1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 22 23 #ifndef CONFIG_USER_ONLY 24 /* Cacheability and shareability attributes for a memory access */ 25 typedef struct ARMCacheAttrs { 26 unsigned int attrs:8; /* as in the MAIR register encoding */ 27 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 28 } ARMCacheAttrs; 29 30 static bool get_phys_addr(CPUARMState *env, target_ulong address, 31 MMUAccessType access_type, ARMMMUIdx mmu_idx, 32 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 33 target_ulong *page_size, 34 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 35 36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 37 MMUAccessType access_type, ARMMMUIdx mmu_idx, 38 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 39 target_ulong *page_size_ptr, 40 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 41 42 /* Security attributes for an address, as returned by v8m_security_lookup. */ 43 typedef struct V8M_SAttributes { 44 bool ns; 45 bool nsc; 46 uint8_t sregion; 47 bool srvalid; 48 uint8_t iregion; 49 bool irvalid; 50 } V8M_SAttributes; 51 52 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 53 MMUAccessType access_type, ARMMMUIdx mmu_idx, 54 V8M_SAttributes *sattrs); 55 #endif 56 57 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 58 { 59 int nregs; 60 61 /* VFP data registers are always little-endian. */ 62 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 63 if (reg < nregs) { 64 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 65 return 8; 66 } 67 if (arm_feature(env, ARM_FEATURE_NEON)) { 68 /* Aliases for Q regs. */ 69 nregs += 16; 70 if (reg < nregs) { 71 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 72 stq_le_p(buf, q[0]); 73 stq_le_p(buf + 8, q[1]); 74 return 16; 75 } 76 } 77 switch (reg - nregs) { 78 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 79 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 80 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 81 } 82 return 0; 83 } 84 85 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 86 { 87 int nregs; 88 89 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 90 if (reg < nregs) { 91 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 92 return 8; 93 } 94 if (arm_feature(env, ARM_FEATURE_NEON)) { 95 nregs += 16; 96 if (reg < nregs) { 97 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 98 q[0] = ldq_le_p(buf); 99 q[1] = ldq_le_p(buf + 8); 100 return 16; 101 } 102 } 103 switch (reg - nregs) { 104 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 105 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 106 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 107 } 108 return 0; 109 } 110 111 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 112 { 113 switch (reg) { 114 case 0 ... 31: 115 /* 128 bit FP register */ 116 { 117 uint64_t *q = aa64_vfp_qreg(env, reg); 118 stq_le_p(buf, q[0]); 119 stq_le_p(buf + 8, q[1]); 120 return 16; 121 } 122 case 32: 123 /* FPSR */ 124 stl_p(buf, vfp_get_fpsr(env)); 125 return 4; 126 case 33: 127 /* FPCR */ 128 stl_p(buf, vfp_get_fpcr(env)); 129 return 4; 130 default: 131 return 0; 132 } 133 } 134 135 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 136 { 137 switch (reg) { 138 case 0 ... 31: 139 /* 128 bit FP register */ 140 { 141 uint64_t *q = aa64_vfp_qreg(env, reg); 142 q[0] = ldq_le_p(buf); 143 q[1] = ldq_le_p(buf + 8); 144 return 16; 145 } 146 case 32: 147 /* FPSR */ 148 vfp_set_fpsr(env, ldl_p(buf)); 149 return 4; 150 case 33: 151 /* FPCR */ 152 vfp_set_fpcr(env, ldl_p(buf)); 153 return 4; 154 default: 155 return 0; 156 } 157 } 158 159 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 160 { 161 assert(ri->fieldoffset); 162 if (cpreg_field_is_64bit(ri)) { 163 return CPREG_FIELD64(env, ri); 164 } else { 165 return CPREG_FIELD32(env, ri); 166 } 167 } 168 169 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 170 uint64_t value) 171 { 172 assert(ri->fieldoffset); 173 if (cpreg_field_is_64bit(ri)) { 174 CPREG_FIELD64(env, ri) = value; 175 } else { 176 CPREG_FIELD32(env, ri) = value; 177 } 178 } 179 180 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 181 { 182 return (char *)env + ri->fieldoffset; 183 } 184 185 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 186 { 187 /* Raw read of a coprocessor register (as needed for migration, etc). */ 188 if (ri->type & ARM_CP_CONST) { 189 return ri->resetvalue; 190 } else if (ri->raw_readfn) { 191 return ri->raw_readfn(env, ri); 192 } else if (ri->readfn) { 193 return ri->readfn(env, ri); 194 } else { 195 return raw_read(env, ri); 196 } 197 } 198 199 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 200 uint64_t v) 201 { 202 /* Raw write of a coprocessor register (as needed for migration, etc). 203 * Note that constant registers are treated as write-ignored; the 204 * caller should check for success by whether a readback gives the 205 * value written. 206 */ 207 if (ri->type & ARM_CP_CONST) { 208 return; 209 } else if (ri->raw_writefn) { 210 ri->raw_writefn(env, ri, v); 211 } else if (ri->writefn) { 212 ri->writefn(env, ri, v); 213 } else { 214 raw_write(env, ri, v); 215 } 216 } 217 218 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 219 { 220 ARMCPU *cpu = arm_env_get_cpu(env); 221 const ARMCPRegInfo *ri; 222 uint32_t key; 223 224 key = cpu->dyn_xml.cpregs_keys[reg]; 225 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 226 if (ri) { 227 if (cpreg_field_is_64bit(ri)) { 228 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 229 } else { 230 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 231 } 232 } 233 return 0; 234 } 235 236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 237 { 238 return 0; 239 } 240 241 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 242 { 243 /* Return true if the regdef would cause an assertion if you called 244 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 245 * program bug for it not to have the NO_RAW flag). 246 * NB that returning false here doesn't necessarily mean that calling 247 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 248 * read/write access functions which are safe for raw use" from "has 249 * read/write access functions which have side effects but has forgotten 250 * to provide raw access functions". 251 * The tests here line up with the conditions in read/write_raw_cp_reg() 252 * and assertions in raw_read()/raw_write(). 253 */ 254 if ((ri->type & ARM_CP_CONST) || 255 ri->fieldoffset || 256 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 257 return false; 258 } 259 return true; 260 } 261 262 bool write_cpustate_to_list(ARMCPU *cpu) 263 { 264 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 265 int i; 266 bool ok = true; 267 268 for (i = 0; i < cpu->cpreg_array_len; i++) { 269 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 270 const ARMCPRegInfo *ri; 271 272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 273 if (!ri) { 274 ok = false; 275 continue; 276 } 277 if (ri->type & ARM_CP_NO_RAW) { 278 continue; 279 } 280 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 281 } 282 return ok; 283 } 284 285 bool write_list_to_cpustate(ARMCPU *cpu) 286 { 287 int i; 288 bool ok = true; 289 290 for (i = 0; i < cpu->cpreg_array_len; i++) { 291 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 292 uint64_t v = cpu->cpreg_values[i]; 293 const ARMCPRegInfo *ri; 294 295 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 296 if (!ri) { 297 ok = false; 298 continue; 299 } 300 if (ri->type & ARM_CP_NO_RAW) { 301 continue; 302 } 303 /* Write value and confirm it reads back as written 304 * (to catch read-only registers and partially read-only 305 * registers where the incoming migration value doesn't match) 306 */ 307 write_raw_cp_reg(&cpu->env, ri, v); 308 if (read_raw_cp_reg(&cpu->env, ri) != v) { 309 ok = false; 310 } 311 } 312 return ok; 313 } 314 315 static void add_cpreg_to_list(gpointer key, gpointer opaque) 316 { 317 ARMCPU *cpu = opaque; 318 uint64_t regidx; 319 const ARMCPRegInfo *ri; 320 321 regidx = *(uint32_t *)key; 322 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 323 324 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 325 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 326 /* The value array need not be initialized at this point */ 327 cpu->cpreg_array_len++; 328 } 329 } 330 331 static void count_cpreg(gpointer key, gpointer opaque) 332 { 333 ARMCPU *cpu = opaque; 334 uint64_t regidx; 335 const ARMCPRegInfo *ri; 336 337 regidx = *(uint32_t *)key; 338 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 339 340 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 341 cpu->cpreg_array_len++; 342 } 343 } 344 345 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 346 { 347 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 348 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 349 350 if (aidx > bidx) { 351 return 1; 352 } 353 if (aidx < bidx) { 354 return -1; 355 } 356 return 0; 357 } 358 359 void init_cpreg_list(ARMCPU *cpu) 360 { 361 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 362 * Note that we require cpreg_tuples[] to be sorted by key ID. 363 */ 364 GList *keys; 365 int arraylen; 366 367 keys = g_hash_table_get_keys(cpu->cp_regs); 368 keys = g_list_sort(keys, cpreg_key_compare); 369 370 cpu->cpreg_array_len = 0; 371 372 g_list_foreach(keys, count_cpreg, cpu); 373 374 arraylen = cpu->cpreg_array_len; 375 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 376 cpu->cpreg_values = g_new(uint64_t, arraylen); 377 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 378 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 379 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 380 cpu->cpreg_array_len = 0; 381 382 g_list_foreach(keys, add_cpreg_to_list, cpu); 383 384 assert(cpu->cpreg_array_len == arraylen); 385 386 g_list_free(keys); 387 } 388 389 /* 390 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 391 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 392 * 393 * access_el3_aa32ns: Used to check AArch32 register views. 394 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 395 */ 396 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 397 const ARMCPRegInfo *ri, 398 bool isread) 399 { 400 bool secure = arm_is_secure_below_el3(env); 401 402 assert(!arm_el_is_aa64(env, 3)); 403 if (secure) { 404 return CP_ACCESS_TRAP_UNCATEGORIZED; 405 } 406 return CP_ACCESS_OK; 407 } 408 409 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 410 const ARMCPRegInfo *ri, 411 bool isread) 412 { 413 if (!arm_el_is_aa64(env, 3)) { 414 return access_el3_aa32ns(env, ri, isread); 415 } 416 return CP_ACCESS_OK; 417 } 418 419 /* Some secure-only AArch32 registers trap to EL3 if used from 420 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 421 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 422 * We assume that the .access field is set to PL1_RW. 423 */ 424 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 425 const ARMCPRegInfo *ri, 426 bool isread) 427 { 428 if (arm_current_el(env) == 3) { 429 return CP_ACCESS_OK; 430 } 431 if (arm_is_secure_below_el3(env)) { 432 return CP_ACCESS_TRAP_EL3; 433 } 434 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 435 return CP_ACCESS_TRAP_UNCATEGORIZED; 436 } 437 438 /* Check for traps to "powerdown debug" registers, which are controlled 439 * by MDCR.TDOSA 440 */ 441 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 int el = arm_current_el(env); 445 446 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 447 && !arm_is_secure_below_el3(env)) { 448 return CP_ACCESS_TRAP_EL2; 449 } 450 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 451 return CP_ACCESS_TRAP_EL3; 452 } 453 return CP_ACCESS_OK; 454 } 455 456 /* Check for traps to "debug ROM" registers, which are controlled 457 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 458 */ 459 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 460 bool isread) 461 { 462 int el = arm_current_el(env); 463 464 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 465 && !arm_is_secure_below_el3(env)) { 466 return CP_ACCESS_TRAP_EL2; 467 } 468 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 469 return CP_ACCESS_TRAP_EL3; 470 } 471 return CP_ACCESS_OK; 472 } 473 474 /* Check for traps to general debug registers, which are controlled 475 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 476 */ 477 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 478 bool isread) 479 { 480 int el = arm_current_el(env); 481 482 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 483 && !arm_is_secure_below_el3(env)) { 484 return CP_ACCESS_TRAP_EL2; 485 } 486 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 487 return CP_ACCESS_TRAP_EL3; 488 } 489 return CP_ACCESS_OK; 490 } 491 492 /* Check for traps to performance monitor registers, which are controlled 493 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 494 */ 495 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 496 bool isread) 497 { 498 int el = arm_current_el(env); 499 500 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 501 && !arm_is_secure_below_el3(env)) { 502 return CP_ACCESS_TRAP_EL2; 503 } 504 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 505 return CP_ACCESS_TRAP_EL3; 506 } 507 return CP_ACCESS_OK; 508 } 509 510 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 511 { 512 ARMCPU *cpu = arm_env_get_cpu(env); 513 514 raw_write(env, ri, value); 515 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 516 } 517 518 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 519 { 520 ARMCPU *cpu = arm_env_get_cpu(env); 521 522 if (raw_read(env, ri) != value) { 523 /* Unlike real hardware the qemu TLB uses virtual addresses, 524 * not modified virtual addresses, so this causes a TLB flush. 525 */ 526 tlb_flush(CPU(cpu)); 527 raw_write(env, ri, value); 528 } 529 } 530 531 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 532 uint64_t value) 533 { 534 ARMCPU *cpu = arm_env_get_cpu(env); 535 536 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 537 && !extended_addresses_enabled(env)) { 538 /* For VMSA (when not using the LPAE long descriptor page table 539 * format) this register includes the ASID, so do a TLB flush. 540 * For PMSA it is purely a process ID and no action is needed. 541 */ 542 tlb_flush(CPU(cpu)); 543 } 544 raw_write(env, ri, value); 545 } 546 547 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 /* Invalidate all (TLBIALL) */ 551 ARMCPU *cpu = arm_env_get_cpu(env); 552 553 tlb_flush(CPU(cpu)); 554 } 555 556 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 560 ARMCPU *cpu = arm_env_get_cpu(env); 561 562 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 563 } 564 565 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 /* Invalidate by ASID (TLBIASID) */ 569 ARMCPU *cpu = arm_env_get_cpu(env); 570 571 tlb_flush(CPU(cpu)); 572 } 573 574 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 575 uint64_t value) 576 { 577 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 578 ARMCPU *cpu = arm_env_get_cpu(env); 579 580 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 581 } 582 583 /* IS variants of TLB operations must affect all cores */ 584 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = ENV_GET_CPU(env); 588 589 tlb_flush_all_cpus_synced(cs); 590 } 591 592 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = ENV_GET_CPU(env); 596 597 tlb_flush_all_cpus_synced(cs); 598 } 599 600 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 601 uint64_t value) 602 { 603 CPUState *cs = ENV_GET_CPU(env); 604 605 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 606 } 607 608 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 609 uint64_t value) 610 { 611 CPUState *cs = ENV_GET_CPU(env); 612 613 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 614 } 615 616 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 617 uint64_t value) 618 { 619 CPUState *cs = ENV_GET_CPU(env); 620 621 tlb_flush_by_mmuidx(cs, 622 ARMMMUIdxBit_S12NSE1 | 623 ARMMMUIdxBit_S12NSE0 | 624 ARMMMUIdxBit_S2NS); 625 } 626 627 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 628 uint64_t value) 629 { 630 CPUState *cs = ENV_GET_CPU(env); 631 632 tlb_flush_by_mmuidx_all_cpus_synced(cs, 633 ARMMMUIdxBit_S12NSE1 | 634 ARMMMUIdxBit_S12NSE0 | 635 ARMMMUIdxBit_S2NS); 636 } 637 638 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 639 uint64_t value) 640 { 641 /* Invalidate by IPA. This has to invalidate any structures that 642 * contain only stage 2 translation information, but does not need 643 * to apply to structures that contain combined stage 1 and stage 2 644 * translation information. 645 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 646 */ 647 CPUState *cs = ENV_GET_CPU(env); 648 uint64_t pageaddr; 649 650 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 651 return; 652 } 653 654 pageaddr = sextract64(value << 12, 0, 40); 655 656 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 657 } 658 659 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 660 uint64_t value) 661 { 662 CPUState *cs = ENV_GET_CPU(env); 663 uint64_t pageaddr; 664 665 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 666 return; 667 } 668 669 pageaddr = sextract64(value << 12, 0, 40); 670 671 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 672 ARMMMUIdxBit_S2NS); 673 } 674 675 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 676 uint64_t value) 677 { 678 CPUState *cs = ENV_GET_CPU(env); 679 680 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 681 } 682 683 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 684 uint64_t value) 685 { 686 CPUState *cs = ENV_GET_CPU(env); 687 688 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 689 } 690 691 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 692 uint64_t value) 693 { 694 CPUState *cs = ENV_GET_CPU(env); 695 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 696 697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 698 } 699 700 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 701 uint64_t value) 702 { 703 CPUState *cs = ENV_GET_CPU(env); 704 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 705 706 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 707 ARMMMUIdxBit_S1E2); 708 } 709 710 static const ARMCPRegInfo cp_reginfo[] = { 711 /* Define the secure and non-secure FCSE identifier CP registers 712 * separately because there is no secure bank in V8 (no _EL3). This allows 713 * the secure register to be properly reset and migrated. There is also no 714 * v8 EL1 version of the register so the non-secure instance stands alone. 715 */ 716 { .name = "FCSEIDR", 717 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 718 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 719 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 720 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 721 { .name = "FCSEIDR_S", 722 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 723 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 724 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 725 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 726 /* Define the secure and non-secure context identifier CP registers 727 * separately because there is no secure bank in V8 (no _EL3). This allows 728 * the secure register to be properly reset and migrated. In the 729 * non-secure case, the 32-bit register will have reset and migration 730 * disabled during registration as it is handled by the 64-bit instance. 731 */ 732 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 733 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 734 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 735 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 736 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 737 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 738 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 739 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 740 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 741 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 742 REGINFO_SENTINEL 743 }; 744 745 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 746 /* NB: Some of these registers exist in v8 but with more precise 747 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 748 */ 749 /* MMU Domain access control / MPU write buffer control */ 750 { .name = "DACR", 751 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 752 .access = PL1_RW, .resetvalue = 0, 753 .writefn = dacr_write, .raw_writefn = raw_write, 754 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 755 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 756 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 757 * For v6 and v5, these mappings are overly broad. 758 */ 759 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 760 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 761 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 762 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 763 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 764 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 765 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 766 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 767 /* Cache maintenance ops; some of this space may be overridden later. */ 768 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 769 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 770 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 771 REGINFO_SENTINEL 772 }; 773 774 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 775 /* Not all pre-v6 cores implemented this WFI, so this is slightly 776 * over-broad. 777 */ 778 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 779 .access = PL1_W, .type = ARM_CP_WFI }, 780 REGINFO_SENTINEL 781 }; 782 783 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 784 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 785 * is UNPREDICTABLE; we choose to NOP as most implementations do). 786 */ 787 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 788 .access = PL1_W, .type = ARM_CP_WFI }, 789 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 790 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 791 * OMAPCP will override this space. 792 */ 793 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 794 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 795 .resetvalue = 0 }, 796 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 797 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 798 .resetvalue = 0 }, 799 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 800 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 801 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 802 .resetvalue = 0 }, 803 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 804 * implementing it as RAZ means the "debug architecture version" bits 805 * will read as a reserved value, which should cause Linux to not try 806 * to use the debug hardware. 807 */ 808 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 809 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 810 /* MMU TLB control. Note that the wildcarding means we cover not just 811 * the unified TLB ops but also the dside/iside/inner-shareable variants. 812 */ 813 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 814 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 815 .type = ARM_CP_NO_RAW }, 816 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 817 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 818 .type = ARM_CP_NO_RAW }, 819 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 820 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 821 .type = ARM_CP_NO_RAW }, 822 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 823 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 824 .type = ARM_CP_NO_RAW }, 825 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 826 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 827 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 828 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 829 REGINFO_SENTINEL 830 }; 831 832 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 833 uint64_t value) 834 { 835 uint32_t mask = 0; 836 837 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 838 if (!arm_feature(env, ARM_FEATURE_V8)) { 839 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 840 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 841 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 842 */ 843 if (arm_feature(env, ARM_FEATURE_VFP)) { 844 /* VFP coprocessor: cp10 & cp11 [23:20] */ 845 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 846 847 if (!arm_feature(env, ARM_FEATURE_NEON)) { 848 /* ASEDIS [31] bit is RAO/WI */ 849 value |= (1 << 31); 850 } 851 852 /* VFPv3 and upwards with NEON implement 32 double precision 853 * registers (D0-D31). 854 */ 855 if (!arm_feature(env, ARM_FEATURE_NEON) || 856 !arm_feature(env, ARM_FEATURE_VFP3)) { 857 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 858 value |= (1 << 30); 859 } 860 } 861 value &= mask; 862 } 863 env->cp15.cpacr_el1 = value; 864 } 865 866 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 867 bool isread) 868 { 869 if (arm_feature(env, ARM_FEATURE_V8)) { 870 /* Check if CPACR accesses are to be trapped to EL2 */ 871 if (arm_current_el(env) == 1 && 872 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 873 return CP_ACCESS_TRAP_EL2; 874 /* Check if CPACR accesses are to be trapped to EL3 */ 875 } else if (arm_current_el(env) < 3 && 876 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 877 return CP_ACCESS_TRAP_EL3; 878 } 879 } 880 881 return CP_ACCESS_OK; 882 } 883 884 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 885 bool isread) 886 { 887 /* Check if CPTR accesses are set to trap to EL3 */ 888 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 889 return CP_ACCESS_TRAP_EL3; 890 } 891 892 return CP_ACCESS_OK; 893 } 894 895 static const ARMCPRegInfo v6_cp_reginfo[] = { 896 /* prefetch by MVA in v6, NOP in v7 */ 897 { .name = "MVA_prefetch", 898 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 899 .access = PL1_W, .type = ARM_CP_NOP }, 900 /* We need to break the TB after ISB to execute self-modifying code 901 * correctly and also to take any pending interrupts immediately. 902 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 903 */ 904 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 905 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 906 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 907 .access = PL0_W, .type = ARM_CP_NOP }, 908 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 909 .access = PL0_W, .type = ARM_CP_NOP }, 910 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 911 .access = PL1_RW, 912 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 913 offsetof(CPUARMState, cp15.ifar_ns) }, 914 .resetvalue = 0, }, 915 /* Watchpoint Fault Address Register : should actually only be present 916 * for 1136, 1176, 11MPCore. 917 */ 918 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 919 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 920 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 921 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 922 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 923 .resetvalue = 0, .writefn = cpacr_write }, 924 REGINFO_SENTINEL 925 }; 926 927 /* Definitions for the PMU registers */ 928 #define PMCRN_MASK 0xf800 929 #define PMCRN_SHIFT 11 930 #define PMCRD 0x8 931 #define PMCRC 0x4 932 #define PMCRE 0x1 933 934 static inline uint32_t pmu_num_counters(CPUARMState *env) 935 { 936 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 937 } 938 939 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 940 static inline uint64_t pmu_counter_mask(CPUARMState *env) 941 { 942 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 943 } 944 945 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 946 bool isread) 947 { 948 /* Performance monitor registers user accessibility is controlled 949 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 950 * trapping to EL2 or EL3 for other accesses. 951 */ 952 int el = arm_current_el(env); 953 954 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 955 return CP_ACCESS_TRAP; 956 } 957 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 958 && !arm_is_secure_below_el3(env)) { 959 return CP_ACCESS_TRAP_EL2; 960 } 961 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 962 return CP_ACCESS_TRAP_EL3; 963 } 964 965 return CP_ACCESS_OK; 966 } 967 968 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 969 const ARMCPRegInfo *ri, 970 bool isread) 971 { 972 /* ER: event counter read trap control */ 973 if (arm_feature(env, ARM_FEATURE_V8) 974 && arm_current_el(env) == 0 975 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 976 && isread) { 977 return CP_ACCESS_OK; 978 } 979 980 return pmreg_access(env, ri, isread); 981 } 982 983 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 984 const ARMCPRegInfo *ri, 985 bool isread) 986 { 987 /* SW: software increment write trap control */ 988 if (arm_feature(env, ARM_FEATURE_V8) 989 && arm_current_el(env) == 0 990 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 991 && !isread) { 992 return CP_ACCESS_OK; 993 } 994 995 return pmreg_access(env, ri, isread); 996 } 997 998 #ifndef CONFIG_USER_ONLY 999 1000 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1001 const ARMCPRegInfo *ri, 1002 bool isread) 1003 { 1004 /* ER: event counter read trap control */ 1005 if (arm_feature(env, ARM_FEATURE_V8) 1006 && arm_current_el(env) == 0 1007 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1008 return CP_ACCESS_OK; 1009 } 1010 1011 return pmreg_access(env, ri, isread); 1012 } 1013 1014 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1015 const ARMCPRegInfo *ri, 1016 bool isread) 1017 { 1018 /* CR: cycle counter read trap control */ 1019 if (arm_feature(env, ARM_FEATURE_V8) 1020 && arm_current_el(env) == 0 1021 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1022 && isread) { 1023 return CP_ACCESS_OK; 1024 } 1025 1026 return pmreg_access(env, ri, isread); 1027 } 1028 1029 static inline bool arm_ccnt_enabled(CPUARMState *env) 1030 { 1031 /* This does not support checking PMCCFILTR_EL0 register */ 1032 1033 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1034 return false; 1035 } 1036 1037 return true; 1038 } 1039 1040 void pmccntr_sync(CPUARMState *env) 1041 { 1042 uint64_t temp_ticks; 1043 1044 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1045 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1046 1047 if (env->cp15.c9_pmcr & PMCRD) { 1048 /* Increment once every 64 processor clock cycles */ 1049 temp_ticks /= 64; 1050 } 1051 1052 if (arm_ccnt_enabled(env)) { 1053 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1054 } 1055 } 1056 1057 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1058 uint64_t value) 1059 { 1060 pmccntr_sync(env); 1061 1062 if (value & PMCRC) { 1063 /* The counter has been reset */ 1064 env->cp15.c15_ccnt = 0; 1065 } 1066 1067 /* only the DP, X, D and E bits are writable */ 1068 env->cp15.c9_pmcr &= ~0x39; 1069 env->cp15.c9_pmcr |= (value & 0x39); 1070 1071 pmccntr_sync(env); 1072 } 1073 1074 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1075 { 1076 uint64_t total_ticks; 1077 1078 if (!arm_ccnt_enabled(env)) { 1079 /* Counter is disabled, do not change value */ 1080 return env->cp15.c15_ccnt; 1081 } 1082 1083 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1084 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1085 1086 if (env->cp15.c9_pmcr & PMCRD) { 1087 /* Increment once every 64 processor clock cycles */ 1088 total_ticks /= 64; 1089 } 1090 return total_ticks - env->cp15.c15_ccnt; 1091 } 1092 1093 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1094 uint64_t value) 1095 { 1096 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1097 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1098 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1099 * accessed. 