }, 4433 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4434 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4435 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4436 .writefn = ats_write64 }, 4437 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4438 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4439 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4440 .writefn = ats_write64 }, 4441 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4442 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4443 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4444 .writefn = ats_write64 }, 4445 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4446 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4447 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4448 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4449 .writefn = ats_write64 }, 4450 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4451 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4452 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4453 .writefn = ats_write64 }, 4454 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 4455 .type = ARM_CP_ALIAS, 4456 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 4457 .access = PL1_RW, .resetvalue = 0, 4458 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 4459 .writefn = par_write }, 4460 #endif 4461 /* TLB invalidate last level of translation table walk */ 4462 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4463 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 4464 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4465 .type = ARM_CP_NO_RAW, .access = PL1_W, 4466 .writefn = tlbimvaa_is_write }, 4467 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4468 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 4469 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4470 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 4471 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4472 .type = ARM_CP_NO_RAW, .access = PL2_W, 4473 .writefn = tlbimva_hyp_write }, 4474 { .name = "TLBIMVALHIS", 4475 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4476 .type = ARM_CP_NO_RAW, .access = PL2_W, 4477 .writefn = tlbimva_hyp_is_write }, 4478 { .name = "TLBIIPAS2", 4479 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4480 .type = ARM_CP_NO_RAW, .access = PL2_W, 4481 .writefn = tlbiipas2_write }, 4482 { .name = "TLBIIPAS2IS", 4483 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4484 .type = ARM_CP_NO_RAW, .access = PL2_W, 4485 .writefn = tlbiipas2_is_write }, 4486 { .name = "TLBIIPAS2L", 4487 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4488 .type = ARM_CP_NO_RAW, .access = PL2_W, 4489 .writefn = tlbiipas2_write }, 4490 { .name = "TLBIIPAS2LIS", 4491 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4492 .type = ARM_CP_NO_RAW, .access = PL2_W, 4493 .writefn = tlbiipas2_is_write }, 4494 /* 32 bit cache operations */ 4495 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4496 .type = ARM_CP_NOP, .access = PL1_W }, 4497 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 4498 .type = ARM_CP_NOP, .access = PL1_W }, 4499 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4500 .type = ARM_CP_NOP, .access = PL1_W }, 4501 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 4502 .type = ARM_CP_NOP, .access = PL1_W }, 4503 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 4504 .type = ARM_CP_NOP, .access = PL1_W }, 4505 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 4506 .type = ARM_CP_NOP, .access = PL1_W }, 4507 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4508 .type = ARM_CP_NOP, .access = PL1_W }, 4509 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4510 .type = ARM_CP_NOP, .access = PL1_W }, 4511 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 4512 .type = ARM_CP_NOP, .access = PL1_W }, 4513 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4514 .type = ARM_CP_NOP, .access = PL1_W }, 4515 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 4516 .type = ARM_CP_NOP, .access = PL1_W }, 4517 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 4518 .type = ARM_CP_NOP, .access = PL1_W }, 4519 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4520 .type = ARM_CP_NOP, .access = PL1_W }, 4521 /* MMU Domain access control / MPU write buffer control */ 4522 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 4523 .access = PL1_RW, .resetvalue = 0, 4524 .writefn = dacr_write, .raw_writefn = raw_write, 4525 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 4526 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 4527 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 4528 .type = ARM_CP_ALIAS, 4529 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 4530 .access = PL1_RW, 4531 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 4532 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 4533 .type = ARM_CP_ALIAS, 4534 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 4535 .access = PL1_RW, 4536 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 4537 /* We rely on the access checks not allowing the guest to write to the 4538 * state field when SPSel indicates that it's being used as the stack 4539 * pointer. 4540 */ 4541 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 4542 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 4543 .access = PL1_RW, .accessfn = sp_el0_access, 4544 .type = ARM_CP_ALIAS, 4545 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 4546 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 4547 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 4548 .access = PL2_RW, .type = ARM_CP_ALIAS, 4549 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 4550 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 4551 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 4552 .type = ARM_CP_NO_RAW, 4553 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 4554 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 4555 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 4556 .type = ARM_CP_ALIAS, 4557 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 4558 .access = PL2_RW, .accessfn = fpexc32_access }, 4559 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 4560 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 4561 .access = PL2_RW, .resetvalue = 0, 4562 .writefn = dacr_write, .raw_writefn = raw_write, 4563 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 4564 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 4565 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 4566 .access = PL2_RW, .resetvalue = 0, 4567 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 4568 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 4569 .type = ARM_CP_ALIAS, 4570 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 4571 .access = PL2_RW, 4572 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 4573 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 4574 .type = ARM_CP_ALIAS, 4575 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 4576 .access = PL2_RW, 4577 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 4578 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 4579 .type = ARM_CP_ALIAS, 4580 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 4581 .access = PL2_RW, 4582 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 4583 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 4584 .type = ARM_CP_ALIAS, 4585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 4586 .access = PL2_RW, 4587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 4588 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 4589 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 4590 .resetvalue = 0, 4591 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 4592 { .name = "SDCR", .type = ARM_CP_ALIAS, 4593 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 4594 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4595 .writefn = sdcr_write, 4596 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 4597 REGINFO_SENTINEL 4598 }; 4599 4600 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 4601 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 4602 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4603 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4604 .access = PL2_RW, 4605 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 4606 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 4607 .type = ARM_CP_NO_RAW, 4608 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4609 .access = PL2_RW, 4610 .type = ARM_CP_CONST, .resetvalue = 0 }, 4611 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4612 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4613 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4614 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4615 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4616 .access = PL2_RW, 4617 .type = ARM_CP_CONST, .resetvalue = 0 }, 4618 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4619 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4620 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4621 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4622 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4623 .access = PL2_RW, .type = ARM_CP_CONST, 4624 .resetvalue = 0 }, 4625 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4626 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4627 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4628 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4629 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4630 .access = PL2_RW, .type = ARM_CP_CONST, 4631 .resetvalue = 0 }, 4632 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4633 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4634 .access = PL2_RW, .type = ARM_CP_CONST, 4635 .resetvalue = 0 }, 4636 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4637 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4638 .access = PL2_RW, .type = ARM_CP_CONST, 4639 .resetvalue = 0 }, 4640 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4641 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4642 .access = PL2_RW, .type = ARM_CP_CONST, 4643 .resetvalue = 0 }, 4644 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4645 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4646 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4647 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 4648 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4649 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4650 .type = ARM_CP_CONST, .resetvalue = 0 }, 4651 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4652 .cp = 15, .opc1 = 6, .crm = 2, 4653 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4654 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 4655 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4656 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4658 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4659 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4660 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4661 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4662 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4663 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4664 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4665 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4666 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4667 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4668 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4669 .resetvalue = 0 }, 4670 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4671 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4672 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4673 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4674 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4675 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4676 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4677 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4678 .resetvalue = 0 }, 4679 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4680 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4681 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4682 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4683 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 4684 .resetvalue = 0 }, 4685 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4686 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4688 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4689 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4691 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4692 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4693 .access = PL2_RW, .accessfn = access_tda, 4694 .type = ARM_CP_CONST, .resetvalue = 0 }, 4695 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 4696 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4697 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4698 .type = ARM_CP_CONST, .resetvalue = 0 }, 4699 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4700 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4701 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4702 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4703 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4705 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4706 .type = ARM_CP_CONST, 4707 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4708 .access = PL2_RW, .resetvalue = 0 }, 4709 REGINFO_SENTINEL 4710 }; 4711 4712 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 4713 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 4714 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4715 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4716 .access = PL2_RW, 4717 .type = ARM_CP_CONST, .resetvalue = 0 }, 4718 REGINFO_SENTINEL 4719 }; 4720 4721 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 4722 { 4723 ARMCPU *cpu = env_archcpu(env); 4724 uint64_t valid_mask = HCR_MASK; 4725 4726 if (arm_feature(env, ARM_FEATURE_EL3)) { 4727 valid_mask &= ~HCR_HCD; 4728 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 4729 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 4730 * However, if we're using the SMC PSCI conduit then QEMU is 4731 * effectively acting like EL3 firmware and so the guest at 4732 * EL2 should retain the ability to prevent EL1 from being 4733 * able to make SMC calls into the ersatz firmware, so in 4734 * that case HCR.TSC should be read/write. 4735 */ 4736 valid_mask &= ~HCR_TSC; 4737 } 4738 if (cpu_isar_feature(aa64_lor, cpu)) { 4739 valid_mask |= HCR_TLOR; 4740 } 4741 if (cpu_isar_feature(aa64_pauth, cpu)) { 4742 valid_mask |= HCR_API | HCR_APK; 4743 } 4744 4745 /* Clear RES0 bits. */ 4746 value &= valid_mask; 4747 4748 /* These bits change the MMU setup: 4749 * HCR_VM enables stage 2 translation 4750 * HCR_PTW forbids certain page-table setups 4751 * HCR_DC Disables stage1 and enables stage2 translation 4752 */ 4753 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 4754 tlb_flush(CPU(cpu)); 4755 } 4756 env->cp15.hcr_el2 = value; 4757 4758 /* 4759 * Updates to VI and VF require us to update the status of 4760 * virtual interrupts, which are the logical OR of these bits 4761 * and the state of the input lines from the GIC. (This requires 4762 * that we have the iothread lock, which is done by marking the 4763 * reginfo structs as ARM_CP_IO.) 4764 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 4765 * possible for it to be taken immediately, because VIRQ and 4766 * VFIQ are masked unless running at EL0 or EL1, and HCR 4767 * can only be written at EL2. 4768 */ 4769 g_assert(qemu_mutex_iothread_locked()); 4770 arm_cpu_update_virq(cpu); 4771 arm_cpu_update_vfiq(cpu); 4772 } 4773 4774 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4775 uint64_t value) 4776 { 4777 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4778 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4779 hcr_write(env, NULL, value); 4780 } 4781 4782 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4783 uint64_t value) 4784 { 4785 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4786 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4787 hcr_write(env, NULL, value); 4788 } 4789 4790 /* 4791 * Return the effective value of HCR_EL2. 4792 * Bits that are not included here: 4793 * RW (read from SCR_EL3.RW as needed) 4794 */ 4795 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4796 { 4797 uint64_t ret = env->cp15.hcr_el2; 4798 4799 if (arm_is_secure_below_el3(env)) { 4800 /* 4801 * "This register has no effect if EL2 is not enabled in the 4802 * current Security state". This is ARMv8.4-SecEL2 speak for 4803 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4804 * 4805 * Prior to that, the language was "In an implementation that 4806 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4807 * as if this field is 0 for all purposes other than a direct 4808 * read or write access of HCR_EL2". With lots of enumeration 4809 * on a per-field basis. In current QEMU, this is condition 4810 * is arm_is_secure_below_el3. 4811 * 4812 * Since the v8.4 language applies to the entire register, and 4813 * appears to be backward compatible, use that. 4814 */ 4815 ret = 0; 4816 } else if (ret & HCR_TGE) { 4817 /* These bits are up-to-date as of ARMv8.4. */ 4818 if (ret & HCR_E2H) { 4819 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4820 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4821 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4822 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4823 } else { 4824 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4825 } 4826 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4827 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4828 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4829 HCR_TLOR); 4830 } 4831 4832 return ret; 4833 } 4834 4835 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4836 uint64_t value) 4837 { 4838 /* 4839 * For A-profile AArch32 EL3, if NSACR.CP10 4840 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4841 */ 4842 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4843 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4844 value &= ~(0x3 << 10); 4845 value |= env->cp15.cptr_el[2] & (0x3 << 10); 4846 } 4847 env->cp15.cptr_el[2] = value; 4848 } 4849 4850 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 4851 { 4852 /* 4853 * For A-profile AArch32 EL3, if NSACR.CP10 4854 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 4855 */ 4856 uint64_t value = env->cp15.cptr_el[2]; 4857 4858 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 4859 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 4860 value |= 0x3 << 10; 4861 } 4862 return value; 4863 } 4864 4865 static const ARMCPRegInfo el2_cp_reginfo[] = { 4866 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4867 .type = ARM_CP_IO, 4868 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4869 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4870 .writefn = hcr_write }, 4871 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4872 .type = ARM_CP_ALIAS | ARM_CP_IO, 4873 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4874 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4875 .writefn = hcr_writelow }, 4876 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 4877 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 4878 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 4879 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4880 .type = ARM_CP_ALIAS, 4881 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4882 .access = PL2_RW, 4883 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4884 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4885 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4886 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4887 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4888 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4889 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4890 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4891 .type = ARM_CP_ALIAS, 4892 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4893 .access = PL2_RW, 4894 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4895 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4896 .type = ARM_CP_ALIAS, 4897 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4898 .access = PL2_RW, 4899 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4900 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4901 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4902 .access = PL2_RW, .writefn = vbar_write, 4903 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4904 .resetvalue = 0 }, 4905 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4907 .access = PL3_RW, .type = ARM_CP_ALIAS, 4908 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4909 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4910 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4911 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4912 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 4913 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 4914 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4915 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4916 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4917 .resetvalue = 0 }, 4918 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4919 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4920 .access = PL2_RW, .type = ARM_CP_ALIAS, 4921 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4922 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4923 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4924 .access = PL2_RW, .type = ARM_CP_CONST, 4925 .resetvalue = 0 }, 4926 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4927 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4928 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4929 .access = PL2_RW, .type = ARM_CP_CONST, 4930 .resetvalue = 0 }, 4931 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4932 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4933 .access = PL2_RW, .type = ARM_CP_CONST, 4934 .resetvalue = 0 }, 4935 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4936 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4937 .access = PL2_RW, .type = ARM_CP_CONST, 4938 .resetvalue = 0 }, 4939 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4940 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4941 .access = PL2_RW, 4942 /* no .writefn needed as this can't cause an ASID change; 4943 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4944 */ 4945 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4946 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4947 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4948 .type = ARM_CP_ALIAS, 4949 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4950 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4951 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4953 .access = PL2_RW, 4954 /* no .writefn needed as this can't cause an ASID change; 4955 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4956 */ 4957 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4958 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4959 .cp = 15, .opc1 = 6, .crm = 2, 4960 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4961 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4962 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4963 .writefn = vttbr_write }, 4964 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4965 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4966 .access = PL2_RW, .writefn = vttbr_write, 4967 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4968 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4969 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4970 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4971 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4972 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4973 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4974 .access = PL2_RW, .resetvalue = 0, 4975 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4976 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4977 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4978 .access = PL2_RW, .resetvalue = 0, 4979 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4980 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4981 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4982 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4983 { .name = "TLBIALLNSNH", 4984 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4985 .type = ARM_CP_NO_RAW, .access = PL2_W, 4986 .writefn = tlbiall_nsnh_write }, 4987 { .name = "TLBIALLNSNHIS", 4988 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4989 .type = ARM_CP_NO_RAW, .access = PL2_W, 4990 .writefn = tlbiall_nsnh_is_write }, 4991 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4992 .type = ARM_CP_NO_RAW, .access = PL2_W, 4993 .writefn = tlbiall_hyp_write }, 4994 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4995 .type = ARM_CP_NO_RAW, .access = PL2_W, 4996 .writefn = tlbiall_hyp_is_write }, 4997 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4998 .type = ARM_CP_NO_RAW, .access = PL2_W, 4999 .writefn = tlbimva_hyp_write }, 5000 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5001 .type = ARM_CP_NO_RAW, .access = PL2_W, 5002 .writefn = tlbimva_hyp_is_write }, 5003 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5004 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5005 .type = ARM_CP_NO_RAW, .access = PL2_W, 5006 .writefn = tlbi_aa64_alle2_write }, 5007 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5009 .type = ARM_CP_NO_RAW, .access = PL2_W, 5010 .writefn = tlbi_aa64_vae2_write }, 5011 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5013 .access = PL2_W, .type = ARM_CP_NO_RAW, 5014 .writefn = tlbi_aa64_vae2_write }, 5015 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5017 .access = PL2_W, .type = ARM_CP_NO_RAW, 5018 .writefn = tlbi_aa64_alle2is_write }, 5019 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5021 .type = ARM_CP_NO_RAW, .access = PL2_W, 5022 .writefn = tlbi_aa64_vae2is_write }, 5023 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5025 .access = PL2_W, .type = ARM_CP_NO_RAW, 5026 .writefn = tlbi_aa64_vae2is_write }, 5027 #ifndef CONFIG_USER_ONLY 5028 /* Unlike the other EL2-related AT operations, these must 5029 * UNDEF from EL3 if EL2 is not implemented, which is why we 5030 * define them here rather than with the rest of the AT ops. 5031 */ 5032 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5034 .access = PL2_W, .accessfn = at_s1e2_access, 5035 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5036 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5037 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5038 .access = PL2_W, .accessfn = at_s1e2_access, 5039 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5040 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5041 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5042 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5043 * to behave as if SCR.NS was 1. 5044 */ 5045 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5046 .access = PL2_W, 5047 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5048 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5049 .access = PL2_W, 5050 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5051 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5052 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5053 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5054 * reset values as IMPDEF. We choose to reset to 3 to comply with 5055 * both ARMv7 and ARMv8. 5056 */ 5057 .access = PL2_RW, .resetvalue = 3, 5058 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5059 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5060 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5061 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5062 .writefn = gt_cntvoff_write, 5063 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5064 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5065 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5066 .writefn = gt_cntvoff_write, 5067 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5068 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5069 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5070 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5071 .type = ARM_CP_IO, .access = PL2_RW, 5072 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5073 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5074 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5075 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5076 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5077 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5078 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5079 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5080 .resetfn = gt_hyp_timer_reset, 5081 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5082 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5083 .type = ARM_CP_IO, 5084 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5085 .access = PL2_RW, 5086 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5087 .resetvalue = 0, 5088 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5089 #endif 5090 /* The only field of MDCR_EL2 that has a defined architectural reset value 5091 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 5092 * don't implement any PMU event counters, so using zero as a reset 5093 * value for MDCR_EL2 is okay 5094 */ 5095 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5096 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5097 .access = PL2_RW, .resetvalue = 0, 5098 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5099 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5100 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5101 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5102 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5103 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5104 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5105 .access = PL2_RW, 5106 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5107 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5108 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5109 .access = PL2_RW, 5110 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5111 REGINFO_SENTINEL 5112 }; 5113 5114 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5115 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5116 .type = ARM_CP_ALIAS | ARM_CP_IO, 5117 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5118 .access = PL2_RW, 5119 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5120 .writefn = hcr_writehigh }, 5121 REGINFO_SENTINEL 5122 }; 5123 5124 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5125 bool isread) 5126 { 5127 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5128 * At Secure EL1 it traps to EL3. 