1100 */ 1101 env->cp15.c9_pmselr = value & 0x1f; 1102 } 1103 1104 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1105 uint64_t value) 1106 { 1107 uint64_t total_ticks; 1108 1109 if (!arm_ccnt_enabled(env)) { 1110 /* Counter is disabled, set the absolute value */ 1111 env->cp15.c15_ccnt = value; 1112 return; 1113 } 1114 1115 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1116 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1117 1118 if (env->cp15.c9_pmcr & PMCRD) { 1119 /* Increment once every 64 processor clock cycles */ 1120 total_ticks /= 64; 1121 } 1122 env->cp15.c15_ccnt = total_ticks - value; 1123 } 1124 1125 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1126 uint64_t value) 1127 { 1128 uint64_t cur_val = pmccntr_read(env, NULL); 1129 1130 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1131 } 1132 1133 #else /* CONFIG_USER_ONLY */ 1134 1135 void pmccntr_sync(CPUARMState *env) 1136 { 1137 } 1138 1139 #endif 1140 1141 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1142 uint64_t value) 1143 { 1144 pmccntr_sync(env); 1145 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1146 pmccntr_sync(env); 1147 } 1148 1149 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1150 uint64_t value) 1151 { 1152 value &= pmu_counter_mask(env); 1153 env->cp15.c9_pmcnten |= value; 1154 } 1155 1156 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1157 uint64_t value) 1158 { 1159 value &= pmu_counter_mask(env); 1160 env->cp15.c9_pmcnten &= ~value; 1161 } 1162 1163 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1164 uint64_t value) 1165 { 1166 env->cp15.c9_pmovsr &= ~value; 1167 } 1168 1169 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1170 uint64_t value) 1171 { 1172 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1173 * PMSELR value is equal to or greater than the number of implemented 1174 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1175 */ 1176 if (env->cp15.c9_pmselr == 0x1f) { 1177 pmccfiltr_write(env, ri, value); 1178 } 1179 } 1180 1181 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1182 { 1183 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1184 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1185 */ 1186 if (env->cp15.c9_pmselr == 0x1f) { 1187 return env->cp15.pmccfiltr_el0; 1188 } else { 1189 return 0; 1190 } 1191 } 1192 1193 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1194 uint64_t value) 1195 { 1196 if (arm_feature(env, ARM_FEATURE_V8)) { 1197 env->cp15.c9_pmuserenr = value & 0xf; 1198 } else { 1199 env->cp15.c9_pmuserenr = value & 1; 1200 } 1201 } 1202 1203 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1204 uint64_t value) 1205 { 1206 /* We have no event counters so only the C bit can be changed */ 1207 value &= pmu_counter_mask(env); 1208 env->cp15.c9_pminten |= value; 1209 } 1210 1211 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1212 uint64_t value) 1213 { 1214 value &= pmu_counter_mask(env); 1215 env->cp15.c9_pminten &= ~value; 1216 } 1217 1218 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1219 uint64_t value) 1220 { 1221 /* Note that even though the AArch64 view of this register has bits 1222 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1223 * architectural requirements for bits which are RES0 only in some 1224 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1225 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1226 */ 1227 raw_write(env, ri, value & ~0x1FULL); 1228 } 1229 1230 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1231 { 1232 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1233 * For bits that vary between AArch32/64, code needs to check the 1234 * current execution mode before directly using the feature bit. 1235 */ 1236 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1237 1238 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1239 valid_mask &= ~SCR_HCE; 1240 1241 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1242 * supported if EL2 exists. The bit is UNK/SBZP when 1243 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1244 * when EL2 is unavailable. 1245 * On ARMv8, this bit is always available. 1246 */ 1247 if (arm_feature(env, ARM_FEATURE_V7) && 1248 !arm_feature(env, ARM_FEATURE_V8)) { 1249 valid_mask &= ~SCR_SMD; 1250 } 1251 } 1252 1253 /* Clear all-context RES0 bits. */ 1254 value &= valid_mask; 1255 raw_write(env, ri, value); 1256 } 1257 1258 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1259 { 1260 ARMCPU *cpu = arm_env_get_cpu(env); 1261 1262 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1263 * bank 1264 */ 1265 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1266 ri->secure & ARM_CP_SECSTATE_S); 1267 1268 return cpu->ccsidr[index]; 1269 } 1270 1271 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1272 uint64_t value) 1273 { 1274 raw_write(env, ri, value & 0xf); 1275 } 1276 1277 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1278 { 1279 CPUState *cs = ENV_GET_CPU(env); 1280 uint64_t ret = 0; 1281 1282 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1283 ret |= CPSR_I; 1284 } 1285 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1286 ret |= CPSR_F; 1287 } 1288 /* External aborts are not possible in QEMU so A bit is always clear */ 1289 return ret; 1290 } 1291 1292 static const ARMCPRegInfo v7_cp_reginfo[] = { 1293 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1294 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1295 .access = PL1_W, .type = ARM_CP_NOP }, 1296 /* Performance monitors are implementation defined in v7, 1297 * but with an ARM recommended set of registers, which we 1298 * follow (although we don't actually implement any counters) 1299 * 1300 * Performance registers fall into three categories: 1301 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1302 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1303 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1304 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1305 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1306 */ 1307 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1308 .access = PL0_RW, .type = ARM_CP_ALIAS, 1309 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1310 .writefn = pmcntenset_write, 1311 .accessfn = pmreg_access, 1312 .raw_writefn = raw_write }, 1313 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1314 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1315 .access = PL0_RW, .accessfn = pmreg_access, 1316 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1317 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1318 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1319 .access = PL0_RW, 1320 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1321 .accessfn = pmreg_access, 1322 .writefn = pmcntenclr_write, 1323 .type = ARM_CP_ALIAS }, 1324 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1325 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1326 .access = PL0_RW, .accessfn = pmreg_access, 1327 .type = ARM_CP_ALIAS, 1328 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1329 .writefn = pmcntenclr_write }, 1330 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1331 .access = PL0_RW, 1332 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1333 .accessfn = pmreg_access, 1334 .writefn = pmovsr_write, 1335 .raw_writefn = raw_write }, 1336 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1337 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1338 .access = PL0_RW, .accessfn = pmreg_access, 1339 .type = ARM_CP_ALIAS, 1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1341 .writefn = pmovsr_write, 1342 .raw_writefn = raw_write }, 1343 /* Unimplemented so WI. */ 1344 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1345 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1346 #ifndef CONFIG_USER_ONLY 1347 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1348 .access = PL0_RW, .type = ARM_CP_ALIAS, 1349 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1350 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1351 .raw_writefn = raw_write}, 1352 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1353 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1354 .access = PL0_RW, .accessfn = pmreg_access_selr, 1355 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1356 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1357 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1358 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1359 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1360 .accessfn = pmreg_access_ccntr }, 1361 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1362 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1363 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1364 .type = ARM_CP_IO, 1365 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1366 #endif 1367 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1368 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1369 .writefn = pmccfiltr_write, 1370 .access = PL0_RW, .accessfn = pmreg_access, 1371 .type = ARM_CP_IO, 1372 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1373 .resetvalue = 0, }, 1374 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1375 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1376 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1377 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1378 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1379 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1380 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1381 /* Unimplemented, RAZ/WI. */ 1382 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1383 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1384 .accessfn = pmreg_access_xevcntr }, 1385 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1386 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1387 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1388 .resetvalue = 0, 1389 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1390 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1391 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1392 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1393 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1394 .resetvalue = 0, 1395 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1396 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1397 .access = PL1_RW, .accessfn = access_tpm, 1398 .type = ARM_CP_ALIAS, 1399 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1400 .resetvalue = 0, 1401 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1402 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1403 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1404 .access = PL1_RW, .accessfn = access_tpm, 1405 .type = ARM_CP_IO, 1406 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1407 .writefn = pmintenset_write, .raw_writefn = raw_write, 1408 .resetvalue = 0x0 }, 1409 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1410 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1411 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1412 .writefn = pmintenclr_write, }, 1413 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1414 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1415 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1416 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1417 .writefn = pmintenclr_write }, 1418 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1419 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1420 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1421 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1422 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1423 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1424 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1425 offsetof(CPUARMState, cp15.csselr_ns) } }, 1426 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1427 * just RAZ for all cores: 1428 */ 1429 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1430 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1431 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1432 /* Auxiliary fault status registers: these also are IMPDEF, and we 1433 * choose to RAZ/WI for all cores. 1434 */ 1435 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1436 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1437 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1438 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1439 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1440 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1441 /* MAIR can just read-as-written because we don't implement caches 1442 * and so don't need to care about memory attributes. 1443 */ 1444 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1445 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1446 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1447 .resetvalue = 0 }, 1448 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1449 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1450 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1451 .resetvalue = 0 }, 1452 /* For non-long-descriptor page tables these are PRRR and NMRR; 1453 * regardless they still act as reads-as-written for QEMU. 1454 */ 1455 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1456 * allows them to assign the correct fieldoffset based on the endianness 1457 * handled in the field definitions. 1458 */ 1459 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1460 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1461 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1462 offsetof(CPUARMState, cp15.mair0_ns) }, 1463 .resetfn = arm_cp_reset_ignore }, 1464 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1465 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1466 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1467 offsetof(CPUARMState, cp15.mair1_ns) }, 1468 .resetfn = arm_cp_reset_ignore }, 1469 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1470 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1471 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1472 /* 32 bit ITLB invalidates */ 1473 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1474 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1475 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1476 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1477 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1478 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1479 /* 32 bit DTLB invalidates */ 1480 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1481 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1482 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1483 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1484 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1485 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1486 /* 32 bit TLB invalidates */ 1487 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1488 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1489 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1490 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1491 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1492 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1493 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1494 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1495 REGINFO_SENTINEL 1496 }; 1497 1498 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1499 /* 32 bit TLB invalidates, Inner Shareable */ 1500 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1501 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1502 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1503 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1504 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1505 .type = ARM_CP_NO_RAW, .access = PL1_W, 1506 .writefn = tlbiasid_is_write }, 1507 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1508 .type = ARM_CP_NO_RAW, .access = PL1_W, 1509 .writefn = tlbimvaa_is_write }, 1510 REGINFO_SENTINEL 1511 }; 1512 1513 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1514 uint64_t value) 1515 { 1516 value &= 1; 1517 env->teecr = value; 1518 } 1519 1520 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1521 bool isread) 1522 { 1523 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1524 return CP_ACCESS_TRAP; 1525 } 1526 return CP_ACCESS_OK; 1527 } 1528 1529 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1530 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1531 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1532 .resetvalue = 0, 1533 .writefn = teecr_write }, 1534 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1535 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1536 .accessfn = teehbr_access, .resetvalue = 0 }, 1537 REGINFO_SENTINEL 1538 }; 1539 1540 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1541 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1542 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1543 .access = PL0_RW, 1544 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1545 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1546 .access = PL0_RW, 1547 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1548 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1549 .resetfn = arm_cp_reset_ignore }, 1550 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1551 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1552 .access = PL0_R|PL1_W, 1553 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1554 .resetvalue = 0}, 1555 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1556 .access = PL0_R|PL1_W, 1557 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1558 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1559 .resetfn = arm_cp_reset_ignore }, 1560 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1561 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1562 .access = PL1_RW, 1563 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1564 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1565 .access = PL1_RW, 1566 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1567 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1568 .resetvalue = 0 }, 1569 REGINFO_SENTINEL 1570 }; 1571 1572 #ifndef CONFIG_USER_ONLY 1573 1574 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1575 bool isread) 1576 { 1577 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1578 * Writable only at the highest implemented exception level. 1579 */ 1580 int el = arm_current_el(env); 1581 1582 switch (el) { 1583 case 0: 1584 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1585 return CP_ACCESS_TRAP; 1586 } 1587 break; 1588 case 1: 1589 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1590 arm_is_secure_below_el3(env)) { 1591 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1592 return CP_ACCESS_TRAP_UNCATEGORIZED; 1593 } 1594 break; 1595 case 2: 1596 case 3: 1597 break; 1598 } 1599 1600 if (!isread && el < arm_highest_el(env)) { 1601 return CP_ACCESS_TRAP_UNCATEGORIZED; 1602 } 1603 1604 return CP_ACCESS_OK; 1605 } 1606 1607 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1608 bool isread) 1609 { 1610 unsigned int cur_el = arm_current_el(env); 1611 bool secure = arm_is_secure(env); 1612 1613 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1614 if (cur_el == 0 && 1615 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1616 return CP_ACCESS_TRAP; 1617 } 1618 1619 if (arm_feature(env, ARM_FEATURE_EL2) && 1620 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1621 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1622 return CP_ACCESS_TRAP_EL2; 1623 } 1624 return CP_ACCESS_OK; 1625 } 1626 1627 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1628 bool isread) 1629 { 1630 unsigned int cur_el = arm_current_el(env); 1631 bool secure = arm_is_secure(env); 1632 1633 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1634 * EL0[PV]TEN is zero. 1635 */ 1636 if (cur_el == 0 && 1637 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1638 return CP_ACCESS_TRAP; 1639 } 1640 1641 if (arm_feature(env, ARM_FEATURE_EL2) && 1642 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1643 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1644 return CP_ACCESS_TRAP_EL2; 1645 } 1646 return CP_ACCESS_OK; 1647 } 1648 1649 static CPAccessResult gt_pct_access(CPUARMState *env, 1650 const ARMCPRegInfo *ri, 1651 bool isread) 1652 { 1653 return gt_counter_access(env, GTIMER_PHYS, isread); 1654 } 1655 1656 static CPAccessResult gt_vct_access(CPUARMState *env, 1657 const ARMCPRegInfo *ri, 1658 bool isread) 1659 { 1660 return gt_counter_access(env, GTIMER_VIRT, isread); 1661 } 1662 1663 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1664 bool isread) 1665 { 1666 return gt_timer_access(env, GTIMER_PHYS, isread); 1667 } 1668 1669 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1670 bool isread) 1671 { 1672 return gt_timer_access(env, GTIMER_VIRT, isread); 1673 } 1674 1675 static CPAccessResult gt_stimer_access(CPUARMState *env, 1676 const ARMCPRegInfo *ri, 1677 bool isread) 1678 { 1679 /* The AArch64 register view of the secure physical timer is 1680 * always accessible from EL3, and configurably accessible from 1681 * Secure EL1. 1682 */ 1683 switch (arm_current_el(env)) { 1684 case 1: 1685 if (!arm_is_secure(env)) { 1686 return CP_ACCESS_TRAP; 1687 } 1688 if (!(env->cp15.scr_el3 & SCR_ST)) { 1689 return CP_ACCESS_TRAP_EL3; 1690 } 1691 return CP_ACCESS_OK; 1692 case 0: 1693 case 2: 1694 return CP_ACCESS_TRAP; 1695 case 3: 1696 return CP_ACCESS_OK; 1697 default: 1698 g_assert_not_reached(); 1699 } 1700 } 1701 1702 static uint64_t gt_get_countervalue(CPUARMState *env) 1703 { 1704 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1705 } 1706 1707 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1708 { 1709 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1710 1711 if (gt->ctl & 1) { 1712 /* Timer enabled: calculate and set current ISTATUS, irq, and 1713 * reset timer to when ISTATUS next has to change 1714 */ 1715 uint64_t offset = timeridx == GTIMER_VIRT ? 1716 cpu->env.cp15.cntvoff_el2 : 0; 1717 uint64_t count = gt_get_countervalue(&cpu->env); 1718 /* Note that this must be unsigned 64 bit arithmetic: */ 1719 int istatus = count - offset >= gt->cval; 1720 uint64_t nexttick; 1721 int irqstate; 1722 1723 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1724 1725 irqstate = (istatus && !(gt->ctl & 2)); 1726 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1727 1728 if (istatus) { 1729 /* Next transition is when count rolls back over to zero */ 1730 nexttick = UINT64_MAX; 1731 } else { 1732 /* Next transition is when we hit cval */ 1733 nexttick = gt->cval + offset; 1734 } 1735 /* Note that the desired next expiry time might be beyond the 1736 * signed-64-bit range of a QEMUTimer -- in this case we just 1737 * set the timer for as far in the future as possible. When the 1738 * timer expires we will reset the timer for any remaining period. 1739 */ 1740 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1741 nexttick = INT64_MAX / GTIMER_SCALE; 1742 } 1743 timer_mod(cpu->gt_timer[timeridx], nexttick); 1744 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1745 } else { 1746 /* Timer disabled: ISTATUS and timer output always clear */ 1747 gt->ctl &= ~4; 1748 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1749 timer_del(cpu->gt_timer[timeridx]); 1750 trace_arm_gt_recalc_disabled(timeridx); 1751 } 1752 } 1753 1754 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1755 int timeridx) 1756 { 1757 ARMCPU *cpu = arm_env_get_cpu(env); 1758 1759 timer_del(cpu->gt_timer[timeridx]); 1760 } 1761 1762 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1763 { 1764 return gt_get_countervalue(env); 1765 } 1766 1767 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1768 { 1769 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1770 } 1771 1772 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1773 int timeridx, 1774 uint64_t value) 1775 { 1776 trace_arm_gt_cval_write(timeridx, value); 1777 env->cp15.c14_timer[timeridx].cval = value; 1778 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1779 } 1780 1781 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1782 int timeridx) 1783 { 1784 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1785 1786 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1787 (gt_get_countervalue(env) - offset)); 1788 } 1789 1790 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1791 int timeridx, 1792 uint64_t value) 1793 { 1794 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1795 1796 trace_arm_gt_tval_write(timeridx, value); 1797 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1798 sextract64(value, 0, 32); 1799 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1800 } 1801 1802 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1803 int timeridx, 1804 uint64_t value) 1805 { 1806 ARMCPU *cpu = arm_env_get_cpu(env); 1807 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1808 1809 trace_arm_gt_ctl_write(timeridx, value); 1810 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1811 if ((oldval ^ value) & 1) { 1812 /* Enable toggled */ 1813 gt_recalc_timer(cpu, timeridx); 1814 } else if ((oldval ^ value) & 2) { 1815 /* IMASK toggled: don't need to recalculate, 1816 * just set the interrupt line based on ISTATUS 1817 */ 1818 int irqstate = (oldval & 4) && !(value & 2); 1819 1820 trace_arm_gt_imask_toggle(timeridx, irqstate); 1821 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1822 } 1823 } 1824 1825 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 gt_timer_reset(env, ri, GTIMER_PHYS); 1828 } 1829 1830 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 gt_cval_write(env, ri, GTIMER_PHYS, value); 1834 } 1835 1836 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1837 { 1838 return gt_tval_read(env, ri, GTIMER_PHYS); 1839 } 1840 1841 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1842 uint64_t value) 1843 { 1844 gt_tval_write(env, ri, GTIMER_PHYS, value); 1845 } 1846 1847 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1848 uint64_t value) 1849 { 1850 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1851 } 1852 1853 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1854 { 1855 gt_timer_reset(env, ri, GTIMER_VIRT); 1856 } 1857 1858 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1859 uint64_t value) 1860 { 1861 gt_cval_write(env, ri, GTIMER_VIRT, value); 1862 } 1863 1864 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1865 { 1866 return gt_tval_read(env, ri, GTIMER_VIRT); 1867 } 1868 1869 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1870 uint64_t value) 1871 { 1872 gt_tval_write(env, ri, GTIMER_VIRT, value); 1873 } 1874 1875 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1876 uint64_t value) 1877 { 1878 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1879 } 1880 1881 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1882 uint64_t value) 1883 { 1884 ARMCPU *cpu = arm_env_get_cpu(env); 1885 1886 trace_arm_gt_cntvoff_write(value); 1887 raw_write(env, ri, value); 1888 gt_recalc_timer(cpu, GTIMER_VIRT); 1889 } 1890 1891 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1892 { 1893 gt_timer_reset(env, ri, GTIMER_HYP); 1894 } 1895 1896 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1897 uint64_t value) 1898 { 1899 gt_cval_write(env, ri, GTIMER_HYP, value); 1900 } 1901 1902 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1903 { 1904 return gt_tval_read(env, ri, GTIMER_HYP); 1905 } 1906 1907 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1908 uint64_t value) 1909 { 1910 gt_tval_write(env, ri, GTIMER_HYP, value); 1911 } 1912 1913 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1914 uint64_t value) 1915 { 1916 gt_ctl_write(env, ri, GTIMER_HYP, value); 1917 } 1918 1919 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1920 { 1921 gt_timer_reset(env, ri, GTIMER_SEC); 1922 } 1923 1924 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1925 uint64_t value) 1926 { 1927 gt_cval_write(env, ri, GTIMER_SEC, value); 1928 } 1929 1930 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1931 { 1932 return gt_tval_read(env, ri, GTIMER_SEC); 1933 } 1934 1935 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1936 uint64_t value) 1937 { 1938 gt_tval_write(env, ri, GTIMER_SEC, value); 1939 } 1940 1941 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 gt_ctl_write(env, ri, GTIMER_SEC, value); 1945 } 1946 1947 void arm_gt_ptimer_cb(void *opaque) 1948 { 1949 ARMCPU *cpu = opaque; 1950 1951 gt_recalc_timer(cpu, GTIMER_PHYS); 1952 } 1953 1954 void arm_gt_vtimer_cb(void *opaque) 1955 { 1956 ARMCPU *cpu = opaque; 1957 1958 gt_recalc_timer(cpu, GTIMER_VIRT); 1959 } 1960 1961 void arm_gt_htimer_cb(void *opaque) 1962 { 1963 ARMCPU *cpu = opaque; 1964 1965 gt_recalc_timer(cpu, GTIMER_HYP); 1966 } 1967 1968 void arm_gt_stimer_cb(void *opaque) 1969 { 1970 ARMCPU *cpu = opaque; 1971 1972 gt_recalc_timer(cpu, GTIMER_SEC); 1973 } 1974 1975 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1976 /* Note that CNTFRQ is purely reads-as-written for the benefit 1977 * of software; writing it doesn't actually change the timer frequency. 