5129 */ 5130 if (arm_current_el(env) == 3) { 5131 return CP_ACCESS_OK; 5132 } 5133 if (arm_is_secure_below_el3(env)) { 5134 return CP_ACCESS_TRAP_EL3; 5135 } 5136 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5137 if (isread) { 5138 return CP_ACCESS_OK; 5139 } 5140 return CP_ACCESS_TRAP_UNCATEGORIZED; 5141 } 5142 5143 static const ARMCPRegInfo el3_cp_reginfo[] = { 5144 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5145 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5146 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5147 .resetvalue = 0, .writefn = scr_write }, 5148 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5149 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5150 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5151 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5152 .writefn = scr_write }, 5153 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5154 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5155 .access = PL3_RW, .resetvalue = 0, 5156 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5157 { .name = "SDER", 5158 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5159 .access = PL3_RW, .resetvalue = 0, 5160 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5161 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5162 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5163 .writefn = vbar_write, .resetvalue = 0, 5164 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5165 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5166 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5167 .access = PL3_RW, .resetvalue = 0, 5168 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5169 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5170 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5171 .access = PL3_RW, 5172 /* no .writefn needed as this can't cause an ASID change; 5173 * we must provide a .raw_writefn and .resetfn because we handle 5174 * reset and migration for the AArch32 TTBCR(S), which might be 5175 * using mask and base_mask. 5176 */ 5177 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5178 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5179 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5180 .type = ARM_CP_ALIAS, 5181 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5182 .access = PL3_RW, 5183 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5184 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5185 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5186 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5187 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5188 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5189 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5190 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5191 .type = ARM_CP_ALIAS, 5192 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5193 .access = PL3_RW, 5194 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5195 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5196 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5197 .access = PL3_RW, .writefn = vbar_write, 5198 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5199 .resetvalue = 0 }, 5200 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5201 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5202 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5203 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5204 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5205 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5206 .access = PL3_RW, .resetvalue = 0, 5207 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5208 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5210 .access = PL3_RW, .type = ARM_CP_CONST, 5211 .resetvalue = 0 }, 5212 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5213 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5214 .access = PL3_RW, .type = ARM_CP_CONST, 5215 .resetvalue = 0 }, 5216 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5218 .access = PL3_RW, .type = ARM_CP_CONST, 5219 .resetvalue = 0 }, 5220 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5221 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5222 .access = PL3_W, .type = ARM_CP_NO_RAW, 5223 .writefn = tlbi_aa64_alle3is_write }, 5224 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5225 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5226 .access = PL3_W, .type = ARM_CP_NO_RAW, 5227 .writefn = tlbi_aa64_vae3is_write }, 5228 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5229 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5230 .access = PL3_W, .type = ARM_CP_NO_RAW, 5231 .writefn = tlbi_aa64_vae3is_write }, 5232 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5233 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5234 .access = PL3_W, .type = ARM_CP_NO_RAW, 5235 .writefn = tlbi_aa64_alle3_write }, 5236 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5237 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5238 .access = PL3_W, .type = ARM_CP_NO_RAW, 5239 .writefn = tlbi_aa64_vae3_write }, 5240 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5241 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5242 .access = PL3_W, .type = ARM_CP_NO_RAW, 5243 .writefn = tlbi_aa64_vae3_write }, 5244 REGINFO_SENTINEL 5245 }; 5246 5247 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5248 bool isread) 5249 { 5250 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 5251 * but the AArch32 CTR has its own reginfo struct) 5252 */ 5253 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 5254 return CP_ACCESS_TRAP; 5255 } 5256 5257 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 5258 return CP_ACCESS_TRAP_EL2; 5259 } 5260 5261 return CP_ACCESS_OK; 5262 } 5263 5264 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 5265 uint64_t value) 5266 { 5267 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 5268 * read via a bit in OSLSR_EL1. 5269 */ 5270 int oslock; 5271 5272 if (ri->state == ARM_CP_STATE_AA32) { 5273 oslock = (value == 0xC5ACCE55); 5274 } else { 5275 oslock = value & 1; 5276 } 5277 5278 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 5279 } 5280 5281 static const ARMCPRegInfo debug_cp_reginfo[] = { 5282 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 5283 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 5284 * unlike DBGDRAR it is never accessible from EL0. 5285 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 5286 * accessor. 5287 */ 5288 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 5289 .access = PL0_R, .accessfn = access_tdra, 5290 .type = ARM_CP_CONST, .resetvalue = 0 }, 5291 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 5292 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5293 .access = PL1_R, .accessfn = access_tdra, 5294 .type = ARM_CP_CONST, .resetvalue = 0 }, 5295 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 5296 .access = PL0_R, .accessfn = access_tdra, 5297 .type = ARM_CP_CONST, .resetvalue = 0 }, 5298 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 5299 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 5300 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5301 .access = PL1_RW, .accessfn = access_tda, 5302 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 5303 .resetvalue = 0 }, 5304 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 5305 * We don't implement the configurable EL0 access. 5306 */ 5307 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 5308 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5309 .type = ARM_CP_ALIAS, 5310 .access = PL1_R, .accessfn = access_tda, 5311 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 5312 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 5313 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 5314 .access = PL1_W, .type = ARM_CP_NO_RAW, 5315 .accessfn = access_tdosa, 5316 .writefn = oslar_write }, 5317 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 5318 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 5319 .access = PL1_R, .resetvalue = 10, 5320 .accessfn = access_tdosa, 5321 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 5322 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 5323 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 5324 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 5325 .access = PL1_RW, .accessfn = access_tdosa, 5326 .type = ARM_CP_NOP }, 5327 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 5328 * implement vector catch debug events yet. 5329 */ 5330 { .name = "DBGVCR", 5331 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5332 .access = PL1_RW, .accessfn = access_tda, 5333 .type = ARM_CP_NOP }, 5334 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 5335 * to save and restore a 32-bit guest's DBGVCR) 5336 */ 5337 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 5338 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 5339 .access = PL2_RW, .accessfn = access_tda, 5340 .type = ARM_CP_NOP }, 5341 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 5342 * Channel but Linux may try to access this register. The 32-bit 5343 * alias is DBGDCCINT. 5344 */ 5345 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 5346 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5347 .access = PL1_RW, .accessfn = access_tda, 5348 .type = ARM_CP_NOP }, 5349 REGINFO_SENTINEL 5350 }; 5351 5352 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 5353 /* 64 bit access versions of the (dummy) debug registers */ 5354 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 5355 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5356 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 5357 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 5358 REGINFO_SENTINEL 5359 }; 5360 5361 /* Return the exception level to which exceptions should be taken 5362 * via SVEAccessTrap. If an exception should be routed through 5363 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 5364 * take care of raising that exception. 5365 * C.f. the ARM pseudocode function CheckSVEEnabled. 5366 */ 5367 int sve_exception_el(CPUARMState *env, int el) 5368 { 5369 #ifndef CONFIG_USER_ONLY 5370 if (el <= 1) { 5371 bool disabled = false; 5372 5373 /* The CPACR.ZEN controls traps to EL1: 5374 * 0, 2 : trap EL0 and EL1 accesses 5375 * 1 : trap only EL0 accesses 5376 * 3 : trap no accesses 5377 */ 5378 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 5379 disabled = true; 5380 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 5381 disabled = el == 0; 5382 } 5383 if (disabled) { 5384 /* route_to_el2 */ 5385 return (arm_feature(env, ARM_FEATURE_EL2) 5386 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 5387 } 5388 5389 /* Check CPACR.FPEN. */ 5390 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 5391 disabled = true; 5392 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 5393 disabled = el == 0; 5394 } 5395 if (disabled) { 5396 return 0; 5397 } 5398 } 5399 5400 /* CPTR_EL2. Since TZ and TFP are positive, 5401 * they will be zero when EL2 is not present. 5402 */ 5403 if (el <= 2 && !arm_is_secure_below_el3(env)) { 5404 if (env->cp15.cptr_el[2] & CPTR_TZ) { 5405 return 2; 5406 } 5407 if (env->cp15.cptr_el[2] & CPTR_TFP) { 5408 return 0; 5409 } 5410 } 5411 5412 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 5413 if (arm_feature(env, ARM_FEATURE_EL3) 5414 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 5415 return 3; 5416 } 5417 #endif 5418 return 0; 5419 } 5420 5421 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 5422 { 5423 uint32_t end_len; 5424 5425 end_len = start_len &= 0xf; 5426 if (!test_bit(start_len, cpu->sve_vq_map)) { 5427 end_len = find_last_bit(cpu->sve_vq_map, start_len); 5428 assert(end_len < start_len); 5429 } 5430 return end_len; 5431 } 5432 5433 /* 5434 * Given that SVE is enabled, return the vector length for EL. 5435 */ 5436 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 5437 { 5438 ARMCPU *cpu = env_archcpu(env); 5439 uint32_t zcr_len = cpu->sve_max_vq - 1; 5440 5441 if (el <= 1) { 5442 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 5443 } 5444 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 5445 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 5446 } 5447 if (arm_feature(env, ARM_FEATURE_EL3)) { 5448 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 5449 } 5450 5451 return sve_zcr_get_valid_len(cpu, zcr_len); 5452 } 5453 5454 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5455 uint64_t value) 5456 { 5457 int cur_el = arm_current_el(env); 5458 int old_len = sve_zcr_len_for_el(env, cur_el); 5459 int new_len; 5460 5461 /* Bits other than [3:0] are RAZ/WI. */ 5462 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 5463 raw_write(env, ri, value & 0xf); 5464 5465 /* 5466 * Because we arrived here, we know both FP and SVE are enabled; 5467 * otherwise we would have trapped access to the ZCR_ELn register. 5468 */ 5469 new_len = sve_zcr_len_for_el(env, cur_el); 5470 if (new_len < old_len) { 5471 aarch64_sve_narrow_vq(env, new_len + 1); 5472 } 5473 } 5474 5475 static const ARMCPRegInfo zcr_el1_reginfo = { 5476 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 5477 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 5478 .access = PL1_RW, .type = ARM_CP_SVE, 5479 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 5480 .writefn = zcr_write, .raw_writefn = raw_write 5481 }; 5482 5483 static const ARMCPRegInfo zcr_el2_reginfo = { 5484 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5485 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5486 .access = PL2_RW, .type = ARM_CP_SVE, 5487 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 5488 .writefn = zcr_write, .raw_writefn = raw_write 5489 }; 5490 5491 static const ARMCPRegInfo zcr_no_el2_reginfo = { 5492 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 5493 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 5494 .access = PL2_RW, .type = ARM_CP_SVE, 5495 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 5496 }; 5497 5498 static const ARMCPRegInfo zcr_el3_reginfo = { 5499 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 5500 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 5501 .access = PL3_RW, .type = ARM_CP_SVE, 5502 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 5503 .writefn = zcr_write, .raw_writefn = raw_write 5504 }; 5505 5506 void hw_watchpoint_update(ARMCPU *cpu, int n) 5507 { 5508 CPUARMState *env = &cpu->env; 5509 vaddr len = 0; 5510 vaddr wvr = env->cp15.dbgwvr[n]; 5511 uint64_t wcr = env->cp15.dbgwcr[n]; 5512 int mask; 5513 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 5514 5515 if (env->cpu_watchpoint[n]) { 5516 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 5517 env->cpu_watchpoint[n] = NULL; 5518 } 5519 5520 if (!extract64(wcr, 0, 1)) { 5521 /* E bit clear : watchpoint disabled */ 5522 return; 5523 } 5524 5525 switch (extract64(wcr, 3, 2)) { 5526 case 0: 5527 /* LSC 00 is reserved and must behave as if the wp is disabled */ 5528 return; 5529 case 1: 5530 flags |= BP_MEM_READ; 5531 break; 5532 case 2: 5533 flags |= BP_MEM_WRITE; 5534 break; 5535 case 3: 5536 flags |= BP_MEM_ACCESS; 5537 break; 5538 } 5539 5540 /* Attempts to use both MASK and BAS fields simultaneously are 5541 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 5542 * thus generating a watchpoint for every byte in the masked region. 5543 */ 5544 mask = extract64(wcr, 24, 4); 5545 if (mask == 1 || mask == 2) { 5546 /* Reserved values of MASK; we must act as if the mask value was 5547 * some non-reserved value, or as if the watchpoint were disabled. 5548 * We choose the latter. 5549 */ 5550 return; 5551 } else if (mask) { 5552 /* Watchpoint covers an aligned area up to 2GB in size */ 5553 len = 1ULL << mask; 5554 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 5555 * whether the watchpoint fires when the unmasked bits match; we opt 5556 * to generate the exceptions. 5557 */ 5558 wvr &= ~(len - 1); 5559 } else { 5560 /* Watchpoint covers bytes defined by the byte address select bits */ 5561 int bas = extract64(wcr, 5, 8); 5562 int basstart; 5563 5564 if (bas == 0) { 5565 /* This must act as if the watchpoint is disabled */ 5566 return; 5567 } 5568 5569 if (extract64(wvr, 2, 1)) { 5570 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 5571 * ignored, and BAS[3:0] define which bytes to watch. 5572 */ 5573 bas &= 0xf; 5574 } 5575 /* The BAS bits are supposed to be programmed to indicate a contiguous 5576 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 5577 * we fire for each byte in the word/doubleword addressed by the WVR. 5578 * We choose to ignore any non-zero bits after the first range of 1s. 5579 */ 5580 basstart = ctz32(bas); 5581 len = cto32(bas >> basstart); 5582 wvr += basstart; 5583 } 5584 5585 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 5586 &env->cpu_watchpoint[n]); 5587 } 5588 5589 void hw_watchpoint_update_all(ARMCPU *cpu) 5590 { 5591 int i; 5592 CPUARMState *env = &cpu->env; 5593 5594 /* Completely clear out existing QEMU watchpoints and our array, to 5595 * avoid possible stale entries following migration load. 5596 */ 5597 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 5598 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 5599 5600 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 5601 hw_watchpoint_update(cpu, i); 5602 } 5603 } 5604 5605 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5606 uint64_t value) 5607 { 5608 ARMCPU *cpu = env_archcpu(env); 5609 int i = ri->crm; 5610 5611 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 5612 * register reads and behaves as if values written are sign extended. 5613 * Bits [1:0] are RES0. 5614 */ 5615 value = sextract64(value, 0, 49) & ~3ULL; 5616 5617 raw_write(env, ri, value); 5618 hw_watchpoint_update(cpu, i); 5619 } 5620 5621 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5622 uint64_t value) 5623 { 5624 ARMCPU *cpu = env_archcpu(env); 5625 int i = ri->crm; 5626 5627 raw_write(env, ri, value); 5628 hw_watchpoint_update(cpu, i); 5629 } 5630 5631 void hw_breakpoint_update(ARMCPU *cpu, int n) 5632 { 5633 CPUARMState *env = &cpu->env; 5634 uint64_t bvr = env->cp15.dbgbvr[n]; 5635 uint64_t bcr = env->cp15.dbgbcr[n]; 5636 vaddr addr; 5637 int bt; 5638 int flags = BP_CPU; 5639 5640 if (env->cpu_breakpoint[n]) { 5641 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 5642 env->cpu_breakpoint[n] = NULL; 5643 } 5644 5645 if (!extract64(bcr, 0, 1)) { 5646 /* E bit clear : watchpoint disabled */ 5647 return; 5648 } 5649 5650 bt = extract64(bcr, 20, 4); 5651 5652 switch (bt) { 5653 case 4: /* unlinked address mismatch (reserved if AArch64) */ 5654 case 5: /* linked address mismatch (reserved if AArch64) */ 5655 qemu_log_mask(LOG_UNIMP, 5656 "arm: address mismatch breakpoint types not implemented\n"); 5657 return; 5658 case 0: /* unlinked address match */ 5659 case 1: /* linked address match */ 5660 { 5661 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 5662 * we behave as if the register was sign extended. Bits [1:0] are 5663 * RES0. The BAS field is used to allow setting breakpoints on 16 5664 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 5665 * a bp will fire if the addresses covered by the bp and the addresses 5666 * covered by the insn overlap but the insn doesn't start at the 5667 * start of the bp address range. We choose to require the insn and 5668 * the bp to have the same address. The constraints on writing to 5669 * BAS enforced in dbgbcr_write mean we have only four cases: 5670 * 0b0000 => no breakpoint 5671 * 0b0011 => breakpoint on addr 5672 * 0b1100 => breakpoint on addr + 2 5673 * 0b1111 => breakpoint on addr 5674 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 5675 */ 5676 int bas = extract64(bcr, 5, 4); 5677 addr = sextract64(bvr, 0, 49) & ~3ULL; 5678 if (bas == 0) { 5679 return; 5680 } 5681 if (bas == 0xc) { 5682 addr += 2; 5683 } 5684 break; 5685 } 5686 case 2: /* unlinked context ID match */ 5687 case 8: /* unlinked VMID match (reserved if no EL2) */ 5688 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 5689 qemu_log_mask(LOG_UNIMP, 5690 "arm: unlinked context breakpoint types not implemented\n"); 5691 return; 5692 case 9: /* linked VMID match (reserved if no EL2) */ 5693 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 5694 case 3: /* linked context ID match */ 5695 default: 5696 /* We must generate no events for Linked context matches (unless 5697 * they are linked to by some other bp/wp, which is handled in 5698 * updates for the linking bp/wp). We choose to also generate no events 5699 * for reserved values. 5700 */ 5701 return; 5702 } 5703 5704 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 5705 } 5706 5707 void hw_breakpoint_update_all(ARMCPU *cpu) 5708 { 5709 int i; 5710 CPUARMState *env = &cpu->env; 5711 5712 /* Completely clear out existing QEMU breakpoints and our array, to 5713 * avoid possible stale entries following migration load. 5714 */ 5715 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 5716 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 5717 5718 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 5719 hw_breakpoint_update(cpu, i); 5720 } 5721 } 5722 5723 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5724 uint64_t value) 5725 { 5726 ARMCPU *cpu = env_archcpu(env); 5727 int i = ri->crm; 5728 5729 raw_write(env, ri, value); 5730 hw_breakpoint_update(cpu, i); 5731 } 5732 5733 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5734 uint64_t value) 5735 { 5736 ARMCPU *cpu = env_archcpu(env); 5737 int i = ri->crm; 5738 5739 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 5740 * copy of BAS[0]. 5741 */ 5742 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 5743 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 5744 5745 raw_write(env, ri, value); 5746 hw_breakpoint_update(cpu, i); 5747 } 5748 5749 static void define_debug_regs(ARMCPU *cpu) 5750 { 5751 /* Define v7 and v8 architectural debug registers. 5752 * These are just dummy implementations for now. 5753 */ 5754 int i; 5755 int wrps, brps, ctx_cmps; 5756 ARMCPRegInfo dbgdidr = { 5757 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 5758 .access = PL0_R, .accessfn = access_tda, 5759 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 5760 }; 5761 5762 /* Note that all these register fields hold "number of Xs minus 1". */ 5763 brps = extract32(cpu->dbgdidr, 24, 4); 5764 wrps = extract32(cpu->dbgdidr, 28, 4); 5765 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 5766 5767 assert(ctx_cmps <= brps); 5768 5769 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 5770 * of the debug registers such as number of breakpoints; 5771 * check that if they both exist then they agree. 5772 */ 5773 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 5774 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 5775 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 5776 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 5777 } 5778 5779 define_one_arm_cp_reg(cpu, &dbgdidr); 5780 define_arm_cp_regs(cpu, debug_cp_reginfo); 5781 5782 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 5783 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 5784 } 5785 5786 for (i = 0; i < brps + 1; i++) { 5787 ARMCPRegInfo dbgregs[] = { 5788 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 5789 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 5790 .access = PL1_RW, .accessfn = access_tda, 5791 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 5792 .writefn = dbgbvr_write, .raw_writefn = raw_write 5793 }, 5794 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 5795 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 5796 .access = PL1_RW, .accessfn = access_tda, 5797 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 5798 .writefn = dbgbcr_write, .raw_writefn = raw_write 5799 }, 5800 REGINFO_SENTINEL 5801 }; 5802 define_arm_cp_regs(cpu, dbgregs); 5803 } 5804 5805 for (i = 0; i < wrps + 1; i++) { 5806 ARMCPRegInfo dbgregs[] = { 5807 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 5808 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 5809 .access = PL1_RW, .accessfn = access_tda, 5810 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 5811 .writefn = dbgwvr_write, .raw_writefn = raw_write 5812 }, 5813 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 5814 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 5815 .access = PL1_RW, .accessfn = access_tda, 5816 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 5817 .writefn = dbgwcr_write, .raw_writefn = raw_write 5818 }, 5819 REGINFO_SENTINEL 5820 }; 5821 define_arm_cp_regs(cpu, dbgregs); 5822 } 5823 } 5824 5825 /* We don't know until after realize whether there's a GICv3 5826 * attached, and that is what registers the gicv3 sysregs. 5827 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5828 * at runtime. 5829 */ 5830 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5831 { 5832 ARMCPU *cpu = env_archcpu(env); 5833 uint64_t pfr1 = cpu->id_pfr1; 5834 5835 if (env->gicv3state) { 5836 pfr1 |= 1 << 28; 5837 } 5838 return pfr1; 5839 } 5840 5841 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5842 { 5843 ARMCPU *cpu = env_archcpu(env); 5844 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5845 5846 if (env->gicv3state) { 5847 pfr0 |= 1 << 24; 5848 } 5849 return pfr0; 5850 } 5851 5852 /* Shared logic between LORID and the rest of the LOR* registers. 5853 * Secure state has already been delt with. 5854 */ 5855 static CPAccessResult access_lor_ns(CPUARMState *env) 5856 { 5857 int el = arm_current_el(env); 5858 5859 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5860 return CP_ACCESS_TRAP_EL2; 5861 } 5862 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5863 return CP_ACCESS_TRAP_EL3; 5864 } 5865 return CP_ACCESS_OK; 5866 } 5867 5868 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5869 bool isread) 5870 { 5871 if (arm_is_secure_below_el3(env)) { 5872 /* Access ok in secure mode. */ 5873 return CP_ACCESS_OK; 5874 } 5875 return access_lor_ns(env); 5876 } 5877 5878 static CPAccessResult access_lor_other(CPUARMState *env, 5879 const ARMCPRegInfo *ri, bool isread) 5880 { 5881 if (arm_is_secure_below_el3(env)) { 5882 /* Access denied in secure mode. */ 5883 return CP_ACCESS_TRAP; 5884 } 5885 return access_lor_ns(env); 5886 } 5887 5888 #ifdef TARGET_AARCH64 5889 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 5890 bool isread) 5891 { 5892 int el = arm_current_el(env); 5893 5894 if (el < 2 && 5895 arm_feature(env, ARM_FEATURE_EL2) && 5896 !(arm_hcr_el2_eff(env) & HCR_APK)) { 5897 return CP_ACCESS_TRAP_EL2; 5898 } 5899 if (el < 3 && 5900 arm_feature(env, ARM_FEATURE_EL3) && 5901 !(env->cp15.scr_el3 & SCR_APK)) { 5902 return CP_ACCESS_TRAP_EL3; 5903 } 5904 return CP_ACCESS_OK; 5905 } 5906 5907 static const ARMCPRegInfo pauth_reginfo[] = { 5908 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5909 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 5910 .access = PL1_RW, .accessfn = access_pauth, 5911 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 5912 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5913 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 5914 .access = PL1_RW, .accessfn = access_pauth, 5915 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 5916 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5917 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 5918 .access = PL1_RW, .accessfn = access_pauth, 5919 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 5920 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5921 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 5922 .access = PL1_RW, .accessfn = access_pauth, 5923 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 5924 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5925 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 5926 .access = PL1_RW, .accessfn = access_pauth, 5927 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 5928 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5929 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 5930 .access = PL1_RW, .accessfn = access_pauth, 5931 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 5932 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5933 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 5934 .access = PL1_RW, .accessfn = access_pauth, 5935 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 5936 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5937 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 5938 .access = PL1_RW, .accessfn = access_pauth, 5939 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 5940 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 5941 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 5942 .access = PL1_RW, .accessfn = access_pauth, 5943 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 5944 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 5945 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 5946 .access = PL1_RW, .accessfn = access_pauth, 5947 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 5948 REGINFO_SENTINEL 5949 }; 5950 5951 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 5952 { 5953 Error *err = NULL; 5954 uint64_t ret; 5955 5956 /* Success sets NZCV = 0000. */ 5957 env->NF = env->CF = env->VF = 0, env->ZF = 1; 5958 5959 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 5960 /* 5961 * ??? Failed, for unknown reasons in the crypto subsystem. 5962 * The best we can do is log the reason and return the 5963 * timed-out indication to the guest. There is no reason 5964 * we know to expect this failure to be transitory, so the 5965 * guest may well hang retrying the operation. 5966 */ 5967 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 5968 ri->name, error_get_pretty(err)); 5969 error_free(err); 5970 5971 env->ZF = 0; /* NZCF = 0100 */ 5972 return 0; 5973 } 5974 return ret; 5975 } 5976 5977 /* We do not support re-seeding, so the two registers operate the same. */ 5978 static const ARMCPRegInfo rndr_reginfo[] = { 5979 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 5980 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5981 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 5982 .access = PL0_R, .readfn = rndr_readfn }, 5983 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 5984 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 5985 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 5986 .access = PL0_R, .readfn = rndr_readfn }, 5987 REGINFO_SENTINEL 5988 }; 5989 5990 #ifndef CONFIG_USER_ONLY 5991 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 5992 uint64_t value) 5993 { 5994 ARMCPU *cpu = env_archcpu(env); 5995 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 5996 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 5997 uint64_t vaddr_in = (uint64_t) value; 5998 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 5999 void *haddr; 6000 int mem_idx = cpu_mmu_index(env, false); 6001 6002 /* This won't be crossing page boundaries */ 6003 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6004 if (haddr) { 6005 6006 ram_addr_t offset; 6007 MemoryRegion *mr; 6008 6009 /* RCU lock is already being held */ 6010 mr = memory_region_from_host(haddr, &offset); 6011 6012 if (mr) { 6013 memory_region_do_writeback(mr, offset, dline_size); 6014 } 6015 } 6016 } 6017 6018 static const ARMCPRegInfo dcpop_reg[] = { 6019 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6020 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6021 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6022 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, 6023 REGINFO_SENTINEL 6024 }; 6025 6026 static const ARMCPRegInfo dcpodp_reg[] = { 6027 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6028 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6029 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6030 .accessfn = aa64_cacheop_access, .writefn = dccvap_writefn }, 6031 REGINFO_SENTINEL 6032 }; 6033 #endif /*CONFIG_USER_ONLY*/ 6034 6035 #endif 6036 6037 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 6038 bool isread) 6039 { 6040 int el = arm_current_el(env); 6041 6042 if (el == 0) { 6043 uint64_t sctlr = arm_sctlr(env, el); 6044 if (!(sctlr & SCTLR_EnRCTX)) { 6045 return CP_ACCESS_TRAP; 6046 } 6047 } else if (el == 1) { 6048 uint64_t hcr = arm_hcr_el2_eff(env); 6049 if (hcr & HCR_NV) { 6050 return CP_ACCESS_TRAP_EL2; 6051 } 6052 } 6053 return CP_ACCESS_OK; 6054 } 6055 6056 static const ARMCPRegInfo predinv_reginfo[] = { 6057 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 6058 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 6059 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6060 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 6061 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 6062 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6063 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 6064 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 6065 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6066 /* 6067 * Note the AArch32 opcodes have a different OPC1. 6068 */ 6069 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 6070 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 6071 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6072 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 6073 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 6074 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6075 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 6076 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 6077 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 6078 REGINFO_SENTINEL 6079 }; 6080 6081 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6082 bool isread) 6083 { 6084 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 6085 return CP_ACCESS_TRAP_EL2; 6086 } 6087 6088 return CP_ACCESS_OK; 6089 } 6090 6091 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 6092 bool isread) 6093 { 6094 if (arm_feature(env, ARM_FEATURE_V8)) { 6095 return access_aa64_tid3(env, ri, isread); 6096 } 6097 6098 return CP_ACCESS_OK; 6099 } 6100 6101 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 6102 bool isread) 6103 { 6104 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 6105 return CP_ACCESS_TRAP_EL2; 6106 } 6107 6108 return CP_ACCESS_OK; 6109 } 6110 6111 static const ARMCPRegInfo jazelle_regs[] = { 6112 { .name = "JIDR", 6113 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 6114 .access = PL1_R, .accessfn = access_jazelle, 6115 .type = ARM_CP_CONST, .resetvalue = 0 }, 6116 { .name = "JOSCR", 6117 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 6118 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6119 { .name = "JMCR", 6120 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 6121 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6122 REGINFO_SENTINEL 6123 }; 6124 6125 void register_cp_regs_for_features(ARMCPU *cpu) 6126 { 6127 /* Register all the coprocessor registers based on feature bits */ 6128 CPUARMState *env = &cpu->env; 6129 if (arm_feature(env, ARM_FEATURE_M)) { 6130 /* M profile has no coprocessor registers */ 6131 return; 6132 } 6133 6134 define_arm_cp_regs(cpu, cp_reginfo); 6135 if (!arm_feature(env, ARM_FEATURE_V8)) { 6136 /* Must go early as it is full of wildcards that may be 6137 * overridden by later definitions. 6138 */ 6139 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 6140 } 6141 6142 if (arm_feature(env, ARM_FEATURE_V6)) { 6143 /* The ID registers all have impdef reset values */ 6144 ARMCPRegInfo v6_idregs[] = { 6145 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 6146 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6147 .access = PL1_R, .type = ARM_CP_CONST, 6148 .accessfn = access_aa32_tid3, 6149 .resetvalue = cpu->id_pfr0 }, 6150 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 6151 * the value of the GIC field until after we define these regs. 6152 */ 6153 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 6154 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 6155 .access = PL1_R, .type = ARM_CP_NO_RAW, 6156 .accessfn = access_aa32_tid3, 6157 .readfn = id_pfr1_read, 6158 .writefn = arm_cp_write_ignore }, 6159 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 6160 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 6161 .access = PL1_R, .type = ARM_CP_CONST, 6162 .accessfn = access_aa32_tid3, 6163 .resetvalue = cpu->id_dfr0 }, 6164 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 6165 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 6166 .access = PL1_R, .type = ARM_CP_CONST, 6167 .accessfn = access_aa32_tid3, 6168 .resetvalue = cpu->id_afr0 }, 6169 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 6170 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 6171 .access = PL1_R, .type = ARM_CP_CONST, 6172 .accessfn = access_aa32_tid3, 6173 .resetvalue = cpu->id_mmfr0 }, 6174 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 6175 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 6176 .access = PL1_R, .type = ARM_CP_CONST, 6177 .accessfn = access_aa32_tid3, 6178 .resetvalue = cpu->id_mmfr1 }, 6179 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 6180 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 6181 .access = PL1_R, .type = ARM_CP_CONST, 6182 .accessfn = access_aa32_tid3, 6183 .resetvalue = cpu->id_mmfr2 }, 6184 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 6185 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 6186 .access = PL1_R, .type = ARM_CP_CONST, 6187 .accessfn = access_aa32_tid3, 6188 .resetvalue = cpu->id_mmfr3 }, 6189 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 6190 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6191 .access = PL1_R, .type = ARM_CP_CONST, 6192 .accessfn = access_aa32_tid3, 6193 .resetvalue = cpu->isar.id_isar0 }, 6194 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 6195 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 6196 .access = PL1_R, .type = ARM_CP_CONST, 6197 .accessfn = access_aa32_tid3, 6198 .resetvalue = cpu->isar.id_isar1 }, 6199 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 6200 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6201 .access = PL1_R, .type = ARM_CP_CONST, 6202 .accessfn = access_aa32_tid3, 6203 .resetvalue = cpu->isar.id_isar2 }, 6204 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 6205 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 6206 .access = PL1_R, .type = ARM_CP_CONST, 6207 .accessfn = access_aa32_tid3, 6208 .resetvalue = cpu->isar.id_isar3 }, 6209 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 6210 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 6211 .access = PL1_R, .type = ARM_CP_CONST, 6212 .accessfn = access_aa32_tid3, 6213 .resetvalue = cpu->isar.id_isar4 }, 6214 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 6215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 6216 .access = PL1_R, .type = ARM_CP_CONST, 6217 .accessfn = access_aa32_tid3, 6218 .resetvalue = cpu->isar.id_isar5 }, 6219 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 6220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 6221 .access = PL1_R, .type = ARM_CP_CONST, 6222 .accessfn = access_aa32_tid3, 6223 .resetvalue = cpu->id_mmfr4 }, 6224 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 6225 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 6226 .access = PL1_R, .type = ARM_CP_CONST, 6227 .accessfn = access_aa32_tid3, 6228 .resetvalue = cpu->isar.id_isar6 }, 6229 REGINFO_SENTINEL 6230 }; 6231 define_arm_cp_regs(cpu, v6_idregs); 6232 define_arm_cp_regs(cpu, v6_cp_reginfo); 6233 } else { 6234 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 6235 } 6236 if (arm_feature(env, ARM_FEATURE_V6K)) { 6237 define_arm_cp_regs(cpu, v6k_cp_reginfo); 6238 } 6239 if (arm_feature(env, ARM_FEATURE_V7MP) && 6240 !arm_feature(env, ARM_FEATURE_PMSA)) { 6241 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 6242 } 6243 if (arm_feature(env, ARM_FEATURE_V7VE)) { 6244 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 6245 } 6246 if (arm_feature(env, ARM_FEATURE_V7)) { 6247 /* v7 performance monitor control register: same implementor 6248 * field as main ID register, and we implement four counters in 6249 * addition to the cycle count register. 6250 */ 6251 unsigned int i, pmcrn = 4; 6252 ARMCPRegInfo pmcr = { 6253 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6254 .access = PL0_RW, 6255 .type = ARM_CP_IO | ARM_CP_ALIAS, 6256 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6257 .accessfn = pmreg_access, .writefn = pmcr_write, 6258 .raw_writefn = raw_write, 6259 }; 6260 ARMCPRegInfo pmcr64 = { 6261 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6262 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6263 .access = PL0_RW, .accessfn = pmreg_access, 6264 .type = ARM_CP_IO, 6265 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6266 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT), 6267 .writefn = pmcr_write, .raw_writefn = raw_write, 6268 }; 6269 define_one_arm_cp_reg(cpu, &pmcr); 6270 define_one_arm_cp_reg(cpu, &pmcr64); 6271 for (i = 0; i < pmcrn; i++) { 6272 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6273 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6274 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6275 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6276 ARMCPRegInfo pmev_regs[] = { 6277 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6278 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6279 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6280 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6281 .accessfn = pmreg_access }, 6282 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6283 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6284 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6285 .type = ARM_CP_IO, 6286 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6287 .raw_readfn = pmevcntr_rawread, 6288 .raw_writefn = pmevcntr_rawwrite }, 6289 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6290 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6291 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6292 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6293 .accessfn = pmreg_access }, 6294 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6295 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6296 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6297 .type = ARM_CP_IO, 6298 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6299 .raw_writefn = pmevtyper_rawwrite }, 6300 REGINFO_SENTINEL 6301 }; 6302 define_arm_cp_regs(cpu, pmev_regs); 6303 g_free(pmevcntr_name); 6304 g_free(pmevcntr_el0_name); 6305 g_free(pmevtyper_name); 6306 g_free(pmevtyper_el0_name); 6307 } 6308 ARMCPRegInfo clidr = { 6309 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 6310 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 6311 .access = PL1_R, .type = ARM_CP_CONST, 6312 .accessfn = access_aa64_tid2, 6313 .resetvalue = cpu->clidr 6314 }; 6315 define_one_arm_cp_reg(cpu, &clidr); 6316 define_arm_cp_regs(cpu, v7_cp_reginfo); 6317 define_debug_regs(cpu); 6318 } else { 6319 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 6320 } 6321 if (FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) >= 4 && 6322 FIELD_EX32(cpu->id_dfr0, ID_DFR0, PERFMON) != 0xf) { 6323 ARMCPRegInfo v81_pmu_regs[] = { 6324 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6325 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6326 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6327 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6328 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6329 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6330 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6331 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6332 REGINFO_SENTINEL 6333 }; 6334 define_arm_cp_regs(cpu, v81_pmu_regs); 6335 } 6336 if (arm_feature(env, ARM_FEATURE_V8)) { 6337 /* AArch64 ID registers, which all have impdef reset values. 6338 * Note that within the ID register ranges the unused slots 6339 * must all RAZ, not UNDEF; future architecture versions may 6340 * define new registers here. 6341 */ 6342 ARMCPRegInfo v8_idregs[] = { 6343 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 6344 * know the right value for the GIC field until after we 6345 * define these regs. 6346 */ 6347 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 6348 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 6349 .access = PL1_R, .type = ARM_CP_NO_RAW, 6350 .accessfn = access_aa64_tid3, 6351 .readfn = id_aa64pfr0_read, 6352 .writefn = arm_cp_write_ignore }, 6353 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 6354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 6355 .access = PL1_R, .type = ARM_CP_CONST, 6356 .accessfn = access_aa64_tid3, 6357 .resetvalue = cpu->isar.id_aa64pfr1}, 6358 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 6360 .access = PL1_R, .type = ARM_CP_CONST, 6361 .accessfn = access_aa64_tid3, 6362 .resetvalue = 0 }, 6363 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 6365 .access = PL1_R, .type = ARM_CP_CONST, 6366 .accessfn = access_aa64_tid3, 6367 .resetvalue = 0 }, 6368 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 6369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 6370 .access = PL1_R, .type = ARM_CP_CONST, 6371 .accessfn = access_aa64_tid3, 6372 /* At present, only SVEver == 0 is defined anyway. */ 6373 .resetvalue = 0 }, 6374 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 6376 .access = PL1_R, .type = ARM_CP_CONST, 6377 .accessfn = access_aa64_tid3, 6378 .resetvalue = 0 }, 6379 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6380 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 6381 .access = PL1_R, .type = ARM_CP_CONST, 6382 .accessfn = access_aa64_tid3, 6383 .resetvalue = 0 }, 6384 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6385 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 6386 .access = PL1_R, .type = ARM_CP_CONST, 6387 .accessfn = access_aa64_tid3, 6388 .resetvalue = 0 }, 6389 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 6390 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 6391 .access = PL1_R, .type = ARM_CP_CONST, 6392 .accessfn = access_aa64_tid3, 6393 .resetvalue = cpu->id_aa64dfr0 }, 6394 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 6395 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 6396 .access = PL1_R, .type = ARM_CP_CONST, 6397 .accessfn = access_aa64_tid3, 6398 .resetvalue = cpu->id_aa64dfr1 }, 6399 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6400 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 6401 .access = PL1_R, .type = ARM_CP_CONST, 6402 .accessfn = access_aa64_tid3, 6403 .resetvalue = 0 }, 6404 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6405 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 6406 .access = PL1_R, .type = ARM_CP_CONST, 6407 .accessfn = access_aa64_tid3, 6408 .resetvalue = 0 }, 6409 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 6410 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 6411 .access = PL1_R, .type = ARM_CP_CONST, 6412 .accessfn = access_aa64_tid3, 6413 .resetvalue = cpu->id_aa64afr0 }, 6414 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 6415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 6416 .access = PL1_R, .type = ARM_CP_CONST, 6417 .accessfn = access_aa64_tid3, 6418 .resetvalue = cpu->id_aa64afr1 }, 6419 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 6421 .access = PL1_R, .type = ARM_CP_CONST, 6422 .accessfn = access_aa64_tid3, 6423 .resetvalue = 0 }, 6424 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6425 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 6426 .access = PL1_R, .type = ARM_CP_CONST, 6427 .accessfn = access_aa64_tid3, 6428 .resetvalue = 0 }, 6429 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 6430 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 6431 .access = PL1_R, .type = ARM_CP_CONST, 6432 .accessfn = access_aa64_tid3, 6433 .resetvalue = cpu->isar.id_aa64isar0 }, 6434 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 6435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 6436 .access = PL1_R, .type = ARM_CP_CONST, 6437 .accessfn = access_aa64_tid3, 6438 .resetvalue = cpu->isar.id_aa64isar1 }, 6439 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6440 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 6441 .access = PL1_R, .type = ARM_CP_CONST, 6442 .accessfn = access_aa64_tid3, 6443 .resetvalue = 0 }, 6444 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 6446 .access = PL1_R, .type = ARM_CP_CONST, 6447 .accessfn = access_aa64_tid3, 6448 .resetvalue = 0 }, 6449 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6450 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 6451 .access = PL1_R, .type = ARM_CP_CONST, 6452 .accessfn = access_aa64_tid3, 6453 .resetvalue = 0 }, 6454 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 6456 .access = PL1_R, .type = ARM_CP_CONST, 6457 .accessfn = access_aa64_tid3, 6458 .resetvalue = 0 }, 6459 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6460 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 6461 .access = PL1_R, .type = ARM_CP_CONST, 6462 .accessfn = access_aa64_tid3, 6463 .resetvalue = 0 }, 6464 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6465 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 6466 .access = PL1_R, .type = ARM_CP_CONST, 6467 .accessfn = access_aa64_tid3, 6468 .resetvalue = 0 }, 6469 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 6470 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6471 .access = PL1_R, .type = ARM_CP_CONST, 6472 .accessfn = access_aa64_tid3, 6473 .resetvalue = cpu->isar.id_aa64mmfr0 }, 6474 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 6475 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 6476 .access = PL1_R, .type = ARM_CP_CONST, 6477 .accessfn = access_aa64_tid3, 6478 .resetvalue = cpu->isar.id_aa64mmfr1 }, 6479 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6480 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 6481 .access = PL1_R, .type = ARM_CP_CONST, 6482 .accessfn = access_aa64_tid3, 6483 .resetvalue = 0 }, 6484 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6485 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 6486 .access = PL1_R, .type = ARM_CP_CONST, 6487 .accessfn = access_aa64_tid3, 6488 .resetvalue = 0 }, 6489 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6490 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 6491 .access = PL1_R, .type = ARM_CP_CONST, 6492 .accessfn = access_aa64_tid3, 6493 .resetvalue = 0 }, 6494 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6495 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 6496 .access = PL1_R, .type = ARM_CP_CONST, 6497 .accessfn = access_aa64_tid3, 6498 .resetvalue = 0 }, 6499 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6500 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 6501 .access = PL1_R, .type = ARM_CP_CONST, 6502 .accessfn = access_aa64_tid3, 6503 .resetvalue = 0 }, 6504 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6505 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 6506 .access = PL1_R, .type = ARM_CP_CONST, 6507 .accessfn = access_aa64_tid3, 6508 .resetvalue = 0 }, 6509 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 6510 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 6511 .access = PL1_R, .type = ARM_CP_CONST, 6512 .accessfn = access_aa64_tid3, 6513 .resetvalue = cpu->isar.mvfr0 }, 6514 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 6515 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 6516 .access = PL1_R, .type = ARM_CP_CONST, 6517 .accessfn = access_aa64_tid3, 6518 .resetvalue = cpu->isar.mvfr1 }, 6519 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 6520 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 6521 .access = PL1_R, .type = ARM_CP_CONST, 6522 .accessfn = access_aa64_tid3, 6523 .resetvalue = cpu->isar.mvfr2 }, 6524 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6525 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 6526 .access = PL1_R, .type = ARM_CP_CONST, 6527 .accessfn = access_aa64_tid3, 6528 .resetvalue = 0 }, 6529 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6530 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 6531 .access = PL1_R, .type = ARM_CP_CONST, 6532 .accessfn = access_aa64_tid3, 6533 .resetvalue = 0 }, 6534 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6535 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 6536 .access = PL1_R, .type = ARM_CP_CONST, 6537 .accessfn = access_aa64_tid3, 6538 .resetvalue = 0 }, 6539 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6540 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 6541 .access = PL1_R, .type = ARM_CP_CONST, 6542 .accessfn = access_aa64_tid3, 6543 .resetvalue = 0 }, 6544 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 6545 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 6546 .access = PL1_R, .type = ARM_CP_CONST, 6547 .accessfn = access_aa64_tid3, 6548 .resetvalue = 0 }, 6549 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 6550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 6551 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6552 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 6553 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 6554 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 6555 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6556 .resetvalue = cpu->pmceid0 }, 6557 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 6558 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 6559 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6560 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 6561 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 6562 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 6563 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6564 .resetvalue = cpu->pmceid1 }, 6565 REGINFO_SENTINEL 6566 }; 6567 #ifdef CONFIG_USER_ONLY 6568 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 6569 { .name = "ID_AA64PFR0_EL1", 6570 .exported_bits = 0x000f000f00ff0000, 6571 .fixed_bits = 0x0000000000000011 }, 6572 { .name = "ID_AA64PFR1_EL1", 6573 .exported_bits = 0x00000000000000f0 }, 6574 { .name = "ID_AA64PFR*_EL1_RESERVED", 6575 .is_glob = true }, 6576 { .name = "ID_AA64ZFR0_EL1" }, 6577 { .name = "ID_AA64MMFR0_EL1", 6578 .fixed_bits = 0x00000000ff000000 }, 6579 { .name = "ID_AA64MMFR1_EL1" }, 6580 { .name = "ID_AA64MMFR*_EL1_RESERVED", 6581 .is_glob = true }, 6582 { .name = "ID_AA64DFR0_EL1", 6583 .fixed_bits = 0x0000000000000006 }, 6584 { .name = "ID_AA64DFR1_EL1" }, 6585 { .name = "ID_AA64DFR*_EL1_RESERVED", 6586 .is_glob = true }, 6587 { .name = "ID_AA64AFR*", 6588 .is_glob = true }, 6589 { .name = "ID_AA64ISAR0_EL1", 6590 .exported_bits = 0x00fffffff0fffff0 }, 6591 { .name = "ID_AA64ISAR1_EL1", 6592 .exported_bits = 0x000000f0ffffffff }, 6593 { .name = "ID_AA64ISAR*_EL1_RESERVED", 6594 .is_glob = true }, 6595 REGUSERINFO_SENTINEL 6596 }; 6597 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 6598 #endif 6599 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 6600 if (!arm_feature(env, ARM_FEATURE_EL3) && 6601 !arm_feature(env, ARM_FEATURE_EL2)) { 6602 ARMCPRegInfo rvbar = { 6603 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 6604 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6605 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 6606 }; 6607 define_one_arm_cp_reg(cpu, &rvbar); 6608 } 6609 define_arm_cp_regs(cpu, v8_idregs); 6610 define_arm_cp_regs(cpu, v8_cp_reginfo); 6611 } 6612 if (arm_feature(env, ARM_FEATURE_EL2)) { 6613 uint64_t vmpidr_def = mpidr_read_val(env); 6614 ARMCPRegInfo vpidr_regs[] = { 6615 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 6616 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6617 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6618 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 6619 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 6620 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 6621 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6622 .access = PL2_RW, .resetvalue = cpu->midr, 6623 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6624 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 6625 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6626 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6627 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 6628 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 6629 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 6630 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6631 .access = PL2_RW, 6632 .resetvalue = vmpidr_def, 6633 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 6634 REGINFO_SENTINEL 6635 }; 6636 define_arm_cp_regs(cpu, vpidr_regs); 6637 define_arm_cp_regs(cpu, el2_cp_reginfo); 6638 if (arm_feature(env, ARM_FEATURE_V8)) { 6639 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 6640 } 6641 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 6642 if (!arm_feature(env, ARM_FEATURE_EL3)) { 6643 ARMCPRegInfo rvbar = { 6644 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 6645 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 6646 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 6647 }; 6648 define_one_arm_cp_reg(cpu, &rvbar); 6649 } 6650 } else { 6651 /* If EL2 is missing but higher ELs are enabled, we need to 6652 * register the no_el2 reginfos. 6653 */ 6654 if (arm_feature(env, ARM_FEATURE_EL3)) { 6655 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 6656 * of MIDR_EL1 and MPIDR_EL1. 6657 */ 6658 ARMCPRegInfo vpidr_regs[] = { 6659 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6660 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 6661 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6662 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 6663 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 6664 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6665 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 6666 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 6667 .type = ARM_CP_NO_RAW, 6668 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 6669 REGINFO_SENTINEL 6670 }; 6671 define_arm_cp_regs(cpu, vpidr_regs); 6672 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 6673 if (arm_feature(env, ARM_FEATURE_V8)) { 6674 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 6675 } 6676 } 6677 } 6678 if (arm_feature(env, ARM_FEATURE_EL3)) { 6679 define_arm_cp_regs(cpu, el3_cp_reginfo); 6680 ARMCPRegInfo el3_regs[] = { 6681 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 6682 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 6683 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 6684 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 6685 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 6686 .access = PL3_RW, 6687 .raw_writefn = raw_write, .writefn = sctlr_write, 6688 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 6689 .resetvalue = cpu->reset_sctlr }, 6690 REGINFO_SENTINEL 6691 }; 6692 6693 define_arm_cp_regs(cpu, el3_regs); 6694 } 6695 /* The behaviour of NSACR is sufficiently various that we don't 6696 * try to describe it in a single reginfo: 6697 * if EL3 is 64 bit, then trap to EL3 from S EL1, 6698 * reads as constant 0xc00 from NS EL1 and NS EL2 6699 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 6700 * if v7 without EL3, register doesn't exist 6701 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 6702 */ 6703 if (arm_feature(env, ARM_FEATURE_EL3)) { 6704 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6705 ARMCPRegInfo nsacr = { 6706 .name = "NSACR", .type = ARM_CP_CONST, 6707 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6708 .access = PL1_RW, .accessfn = nsacr_access, 6709 .resetvalue = 0xc00 6710 }; 6711 define_one_arm_cp_reg(cpu, &nsacr); 6712 } else { 6713 ARMCPRegInfo nsacr = { 6714 .name = "NSACR", 6715 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6716 .access = PL3_RW | PL1_R, 6717 .resetvalue = 0, 6718 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 6719 }; 6720 define_one_arm_cp_reg(cpu, &nsacr); 6721 } 6722 } else { 6723 if (arm_feature(env, ARM_FEATURE_V8)) { 6724 ARMCPRegInfo nsacr = { 6725 .name = "NSACR", .type = ARM_CP_CONST, 6726 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 6727 .access = PL1_R, 6728 .resetvalue = 0xc00 6729 }; 6730 define_one_arm_cp_reg(cpu, &nsacr); 6731 } 6732 } 6733 6734 if (arm_feature(env, ARM_FEATURE_PMSA)) { 6735 if (arm_feature(env, ARM_FEATURE_V6)) { 6736 /* PMSAv6 not implemented */ 6737 assert(arm_feature(env, ARM_FEATURE_V7)); 6738 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6739 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 6740 } else { 6741 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 6742 } 6743 } else { 6744 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 6745 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 6746 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 6747 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 6748 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 6749 } 6750 } 6751 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 6752 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 6753 } 6754 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 6755 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 6756 } 6757 if (arm_feature(env, ARM_FEATURE_VAPA)) { 6758 define_arm_cp_regs(cpu, vapa_cp_reginfo); 6759 } 6760 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 6761 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 6762 } 6763 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 6764 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 6765 } 6766 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 6767 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 6768 } 6769 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 6770 define_arm_cp_regs(cpu, omap_cp_reginfo); 6771 } 6772 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 6773 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 6774 } 6775 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 6776 define_arm_cp_regs(cpu, xscale_cp_reginfo); 6777 } 6778 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 6779 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 6780 } 6781 if (arm_feature(env, ARM_FEATURE_LPAE)) { 6782 define_arm_cp_regs(cpu, lpae_cp_reginfo); 6783 } 6784 if (cpu_isar_feature(jazelle, cpu)) { 6785 define_arm_cp_regs(cpu, jazelle_regs); 6786 } 6787 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 6788 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 6789 * be read-only (ie write causes UNDEF exception). 