1978 * Our reset value matches the fixed frequency we implement the timer at. 1979 */ 1980 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1981 .type = ARM_CP_ALIAS, 1982 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1983 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1984 }, 1985 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1986 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1987 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1989 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1990 }, 1991 /* overall control: mostly access permissions */ 1992 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1993 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1994 .access = PL1_RW, 1995 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1996 .resetvalue = 0, 1997 }, 1998 /* per-timer control */ 1999 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2000 .secure = ARM_CP_SECSTATE_NS, 2001 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2002 .accessfn = gt_ptimer_access, 2003 .fieldoffset = offsetoflow32(CPUARMState, 2004 cp15.c14_timer[GTIMER_PHYS].ctl), 2005 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2006 }, 2007 { .name = "CNTP_CTL_S", 2008 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2009 .secure = ARM_CP_SECSTATE_S, 2010 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2011 .accessfn = gt_ptimer_access, 2012 .fieldoffset = offsetoflow32(CPUARMState, 2013 cp15.c14_timer[GTIMER_SEC].ctl), 2014 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2015 }, 2016 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2017 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2018 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2019 .accessfn = gt_ptimer_access, 2020 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2021 .resetvalue = 0, 2022 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2023 }, 2024 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2025 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2026 .accessfn = gt_vtimer_access, 2027 .fieldoffset = offsetoflow32(CPUARMState, 2028 cp15.c14_timer[GTIMER_VIRT].ctl), 2029 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2030 }, 2031 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2032 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2033 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2034 .accessfn = gt_vtimer_access, 2035 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2036 .resetvalue = 0, 2037 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2038 }, 2039 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2040 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2041 .secure = ARM_CP_SECSTATE_NS, 2042 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2043 .accessfn = gt_ptimer_access, 2044 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2045 }, 2046 { .name = "CNTP_TVAL_S", 2047 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2048 .secure = ARM_CP_SECSTATE_S, 2049 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2050 .accessfn = gt_ptimer_access, 2051 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2052 }, 2053 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2054 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2055 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2056 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2057 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2058 }, 2059 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2060 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2061 .accessfn = gt_vtimer_access, 2062 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2063 }, 2064 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2065 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2066 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2067 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2068 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2069 }, 2070 /* The counter itself */ 2071 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2072 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2073 .accessfn = gt_pct_access, 2074 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2075 }, 2076 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2078 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2079 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2080 }, 2081 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2082 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2083 .accessfn = gt_vct_access, 2084 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2085 }, 2086 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2087 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2088 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2089 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2090 }, 2091 /* Comparison value, indicating when the timer goes off */ 2092 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2093 .secure = ARM_CP_SECSTATE_NS, 2094 .access = PL1_RW | PL0_R, 2095 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2097 .accessfn = gt_ptimer_access, 2098 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2099 }, 2100 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2101 .secure = ARM_CP_SECSTATE_S, 2102 .access = PL1_RW | PL0_R, 2103 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2104 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2105 .accessfn = gt_ptimer_access, 2106 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2107 }, 2108 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2109 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2110 .access = PL1_RW | PL0_R, 2111 .type = ARM_CP_IO, 2112 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2113 .resetvalue = 0, .accessfn = gt_ptimer_access, 2114 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2115 }, 2116 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2117 .access = PL1_RW | PL0_R, 2118 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2119 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2120 .accessfn = gt_vtimer_access, 2121 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2122 }, 2123 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2124 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2125 .access = PL1_RW | PL0_R, 2126 .type = ARM_CP_IO, 2127 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2128 .resetvalue = 0, .accessfn = gt_vtimer_access, 2129 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2130 }, 2131 /* Secure timer -- this is actually restricted to only EL3 2132 * and configurably Secure-EL1 via the accessfn. 2133 */ 2134 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2135 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2136 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2137 .accessfn = gt_stimer_access, 2138 .readfn = gt_sec_tval_read, 2139 .writefn = gt_sec_tval_write, 2140 .resetfn = gt_sec_timer_reset, 2141 }, 2142 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2143 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2144 .type = ARM_CP_IO, .access = PL1_RW, 2145 .accessfn = gt_stimer_access, 2146 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2147 .resetvalue = 0, 2148 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2149 }, 2150 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2151 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2152 .type = ARM_CP_IO, .access = PL1_RW, 2153 .accessfn = gt_stimer_access, 2154 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2155 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2156 }, 2157 REGINFO_SENTINEL 2158 }; 2159 2160 #else 2161 /* In user-mode none of the generic timer registers are accessible, 2162 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2163 * so instead just don't register any of them. 2164 */ 2165 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2166 REGINFO_SENTINEL 2167 }; 2168 2169 #endif 2170 2171 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2172 { 2173 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2174 raw_write(env, ri, value); 2175 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2176 raw_write(env, ri, value & 0xfffff6ff); 2177 } else { 2178 raw_write(env, ri, value & 0xfffff1ff); 2179 } 2180 } 2181 2182 #ifndef CONFIG_USER_ONLY 2183 /* get_phys_addr() isn't present for user-mode-only targets */ 2184 2185 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2186 bool isread) 2187 { 2188 if (ri->opc2 & 4) { 2189 /* The ATS12NSO* operations must trap to EL3 if executed in 2190 * Secure EL1 (which can only happen if EL3 is AArch64). 2191 * They are simply UNDEF if executed from NS EL1. 2192 * They function normally from EL2 or EL3. 2193 */ 2194 if (arm_current_el(env) == 1) { 2195 if (arm_is_secure_below_el3(env)) { 2196 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2197 } 2198 return CP_ACCESS_TRAP_UNCATEGORIZED; 2199 } 2200 } 2201 return CP_ACCESS_OK; 2202 } 2203 2204 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2205 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2206 { 2207 hwaddr phys_addr; 2208 target_ulong page_size; 2209 int prot; 2210 bool ret; 2211 uint64_t par64; 2212 bool format64 = false; 2213 MemTxAttrs attrs = {}; 2214 ARMMMUFaultInfo fi = {}; 2215 ARMCacheAttrs cacheattrs = {}; 2216 2217 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2218 &prot, &page_size, &fi, &cacheattrs); 2219 2220 if (is_a64(env)) { 2221 format64 = true; 2222 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2223 /* 2224 * ATS1Cxx: 2225 * * TTBCR.EAE determines whether the result is returned using the 2226 * 32-bit or the 64-bit PAR format 2227 * * Instructions executed in Hyp mode always use the 64bit format 2228 * 2229 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2230 * * The Non-secure TTBCR.EAE bit is set to 1 2231 * * The implementation includes EL2, and the value of HCR.VM is 1 2232 * 2233 * ATS1Hx always uses the 64bit format (not supported yet). 2234 */ 2235 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2236 2237 if (arm_feature(env, ARM_FEATURE_EL2)) { 2238 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2239 format64 |= env->cp15.hcr_el2 & HCR_VM; 2240 } else { 2241 format64 |= arm_current_el(env) == 2; 2242 } 2243 } 2244 } 2245 2246 if (format64) { 2247 /* Create a 64-bit PAR */ 2248 par64 = (1 << 11); /* LPAE bit always set */ 2249 if (!ret) { 2250 par64 |= phys_addr & ~0xfffULL; 2251 if (!attrs.secure) { 2252 par64 |= (1 << 9); /* NS */ 2253 } 2254 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2255 par64 |= cacheattrs.shareability << 7; /* SH */ 2256 } else { 2257 uint32_t fsr = arm_fi_to_lfsc(&fi); 2258 2259 par64 |= 1; /* F */ 2260 par64 |= (fsr & 0x3f) << 1; /* FS */ 2261 /* Note that S2WLK and FSTAGE are always zero, because we don't 2262 * implement virtualization and therefore there can't be a stage 2 2263 * fault. 2264 */ 2265 } 2266 } else { 2267 /* fsr is a DFSR/IFSR value for the short descriptor 2268 * translation table format (with WnR always clear). 2269 * Convert it to a 32-bit PAR. 2270 */ 2271 if (!ret) { 2272 /* We do not set any attribute bits in the PAR */ 2273 if (page_size == (1 << 24) 2274 && arm_feature(env, ARM_FEATURE_V7)) { 2275 par64 = (phys_addr & 0xff000000) | (1 << 1); 2276 } else { 2277 par64 = phys_addr & 0xfffff000; 2278 } 2279 if (!attrs.secure) { 2280 par64 |= (1 << 9); /* NS */ 2281 } 2282 } else { 2283 uint32_t fsr = arm_fi_to_sfsc(&fi); 2284 2285 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2286 ((fsr & 0xf) << 1) | 1; 2287 } 2288 } 2289 return par64; 2290 } 2291 2292 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2293 { 2294 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2295 uint64_t par64; 2296 ARMMMUIdx mmu_idx; 2297 int el = arm_current_el(env); 2298 bool secure = arm_is_secure_below_el3(env); 2299 2300 switch (ri->opc2 & 6) { 2301 case 0: 2302 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2303 switch (el) { 2304 case 3: 2305 mmu_idx = ARMMMUIdx_S1E3; 2306 break; 2307 case 2: 2308 mmu_idx = ARMMMUIdx_S1NSE1; 2309 break; 2310 case 1: 2311 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2312 break; 2313 default: 2314 g_assert_not_reached(); 2315 } 2316 break; 2317 case 2: 2318 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2319 switch (el) { 2320 case 3: 2321 mmu_idx = ARMMMUIdx_S1SE0; 2322 break; 2323 case 2: 2324 mmu_idx = ARMMMUIdx_S1NSE0; 2325 break; 2326 case 1: 2327 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2328 break; 2329 default: 2330 g_assert_not_reached(); 2331 } 2332 break; 2333 case 4: 2334 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2335 mmu_idx = ARMMMUIdx_S12NSE1; 2336 break; 2337 case 6: 2338 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2339 mmu_idx = ARMMMUIdx_S12NSE0; 2340 break; 2341 default: 2342 g_assert_not_reached(); 2343 } 2344 2345 par64 = do_ats_write(env, value, access_type, mmu_idx); 2346 2347 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2348 } 2349 2350 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2351 uint64_t value) 2352 { 2353 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2354 uint64_t par64; 2355 2356 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2357 2358 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2359 } 2360 2361 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2362 bool isread) 2363 { 2364 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2365 return CP_ACCESS_TRAP; 2366 } 2367 return CP_ACCESS_OK; 2368 } 2369 2370 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2371 uint64_t value) 2372 { 2373 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2374 ARMMMUIdx mmu_idx; 2375 int secure = arm_is_secure_below_el3(env); 2376 2377 switch (ri->opc2 & 6) { 2378 case 0: 2379 switch (ri->opc1) { 2380 case 0: /* AT S1E1R, AT S1E1W */ 2381 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2382 break; 2383 case 4: /* AT S1E2R, AT S1E2W */ 2384 mmu_idx = ARMMMUIdx_S1E2; 2385 break; 2386 case 6: /* AT S1E3R, AT S1E3W */ 2387 mmu_idx = ARMMMUIdx_S1E3; 2388 break; 2389 default: 2390 g_assert_not_reached(); 2391 } 2392 break; 2393 case 2: /* AT S1E0R, AT S1E0W */ 2394 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2395 break; 2396 case 4: /* AT S12E1R, AT S12E1W */ 2397 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2398 break; 2399 case 6: /* AT S12E0R, AT S12E0W */ 2400 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2401 break; 2402 default: 2403 g_assert_not_reached(); 2404 } 2405 2406 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2407 } 2408 #endif 2409 2410 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2411 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2412 .access = PL1_RW, .resetvalue = 0, 2413 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2414 offsetoflow32(CPUARMState, cp15.par_ns) }, 2415 .writefn = par_write }, 2416 #ifndef CONFIG_USER_ONLY 2417 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2418 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2419 .access = PL1_W, .accessfn = ats_access, 2420 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2421 #endif 2422 REGINFO_SENTINEL 2423 }; 2424 2425 /* Return basic MPU access permission bits. */ 2426 static uint32_t simple_mpu_ap_bits(uint32_t val) 2427 { 2428 uint32_t ret; 2429 uint32_t mask; 2430 int i; 2431 ret = 0; 2432 mask = 3; 2433 for (i = 0; i < 16; i += 2) { 2434 ret |= (val >> i) & mask; 2435 mask <<= 2; 2436 } 2437 return ret; 2438 } 2439 2440 /* Pad basic MPU access permission bits to extended format. */ 2441 static uint32_t extended_mpu_ap_bits(uint32_t val) 2442 { 2443 uint32_t ret; 2444 uint32_t mask; 2445 int i; 2446 ret = 0; 2447 mask = 3; 2448 for (i = 0; i < 16; i += 2) { 2449 ret |= (val & mask) << i; 2450 mask <<= 2; 2451 } 2452 return ret; 2453 } 2454 2455 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2456 uint64_t value) 2457 { 2458 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2459 } 2460 2461 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2462 { 2463 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2464 } 2465 2466 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2467 uint64_t value) 2468 { 2469 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2470 } 2471 2472 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2473 { 2474 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2475 } 2476 2477 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2478 { 2479 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2480 2481 if (!u32p) { 2482 return 0; 2483 } 2484 2485 u32p += env->pmsav7.rnr[M_REG_NS]; 2486 return *u32p; 2487 } 2488 2489 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2490 uint64_t value) 2491 { 2492 ARMCPU *cpu = arm_env_get_cpu(env); 2493 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2494 2495 if (!u32p) { 2496 return; 2497 } 2498 2499 u32p += env->pmsav7.rnr[M_REG_NS]; 2500 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2501 *u32p = value; 2502 } 2503 2504 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2505 uint64_t value) 2506 { 2507 ARMCPU *cpu = arm_env_get_cpu(env); 2508 uint32_t nrgs = cpu->pmsav7_dregion; 2509 2510 if (value >= nrgs) { 2511 qemu_log_mask(LOG_GUEST_ERROR, 2512 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2513 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2514 return; 2515 } 2516 2517 raw_write(env, ri, value); 2518 } 2519 2520 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2521 /* Reset for all these registers is handled in arm_cpu_reset(), 2522 * because the PMSAv7 is also used by M-profile CPUs, which do 2523 * not register cpregs but still need the state to be reset. 2524 */ 2525 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2526 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2527 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2528 .readfn = pmsav7_read, .writefn = pmsav7_write, 2529 .resetfn = arm_cp_reset_ignore }, 2530 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2531 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2532 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2533 .readfn = pmsav7_read, .writefn = pmsav7_write, 2534 .resetfn = arm_cp_reset_ignore }, 2535 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2536 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2537 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2538 .readfn = pmsav7_read, .writefn = pmsav7_write, 2539 .resetfn = arm_cp_reset_ignore }, 2540 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2541 .access = PL1_RW, 2542 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2543 .writefn = pmsav7_rgnr_write, 2544 .resetfn = arm_cp_reset_ignore }, 2545 REGINFO_SENTINEL 2546 }; 2547 2548 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2549 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2550 .access = PL1_RW, .type = ARM_CP_ALIAS, 2551 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2552 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2553 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2554 .access = PL1_RW, .type = ARM_CP_ALIAS, 2555 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2556 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2557 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2558 .access = PL1_RW, 2559 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2560 .resetvalue = 0, }, 2561 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2562 .access = PL1_RW, 2563 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2564 .resetvalue = 0, }, 2565 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2566 .access = PL1_RW, 2567 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2568 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2569 .access = PL1_RW, 2570 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2571 /* Protection region base and size registers */ 2572 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2573 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2574 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2575 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2576 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2577 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2578 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2579 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2580 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2581 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2582 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2583 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2584 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2585 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2586 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2587 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2588 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2589 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2590 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2591 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2592 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2593 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2594 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2595 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2596 REGINFO_SENTINEL 2597 }; 2598 2599 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2600 uint64_t value) 2601 { 2602 TCR *tcr = raw_ptr(env, ri); 2603 int maskshift = extract32(value, 0, 3); 2604 2605 if (!arm_feature(env, ARM_FEATURE_V8)) { 2606 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2607 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2608 * using Long-desciptor translation table format */ 2609 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2610 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2611 /* In an implementation that includes the Security Extensions 2612 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2613 * Short-descriptor translation table format. 2614 */ 2615 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2616 } else { 2617 value &= TTBCR_N; 2618 } 2619 } 2620 2621 /* Update the masks corresponding to the TCR bank being written 2622 * Note that we always calculate mask and base_mask, but 2623 * they are only used for short-descriptor tables (ie if EAE is 0); 2624 * for long-descriptor tables the TCR fields are used differently 2625 * and the mask and base_mask values are meaningless. 2626 */ 2627 tcr->raw_tcr = value; 2628 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2629 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2630 } 2631 2632 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2633 uint64_t value) 2634 { 2635 ARMCPU *cpu = arm_env_get_cpu(env); 2636 2637 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2638 /* With LPAE the TTBCR could result in a change of ASID 2639 * via the TTBCR.A1 bit, so do a TLB flush. 2640 */ 2641 tlb_flush(CPU(cpu)); 2642 } 2643 vmsa_ttbcr_raw_write(env, ri, value); 2644 } 2645 2646 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2647 { 2648 TCR *tcr = raw_ptr(env, ri); 2649 2650 /* Reset both the TCR as well as the masks corresponding to the bank of 2651 * the TCR being reset. 2652 */ 2653 tcr->raw_tcr = 0; 2654 tcr->mask = 0; 2655 tcr->base_mask = 0xffffc000u; 2656 } 2657 2658 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2659 uint64_t value) 2660 { 2661 ARMCPU *cpu = arm_env_get_cpu(env); 2662 TCR *tcr = raw_ptr(env, ri); 2663 2664 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2665 tlb_flush(CPU(cpu)); 2666 tcr->raw_tcr = value; 2667 } 2668 2669 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2670 uint64_t value) 2671 { 2672 /* 64 bit accesses to the TTBRs can change the ASID and so we 2673 * must flush the TLB. 2674 */ 2675 if (cpreg_field_is_64bit(ri)) { 2676 ARMCPU *cpu = arm_env_get_cpu(env); 2677 2678 tlb_flush(CPU(cpu)); 2679 } 2680 raw_write(env, ri, value); 2681 } 2682 2683 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2684 uint64_t value) 2685 { 2686 ARMCPU *cpu = arm_env_get_cpu(env); 2687 CPUState *cs = CPU(cpu); 2688 2689 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2690 if (raw_read(env, ri) != value) { 2691 tlb_flush_by_mmuidx(cs, 2692 ARMMMUIdxBit_S12NSE1 | 2693 ARMMMUIdxBit_S12NSE0 | 2694 ARMMMUIdxBit_S2NS); 2695 raw_write(env, ri, value); 2696 } 2697 } 2698 2699 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2700 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2701 .access = PL1_RW, .type = ARM_CP_ALIAS, 2702 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2703 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2704 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2705 .access = PL1_RW, .resetvalue = 0, 2706 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2707 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2708 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2709 .access = PL1_RW, .resetvalue = 0, 2710 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2711 offsetof(CPUARMState, cp15.dfar_ns) } }, 2712 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2713 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2714 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2715 .resetvalue = 0, }, 2716 REGINFO_SENTINEL 2717 }; 2718 2719 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2720 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2721 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2722 .access = PL1_RW, 2723 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2724 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2725 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2726 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2727 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2728 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2729 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2730 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2731 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2732 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2733 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2734 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2735 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2736 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2737 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2738 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2739 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2740 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2741 .raw_writefn = vmsa_ttbcr_raw_write, 2742 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2743 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2744 REGINFO_SENTINEL 2745 }; 2746 2747 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2748 uint64_t value) 2749 { 2750 env->cp15.c15_ticonfig = value & 0xe7; 2751 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2752 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2753 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2754 } 2755 2756 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2757 uint64_t value) 2758 { 2759 env->cp15.c15_threadid = value & 0xffff; 2760 } 2761 2762 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2763 uint64_t value) 2764 { 2765 /* Wait-for-interrupt (deprecated) */ 2766 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2767 } 2768 2769 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 /* On OMAP there are registers indicating the max/min index of dcache lines 2773 * containing a dirty line; cache flush operations have to reset these. 2774 */ 2775 env->cp15.c15_i_max = 0x000; 2776 env->cp15.c15_i_min = 0xff0; 2777 } 2778 2779 static const ARMCPRegInfo omap_cp_reginfo[] = { 2780 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2781 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2782 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2783 .resetvalue = 0, }, 2784 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2785 .access = PL1_RW, .type = ARM_CP_NOP }, 2786 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2787 .access = PL1_RW, 2788 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2789 .writefn = omap_ticonfig_write }, 2790 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2791 .access = PL1_RW, 2792 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2793 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2794 .access = PL1_RW, .resetvalue = 0xff0, 2795 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2796 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2797 .access = PL1_RW, 2798 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2799 .writefn = omap_threadid_write }, 2800 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2801 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2802 .type = ARM_CP_NO_RAW, 2803 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2804 /* TODO: Peripheral port remap register: 2805 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2806 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2807 * when MMU is off. 2808 */ 2809 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2810 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2811 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2812 .writefn = omap_cachemaint_write }, 2813 { .name = "C9", .cp = 15, .crn = 9, 2814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2816 REGINFO_SENTINEL 2817 }; 2818 2819 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2820 uint64_t value) 2821 { 2822 env->cp15.c15_cpar = value & 0x3fff; 2823 } 2824 2825 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2826 { .name = "XSCALE_CPAR", 2827 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2828 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2829 .writefn = xscale_cpar_write, }, 2830 { .name = "XSCALE_AUXCR", 2831 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2832 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2833 .resetvalue = 0, }, 2834 /* XScale specific cache-lockdown: since we have no cache we NOP these 2835 * and hope the guest does not really rely on cache behaviour. 2836 */ 2837 { .name = "XSCALE_LOCK_ICACHE_LINE", 2838 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2839 .access = PL1_W, .type = ARM_CP_NOP }, 2840 { .name = "XSCALE_UNLOCK_ICACHE", 2841 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2842 .access = PL1_W, .type = ARM_CP_NOP }, 2843 { .name = "XSCALE_DCACHE_LOCK", 2844 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2845 .access = PL1_RW, .type = ARM_CP_NOP }, 2846 { .name = "XSCALE_UNLOCK_DCACHE", 2847 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2848 .access = PL1_W, .type = ARM_CP_NOP }, 2849 REGINFO_SENTINEL 2850 }; 2851 2852 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2853 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2854 * implementation of this implementation-defined space. 2855 * Ideally this should eventually disappear in favour of actually 2856 * implementing the correct behaviour for all cores. 2857 */ 2858 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2859 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2860 .access = PL1_RW, 2861 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2862 .resetvalue = 0 }, 2863 REGINFO_SENTINEL 2864 }; 2865 2866 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2867 /* Cache status: RAZ because we have no cache so it's always clean */ 2868 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2869 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2870 .resetvalue = 0 }, 2871 REGINFO_SENTINEL 2872 }; 2873 2874 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2875 /* We never have a a block transfer operation in progress */ 2876 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2877 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2878 .resetvalue = 0 }, 2879 /* The cache ops themselves: these all NOP for QEMU */ 2880 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2881 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2882 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2883 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2884 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2885 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2886 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2887 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2888 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2889 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2890 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2891 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2892 REGINFO_SENTINEL 2893 }; 2894 2895 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2896 /* The cache test-and-clean instructions always return (1 << 30) 2897 * to indicate that there are no dirty cache lines. 