6790 */ 6791 { 6792 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 6793 /* Pre-v8 MIDR space. 6794 * Note that the MIDR isn't a simple constant register because 6795 * of the TI925 behaviour where writes to another register can 6796 * cause the MIDR value to change. 6797 * 6798 * Unimplemented registers in the c15 0 0 0 space default to 6799 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 6800 * and friends override accordingly. 6801 */ 6802 { .name = "MIDR", 6803 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 6804 .access = PL1_R, .resetvalue = cpu->midr, 6805 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 6806 .readfn = midr_read, 6807 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6808 .type = ARM_CP_OVERRIDE }, 6809 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 6810 { .name = "DUMMY", 6811 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 6812 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6813 { .name = "DUMMY", 6814 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 6815 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6816 { .name = "DUMMY", 6817 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 6818 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6819 { .name = "DUMMY", 6820 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 6821 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6822 { .name = "DUMMY", 6823 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 6824 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 6825 REGINFO_SENTINEL 6826 }; 6827 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 6828 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 6829 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 6830 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 6831 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 6832 .readfn = midr_read }, 6833 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 6834 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6835 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6836 .access = PL1_R, .resetvalue = cpu->midr }, 6837 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 6838 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 6839 .access = PL1_R, .resetvalue = cpu->midr }, 6840 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 6841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 6842 .access = PL1_R, 6843 .accessfn = access_aa64_tid1, 6844 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 6845 REGINFO_SENTINEL 6846 }; 6847 ARMCPRegInfo id_cp_reginfo[] = { 6848 /* These are common to v8 and pre-v8 */ 6849 { .name = "CTR", 6850 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 6851 .access = PL1_R, .accessfn = ctr_el0_access, 6852 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6853 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 6855 .access = PL0_R, .accessfn = ctr_el0_access, 6856 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 6857 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 6858 { .name = "TCMTR", 6859 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 6860 .access = PL1_R, 6861 .accessfn = access_aa32_tid1, 6862 .type = ARM_CP_CONST, .resetvalue = 0 }, 6863 REGINFO_SENTINEL 6864 }; 6865 /* TLBTR is specific to VMSA */ 6866 ARMCPRegInfo id_tlbtr_reginfo = { 6867 .name = "TLBTR", 6868 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 6869 .access = PL1_R, 6870 .accessfn = access_aa32_tid1, 6871 .type = ARM_CP_CONST, .resetvalue = 0, 6872 }; 6873 /* MPUIR is specific to PMSA V6+ */ 6874 ARMCPRegInfo id_mpuir_reginfo = { 6875 .name = "MPUIR", 6876 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 6877 .access = PL1_R, .type = ARM_CP_CONST, 6878 .resetvalue = cpu->pmsav7_dregion << 8 6879 }; 6880 ARMCPRegInfo crn0_wi_reginfo = { 6881 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 6882 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 6883 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 6884 }; 6885 #ifdef CONFIG_USER_ONLY 6886 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 6887 { .name = "MIDR_EL1", 6888 .exported_bits = 0x00000000ffffffff }, 6889 { .name = "REVIDR_EL1" }, 6890 REGUSERINFO_SENTINEL 6891 }; 6892 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 6893 #endif 6894 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 6895 arm_feature(env, ARM_FEATURE_STRONGARM)) { 6896 ARMCPRegInfo *r; 6897 /* Register the blanket "writes ignored" value first to cover the 6898 * whole space. Then update the specific ID registers to allow write 6899 * access, so that they ignore writes rather than causing them to 6900 * UNDEF. 6901 */ 6902 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 6903 for (r = id_pre_v8_midr_cp_reginfo; 6904 r->type != ARM_CP_SENTINEL; r++) { 6905 r->access = PL1_RW; 6906 } 6907 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 6908 r->access = PL1_RW; 6909 } 6910 id_mpuir_reginfo.access = PL1_RW; 6911 id_tlbtr_reginfo.access = PL1_RW; 6912 } 6913 if (arm_feature(env, ARM_FEATURE_V8)) { 6914 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 6915 } else { 6916 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 6917 } 6918 define_arm_cp_regs(cpu, id_cp_reginfo); 6919 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 6920 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 6921 } else if (arm_feature(env, ARM_FEATURE_V7)) { 6922 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 6923 } 6924 } 6925 6926 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 6927 ARMCPRegInfo mpidr_cp_reginfo[] = { 6928 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 6929 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 6930 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 6931 REGINFO_SENTINEL 6932 }; 6933 #ifdef CONFIG_USER_ONLY 6934 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 6935 { .name = "MPIDR_EL1", 6936 .fixed_bits = 0x0000000080000000 }, 6937 REGUSERINFO_SENTINEL 6938 }; 6939 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 6940 #endif 6941 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 6942 } 6943 6944 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 6945 ARMCPRegInfo auxcr_reginfo[] = { 6946 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 6947 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 6948 .access = PL1_RW, .type = ARM_CP_CONST, 6949 .resetvalue = cpu->reset_auxcr }, 6950 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 6951 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 6952 .access = PL2_RW, .type = ARM_CP_CONST, 6953 .resetvalue = 0 }, 6954 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 6955 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 6956 .access = PL3_RW, .type = ARM_CP_CONST, 6957 .resetvalue = 0 }, 6958 REGINFO_SENTINEL 6959 }; 6960 define_arm_cp_regs(cpu, auxcr_reginfo); 6961 if (arm_feature(env, ARM_FEATURE_V8)) { 6962 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 6963 ARMCPRegInfo hactlr2_reginfo = { 6964 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 6965 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 6966 .access = PL2_RW, .type = ARM_CP_CONST, 6967 .resetvalue = 0 6968 }; 6969 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 6970 } 6971 } 6972 6973 if (arm_feature(env, ARM_FEATURE_CBAR)) { 6974 /* 6975 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 6976 * There are two flavours: 6977 * (1) older 32-bit only cores have a simple 32-bit CBAR 6978 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 6979 * 32-bit register visible to AArch32 at a different encoding 6980 * to the "flavour 1" register and with the bits rearranged to 6981 * be able to squash a 64-bit address into the 32-bit view. 6982 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 6983 * in future if we support AArch32-only configs of some of the 6984 * AArch64 cores we might need to add a specific feature flag 6985 * to indicate cores with "flavour 2" CBAR. 6986 */ 6987 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6988 /* 32 bit view is [31:18] 0...0 [43:32]. */ 6989 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 6990 | extract64(cpu->reset_cbar, 32, 12); 6991 ARMCPRegInfo cbar_reginfo[] = { 6992 { .name = "CBAR", 6993 .type = ARM_CP_CONST, 6994 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 6995 .access = PL1_R, .resetvalue = cbar32 }, 6996 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 6997 .type = ARM_CP_CONST, 6998 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 6999 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 7000 REGINFO_SENTINEL 7001 }; 7002 /* We don't implement a r/w 64 bit CBAR currently */ 7003 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 7004 define_arm_cp_regs(cpu, cbar_reginfo); 7005 } else { 7006 ARMCPRegInfo cbar = { 7007 .name = "CBAR", 7008 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 7009 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 7010 .fieldoffset = offsetof(CPUARMState, 7011 cp15.c15_config_base_address) 7012 }; 7013 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 7014 cbar.access = PL1_R; 7015 cbar.fieldoffset = 0; 7016 cbar.type = ARM_CP_CONST; 7017 } 7018 define_one_arm_cp_reg(cpu, &cbar); 7019 } 7020 } 7021 7022 if (arm_feature(env, ARM_FEATURE_VBAR)) { 7023 ARMCPRegInfo vbar_cp_reginfo[] = { 7024 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 7025 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 7026 .access = PL1_RW, .writefn = vbar_write, 7027 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 7028 offsetof(CPUARMState, cp15.vbar_ns) }, 7029 .resetvalue = 0 }, 7030 REGINFO_SENTINEL 7031 }; 7032 define_arm_cp_regs(cpu, vbar_cp_reginfo); 7033 } 7034 7035 /* Generic registers whose values depend on the implementation */ 7036 { 7037 ARMCPRegInfo sctlr = { 7038 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 7039 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 7040 .access = PL1_RW, 7041 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 7042 offsetof(CPUARMState, cp15.sctlr_ns) }, 7043 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 7044 .raw_writefn = raw_write, 7045 }; 7046 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 7047 /* Normally we would always end the TB on an SCTLR write, but Linux 7048 * arch/arm/mach-pxa/sleep.S expects two instructions following 7049 * an MMU enable to execute from cache. Imitate this behaviour. 7050 */ 7051 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 7052 } 7053 define_one_arm_cp_reg(cpu, &sctlr); 7054 } 7055 7056 if (cpu_isar_feature(aa64_lor, cpu)) { 7057 /* 7058 * A trivial implementation of ARMv8.1-LOR leaves all of these 7059 * registers fixed at 0, which indicates that there are zero 7060 * supported Limited Ordering regions. 7061 */ 7062 static const ARMCPRegInfo lor_reginfo[] = { 7063 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7065 .access = PL1_RW, .accessfn = access_lor_other, 7066 .type = ARM_CP_CONST, .resetvalue = 0 }, 7067 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7069 .access = PL1_RW, .accessfn = access_lor_other, 7070 .type = ARM_CP_CONST, .resetvalue = 0 }, 7071 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7072 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7073 .access = PL1_RW, .accessfn = access_lor_other, 7074 .type = ARM_CP_CONST, .resetvalue = 0 }, 7075 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7076 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7077 .access = PL1_RW, .accessfn = access_lor_other, 7078 .type = ARM_CP_CONST, .resetvalue = 0 }, 7079 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7081 .access = PL1_R, .accessfn = access_lorid, 7082 .type = ARM_CP_CONST, .resetvalue = 0 }, 7083 REGINFO_SENTINEL 7084 }; 7085 define_arm_cp_regs(cpu, lor_reginfo); 7086 } 7087 7088 if (cpu_isar_feature(aa64_sve, cpu)) { 7089 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 7090 if (arm_feature(env, ARM_FEATURE_EL2)) { 7091 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 7092 } else { 7093 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 7094 } 7095 if (arm_feature(env, ARM_FEATURE_EL3)) { 7096 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 7097 } 7098 } 7099 7100 #ifdef TARGET_AARCH64 7101 if (cpu_isar_feature(aa64_pauth, cpu)) { 7102 define_arm_cp_regs(cpu, pauth_reginfo); 7103 } 7104 if (cpu_isar_feature(aa64_rndr, cpu)) { 7105 define_arm_cp_regs(cpu, rndr_reginfo); 7106 } 7107 #ifndef CONFIG_USER_ONLY 7108 /* Data Cache clean instructions up to PoP */ 7109 if (cpu_isar_feature(aa64_dcpop, cpu)) { 7110 define_one_arm_cp_reg(cpu, dcpop_reg); 7111 7112 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 7113 define_one_arm_cp_reg(cpu, dcpodp_reg); 7114 } 7115 } 7116 #endif /*CONFIG_USER_ONLY*/ 7117 #endif 7118 7119 /* 7120 * While all v8.0 cpus support aarch64, QEMU does have configurations 7121 * that do not set ID_AA64ISAR1, e.g. user-only qemu-arm -cpu max, 7122 * which will set ID_ISAR6. 7123 */ 7124 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) 7125 ? cpu_isar_feature(aa64_predinv, cpu) 7126 : cpu_isar_feature(aa32_predinv, cpu)) { 7127 define_arm_cp_regs(cpu, predinv_reginfo); 7128 } 7129 } 7130 7131 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 7132 { 7133 CPUState *cs = CPU(cpu); 7134 CPUARMState *env = &cpu->env; 7135 7136 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7137 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 7138 aarch64_fpu_gdb_set_reg, 7139 34, "aarch64-fpu.xml", 0); 7140 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 7141 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7142 51, "arm-neon.xml", 0); 7143 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 7144 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7145 35, "arm-vfp3.xml", 0); 7146 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 7147 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 7148 19, "arm-vfp.xml", 0); 7149 } 7150 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 7151 arm_gen_dynamic_xml(cs), 7152 "system-registers.xml", 0); 7153 } 7154 7155 /* Sort alphabetically by type name, except for "any". */ 7156 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 7157 { 7158 ObjectClass *class_a = (ObjectClass *)a; 7159 ObjectClass *class_b = (ObjectClass *)b; 7160 const char *name_a, *name_b; 7161 7162 name_a = object_class_get_name(class_a); 7163 name_b = object_class_get_name(class_b); 7164 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 7165 return 1; 7166 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 7167 return -1; 7168 } else { 7169 return strcmp(name_a, name_b); 7170 } 7171 } 7172 7173 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 7174 { 7175 ObjectClass *oc = data; 7176 const char *typename; 7177 char *name; 7178 7179 typename = object_class_get_name(oc); 7180 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7181 qemu_printf(" %s\n", name); 7182 g_free(name); 7183 } 7184 7185 void arm_cpu_list(void) 7186 { 7187 GSList *list; 7188 7189 list = object_class_get_list(TYPE_ARM_CPU, false); 7190 list = g_slist_sort(list, arm_cpu_list_compare); 7191 qemu_printf("Available CPUs:\n"); 7192 g_slist_foreach(list, arm_cpu_list_entry, NULL); 7193 g_slist_free(list); 7194 } 7195 7196 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 7197 { 7198 ObjectClass *oc = data; 7199 CpuDefinitionInfoList **cpu_list = user_data; 7200 CpuDefinitionInfoList *entry; 7201 CpuDefinitionInfo *info; 7202 const char *typename; 7203 7204 typename = object_class_get_name(oc); 7205 info = g_malloc0(sizeof(*info)); 7206 info->name = g_strndup(typename, 7207 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 7208 info->q_typename = g_strdup(typename); 7209 7210 entry = g_malloc0(sizeof(*entry)); 7211 entry->value = info; 7212 entry->next = *cpu_list; 7213 *cpu_list = entry; 7214 } 7215 7216 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 7217 { 7218 CpuDefinitionInfoList *cpu_list = NULL; 7219 GSList *list; 7220 7221 list = object_class_get_list(TYPE_ARM_CPU, false); 7222 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 7223 g_slist_free(list); 7224 7225 return cpu_list; 7226 } 7227 7228 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 7229 void *opaque, int state, int secstate, 7230 int crm, int opc1, int opc2, 7231 const char *name) 7232 { 7233 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 7234 * add a single reginfo struct to the hash table. 7235 */ 7236 uint32_t *key = g_new(uint32_t, 1); 7237 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 7238 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 7239 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 7240 7241 r2->name = g_strdup(name); 7242 /* Reset the secure state to the specific incoming state. This is 7243 * necessary as the register may have been defined with both states. 7244 */ 7245 r2->secure = secstate; 7246 7247 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7248 /* Register is banked (using both entries in array). 7249 * Overwriting fieldoffset as the array is only used to define 7250 * banked registers but later only fieldoffset is used. 7251 */ 7252 r2->fieldoffset = r->bank_fieldoffsets[ns]; 7253 } 7254 7255 if (state == ARM_CP_STATE_AA32) { 7256 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 7257 /* If the register is banked then we don't need to migrate or 7258 * reset the 32-bit instance in certain cases: 7259 * 7260 * 1) If the register has both 32-bit and 64-bit instances then we 7261 * can count on the 64-bit instance taking care of the 7262 * non-secure bank. 7263 * 2) If ARMv8 is enabled then we can count on a 64-bit version 7264 * taking care of the secure bank. This requires that separate 7265 * 32 and 64-bit definitions are provided. 7266 */ 7267 if ((r->state == ARM_CP_STATE_BOTH && ns) || 7268 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 7269 r2->type |= ARM_CP_ALIAS; 7270 } 7271 } else if ((secstate != r->secure) && !ns) { 7272 /* The register is not banked so we only want to allow migration of 7273 * the non-secure instance. 7274 */ 7275 r2->type |= ARM_CP_ALIAS; 7276 } 7277 7278 if (r->state == ARM_CP_STATE_BOTH) { 7279 /* We assume it is a cp15 register if the .cp field is left unset. 7280 */ 7281 if (r2->cp == 0) { 7282 r2->cp = 15; 7283 } 7284 7285 #ifdef HOST_WORDS_BIGENDIAN 7286 if (r2->fieldoffset) { 7287 r2->fieldoffset += sizeof(uint32_t); 7288 } 7289 #endif 7290 } 7291 } 7292 if (state == ARM_CP_STATE_AA64) { 7293 /* To allow abbreviation of ARMCPRegInfo 7294 * definitions, we treat cp == 0 as equivalent to 7295 * the value for "standard guest-visible sysreg". 7296 * STATE_BOTH definitions are also always "standard 7297 * sysreg" in their AArch64 view (the .cp value may 7298 * be non-zero for the benefit of the AArch32 view). 7299 */ 7300 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 7301 r2->cp = CP_REG_ARM64_SYSREG_CP; 7302 } 7303 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 7304 r2->opc0, opc1, opc2); 7305 } else { 7306 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 7307 } 7308 if (opaque) { 7309 r2->opaque = opaque; 7310 } 7311 /* reginfo passed to helpers is correct for the actual access, 7312 * and is never ARM_CP_STATE_BOTH: 7313 */ 7314 r2->state = state; 7315 /* Make sure reginfo passed to helpers for wildcarded regs 7316 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 7317 */ 7318 r2->crm = crm; 7319 r2->opc1 = opc1; 7320 r2->opc2 = opc2; 7321 /* By convention, for wildcarded registers only the first 7322 * entry is used for migration; the others are marked as 7323 * ALIAS so we don't try to transfer the register 7324 * multiple times. Special registers (ie NOP/WFI) are 7325 * never migratable and not even raw-accessible. 7326 */ 7327 if ((r->type & ARM_CP_SPECIAL)) { 7328 r2->type |= ARM_CP_NO_RAW; 7329 } 7330 if (((r->crm == CP_ANY) && crm != 0) || 7331 ((r->opc1 == CP_ANY) && opc1 != 0) || 7332 ((r->opc2 == CP_ANY) && opc2 != 0)) { 7333 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 7334 } 7335 7336 /* Check that raw accesses are either forbidden or handled. Note that 7337 * we can't assert this earlier because the setup of fieldoffset for 7338 * banked registers has to be done first. 7339 */ 7340 if (!(r2->type & ARM_CP_NO_RAW)) { 7341 assert(!raw_accessors_invalid(r2)); 7342 } 7343 7344 /* Overriding of an existing definition must be explicitly 7345 * requested. 7346 */ 7347 if (!(r->type & ARM_CP_OVERRIDE)) { 7348 ARMCPRegInfo *oldreg; 7349 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 7350 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 7351 fprintf(stderr, "Register redefined: cp=%d %d bit " 7352 "crn=%d crm=%d opc1=%d opc2=%d, " 7353 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 7354 r2->crn, r2->crm, r2->opc1, r2->opc2, 7355 oldreg->name, r2->name); 7356 g_assert_not_reached(); 7357 } 7358 } 7359 g_hash_table_insert(cpu->cp_regs, key, r2); 7360 } 7361 7362 7363 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 7364 const ARMCPRegInfo *r, void *opaque) 7365 { 7366 /* Define implementations of coprocessor registers. 7367 * We store these in a hashtable because typically 7368 * there are less than 150 registers in a space which 7369 * is 16*16*16*8*8 = 262144 in size. 7370 * Wildcarding is supported for the crm, opc1 and opc2 fields. 7371 * If a register is defined twice then the second definition is 7372 * used, so this can be used to define some generic registers and 7373 * then override them with implementation specific variations. 7374 * At least one of the original and the second definition should 7375 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 7376 * against accidental use. 7377 * 7378 * The state field defines whether the register is to be 7379 * visible in the AArch32 or AArch64 execution state. If the 7380 * state is set to ARM_CP_STATE_BOTH then we synthesise a 7381 * reginfo structure for the AArch32 view, which sees the lower 7382 * 32 bits of the 64 bit register. 7383 * 7384 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 7385 * be wildcarded. AArch64 registers are always considered to be 64 7386 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 7387 * the register, if any. 7388 */ 7389 int crm, opc1, opc2, state; 7390 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 7391 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 7392 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 7393 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 7394 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 7395 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 7396 /* 64 bit registers have only CRm and Opc1 fields */ 7397 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 7398 /* op0 only exists in the AArch64 encodings */ 7399 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 7400 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 7401 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 7402 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 7403 * encodes a minimum access level for the register. We roll this 7404 * runtime check into our general permission check code, so check 7405 * here that the reginfo's specified permissions are strict enough 7406 * to encompass the generic architectural permission check. 7407 */ 7408 if (r->state != ARM_CP_STATE_AA32) { 7409 int mask = 0; 7410 switch (r->opc1) { 7411 case 0: 7412 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 7413 mask = PL0U_R | PL1_RW; 7414 break; 7415 case 1: case 2: 7416 /* min_EL EL1 */ 7417 mask = PL1_RW; 7418 break; 7419 case 3: 7420 /* min_EL EL0 */ 7421 mask = PL0_RW; 7422 break; 7423 case 4: 7424 /* min_EL EL2 */ 7425 mask = PL2_RW; 7426 break; 7427 case 5: 7428 /* unallocated encoding, so not possible */ 7429 assert(false); 7430 break; 7431 case 6: 7432 /* min_EL EL3 */ 7433 mask = PL3_RW; 7434 break; 7435 case 7: 7436 /* min_EL EL1, secure mode only (we don't check the latter) */ 7437 mask = PL1_RW; 7438 break; 7439 default: 7440 /* broken reginfo with out-of-range opc1 */ 7441 assert(false); 7442 break; 7443 } 7444 /* assert our permissions are not too lax (stricter is fine) */ 7445 assert((r->access & ~mask) == 0); 7446 } 7447 7448 /* Check that the register definition has enough info to handle 7449 * reads and writes if they are permitted. 7450 */ 7451 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 7452 if (r->access & PL3_R) { 7453 assert((r->fieldoffset || 7454 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7455 r->readfn); 7456 } 7457 if (r->access & PL3_W) { 7458 assert((r->fieldoffset || 7459 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 7460 r->writefn); 7461 } 7462 } 7463 /* Bad type field probably means missing sentinel at end of reg list */ 7464 assert(cptype_valid(r->type)); 7465 for (crm = crmmin; crm <= crmmax; crm++) { 7466 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 7467 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 7468 for (state = ARM_CP_STATE_AA32; 7469 state <= ARM_CP_STATE_AA64; state++) { 7470 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 7471 continue; 7472 } 7473 if (state == ARM_CP_STATE_AA32) { 7474 /* Under AArch32 CP registers can be common 7475 * (same for secure and non-secure world) or banked. 7476 */ 7477 char *name; 7478 7479 switch (r->secure) { 7480 case ARM_CP_SECSTATE_S: 7481 case ARM_CP_SECSTATE_NS: 7482 add_cpreg_to_hashtable(cpu, r, opaque, state, 7483 r->secure, crm, opc1, opc2, 7484 r->name); 7485 break; 7486 default: 7487 name = g_strdup_printf("%s_S", r->name); 7488 add_cpreg_to_hashtable(cpu, r, opaque, state, 7489 ARM_CP_SECSTATE_S, 7490 crm, opc1, opc2, name); 7491 g_free(name); 7492 add_cpreg_to_hashtable(cpu, r, opaque, state, 7493 ARM_CP_SECSTATE_NS, 7494 crm, opc1, opc2, r->name); 7495 break; 7496 } 7497 } else { 7498 /* AArch64 registers get mapped to non-secure instance 7499 * of AArch32 */ 7500 add_cpreg_to_hashtable(cpu, r, opaque, state, 7501 ARM_CP_SECSTATE_NS, 7502 crm, opc1, opc2, r->name); 7503 } 7504 } 7505 } 7506 } 7507 } 7508 } 7509 7510 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 7511 const ARMCPRegInfo *regs, void *opaque) 7512 { 7513 /* Define a whole list of registers */ 7514 const ARMCPRegInfo *r; 7515 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7516 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 7517 } 7518 } 7519 7520 /* 7521 * Modify ARMCPRegInfo for access from userspace. 7522 * 7523 * This is a data driven modification directed by 7524 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 7525 * user-space cannot alter any values and dynamic values pertaining to 7526 * execution state are hidden from user space view anyway. 7527 */ 7528 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 7529 { 7530 const ARMCPRegUserSpaceInfo *m; 7531 ARMCPRegInfo *r; 7532 7533 for (m = mods; m->name; m++) { 7534 GPatternSpec *pat = NULL; 7535 if (m->is_glob) { 7536 pat = g_pattern_spec_new(m->name); 7537 } 7538 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 7539 if (pat && g_pattern_match_string(pat, r->name)) { 7540 r->type = ARM_CP_CONST; 7541 r->access = PL0U_R; 7542 r->resetvalue = 0; 7543 /* continue */ 7544 } else if (strcmp(r->name, m->name) == 0) { 7545 r->type = ARM_CP_CONST; 7546 r->access = PL0U_R; 7547 r->resetvalue &= m->exported_bits; 7548 r->resetvalue |= m->fixed_bits; 7549 break; 7550 } 7551 } 7552 if (pat) { 7553 g_pattern_spec_free(pat); 7554 } 7555 } 7556 } 7557 7558 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 7559 { 7560 return g_hash_table_lookup(cpregs, &encoded_cp); 7561 } 7562 7563 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 7564 uint64_t value) 7565 { 7566 /* Helper coprocessor write function for write-ignore registers */ 7567 } 7568 7569 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 7570 { 7571 /* Helper coprocessor write function for read-as-zero registers */ 7572 return 0; 7573 } 7574 7575 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 7576 { 7577 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 7578 } 7579 7580 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 7581 { 7582 /* Return true if it is not valid for us to switch to 7583 * this CPU mode (ie all the UNPREDICTABLE cases in 7584 * the ARM ARM CPSRWriteByInstr pseudocode). 7585 */ 7586 7587 /* Changes to or from Hyp via MSR and CPS are illegal. */ 7588 if (write_type == CPSRWriteByInstr && 7589 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 7590 mode == ARM_CPU_MODE_HYP)) { 7591 return 1; 7592 } 7593 7594 switch (mode) { 7595 case ARM_CPU_MODE_USR: 7596 return 0; 7597 case ARM_CPU_MODE_SYS: 7598 case ARM_CPU_MODE_SVC: 7599 case ARM_CPU_MODE_ABT: 7600 case ARM_CPU_MODE_UND: 7601 case ARM_CPU_MODE_IRQ: 7602 case ARM_CPU_MODE_FIQ: 7603 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 7604 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 7605 */ 7606 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 7607 * and CPS are treated as illegal mode changes. 7608 */ 7609 if (write_type == CPSRWriteByInstr && 7610 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 7611 (arm_hcr_el2_eff(env) & HCR_TGE)) { 7612 return 1; 7613 } 7614 return 0; 7615 case ARM_CPU_MODE_HYP: 7616 return !arm_feature(env, ARM_FEATURE_EL2) 7617 || arm_current_el(env) < 2 || arm_is_secure_below_el3(env); 7618 case ARM_CPU_MODE_MON: 7619 return arm_current_el(env) < 3; 7620 default: 7621 return 1; 7622 } 7623 } 7624 7625 uint32_t cpsr_read(CPUARMState *env) 7626 { 7627 int ZF; 7628 ZF = (env->ZF == 0); 7629 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 7630 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 7631 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 7632 | ((env->condexec_bits & 0xfc) << 8) 7633 | (env->GE << 16) | (env->daif & CPSR_AIF); 7634 } 7635 7636 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 7637 CPSRWriteType write_type) 7638 { 7639 uint32_t changed_daif; 7640 7641 if (mask & CPSR_NZCV) { 7642 env->ZF = (~val) & CPSR_Z; 7643 env->NF = val; 7644 env->CF = (val >> 29) & 1; 7645 env->VF = (val << 3) & 0x80000000; 7646 } 7647 if (mask & CPSR_Q) 7648 env->QF = ((val & CPSR_Q) != 0); 7649 if (mask & CPSR_T) 7650 env->thumb = ((val & CPSR_T) != 0); 7651 if (mask & CPSR_IT_0_1) { 7652 env->condexec_bits &= ~3; 7653 env->condexec_bits |= (val >> 25) & 3; 7654 } 7655 if (mask & CPSR_IT_2_7) { 7656 env->condexec_bits &= 3; 7657 env->condexec_bits |= (val >> 8) & 0xfc; 7658 } 7659 if (mask & CPSR_GE) { 7660 env->GE = (val >> 16) & 0xf; 7661 } 7662 7663 /* In a V7 implementation that includes the security extensions but does 7664 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 7665 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 7666 * bits respectively. 7667 * 7668 * In a V8 implementation, it is permitted for privileged software to 7669 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 7670 */ 7671 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 7672 arm_feature(env, ARM_FEATURE_EL3) && 7673 !arm_feature(env, ARM_FEATURE_EL2) && 7674 !arm_is_secure(env)) { 7675 7676 changed_daif = (env->daif ^ val) & mask; 7677 7678 if (changed_daif & CPSR_A) { 7679 /* Check to see if we are allowed to change the masking of async 7680 * abort exceptions from a non-secure state. 7681 */ 7682 if (!(env->cp15.scr_el3 & SCR_AW)) { 7683 qemu_log_mask(LOG_GUEST_ERROR, 7684 "Ignoring attempt to switch CPSR_A flag from " 7685 "non-secure world with SCR.AW bit clear\n"); 7686 mask &= ~CPSR_A; 7687 } 7688 } 7689 7690 if (changed_daif & CPSR_F) { 7691 /* Check to see if we are allowed to change the masking of FIQ 7692 * exceptions from a non-secure state. 7693 */ 7694 if (!(env->cp15.scr_el3 & SCR_FW)) { 7695 qemu_log_mask(LOG_GUEST_ERROR, 7696 "Ignoring attempt to switch CPSR_F flag from " 7697 "non-secure world with SCR.FW bit clear\n"); 7698 mask &= ~CPSR_F; 7699 } 7700 7701 /* Check whether non-maskable FIQ (NMFI) support is enabled. 7702 * If this bit is set software is not allowed to mask 7703 * FIQs, but is allowed to set CPSR_F to 0. 7704 */ 7705 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 7706 (val & CPSR_F)) { 7707 qemu_log_mask(LOG_GUEST_ERROR, 7708 "Ignoring attempt to enable CPSR_F flag " 7709 "(non-maskable FIQ [NMFI] support enabled)\n"); 7710 mask &= ~CPSR_F; 7711 } 7712 } 7713 } 7714 7715 env->daif &= ~(CPSR_AIF & mask); 7716 env->daif |= val & CPSR_AIF & mask; 7717 7718 if (write_type != CPSRWriteRaw && 7719 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 7720 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 7721 /* Note that we can only get here in USR mode if this is a 7722 * gdb stub write; for this case we follow the architectural 7723 * behaviour for guest writes in USR mode of ignoring an attempt 7724 * to switch mode. (Those are caught by translate.c for writes 7725 * triggered by guest instructions.) 7726 */ 7727 mask &= ~CPSR_M; 7728 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 7729 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 7730 * v7, and has defined behaviour in v8: 7731 * + leave CPSR.M untouched 7732 * + allow changes to the other CPSR fields 7733 * + set PSTATE.IL 7734 * For user changes via the GDB stub, we don't set PSTATE.IL, 7735 * as this would be unnecessarily harsh for a user error. 7736 */ 7737 mask &= ~CPSR_M; 7738 if (write_type != CPSRWriteByGDBStub && 7739 arm_feature(env, ARM_FEATURE_V8)) { 7740 mask |= CPSR_IL; 7741 val |= CPSR_IL; 7742 } 7743 qemu_log_mask(LOG_GUEST_ERROR, 7744 "Illegal AArch32 mode switch attempt from %s to %s\n", 7745 aarch32_mode_name(env->uncached_cpsr), 7746 aarch32_mode_name(val)); 7747 } else { 7748 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 7749 write_type == CPSRWriteExceptionReturn ? 7750 "Exception return from AArch32" : 7751 "AArch32 mode switch from", 7752 aarch32_mode_name(env->uncached_cpsr), 7753 aarch32_mode_name(val), env->regs[15]); 7754 switch_mode(env, val & CPSR_M); 7755 } 7756 } 7757 mask &= ~CACHED_CPSR_BITS; 7758 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 7759 } 7760 7761 /* Sign/zero extend */ 7762 uint32_t HELPER(sxtb16)(uint32_t x) 7763 { 7764 uint32_t res; 7765 res = (uint16_t)(int8_t)x; 7766 res |= (uint32_t)(int8_t)(x >> 16) << 16; 7767 return res; 7768 } 7769 7770 uint32_t HELPER(uxtb16)(uint32_t x) 7771 { 7772 uint32_t res; 7773 res = (uint16_t)(uint8_t)x; 7774 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 7775 return res; 7776 } 7777 7778 int32_t HELPER(sdiv)(int32_t num, int32_t den) 7779 { 7780 if (den == 0) 7781 return 0; 7782 if (num == INT_MIN && den == -1) 7783 return INT_MIN; 7784 return num / den; 7785 } 7786 7787 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 7788 { 7789 if (den == 0) 7790 return 0; 7791 return num / den; 7792 } 7793 7794 uint32_t HELPER(rbit)(uint32_t x) 7795 { 7796 return revbit32(x); 7797 } 7798 7799 #ifdef CONFIG_USER_ONLY 7800 7801 static void switch_mode(CPUARMState *env, int mode) 7802 { 7803 ARMCPU *cpu = env_archcpu(env); 7804 7805 if (mode != ARM_CPU_MODE_USR) { 7806 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 7807 } 7808 } 7809 7810 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7811 uint32_t cur_el, bool secure) 7812 { 7813 return 1; 7814 } 7815 7816 void aarch64_sync_64_to_32(CPUARMState *env) 7817 { 7818 g_assert_not_reached(); 7819 } 7820 7821 #else 7822 7823 static void switch_mode(CPUARMState *env, int mode) 7824 { 7825 int old_mode; 7826 int i; 7827 7828 old_mode = env->uncached_cpsr & CPSR_M; 7829 if (mode == old_mode) 7830 return; 7831 7832 if (old_mode == ARM_CPU_MODE_FIQ) { 7833 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7834 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 7835 } else if (mode == ARM_CPU_MODE_FIQ) { 7836 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 7837 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 7838 } 7839 7840 i = bank_number(old_mode); 7841 env->banked_r13[i] = env->regs[13]; 7842 env->banked_spsr[i] = env->spsr; 7843 7844 i = bank_number(mode); 7845 env->regs[13] = env->banked_r13[i]; 7846 env->spsr = env->banked_spsr[i]; 7847 7848 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 7849 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 7850 } 7851 7852 /* Physical Interrupt Target EL Lookup Table 7853 * 7854 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 7855 * 7856 * The below multi-dimensional table is used for looking up the target 7857 * exception level given numerous condition criteria. Specifically, the 7858 * target EL is based on SCR and HCR routing controls as well as the 7859 * currently executing EL and secure state. 7860 * 7861 * Dimensions: 7862 * target_el_table[2][2][2][2][2][4] 7863 * | | | | | +--- Current EL 7864 * | | | | +------ Non-secure(0)/Secure(1) 7865 * | | | +--------- HCR mask override 7866 * | | +------------ SCR exec state control 7867 * | +--------------- SCR mask override 7868 * +------------------ 32-bit(0)/64-bit(1) EL3 7869 * 7870 * The table values are as such: 7871 * 0-3 = EL0-EL3 7872 * -1 = Cannot occur 7873 * 7874 * The ARM ARM target EL table includes entries indicating that an "exception 7875 * is not taken". The two cases where this is applicable are: 7876 * 1) An exception is taken from EL3 but the SCR does not have the exception 7877 * routed to EL3. 7878 * 2) An exception is taken from EL2 but the HCR does not have the exception 7879 * routed to EL2. 7880 * In these two cases, the below table contain a target of EL1. This value is 7881 * returned as it is expected that the consumer of the table data will check 7882 * for "target EL >= current EL" to ensure the exception is not taken. 7883 * 7884 * SCR HCR 7885 * 64 EA AMO From 7886 * BIT IRQ IMO Non-secure Secure 7887 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 7888 */ 7889 static const int8_t target_el_table[2][2][2][2][2][4] = { 7890 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7891 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 7892 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 7893 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 7894 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7895 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 7896 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 7897 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 7898 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 7899 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 7900 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 7901 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 7902 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7903 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 7904 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 7905 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 7906 }; 7907 7908 /* 7909 * Determine the target EL for physical exceptions 7910 */ 7911 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 7912 uint32_t cur_el, bool secure) 7913 { 7914 CPUARMState *env = cs->env_ptr; 7915 bool rw; 7916 bool scr; 7917 bool hcr; 7918 int target_el; 7919 /* Is the highest EL AArch64? */ 7920 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 7921 uint64_t hcr_el2; 7922 7923 if (arm_feature(env, ARM_FEATURE_EL3)) { 7924 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 7925 } else { 7926 /* Either EL2 is the highest EL (and so the EL2 register width 7927 * is given by is64); or there is no EL2 or EL3, in which case 7928 * the value of 'rw' does not affect the table lookup anyway. 7929 */ 7930 rw = is64; 7931 } 7932 7933 hcr_el2 = arm_hcr_el2_eff(env); 7934 switch (excp_idx) { 7935 case EXCP_IRQ: 7936 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 7937 hcr = hcr_el2 & HCR_IMO; 7938 break; 7939 case EXCP_FIQ: 7940 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 7941 hcr = hcr_el2 & HCR_FMO; 7942 break; 7943 default: 7944 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 7945 hcr = hcr_el2 & HCR_AMO; 7946 break; 7947 }; 7948 7949 /* Perform a table-lookup for the target EL given the current state */ 7950 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 7951 7952 assert(target_el > 0); 7953 7954 return target_el; 7955 } 7956 7957 void arm_log_exception(int idx) 7958 { 7959 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7960 const char *exc = NULL; 7961 static const char * const excnames[] = { 7962 [EXCP_UDEF] = "Undefined Instruction", 7963 [EXCP_SWI] = "SVC", 7964 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7965 [EXCP_DATA_ABORT] = "Data Abort", 7966 [EXCP_IRQ] = "IRQ", 7967 [EXCP_FIQ] = "FIQ", 7968 [EXCP_BKPT] = "Breakpoint", 7969 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7970 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7971 [EXCP_HVC] = "Hypervisor Call", 7972 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7973 [EXCP_SMC] = "Secure Monitor Call", 7974 [EXCP_VIRQ] = "Virtual IRQ", 7975 [EXCP_VFIQ] = "Virtual FIQ", 7976 [EXCP_SEMIHOST] = "Semihosting call", 7977 [EXCP_NOCP] = "v7M NOCP UsageFault", 7978 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7979 [EXCP_STKOF] = "v8M STKOF UsageFault", 7980 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 7981 [EXCP_LSERR] = "v8M LSERR UsageFault", 7982 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 7983 }; 7984 7985 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7986 exc = excnames[idx]; 7987 } 7988 if (!exc) { 7989 exc = "unknown"; 7990 } 7991 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7992 } 7993 } 7994 7995 /* 7996 * Function used to synchronize QEMU's AArch64 register set with AArch32 7997 * register set. This is necessary when switching between AArch32 and AArch64 7998 * execution state. 7999 */ 8000 void aarch64_sync_32_to_64(CPUARMState *env) 8001 { 8002 int i; 8003 uint32_t mode = env->uncached_cpsr & CPSR_M; 8004 8005 /* We can blanket copy R[0:7] to X[0:7] */ 8006 for (i = 0; i < 8; i++) { 8007 env->xregs[i] = env->regs[i]; 8008 } 8009 8010 /* 8011 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8012 * Otherwise, they come from the banked user regs. 8013 */ 8014 if (mode == ARM_CPU_MODE_FIQ) { 8015 for (i = 8; i < 13; i++) { 8016 env->xregs[i] = env->usr_regs[i - 8]; 8017 } 8018 } else { 8019 for (i = 8; i < 13; i++) { 8020 env->xregs[i] = env->regs[i]; 8021 } 8022 } 8023 8024 /* 8025 * Registers x13-x23 are the various mode SP and FP registers. Registers 8026 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8027 * from the mode banked register. 8028 */ 8029 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8030 env->xregs[13] = env->regs[13]; 8031 env->xregs[14] = env->regs[14]; 8032 } else { 8033 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8034 /* HYP is an exception in that it is copied from r14 */ 8035 if (mode == ARM_CPU_MODE_HYP) { 8036 env->xregs[14] = env->regs[14]; 8037 } else { 8038 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8039 } 8040 } 8041 8042 if (mode == ARM_CPU_MODE_HYP) { 8043 env->xregs[15] = env->regs[13]; 8044 } else { 8045 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8046 } 8047 8048 if (mode == ARM_CPU_MODE_IRQ) { 8049 env->xregs[16] = env->regs[14]; 8050 env->xregs[17] = env->regs[13]; 8051 } else { 8052 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8053 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8054 } 8055 8056 if (mode == ARM_CPU_MODE_SVC) { 8057 env->xregs[18] = env->regs[14]; 8058 env->xregs[19] = env->regs[13]; 8059 } else { 8060 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8061 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8062 } 8063 8064 if (mode == ARM_CPU_MODE_ABT) { 8065 env->xregs[20] = env->regs[14]; 8066 env->xregs[21] = env->regs[13]; 8067 } else { 8068 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8069 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8070 } 8071 8072 if (mode == ARM_CPU_MODE_UND) { 8073 env->xregs[22] = env->regs[14]; 8074 env->xregs[23] = env->regs[13]; 8075 } else { 8076 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8077 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8078 } 8079 8080 /* 8081 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8082 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8083 * FIQ bank for r8-r14. 8084 */ 8085 if (mode == ARM_CPU_MODE_FIQ) { 8086 for (i = 24; i < 31; i++) { 8087 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8088 } 8089 } else { 8090 for (i = 24; i < 29; i++) { 8091 env->xregs[i] = env->fiq_regs[i - 24]; 8092 } 8093 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8094 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8095 } 8096 8097 env->pc = env->regs[15]; 8098 } 8099 8100 /* 8101 * Function used to synchronize QEMU's AArch32 register set with AArch64 8102 * register set. This is necessary when switching between AArch32 and AArch64 8103 * execution state. 8104 */ 8105 void aarch64_sync_64_to_32(CPUARMState *env) 8106 { 8107 int i; 8108 uint32_t mode = env->uncached_cpsr & CPSR_M; 8109 8110 /* We can blanket copy X[0:7] to R[0:7] */ 8111 for (i = 0; i < 8; i++) { 8112 env->regs[i] = env->xregs[i]; 8113 } 8114 8115 /* 8116 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8117 * Otherwise, we copy x8-x12 into the banked user regs. 8118 */ 8119 if (mode == ARM_CPU_MODE_FIQ) { 8120 for (i = 8; i < 13; i++) { 8121 env->usr_regs[i - 8] = env->xregs[i]; 8122 } 8123 } else { 8124 for (i = 8; i < 13; i++) { 8125 env->regs[i] = env->xregs[i]; 8126 } 8127 } 8128 8129 /* 8130 * Registers r13 & r14 depend on the current mode. 8131 * If we are in a given mode, we copy the corresponding x registers to r13 8132 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8133 * for the mode. 8134 */ 8135 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8136 env->regs[13] = env->xregs[13]; 8137 env->regs[14] = env->xregs[14]; 8138 } else { 8139 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8140 8141 /* 8142 * HYP is an exception in that it does not have its own banked r14 but 8143 * shares the USR r14 8144 */ 8145 if (mode == ARM_CPU_MODE_HYP) { 8146 env->regs[14] = env->xregs[14]; 8147 } else { 8148 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8149 } 8150 } 8151 8152 if (mode == ARM_CPU_MODE_HYP) { 8153 env->regs[13] = env->xregs[15]; 8154 } else { 8155 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8156 } 8157 8158 if (mode == ARM_CPU_MODE_IRQ) { 8159 env->regs[14] = env->xregs[16]; 8160 env->regs[13] = env->xregs[17]; 8161 } else { 8162 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8163 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8164 } 8165 8166 if (mode == ARM_CPU_MODE_SVC) { 8167 env->regs[14] = env->xregs[18]; 8168 env->regs[13] = env->xregs[19]; 8169 } else { 8170 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8171 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8172 } 8173 8174 if (mode == ARM_CPU_MODE_ABT) { 8175 env->regs[14] = env->xregs[20]; 8176 env->regs[13] = env->xregs[21]; 8177 } else { 8178 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8179 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8180 } 8181 8182 if (mode == ARM_CPU_MODE_UND) { 8183 env->regs[14] = env->xregs[22]; 8184 env->regs[13] = env->xregs[23]; 8185 } else { 8186 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8187 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8188 } 8189 8190 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8191 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8192 * FIQ bank for r8-r14. 8193 */ 8194 if (mode == ARM_CPU_MODE_FIQ) { 8195 for (i = 24; i < 31; i++) { 8196 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8197 } 8198 } else { 8199 for (i = 24; i < 29; i++) { 8200 env->fiq_regs[i - 24] = env->xregs[i]; 8201 } 8202 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8203 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8204 } 8205 8206 env->regs[15] = env->pc; 8207 } 8208 8209 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8210 uint32_t mask, uint32_t offset, 8211 uint32_t newpc) 8212 { 8213 /* Change the CPU state so as to actually take the exception. */ 8214 switch_mode(env, new_mode); 8215 /* 8216 * For exceptions taken to AArch32 we must clear the SS bit in both 8217 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8218 */ 8219 env->uncached_cpsr &= ~PSTATE_SS; 8220 env->spsr = cpsr_read(env); 8221 /* Clear IT bits. */ 8222 env->condexec_bits = 0; 8223 /* Switch to the new mode, and to the correct instruction set. */ 8224 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8225 /* Set new mode endianness */ 8226 env->uncached_cpsr &= ~CPSR_E; 8227 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8228 env->uncached_cpsr |= CPSR_E; 8229 } 8230 /* J and IL must always be cleared for exception entry */ 8231 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8232 env->daif |= mask; 8233 8234 if (new_mode == ARM_CPU_MODE_HYP) { 8235 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8236 env->elr_el[2] = env->regs[15]; 8237 } else { 8238 /* 8239 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8240 * and we should just guard the thumb mode on V4 8241 */ 8242 if (arm_feature(env, ARM_FEATURE_V4T)) { 8243 env->thumb = 8244 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8245 } 8246 env->regs[14] = env->regs[15] + offset; 8247 } 8248 env->regs[15] = newpc; 8249 arm_rebuild_hflags(env); 8250 } 8251 8252 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8253 { 8254 /* 8255 * Handle exception entry to Hyp mode; this is sufficiently 8256 * different to entry to other AArch32 modes that we handle it 8257 * separately here. 8258 * 8259 * The vector table entry used is always the 0x14 Hyp mode entry point, 8260 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8261 * The offset applied to the preferred return address is always zero 8262 * (see DDI0487C.a section G1.12.3). 8263 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8264 */ 8265 uint32_t addr, mask; 8266 ARMCPU *cpu = ARM_CPU(cs); 8267 CPUARMState *env = &cpu->env; 8268 8269 switch (cs->exception_index) { 8270 case EXCP_UDEF: 8271 addr = 0x04; 8272 break; 8273 case EXCP_SWI: 8274 addr = 0x14; 8275 break; 8276 case EXCP_BKPT: 8277 /* Fall through to prefetch abort. */ 8278 case EXCP_PREFETCH_ABORT: 8279 env->cp15.ifar_s = env->exception.vaddress; 8280 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8281 (uint32_t)env->exception.vaddress); 8282 addr = 0x0c; 8283 break; 8284 case EXCP_DATA_ABORT: 8285 env->cp15.dfar_s = env->exception.vaddress; 8286 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8287 (uint32_t)env->exception.vaddress); 8288 addr = 0x10; 8289 break; 8290 case EXCP_IRQ: 8291 addr = 0x18; 8292 break; 8293 case EXCP_FIQ: 8294 addr = 0x1c; 8295 break; 8296 case EXCP_HVC: 8297 addr = 0x08; 8298 break; 8299 case EXCP_HYP_TRAP: 8300 addr = 0x14; 8301 break; 8302 default: 8303 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8304 } 8305 8306 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8307 if (!arm_feature(env, ARM_FEATURE_V8)) { 8308 /* 8309 * QEMU syndrome values are v8-style. v7 has the IL bit 8310 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8311 * If this is a v7 CPU, squash the IL bit in those cases. 8312 */ 8313 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8314 (cs->exception_index == EXCP_DATA_ABORT && 8315 !(env->exception.syndrome & ARM_EL_ISV)) || 8316 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8317 env->exception.syndrome &= ~ARM_EL_IL; 8318 } 8319 } 8320 env->cp15.esr_el[2] = env->exception.syndrome; 8321 } 8322 8323 if (arm_current_el(env) != 2 && addr < 0x14) { 8324 addr = 0x14; 8325 } 8326 8327 mask = 0; 8328 if (!(env->cp15.scr_el3 & SCR_EA)) { 8329 mask |= CPSR_A; 8330 } 8331 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8332 mask |= CPSR_I; 8333 } 8334 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8335 mask |= CPSR_F; 8336 } 8337 8338 addr += env->cp15.hvbar; 8339 8340 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8341 } 8342 8343 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8344 { 8345 ARMCPU *cpu = ARM_CPU(cs); 8346 CPUARMState *env = &cpu->env; 8347 uint32_t addr; 8348 uint32_t mask; 8349 int new_mode; 8350 uint32_t offset; 8351 uint32_t moe; 8352 8353 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8354 switch (syn_get_ec(env->exception.syndrome)) { 8355 case EC_BREAKPOINT: 8356 case EC_BREAKPOINT_SAME_EL: 8357 moe = 1; 8358 break; 8359 case EC_WATCHPOINT: 8360 case EC_WATCHPOINT_SAME_EL: 8361 moe = 10; 8362 break; 8363 case EC_AA32_BKPT: 8364 moe = 3; 8365 break; 8366 case EC_VECTORCATCH: 8367 moe = 5; 8368 break; 8369 default: 8370 moe = 0; 8371 break; 8372 } 8373 8374 if (moe) { 8375 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8376 } 8377 8378 if (env->exception.target_el == 2) { 8379 arm_cpu_do_interrupt_aarch32_hyp(cs); 8380 return; 8381 } 8382 8383 switch (cs->exception_index) { 8384 case EXCP_UDEF: 8385 new_mode = ARM_CPU_MODE_UND; 8386 addr = 0x04; 8387 mask = CPSR_I; 8388 if (env->thumb) 8389 offset = 2; 8390 else 8391 offset = 4; 8392 break; 8393 case EXCP_SWI: 8394 new_mode = ARM_CPU_MODE_SVC; 8395 addr = 0x08; 8396 mask = CPSR_I; 8397 /* The PC already points to the next instruction. */ 8398 offset = 0; 8399 break; 8400 case EXCP_BKPT: 8401 /* Fall through to prefetch abort. */ 8402 case EXCP_PREFETCH_ABORT: 8403 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8404 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8405 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8406 env->exception.fsr, (uint32_t)env->exception.vaddress); 8407 new_mode = ARM_CPU_MODE_ABT; 8408 addr = 0x0c; 8409 mask = CPSR_A | CPSR_I; 8410 offset = 4; 8411 break; 8412 case EXCP_DATA_ABORT: 8413 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8414 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8415 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8416 env->exception.fsr, 8417 (uint32_t)env->exception.vaddress); 8418 new_mode = ARM_CPU_MODE_ABT; 8419 addr = 0x10; 8420 mask = CPSR_A | CPSR_I; 8421 offset = 8; 8422 break; 8423 case EXCP_IRQ: 8424 new_mode = ARM_CPU_MODE_IRQ; 8425 addr = 0x18; 8426 /* Disable IRQ and imprecise data aborts. */ 8427 mask = CPSR_A | CPSR_I; 8428 offset = 4; 8429 if (env->cp15.scr_el3 & SCR_IRQ) { 8430 /* IRQ routed to monitor mode */ 8431 new_mode = ARM_CPU_MODE_MON; 8432 mask |= CPSR_F; 8433 } 8434 break; 8435 case EXCP_FIQ: 8436 new_mode = ARM_CPU_MODE_FIQ; 8437 addr = 0x1c; 8438 /* Disable FIQ, IRQ and imprecise data aborts. */ 8439 mask = CPSR_A | CPSR_I | CPSR_F; 8440 if (env->cp15.scr_el3 & SCR_FIQ) { 8441 /* FIQ routed to monitor mode */ 8442 new_mode = ARM_CPU_MODE_MON; 8443 } 8444 offset = 4; 8445 break; 8446 case EXCP_VIRQ: 8447 new_mode = ARM_CPU_MODE_IRQ; 8448 addr = 0x18; 8449 /* Disable IRQ and imprecise data aborts. */ 8450 mask = CPSR_A | CPSR_I; 8451 offset = 4; 8452 break; 8453 case EXCP_VFIQ: 8454 new_mode = ARM_CPU_MODE_FIQ; 8455 addr = 0x1c; 8456 /* Disable FIQ, IRQ and imprecise data aborts. */ 8457 mask = CPSR_A | CPSR_I | CPSR_F; 8458 offset = 4; 8459 break; 8460 case EXCP_SMC: 8461 new_mode = ARM_CPU_MODE_MON; 8462 addr = 0x08; 8463 mask = CPSR_A | CPSR_I | CPSR_F; 8464 offset = 0; 8465 break; 8466 default: 8467 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8468 return; /* Never happens. Keep compiler happy. */ 8469 } 8470 8471 if (new_mode == ARM_CPU_MODE_MON) { 8472 addr += env->cp15.mvbar; 8473 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8474 /* High vectors. When enabled, base address cannot be remapped. */ 8475 addr += 0xffff0000; 8476 } else { 8477 /* ARM v7 architectures provide a vector base address register to remap 8478 * the interrupt vector table. 8479 * This register is only followed in non-monitor mode, and is banked. 8480 * Note: only bits 31:5 are valid. 8481 */ 8482 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8483 } 8484 8485 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8486 env->cp15.scr_el3 &= ~SCR_NS; 8487 } 8488 8489 take_aarch32_exception(env, new_mode, mask, offset, addr); 8490 } 8491 8492 /* Handle exception entry to a target EL which is using AArch64 */ 8493 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8494 { 8495 ARMCPU *cpu = ARM_CPU(cs); 8496 CPUARMState *env = &cpu->env; 8497 unsigned int new_el = env->exception.target_el; 8498 target_ulong addr = env->cp15.vbar_el[new_el]; 8499 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8500 unsigned int cur_el = arm_current_el(env); 8501 8502 /* 8503 * Note that new_el can never be 0. If cur_el is 0, then 8504 * el0_a64 is is_a64(), else el0_a64 is ignored. 8505 */ 8506 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8507 8508 if (cur_el < new_el) { 8509 /* Entry vector offset depends on whether the implemented EL 8510 * immediately lower than the target level is using AArch32 or AArch64 8511 */ 8512 bool is_aa64; 8513 8514 switch (new_el) { 8515 case 3: 8516 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8517 break; 8518 case 2: 8519 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8520 break; 8521 case 1: 8522 is_aa64 = is_a64(env); 8523 break; 8524 default: 8525 g_assert_not_reached(); 8526 } 8527 8528 if (is_aa64) { 8529 addr += 0x400; 8530 } else { 8531 addr += 0x600; 8532 } 8533 } else if (pstate_read(env) & PSTATE_SP) { 8534 addr += 0x200; 8535 } 8536 8537 switch (cs->exception_index) { 8538 case EXCP_PREFETCH_ABORT: 8539 case EXCP_DATA_ABORT: 8540 env->cp15.far_el[new_el] = env->exception.vaddress; 8541 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8542 env->cp15.far_el[new_el]); 8543 /* fall through */ 8544 case EXCP_BKPT: 8545 case EXCP_UDEF: 8546 case EXCP_SWI: 8547 case EXCP_HVC: 8548 case EXCP_HYP_TRAP: 8549 case EXCP_SMC: 8550 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8551 /* 8552 * QEMU internal FP/SIMD syndromes from AArch32 include the 8553 * TA and coproc fields which are only exposed if the exception 8554 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8555 * AArch64 format syndrome. 8556 */ 8557 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8558 } 8559 env->cp15.esr_el[new_el] = env->exception.syndrome; 8560 break; 8561 case EXCP_IRQ: 8562 case EXCP_VIRQ: 8563 addr += 0x80; 8564 break; 8565 case EXCP_FIQ: 8566 case EXCP_VFIQ: 8567 addr += 0x100; 8568 break; 8569 default: 8570 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8571 } 8572 8573 if (is_a64(env)) { 8574 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8575 aarch64_save_sp(env, arm_current_el(env)); 8576 env->elr_el[new_el] = env->pc; 8577 } else { 8578 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8579 env->elr_el[new_el] = env->regs[15]; 8580 8581 aarch64_sync_32_to_64(env); 8582 8583 env->condexec_bits = 0; 8584 } 8585 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8586 env->elr_el[new_el]); 8587 8588 pstate_write(env, PSTATE_DAIF | new_mode); 8589 env->aarch64 = 1; 8590 aarch64_restore_sp(env, new_el); 8591 helper_rebuild_hflags_a64(env, new_el); 8592 8593 env->pc = addr; 8594 8595 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8596 new_el, env->pc, pstate_read(env)); 8597 } 8598 8599 /* 8600 * Do semihosting call and set the appropriate return value. All the 8601 * permission and validity checks have been done at translate time. 8602 * 8603 * We only see semihosting exceptions in TCG only as they are not 8604 * trapped to the hypervisor in KVM. 8605 */ 8606 #ifdef CONFIG_TCG 8607 static void handle_semihosting(CPUState *cs) 8608 { 8609 ARMCPU *cpu = ARM_CPU(cs); 8610 CPUARMState *env = &cpu->env; 8611 8612 if (is_a64(env)) { 8613 qemu_log_mask(CPU_LOG_INT, 8614 "...handling as semihosting call 0x%" PRIx64 "\n", 8615 env->xregs[0]); 8616 env->xregs[0] = do_arm_semihosting(env); 8617 env->pc += 4; 8618 } else { 8619 qemu_log_mask(CPU_LOG_INT, 8620 "...handling as semihosting call 0x%x\n", 8621 env->regs[0]); 8622 env->regs[0] = do_arm_semihosting(env); 8623 env->regs[15] += env->thumb ? 2 : 4; 8624 } 8625 } 8626 #endif 8627 8628 /* Handle a CPU exception for A and R profile CPUs. 8629 * Do any appropriate logging, handle PSCI calls, and then hand off 8630 * to the AArch64-entry or AArch32-entry function depending on the 8631 * target exception level's register width. 