2898 */ 2899 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2900 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2901 .resetvalue = (1 << 30) }, 2902 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2903 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2904 .resetvalue = (1 << 30) }, 2905 REGINFO_SENTINEL 2906 }; 2907 2908 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2909 /* Ignore ReadBuffer accesses */ 2910 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2911 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2912 .access = PL1_RW, .resetvalue = 0, 2913 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2914 REGINFO_SENTINEL 2915 }; 2916 2917 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2918 { 2919 ARMCPU *cpu = arm_env_get_cpu(env); 2920 unsigned int cur_el = arm_current_el(env); 2921 bool secure = arm_is_secure(env); 2922 2923 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2924 return env->cp15.vpidr_el2; 2925 } 2926 return raw_read(env, ri); 2927 } 2928 2929 static uint64_t mpidr_read_val(CPUARMState *env) 2930 { 2931 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2932 uint64_t mpidr = cpu->mp_affinity; 2933 2934 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2935 mpidr |= (1U << 31); 2936 /* Cores which are uniprocessor (non-coherent) 2937 * but still implement the MP extensions set 2938 * bit 30. (For instance, Cortex-R5). 2939 */ 2940 if (cpu->mp_is_up) { 2941 mpidr |= (1u << 30); 2942 } 2943 } 2944 return mpidr; 2945 } 2946 2947 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2948 { 2949 unsigned int cur_el = arm_current_el(env); 2950 bool secure = arm_is_secure(env); 2951 2952 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2953 return env->cp15.vmpidr_el2; 2954 } 2955 return mpidr_read_val(env); 2956 } 2957 2958 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2959 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2960 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2961 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2962 REGINFO_SENTINEL 2963 }; 2964 2965 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2966 /* NOP AMAIR0/1 */ 2967 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2968 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2969 .access = PL1_RW, .type = ARM_CP_CONST, 2970 .resetvalue = 0 }, 2971 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2972 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2973 .access = PL1_RW, .type = ARM_CP_CONST, 2974 .resetvalue = 0 }, 2975 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2976 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2977 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2978 offsetof(CPUARMState, cp15.par_ns)} }, 2979 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2980 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2981 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2982 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2983 .writefn = vmsa_ttbr_write, }, 2984 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2985 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2986 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2987 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2988 .writefn = vmsa_ttbr_write, }, 2989 REGINFO_SENTINEL 2990 }; 2991 2992 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2993 { 2994 return vfp_get_fpcr(env); 2995 } 2996 2997 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2998 uint64_t value) 2999 { 3000 vfp_set_fpcr(env, value); 3001 } 3002 3003 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3004 { 3005 return vfp_get_fpsr(env); 3006 } 3007 3008 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3009 uint64_t value) 3010 { 3011 vfp_set_fpsr(env, value); 3012 } 3013 3014 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3015 bool isread) 3016 { 3017 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3018 return CP_ACCESS_TRAP; 3019 } 3020 return CP_ACCESS_OK; 3021 } 3022 3023 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 env->daif = value & PSTATE_DAIF; 3027 } 3028 3029 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3030 const ARMCPRegInfo *ri, 3031 bool isread) 3032 { 3033 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3034 * SCTLR_EL1.UCI is set. 3035 */ 3036 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3037 return CP_ACCESS_TRAP; 3038 } 3039 return CP_ACCESS_OK; 3040 } 3041 3042 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3043 * Page D4-1736 (DDI0487A.b) 3044 */ 3045 3046 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3047 uint64_t value) 3048 { 3049 CPUState *cs = ENV_GET_CPU(env); 3050 3051 if (arm_is_secure_below_el3(env)) { 3052 tlb_flush_by_mmuidx(cs, 3053 ARMMMUIdxBit_S1SE1 | 3054 ARMMMUIdxBit_S1SE0); 3055 } else { 3056 tlb_flush_by_mmuidx(cs, 3057 ARMMMUIdxBit_S12NSE1 | 3058 ARMMMUIdxBit_S12NSE0); 3059 } 3060 } 3061 3062 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3063 uint64_t value) 3064 { 3065 CPUState *cs = ENV_GET_CPU(env); 3066 bool sec = arm_is_secure_below_el3(env); 3067 3068 if (sec) { 3069 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3070 ARMMMUIdxBit_S1SE1 | 3071 ARMMMUIdxBit_S1SE0); 3072 } else { 3073 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3074 ARMMMUIdxBit_S12NSE1 | 3075 ARMMMUIdxBit_S12NSE0); 3076 } 3077 } 3078 3079 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3080 uint64_t value) 3081 { 3082 /* Note that the 'ALL' scope must invalidate both stage 1 and 3083 * stage 2 translations, whereas most other scopes only invalidate 3084 * stage 1 translations. 3085 */ 3086 ARMCPU *cpu = arm_env_get_cpu(env); 3087 CPUState *cs = CPU(cpu); 3088 3089 if (arm_is_secure_below_el3(env)) { 3090 tlb_flush_by_mmuidx(cs, 3091 ARMMMUIdxBit_S1SE1 | 3092 ARMMMUIdxBit_S1SE0); 3093 } else { 3094 if (arm_feature(env, ARM_FEATURE_EL2)) { 3095 tlb_flush_by_mmuidx(cs, 3096 ARMMMUIdxBit_S12NSE1 | 3097 ARMMMUIdxBit_S12NSE0 | 3098 ARMMMUIdxBit_S2NS); 3099 } else { 3100 tlb_flush_by_mmuidx(cs, 3101 ARMMMUIdxBit_S12NSE1 | 3102 ARMMMUIdxBit_S12NSE0); 3103 } 3104 } 3105 } 3106 3107 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3108 uint64_t value) 3109 { 3110 ARMCPU *cpu = arm_env_get_cpu(env); 3111 CPUState *cs = CPU(cpu); 3112 3113 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3114 } 3115 3116 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3117 uint64_t value) 3118 { 3119 ARMCPU *cpu = arm_env_get_cpu(env); 3120 CPUState *cs = CPU(cpu); 3121 3122 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3123 } 3124 3125 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3126 uint64_t value) 3127 { 3128 /* Note that the 'ALL' scope must invalidate both stage 1 and 3129 * stage 2 translations, whereas most other scopes only invalidate 3130 * stage 1 translations. 3131 */ 3132 CPUState *cs = ENV_GET_CPU(env); 3133 bool sec = arm_is_secure_below_el3(env); 3134 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3135 3136 if (sec) { 3137 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3138 ARMMMUIdxBit_S1SE1 | 3139 ARMMMUIdxBit_S1SE0); 3140 } else if (has_el2) { 3141 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3142 ARMMMUIdxBit_S12NSE1 | 3143 ARMMMUIdxBit_S12NSE0 | 3144 ARMMMUIdxBit_S2NS); 3145 } else { 3146 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3147 ARMMMUIdxBit_S12NSE1 | 3148 ARMMMUIdxBit_S12NSE0); 3149 } 3150 } 3151 3152 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3153 uint64_t value) 3154 { 3155 CPUState *cs = ENV_GET_CPU(env); 3156 3157 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3158 } 3159 3160 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3161 uint64_t value) 3162 { 3163 CPUState *cs = ENV_GET_CPU(env); 3164 3165 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3166 } 3167 3168 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3169 uint64_t value) 3170 { 3171 /* Invalidate by VA, EL1&0 (AArch64 version). 3172 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3173 * since we don't support flush-for-specific-ASID-only or 3174 * flush-last-level-only. 3175 */ 3176 ARMCPU *cpu = arm_env_get_cpu(env); 3177 CPUState *cs = CPU(cpu); 3178 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3179 3180 if (arm_is_secure_below_el3(env)) { 3181 tlb_flush_page_by_mmuidx(cs, pageaddr, 3182 ARMMMUIdxBit_S1SE1 | 3183 ARMMMUIdxBit_S1SE0); 3184 } else { 3185 tlb_flush_page_by_mmuidx(cs, pageaddr, 3186 ARMMMUIdxBit_S12NSE1 | 3187 ARMMMUIdxBit_S12NSE0); 3188 } 3189 } 3190 3191 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3192 uint64_t value) 3193 { 3194 /* Invalidate by VA, EL2 3195 * Currently handles both VAE2 and VALE2, since we don't support 3196 * flush-last-level-only. 3197 */ 3198 ARMCPU *cpu = arm_env_get_cpu(env); 3199 CPUState *cs = CPU(cpu); 3200 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3201 3202 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3203 } 3204 3205 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3206 uint64_t value) 3207 { 3208 /* Invalidate by VA, EL3 3209 * Currently handles both VAE3 and VALE3, since we don't support 3210 * flush-last-level-only. 3211 */ 3212 ARMCPU *cpu = arm_env_get_cpu(env); 3213 CPUState *cs = CPU(cpu); 3214 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3215 3216 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3217 } 3218 3219 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3220 uint64_t value) 3221 { 3222 ARMCPU *cpu = arm_env_get_cpu(env); 3223 CPUState *cs = CPU(cpu); 3224 bool sec = arm_is_secure_below_el3(env); 3225 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3226 3227 if (sec) { 3228 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3229 ARMMMUIdxBit_S1SE1 | 3230 ARMMMUIdxBit_S1SE0); 3231 } else { 3232 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3233 ARMMMUIdxBit_S12NSE1 | 3234 ARMMMUIdxBit_S12NSE0); 3235 } 3236 } 3237 3238 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3239 uint64_t value) 3240 { 3241 CPUState *cs = ENV_GET_CPU(env); 3242 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3243 3244 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3245 ARMMMUIdxBit_S1E2); 3246 } 3247 3248 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3249 uint64_t value) 3250 { 3251 CPUState *cs = ENV_GET_CPU(env); 3252 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3253 3254 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3255 ARMMMUIdxBit_S1E3); 3256 } 3257 3258 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3259 uint64_t value) 3260 { 3261 /* Invalidate by IPA. This has to invalidate any structures that 3262 * contain only stage 2 translation information, but does not need 3263 * to apply to structures that contain combined stage 1 and stage 2 3264 * translation information. 3265 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3266 */ 3267 ARMCPU *cpu = arm_env_get_cpu(env); 3268 CPUState *cs = CPU(cpu); 3269 uint64_t pageaddr; 3270 3271 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3272 return; 3273 } 3274 3275 pageaddr = sextract64(value << 12, 0, 48); 3276 3277 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3278 } 3279 3280 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3281 uint64_t value) 3282 { 3283 CPUState *cs = ENV_GET_CPU(env); 3284 uint64_t pageaddr; 3285 3286 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3287 return; 3288 } 3289 3290 pageaddr = sextract64(value << 12, 0, 48); 3291 3292 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3293 ARMMMUIdxBit_S2NS); 3294 } 3295 3296 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3297 bool isread) 3298 { 3299 /* We don't implement EL2, so the only control on DC ZVA is the 3300 * bit in the SCTLR which can prohibit access for EL0. 3301 */ 3302 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3303 return CP_ACCESS_TRAP; 3304 } 3305 return CP_ACCESS_OK; 3306 } 3307 3308 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3309 { 3310 ARMCPU *cpu = arm_env_get_cpu(env); 3311 int dzp_bit = 1 << 4; 3312 3313 /* DZP indicates whether DC ZVA access is allowed */ 3314 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3315 dzp_bit = 0; 3316 } 3317 return cpu->dcz_blocksize | dzp_bit; 3318 } 3319 3320 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3321 bool isread) 3322 { 3323 if (!(env->pstate & PSTATE_SP)) { 3324 /* Access to SP_EL0 is undefined if it's being used as 3325 * the stack pointer. 3326 */ 3327 return CP_ACCESS_TRAP_UNCATEGORIZED; 3328 } 3329 return CP_ACCESS_OK; 3330 } 3331 3332 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3333 { 3334 return env->pstate & PSTATE_SP; 3335 } 3336 3337 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3338 { 3339 update_spsel(env, val); 3340 } 3341 3342 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3343 uint64_t value) 3344 { 3345 ARMCPU *cpu = arm_env_get_cpu(env); 3346 3347 if (raw_read(env, ri) == value) { 3348 /* Skip the TLB flush if nothing actually changed; Linux likes 3349 * to do a lot of pointless SCTLR writes. 3350 */ 3351 return; 3352 } 3353 3354 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3355 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3356 value &= ~SCTLR_M; 3357 } 3358 3359 raw_write(env, ri, value); 3360 /* ??? Lots of these bits are not implemented. */ 3361 /* This may enable/disable the MMU, so do a TLB flush. */ 3362 tlb_flush(CPU(cpu)); 3363 } 3364 3365 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3366 bool isread) 3367 { 3368 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3369 return CP_ACCESS_TRAP_FP_EL2; 3370 } 3371 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3372 return CP_ACCESS_TRAP_FP_EL3; 3373 } 3374 return CP_ACCESS_OK; 3375 } 3376 3377 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3378 uint64_t value) 3379 { 3380 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3381 } 3382 3383 static const ARMCPRegInfo v8_cp_reginfo[] = { 3384 /* Minimal set of EL0-visible registers. This will need to be expanded 3385 * significantly for system emulation of AArch64 CPUs. 3386 */ 3387 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3388 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3389 .access = PL0_RW, .type = ARM_CP_NZCV }, 3390 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3391 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3392 .type = ARM_CP_NO_RAW, 3393 .access = PL0_RW, .accessfn = aa64_daif_access, 3394 .fieldoffset = offsetof(CPUARMState, daif), 3395 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3396 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3397 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3398 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3399 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3400 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3401 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3402 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3403 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3404 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3405 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3406 .access = PL0_R, .type = ARM_CP_NO_RAW, 3407 .readfn = aa64_dczid_read }, 3408 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3410 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3411 #ifndef CONFIG_USER_ONLY 3412 /* Avoid overhead of an access check that always passes in user-mode */ 3413 .accessfn = aa64_zva_access, 3414 #endif 3415 }, 3416 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3417 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3418 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3419 /* Cache ops: all NOPs since we don't emulate caches */ 3420 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3421 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3422 .access = PL1_W, .type = ARM_CP_NOP }, 3423 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3424 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3425 .access = PL1_W, .type = ARM_CP_NOP }, 3426 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3428 .access = PL0_W, .type = ARM_CP_NOP, 3429 .accessfn = aa64_cacheop_access }, 3430 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3432 .access = PL1_W, .type = ARM_CP_NOP }, 3433 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3434 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3435 .access = PL1_W, .type = ARM_CP_NOP }, 3436 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3437 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3438 .access = PL0_W, .type = ARM_CP_NOP, 3439 .accessfn = aa64_cacheop_access }, 3440 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3441 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3442 .access = PL1_W, .type = ARM_CP_NOP }, 3443 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3444 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3445 .access = PL0_W, .type = ARM_CP_NOP, 3446 .accessfn = aa64_cacheop_access }, 3447 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3448 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3449 .access = PL0_W, .type = ARM_CP_NOP, 3450 .accessfn = aa64_cacheop_access }, 3451 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3452 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3453 .access = PL1_W, .type = ARM_CP_NOP }, 3454 /* TLBI operations */ 3455 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3456 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3457 .access = PL1_W, .type = ARM_CP_NO_RAW, 3458 .writefn = tlbi_aa64_vmalle1is_write }, 3459 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3460 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3461 .access = PL1_W, .type = ARM_CP_NO_RAW, 3462 .writefn = tlbi_aa64_vae1is_write }, 3463 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3465 .access = PL1_W, .type = ARM_CP_NO_RAW, 3466 .writefn = tlbi_aa64_vmalle1is_write }, 3467 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3468 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3469 .access = PL1_W, .type = ARM_CP_NO_RAW, 3470 .writefn = tlbi_aa64_vae1is_write }, 3471 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3472 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3473 .access = PL1_W, .type = ARM_CP_NO_RAW, 3474 .writefn = tlbi_aa64_vae1is_write }, 3475 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3476 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3477 .access = PL1_W, .type = ARM_CP_NO_RAW, 3478 .writefn = tlbi_aa64_vae1is_write }, 3479 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3480 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3481 .access = PL1_W, .type = ARM_CP_NO_RAW, 3482 .writefn = tlbi_aa64_vmalle1_write }, 3483 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3484 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3485 .access = PL1_W, .type = ARM_CP_NO_RAW, 3486 .writefn = tlbi_aa64_vae1_write }, 3487 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3488 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3489 .access = PL1_W, .type = ARM_CP_NO_RAW, 3490 .writefn = tlbi_aa64_vmalle1_write }, 3491 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3492 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3493 .access = PL1_W, .type = ARM_CP_NO_RAW, 3494 .writefn = tlbi_aa64_vae1_write }, 3495 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3496 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3497 .access = PL1_W, .type = ARM_CP_NO_RAW, 3498 .writefn = tlbi_aa64_vae1_write }, 3499 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3500 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3501 .access = PL1_W, .type = ARM_CP_NO_RAW, 3502 .writefn = tlbi_aa64_vae1_write }, 3503 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3504 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3505 .access = PL2_W, .type = ARM_CP_NO_RAW, 3506 .writefn = tlbi_aa64_ipas2e1is_write }, 3507 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3508 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3509 .access = PL2_W, .type = ARM_CP_NO_RAW, 3510 .writefn = tlbi_aa64_ipas2e1is_write }, 3511 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3512 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3513 .access = PL2_W, .type = ARM_CP_NO_RAW, 3514 .writefn = tlbi_aa64_alle1is_write }, 3515 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3516 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3517 .access = PL2_W, .type = ARM_CP_NO_RAW, 3518 .writefn = tlbi_aa64_alle1is_write }, 3519 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3520 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3521 .access = PL2_W, .type = ARM_CP_NO_RAW, 3522 .writefn = tlbi_aa64_ipas2e1_write }, 3523 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3524 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3525 .access = PL2_W, .type = ARM_CP_NO_RAW, 3526 .writefn = tlbi_aa64_ipas2e1_write }, 3527 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3528 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3529 .access = PL2_W, .type = ARM_CP_NO_RAW, 3530 .writefn = tlbi_aa64_alle1_write }, 3531 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3532 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3533 .access = PL2_W, .type = ARM_CP_NO_RAW, 3534 .writefn = tlbi_aa64_alle1is_write }, 3535 #ifndef CONFIG_USER_ONLY 3536 /* 64 bit address translation operations */ 3537 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3538 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3539 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3540 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3541 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3542 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3543 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3544 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3545 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3546 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3547 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3548 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3549 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3550 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3551 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3552 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3553 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3554 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3555 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3556 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3557 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3558 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3559 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3560 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3561 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3562 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3563 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3564 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3565 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3566 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3567 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3568 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3569 .type = ARM_CP_ALIAS, 3570 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3571 .access = PL1_RW, .resetvalue = 0, 3572 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3573 .writefn = par_write }, 3574 #endif 3575 /* TLB invalidate last level of translation table walk */ 3576 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3577 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3578 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3579 .type = ARM_CP_NO_RAW, .access = PL1_W, 3580 .writefn = tlbimvaa_is_write }, 3581 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3582 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3583 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3584 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3585 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3586 .type = ARM_CP_NO_RAW, .access = PL2_W, 3587 .writefn = tlbimva_hyp_write }, 3588 { .name = "TLBIMVALHIS", 3589 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3590 .type = ARM_CP_NO_RAW, .access = PL2_W, 3591 .writefn = tlbimva_hyp_is_write }, 3592 { .name = "TLBIIPAS2", 3593 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3594 .type = ARM_CP_NO_RAW, .access = PL2_W, 3595 .writefn = tlbiipas2_write }, 3596 { .name = "TLBIIPAS2IS", 3597 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3598 .type = ARM_CP_NO_RAW, .access = PL2_W, 3599 .writefn = tlbiipas2_is_write }, 3600 { .name = "TLBIIPAS2L", 3601 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3602 .type = ARM_CP_NO_RAW, .access = PL2_W, 3603 .writefn = tlbiipas2_write }, 3604 { .name = "TLBIIPAS2LIS", 3605 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3606 .type = ARM_CP_NO_RAW, .access = PL2_W, 3607 .writefn = tlbiipas2_is_write }, 3608 /* 32 bit cache operations */ 3609 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3610 .type = ARM_CP_NOP, .access = PL1_W }, 3611 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3612 .type = ARM_CP_NOP, .access = PL1_W }, 3613 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3614 .type = ARM_CP_NOP, .access = PL1_W }, 3615 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3616 .type = ARM_CP_NOP, .access = PL1_W }, 3617 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3618 .type = ARM_CP_NOP, .access = PL1_W }, 3619 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3620 .type = ARM_CP_NOP, .access = PL1_W }, 3621 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3622 .type = ARM_CP_NOP, .access = PL1_W }, 3623 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3624 .type = ARM_CP_NOP, .access = PL1_W }, 3625 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3626 .type = ARM_CP_NOP, .access = PL1_W }, 3627 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3628 .type = ARM_CP_NOP, .access = PL1_W }, 3629 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3630 .type = ARM_CP_NOP, .access = PL1_W }, 3631 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3632 .type = ARM_CP_NOP, .access = PL1_W }, 3633 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3634 .type = ARM_CP_NOP, .access = PL1_W }, 3635 /* MMU Domain access control / MPU write buffer control */ 3636 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3637 .access = PL1_RW, .resetvalue = 0, 3638 .writefn = dacr_write, .raw_writefn = raw_write, 3639 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3640 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3641 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3642 .type = ARM_CP_ALIAS, 3643 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3644 .access = PL1_RW, 3645 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3646 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3647 .type = ARM_CP_ALIAS, 3648 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3649 .access = PL1_RW, 3650 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3651 /* We rely on the access checks not allowing the guest to write to the 3652 * state field when SPSel indicates that it's being used as the stack 3653 * pointer. 