8632 */ 8633 void arm_cpu_do_interrupt(CPUState *cs) 8634 { 8635 ARMCPU *cpu = ARM_CPU(cs); 8636 CPUARMState *env = &cpu->env; 8637 unsigned int new_el = env->exception.target_el; 8638 8639 assert(!arm_feature(env, ARM_FEATURE_M)); 8640 8641 arm_log_exception(cs->exception_index); 8642 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8643 new_el); 8644 if (qemu_loglevel_mask(CPU_LOG_INT) 8645 && !excp_is_internal(cs->exception_index)) { 8646 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8647 syn_get_ec(env->exception.syndrome), 8648 env->exception.syndrome); 8649 } 8650 8651 if (arm_is_psci_call(cpu, cs->exception_index)) { 8652 arm_handle_psci_call(cpu); 8653 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8654 return; 8655 } 8656 8657 /* 8658 * Semihosting semantics depend on the register width of the code 8659 * that caused the exception, not the target exception level, so 8660 * must be handled here. 8661 */ 8662 #ifdef CONFIG_TCG 8663 if (cs->exception_index == EXCP_SEMIHOST) { 8664 handle_semihosting(cs); 8665 return; 8666 } 8667 #endif 8668 8669 /* Hooks may change global state so BQL should be held, also the 8670 * BQL needs to be held for any modification of 8671 * cs->interrupt_request. 8672 */ 8673 g_assert(qemu_mutex_iothread_locked()); 8674 8675 arm_call_pre_el_change_hook(cpu); 8676 8677 assert(!excp_is_internal(cs->exception_index)); 8678 if (arm_el_is_aa64(env, new_el)) { 8679 arm_cpu_do_interrupt_aarch64(cs); 8680 } else { 8681 arm_cpu_do_interrupt_aarch32(cs); 8682 } 8683 8684 arm_call_el_change_hook(cpu); 8685 8686 if (!kvm_enabled()) { 8687 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8688 } 8689 } 8690 #endif /* !CONFIG_USER_ONLY */ 8691 8692 /* Return the exception level which controls this address translation regime */ 8693 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8694 { 8695 switch (mmu_idx) { 8696 case ARMMMUIdx_S2NS: 8697 case ARMMMUIdx_S1E2: 8698 return 2; 8699 case ARMMMUIdx_S1E3: 8700 return 3; 8701 case ARMMMUIdx_S1SE0: 8702 return arm_el_is_aa64(env, 3) ? 1 : 3; 8703 case ARMMMUIdx_S1SE1: 8704 case ARMMMUIdx_S1NSE0: 8705 case ARMMMUIdx_S1NSE1: 8706 case ARMMMUIdx_MPrivNegPri: 8707 case ARMMMUIdx_MUserNegPri: 8708 case ARMMMUIdx_MPriv: 8709 case ARMMMUIdx_MUser: 8710 case ARMMMUIdx_MSPrivNegPri: 8711 case ARMMMUIdx_MSUserNegPri: 8712 case ARMMMUIdx_MSPriv: 8713 case ARMMMUIdx_MSUser: 8714 return 1; 8715 default: 8716 g_assert_not_reached(); 8717 } 8718 } 8719 8720 #ifndef CONFIG_USER_ONLY 8721 8722 /* Return the SCTLR value which controls this address translation regime */ 8723 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8724 { 8725 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8726 } 8727 8728 /* Return true if the specified stage of address translation is disabled */ 8729 static inline bool regime_translation_disabled(CPUARMState *env, 8730 ARMMMUIdx mmu_idx) 8731 { 8732 if (arm_feature(env, ARM_FEATURE_M)) { 8733 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8734 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8735 case R_V7M_MPU_CTRL_ENABLE_MASK: 8736 /* Enabled, but not for HardFault and NMI */ 8737 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8738 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8739 /* Enabled for all cases */ 8740 return false; 8741 case 0: 8742 default: 8743 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8744 * we warned about that in armv7m_nvic.c when the guest set it. 8745 */ 8746 return true; 8747 } 8748 } 8749 8750 if (mmu_idx == ARMMMUIdx_S2NS) { 8751 /* HCR.DC means HCR.VM behaves as 1 */ 8752 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8753 } 8754 8755 if (env->cp15.hcr_el2 & HCR_TGE) { 8756 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8757 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8758 return true; 8759 } 8760 } 8761 8762 if ((env->cp15.hcr_el2 & HCR_DC) && 8763 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8764 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8765 return true; 8766 } 8767 8768 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8769 } 8770 8771 static inline bool regime_translation_big_endian(CPUARMState *env, 8772 ARMMMUIdx mmu_idx) 8773 { 8774 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8775 } 8776 8777 /* Return the TTBR associated with this translation regime */ 8778 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8779 int ttbrn) 8780 { 8781 if (mmu_idx == ARMMMUIdx_S2NS) { 8782 return env->cp15.vttbr_el2; 8783 } 8784 if (ttbrn == 0) { 8785 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8786 } else { 8787 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8788 } 8789 } 8790 8791 #endif /* !CONFIG_USER_ONLY */ 8792 8793 /* Return the TCR controlling this translation regime */ 8794 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8795 { 8796 if (mmu_idx == ARMMMUIdx_S2NS) { 8797 return &env->cp15.vtcr_el2; 8798 } 8799 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8800 } 8801 8802 /* Convert a possible stage1+2 MMU index into the appropriate 8803 * stage 1 MMU index 8804 */ 8805 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8806 { 8807 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8808 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8809 } 8810 return mmu_idx; 8811 } 8812 8813 /* Return true if the translation regime is using LPAE format page tables */ 8814 static inline bool regime_using_lpae_format(CPUARMState *env, 8815 ARMMMUIdx mmu_idx) 8816 { 8817 int el = regime_el(env, mmu_idx); 8818 if (el == 2 || arm_el_is_aa64(env, el)) { 8819 return true; 8820 } 8821 if (arm_feature(env, ARM_FEATURE_LPAE) 8822 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8823 return true; 8824 } 8825 return false; 8826 } 8827 8828 /* Returns true if the stage 1 translation regime is using LPAE format page 8829 * tables. Used when raising alignment exceptions, whose FSR changes depending 8830 * on whether the long or short descriptor format is in use. */ 8831 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8832 { 8833 mmu_idx = stage_1_mmu_idx(mmu_idx); 8834 8835 return regime_using_lpae_format(env, mmu_idx); 8836 } 8837 8838 #ifndef CONFIG_USER_ONLY 8839 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8840 { 8841 switch (mmu_idx) { 8842 case ARMMMUIdx_S1SE0: 8843 case ARMMMUIdx_S1NSE0: 8844 case ARMMMUIdx_MUser: 8845 case ARMMMUIdx_MSUser: 8846 case ARMMMUIdx_MUserNegPri: 8847 case ARMMMUIdx_MSUserNegPri: 8848 return true; 8849 default: 8850 return false; 8851 case ARMMMUIdx_S12NSE0: 8852 case ARMMMUIdx_S12NSE1: 8853 g_assert_not_reached(); 8854 } 8855 } 8856 8857 /* Translate section/page access permissions to page 8858 * R/W protection flags 8859 * 8860 * @env: CPUARMState 8861 * @mmu_idx: MMU index indicating required translation regime 8862 * @ap: The 3-bit access permissions (AP[2:0]) 8863 * @domain_prot: The 2-bit domain access permissions 8864 */ 8865 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8866 int ap, int domain_prot) 8867 { 8868 bool is_user = regime_is_user(env, mmu_idx); 8869 8870 if (domain_prot == 3) { 8871 return PAGE_READ | PAGE_WRITE; 8872 } 8873 8874 switch (ap) { 8875 case 0: 8876 if (arm_feature(env, ARM_FEATURE_V7)) { 8877 return 0; 8878 } 8879 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8880 case SCTLR_S: 8881 return is_user ? 0 : PAGE_READ; 8882 case SCTLR_R: 8883 return PAGE_READ; 8884 default: 8885 return 0; 8886 } 8887 case 1: 8888 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8889 case 2: 8890 if (is_user) { 8891 return PAGE_READ; 8892 } else { 8893 return PAGE_READ | PAGE_WRITE; 8894 } 8895 case 3: 8896 return PAGE_READ | PAGE_WRITE; 8897 case 4: /* Reserved. */ 8898 return 0; 8899 case 5: 8900 return is_user ? 0 : PAGE_READ; 8901 case 6: 8902 return PAGE_READ; 8903 case 7: 8904 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8905 return 0; 8906 } 8907 return PAGE_READ; 8908 default: 8909 g_assert_not_reached(); 8910 } 8911 } 8912 8913 /* Translate section/page access permissions to page 8914 * R/W protection flags. 8915 * 8916 * @ap: The 2-bit simple AP (AP[2:1]) 8917 * @is_user: TRUE if accessing from PL0 8918 */ 8919 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8920 { 8921 switch (ap) { 8922 case 0: 8923 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8924 case 1: 8925 return PAGE_READ | PAGE_WRITE; 8926 case 2: 8927 return is_user ? 0 : PAGE_READ; 8928 case 3: 8929 return PAGE_READ; 8930 default: 8931 g_assert_not_reached(); 8932 } 8933 } 8934 8935 static inline int 8936 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8937 { 8938 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8939 } 8940 8941 /* Translate S2 section/page access permissions to protection flags 8942 * 8943 * @env: CPUARMState 8944 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8945 * @xn: XN (execute-never) bit 8946 */ 8947 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8948 { 8949 int prot = 0; 8950 8951 if (s2ap & 1) { 8952 prot |= PAGE_READ; 8953 } 8954 if (s2ap & 2) { 8955 prot |= PAGE_WRITE; 8956 } 8957 if (!xn) { 8958 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8959 prot |= PAGE_EXEC; 8960 } 8961 } 8962 return prot; 8963 } 8964 8965 /* Translate section/page access permissions to protection flags 8966 * 8967 * @env: CPUARMState 8968 * @mmu_idx: MMU index indicating required translation regime 8969 * @is_aa64: TRUE if AArch64 8970 * @ap: The 2-bit simple AP (AP[2:1]) 8971 * @ns: NS (non-secure) bit 8972 * @xn: XN (execute-never) bit 8973 * @pxn: PXN (privileged execute-never) bit 8974 */ 8975 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8976 int ap, int ns, int xn, int pxn) 8977 { 8978 bool is_user = regime_is_user(env, mmu_idx); 8979 int prot_rw, user_rw; 8980 bool have_wxn; 8981 int wxn = 0; 8982 8983 assert(mmu_idx != ARMMMUIdx_S2NS); 8984 8985 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8986 if (is_user) { 8987 prot_rw = user_rw; 8988 } else { 8989 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8990 } 8991 8992 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8993 return prot_rw; 8994 } 8995 8996 /* TODO have_wxn should be replaced with 8997 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8998 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8999 * compatible processors have EL2, which is required for [U]WXN. 9000 */ 9001 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9002 9003 if (have_wxn) { 9004 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9005 } 9006 9007 if (is_aa64) { 9008 switch (regime_el(env, mmu_idx)) { 9009 case 1: 9010 if (!is_user) { 9011 xn = pxn || (user_rw & PAGE_WRITE); 9012 } 9013 break; 9014 case 2: 9015 case 3: 9016 break; 9017 } 9018 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9019 switch (regime_el(env, mmu_idx)) { 9020 case 1: 9021 case 3: 9022 if (is_user) { 9023 xn = xn || !(user_rw & PAGE_READ); 9024 } else { 9025 int uwxn = 0; 9026 if (have_wxn) { 9027 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9028 } 9029 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9030 (uwxn && (user_rw & PAGE_WRITE)); 9031 } 9032 break; 9033 case 2: 9034 break; 9035 } 9036 } else { 9037 xn = wxn = 0; 9038 } 9039 9040 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9041 return prot_rw; 9042 } 9043 return prot_rw | PAGE_EXEC; 9044 } 9045 9046 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9047 uint32_t *table, uint32_t address) 9048 { 9049 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9050 TCR *tcr = regime_tcr(env, mmu_idx); 9051 9052 if (address & tcr->mask) { 9053 if (tcr->raw_tcr & TTBCR_PD1) { 9054 /* Translation table walk disabled for TTBR1 */ 9055 return false; 9056 } 9057 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9058 } else { 9059 if (tcr->raw_tcr & TTBCR_PD0) { 9060 /* Translation table walk disabled for TTBR0 */ 9061 return false; 9062 } 9063 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9064 } 9065 *table |= (address >> 18) & 0x3ffc; 9066 return true; 9067 } 9068 9069 /* Translate a S1 pagetable walk through S2 if needed. */ 9070 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9071 hwaddr addr, MemTxAttrs txattrs, 9072 ARMMMUFaultInfo *fi) 9073 { 9074 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 9075 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9076 target_ulong s2size; 9077 hwaddr s2pa; 9078 int s2prot; 9079 int ret; 9080 ARMCacheAttrs cacheattrs = {}; 9081 ARMCacheAttrs *pcacheattrs = NULL; 9082 9083 if (env->cp15.hcr_el2 & HCR_PTW) { 9084 /* 9085 * PTW means we must fault if this S1 walk touches S2 Device 9086 * memory; otherwise we don't care about the attributes and can 9087 * save the S2 translation the effort of computing them. 9088 */ 9089 pcacheattrs = &cacheattrs; 9090 } 9091 9092 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 9093 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 9094 if (ret) { 9095 assert(fi->type != ARMFault_None); 9096 fi->s2addr = addr; 9097 fi->stage2 = true; 9098 fi->s1ptw = true; 9099 return ~0; 9100 } 9101 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 9102 /* Access was to Device memory: generate Permission fault */ 9103 fi->type = ARMFault_Permission; 9104 fi->s2addr = addr; 9105 fi->stage2 = true; 9106 fi->s1ptw = true; 9107 return ~0; 9108 } 9109 addr = s2pa; 9110 } 9111 return addr; 9112 } 9113 9114 /* All loads done in the course of a page table walk go through here. */ 9115 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9116 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9117 { 9118 ARMCPU *cpu = ARM_CPU(cs); 9119 CPUARMState *env = &cpu->env; 9120 MemTxAttrs attrs = {}; 9121 MemTxResult result = MEMTX_OK; 9122 AddressSpace *as; 9123 uint32_t data; 9124 9125 attrs.secure = is_secure; 9126 as = arm_addressspace(cs, attrs); 9127 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9128 if (fi->s1ptw) { 9129 return 0; 9130 } 9131 if (regime_translation_big_endian(env, mmu_idx)) { 9132 data = address_space_ldl_be(as, addr, attrs, &result); 9133 } else { 9134 data = address_space_ldl_le(as, addr, attrs, &result); 9135 } 9136 if (result == MEMTX_OK) { 9137 return data; 9138 } 9139 fi->type = ARMFault_SyncExternalOnWalk; 9140 fi->ea = arm_extabort_type(result); 9141 return 0; 9142 } 9143 9144 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9145 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9146 { 9147 ARMCPU *cpu = ARM_CPU(cs); 9148 CPUARMState *env = &cpu->env; 9149 MemTxAttrs attrs = {}; 9150 MemTxResult result = MEMTX_OK; 9151 AddressSpace *as; 9152 uint64_t data; 9153 9154 attrs.secure = is_secure; 9155 as = arm_addressspace(cs, attrs); 9156 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9157 if (fi->s1ptw) { 9158 return 0; 9159 } 9160 if (regime_translation_big_endian(env, mmu_idx)) { 9161 data = address_space_ldq_be(as, addr, attrs, &result); 9162 } else { 9163 data = address_space_ldq_le(as, addr, attrs, &result); 9164 } 9165 if (result == MEMTX_OK) { 9166 return data; 9167 } 9168 fi->type = ARMFault_SyncExternalOnWalk; 9169 fi->ea = arm_extabort_type(result); 9170 return 0; 9171 } 9172 9173 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9174 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9175 hwaddr *phys_ptr, int *prot, 9176 target_ulong *page_size, 9177 ARMMMUFaultInfo *fi) 9178 { 9179 CPUState *cs = env_cpu(env); 9180 int level = 1; 9181 uint32_t table; 9182 uint32_t desc; 9183 int type; 9184 int ap; 9185 int domain = 0; 9186 int domain_prot; 9187 hwaddr phys_addr; 9188 uint32_t dacr; 9189 9190 /* Pagetable walk. */ 9191 /* Lookup l1 descriptor. */ 9192 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9193 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9194 fi->type = ARMFault_Translation; 9195 goto do_fault; 9196 } 9197 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9198 mmu_idx, fi); 9199 if (fi->type != ARMFault_None) { 9200 goto do_fault; 9201 } 9202 type = (desc & 3); 9203 domain = (desc >> 5) & 0x0f; 9204 if (regime_el(env, mmu_idx) == 1) { 9205 dacr = env->cp15.dacr_ns; 9206 } else { 9207 dacr = env->cp15.dacr_s; 9208 } 9209 domain_prot = (dacr >> (domain * 2)) & 3; 9210 if (type == 0) { 9211 /* Section translation fault. */ 9212 fi->type = ARMFault_Translation; 9213 goto do_fault; 9214 } 9215 if (type != 2) { 9216 level = 2; 9217 } 9218 if (domain_prot == 0 || domain_prot == 2) { 9219 fi->type = ARMFault_Domain; 9220 goto do_fault; 9221 } 9222 if (type == 2) { 9223 /* 1Mb section. */ 9224 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9225 ap = (desc >> 10) & 3; 9226 *page_size = 1024 * 1024; 9227 } else { 9228 /* Lookup l2 entry. */ 9229 if (type == 1) { 9230 /* Coarse pagetable. */ 9231 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9232 } else { 9233 /* Fine pagetable. */ 9234 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9235 } 9236 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9237 mmu_idx, fi); 9238 if (fi->type != ARMFault_None) { 9239 goto do_fault; 9240 } 9241 switch (desc & 3) { 9242 case 0: /* Page translation fault. */ 9243 fi->type = ARMFault_Translation; 9244 goto do_fault; 9245 case 1: /* 64k page. */ 9246 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9247 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9248 *page_size = 0x10000; 9249 break; 9250 case 2: /* 4k page. */ 9251 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9252 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9253 *page_size = 0x1000; 9254 break; 9255 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9256 if (type == 1) { 9257 /* ARMv6/XScale extended small page format */ 9258 if (arm_feature(env, ARM_FEATURE_XSCALE) 9259 || arm_feature(env, ARM_FEATURE_V6)) { 9260 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9261 *page_size = 0x1000; 9262 } else { 9263 /* UNPREDICTABLE in ARMv5; we choose to take a 9264 * page translation fault. 9265 */ 9266 fi->type = ARMFault_Translation; 9267 goto do_fault; 9268 } 9269 } else { 9270 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9271 *page_size = 0x400; 9272 } 9273 ap = (desc >> 4) & 3; 9274 break; 9275 default: 9276 /* Never happens, but compiler isn't smart enough to tell. */ 9277 abort(); 9278 } 9279 } 9280 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9281 *prot |= *prot ? PAGE_EXEC : 0; 9282 if (!(*prot & (1 << access_type))) { 9283 /* Access permission fault. */ 9284 fi->type = ARMFault_Permission; 9285 goto do_fault; 9286 } 9287 *phys_ptr = phys_addr; 9288 return false; 9289 do_fault: 9290 fi->domain = domain; 9291 fi->level = level; 9292 return true; 9293 } 9294 9295 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9296 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9297 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9298 target_ulong *page_size, ARMMMUFaultInfo *fi) 9299 { 9300 CPUState *cs = env_cpu(env); 9301 int level = 1; 9302 uint32_t table; 9303 uint32_t desc; 9304 uint32_t xn; 9305 uint32_t pxn = 0; 9306 int type; 9307 int ap; 9308 int domain = 0; 9309 int domain_prot; 9310 hwaddr phys_addr; 9311 uint32_t dacr; 9312 bool ns; 9313 9314 /* Pagetable walk. */ 9315 /* Lookup l1 descriptor. */ 9316 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9317 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9318 fi->type = ARMFault_Translation; 9319 goto do_fault; 9320 } 9321 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9322 mmu_idx, fi); 9323 if (fi->type != ARMFault_None) { 9324 goto do_fault; 9325 } 9326 type = (desc & 3); 9327 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9328 /* Section translation fault, or attempt to use the encoding 9329 * which is Reserved on implementations without PXN. 9330 */ 9331 fi->type = ARMFault_Translation; 9332 goto do_fault; 9333 } 9334 if ((type == 1) || !(desc & (1 << 18))) { 9335 /* Page or Section. */ 9336 domain = (desc >> 5) & 0x0f; 9337 } 9338 if (regime_el(env, mmu_idx) == 1) { 9339 dacr = env->cp15.dacr_ns; 9340 } else { 9341 dacr = env->cp15.dacr_s; 9342 } 9343 if (type == 1) { 9344 level = 2; 9345 } 9346 domain_prot = (dacr >> (domain * 2)) & 3; 9347 if (domain_prot == 0 || domain_prot == 2) { 9348 /* Section or Page domain fault */ 9349 fi->type = ARMFault_Domain; 9350 goto do_fault; 9351 } 9352 if (type != 1) { 9353 if (desc & (1 << 18)) { 9354 /* Supersection. */ 9355 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9356 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9357 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9358 *page_size = 0x1000000; 9359 } else { 9360 /* Section. */ 9361 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9362 *page_size = 0x100000; 9363 } 9364 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9365 xn = desc & (1 << 4); 9366 pxn = desc & 1; 9367 ns = extract32(desc, 19, 1); 9368 } else { 9369 if (arm_feature(env, ARM_FEATURE_PXN)) { 9370 pxn = (desc >> 2) & 1; 9371 } 9372 ns = extract32(desc, 3, 1); 9373 /* Lookup l2 entry. */ 9374 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9375 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9376 mmu_idx, fi); 9377 if (fi->type != ARMFault_None) { 9378 goto do_fault; 9379 } 9380 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9381 switch (desc & 3) { 9382 case 0: /* Page translation fault. */ 9383 fi->type = ARMFault_Translation; 9384 goto do_fault; 9385 case 1: /* 64k page. */ 9386 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9387 xn = desc & (1 << 15); 9388 *page_size = 0x10000; 9389 break; 9390 case 2: case 3: /* 4k page. */ 9391 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9392 xn = desc & 1; 9393 *page_size = 0x1000; 9394 break; 9395 default: 9396 /* Never happens, but compiler isn't smart enough to tell. */ 9397 abort(); 9398 } 9399 } 9400 if (domain_prot == 3) { 9401 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9402 } else { 9403 if (pxn && !regime_is_user(env, mmu_idx)) { 9404 xn = 1; 9405 } 9406 if (xn && access_type == MMU_INST_FETCH) { 9407 fi->type = ARMFault_Permission; 9408 goto do_fault; 9409 } 9410 9411 if (arm_feature(env, ARM_FEATURE_V6K) && 9412 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9413 /* The simplified model uses AP[0] as an access control bit. */ 9414 if ((ap & 1) == 0) { 9415 /* Access flag fault. */ 9416 fi->type = ARMFault_AccessFlag; 9417 goto do_fault; 9418 } 9419 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9420 } else { 9421 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9422 } 9423 if (*prot && !xn) { 9424 *prot |= PAGE_EXEC; 9425 } 9426 if (!(*prot & (1 << access_type))) { 9427 /* Access permission fault. */ 9428 fi->type = ARMFault_Permission; 9429 goto do_fault; 9430 } 9431 } 9432 if (ns) { 9433 /* The NS bit will (as required by the architecture) have no effect if 9434 * the CPU doesn't support TZ or this is a non-secure translation 9435 * regime, because the attribute will already be non-secure. 9436 */ 9437 attrs->secure = false; 9438 } 9439 *phys_ptr = phys_addr; 9440 return false; 9441 do_fault: 9442 fi->domain = domain; 9443 fi->level = level; 9444 return true; 9445 } 9446 9447 /* 9448 * check_s2_mmu_setup 9449 * @cpu: ARMCPU 9450 * @is_aa64: True if the translation regime is in AArch64 state 9451 * @startlevel: Suggested starting level 9452 * @inputsize: Bitsize of IPAs 9453 * @stride: Page-table stride (See the ARM ARM) 9454 * 9455 * Returns true if the suggested S2 translation parameters are OK and 9456 * false otherwise. 9457 */ 9458 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9459 int inputsize, int stride) 9460 { 9461 const int grainsize = stride + 3; 9462 int startsizecheck; 9463 9464 /* Negative levels are never allowed. */ 9465 if (level < 0) { 9466 return false; 9467 } 9468 9469 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9470 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9471 return false; 9472 } 9473 9474 if (is_aa64) { 9475 CPUARMState *env = &cpu->env; 9476 unsigned int pamax = arm_pamax(cpu); 9477 9478 switch (stride) { 9479 case 13: /* 64KB Pages. */ 9480 if (level == 0 || (level == 1 && pamax <= 42)) { 9481 return false; 9482 } 9483 break; 9484 case 11: /* 16KB Pages. */ 9485 if (level == 0 || (level == 1 && pamax <= 40)) { 9486 return false; 9487 } 9488 break; 9489 case 9: /* 4KB Pages. */ 9490 if (level == 0 && pamax <= 42) { 9491 return false; 9492 } 9493 break; 9494 default: 9495 g_assert_not_reached(); 9496 } 9497 9498 /* Inputsize checks. */ 9499 if (inputsize > pamax && 9500 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9501 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9502 return false; 9503 } 9504 } else { 9505 /* AArch32 only supports 4KB pages. Assert on that. */ 9506 assert(stride == 9); 9507 9508 if (level == 0) { 9509 return false; 9510 } 9511 } 9512 return true; 9513 } 9514 9515 /* Translate from the 4-bit stage 2 representation of 9516 * memory attributes (without cache-allocation hints) to 9517 * the 8-bit representation of the stage 1 MAIR registers 9518 * (which includes allocation hints). 9519 * 9520 * ref: shared/translation/attrs/S2AttrDecode() 9521 * .../S2ConvertAttrsHints() 9522 */ 9523 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9524 { 9525 uint8_t hiattr = extract32(s2attrs, 2, 2); 9526 uint8_t loattr = extract32(s2attrs, 0, 2); 9527 uint8_t hihint = 0, lohint = 0; 9528 9529 if (hiattr != 0) { /* normal memory */ 9530 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9531 hiattr = loattr = 1; /* non-cacheable */ 9532 } else { 9533 if (hiattr != 1) { /* Write-through or write-back */ 9534 hihint = 3; /* RW allocate */ 9535 } 9536 if (loattr != 1) { /* Write-through or write-back */ 9537 lohint = 3; /* RW allocate */ 9538 } 9539 } 9540 } 9541 9542 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9543 } 9544 #endif /* !CONFIG_USER_ONLY */ 9545 9546 ARMVAParameters aa64_va_parameters_both(CPUARMState *env, uint64_t va, 9547 ARMMMUIdx mmu_idx) 9548 { 9549 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9550 uint32_t el = regime_el(env, mmu_idx); 9551 bool tbi, tbid, epd, hpd, using16k, using64k; 9552 int select, tsz; 9553 9554 /* 9555 * Bit 55 is always between the two regions, and is canonical for 9556 * determining if address tagging is enabled. 9557 */ 9558 select = extract64(va, 55, 1); 9559 9560 if (el > 1) { 9561 tsz = extract32(tcr, 0, 6); 9562 using64k = extract32(tcr, 14, 1); 9563 using16k = extract32(tcr, 15, 1); 9564 if (mmu_idx == ARMMMUIdx_S2NS) { 9565 /* VTCR_EL2 */ 9566 tbi = tbid = hpd = false; 9567 } else { 9568 tbi = extract32(tcr, 20, 1); 9569 hpd = extract32(tcr, 24, 1); 9570 tbid = extract32(tcr, 29, 1); 9571 } 9572 epd = false; 9573 } else if (!select) { 9574 tsz = extract32(tcr, 0, 6); 9575 epd = extract32(tcr, 7, 1); 9576 using64k = extract32(tcr, 14, 1); 9577 using16k = extract32(tcr, 15, 1); 9578 tbi = extract64(tcr, 37, 1); 9579 hpd = extract64(tcr, 41, 1); 9580 tbid = extract64(tcr, 51, 1); 9581 } else { 9582 int tg = extract32(tcr, 30, 2); 9583 using16k = tg == 1; 9584 using64k = tg == 3; 9585 tsz = extract32(tcr, 16, 6); 9586 epd = extract32(tcr, 23, 1); 9587 tbi = extract64(tcr, 38, 1); 9588 hpd = extract64(tcr, 42, 1); 9589 tbid = extract64(tcr, 52, 1); 9590 } 9591 tsz = MIN(tsz, 39); /* TODO: ARMv8.4-TTST */ 9592 tsz = MAX(tsz, 16); /* TODO: ARMv8.2-LVA */ 9593 9594 return (ARMVAParameters) { 9595 .tsz = tsz, 9596 .select = select, 9597 .tbi = tbi, 9598 .tbid = tbid, 9599 .epd = epd, 9600 .hpd = hpd, 9601 .using16k = using16k, 9602 .using64k = using64k, 9603 }; 9604 } 9605 9606 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 9607 ARMMMUIdx mmu_idx, bool data) 9608 { 9609 ARMVAParameters ret = aa64_va_parameters_both(env, va, mmu_idx); 9610 9611 /* Present TBI as a composite with TBID. */ 9612 ret.tbi &= (data || !ret.tbid); 9613 return ret; 9614 } 9615 9616 #ifndef CONFIG_USER_ONLY 9617 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 9618 ARMMMUIdx mmu_idx) 9619 { 9620 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 9621 uint32_t el = regime_el(env, mmu_idx); 9622 int select, tsz; 9623 bool epd, hpd; 9624 9625 if (mmu_idx == ARMMMUIdx_S2NS) { 9626 /* VTCR */ 9627 bool sext = extract32(tcr, 4, 1); 9628 bool sign = extract32(tcr, 3, 1); 9629 9630 /* 9631 * If the sign-extend bit is not the same as t0sz[3], the result 9632 * is unpredictable. Flag this as a guest error. 9633 */ 9634 if (sign != sext) { 9635 qemu_log_mask(LOG_GUEST_ERROR, 9636 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9637 } 9638 tsz = sextract32(tcr, 0, 4) + 8; 9639 select = 0; 9640 hpd = false; 9641 epd = false; 9642 } else if (el == 2) { 9643 /* HTCR */ 9644 tsz = extract32(tcr, 0, 3); 9645 select = 0; 9646 hpd = extract64(tcr, 24, 1); 9647 epd = false; 9648 } else { 9649 int t0sz = extract32(tcr, 0, 3); 9650 int t1sz = extract32(tcr, 16, 3); 9651 9652 if (t1sz == 0) { 9653 select = va > (0xffffffffu >> t0sz); 9654 } else { 9655 /* Note that we will detect errors later. */ 9656 select = va >= ~(0xffffffffu >> t1sz); 9657 } 9658 if (!select) { 9659 tsz = t0sz; 9660 epd = extract32(tcr, 7, 1); 9661 hpd = extract64(tcr, 41, 1); 9662 } else { 9663 tsz = t1sz; 9664 epd = extract32(tcr, 23, 1); 9665 hpd = extract64(tcr, 42, 1); 9666 } 9667 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9668 hpd &= extract32(tcr, 6, 1); 9669 } 9670 9671 return (ARMVAParameters) { 9672 .tsz = tsz, 9673 .select = select, 9674 .epd = epd, 9675 .hpd = hpd, 9676 }; 9677 } 9678 9679 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9680 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9681 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9682 target_ulong *page_size_ptr, 9683 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9684 { 9685 ARMCPU *cpu = env_archcpu(env); 9686 CPUState *cs = CPU(cpu); 9687 /* Read an LPAE long-descriptor translation table. */ 9688 ARMFaultType fault_type = ARMFault_Translation; 9689 uint32_t level; 9690 ARMVAParameters param; 9691 uint64_t ttbr; 9692 hwaddr descaddr, indexmask, indexmask_grainsize; 9693 uint32_t tableattrs; 9694 target_ulong page_size; 9695 uint32_t attrs; 9696 int32_t stride; 9697 int addrsize, inputsize; 9698 TCR *tcr = regime_tcr(env, mmu_idx); 9699 int ap, ns, xn, pxn; 9700 uint32_t el = regime_el(env, mmu_idx); 9701 bool ttbr1_valid; 9702 uint64_t descaddrmask; 9703 bool aarch64 = arm_el_is_aa64(env, el); 9704 bool guarded = false; 9705 9706 /* TODO: 9707 * This code does not handle the different format TCR for VTCR_EL2. 9708 * This code also does not support shareability levels. 9709 * Attribute and permission bit handling should also be checked when adding 9710 * support for those page table walks. 9711 */ 9712 if (aarch64) { 9713 param = aa64_va_parameters(env, address, mmu_idx, 9714 access_type != MMU_INST_FETCH); 9715 level = 0; 9716 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9717 * invalid. 9718 */ 9719 ttbr1_valid = (el < 2); 9720 addrsize = 64 - 8 * param.tbi; 9721 inputsize = 64 - param.tsz; 9722 } else { 9723 param = aa32_va_parameters(env, address, mmu_idx); 9724 level = 1; 9725 /* There is no TTBR1 for EL2 */ 9726 ttbr1_valid = (el != 2); 9727 addrsize = (mmu_idx == ARMMMUIdx_S2NS ? 40 : 32); 9728 inputsize = addrsize - param.tsz; 9729 } 9730 9731 /* 9732 * We determined the region when collecting the parameters, but we 9733 * have not yet validated that the address is valid for the region. 9734 * Extract the top bits and verify that they all match select. 