3654 */ 3655 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3656 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3657 .access = PL1_RW, .accessfn = sp_el0_access, 3658 .type = ARM_CP_ALIAS, 3659 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3660 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3661 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3662 .access = PL2_RW, .type = ARM_CP_ALIAS, 3663 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3664 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3665 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3666 .type = ARM_CP_NO_RAW, 3667 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3668 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3669 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3670 .type = ARM_CP_ALIAS, 3671 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3672 .access = PL2_RW, .accessfn = fpexc32_access }, 3673 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3674 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3675 .access = PL2_RW, .resetvalue = 0, 3676 .writefn = dacr_write, .raw_writefn = raw_write, 3677 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3678 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3679 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3680 .access = PL2_RW, .resetvalue = 0, 3681 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3682 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3683 .type = ARM_CP_ALIAS, 3684 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3685 .access = PL2_RW, 3686 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3687 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3688 .type = ARM_CP_ALIAS, 3689 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3690 .access = PL2_RW, 3691 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3692 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3693 .type = ARM_CP_ALIAS, 3694 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3695 .access = PL2_RW, 3696 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3697 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3698 .type = ARM_CP_ALIAS, 3699 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3700 .access = PL2_RW, 3701 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3702 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3703 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3704 .resetvalue = 0, 3705 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3706 { .name = "SDCR", .type = ARM_CP_ALIAS, 3707 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3708 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3709 .writefn = sdcr_write, 3710 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3711 REGINFO_SENTINEL 3712 }; 3713 3714 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3715 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3716 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3717 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3718 .access = PL2_RW, 3719 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3720 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3721 .type = ARM_CP_NO_RAW, 3722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3723 .access = PL2_RW, 3724 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3725 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3726 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3727 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3728 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3729 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3730 .access = PL2_RW, .type = ARM_CP_CONST, 3731 .resetvalue = 0 }, 3732 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3733 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3734 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3735 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3736 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3737 .access = PL2_RW, .type = ARM_CP_CONST, 3738 .resetvalue = 0 }, 3739 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3740 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3741 .access = PL2_RW, .type = ARM_CP_CONST, 3742 .resetvalue = 0 }, 3743 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3744 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3745 .access = PL2_RW, .type = ARM_CP_CONST, 3746 .resetvalue = 0 }, 3747 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3748 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3749 .access = PL2_RW, .type = ARM_CP_CONST, 3750 .resetvalue = 0 }, 3751 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3752 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3753 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3754 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3755 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3756 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3757 .type = ARM_CP_CONST, .resetvalue = 0 }, 3758 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3759 .cp = 15, .opc1 = 6, .crm = 2, 3760 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3761 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3762 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3763 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3764 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3765 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3766 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3767 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3768 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3769 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3770 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3771 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3772 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3773 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3774 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3775 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3776 .resetvalue = 0 }, 3777 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3778 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3779 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3780 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3781 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3782 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3783 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3784 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3785 .resetvalue = 0 }, 3786 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3787 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3788 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3789 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3790 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3791 .resetvalue = 0 }, 3792 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3793 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3794 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3795 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3796 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3797 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3798 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3799 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3800 .access = PL2_RW, .accessfn = access_tda, 3801 .type = ARM_CP_CONST, .resetvalue = 0 }, 3802 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3803 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3804 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3805 .type = ARM_CP_CONST, .resetvalue = 0 }, 3806 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3807 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3808 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3809 REGINFO_SENTINEL 3810 }; 3811 3812 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3813 { 3814 ARMCPU *cpu = arm_env_get_cpu(env); 3815 uint64_t valid_mask = HCR_MASK; 3816 3817 if (arm_feature(env, ARM_FEATURE_EL3)) { 3818 valid_mask &= ~HCR_HCD; 3819 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3820 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3821 * However, if we're using the SMC PSCI conduit then QEMU is 3822 * effectively acting like EL3 firmware and so the guest at 3823 * EL2 should retain the ability to prevent EL1 from being 3824 * able to make SMC calls into the ersatz firmware, so in 3825 * that case HCR.TSC should be read/write. 3826 */ 3827 valid_mask &= ~HCR_TSC; 3828 } 3829 3830 /* Clear RES0 bits. */ 3831 value &= valid_mask; 3832 3833 /* These bits change the MMU setup: 3834 * HCR_VM enables stage 2 translation 3835 * HCR_PTW forbids certain page-table setups 3836 * HCR_DC Disables stage1 and enables stage2 translation 3837 */ 3838 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3839 tlb_flush(CPU(cpu)); 3840 } 3841 raw_write(env, ri, value); 3842 } 3843 3844 static const ARMCPRegInfo el2_cp_reginfo[] = { 3845 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3846 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3847 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3848 .writefn = hcr_write }, 3849 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3850 .type = ARM_CP_ALIAS, 3851 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3852 .access = PL2_RW, 3853 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3854 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3855 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3856 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3857 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3858 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3859 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3860 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3861 .type = ARM_CP_ALIAS, 3862 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3863 .access = PL2_RW, 3864 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3865 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3866 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3867 .access = PL2_RW, .writefn = vbar_write, 3868 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3869 .resetvalue = 0 }, 3870 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3871 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3872 .access = PL3_RW, .type = ARM_CP_ALIAS, 3873 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3874 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3875 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3876 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3877 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3878 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3879 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3880 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3881 .resetvalue = 0 }, 3882 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3883 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3884 .access = PL2_RW, .type = ARM_CP_ALIAS, 3885 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3886 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3887 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3888 .access = PL2_RW, .type = ARM_CP_CONST, 3889 .resetvalue = 0 }, 3890 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3891 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3892 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3893 .access = PL2_RW, .type = ARM_CP_CONST, 3894 .resetvalue = 0 }, 3895 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3896 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3897 .access = PL2_RW, .type = ARM_CP_CONST, 3898 .resetvalue = 0 }, 3899 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3900 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3901 .access = PL2_RW, .type = ARM_CP_CONST, 3902 .resetvalue = 0 }, 3903 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3904 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3905 .access = PL2_RW, 3906 /* no .writefn needed as this can't cause an ASID change; 3907 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3908 */ 3909 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3910 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3911 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3912 .type = ARM_CP_ALIAS, 3913 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3914 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3915 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3916 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3917 .access = PL2_RW, 3918 /* no .writefn needed as this can't cause an ASID change; 3919 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3920 */ 3921 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3922 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3923 .cp = 15, .opc1 = 6, .crm = 2, 3924 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3925 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3926 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3927 .writefn = vttbr_write }, 3928 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3929 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3930 .access = PL2_RW, .writefn = vttbr_write, 3931 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3932 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3933 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3934 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3935 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3936 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3937 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3938 .access = PL2_RW, .resetvalue = 0, 3939 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3940 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3941 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3942 .access = PL2_RW, .resetvalue = 0, 3943 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3944 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3945 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3946 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3947 { .name = "TLBIALLNSNH", 3948 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3949 .type = ARM_CP_NO_RAW, .access = PL2_W, 3950 .writefn = tlbiall_nsnh_write }, 3951 { .name = "TLBIALLNSNHIS", 3952 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3953 .type = ARM_CP_NO_RAW, .access = PL2_W, 3954 .writefn = tlbiall_nsnh_is_write }, 3955 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3956 .type = ARM_CP_NO_RAW, .access = PL2_W, 3957 .writefn = tlbiall_hyp_write }, 3958 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3959 .type = ARM_CP_NO_RAW, .access = PL2_W, 3960 .writefn = tlbiall_hyp_is_write }, 3961 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3962 .type = ARM_CP_NO_RAW, .access = PL2_W, 3963 .writefn = tlbimva_hyp_write }, 3964 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3965 .type = ARM_CP_NO_RAW, .access = PL2_W, 3966 .writefn = tlbimva_hyp_is_write }, 3967 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3968 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3969 .type = ARM_CP_NO_RAW, .access = PL2_W, 3970 .writefn = tlbi_aa64_alle2_write }, 3971 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3972 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3973 .type = ARM_CP_NO_RAW, .access = PL2_W, 3974 .writefn = tlbi_aa64_vae2_write }, 3975 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3976 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3977 .access = PL2_W, .type = ARM_CP_NO_RAW, 3978 .writefn = tlbi_aa64_vae2_write }, 3979 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3980 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3981 .access = PL2_W, .type = ARM_CP_NO_RAW, 3982 .writefn = tlbi_aa64_alle2is_write }, 3983 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3984 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3985 .type = ARM_CP_NO_RAW, .access = PL2_W, 3986 .writefn = tlbi_aa64_vae2is_write }, 3987 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3988 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3989 .access = PL2_W, .type = ARM_CP_NO_RAW, 3990 .writefn = tlbi_aa64_vae2is_write }, 3991 #ifndef CONFIG_USER_ONLY 3992 /* Unlike the other EL2-related AT operations, these must 3993 * UNDEF from EL3 if EL2 is not implemented, which is why we 3994 * define them here rather than with the rest of the AT ops. 3995 */ 3996 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3997 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3998 .access = PL2_W, .accessfn = at_s1e2_access, 3999 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4000 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4001 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4002 .access = PL2_W, .accessfn = at_s1e2_access, 4003 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4004 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4005 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4006 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4007 * to behave as if SCR.NS was 1. 4008 */ 4009 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4010 .access = PL2_W, 4011 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4012 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4013 .access = PL2_W, 4014 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4015 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4016 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4017 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4018 * reset values as IMPDEF. We choose to reset to 3 to comply with 4019 * both ARMv7 and ARMv8. 4020 */ 4021 .access = PL2_RW, .resetvalue = 3, 4022 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4023 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4024 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4025 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4026 .writefn = gt_cntvoff_write, 4027 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4028 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4029 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4030 .writefn = gt_cntvoff_write, 4031 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4032 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4033 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4034 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4035 .type = ARM_CP_IO, .access = PL2_RW, 4036 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4037 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4039 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4040 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4041 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4042 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4043 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4044 .resetfn = gt_hyp_timer_reset, 4045 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4046 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4047 .type = ARM_CP_IO, 4048 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4049 .access = PL2_RW, 4050 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4051 .resetvalue = 0, 4052 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4053 #endif 4054 /* The only field of MDCR_EL2 that has a defined architectural reset value 4055 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4056 * don't impelment any PMU event counters, so using zero as a reset 4057 * value for MDCR_EL2 is okay 4058 */ 4059 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4060 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4061 .access = PL2_RW, .resetvalue = 0, 4062 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4063 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4064 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4065 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4066 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4067 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4068 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4069 .access = PL2_RW, 4070 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4071 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4072 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4073 .access = PL2_RW, 4074 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4075 REGINFO_SENTINEL 4076 }; 4077 4078 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4079 bool isread) 4080 { 4081 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4082 * At Secure EL1 it traps to EL3. 4083 */ 4084 if (arm_current_el(env) == 3) { 4085 return CP_ACCESS_OK; 4086 } 4087 if (arm_is_secure_below_el3(env)) { 4088 return CP_ACCESS_TRAP_EL3; 4089 } 4090 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4091 if (isread) { 4092 return CP_ACCESS_OK; 4093 } 4094 return CP_ACCESS_TRAP_UNCATEGORIZED; 4095 } 4096 4097 static const ARMCPRegInfo el3_cp_reginfo[] = { 4098 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4099 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4100 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4101 .resetvalue = 0, .writefn = scr_write }, 4102 { .name = "SCR", .type = ARM_CP_ALIAS, 4103 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4104 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4105 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4106 .writefn = scr_write }, 4107 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4108 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4109 .access = PL3_RW, .resetvalue = 0, 4110 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4111 { .name = "SDER", 4112 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4113 .access = PL3_RW, .resetvalue = 0, 4114 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4115 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4116 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4117 .writefn = vbar_write, .resetvalue = 0, 4118 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4119 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4120 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4121 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4122 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4123 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4124 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4125 .access = PL3_RW, 4126 /* no .writefn needed as this can't cause an ASID change; 4127 * we must provide a .raw_writefn and .resetfn because we handle 4128 * reset and migration for the AArch32 TTBCR(S), which might be 4129 * using mask and base_mask. 4130 */ 4131 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4132 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4133 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4134 .type = ARM_CP_ALIAS, 4135 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4136 .access = PL3_RW, 4137 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4138 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4139 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4140 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4141 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4142 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4143 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4144 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4145 .type = ARM_CP_ALIAS, 4146 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4147 .access = PL3_RW, 4148 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4149 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4150 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4151 .access = PL3_RW, .writefn = vbar_write, 4152 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4153 .resetvalue = 0 }, 4154 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4155 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4156 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4157 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4158 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4159 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4160 .access = PL3_RW, .resetvalue = 0, 4161 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4162 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4164 .access = PL3_RW, .type = ARM_CP_CONST, 4165 .resetvalue = 0 }, 4166 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4167 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4168 .access = PL3_RW, .type = ARM_CP_CONST, 4169 .resetvalue = 0 }, 4170 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4171 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4172 .access = PL3_RW, .type = ARM_CP_CONST, 4173 .resetvalue = 0 }, 4174 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4175 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4176 .access = PL3_W, .type = ARM_CP_NO_RAW, 4177 .writefn = tlbi_aa64_alle3is_write }, 4178 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4179 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4180 .access = PL3_W, .type = ARM_CP_NO_RAW, 4181 .writefn = tlbi_aa64_vae3is_write }, 4182 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4183 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4184 .access = PL3_W, .type = ARM_CP_NO_RAW, 4185 .writefn = tlbi_aa64_vae3is_write }, 4186 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4187 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4188 .access = PL3_W, .type = ARM_CP_NO_RAW, 4189 .writefn = tlbi_aa64_alle3_write }, 4190 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4191 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4192 .access = PL3_W, .type = ARM_CP_NO_RAW, 4193 .writefn = tlbi_aa64_vae3_write }, 4194 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4195 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4196 .access = PL3_W, .type = ARM_CP_NO_RAW, 4197 .writefn = tlbi_aa64_vae3_write }, 4198 REGINFO_SENTINEL 4199 }; 4200 4201 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4202 bool isread) 4203 { 4204 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4205 * but the AArch32 CTR has its own reginfo struct) 4206 */ 4207 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4208 return CP_ACCESS_TRAP; 4209 } 4210 return CP_ACCESS_OK; 4211 } 4212 4213 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4214 uint64_t value) 4215 { 4216 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4217 * read via a bit in OSLSR_EL1. 4218 */ 4219 int oslock; 4220 4221 if (ri->state == ARM_CP_STATE_AA32) { 4222 oslock = (value == 0xC5ACCE55); 4223 } else { 4224 oslock = value & 1; 4225 } 4226 4227 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4228 } 4229 4230 static const ARMCPRegInfo debug_cp_reginfo[] = { 4231 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4232 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4233 * unlike DBGDRAR it is never accessible from EL0. 4234 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4235 * accessor. 4236 */ 4237 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4238 .access = PL0_R, .accessfn = access_tdra, 4239 .type = ARM_CP_CONST, .resetvalue = 0 }, 4240 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4241 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4242 .access = PL1_R, .accessfn = access_tdra, 4243 .type = ARM_CP_CONST, .resetvalue = 0 }, 4244 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4245 .access = PL0_R, .accessfn = access_tdra, 4246 .type = ARM_CP_CONST, .resetvalue = 0 }, 4247 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4248 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4249 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4250 .access = PL1_RW, .accessfn = access_tda, 4251 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4252 .resetvalue = 0 }, 4253 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4254 * We don't implement the configurable EL0 access. 4255 */ 4256 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4257 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4258 .type = ARM_CP_ALIAS, 4259 .access = PL1_R, .accessfn = access_tda, 4260 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4261 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4262 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4263 .access = PL1_W, .type = ARM_CP_NO_RAW, 4264 .accessfn = access_tdosa, 4265 .writefn = oslar_write }, 4266 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4267 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4268 .access = PL1_R, .resetvalue = 10, 4269 .accessfn = access_tdosa, 4270 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4271 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4272 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4273 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4274 .access = PL1_RW, .accessfn = access_tdosa, 4275 .type = ARM_CP_NOP }, 4276 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4277 * implement vector catch debug events yet. 4278 */ 4279 { .name = "DBGVCR", 4280 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4281 .access = PL1_RW, .accessfn = access_tda, 4282 .type = ARM_CP_NOP }, 4283 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4284 * to save and restore a 32-bit guest's DBGVCR) 4285 */ 4286 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4287 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4288 .access = PL2_RW, .accessfn = access_tda, 4289 .type = ARM_CP_NOP }, 4290 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4291 * Channel but Linux may try to access this register. The 32-bit 4292 * alias is DBGDCCINT. 4293 */ 4294 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4295 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4296 .access = PL1_RW, .accessfn = access_tda, 4297 .type = ARM_CP_NOP }, 4298 REGINFO_SENTINEL 4299 }; 4300 4301 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4302 /* 64 bit access versions of the (dummy) debug registers */ 4303 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4304 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4305 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4306 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4307 REGINFO_SENTINEL 4308 }; 4309 4310 /* Return the exception level to which SVE-disabled exceptions should 4311 * be taken, or 0 if SVE is enabled. 4312 */ 4313 static int sve_exception_el(CPUARMState *env) 4314 { 4315 #ifndef CONFIG_USER_ONLY 4316 unsigned current_el = arm_current_el(env); 4317 4318 /* The CPACR.ZEN controls traps to EL1: 4319 * 0, 2 : trap EL0 and EL1 accesses 4320 * 1 : trap only EL0 accesses 4321 * 3 : trap no accesses 4322 */ 4323 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4324 default: 4325 if (current_el <= 1) { 4326 /* Trap to PL1, which might be EL1 or EL3 */ 4327 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4328 return 3; 4329 } 4330 return 1; 4331 } 4332 break; 4333 case 1: 4334 if (current_el == 0) { 4335 return 1; 4336 } 4337 break; 4338 case 3: 4339 break; 4340 } 4341 4342 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4343 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4344 default: 4345 if (current_el <= 1) { 4346 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4347 return 3; 4348 } 4349 return 1; 4350 } 4351 break; 4352 case 1: 4353 if (current_el == 0) { 4354 return 1; 4355 } 4356 break; 4357 case 3: 4358 break; 4359 } 4360 4361 /* CPTR_EL2. Check both TZ and TFP. */ 4362 if (current_el <= 2 4363 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4364 && !arm_is_secure_below_el3(env)) { 4365 return 2; 4366 } 4367 4368 /* CPTR_EL3. Check both EZ and TFP. */ 4369 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4370 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4371 return 3; 4372 } 4373 #endif 4374 return 0; 4375 } 4376 4377 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 /* Bits other than [3:0] are RAZ/WI. */ 4381 raw_write(env, ri, value & 0xf); 4382 } 4383 4384 static const ARMCPRegInfo zcr_el1_reginfo = { 4385 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4386 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4387 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4388 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4389 .writefn = zcr_write, .raw_writefn = raw_write 4390 }; 4391 4392 static const ARMCPRegInfo zcr_el2_reginfo = { 4393 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4394 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4395 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4396 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4397 .writefn = zcr_write, .raw_writefn = raw_write 4398 }; 4399 4400 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4401 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4402 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4403 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4404 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4405 }; 4406 4407 static const ARMCPRegInfo zcr_el3_reginfo = { 4408 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4409 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4410 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4411 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4412 .writefn = zcr_write, .raw_writefn = raw_write 4413 }; 4414 4415 void hw_watchpoint_update(ARMCPU *cpu, int n) 4416 { 4417 CPUARMState *env = &cpu->env; 4418 vaddr len = 0; 4419 vaddr wvr = env->cp15.dbgwvr[n]; 4420 uint64_t wcr = env->cp15.dbgwcr[n]; 4421 int mask; 4422 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4423 4424 if (env->cpu_watchpoint[n]) { 4425 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4426 env->cpu_watchpoint[n] = NULL; 4427 } 4428 4429 if (!extract64(wcr, 0, 1)) { 4430 /* E bit clear : watchpoint disabled */ 4431 return; 4432 } 4433 4434 switch (extract64(wcr, 3, 2)) { 4435 case 0: 4436 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4437 return; 4438 case 1: 4439 flags |= BP_MEM_READ; 4440 break; 4441 case 2: 4442 flags |= BP_MEM_WRITE; 4443 break; 4444 case 3: 4445 flags |= BP_MEM_ACCESS; 4446 break; 4447 } 4448 4449 /* Attempts to use both MASK and BAS fields simultaneously are 4450 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4451 * thus generating a watchpoint for every byte in the masked region. 