9735 * 9736 * For aa32, if inputsize == addrsize, then we have selected the 9737 * region by exclusion in aa32_va_parameters and there is no more 9738 * validation to do here. 9739 */ 9740 if (inputsize < addrsize) { 9741 target_ulong top_bits = sextract64(address, inputsize, 9742 addrsize - inputsize); 9743 if (-top_bits != param.select || (param.select && !ttbr1_valid)) { 9744 /* The gap between the two regions is a Translation fault */ 9745 fault_type = ARMFault_Translation; 9746 goto do_fault; 9747 } 9748 } 9749 9750 if (param.using64k) { 9751 stride = 13; 9752 } else if (param.using16k) { 9753 stride = 11; 9754 } else { 9755 stride = 9; 9756 } 9757 9758 /* Note that QEMU ignores shareability and cacheability attributes, 9759 * so we don't need to do anything with the SH, ORGN, IRGN fields 9760 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9761 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9762 * implement any ASID-like capability so we can ignore it (instead 9763 * we will always flush the TLB any time the ASID is changed). 9764 */ 9765 ttbr = regime_ttbr(env, mmu_idx, param.select); 9766 9767 /* Here we should have set up all the parameters for the translation: 9768 * inputsize, ttbr, epd, stride, tbi 9769 */ 9770 9771 if (param.epd) { 9772 /* Translation table walk disabled => Translation fault on TLB miss 9773 * Note: This is always 0 on 64-bit EL2 and EL3. 9774 */ 9775 goto do_fault; 9776 } 9777 9778 if (mmu_idx != ARMMMUIdx_S2NS) { 9779 /* The starting level depends on the virtual address size (which can 9780 * be up to 48 bits) and the translation granule size. It indicates 9781 * the number of strides (stride bits at a time) needed to 9782 * consume the bits of the input address. In the pseudocode this is: 9783 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9784 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9785 * our 'stride + 3' and 'stride' is our 'stride'. 9786 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9787 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9788 * = 4 - (inputsize - 4) / stride; 9789 */ 9790 level = 4 - (inputsize - 4) / stride; 9791 } else { 9792 /* For stage 2 translations the starting level is specified by the 9793 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9794 */ 9795 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9796 uint32_t startlevel; 9797 bool ok; 9798 9799 if (!aarch64 || stride == 9) { 9800 /* AArch32 or 4KB pages */ 9801 startlevel = 2 - sl0; 9802 } else { 9803 /* 16KB or 64KB pages */ 9804 startlevel = 3 - sl0; 9805 } 9806 9807 /* Check that the starting level is valid. */ 9808 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9809 inputsize, stride); 9810 if (!ok) { 9811 fault_type = ARMFault_Translation; 9812 goto do_fault; 9813 } 9814 level = startlevel; 9815 } 9816 9817 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9818 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9819 9820 /* Now we can extract the actual base address from the TTBR */ 9821 descaddr = extract64(ttbr, 0, 48); 9822 descaddr &= ~indexmask; 9823 9824 /* The address field in the descriptor goes up to bit 39 for ARMv7 9825 * but up to bit 47 for ARMv8, but we use the descaddrmask 9826 * up to bit 39 for AArch32, because we don't need other bits in that case 9827 * to construct next descriptor address (anyway they should be all zeroes). 9828 */ 9829 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9830 ~indexmask_grainsize; 9831 9832 /* Secure accesses start with the page table in secure memory and 9833 * can be downgraded to non-secure at any step. Non-secure accesses 9834 * remain non-secure. We implement this by just ORing in the NSTable/NS 9835 * bits at each step. 9836 */ 9837 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9838 for (;;) { 9839 uint64_t descriptor; 9840 bool nstable; 9841 9842 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9843 descaddr &= ~7ULL; 9844 nstable = extract32(tableattrs, 4, 1); 9845 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9846 if (fi->type != ARMFault_None) { 9847 goto do_fault; 9848 } 9849 9850 if (!(descriptor & 1) || 9851 (!(descriptor & 2) && (level == 3))) { 9852 /* Invalid, or the Reserved level 3 encoding */ 9853 goto do_fault; 9854 } 9855 descaddr = descriptor & descaddrmask; 9856 9857 if ((descriptor & 2) && (level < 3)) { 9858 /* Table entry. The top five bits are attributes which may 9859 * propagate down through lower levels of the table (and 9860 * which are all arranged so that 0 means "no effect", so 9861 * we can gather them up by ORing in the bits at each level). 9862 */ 9863 tableattrs |= extract64(descriptor, 59, 5); 9864 level++; 9865 indexmask = indexmask_grainsize; 9866 continue; 9867 } 9868 /* Block entry at level 1 or 2, or page entry at level 3. 9869 * These are basically the same thing, although the number 9870 * of bits we pull in from the vaddr varies. 9871 */ 9872 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9873 descaddr |= (address & (page_size - 1)); 9874 /* Extract attributes from the descriptor */ 9875 attrs = extract64(descriptor, 2, 10) 9876 | (extract64(descriptor, 52, 12) << 10); 9877 9878 if (mmu_idx == ARMMMUIdx_S2NS) { 9879 /* Stage 2 table descriptors do not include any attribute fields */ 9880 break; 9881 } 9882 /* Merge in attributes from table descriptors */ 9883 attrs |= nstable << 3; /* NS */ 9884 guarded = extract64(descriptor, 50, 1); /* GP */ 9885 if (param.hpd) { 9886 /* HPD disables all the table attributes except NSTable. */ 9887 break; 9888 } 9889 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9890 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9891 * means "force PL1 access only", which means forcing AP[1] to 0. 9892 */ 9893 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 9894 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 9895 break; 9896 } 9897 /* Here descaddr is the final physical address, and attributes 9898 * are all in attrs. 9899 */ 9900 fault_type = ARMFault_AccessFlag; 9901 if ((attrs & (1 << 8)) == 0) { 9902 /* Access flag */ 9903 goto do_fault; 9904 } 9905 9906 ap = extract32(attrs, 4, 2); 9907 xn = extract32(attrs, 12, 1); 9908 9909 if (mmu_idx == ARMMMUIdx_S2NS) { 9910 ns = true; 9911 *prot = get_S2prot(env, ap, xn); 9912 } else { 9913 ns = extract32(attrs, 3, 1); 9914 pxn = extract32(attrs, 11, 1); 9915 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9916 } 9917 9918 fault_type = ARMFault_Permission; 9919 if (!(*prot & (1 << access_type))) { 9920 goto do_fault; 9921 } 9922 9923 if (ns) { 9924 /* The NS bit will (as required by the architecture) have no effect if 9925 * the CPU doesn't support TZ or this is a non-secure translation 9926 * regime, because the attribute will already be non-secure. 9927 */ 9928 txattrs->secure = false; 9929 } 9930 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 9931 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 9932 txattrs->target_tlb_bit0 = true; 9933 } 9934 9935 if (cacheattrs != NULL) { 9936 if (mmu_idx == ARMMMUIdx_S2NS) { 9937 cacheattrs->attrs = convert_stage2_attrs(env, 9938 extract32(attrs, 0, 4)); 9939 } else { 9940 /* Index into MAIR registers for cache attributes */ 9941 uint8_t attrindx = extract32(attrs, 0, 3); 9942 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9943 assert(attrindx <= 7); 9944 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9945 } 9946 cacheattrs->shareability = extract32(attrs, 6, 2); 9947 } 9948 9949 *phys_ptr = descaddr; 9950 *page_size_ptr = page_size; 9951 return false; 9952 9953 do_fault: 9954 fi->type = fault_type; 9955 fi->level = level; 9956 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9957 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9958 return true; 9959 } 9960 9961 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9962 ARMMMUIdx mmu_idx, 9963 int32_t address, int *prot) 9964 { 9965 if (!arm_feature(env, ARM_FEATURE_M)) { 9966 *prot = PAGE_READ | PAGE_WRITE; 9967 switch (address) { 9968 case 0xF0000000 ... 0xFFFFFFFF: 9969 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9970 /* hivecs execing is ok */ 9971 *prot |= PAGE_EXEC; 9972 } 9973 break; 9974 case 0x00000000 ... 0x7FFFFFFF: 9975 *prot |= PAGE_EXEC; 9976 break; 9977 } 9978 } else { 9979 /* Default system address map for M profile cores. 9980 * The architecture specifies which regions are execute-never; 9981 * at the MPU level no other checks are defined. 9982 */ 9983 switch (address) { 9984 case 0x00000000 ... 0x1fffffff: /* ROM */ 9985 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9986 case 0x60000000 ... 0x7fffffff: /* RAM */ 9987 case 0x80000000 ... 0x9fffffff: /* RAM */ 9988 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9989 break; 9990 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9991 case 0xa0000000 ... 0xbfffffff: /* Device */ 9992 case 0xc0000000 ... 0xdfffffff: /* Device */ 9993 case 0xe0000000 ... 0xffffffff: /* System */ 9994 *prot = PAGE_READ | PAGE_WRITE; 9995 break; 9996 default: 9997 g_assert_not_reached(); 9998 } 9999 } 10000 } 10001 10002 static bool pmsav7_use_background_region(ARMCPU *cpu, 10003 ARMMMUIdx mmu_idx, bool is_user) 10004 { 10005 /* Return true if we should use the default memory map as a 10006 * "background" region if there are no hits against any MPU regions. 10007 */ 10008 CPUARMState *env = &cpu->env; 10009 10010 if (is_user) { 10011 return false; 10012 } 10013 10014 if (arm_feature(env, ARM_FEATURE_M)) { 10015 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10016 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10017 } else { 10018 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10019 } 10020 } 10021 10022 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10023 { 10024 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10025 return arm_feature(env, ARM_FEATURE_M) && 10026 extract32(address, 20, 12) == 0xe00; 10027 } 10028 10029 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10030 { 10031 /* True if address is in the M profile system region 10032 * 0xe0000000 - 0xffffffff 10033 */ 10034 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10035 } 10036 10037 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10038 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10039 hwaddr *phys_ptr, int *prot, 10040 target_ulong *page_size, 10041 ARMMMUFaultInfo *fi) 10042 { 10043 ARMCPU *cpu = env_archcpu(env); 10044 int n; 10045 bool is_user = regime_is_user(env, mmu_idx); 10046 10047 *phys_ptr = address; 10048 *page_size = TARGET_PAGE_SIZE; 10049 *prot = 0; 10050 10051 if (regime_translation_disabled(env, mmu_idx) || 10052 m_is_ppb_region(env, address)) { 10053 /* MPU disabled or M profile PPB access: use default memory map. 10054 * The other case which uses the default memory map in the 10055 * v7M ARM ARM pseudocode is exception vector reads from the vector 10056 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10057 * which always does a direct read using address_space_ldl(), rather 10058 * than going via this function, so we don't need to check that here. 10059 */ 10060 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10061 } else { /* MPU enabled */ 10062 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10063 /* region search */ 10064 uint32_t base = env->pmsav7.drbar[n]; 10065 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10066 uint32_t rmask; 10067 bool srdis = false; 10068 10069 if (!(env->pmsav7.drsr[n] & 0x1)) { 10070 continue; 10071 } 10072 10073 if (!rsize) { 10074 qemu_log_mask(LOG_GUEST_ERROR, 10075 "DRSR[%d]: Rsize field cannot be 0\n", n); 10076 continue; 10077 } 10078 rsize++; 10079 rmask = (1ull << rsize) - 1; 10080 10081 if (base & rmask) { 10082 qemu_log_mask(LOG_GUEST_ERROR, 10083 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 10084 "to DRSR region size, mask = 0x%" PRIx32 "\n", 10085 n, base, rmask); 10086 continue; 10087 } 10088 10089 if (address < base || address > base + rmask) { 10090 /* 10091 * Address not in this region. We must check whether the 10092 * region covers addresses in the same page as our address. 10093 * In that case we must not report a size that covers the 10094 * whole page for a subsequent hit against a different MPU 10095 * region or the background region, because it would result in 10096 * incorrect TLB hits for subsequent accesses to addresses that 10097 * are in this MPU region. 10098 */ 10099 if (ranges_overlap(base, rmask, 10100 address & TARGET_PAGE_MASK, 10101 TARGET_PAGE_SIZE)) { 10102 *page_size = 1; 10103 } 10104 continue; 10105 } 10106 10107 /* Region matched */ 10108 10109 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 10110 int i, snd; 10111 uint32_t srdis_mask; 10112 10113 rsize -= 3; /* sub region size (power of 2) */ 10114 snd = ((address - base) >> rsize) & 0x7; 10115 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 10116 10117 srdis_mask = srdis ? 0x3 : 0x0; 10118 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 10119 /* This will check in groups of 2, 4 and then 8, whether 10120 * the subregion bits are consistent. rsize is incremented 10121 * back up to give the region size, considering consistent 10122 * adjacent subregions as one region. Stop testing if rsize 10123 * is already big enough for an entire QEMU page. 10124 */ 10125 int snd_rounded = snd & ~(i - 1); 10126 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 10127 snd_rounded + 8, i); 10128 if (srdis_mask ^ srdis_multi) { 10129 break; 10130 } 10131 srdis_mask = (srdis_mask << i) | srdis_mask; 10132 rsize++; 10133 } 10134 } 10135 if (srdis) { 10136 continue; 10137 } 10138 if (rsize < TARGET_PAGE_BITS) { 10139 *page_size = 1 << rsize; 10140 } 10141 break; 10142 } 10143 10144 if (n == -1) { /* no hits */ 10145 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10146 /* background fault */ 10147 fi->type = ARMFault_Background; 10148 return true; 10149 } 10150 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10151 } else { /* a MPU hit! */ 10152 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10153 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10154 10155 if (m_is_system_region(env, address)) { 10156 /* System space is always execute never */ 10157 xn = 1; 10158 } 10159 10160 if (is_user) { /* User mode AP bit decoding */ 10161 switch (ap) { 10162 case 0: 10163 case 1: 10164 case 5: 10165 break; /* no access */ 10166 case 3: 10167 *prot |= PAGE_WRITE; 10168 /* fall through */ 10169 case 2: 10170 case 6: 10171 *prot |= PAGE_READ | PAGE_EXEC; 10172 break; 10173 case 7: 10174 /* for v7M, same as 6; for R profile a reserved value */ 10175 if (arm_feature(env, ARM_FEATURE_M)) { 10176 *prot |= PAGE_READ | PAGE_EXEC; 10177 break; 10178 } 10179 /* fall through */ 10180 default: 10181 qemu_log_mask(LOG_GUEST_ERROR, 10182 "DRACR[%d]: Bad value for AP bits: 0x%" 10183 PRIx32 "\n", n, ap); 10184 } 10185 } else { /* Priv. mode AP bits decoding */ 10186 switch (ap) { 10187 case 0: 10188 break; /* no access */ 10189 case 1: 10190 case 2: 10191 case 3: 10192 *prot |= PAGE_WRITE; 10193 /* fall through */ 10194 case 5: 10195 case 6: 10196 *prot |= PAGE_READ | PAGE_EXEC; 10197 break; 10198 case 7: 10199 /* for v7M, same as 6; for R profile a reserved value */ 10200 if (arm_feature(env, ARM_FEATURE_M)) { 10201 *prot |= PAGE_READ | PAGE_EXEC; 10202 break; 10203 } 10204 /* fall through */ 10205 default: 10206 qemu_log_mask(LOG_GUEST_ERROR, 10207 "DRACR[%d]: Bad value for AP bits: 0x%" 10208 PRIx32 "\n", n, ap); 10209 } 10210 } 10211 10212 /* execute never */ 10213 if (xn) { 10214 *prot &= ~PAGE_EXEC; 10215 } 10216 } 10217 } 10218 10219 fi->type = ARMFault_Permission; 10220 fi->level = 1; 10221 return !(*prot & (1 << access_type)); 10222 } 10223 10224 static bool v8m_is_sau_exempt(CPUARMState *env, 10225 uint32_t address, MMUAccessType access_type) 10226 { 10227 /* The architecture specifies that certain address ranges are 10228 * exempt from v8M SAU/IDAU checks. 10229 */ 10230 return 10231 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10232 (address >= 0xe0000000 && address <= 0xe0002fff) || 10233 (address >= 0xe000e000 && address <= 0xe000efff) || 10234 (address >= 0xe002e000 && address <= 0xe002efff) || 10235 (address >= 0xe0040000 && address <= 0xe0041fff) || 10236 (address >= 0xe00ff000 && address <= 0xe00fffff); 10237 } 10238 10239 void v8m_security_lookup(CPUARMState *env, uint32_t address, 10240 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10241 V8M_SAttributes *sattrs) 10242 { 10243 /* Look up the security attributes for this address. Compare the 10244 * pseudocode SecurityCheck() function. 10245 * We assume the caller has zero-initialized *sattrs. 10246 */ 10247 ARMCPU *cpu = env_archcpu(env); 10248 int r; 10249 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10250 int idau_region = IREGION_NOTVALID; 10251 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10252 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10253 10254 if (cpu->idau) { 10255 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10256 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10257 10258 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10259 &idau_nsc); 10260 } 10261 10262 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10263 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10264 return; 10265 } 10266 10267 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10268 sattrs->ns = !regime_is_secure(env, mmu_idx); 10269 return; 10270 } 10271 10272 if (idau_region != IREGION_NOTVALID) { 10273 sattrs->irvalid = true; 10274 sattrs->iregion = idau_region; 10275 } 10276 10277 switch (env->sau.ctrl & 3) { 10278 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10279 break; 10280 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10281 sattrs->ns = true; 10282 break; 10283 default: /* SAU.ENABLE == 1 */ 10284 for (r = 0; r < cpu->sau_sregion; r++) { 10285 if (env->sau.rlar[r] & 1) { 10286 uint32_t base = env->sau.rbar[r] & ~0x1f; 10287 uint32_t limit = env->sau.rlar[r] | 0x1f; 10288 10289 if (base <= address && limit >= address) { 10290 if (base > addr_page_base || limit < addr_page_limit) { 10291 sattrs->subpage = true; 10292 } 10293 if (sattrs->srvalid) { 10294 /* If we hit in more than one region then we must report 10295 * as Secure, not NS-Callable, with no valid region 10296 * number info. 10297 */ 10298 sattrs->ns = false; 10299 sattrs->nsc = false; 10300 sattrs->sregion = 0; 10301 sattrs->srvalid = false; 10302 break; 10303 } else { 10304 if (env->sau.rlar[r] & 2) { 10305 sattrs->nsc = true; 10306 } else { 10307 sattrs->ns = true; 10308 } 10309 sattrs->srvalid = true; 10310 sattrs->sregion = r; 10311 } 10312 } else { 10313 /* 10314 * Address not in this region. We must check whether the 10315 * region covers addresses in the same page as our address. 10316 * In that case we must not report a size that covers the 10317 * whole page for a subsequent hit against a different MPU 10318 * region or the background region, because it would result 10319 * in incorrect TLB hits for subsequent accesses to 10320 * addresses that are in this MPU region. 10321 */ 10322 if (limit >= base && 10323 ranges_overlap(base, limit - base + 1, 10324 addr_page_base, 10325 TARGET_PAGE_SIZE)) { 10326 sattrs->subpage = true; 10327 } 10328 } 10329 } 10330 } 10331 break; 10332 } 10333 10334 /* 10335 * The IDAU will override the SAU lookup results if it specifies 10336 * higher security than the SAU does. 10337 */ 10338 if (!idau_ns) { 10339 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10340 sattrs->ns = false; 10341 sattrs->nsc = idau_nsc; 10342 } 10343 } 10344 } 10345 10346 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10347 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10348 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10349 int *prot, bool *is_subpage, 10350 ARMMMUFaultInfo *fi, uint32_t *mregion) 10351 { 10352 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10353 * that a full phys-to-virt translation does). 10354 * mregion is (if not NULL) set to the region number which matched, 10355 * or -1 if no region number is returned (MPU off, address did not 10356 * hit a region, address hit in multiple regions). 10357 * We set is_subpage to true if the region hit doesn't cover the 10358 * entire TARGET_PAGE the address is within. 10359 */ 10360 ARMCPU *cpu = env_archcpu(env); 10361 bool is_user = regime_is_user(env, mmu_idx); 10362 uint32_t secure = regime_is_secure(env, mmu_idx); 10363 int n; 10364 int matchregion = -1; 10365 bool hit = false; 10366 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10367 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10368 10369 *is_subpage = false; 10370 *phys_ptr = address; 10371 *prot = 0; 10372 if (mregion) { 10373 *mregion = -1; 10374 } 10375 10376 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10377 * was an exception vector read from the vector table (which is always 10378 * done using the default system address map), because those accesses 10379 * are done in arm_v7m_load_vector(), which always does a direct 10380 * read using address_space_ldl(), rather than going via this function. 10381 */ 10382 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10383 hit = true; 10384 } else if (m_is_ppb_region(env, address)) { 10385 hit = true; 10386 } else { 10387 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10388 hit = true; 10389 } 10390 10391 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10392 /* region search */ 10393 /* Note that the base address is bits [31:5] from the register 10394 * with bits [4:0] all zeroes, but the limit address is bits 10395 * [31:5] from the register with bits [4:0] all ones. 10396 */ 10397 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10398 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10399 10400 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10401 /* Region disabled */ 10402 continue; 10403 } 10404 10405 if (address < base || address > limit) { 10406 /* 10407 * Address not in this region. We must check whether the 10408 * region covers addresses in the same page as our address. 10409 * In that case we must not report a size that covers the 10410 * whole page for a subsequent hit against a different MPU 10411 * region or the background region, because it would result in 10412 * incorrect TLB hits for subsequent accesses to addresses that 10413 * are in this MPU region. 10414 */ 10415 if (limit >= base && 10416 ranges_overlap(base, limit - base + 1, 10417 addr_page_base, 10418 TARGET_PAGE_SIZE)) { 10419 *is_subpage = true; 10420 } 10421 continue; 10422 } 10423 10424 if (base > addr_page_base || limit < addr_page_limit) { 10425 *is_subpage = true; 10426 } 10427 10428 if (matchregion != -1) { 10429 /* Multiple regions match -- always a failure (unlike 10430 * PMSAv7 where highest-numbered-region wins) 10431 */ 10432 fi->type = ARMFault_Permission; 10433 fi->level = 1; 10434 return true; 10435 } 10436 10437 matchregion = n; 10438 hit = true; 10439 } 10440 } 10441 10442 if (!hit) { 10443 /* background fault */ 10444 fi->type = ARMFault_Background; 10445 return true; 10446 } 10447 10448 if (matchregion == -1) { 10449 /* hit using the background region */ 10450 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10451 } else { 10452 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10453 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10454 10455 if (m_is_system_region(env, address)) { 10456 /* System space is always execute never */ 10457 xn = 1; 10458 } 10459 10460 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10461 if (*prot && !xn) { 10462 *prot |= PAGE_EXEC; 10463 } 10464 /* We don't need to look the attribute up in the MAIR0/MAIR1 10465 * registers because that only tells us about cacheability. 10466 */ 10467 if (mregion) { 10468 *mregion = matchregion; 10469 } 10470 } 10471 10472 fi->type = ARMFault_Permission; 10473 fi->level = 1; 10474 return !(*prot & (1 << access_type)); 10475 } 10476 10477 10478 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10479 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10480 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10481 int *prot, target_ulong *page_size, 10482 ARMMMUFaultInfo *fi) 10483 { 10484 uint32_t secure = regime_is_secure(env, mmu_idx); 10485 V8M_SAttributes sattrs = {}; 10486 bool ret; 10487 bool mpu_is_subpage; 10488 10489 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10490 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10491 if (access_type == MMU_INST_FETCH) { 10492 /* Instruction fetches always use the MMU bank and the 10493 * transaction attribute determined by the fetch address, 10494 * regardless of CPU state. This is painful for QEMU 10495 * to handle, because it would mean we need to encode 10496 * into the mmu_idx not just the (user, negpri) information 10497 * for the current security state but also that for the 10498 * other security state, which would balloon the number 10499 * of mmu_idx values needed alarmingly. 10500 * Fortunately we can avoid this because it's not actually 10501 * possible to arbitrarily execute code from memory with 10502 * the wrong security attribute: it will always generate 10503 * an exception of some kind or another, apart from the 10504 * special case of an NS CPU executing an SG instruction 10505 * in S&NSC memory. So we always just fail the translation 10506 * here and sort things out in the exception handler 10507 * (including possibly emulating an SG instruction). 10508 */ 10509 if (sattrs.ns != !secure) { 10510 if (sattrs.nsc) { 10511 fi->type = ARMFault_QEMU_NSCExec; 10512 } else { 10513 fi->type = ARMFault_QEMU_SFault; 10514 } 10515 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10516 *phys_ptr = address; 10517 *prot = 0; 10518 return true; 10519 } 10520 } else { 10521 /* For data accesses we always use the MMU bank indicated 10522 * by the current CPU state, but the security attributes 10523 * might downgrade a secure access to nonsecure. 10524 */ 10525 if (sattrs.ns) { 10526 txattrs->secure = false; 10527 } else if (!secure) { 10528 /* NS access to S memory must fault. 10529 * Architecturally we should first check whether the 10530 * MPU information for this address indicates that we 10531 * are doing an unaligned access to Device memory, which 10532 * should generate a UsageFault instead. QEMU does not 10533 * currently check for that kind of unaligned access though. 10534 * If we added it we would need to do so as a special case 10535 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10536 */ 10537 fi->type = ARMFault_QEMU_SFault; 10538 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10539 *phys_ptr = address; 10540 *prot = 0; 10541 return true; 10542 } 10543 } 10544 } 10545 10546 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10547 txattrs, prot, &mpu_is_subpage, fi, NULL); 10548 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10549 return ret; 10550 } 10551 10552 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10553 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10554 hwaddr *phys_ptr, int *prot, 10555 ARMMMUFaultInfo *fi) 10556 { 10557 int n; 10558 uint32_t mask; 10559 uint32_t base; 10560 bool is_user = regime_is_user(env, mmu_idx); 10561 10562 if (regime_translation_disabled(env, mmu_idx)) { 10563 /* MPU disabled. */ 10564 *phys_ptr = address; 10565 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10566 return false; 10567 } 10568 10569 *phys_ptr = address; 10570 for (n = 7; n >= 0; n--) { 10571 base = env->cp15.c6_region[n]; 10572 if ((base & 1) == 0) { 10573 continue; 10574 } 10575 mask = 1 << ((base >> 1) & 0x1f); 10576 /* Keep this shift separate from the above to avoid an 10577 (undefined) << 32. */ 10578 mask = (mask << 1) - 1; 10579 if (((base ^ address) & ~mask) == 0) { 10580 break; 10581 } 10582 } 10583 if (n < 0) { 10584 fi->type = ARMFault_Background; 10585 return true; 10586 } 10587 10588 if (access_type == MMU_INST_FETCH) { 10589 mask = env->cp15.pmsav5_insn_ap; 10590 } else { 10591 mask = env->cp15.pmsav5_data_ap; 10592 } 10593 mask = (mask >> (n * 4)) & 0xf; 10594 switch (mask) { 10595 case 0: 10596 fi->type = ARMFault_Permission; 10597 fi->level = 1; 10598 return true; 10599 case 1: 10600 if (is_user) { 10601 fi->type = ARMFault_Permission; 10602 fi->level = 1; 10603 return true; 10604 } 10605 *prot = PAGE_READ | PAGE_WRITE; 10606 break; 10607 case 2: 10608 *prot = PAGE_READ; 10609 if (!is_user) { 10610 *prot |= PAGE_WRITE; 10611 } 10612 break; 10613 case 3: 10614 *prot = PAGE_READ | PAGE_WRITE; 10615 break; 10616 case 5: 10617 if (is_user) { 10618 fi->type = ARMFault_Permission; 10619 fi->level = 1; 10620 return true; 10621 } 10622 *prot = PAGE_READ; 10623 break; 10624 case 6: 10625 *prot = PAGE_READ; 10626 break; 10627 default: 10628 /* Bad permission. */ 10629 fi->type = ARMFault_Permission; 10630 fi->level = 1; 10631 return true; 10632 } 10633 *prot |= PAGE_EXEC; 10634 return false; 10635 } 10636 10637 /* Combine either inner or outer cacheability attributes for normal 10638 * memory, according to table D4-42 and pseudocode procedure 10639 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10640 * 10641 * NB: only stage 1 includes allocation hints (RW bits), leading to 10642 * some asymmetry. 10643 */ 10644 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10645 { 10646 if (s1 == 4 || s2 == 4) { 10647 /* non-cacheable has precedence */ 10648 return 4; 10649 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10650 /* stage 1 write-through takes precedence */ 10651 return s1; 10652 } else if (extract32(s2, 2, 2) == 2) { 10653 /* stage 2 write-through takes precedence, but the allocation hint 10654 * is still taken from stage 1 10655 */ 10656 return (2 << 2) | extract32(s1, 0, 2); 10657 } else { /* write-back */ 10658 return s1; 10659 } 10660 } 10661 10662 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10663 * and CombineS1S2Desc() 10664 * 10665 * @s1: Attributes from stage 1 walk 10666 * @s2: Attributes from stage 2 walk 10667 */ 10668 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10669 { 10670 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10671 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10672 ARMCacheAttrs ret; 10673 10674 /* Combine shareability attributes (table D4-43) */ 10675 if (s1.shareability == 2 || s2.shareability == 2) { 10676 /* if either are outer-shareable, the result is outer-shareable */ 10677 ret.shareability = 2; 10678 } else if (s1.shareability == 3 || s2.shareability == 3) { 10679 /* if either are inner-shareable, the result is inner-shareable */ 10680 ret.shareability = 3; 10681 } else { 10682 /* both non-shareable */ 10683 ret.shareability = 0; 10684 } 10685 10686 /* Combine memory type and cacheability attributes */ 10687 if (s1hi == 0 || s2hi == 0) { 10688 /* Device has precedence over normal */ 10689 if (s1lo == 0 || s2lo == 0) { 10690 /* nGnRnE has precedence over anything */ 10691 ret.attrs = 0; 10692 } else if (s1lo == 4 || s2lo == 4) { 10693 /* non-Reordering has precedence over Reordering */ 10694 ret.attrs = 4; /* nGnRE */ 10695 } else if (s1lo == 8 || s2lo == 8) { 10696 /* non-Gathering has precedence over Gathering */ 10697 ret.attrs = 8; /* nGRE */ 10698 } else { 10699 ret.attrs = 0xc; /* GRE */ 10700 } 10701 10702 /* Any location for which the resultant memory type is any 10703 * type of Device memory is always treated as Outer Shareable. 