4452 */ 4453 mask = extract64(wcr, 24, 4); 4454 if (mask == 1 || mask == 2) { 4455 /* Reserved values of MASK; we must act as if the mask value was 4456 * some non-reserved value, or as if the watchpoint were disabled. 4457 * We choose the latter. 4458 */ 4459 return; 4460 } else if (mask) { 4461 /* Watchpoint covers an aligned area up to 2GB in size */ 4462 len = 1ULL << mask; 4463 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4464 * whether the watchpoint fires when the unmasked bits match; we opt 4465 * to generate the exceptions. 4466 */ 4467 wvr &= ~(len - 1); 4468 } else { 4469 /* Watchpoint covers bytes defined by the byte address select bits */ 4470 int bas = extract64(wcr, 5, 8); 4471 int basstart; 4472 4473 if (bas == 0) { 4474 /* This must act as if the watchpoint is disabled */ 4475 return; 4476 } 4477 4478 if (extract64(wvr, 2, 1)) { 4479 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4480 * ignored, and BAS[3:0] define which bytes to watch. 4481 */ 4482 bas &= 0xf; 4483 } 4484 /* The BAS bits are supposed to be programmed to indicate a contiguous 4485 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4486 * we fire for each byte in the word/doubleword addressed by the WVR. 4487 * We choose to ignore any non-zero bits after the first range of 1s. 4488 */ 4489 basstart = ctz32(bas); 4490 len = cto32(bas >> basstart); 4491 wvr += basstart; 4492 } 4493 4494 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4495 &env->cpu_watchpoint[n]); 4496 } 4497 4498 void hw_watchpoint_update_all(ARMCPU *cpu) 4499 { 4500 int i; 4501 CPUARMState *env = &cpu->env; 4502 4503 /* Completely clear out existing QEMU watchpoints and our array, to 4504 * avoid possible stale entries following migration load. 4505 */ 4506 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4507 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4508 4509 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4510 hw_watchpoint_update(cpu, i); 4511 } 4512 } 4513 4514 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4515 uint64_t value) 4516 { 4517 ARMCPU *cpu = arm_env_get_cpu(env); 4518 int i = ri->crm; 4519 4520 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4521 * register reads and behaves as if values written are sign extended. 4522 * Bits [1:0] are RES0. 4523 */ 4524 value = sextract64(value, 0, 49) & ~3ULL; 4525 4526 raw_write(env, ri, value); 4527 hw_watchpoint_update(cpu, i); 4528 } 4529 4530 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4531 uint64_t value) 4532 { 4533 ARMCPU *cpu = arm_env_get_cpu(env); 4534 int i = ri->crm; 4535 4536 raw_write(env, ri, value); 4537 hw_watchpoint_update(cpu, i); 4538 } 4539 4540 void hw_breakpoint_update(ARMCPU *cpu, int n) 4541 { 4542 CPUARMState *env = &cpu->env; 4543 uint64_t bvr = env->cp15.dbgbvr[n]; 4544 uint64_t bcr = env->cp15.dbgbcr[n]; 4545 vaddr addr; 4546 int bt; 4547 int flags = BP_CPU; 4548 4549 if (env->cpu_breakpoint[n]) { 4550 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4551 env->cpu_breakpoint[n] = NULL; 4552 } 4553 4554 if (!extract64(bcr, 0, 1)) { 4555 /* E bit clear : watchpoint disabled */ 4556 return; 4557 } 4558 4559 bt = extract64(bcr, 20, 4); 4560 4561 switch (bt) { 4562 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4563 case 5: /* linked address mismatch (reserved if AArch64) */ 4564 qemu_log_mask(LOG_UNIMP, 4565 "arm: address mismatch breakpoint types not implemented"); 4566 return; 4567 case 0: /* unlinked address match */ 4568 case 1: /* linked address match */ 4569 { 4570 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4571 * we behave as if the register was sign extended. Bits [1:0] are 4572 * RES0. The BAS field is used to allow setting breakpoints on 16 4573 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4574 * a bp will fire if the addresses covered by the bp and the addresses 4575 * covered by the insn overlap but the insn doesn't start at the 4576 * start of the bp address range. We choose to require the insn and 4577 * the bp to have the same address. The constraints on writing to 4578 * BAS enforced in dbgbcr_write mean we have only four cases: 4579 * 0b0000 => no breakpoint 4580 * 0b0011 => breakpoint on addr 4581 * 0b1100 => breakpoint on addr + 2 4582 * 0b1111 => breakpoint on addr 4583 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4584 */ 4585 int bas = extract64(bcr, 5, 4); 4586 addr = sextract64(bvr, 0, 49) & ~3ULL; 4587 if (bas == 0) { 4588 return; 4589 } 4590 if (bas == 0xc) { 4591 addr += 2; 4592 } 4593 break; 4594 } 4595 case 2: /* unlinked context ID match */ 4596 case 8: /* unlinked VMID match (reserved if no EL2) */ 4597 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4598 qemu_log_mask(LOG_UNIMP, 4599 "arm: unlinked context breakpoint types not implemented"); 4600 return; 4601 case 9: /* linked VMID match (reserved if no EL2) */ 4602 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4603 case 3: /* linked context ID match */ 4604 default: 4605 /* We must generate no events for Linked context matches (unless 4606 * they are linked to by some other bp/wp, which is handled in 4607 * updates for the linking bp/wp). We choose to also generate no events 4608 * for reserved values. 4609 */ 4610 return; 4611 } 4612 4613 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4614 } 4615 4616 void hw_breakpoint_update_all(ARMCPU *cpu) 4617 { 4618 int i; 4619 CPUARMState *env = &cpu->env; 4620 4621 /* Completely clear out existing QEMU breakpoints and our array, to 4622 * avoid possible stale entries following migration load. 4623 */ 4624 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4625 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4626 4627 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4628 hw_breakpoint_update(cpu, i); 4629 } 4630 } 4631 4632 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4633 uint64_t value) 4634 { 4635 ARMCPU *cpu = arm_env_get_cpu(env); 4636 int i = ri->crm; 4637 4638 raw_write(env, ri, value); 4639 hw_breakpoint_update(cpu, i); 4640 } 4641 4642 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4643 uint64_t value) 4644 { 4645 ARMCPU *cpu = arm_env_get_cpu(env); 4646 int i = ri->crm; 4647 4648 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4649 * copy of BAS[0]. 4650 */ 4651 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4652 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4653 4654 raw_write(env, ri, value); 4655 hw_breakpoint_update(cpu, i); 4656 } 4657 4658 static void define_debug_regs(ARMCPU *cpu) 4659 { 4660 /* Define v7 and v8 architectural debug registers. 4661 * These are just dummy implementations for now. 4662 */ 4663 int i; 4664 int wrps, brps, ctx_cmps; 4665 ARMCPRegInfo dbgdidr = { 4666 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4667 .access = PL0_R, .accessfn = access_tda, 4668 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4669 }; 4670 4671 /* Note that all these register fields hold "number of Xs minus 1". */ 4672 brps = extract32(cpu->dbgdidr, 24, 4); 4673 wrps = extract32(cpu->dbgdidr, 28, 4); 4674 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4675 4676 assert(ctx_cmps <= brps); 4677 4678 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4679 * of the debug registers such as number of breakpoints; 4680 * check that if they both exist then they agree. 4681 */ 4682 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4683 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4684 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4685 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4686 } 4687 4688 define_one_arm_cp_reg(cpu, &dbgdidr); 4689 define_arm_cp_regs(cpu, debug_cp_reginfo); 4690 4691 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4692 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4693 } 4694 4695 for (i = 0; i < brps + 1; i++) { 4696 ARMCPRegInfo dbgregs[] = { 4697 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4698 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4699 .access = PL1_RW, .accessfn = access_tda, 4700 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4701 .writefn = dbgbvr_write, .raw_writefn = raw_write 4702 }, 4703 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4704 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4705 .access = PL1_RW, .accessfn = access_tda, 4706 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4707 .writefn = dbgbcr_write, .raw_writefn = raw_write 4708 }, 4709 REGINFO_SENTINEL 4710 }; 4711 define_arm_cp_regs(cpu, dbgregs); 4712 } 4713 4714 for (i = 0; i < wrps + 1; i++) { 4715 ARMCPRegInfo dbgregs[] = { 4716 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4717 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4718 .access = PL1_RW, .accessfn = access_tda, 4719 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4720 .writefn = dbgwvr_write, .raw_writefn = raw_write 4721 }, 4722 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4723 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4724 .access = PL1_RW, .accessfn = access_tda, 4725 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4726 .writefn = dbgwcr_write, .raw_writefn = raw_write 4727 }, 4728 REGINFO_SENTINEL 4729 }; 4730 define_arm_cp_regs(cpu, dbgregs); 4731 } 4732 } 4733 4734 /* We don't know until after realize whether there's a GICv3 4735 * attached, and that is what registers the gicv3 sysregs. 4736 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4737 * at runtime. 4738 */ 4739 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4740 { 4741 ARMCPU *cpu = arm_env_get_cpu(env); 4742 uint64_t pfr1 = cpu->id_pfr1; 4743 4744 if (env->gicv3state) { 4745 pfr1 |= 1 << 28; 4746 } 4747 return pfr1; 4748 } 4749 4750 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4751 { 4752 ARMCPU *cpu = arm_env_get_cpu(env); 4753 uint64_t pfr0 = cpu->id_aa64pfr0; 4754 4755 if (env->gicv3state) { 4756 pfr0 |= 1 << 24; 4757 } 4758 return pfr0; 4759 } 4760 4761 void register_cp_regs_for_features(ARMCPU *cpu) 4762 { 4763 /* Register all the coprocessor registers based on feature bits */ 4764 CPUARMState *env = &cpu->env; 4765 if (arm_feature(env, ARM_FEATURE_M)) { 4766 /* M profile has no coprocessor registers */ 4767 return; 4768 } 4769 4770 define_arm_cp_regs(cpu, cp_reginfo); 4771 if (!arm_feature(env, ARM_FEATURE_V8)) { 4772 /* Must go early as it is full of wildcards that may be 4773 * overridden by later definitions. 4774 */ 4775 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4776 } 4777 4778 if (arm_feature(env, ARM_FEATURE_V6)) { 4779 /* The ID registers all have impdef reset values */ 4780 ARMCPRegInfo v6_idregs[] = { 4781 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4782 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4783 .access = PL1_R, .type = ARM_CP_CONST, 4784 .resetvalue = cpu->id_pfr0 }, 4785 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4786 * the value of the GIC field until after we define these regs. 4787 */ 4788 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4790 .access = PL1_R, .type = ARM_CP_NO_RAW, 4791 .readfn = id_pfr1_read, 4792 .writefn = arm_cp_write_ignore }, 4793 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4795 .access = PL1_R, .type = ARM_CP_CONST, 4796 .resetvalue = cpu->id_dfr0 }, 4797 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4799 .access = PL1_R, .type = ARM_CP_CONST, 4800 .resetvalue = cpu->id_afr0 }, 4801 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4802 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4803 .access = PL1_R, .type = ARM_CP_CONST, 4804 .resetvalue = cpu->id_mmfr0 }, 4805 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4807 .access = PL1_R, .type = ARM_CP_CONST, 4808 .resetvalue = cpu->id_mmfr1 }, 4809 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4811 .access = PL1_R, .type = ARM_CP_CONST, 4812 .resetvalue = cpu->id_mmfr2 }, 4813 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4814 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4815 .access = PL1_R, .type = ARM_CP_CONST, 4816 .resetvalue = cpu->id_mmfr3 }, 4817 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4819 .access = PL1_R, .type = ARM_CP_CONST, 4820 .resetvalue = cpu->id_isar0 }, 4821 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4822 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4823 .access = PL1_R, .type = ARM_CP_CONST, 4824 .resetvalue = cpu->id_isar1 }, 4825 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4827 .access = PL1_R, .type = ARM_CP_CONST, 4828 .resetvalue = cpu->id_isar2 }, 4829 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4831 .access = PL1_R, .type = ARM_CP_CONST, 4832 .resetvalue = cpu->id_isar3 }, 4833 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4834 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4835 .access = PL1_R, .type = ARM_CP_CONST, 4836 .resetvalue = cpu->id_isar4 }, 4837 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4838 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4839 .access = PL1_R, .type = ARM_CP_CONST, 4840 .resetvalue = cpu->id_isar5 }, 4841 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4842 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4843 .access = PL1_R, .type = ARM_CP_CONST, 4844 .resetvalue = cpu->id_mmfr4 }, 4845 /* 7 is as yet unallocated and must RAZ */ 4846 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4847 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4848 .access = PL1_R, .type = ARM_CP_CONST, 4849 .resetvalue = 0 }, 4850 REGINFO_SENTINEL 4851 }; 4852 define_arm_cp_regs(cpu, v6_idregs); 4853 define_arm_cp_regs(cpu, v6_cp_reginfo); 4854 } else { 4855 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4856 } 4857 if (arm_feature(env, ARM_FEATURE_V6K)) { 4858 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4859 } 4860 if (arm_feature(env, ARM_FEATURE_V7MP) && 4861 !arm_feature(env, ARM_FEATURE_PMSA)) { 4862 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4863 } 4864 if (arm_feature(env, ARM_FEATURE_V7)) { 4865 /* v7 performance monitor control register: same implementor 4866 * field as main ID register, and we implement only the cycle 4867 * count register. 4868 */ 4869 #ifndef CONFIG_USER_ONLY 4870 ARMCPRegInfo pmcr = { 4871 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4872 .access = PL0_RW, 4873 .type = ARM_CP_IO | ARM_CP_ALIAS, 4874 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4875 .accessfn = pmreg_access, .writefn = pmcr_write, 4876 .raw_writefn = raw_write, 4877 }; 4878 ARMCPRegInfo pmcr64 = { 4879 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4881 .access = PL0_RW, .accessfn = pmreg_access, 4882 .type = ARM_CP_IO, 4883 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4884 .resetvalue = cpu->midr & 0xff000000, 4885 .writefn = pmcr_write, .raw_writefn = raw_write, 4886 }; 4887 define_one_arm_cp_reg(cpu, &pmcr); 4888 define_one_arm_cp_reg(cpu, &pmcr64); 4889 #endif 4890 ARMCPRegInfo clidr = { 4891 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4892 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4893 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4894 }; 4895 define_one_arm_cp_reg(cpu, &clidr); 4896 define_arm_cp_regs(cpu, v7_cp_reginfo); 4897 define_debug_regs(cpu); 4898 } else { 4899 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4900 } 4901 if (arm_feature(env, ARM_FEATURE_V8)) { 4902 /* AArch64 ID registers, which all have impdef reset values. 4903 * Note that within the ID register ranges the unused slots 4904 * must all RAZ, not UNDEF; future architecture versions may 4905 * define new registers here. 4906 */ 4907 ARMCPRegInfo v8_idregs[] = { 4908 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4909 * know the right value for the GIC field until after we 4910 * define these regs. 4911 */ 4912 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4914 .access = PL1_R, .type = ARM_CP_NO_RAW, 4915 .readfn = id_aa64pfr0_read, 4916 .writefn = arm_cp_write_ignore }, 4917 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4919 .access = PL1_R, .type = ARM_CP_CONST, 4920 .resetvalue = cpu->id_aa64pfr1}, 4921 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4923 .access = PL1_R, .type = ARM_CP_CONST, 4924 .resetvalue = 0 }, 4925 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4927 .access = PL1_R, .type = ARM_CP_CONST, 4928 .resetvalue = 0 }, 4929 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4931 .access = PL1_R, .type = ARM_CP_CONST, 4932 .resetvalue = 0 }, 4933 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4934 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4935 .access = PL1_R, .type = ARM_CP_CONST, 4936 .resetvalue = 0 }, 4937 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4938 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4939 .access = PL1_R, .type = ARM_CP_CONST, 4940 .resetvalue = 0 }, 4941 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4943 .access = PL1_R, .type = ARM_CP_CONST, 4944 .resetvalue = 0 }, 4945 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4947 .access = PL1_R, .type = ARM_CP_CONST, 4948 .resetvalue = cpu->id_aa64dfr0 }, 4949 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4951 .access = PL1_R, .type = ARM_CP_CONST, 4952 .resetvalue = cpu->id_aa64dfr1 }, 4953 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4955 .access = PL1_R, .type = ARM_CP_CONST, 4956 .resetvalue = 0 }, 4957 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4958 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4959 .access = PL1_R, .type = ARM_CP_CONST, 4960 .resetvalue = 0 }, 4961 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4963 .access = PL1_R, .type = ARM_CP_CONST, 4964 .resetvalue = cpu->id_aa64afr0 }, 4965 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4967 .access = PL1_R, .type = ARM_CP_CONST, 4968 .resetvalue = cpu->id_aa64afr1 }, 4969 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4971 .access = PL1_R, .type = ARM_CP_CONST, 4972 .resetvalue = 0 }, 4973 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4974 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4975 .access = PL1_R, .type = ARM_CP_CONST, 4976 .resetvalue = 0 }, 4977 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4978 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4979 .access = PL1_R, .type = ARM_CP_CONST, 4980 .resetvalue = cpu->id_aa64isar0 }, 4981 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4983 .access = PL1_R, .type = ARM_CP_CONST, 4984 .resetvalue = cpu->id_aa64isar1 }, 4985 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4987 .access = PL1_R, .type = ARM_CP_CONST, 4988 .resetvalue = 0 }, 4989 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4991 .access = PL1_R, .type = ARM_CP_CONST, 4992 .resetvalue = 0 }, 4993 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4994 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4995 .access = PL1_R, .type = ARM_CP_CONST, 4996 .resetvalue = 0 }, 4997 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4998 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4999 .access = PL1_R, .type = ARM_CP_CONST, 5000 .resetvalue = 0 }, 5001 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5003 .access = PL1_R, .type = ARM_CP_CONST, 5004 .resetvalue = 0 }, 5005 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5006 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5007 .access = PL1_R, .type = ARM_CP_CONST, 5008 .resetvalue = 0 }, 5009 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5011 .access = PL1_R, .type = ARM_CP_CONST, 5012 .resetvalue = cpu->id_aa64mmfr0 }, 5013 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5014 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5015 .access = PL1_R, .type = ARM_CP_CONST, 5016 .resetvalue = cpu->id_aa64mmfr1 }, 5017 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5019 .access = PL1_R, .type = ARM_CP_CONST, 5020 .resetvalue = 0 }, 5021 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5023 .access = PL1_R, .type = ARM_CP_CONST, 5024 .resetvalue = 0 }, 5025 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5026 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5027 .access = PL1_R, .type = ARM_CP_CONST, 5028 .resetvalue = 0 }, 5029 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5031 .access = PL1_R, .type = ARM_CP_CONST, 5032 .resetvalue = 0 }, 5033 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5034 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5035 .access = PL1_R, .type = ARM_CP_CONST, 5036 .resetvalue = 0 }, 5037 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5038 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5039 .access = PL1_R, .type = ARM_CP_CONST, 5040 .resetvalue = 0 }, 5041 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5043 .access = PL1_R, .type = ARM_CP_CONST, 5044 .resetvalue = cpu->mvfr0 }, 5045 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5046 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5047 .access = PL1_R, .type = ARM_CP_CONST, 5048 .resetvalue = cpu->mvfr1 }, 5049 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5051 .access = PL1_R, .type = ARM_CP_CONST, 5052 .resetvalue = cpu->mvfr2 }, 5053 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5054 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5055 .access = PL1_R, .type = ARM_CP_CONST, 5056 .resetvalue = 0 }, 5057 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5058 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5059 .access = PL1_R, .type = ARM_CP_CONST, 5060 .resetvalue = 0 }, 5061 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5063 .access = PL1_R, .type = ARM_CP_CONST, 5064 .resetvalue = 0 }, 5065 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5067 .access = PL1_R, .type = ARM_CP_CONST, 5068 .resetvalue = 0 }, 5069 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5071 .access = PL1_R, .type = ARM_CP_CONST, 5072 .resetvalue = 0 }, 5073 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5074 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5075 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5076 .resetvalue = cpu->pmceid0 }, 5077 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5078 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5079 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5080 .resetvalue = cpu->pmceid0 }, 5081 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5082 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5083 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5084 .resetvalue = cpu->pmceid1 }, 5085 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5086 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5087 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5088 .resetvalue = cpu->pmceid1 }, 5089 REGINFO_SENTINEL 5090 }; 5091 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5092 if (!arm_feature(env, ARM_FEATURE_EL3) && 5093 !arm_feature(env, ARM_FEATURE_EL2)) { 5094 ARMCPRegInfo rvbar = { 5095 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5097 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5098 }; 5099 define_one_arm_cp_reg(cpu, &rvbar); 5100 } 5101 define_arm_cp_regs(cpu, v8_idregs); 5102 define_arm_cp_regs(cpu, v8_cp_reginfo); 5103 } 5104 if (arm_feature(env, ARM_FEATURE_EL2)) { 5105 uint64_t vmpidr_def = mpidr_read_val(env); 5106 ARMCPRegInfo vpidr_regs[] = { 5107 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5108 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5109 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5110 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5111 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5112 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5113 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5114 .access = PL2_RW, .resetvalue = cpu->midr, 5115 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5116 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5117 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5118 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5119 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5120 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5121 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5122 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5123 .access = PL2_RW, 5124 .resetvalue = vmpidr_def, 5125 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5126 REGINFO_SENTINEL 5127 }; 5128 define_arm_cp_regs(cpu, vpidr_regs); 5129 define_arm_cp_regs(cpu, el2_cp_reginfo); 5130 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5131 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5132 ARMCPRegInfo rvbar = { 5133 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5134 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5135 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5136 }; 5137 define_one_arm_cp_reg(cpu, &rvbar); 5138 } 5139 } else { 5140 /* If EL2 is missing but higher ELs are enabled, we need to 5141 * register the no_el2 reginfos. 5142 */ 5143 if (arm_feature(env, ARM_FEATURE_EL3)) { 5144 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5145 * of MIDR_EL1 and MPIDR_EL1. 5146 */ 5147 ARMCPRegInfo vpidr_regs[] = { 5148 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5150 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5151 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5152 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5153 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5154 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5155 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5156 .type = ARM_CP_NO_RAW, 5157 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5158 REGINFO_SENTINEL 5159 }; 5160 define_arm_cp_regs(cpu, vpidr_regs); 5161 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5162 } 5163 } 5164 if (arm_feature(env, ARM_FEATURE_EL3)) { 5165 define_arm_cp_regs(cpu, el3_cp_reginfo); 5166 ARMCPRegInfo el3_regs[] = { 5167 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5168 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5169 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5170 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5171 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5172 .access = PL3_RW, 5173 .raw_writefn = raw_write, .writefn = sctlr_write, 5174 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5175 .resetvalue = cpu->reset_sctlr }, 5176 REGINFO_SENTINEL 5177 }; 5178 5179 define_arm_cp_regs(cpu, el3_regs); 5180 } 5181 /* The behaviour of NSACR is sufficiently various that we don't 5182 * try to describe it in a single reginfo: 5183 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5184 * reads as constant 0xc00 from NS EL1 and NS EL2 5185 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5186 * if v7 without EL3, register doesn't exist 5187 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5188 */ 5189 if (arm_feature(env, ARM_FEATURE_EL3)) { 5190 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5191 ARMCPRegInfo nsacr = { 5192 .name = "NSACR", .type = ARM_CP_CONST, 5193 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5194 .access = PL1_RW, .accessfn = nsacr_access, 5195 .resetvalue = 0xc00 5196 }; 5197 define_one_arm_cp_reg(cpu, &nsacr); 5198 } else { 5199 ARMCPRegInfo nsacr = { 5200 .name = "NSACR", 5201 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5202 .access = PL3_RW | PL1_R, 5203 .resetvalue = 0, 5204 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5205 }; 5206 define_one_arm_cp_reg(cpu, &nsacr); 5207 } 5208 } else { 5209 if (arm_feature(env, ARM_FEATURE_V8)) { 5210 ARMCPRegInfo nsacr = { 5211 .name = "NSACR", .type = ARM_CP_CONST, 5212 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5213 .access = PL1_R, 5214 .resetvalue = 0xc00 5215 }; 5216 define_one_arm_cp_reg(cpu, &nsacr); 5217 } 5218 } 5219 5220 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5221 if (arm_feature(env, ARM_FEATURE_V6)) { 5222 /* PMSAv6 not implemented */ 5223 assert(arm_feature(env, ARM_FEATURE_V7)); 5224 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5225 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5226 } else { 5227 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5228 } 5229 } else { 5230 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5231 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5232 } 5233 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5234 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5235 } 5236 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5237 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5238 } 5239 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5240 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5241 } 5242 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5243 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5244 } 5245 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5246 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5247 } 5248 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5249 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5250 } 5251 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5252 define_arm_cp_regs(cpu, omap_cp_reginfo); 5253 } 5254 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5255 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5256 } 5257 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5258 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5259 } 5260 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5261 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5262 } 5263 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5264 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5265 } 5266 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5267 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5268 * be read-only (ie write causes UNDEF exception). 5269 */ 5270 { 5271 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5272 /* Pre-v8 MIDR space. 5273 * Note that the MIDR isn't a simple constant register because 5274 * of the TI925 behaviour where writes to another register can 5275 * cause the MIDR value to change. 5276 * 5277 * Unimplemented registers in the c15 0 0 0 space default to 5278 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5279 * and friends override accordingly. 