10704 */ 10705 ret.shareability = 2; 10706 } else { /* Normal memory */ 10707 /* Outer/inner cacheability combine independently */ 10708 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10709 | combine_cacheattr_nibble(s1lo, s2lo); 10710 10711 if (ret.attrs == 0x44) { 10712 /* Any location for which the resultant memory type is Normal 10713 * Inner Non-cacheable, Outer Non-cacheable is always treated 10714 * as Outer Shareable. 10715 */ 10716 ret.shareability = 2; 10717 } 10718 } 10719 10720 return ret; 10721 } 10722 10723 10724 /* get_phys_addr - get the physical address for this virtual address 10725 * 10726 * Find the physical address corresponding to the given virtual address, 10727 * by doing a translation table walk on MMU based systems or using the 10728 * MPU state on MPU based systems. 10729 * 10730 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10731 * prot and page_size may not be filled in, and the populated fsr value provides 10732 * information on why the translation aborted, in the format of a 10733 * DFSR/IFSR fault register, with the following caveats: 10734 * * we honour the short vs long DFSR format differences. 10735 * * the WnR bit is never set (the caller must do this). 10736 * * for PSMAv5 based systems we don't bother to return a full FSR format 10737 * value. 10738 * 10739 * @env: CPUARMState 10740 * @address: virtual address to get physical address for 10741 * @access_type: 0 for read, 1 for write, 2 for execute 10742 * @mmu_idx: MMU index indicating required translation regime 10743 * @phys_ptr: set to the physical address corresponding to the virtual address 10744 * @attrs: set to the memory transaction attributes to use 10745 * @prot: set to the permissions for the page containing phys_ptr 10746 * @page_size: set to the size of the page containing phys_ptr 10747 * @fi: set to fault info if the translation fails 10748 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10749 */ 10750 bool get_phys_addr(CPUARMState *env, target_ulong address, 10751 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10752 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10753 target_ulong *page_size, 10754 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10755 { 10756 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10757 /* Call ourselves recursively to do the stage 1 and then stage 2 10758 * translations. 10759 */ 10760 if (arm_feature(env, ARM_FEATURE_EL2)) { 10761 hwaddr ipa; 10762 int s2_prot; 10763 int ret; 10764 ARMCacheAttrs cacheattrs2 = {}; 10765 10766 ret = get_phys_addr(env, address, access_type, 10767 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10768 prot, page_size, fi, cacheattrs); 10769 10770 /* If S1 fails or S2 is disabled, return early. */ 10771 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10772 *phys_ptr = ipa; 10773 return ret; 10774 } 10775 10776 /* S1 is done. Now do S2 translation. */ 10777 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10778 phys_ptr, attrs, &s2_prot, 10779 page_size, fi, 10780 cacheattrs != NULL ? &cacheattrs2 : NULL); 10781 fi->s2addr = ipa; 10782 /* Combine the S1 and S2 perms. */ 10783 *prot &= s2_prot; 10784 10785 /* Combine the S1 and S2 cache attributes, if needed */ 10786 if (!ret && cacheattrs != NULL) { 10787 if (env->cp15.hcr_el2 & HCR_DC) { 10788 /* 10789 * HCR.DC forces the first stage attributes to 10790 * Normal Non-Shareable, 10791 * Inner Write-Back Read-Allocate Write-Allocate, 10792 * Outer Write-Back Read-Allocate Write-Allocate. 10793 */ 10794 cacheattrs->attrs = 0xff; 10795 cacheattrs->shareability = 0; 10796 } 10797 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10798 } 10799 10800 return ret; 10801 } else { 10802 /* 10803 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10804 */ 10805 mmu_idx = stage_1_mmu_idx(mmu_idx); 10806 } 10807 } 10808 10809 /* The page table entries may downgrade secure to non-secure, but 10810 * cannot upgrade an non-secure translation regime's attributes 10811 * to secure. 10812 */ 10813 attrs->secure = regime_is_secure(env, mmu_idx); 10814 attrs->user = regime_is_user(env, mmu_idx); 10815 10816 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10817 * In v7 and earlier it affects all stage 1 translations. 10818 */ 10819 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10820 && !arm_feature(env, ARM_FEATURE_V8)) { 10821 if (regime_el(env, mmu_idx) == 3) { 10822 address += env->cp15.fcseidr_s; 10823 } else { 10824 address += env->cp15.fcseidr_ns; 10825 } 10826 } 10827 10828 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10829 bool ret; 10830 *page_size = TARGET_PAGE_SIZE; 10831 10832 if (arm_feature(env, ARM_FEATURE_V8)) { 10833 /* PMSAv8 */ 10834 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10835 phys_ptr, attrs, prot, page_size, fi); 10836 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10837 /* PMSAv7 */ 10838 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10839 phys_ptr, prot, page_size, fi); 10840 } else { 10841 /* Pre-v7 MPU */ 10842 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10843 phys_ptr, prot, fi); 10844 } 10845 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10846 " mmu_idx %u -> %s (prot %c%c%c)\n", 10847 access_type == MMU_DATA_LOAD ? "reading" : 10848 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10849 (uint32_t)address, mmu_idx, 10850 ret ? "Miss" : "Hit", 10851 *prot & PAGE_READ ? 'r' : '-', 10852 *prot & PAGE_WRITE ? 'w' : '-', 10853 *prot & PAGE_EXEC ? 'x' : '-'); 10854 10855 return ret; 10856 } 10857 10858 /* Definitely a real MMU, not an MPU */ 10859 10860 if (regime_translation_disabled(env, mmu_idx)) { 10861 /* MMU disabled. */ 10862 *phys_ptr = address; 10863 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10864 *page_size = TARGET_PAGE_SIZE; 10865 return 0; 10866 } 10867 10868 if (regime_using_lpae_format(env, mmu_idx)) { 10869 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10870 phys_ptr, attrs, prot, page_size, 10871 fi, cacheattrs); 10872 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10873 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10874 phys_ptr, attrs, prot, page_size, fi); 10875 } else { 10876 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10877 phys_ptr, prot, page_size, fi); 10878 } 10879 } 10880 10881 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10882 MemTxAttrs *attrs) 10883 { 10884 ARMCPU *cpu = ARM_CPU(cs); 10885 CPUARMState *env = &cpu->env; 10886 hwaddr phys_addr; 10887 target_ulong page_size; 10888 int prot; 10889 bool ret; 10890 ARMMMUFaultInfo fi = {}; 10891 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 10892 10893 *attrs = (MemTxAttrs) {}; 10894 10895 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10896 attrs, &prot, &page_size, &fi, NULL); 10897 10898 if (ret) { 10899 return -1; 10900 } 10901 return phys_addr; 10902 } 10903 10904 #endif 10905 10906 /* Note that signed overflow is undefined in C. The following routines are 10907 careful to use unsigned types where modulo arithmetic is required. 10908 Failure to do so _will_ break on newer gcc. */ 10909 10910 /* Signed saturating arithmetic. */ 10911 10912 /* Perform 16-bit signed saturating addition. */ 10913 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10914 { 10915 uint16_t res; 10916 10917 res = a + b; 10918 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10919 if (a & 0x8000) 10920 res = 0x8000; 10921 else 10922 res = 0x7fff; 10923 } 10924 return res; 10925 } 10926 10927 /* Perform 8-bit signed saturating addition. */ 10928 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10929 { 10930 uint8_t res; 10931 10932 res = a + b; 10933 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10934 if (a & 0x80) 10935 res = 0x80; 10936 else 10937 res = 0x7f; 10938 } 10939 return res; 10940 } 10941 10942 /* Perform 16-bit signed saturating subtraction. */ 10943 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10944 { 10945 uint16_t res; 10946 10947 res = a - b; 10948 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10949 if (a & 0x8000) 10950 res = 0x8000; 10951 else 10952 res = 0x7fff; 10953 } 10954 return res; 10955 } 10956 10957 /* Perform 8-bit signed saturating subtraction. */ 10958 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10959 { 10960 uint8_t res; 10961 10962 res = a - b; 10963 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10964 if (a & 0x80) 10965 res = 0x80; 10966 else 10967 res = 0x7f; 10968 } 10969 return res; 10970 } 10971 10972 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10973 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10974 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10975 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10976 #define PFX q 10977 10978 #include "op_addsub.h" 10979 10980 /* Unsigned saturating arithmetic. */ 10981 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10982 { 10983 uint16_t res; 10984 res = a + b; 10985 if (res < a) 10986 res = 0xffff; 10987 return res; 10988 } 10989 10990 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10991 { 10992 if (a > b) 10993 return a - b; 10994 else 10995 return 0; 10996 } 10997 10998 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10999 { 11000 uint8_t res; 11001 res = a + b; 11002 if (res < a) 11003 res = 0xff; 11004 return res; 11005 } 11006 11007 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11008 { 11009 if (a > b) 11010 return a - b; 11011 else 11012 return 0; 11013 } 11014 11015 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11016 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11017 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11018 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11019 #define PFX uq 11020 11021 #include "op_addsub.h" 11022 11023 /* Signed modulo arithmetic. */ 11024 #define SARITH16(a, b, n, op) do { \ 11025 int32_t sum; \ 11026 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11027 RESULT(sum, n, 16); \ 11028 if (sum >= 0) \ 11029 ge |= 3 << (n * 2); \ 11030 } while(0) 11031 11032 #define SARITH8(a, b, n, op) do { \ 11033 int32_t sum; \ 11034 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11035 RESULT(sum, n, 8); \ 11036 if (sum >= 0) \ 11037 ge |= 1 << n; \ 11038 } while(0) 11039 11040 11041 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11042 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11043 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11044 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11045 #define PFX s 11046 #define ARITH_GE 11047 11048 #include "op_addsub.h" 11049 11050 /* Unsigned modulo arithmetic. */ 11051 #define ADD16(a, b, n) do { \ 11052 uint32_t sum; \ 11053 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11054 RESULT(sum, n, 16); \ 11055 if ((sum >> 16) == 1) \ 11056 ge |= 3 << (n * 2); \ 11057 } while(0) 11058 11059 #define ADD8(a, b, n) do { \ 11060 uint32_t sum; \ 11061 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11062 RESULT(sum, n, 8); \ 11063 if ((sum >> 8) == 1) \ 11064 ge |= 1 << n; \ 11065 } while(0) 11066 11067 #define SUB16(a, b, n) do { \ 11068 uint32_t sum; \ 11069 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11070 RESULT(sum, n, 16); \ 11071 if ((sum >> 16) == 0) \ 11072 ge |= 3 << (n * 2); \ 11073 } while(0) 11074 11075 #define SUB8(a, b, n) do { \ 11076 uint32_t sum; \ 11077 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11078 RESULT(sum, n, 8); \ 11079 if ((sum >> 8) == 0) \ 11080 ge |= 1 << n; \ 11081 } while(0) 11082 11083 #define PFX u 11084 #define ARITH_GE 11085 11086 #include "op_addsub.h" 11087 11088 /* Halved signed arithmetic. */ 11089 #define ADD16(a, b, n) \ 11090 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11091 #define SUB16(a, b, n) \ 11092 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11093 #define ADD8(a, b, n) \ 11094 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11095 #define SUB8(a, b, n) \ 11096 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11097 #define PFX sh 11098 11099 #include "op_addsub.h" 11100 11101 /* Halved unsigned arithmetic. */ 11102 #define ADD16(a, b, n) \ 11103 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11104 #define SUB16(a, b, n) \ 11105 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11106 #define ADD8(a, b, n) \ 11107 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11108 #define SUB8(a, b, n) \ 11109 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11110 #define PFX uh 11111 11112 #include "op_addsub.h" 11113 11114 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11115 { 11116 if (a > b) 11117 return a - b; 11118 else 11119 return b - a; 11120 } 11121 11122 /* Unsigned sum of absolute byte differences. */ 11123 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11124 { 11125 uint32_t sum; 11126 sum = do_usad(a, b); 11127 sum += do_usad(a >> 8, b >> 8); 11128 sum += do_usad(a >> 16, b >>16); 11129 sum += do_usad(a >> 24, b >> 24); 11130 return sum; 11131 } 11132 11133 /* For ARMv6 SEL instruction. */ 11134 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11135 { 11136 uint32_t mask; 11137 11138 mask = 0; 11139 if (flags & 1) 11140 mask |= 0xff; 11141 if (flags & 2) 11142 mask |= 0xff00; 11143 if (flags & 4) 11144 mask |= 0xff0000; 11145 if (flags & 8) 11146 mask |= 0xff000000; 11147 return (a & mask) | (b & ~mask); 11148 } 11149 11150 /* CRC helpers. 11151 * The upper bytes of val (above the number specified by 'bytes') must have 11152 * been zeroed out by the caller. 11153 */ 11154 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11155 { 11156 uint8_t buf[4]; 11157 11158 stl_le_p(buf, val); 11159 11160 /* zlib crc32 converts the accumulator and output to one's complement. */ 11161 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11162 } 11163 11164 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11165 { 11166 uint8_t buf[4]; 11167 11168 stl_le_p(buf, val); 11169 11170 /* Linux crc32c converts the output to one's complement. */ 11171 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11172 } 11173 11174 /* Return the exception level to which FP-disabled exceptions should 11175 * be taken, or 0 if FP is enabled. 11176 */ 11177 int fp_exception_el(CPUARMState *env, int cur_el) 11178 { 11179 #ifndef CONFIG_USER_ONLY 11180 int fpen; 11181 11182 /* CPACR and the CPTR registers don't exist before v6, so FP is 11183 * always accessible 11184 */ 11185 if (!arm_feature(env, ARM_FEATURE_V6)) { 11186 return 0; 11187 } 11188 11189 if (arm_feature(env, ARM_FEATURE_M)) { 11190 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11191 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11192 return 1; 11193 } 11194 11195 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11196 if (!extract32(env->v7m.nsacr, 10, 1)) { 11197 /* FP insns cause a NOCP UsageFault taken to Secure */ 11198 return 3; 11199 } 11200 } 11201 11202 return 0; 11203 } 11204 11205 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11206 * 0, 2 : trap EL0 and EL1/PL1 accesses 11207 * 1 : trap only EL0 accesses 11208 * 3 : trap no accesses 11209 */ 11210 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 11211 switch (fpen) { 11212 case 0: 11213 case 2: 11214 if (cur_el == 0 || cur_el == 1) { 11215 /* Trap to PL1, which might be EL1 or EL3 */ 11216 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 11217 return 3; 11218 } 11219 return 1; 11220 } 11221 if (cur_el == 3 && !is_a64(env)) { 11222 /* Secure PL1 running at EL3 */ 11223 return 3; 11224 } 11225 break; 11226 case 1: 11227 if (cur_el == 0) { 11228 return 1; 11229 } 11230 break; 11231 case 3: 11232 break; 11233 } 11234 11235 /* 11236 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11237 * to control non-secure access to the FPU. It doesn't have any 11238 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11239 */ 11240 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11241 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11242 if (!extract32(env->cp15.nsacr, 10, 1)) { 11243 /* FP insns act as UNDEF */ 11244 return cur_el == 2 ? 2 : 1; 11245 } 11246 } 11247 11248 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 11249 * check because zero bits in the registers mean "don't trap". 11250 */ 11251 11252 /* CPTR_EL2 : present in v7VE or v8 */ 11253 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 11254 && !arm_is_secure_below_el3(env)) { 11255 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 11256 return 2; 11257 } 11258 11259 /* CPTR_EL3 : present in v8 */ 11260 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 11261 /* Trap all FP ops to EL3 */ 11262 return 3; 11263 } 11264 #endif 11265 return 0; 11266 } 11267 11268 #ifndef CONFIG_TCG 11269 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11270 { 11271 g_assert_not_reached(); 11272 } 11273 #endif 11274 11275 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11276 { 11277 if (arm_feature(env, ARM_FEATURE_M)) { 11278 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11279 } 11280 11281 if (el < 2 && arm_is_secure_below_el3(env)) { 11282 return ARMMMUIdx_S1SE0 + el; 11283 } else { 11284 return ARMMMUIdx_S12NSE0 + el; 11285 } 11286 } 11287 11288 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11289 { 11290 return arm_mmu_idx_el(env, arm_current_el(env)); 11291 } 11292 11293 int cpu_mmu_index(CPUARMState *env, bool ifetch) 11294 { 11295 return arm_to_core_mmu_idx(arm_mmu_idx(env)); 11296 } 11297 11298 #ifndef CONFIG_USER_ONLY 11299 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 11300 { 11301 return stage_1_mmu_idx(arm_mmu_idx(env)); 11302 } 11303 #endif 11304 11305 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el, 11306 ARMMMUIdx mmu_idx, uint32_t flags) 11307 { 11308 flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el); 11309 flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX, 11310 arm_to_core_mmu_idx(mmu_idx)); 11311 11312 if (arm_singlestep_active(env)) { 11313 flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1); 11314 } 11315 return flags; 11316 } 11317 11318 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11319 ARMMMUIdx mmu_idx, uint32_t flags) 11320 { 11321 bool sctlr_b = arm_sctlr_b(env); 11322 11323 if (sctlr_b) { 11324 flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1); 11325 } 11326 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11327 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11328 } 11329 flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env)); 11330 11331 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11332 } 11333 11334 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el, 11335 ARMMMUIdx mmu_idx) 11336 { 11337 uint32_t flags = 0; 11338 11339 /* v8M always enables the fpu. */ 11340 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11341 11342 if (arm_v7m_is_handler_mode(env)) { 11343 flags = FIELD_DP32(flags, TBFLAG_A32, HANDLER, 1); 11344 } 11345 11346 /* 11347 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11348 * is suppressing them because the requested execution priority 11349 * is less than 0. 11350 */ 11351 if (arm_feature(env, ARM_FEATURE_V8) && 11352 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11353 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11354 flags = FIELD_DP32(flags, TBFLAG_A32, STACKCHECK, 1); 11355 } 11356 11357 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11358 } 11359 11360 static uint32_t rebuild_hflags_aprofile(CPUARMState *env) 11361 { 11362 int flags = 0; 11363 11364 flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL, 11365 arm_debug_target_el(env)); 11366 return flags; 11367 } 11368 11369 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el, 11370 ARMMMUIdx mmu_idx) 11371 { 11372 uint32_t flags = rebuild_hflags_aprofile(env); 11373 11374 if (arm_el_is_aa64(env, 1)) { 11375 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11376 } 11377 11378 if (arm_current_el(env) < 2 && env->cp15.hstr_el2 && 11379 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11380 flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1); 11381 } 11382 11383 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11384 } 11385 11386 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11387 ARMMMUIdx mmu_idx) 11388 { 11389 uint32_t flags = rebuild_hflags_aprofile(env); 11390 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11391 ARMVAParameters p0 = aa64_va_parameters_both(env, 0, stage1); 11392 uint64_t sctlr; 11393 int tbii, tbid; 11394 11395 flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1); 11396 11397 /* FIXME: ARMv8.1-VHE S2 translation regime. */ 11398 if (regime_el(env, stage1) < 2) { 11399 ARMVAParameters p1 = aa64_va_parameters_both(env, -1, stage1); 11400 tbid = (p1.tbi << 1) | p0.tbi; 11401 tbii = tbid & ~((p1.tbid << 1) | p0.tbid); 11402 } else { 11403 tbid = p0.tbi; 11404 tbii = tbid & !p0.tbid; 11405 } 11406 11407 flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii); 11408 flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid); 11409 11410 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11411 int sve_el = sve_exception_el(env, el); 11412 uint32_t zcr_len; 11413 11414 /* 11415 * If SVE is disabled, but FP is enabled, 11416 * then the effective len is 0. 11417 */ 11418 if (sve_el != 0 && fp_el == 0) { 11419 zcr_len = 0; 11420 } else { 11421 zcr_len = sve_zcr_len_for_el(env, el); 11422 } 11423 flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el); 11424 flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len); 11425 } 11426 11427 sctlr = arm_sctlr(env, el); 11428 11429 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11430 flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1); 11431 } 11432 11433 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11434 /* 11435 * In order to save space in flags, we record only whether 11436 * pauth is "inactive", meaning all insns are implemented as 11437 * a nop, or "active" when some action must be performed. 11438 * The decision of which action to take is left to a helper. 11439 */ 11440 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11441 flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1); 11442 } 11443 } 11444 11445 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11446 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11447 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11448 flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1); 11449 } 11450 } 11451 11452 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11453 } 11454 11455 static uint32_t rebuild_hflags_internal(CPUARMState *env) 11456 { 11457 int el = arm_current_el(env); 11458 int fp_el = fp_exception_el(env, el); 11459 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11460 11461 if (is_a64(env)) { 11462 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11463 } else if (arm_feature(env, ARM_FEATURE_M)) { 11464 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11465 } else { 11466 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11467 } 11468 } 11469 11470 void arm_rebuild_hflags(CPUARMState *env) 11471 { 11472 env->hflags = rebuild_hflags_internal(env); 11473 } 11474 11475 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11476 { 11477 int fp_el = fp_exception_el(env, el); 11478 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11479 11480 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11481 } 11482 11483 /* 11484 * If we have triggered a EL state change we can't rely on the 11485 * translator having passed it too us, we need to recompute. 11486 */ 11487 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11488 { 11489 int el = arm_current_el(env); 11490 int fp_el = fp_exception_el(env, el); 11491 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11492 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11493 } 11494 11495 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11496 { 11497 int fp_el = fp_exception_el(env, el); 11498 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11499 11500 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11501 } 11502 11503 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11504 { 11505 int fp_el = fp_exception_el(env, el); 11506 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11507 11508 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11509 } 11510 11511 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11512 { 11513 #ifdef CONFIG_DEBUG_TCG 11514 uint32_t env_flags_current = env->hflags; 11515 uint32_t env_flags_rebuilt = rebuild_hflags_internal(env); 11516 11517 if (unlikely(env_flags_current != env_flags_rebuilt)) { 11518 fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n", 11519 env_flags_current, env_flags_rebuilt); 11520 abort(); 11521 } 11522 #endif 11523 } 11524 11525 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11526 target_ulong *cs_base, uint32_t *pflags) 11527 { 11528 uint32_t flags = env->hflags; 11529 uint32_t pstate_for_ss; 11530 11531 *cs_base = 0; 11532 assert_hflags_rebuild_correctly(env); 11533 11534 if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) { 11535 *pc = env->pc; 11536 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11537 flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype); 11538 } 11539 pstate_for_ss = env->pstate; 11540 } else { 11541 *pc = env->regs[15]; 11542 11543 if (arm_feature(env, ARM_FEATURE_M)) { 11544 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11545 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11546 != env->v7m.secure) { 11547 flags = FIELD_DP32(flags, TBFLAG_A32, FPCCR_S_WRONG, 1); 11548 } 11549 11550 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11551 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11552 (env->v7m.secure && 11553 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11554 /* 11555 * ASPEN is set, but FPCA/SFPA indicate that there is no 11556 * active FP context; we must create a new FP context before 11557 * executing any FP insn. 11558 */ 11559 flags = FIELD_DP32(flags, TBFLAG_A32, NEW_FP_CTXT_NEEDED, 1); 11560 } 11561 11562 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11563 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11564 flags = FIELD_DP32(flags, TBFLAG_A32, LSPACT, 1); 11565 } 11566 } else { 11567 /* 11568 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11569 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11570 */ 11571 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11572 flags = FIELD_DP32(flags, TBFLAG_A32, 11573 XSCALE_CPAR, env->cp15.c15_cpar); 11574 } else { 11575 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN, 11576 env->vfp.vec_len); 11577 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE, 11578 env->vfp.vec_stride); 11579 } 11580 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11581 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1); 11582 } 11583 } 11584 11585 flags = FIELD_DP32(flags, TBFLAG_A32, THUMB, env->thumb); 11586 flags = FIELD_DP32(flags, TBFLAG_A32, CONDEXEC, env->condexec_bits); 11587 pstate_for_ss = env->uncached_cpsr; 11588 } 11589 11590 /* 11591 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11592 * states defined in the ARM ARM for software singlestep: 11593 * SS_ACTIVE PSTATE.SS State 11594 * 0 x Inactive (the TB flag for SS is always 0) 11595 * 1 0 Active-pending 11596 * 1 1 Active-not-pending 11597 * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB. 11598 */ 11599 if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) && 11600 (pstate_for_ss & PSTATE_SS)) { 11601 flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1); 11602 } 11603 11604 *pflags = flags; 11605 } 11606 11607 #ifdef TARGET_AARCH64 11608 /* 11609 * The manual says that when SVE is enabled and VQ is widened the 11610 * implementation is allowed to zero the previously inaccessible 11611 * portion of the registers. The corollary to that is that when 11612 * SVE is enabled and VQ is narrowed we are also allowed to zero 11613 * the now inaccessible portion of the registers. 11614 * 11615 * The intent of this is that no predicate bit beyond VQ is ever set. 11616 * Which means that some operations on predicate registers themselves 11617 * may operate on full uint64_t or even unrolled across the maximum 11618 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11619 * may well be cheaper than conditionals to restrict the operation 11620 * to the relevant portion of a uint16_t[16]. 11621 */ 11622 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11623 { 11624 int i, j; 11625 uint64_t pmask; 11626 11627 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11628 assert(vq <= env_archcpu(env)->sve_max_vq); 11629 11630 /* Zap the high bits of the zregs. */ 11631 for (i = 0; i < 32; i++) { 11632 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11633 } 11634 11635 /* Zap the high bits of the pregs and ffr. */ 11636 pmask = 0; 11637 if (vq & 3) { 11638 pmask = ~(-1ULL << (16 * (vq & 3))); 11639 } 11640 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11641 for (i = 0; i < 17; ++i) { 11642 env->vfp.pregs[i].p[j] &= pmask; 11643 } 11644 pmask = 0; 11645 } 11646 } 11647 11648 /* 11649 * Notice a change in SVE vector size when changing EL. 11650 */ 11651 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11652 int new_el, bool el0_a64) 11653 { 11654 ARMCPU *cpu = env_archcpu(env); 11655 int old_len, new_len; 11656 bool old_a64, new_a64; 11657 11658 /* Nothing to do if no SVE. */ 11659 if (!cpu_isar_feature(aa64_sve, cpu)) { 11660 return; 11661 } 11662 11663 /* Nothing to do if FP is disabled in either EL. */ 11664 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11665 return; 11666 } 11667 11668 /* 11669 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11670 * at ELx, or not available because the EL is in AArch32 state, then 11671 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11672 * has an effective value of 0". 11673 * 11674 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11675 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11676 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11677 * we already have the correct register contents when encountering the 11678 * vq0->vq0 transition between EL0->EL1. 11679 */ 11680 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11681 old_len = (old_a64 && !sve_exception_el(env, old_el) 11682 ? sve_zcr_len_for_el(env, old_el) : 0); 11683 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11684 new_len = (new_a64 && !sve_exception_el(env, new_el) 11685 ? sve_zcr_len_for_el(env, new_el) : 0); 11686 11687 /* When changing vector length, clear inaccessible state. */ 11688 if (new_len < old_len) { 11689 aarch64_sve_narrow_vq(env, new_len + 1); 11690 } 11691 } 11692 #endif 11693