5280 */ 5281 { .name = "MIDR", 5282 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5283 .access = PL1_R, .resetvalue = cpu->midr, 5284 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5285 .readfn = midr_read, 5286 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5287 .type = ARM_CP_OVERRIDE }, 5288 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5289 { .name = "DUMMY", 5290 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5291 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5292 { .name = "DUMMY", 5293 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5294 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5295 { .name = "DUMMY", 5296 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5297 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5298 { .name = "DUMMY", 5299 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5300 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5301 { .name = "DUMMY", 5302 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5303 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5304 REGINFO_SENTINEL 5305 }; 5306 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5307 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5308 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5309 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5310 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5311 .readfn = midr_read }, 5312 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5313 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5314 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5315 .access = PL1_R, .resetvalue = cpu->midr }, 5316 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5317 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5318 .access = PL1_R, .resetvalue = cpu->midr }, 5319 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5320 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5321 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5322 REGINFO_SENTINEL 5323 }; 5324 ARMCPRegInfo id_cp_reginfo[] = { 5325 /* These are common to v8 and pre-v8 */ 5326 { .name = "CTR", 5327 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5328 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5329 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5330 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5331 .access = PL0_R, .accessfn = ctr_el0_access, 5332 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5333 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5334 { .name = "TCMTR", 5335 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5336 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5337 REGINFO_SENTINEL 5338 }; 5339 /* TLBTR is specific to VMSA */ 5340 ARMCPRegInfo id_tlbtr_reginfo = { 5341 .name = "TLBTR", 5342 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5343 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5344 }; 5345 /* MPUIR is specific to PMSA V6+ */ 5346 ARMCPRegInfo id_mpuir_reginfo = { 5347 .name = "MPUIR", 5348 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5349 .access = PL1_R, .type = ARM_CP_CONST, 5350 .resetvalue = cpu->pmsav7_dregion << 8 5351 }; 5352 ARMCPRegInfo crn0_wi_reginfo = { 5353 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5354 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5355 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5356 }; 5357 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5358 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5359 ARMCPRegInfo *r; 5360 /* Register the blanket "writes ignored" value first to cover the 5361 * whole space. Then update the specific ID registers to allow write 5362 * access, so that they ignore writes rather than causing them to 5363 * UNDEF. 5364 */ 5365 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5366 for (r = id_pre_v8_midr_cp_reginfo; 5367 r->type != ARM_CP_SENTINEL; r++) { 5368 r->access = PL1_RW; 5369 } 5370 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5371 r->access = PL1_RW; 5372 } 5373 id_mpuir_reginfo.access = PL1_RW; 5374 id_tlbtr_reginfo.access = PL1_RW; 5375 } 5376 if (arm_feature(env, ARM_FEATURE_V8)) { 5377 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5378 } else { 5379 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5380 } 5381 define_arm_cp_regs(cpu, id_cp_reginfo); 5382 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5383 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5384 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5385 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5386 } 5387 } 5388 5389 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5390 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5391 } 5392 5393 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5394 ARMCPRegInfo auxcr_reginfo[] = { 5395 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5396 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5397 .access = PL1_RW, .type = ARM_CP_CONST, 5398 .resetvalue = cpu->reset_auxcr }, 5399 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5400 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5401 .access = PL2_RW, .type = ARM_CP_CONST, 5402 .resetvalue = 0 }, 5403 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5404 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5405 .access = PL3_RW, .type = ARM_CP_CONST, 5406 .resetvalue = 0 }, 5407 REGINFO_SENTINEL 5408 }; 5409 define_arm_cp_regs(cpu, auxcr_reginfo); 5410 } 5411 5412 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5413 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5414 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5415 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5416 | extract64(cpu->reset_cbar, 32, 12); 5417 ARMCPRegInfo cbar_reginfo[] = { 5418 { .name = "CBAR", 5419 .type = ARM_CP_CONST, 5420 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5421 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5422 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5423 .type = ARM_CP_CONST, 5424 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5425 .access = PL1_R, .resetvalue = cbar32 }, 5426 REGINFO_SENTINEL 5427 }; 5428 /* We don't implement a r/w 64 bit CBAR currently */ 5429 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5430 define_arm_cp_regs(cpu, cbar_reginfo); 5431 } else { 5432 ARMCPRegInfo cbar = { 5433 .name = "CBAR", 5434 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5435 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5436 .fieldoffset = offsetof(CPUARMState, 5437 cp15.c15_config_base_address) 5438 }; 5439 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5440 cbar.access = PL1_R; 5441 cbar.fieldoffset = 0; 5442 cbar.type = ARM_CP_CONST; 5443 } 5444 define_one_arm_cp_reg(cpu, &cbar); 5445 } 5446 } 5447 5448 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5449 ARMCPRegInfo vbar_cp_reginfo[] = { 5450 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5451 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5452 .access = PL1_RW, .writefn = vbar_write, 5453 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5454 offsetof(CPUARMState, cp15.vbar_ns) }, 5455 .resetvalue = 0 }, 5456 REGINFO_SENTINEL 5457 }; 5458 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5459 } 5460 5461 /* Generic registers whose values depend on the implementation */ 5462 { 5463 ARMCPRegInfo sctlr = { 5464 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5465 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5466 .access = PL1_RW, 5467 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5468 offsetof(CPUARMState, cp15.sctlr_ns) }, 5469 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5470 .raw_writefn = raw_write, 5471 }; 5472 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5473 /* Normally we would always end the TB on an SCTLR write, but Linux 5474 * arch/arm/mach-pxa/sleep.S expects two instructions following 5475 * an MMU enable to execute from cache. Imitate this behaviour. 5476 */ 5477 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5478 } 5479 define_one_arm_cp_reg(cpu, &sctlr); 5480 } 5481 5482 if (arm_feature(env, ARM_FEATURE_SVE)) { 5483 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5484 if (arm_feature(env, ARM_FEATURE_EL2)) { 5485 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5486 } else { 5487 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5488 } 5489 if (arm_feature(env, ARM_FEATURE_EL3)) { 5490 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5491 } 5492 } 5493 } 5494 5495 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5496 { 5497 CPUState *cs = CPU(cpu); 5498 CPUARMState *env = &cpu->env; 5499 5500 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5501 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5502 aarch64_fpu_gdb_set_reg, 5503 34, "aarch64-fpu.xml", 0); 5504 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5505 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5506 51, "arm-neon.xml", 0); 5507 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5508 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5509 35, "arm-vfp3.xml", 0); 5510 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5511 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5512 19, "arm-vfp.xml", 0); 5513 } 5514 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 5515 arm_gen_dynamic_xml(cs), 5516 "system-registers.xml", 0); 5517 } 5518 5519 /* Sort alphabetically by type name, except for "any". */ 5520 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5521 { 5522 ObjectClass *class_a = (ObjectClass *)a; 5523 ObjectClass *class_b = (ObjectClass *)b; 5524 const char *name_a, *name_b; 5525 5526 name_a = object_class_get_name(class_a); 5527 name_b = object_class_get_name(class_b); 5528 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5529 return 1; 5530 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5531 return -1; 5532 } else { 5533 return strcmp(name_a, name_b); 5534 } 5535 } 5536 5537 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5538 { 5539 ObjectClass *oc = data; 5540 CPUListState *s = user_data; 5541 const char *typename; 5542 char *name; 5543 5544 typename = object_class_get_name(oc); 5545 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5546 (*s->cpu_fprintf)(s->file, " %s\n", 5547 name); 5548 g_free(name); 5549 } 5550 5551 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5552 { 5553 CPUListState s = { 5554 .file = f, 5555 .cpu_fprintf = cpu_fprintf, 5556 }; 5557 GSList *list; 5558 5559 list = object_class_get_list(TYPE_ARM_CPU, false); 5560 list = g_slist_sort(list, arm_cpu_list_compare); 5561 (*cpu_fprintf)(f, "Available CPUs:\n"); 5562 g_slist_foreach(list, arm_cpu_list_entry, &s); 5563 g_slist_free(list); 5564 #ifdef CONFIG_KVM 5565 /* The 'host' CPU type is dynamically registered only if KVM is 5566 * enabled, so we have to special-case it here: 5567 */ 5568 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5569 #endif 5570 } 5571 5572 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5573 { 5574 ObjectClass *oc = data; 5575 CpuDefinitionInfoList **cpu_list = user_data; 5576 CpuDefinitionInfoList *entry; 5577 CpuDefinitionInfo *info; 5578 const char *typename; 5579 5580 typename = object_class_get_name(oc); 5581 info = g_malloc0(sizeof(*info)); 5582 info->name = g_strndup(typename, 5583 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5584 info->q_typename = g_strdup(typename); 5585 5586 entry = g_malloc0(sizeof(*entry)); 5587 entry->value = info; 5588 entry->next = *cpu_list; 5589 *cpu_list = entry; 5590 } 5591 5592 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5593 { 5594 CpuDefinitionInfoList *cpu_list = NULL; 5595 GSList *list; 5596 5597 list = object_class_get_list(TYPE_ARM_CPU, false); 5598 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5599 g_slist_free(list); 5600 5601 return cpu_list; 5602 } 5603 5604 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5605 void *opaque, int state, int secstate, 5606 int crm, int opc1, int opc2, 5607 const char *name) 5608 { 5609 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5610 * add a single reginfo struct to the hash table. 5611 */ 5612 uint32_t *key = g_new(uint32_t, 1); 5613 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5614 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5615 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5616 5617 r2->name = g_strdup(name); 5618 /* Reset the secure state to the specific incoming state. This is 5619 * necessary as the register may have been defined with both states. 5620 */ 5621 r2->secure = secstate; 5622 5623 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5624 /* Register is banked (using both entries in array). 5625 * Overwriting fieldoffset as the array is only used to define 5626 * banked registers but later only fieldoffset is used. 5627 */ 5628 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5629 } 5630 5631 if (state == ARM_CP_STATE_AA32) { 5632 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5633 /* If the register is banked then we don't need to migrate or 5634 * reset the 32-bit instance in certain cases: 5635 * 5636 * 1) If the register has both 32-bit and 64-bit instances then we 5637 * can count on the 64-bit instance taking care of the 5638 * non-secure bank. 5639 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5640 * taking care of the secure bank. This requires that separate 5641 * 32 and 64-bit definitions are provided. 5642 */ 5643 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5644 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5645 r2->type |= ARM_CP_ALIAS; 5646 } 5647 } else if ((secstate != r->secure) && !ns) { 5648 /* The register is not banked so we only want to allow migration of 5649 * the non-secure instance. 5650 */ 5651 r2->type |= ARM_CP_ALIAS; 5652 } 5653 5654 if (r->state == ARM_CP_STATE_BOTH) { 5655 /* We assume it is a cp15 register if the .cp field is left unset. 5656 */ 5657 if (r2->cp == 0) { 5658 r2->cp = 15; 5659 } 5660 5661 #ifdef HOST_WORDS_BIGENDIAN 5662 if (r2->fieldoffset) { 5663 r2->fieldoffset += sizeof(uint32_t); 5664 } 5665 #endif 5666 } 5667 } 5668 if (state == ARM_CP_STATE_AA64) { 5669 /* To allow abbreviation of ARMCPRegInfo 5670 * definitions, we treat cp == 0 as equivalent to 5671 * the value for "standard guest-visible sysreg". 5672 * STATE_BOTH definitions are also always "standard 5673 * sysreg" in their AArch64 view (the .cp value may 5674 * be non-zero for the benefit of the AArch32 view). 5675 */ 5676 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5677 r2->cp = CP_REG_ARM64_SYSREG_CP; 5678 } 5679 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5680 r2->opc0, opc1, opc2); 5681 } else { 5682 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5683 } 5684 if (opaque) { 5685 r2->opaque = opaque; 5686 } 5687 /* reginfo passed to helpers is correct for the actual access, 5688 * and is never ARM_CP_STATE_BOTH: 5689 */ 5690 r2->state = state; 5691 /* Make sure reginfo passed to helpers for wildcarded regs 5692 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5693 */ 5694 r2->crm = crm; 5695 r2->opc1 = opc1; 5696 r2->opc2 = opc2; 5697 /* By convention, for wildcarded registers only the first 5698 * entry is used for migration; the others are marked as 5699 * ALIAS so we don't try to transfer the register 5700 * multiple times. Special registers (ie NOP/WFI) are 5701 * never migratable and not even raw-accessible. 5702 */ 5703 if ((r->type & ARM_CP_SPECIAL)) { 5704 r2->type |= ARM_CP_NO_RAW; 5705 } 5706 if (((r->crm == CP_ANY) && crm != 0) || 5707 ((r->opc1 == CP_ANY) && opc1 != 0) || 5708 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5709 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 5710 } 5711 5712 /* Check that raw accesses are either forbidden or handled. Note that 5713 * we can't assert this earlier because the setup of fieldoffset for 5714 * banked registers has to be done first. 5715 */ 5716 if (!(r2->type & ARM_CP_NO_RAW)) { 5717 assert(!raw_accessors_invalid(r2)); 5718 } 5719 5720 /* Overriding of an existing definition must be explicitly 5721 * requested. 5722 */ 5723 if (!(r->type & ARM_CP_OVERRIDE)) { 5724 ARMCPRegInfo *oldreg; 5725 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5726 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5727 fprintf(stderr, "Register redefined: cp=%d %d bit " 5728 "crn=%d crm=%d opc1=%d opc2=%d, " 5729 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5730 r2->crn, r2->crm, r2->opc1, r2->opc2, 5731 oldreg->name, r2->name); 5732 g_assert_not_reached(); 5733 } 5734 } 5735 g_hash_table_insert(cpu->cp_regs, key, r2); 5736 } 5737 5738 5739 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5740 const ARMCPRegInfo *r, void *opaque) 5741 { 5742 /* Define implementations of coprocessor registers. 5743 * We store these in a hashtable because typically 5744 * there are less than 150 registers in a space which 5745 * is 16*16*16*8*8 = 262144 in size. 5746 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5747 * If a register is defined twice then the second definition is 5748 * used, so this can be used to define some generic registers and 5749 * then override them with implementation specific variations. 5750 * At least one of the original and the second definition should 5751 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5752 * against accidental use. 5753 * 5754 * The state field defines whether the register is to be 5755 * visible in the AArch32 or AArch64 execution state. If the 5756 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5757 * reginfo structure for the AArch32 view, which sees the lower 5758 * 32 bits of the 64 bit register. 5759 * 5760 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5761 * be wildcarded. AArch64 registers are always considered to be 64 5762 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5763 * the register, if any. 5764 */ 5765 int crm, opc1, opc2, state; 5766 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5767 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5768 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5769 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5770 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5771 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5772 /* 64 bit registers have only CRm and Opc1 fields */ 5773 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5774 /* op0 only exists in the AArch64 encodings */ 5775 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5776 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5777 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5778 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5779 * encodes a minimum access level for the register. We roll this 5780 * runtime check into our general permission check code, so check 5781 * here that the reginfo's specified permissions are strict enough 5782 * to encompass the generic architectural permission check. 5783 */ 5784 if (r->state != ARM_CP_STATE_AA32) { 5785 int mask = 0; 5786 switch (r->opc1) { 5787 case 0: case 1: case 2: 5788 /* min_EL EL1 */ 5789 mask = PL1_RW; 5790 break; 5791 case 3: 5792 /* min_EL EL0 */ 5793 mask = PL0_RW; 5794 break; 5795 case 4: 5796 /* min_EL EL2 */ 5797 mask = PL2_RW; 5798 break; 5799 case 5: 5800 /* unallocated encoding, so not possible */ 5801 assert(false); 5802 break; 5803 case 6: 5804 /* min_EL EL3 */ 5805 mask = PL3_RW; 5806 break; 5807 case 7: 5808 /* min_EL EL1, secure mode only (we don't check the latter) */ 5809 mask = PL1_RW; 5810 break; 5811 default: 5812 /* broken reginfo with out-of-range opc1 */ 5813 assert(false); 5814 break; 5815 } 5816 /* assert our permissions are not too lax (stricter is fine) */ 5817 assert((r->access & ~mask) == 0); 5818 } 5819 5820 /* Check that the register definition has enough info to handle 5821 * reads and writes if they are permitted. 5822 */ 5823 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5824 if (r->access & PL3_R) { 5825 assert((r->fieldoffset || 5826 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5827 r->readfn); 5828 } 5829 if (r->access & PL3_W) { 5830 assert((r->fieldoffset || 5831 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5832 r->writefn); 5833 } 5834 } 5835 /* Bad type field probably means missing sentinel at end of reg list */ 5836 assert(cptype_valid(r->type)); 5837 for (crm = crmmin; crm <= crmmax; crm++) { 5838 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5839 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5840 for (state = ARM_CP_STATE_AA32; 5841 state <= ARM_CP_STATE_AA64; state++) { 5842 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5843 continue; 5844 } 5845 if (state == ARM_CP_STATE_AA32) { 5846 /* Under AArch32 CP registers can be common 5847 * (same for secure and non-secure world) or banked. 5848 */ 5849 char *name; 5850 5851 switch (r->secure) { 5852 case ARM_CP_SECSTATE_S: 5853 case ARM_CP_SECSTATE_NS: 5854 add_cpreg_to_hashtable(cpu, r, opaque, state, 5855 r->secure, crm, opc1, opc2, 5856 r->name); 5857 break; 5858 default: 5859 name = g_strdup_printf("%s_S", r->name); 5860 add_cpreg_to_hashtable(cpu, r, opaque, state, 5861 ARM_CP_SECSTATE_S, 5862 crm, opc1, opc2, name); 5863 g_free(name); 5864 add_cpreg_to_hashtable(cpu, r, opaque, state, 5865 ARM_CP_SECSTATE_NS, 5866 crm, opc1, opc2, r->name); 5867 break; 5868 } 5869 } else { 5870 /* AArch64 registers get mapped to non-secure instance 5871 * of AArch32 */ 5872 add_cpreg_to_hashtable(cpu, r, opaque, state, 5873 ARM_CP_SECSTATE_NS, 5874 crm, opc1, opc2, r->name); 5875 } 5876 } 5877 } 5878 } 5879 } 5880 } 5881 5882 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5883 const ARMCPRegInfo *regs, void *opaque) 5884 { 5885 /* Define a whole list of registers */ 5886 const ARMCPRegInfo *r; 5887 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5888 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5889 } 5890 } 5891 5892 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5893 { 5894 return g_hash_table_lookup(cpregs, &encoded_cp); 5895 } 5896 5897 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5898 uint64_t value) 5899 { 5900 /* Helper coprocessor write function for write-ignore registers */ 5901 } 5902 5903 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5904 { 5905 /* Helper coprocessor write function for read-as-zero registers */ 5906 return 0; 5907 } 5908 5909 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5910 { 5911 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5912 } 5913 5914 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5915 { 5916 /* Return true if it is not valid for us to switch to 5917 * this CPU mode (ie all the UNPREDICTABLE cases in 5918 * the ARM ARM CPSRWriteByInstr pseudocode). 5919 */ 5920 5921 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5922 if (write_type == CPSRWriteByInstr && 5923 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5924 mode == ARM_CPU_MODE_HYP)) { 5925 return 1; 5926 } 5927 5928 switch (mode) { 5929 case ARM_CPU_MODE_USR: 5930 return 0; 5931 case ARM_CPU_MODE_SYS: 5932 case ARM_CPU_MODE_SVC: 5933 case ARM_CPU_MODE_ABT: 5934 case ARM_CPU_MODE_UND: 5935 case ARM_CPU_MODE_IRQ: 5936 case ARM_CPU_MODE_FIQ: 5937 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5938 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5939 */ 5940 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5941 * and CPS are treated as illegal mode changes. 5942 */ 5943 if (write_type == CPSRWriteByInstr && 5944 (env->cp15.hcr_el2 & HCR_TGE) && 5945 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5946 !arm_is_secure_below_el3(env)) { 5947 return 1; 5948 } 5949 return 0; 5950 case ARM_CPU_MODE_HYP: 5951 return !arm_feature(env, ARM_FEATURE_EL2) 5952 || arm_current_el(env) < 2 || arm_is_secure(env); 5953 case ARM_CPU_MODE_MON: 5954 return arm_current_el(env) < 3; 5955 default: 5956 return 1; 5957 } 5958 } 5959 5960 uint32_t cpsr_read(CPUARMState *env) 5961 { 5962 int ZF; 5963 ZF = (env->ZF == 0); 5964 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5965 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5966 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5967 | ((env->condexec_bits & 0xfc) << 8) 5968 | (env->GE << 16) | (env->daif & CPSR_AIF); 5969 } 5970 5971 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5972 CPSRWriteType write_type) 5973 { 5974 uint32_t changed_daif; 5975 5976 if (mask & CPSR_NZCV) { 5977 env->ZF = (~val) & CPSR_Z; 5978 env->NF = val; 5979 env->CF = (val >> 29) & 1; 5980 env->VF = (val << 3) & 0x80000000; 5981 } 5982 if (mask & CPSR_Q) 5983 env->QF = ((val & CPSR_Q) != 0); 5984 if (mask & CPSR_T) 5985 env->thumb = ((val & CPSR_T) != 0); 5986 if (mask & CPSR_IT_0_1) { 5987 env->condexec_bits &= ~3; 5988 env->condexec_bits |= (val >> 25) & 3; 5989 } 5990 if (mask & CPSR_IT_2_7) { 5991 env->condexec_bits &= 3; 5992 env->condexec_bits |= (val >> 8) & 0xfc; 5993 } 5994 if (mask & CPSR_GE) { 5995 env->GE = (val >> 16) & 0xf; 5996 } 5997 5998 /* In a V7 implementation that includes the security extensions but does 5999 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6000 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6001 * bits respectively. 6002 * 6003 * In a V8 implementation, it is permitted for privileged software to 6004 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6005 */ 6006 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6007 arm_feature(env, ARM_FEATURE_EL3) && 6008 !arm_feature(env, ARM_FEATURE_EL2) && 6009 !arm_is_secure(env)) { 6010 6011 changed_daif = (env->daif ^ val) & mask; 6012 6013 if (changed_daif & CPSR_A) { 6014 /* Check to see if we are allowed to change the masking of async 6015 * abort exceptions from a non-secure state. 6016 */ 6017 if (!(env->cp15.scr_el3 & SCR_AW)) { 6018 qemu_log_mask(LOG_GUEST_ERROR, 6019 "Ignoring attempt to switch CPSR_A flag from " 6020 "non-secure world with SCR.AW bit clear\n"); 6021 mask &= ~CPSR_A; 6022 } 6023 } 6024 6025 if (changed_daif & CPSR_F) { 6026 /* Check to see if we are allowed to change the masking of FIQ 6027 * exceptions from a non-secure state. 6028 */ 6029 if (!(env->cp15.scr_el3 & SCR_FW)) { 6030 qemu_log_mask(LOG_GUEST_ERROR, 6031 "Ignoring attempt to switch CPSR_F flag from " 6032 "non-secure world with SCR.FW bit clear\n"); 6033 mask &= ~CPSR_F; 6034 } 6035 6036 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6037 * If this bit is set software is not allowed to mask 6038 * FIQs, but is allowed to set CPSR_F to 0. 6039 */ 6040 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6041 (val & CPSR_F)) { 6042 qemu_log_mask(LOG_GUEST_ERROR, 6043 "Ignoring attempt to enable CPSR_F flag " 6044 "(non-maskable FIQ [NMFI] support enabled)\n"); 6045 mask &= ~CPSR_F; 6046 } 6047 } 6048 } 6049 6050 env->daif &= ~(CPSR_AIF & mask); 6051 env->daif |= val & CPSR_AIF & mask; 6052 6053 if (write_type != CPSRWriteRaw && 6054 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6055 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6056 /* Note that we can only get here in USR mode if this is a 6057 * gdb stub write; for this case we follow the architectural 6058 * behaviour for guest writes in USR mode of ignoring an attempt 6059 * to switch mode. (Those are caught by translate.c for writes 6060 * triggered by guest instructions.) 6061 */ 6062 mask &= ~CPSR_M; 6063 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6064 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6065 * v7, and has defined behaviour in v8: 6066 * + leave CPSR.M untouched 6067 * + allow changes to the other CPSR fields 6068 * + set PSTATE.IL 6069 * For user changes via the GDB stub, we don't set PSTATE.IL, 6070 * as this would be unnecessarily harsh for a user error. 6071 */ 6072 mask &= ~CPSR_M; 6073 if (write_type != CPSRWriteByGDBStub && 6074 arm_feature(env, ARM_FEATURE_V8)) { 6075 mask |= CPSR_IL; 6076 val |= CPSR_IL; 6077 } 6078 } else { 6079 switch_mode(env, val & CPSR_M); 6080 } 6081 } 6082 mask &= ~CACHED_CPSR_BITS; 6083 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6084 } 6085 6086 /* Sign/zero extend */ 6087 uint32_t HELPER(sxtb16)(uint32_t x) 6088 { 6089 uint32_t res; 6090 res = (uint16_t)(int8_t)x; 6091 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6092 return res; 6093 } 6094 6095 uint32_t HELPER(uxtb16)(uint32_t x) 6096 { 6097 uint32_t res; 6098 res = (uint16_t)(uint8_t)x; 6099 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6100 return res; 6101 } 6102 6103 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6104 { 6105 if (den == 0) 6106 return 0; 6107 if (num == INT_MIN && den == -1) 6108 return INT_MIN; 6109 return num / den; 6110 } 6111 6112 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6113 { 6114 if (den == 0) 6115 return 0; 6116 return num / den; 6117 } 6118 6119 uint32_t HELPER(rbit)(uint32_t x) 6120 { 6121 return revbit32(x); 6122 } 6123 6124 #if defined(CONFIG_USER_ONLY) 6125 6126 /* These should probably raise undefined insn exceptions. */ 6127 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6128 { 6129 ARMCPU *cpu = arm_env_get_cpu(env); 6130 6131 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6132 } 6133 6134 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6135 { 6136 ARMCPU *cpu = arm_env_get_cpu(env); 6137 6138 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6139 return 0; 6140 } 6141 6142 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6143 { 6144 /* translate.c should never generate calls here in user-only mode */ 6145 g_assert_not_reached(); 6146 } 6147 6148 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6149 { 6150 /* translate.c should never generate calls here in user-only mode */ 6151 g_assert_not_reached(); 6152 } 6153 6154 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6155 { 6156 /* The TT instructions can be used by unprivileged code, but in 6157 * user-only emulation we don't have the MPU. 6158 * Luckily since we know we are NonSecure unprivileged (and that in 6159 * turn means that the A flag wasn't specified), all the bits in the 6160 * register must be zero: 6161 * IREGION: 0 because IRVALID is 0 6162 * IRVALID: 0 because NS 6163 * S: 0 because NS 6164 * NSRW: 0 because NS 6165 * NSR: 0 because NS 6166 * RW: 0 because unpriv and A flag not set 6167 * R: 0 because unpriv and A flag not set 6168 * SRVALID: 0 because NS 6169 * MRVALID: 0 because unpriv and A flag not set 6170 * SREGION: 0 becaus SRVALID is 0 6171 * MREGION: 0 because MRVALID is 0 6172 */ 6173 return 0; 6174 } 6175 6176 void switch_mode(CPUARMState *env, int mode) 6177 { 6178 ARMCPU *cpu = arm_env_get_cpu(env); 6179 6180 if (mode != ARM_CPU_MODE_USR) { 6181 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6182 } 6183 } 6184 6185 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6186 uint32_t cur_el, bool secure) 6187 { 6188 return 1; 6189 } 6190 6191 void aarch64_sync_64_to_32(CPUARMState *env) 6192 { 6193 g_assert_not_reached(); 6194 } 6195 6196 #else 6197 6198 void switch_mode(CPUARMState *env, int mode) 6199 { 6200 int old_mode; 6201 int i; 6202 6203 old_mode = env->uncached_cpsr & CPSR_M; 6204 if (mode == old_mode) 6205 return; 6206 6207 if (old_mode == ARM_CPU_MODE_FIQ) { 6208 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6209 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6210 } else if (mode == ARM_CPU_MODE_FIQ) { 6211 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6212 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6213 } 6214 6215 i = bank_number(old_mode); 6216 env->banked_r13[i] = env->regs[13]; 6217 env->banked_r14[i] = env->regs[14]; 6218 env->banked_spsr[i] = env->spsr; 6219 6220 i = bank_number(mode); 6221 env->regs[13] = env->banked_r13[i]; 6222 env->regs[14] = env->banked_r14[i]; 6223 env->spsr = env->banked_spsr[i]; 6224 } 6225 6226 /* Physical Interrupt Target EL Lookup Table 6227 * 6228 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6229 * 6230 * The below multi-dimensional table is used for looking up the target 6231 * exception level given numerous condition criteria. Specifically, the 6232 * target EL is based on SCR and HCR routing controls as well as the 6233 * currently executing EL and secure state. 6234 * 6235 * Dimensions: 6236 * target_el_table[2][2][2][2][2][4] 6237 * | | | | | +--- Current EL 6238 * | | | | +------ Non-secure(0)/Secure(1) 6239 * | | | +--------- HCR mask override 6240 * | | +------------ SCR exec state control 6241 * | +--------------- SCR mask override 6242 * +------------------ 32-bit(0)/64-bit(1) EL3 6243 * 6244 * The table values are as such: 6245 * 0-3 = EL0-EL3 6246 * -1 = Cannot occur 6247 * 6248 * The ARM ARM target EL table includes entries indicating that an "exception 6249 * is not taken". The two cases where this is applicable are: 6250 * 1) An exception is taken from EL3 but the SCR does not have the exception 6251 * routed to EL3. 6252 * 2) An exception is taken from EL2 but the HCR does not have the exception 6253 * routed to EL2. 6254 * In these two cases, the below table contain a target of EL1. This value is 6255 * returned as it is expected that the consumer of the table data will check 6256 * for "target EL >= current EL" to ensure the exception is not taken. 6257 * 6258 * SCR HCR 6259 * 64 EA AMO From 6260 * BIT IRQ IMO Non-secure Secure 6261 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6262 */ 6263 static const int8_t target_el_table[2][2][2][2][2][4] = { 6264 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6265 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6266 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6267 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6268 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6269 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6270 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6271 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6272 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6273 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6274 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6275 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6276 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6277 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6278 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6279 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6280 }; 6281 6282 /* 6283 * Determine the target EL for physical exceptions 6284 */ 6285 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6286 uint32_t cur_el, bool secure) 6287 { 6288 CPUARMState *env = cs->env_ptr; 6289 int rw; 6290 int scr; 6291 int hcr; 6292 int target_el; 6293 /* Is the highest EL AArch64? */ 6294 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6295 6296 if (arm_feature(env, ARM_FEATURE_EL3)) { 6297 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6298 } else { 6299 /* Either EL2 is the highest EL (and so the EL2 register width 6300 * is given by is64); or there is no EL2 or EL3, in which case 6301 * the value of 'rw' does not affect the table lookup anyway. 6302 */ 6303 rw = is64; 6304 } 6305 6306 switch (excp_idx) { 6307 case EXCP_IRQ: 6308 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6309 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6310 break; 6311 case EXCP_FIQ: 6312 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6313 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6314 break; 6315 default: 6316 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6317 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6318 break; 6319 }; 6320 6321 /* If HCR.TGE is set then HCR is treated as being 1 */ 6322 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6323 6324 /* Perform a table-lookup for the target EL given the current state */ 6325 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6326 6327 assert(target_el > 0); 6328 6329 return target_el; 6330 } 6331 6332 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6333 ARMMMUIdx mmu_idx, bool ignfault) 6334 { 6335 CPUState *cs = CPU(cpu); 6336 CPUARMState *env = &cpu->env; 6337 MemTxAttrs attrs = {}; 6338 MemTxResult txres; 6339 target_ulong page_size; 6340 hwaddr physaddr; 6341 int prot; 6342 ARMMMUFaultInfo fi; 6343 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6344 int exc; 6345 bool exc_secure; 6346 6347 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6348 &attrs, &prot, &page_size, &fi, NULL)) { 6349 /* MPU/SAU lookup failed */ 6350 if (fi.type == ARMFault_QEMU_SFault) { 6351 qemu_log_mask(CPU_LOG_INT, 6352 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6353 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6354 env->v7m.sfar = addr; 6355 exc = ARMV7M_EXCP_SECURE; 6356 exc_secure = false; 6357 } else { 6358 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6359 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6360 exc = ARMV7M_EXCP_MEM; 6361 exc_secure = secure; 6362 } 6363 goto pend_fault; 6364 } 6365 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6366 attrs, &txres); 6367 if (txres != MEMTX_OK) { 6368 /* BusFault trying to write the data */ 6369 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6370 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6371 exc = ARMV7M_EXCP_BUS; 6372 exc_secure = false; 6373 goto pend_fault; 6374 } 6375 return true; 6376 6377 pend_fault: 6378 /* By pending the exception at this point we are making 6379 * the IMPDEF choice "overridden exceptions pended" (see the 6380 * MergeExcInfo() pseudocode). The other choice would be to not 6381 * pend them now and then make a choice about which to throw away 6382 * later if we have two derived exceptions. 6383 * The only case when we must not pend the exception but instead 6384 * throw it away is if we are doing the push of the callee registers 6385 * and we've already generated a derived exception. Even in this 6386 * case we will still update the fault status registers. 6387 */ 6388 if (!ignfault) { 6389 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6390 } 6391 return false; 6392 } 6393 6394 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6395 ARMMMUIdx mmu_idx) 6396 { 6397 CPUState *cs = CPU(cpu); 6398 CPUARMState *env = &cpu->env; 6399 MemTxAttrs attrs = {}; 6400 MemTxResult txres; 6401 target_ulong page_size; 6402 hwaddr physaddr; 6403 int prot; 6404 ARMMMUFaultInfo fi; 6405 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6406 int exc; 6407 bool exc_secure; 6408 uint32_t value; 6409 6410 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6411 &attrs, &prot, &page_size, &fi, NULL)) { 6412 /* MPU/SAU lookup failed */ 6413 if (fi.type == ARMFault_QEMU_SFault) { 6414 qemu_log_mask(CPU_LOG_INT, 6415 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6416 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6417 env->v7m.sfar = addr; 6418 exc = ARMV7M_EXCP_SECURE; 6419 exc_secure = false; 6420 } else { 6421 qemu_log_mask(CPU_LOG_INT, 6422 "...MemManageFault with CFSR.MUNSTKERR\n"); 6423 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6424 exc = ARMV7M_EXCP_MEM; 6425 exc_secure = secure; 6426 } 6427 goto pend_fault; 6428 } 6429 6430 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6431 attrs, &txres); 6432 if (txres != MEMTX_OK) { 6433 /* BusFault trying to read the data */ 6434 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6435 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6436 exc = ARMV7M_EXCP_BUS; 6437 exc_secure = false; 6438 goto pend_fault; 6439 } 6440 6441 *dest = value; 6442 return true; 6443 6444 pend_fault: 6445 /* By pending the exception at this point we are making 6446 * the IMPDEF choice "overridden exceptions pended" (see the 6447 * MergeExcInfo() pseudocode). The other choice would be to not 6448 * pend them now and then make a choice about which to throw away 6449 * later if we have two derived exceptions. 6450 */ 6451 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6452 return false; 6453 } 6454 6455 /* Return true if we're using the process stack pointer (not the MSP) */ 6456 static bool v7m_using_psp(CPUARMState *env) 6457 { 6458 /* Handler mode always uses the main stack; for thread mode 6459 * the CONTROL.SPSEL bit determines the answer. 6460 * Note that in v7M it is not possible to be in Handler mode with 6461 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6462 */ 6463 return !arm_v7m_is_handler_mode(env) && 6464 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6465 } 6466 6467 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6468 * This may change the current stack pointer between Main and Process 6469 * stack pointers if it is done for the CONTROL register for the current 6470 * security state. 6471 */ 6472 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6473 bool new_spsel, 6474 bool secstate) 6475 { 6476 bool old_is_psp = v7m_using_psp(env); 6477 6478 env->v7m.control[secstate] = 6479 deposit32(env->v7m.control[secstate], 6480 R_V7M_CONTROL_SPSEL_SHIFT, 6481 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6482 6483 if (secstate == env->v7m.secure) { 6484 bool new_is_psp = v7m_using_psp(env); 6485 uint32_t tmp; 6486 6487 if (old_is_psp != new_is_psp) { 6488 tmp = env->v7m.other_sp; 6489 env->v7m.other_sp = env->regs[13]; 6490 env->regs[13] = tmp; 6491 } 6492 } 6493 } 6494 6495 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6496 * stack pointer between Main and Process stack pointers. 6497 */ 6498 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6499 { 6500 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6501 } 6502 6503 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6504 { 6505 /* Write a new value to v7m.exception, thus transitioning into or out 6506 * of Handler mode; this may result in a change of active stack pointer. 6507 */ 6508 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6509 uint32_t tmp; 6510 6511 env->v7m.exception = new_exc; 6512 6513 new_is_psp = v7m_using_psp(env); 6514 6515 if (old_is_psp != new_is_psp) { 6516 tmp = env->v7m.other_sp; 6517 env->v7m.other_sp = env->regs[13]; 6518 env->regs[13] = tmp; 6519 } 6520 } 6521 6522 /* Switch M profile security state between NS and S */ 6523 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6524 { 6525 uint32_t new_ss_msp, new_ss_psp; 6526 6527 if (env->v7m.secure == new_secstate) { 6528 return; 6529 } 6530 6531 /* All the banked state is accessed by looking at env->v7m.secure 6532 * except for the stack pointer; rearrange the SP appropriately. 6533 */ 6534 new_ss_msp = env->v7m.other_ss_msp; 6535 new_ss_psp = env->v7m.other_ss_psp; 6536 6537 if (v7m_using_psp(env)) { 6538 env->v7m.other_ss_psp = env->regs[13]; 6539 env->v7m.other_ss_msp = env->v7m.other_sp; 6540 } else { 6541 env->v7m.other_ss_msp = env->regs[13]; 6542 env->v7m.other_ss_psp = env->v7m.other_sp; 6543 } 6544 6545 env->v7m.secure = new_secstate; 6546 6547 if (v7m_using_psp(env)) { 6548 env->regs[13] = new_ss_psp; 6549 env->v7m.other_sp = new_ss_msp; 6550 } else { 6551 env->regs[13] = new_ss_msp; 6552 env->v7m.other_sp = new_ss_psp; 6553 } 6554 } 6555 6556 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6557 { 6558 /* Handle v7M BXNS: 6559 * - if the return value is a magic value, do exception return (like BX) 6560 * - otherwise bit 0 of the return value is the target security state 6561 */ 6562 uint32_t min_magic; 6563 6564 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6565 /* Covers FNC_RETURN and EXC_RETURN magic */ 6566 min_magic = FNC_RETURN_MIN_MAGIC; 6567 } else { 6568 /* EXC_RETURN magic only */ 6569 min_magic = EXC_RETURN_MIN_MAGIC; 6570 } 6571 6572 if (dest >= min_magic) { 6573 /* This is an exception return magic value; put it where 6574 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6575 * Note that if we ever add gen_ss_advance() singlestep support to 6576 * M profile this should count as an "instruction execution complete" 6577 * event (compare gen_bx_excret_final_code()). 6578 */ 6579 env->regs[15] = dest & ~1; 6580 env->thumb = dest & 1; 6581 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6582 /* notreached */ 6583 } 6584 6585 /* translate.c should have made BXNS UNDEF unless we're secure */ 6586 assert(env->v7m.secure); 6587 6588 switch_v7m_security_state(env, dest & 1); 6589 env->thumb = 1; 6590 env->regs[15] = dest & ~1; 6591 } 6592 6593 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6594 { 6595 /* Handle v7M BLXNS: 6596 * - bit 0 of the destination address is the target security state 6597 */ 6598 6599 /* At this point regs[15] is the address just after the BLXNS */ 6600 uint32_t nextinst = env->regs[15] | 1; 6601 uint32_t sp = env->regs[13] - 8; 6602 uint32_t saved_psr; 6603 6604 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6605 assert(env->v7m.secure); 6606 6607 if (dest & 1) { 6608 /* target is Secure, so this is just a normal BLX, 6609 * except that the low bit doesn't indicate Thumb/not. 6610 */ 6611 env->regs[14] = nextinst; 6612 env->thumb = 1; 6613 env->regs[15] = dest & ~1; 6614 return; 6615 } 6616 6617 /* Target is non-secure: first push a stack frame */ 6618 if (!QEMU_IS_ALIGNED(sp, 8)) { 6619 qemu_log_mask(LOG_GUEST_ERROR, 6620 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6621 } 6622 6623 saved_psr = env->v7m.exception; 6624 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6625 saved_psr |= XPSR_SFPA; 6626 } 6627 6628 /* Note that these stores can throw exceptions on MPU faults */ 6629 cpu_stl_data(env, sp, nextinst); 6630 cpu_stl_data(env, sp + 4, saved_psr); 6631 6632 env->regs[13] = sp; 6633 env->regs[14] = 0xfeffffff; 6634 if (arm_v7m_is_handler_mode(env)) { 6635 /* Write a dummy value to IPSR, to avoid leaking the current secure 6636 * exception number to non-secure code. This is guaranteed not 6637 * to cause write_v7m_exception() to actually change stacks. 6638 */ 6639 write_v7m_exception(env, 1); 6640 } 6641 switch_v7m_security_state(env, 0); 6642 env->thumb = 1; 6643 env->regs[15] = dest; 6644 } 6645 6646 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6647 bool spsel) 6648 { 6649 /* Return a pointer to the location where we currently store the 6650 * stack pointer for the requested security state and thread mode. 6651 * This pointer will become invalid if the CPU state is updated 6652 * such that the stack pointers are switched around (eg changing 6653 * the SPSEL control bit). 6654 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6655 * Unlike that pseudocode, we require the caller to pass us in the 6656 * SPSEL control bit value; this is because we also use this 6657 * function in handling of pushing of the callee-saves registers 6658 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6659 * and in the tailchain codepath the SPSEL bit comes from the exception 6660 * return magic LR value from the previous exception. The pseudocode 6661 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6662 * to make this utility function generic enough to do the job. 6663 */ 6664 bool want_psp = threadmode && spsel; 6665 6666 if (secure == env->v7m.secure) { 6667 if (want_psp == v7m_using_psp(env)) { 6668 return &env->regs[13]; 6669 } else { 6670 return &env->v7m.other_sp; 6671 } 6672 } else { 6673 if (want_psp) { 6674 return &env->v7m.other_ss_psp; 6675 } else { 6676 return &env->v7m.other_ss_msp; 6677 } 6678 } 6679 } 6680 6681 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6682 uint32_t *pvec) 6683 { 6684 CPUState *cs = CPU(cpu); 6685 CPUARMState *env = &cpu->env; 6686 MemTxResult result; 6687 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6688 uint32_t vector_entry; 6689 MemTxAttrs attrs = {}; 6690 ARMMMUIdx mmu_idx; 6691 bool exc_secure; 6692 6693 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6694 6695 /* We don't do a get_phys_addr() here because the rules for vector 6696 * loads are special: they always use the default memory map, and 6697 * the default memory map permits reads from all addresses. 6698 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6699 * that we want this special case which would always say "yes", 6700 * we just do the SAU lookup here followed by a direct physical load. 6701 */ 6702 attrs.secure = targets_secure; 6703 attrs.user = false; 6704 6705 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6706 V8M_SAttributes sattrs = {}; 6707 6708 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6709 if (sattrs.ns) { 6710 attrs.secure = false; 6711 } else if (!targets_secure) { 6712 /* NS access to S memory */ 6713 goto load_fail; 6714 } 6715 } 6716 6717 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6718 attrs, &result); 6719 if (result != MEMTX_OK) { 6720 goto load_fail; 6721 } 6722 *pvec = vector_entry; 6723 return true; 6724 6725 load_fail: 6726 /* All vector table fetch fails are reported as HardFault, with 6727 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6728 * technically the underlying exception is a MemManage or BusFault 6729 * that is escalated to HardFault.) This is a terminal exception, 6730 * so we will either take the HardFault immediately or else enter 6731 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6732 */ 6733 exc_secure = targets_secure || 6734 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6735 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6736 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6737 return false; 6738 } 6739 6740 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6741 bool ignore_faults) 6742 { 6743 /* For v8M, push the callee-saves register part of the stack frame. 6744 * Compare the v8M pseudocode PushCalleeStack(). 6745 * In the tailchaining case this may not be the current stack. 6746 */ 6747 CPUARMState *env = &cpu->env; 6748 uint32_t *frame_sp_p; 6749 uint32_t frameptr; 6750 ARMMMUIdx mmu_idx; 6751 bool stacked_ok; 6752 6753 if (dotailchain) { 6754 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6755 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6756 !mode; 6757 6758 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6759 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6760 lr & R_V7M_EXCRET_SPSEL_MASK); 6761 } else { 6762 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6763 frame_sp_p = &env->regs[13]; 6764 } 6765 6766 frameptr = *frame_sp_p - 0x28; 6767 6768 /* Write as much of the stack frame as we can. A write failure may 6769 * cause us to pend a derived exception. 6770 */ 6771 stacked_ok = 6772 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6773 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6774 ignore_faults) && 6775 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6776 ignore_faults) && 6777 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6778 ignore_faults) && 6779 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6780 ignore_faults) && 6781 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6782 ignore_faults) && 6783 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6784 ignore_faults) && 6785 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6786 ignore_faults) && 6787 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6788 ignore_faults); 6789 6790 /* Update SP regardless of whether any of the stack accesses failed. 6791 * When we implement v8M stack limit checking then this attempt to 6792 * update SP might also fail and result in a derived exception. 6793 */ 6794 *frame_sp_p = frameptr; 6795 6796 return !stacked_ok; 6797 } 6798 6799 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6800 bool ignore_stackfaults) 6801 { 6802 /* Do the "take the exception" parts of exception entry, 6803 * but not the pushing of state to the stack. This is 6804 * similar to the pseudocode ExceptionTaken() function. 6805 */ 6806 CPUARMState *env = &cpu->env; 6807 uint32_t addr; 6808 bool targets_secure; 6809 int exc; 6810 bool push_failed = false; 6811 6812 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6813 6814 if (arm_feature(env, ARM_FEATURE_V8)) { 6815 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6816 (lr & R_V7M_EXCRET_S_MASK)) { 6817 /* The background code (the owner of the registers in the 6818 * exception frame) is Secure. This means it may either already 6819 * have or now needs to push callee-saves registers. 6820 */ 6821 if (targets_secure) { 6822 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6823 /* We took an exception from Secure to NonSecure 6824 * (which means the callee-saved registers got stacked) 6825 * and are now tailchaining to a Secure exception. 6826 * Clear DCRS so eventual return from this Secure 6827 * exception unstacks the callee-saved registers. 6828 */ 6829 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6830 } 6831 } else { 6832 /* We're going to a non-secure exception; push the 6833 * callee-saves registers to the stack now, if they're 6834 * not already saved. 6835 */ 6836 if (lr & R_V7M_EXCRET_DCRS_MASK && 6837 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6838 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6839 ignore_stackfaults); 6840 } 6841 lr |= R_V7M_EXCRET_DCRS_MASK; 6842 } 6843 } 6844 6845 lr &= ~R_V7M_EXCRET_ES_MASK; 6846 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6847 lr |= R_V7M_EXCRET_ES_MASK; 6848 } 6849 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6850 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6851 lr |= R_V7M_EXCRET_SPSEL_MASK; 6852 } 6853 6854 /* Clear registers if necessary to prevent non-secure exception 6855 * code being able to see register values from secure code. 6856 * Where register values become architecturally UNKNOWN we leave 6857 * them with their previous values. 6858 */ 6859 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6860 if (!targets_secure) { 6861 /* Always clear the caller-saved registers (they have been 6862 * pushed to the stack earlier in v7m_push_stack()). 6863 * Clear callee-saved registers if the background code is 6864 * Secure (in which case these regs were saved in 6865 * v7m_push_callee_stack()). 6866 */ 6867 int i; 6868 6869 for (i = 0; i < 13; i++) { 6870 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6871 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6872 env->regs[i] = 0; 6873 } 6874 } 6875 /* Clear EAPSR */ 6876 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6877 } 6878 } 6879 } 6880 6881 if (push_failed && !ignore_stackfaults) { 6882 /* Derived exception on callee-saves register stacking: 6883 * we might now want to take a different exception which 6884 * targets a different security state, so try again from the top. 6885 */ 6886 v7m_exception_taken(cpu, lr, true, true); 6887 return; 6888 } 6889 6890 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6891 /* Vector load failed: derived exception */ 6892 v7m_exception_taken(cpu, lr, true, true); 6893 return; 6894 } 6895 6896 /* Now we've done everything that might cause a derived exception 6897 * we can go ahead and activate whichever exception we're going to 6898 * take (which might now be the derived exception). 6899 */ 6900 armv7m_nvic_acknowledge_irq(env->nvic); 6901 6902 /* Switch to target security state -- must do this before writing SPSEL */ 6903 switch_v7m_security_state(env, targets_secure); 6904 write_v7m_control_spsel(env, 0); 6905 arm_clear_exclusive(env); 6906 /* Clear IT bits */ 6907 env->condexec_bits = 0; 6908 env->regs[14] = lr; 6909 env->regs[15] = addr & 0xfffffffe; 6910 env->thumb = addr & 1; 6911 } 6912 6913 static bool v7m_push_stack(ARMCPU *cpu) 6914 { 6915 /* Do the "set up stack frame" part of exception entry, 6916 * similar to pseudocode PushStack(). 6917 * Return true if we generate a derived exception (and so 6918 * should ignore further stack faults trying to process 6919 * that derived exception.) 6920 */ 6921 bool stacked_ok; 6922 CPUARMState *env = &cpu->env; 6923 uint32_t xpsr = xpsr_read(env); 6924 uint32_t frameptr = env->regs[13]; 6925 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6926 6927 /* Align stack pointer if the guest wants that */ 6928 if ((frameptr & 4) && 6929 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6930 frameptr -= 4; 6931 xpsr |= XPSR_SPREALIGN; 6932 } 6933 6934 frameptr -= 0x20; 6935 6936 /* Write as much of the stack frame as we can. If we fail a stack 6937 * write this will result in a derived exception being pended 6938 * (which may be taken in preference to the one we started with 6939 * if it has higher priority). 6940 */ 6941 stacked_ok = 6942 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6943 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6944 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6945 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6946 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6947 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6948 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6949 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6950 6951 /* Update SP regardless of whether any of the stack accesses failed. 6952 * When we implement v8M stack limit checking then this attempt to 6953 * update SP might also fail and result in a derived exception. 6954 */ 6955 env->regs[13] = frameptr; 6956 6957 return !stacked_ok; 6958 } 6959 6960 static void do_v7m_exception_exit(ARMCPU *cpu) 6961 { 6962 CPUARMState *env = &cpu->env; 6963 uint32_t excret; 6964 uint32_t xpsr; 6965 bool ufault = false; 6966 bool sfault = false; 6967 bool return_to_sp_process; 6968 bool return_to_handler; 6969 bool rettobase = false; 6970 bool exc_secure = false; 6971 bool return_to_secure; 6972 6973 /* If we're not in Handler mode then jumps to magic exception-exit 6974 * addresses don't have magic behaviour. However for the v8M 6975 * security extensions the magic secure-function-return has to 6976 * work in thread mode too, so to avoid doing an extra check in 6977 * the generated code we allow exception-exit magic to also cause the 6978 * internal exception and bring us here in thread mode. Correct code 6979 * will never try to do this (the following insn fetch will always 6980 * fault) so we the overhead of having taken an unnecessary exception 6981 * doesn't matter. 6982 */ 6983 if (!arm_v7m_is_handler_mode(env)) { 6984 return; 6985 } 6986 6987 /* In the spec pseudocode ExceptionReturn() is called directly 6988 * from BXWritePC() and gets the full target PC value including 6989 * bit zero. In QEMU's implementation we treat it as a normal 6990 * jump-to-register (which is then caught later on), and so split 6991 * the target value up between env->regs[15] and env->thumb in 6992 * gen_bx(). Reconstitute it. 6993 */ 6994 excret = env->regs[15]; 6995 if (env->thumb) { 6996 excret |= 1; 6997 } 6998 6999 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7000 " previous exception %d\n", 7001 excret, env->v7m.exception); 7002 7003 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 7004 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 7005 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 7006 excret); 7007 } 7008 7009 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7010 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 7011 * we pick which FAULTMASK to clear. 7012 */ 7013 if (!env->v7m.secure && 7014 ((excret & R_V7M_EXCRET_ES_MASK) || 7015 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 7016 sfault = 1; 7017 /* For all other purposes, treat ES as 0 (R_HXSR) */ 7018 excret &= ~R_V7M_EXCRET_ES_MASK; 7019 } 7020 } 7021 7022 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 7023 /* Auto-clear FAULTMASK on return from other than NMI. 7024 * If the security extension is implemented then this only 7025 * happens if the raw execution priority is >= 0; the 7026 * value of the ES bit in the exception return value indicates 7027 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 7028 */ 7029 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7030 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 7031 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 7032 env->v7m.faultmask[exc_secure] = 0; 7033 } 7034 } else { 7035 env->v7m.faultmask[M_REG_NS] = 0; 7036 } 7037 } 7038 7039 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7040 exc_secure)) { 7041 case -1: 7042 /* attempt to exit an exception that isn't active */ 7043 ufault = true; 7044 break; 7045 case 0: 7046 /* still an irq active now */ 7047 break; 7048 case 1: 7049 /* we returned to base exception level, no nesting. 7050 * (In the pseudocode this is written using "NestedActivation != 1" 7051 * where we have 'rettobase == false'.) 7052 */ 7053 rettobase = true; 7054 break; 7055 default: 7056 g_assert_not_reached(); 7057 } 7058 7059 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7060 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7061 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7062 (excret & R_V7M_EXCRET_S_MASK); 7063 7064 if (arm_feature(env, ARM_FEATURE_V8)) { 7065 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7066 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7067 * we choose to take the UsageFault. 7068 */ 7069 if ((excret & R_V7M_EXCRET_S_MASK) || 7070 (excret & R_V7M_EXCRET_ES_MASK) || 7071 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7072 ufault = true; 7073 } 7074 } 7075 if (excret & R_V7M_EXCRET_RES0_MASK) { 7076 ufault = true; 7077 } 7078 } else { 7079 /* For v7M we only recognize certain combinations of the low bits */ 7080 switch (excret & 0xf) { 7081 case 1: /* Return to Handler */ 7082 break; 7083 case 13: /* Return to Thread using Process stack */ 7084 case 9: /* Return to Thread using Main stack */ 7085 /* We only need to check NONBASETHRDENA for v7M, because in 7086 * v8M this bit does not exist (it is RES1). 7087 */ 7088 if (!rettobase && 7089 !(env->v7m.ccr[env->v7m.secure] & 7090 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7091 ufault = true; 7092 } 7093 break; 7094 default: 7095 ufault = true; 7096 } 7097 } 7098 7099 if (sfault) { 7100 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7101 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7102 v7m_exception_taken(cpu, excret, true, false); 7103 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7104 "stackframe: failed EXC_RETURN.ES validity check\n"); 7105 return; 7106 } 7107 7108 if (ufault) { 7109 /* Bad exception return: instead of popping the exception 7110 * stack, directly take a usage fault on the current stack. 7111 */ 7112 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7113 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7114 v7m_exception_taken(cpu, excret, true, false); 7115 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7116 "stackframe: failed exception return integrity check\n"); 7117 return; 7118 } 7119 7120 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7121 * Handler mode (and will be until we write the new XPSR.Interrupt 7122 * field) this does not switch around the current stack pointer. 7123 */ 7124 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7125 7126 switch_v7m_security_state(env, return_to_secure); 7127 7128 { 7129 /* The stack pointer we should be reading the exception frame from 7130 * depends on bits in the magic exception return type value (and 7131 * for v8M isn't necessarily the stack pointer we will eventually 7132 * end up resuming execution with). Get a pointer to the location 7133 * in the CPU state struct where the SP we need is currently being 7134 * stored; we will use and modify it in place. 7135 * We use this limited C variable scope so we don't accidentally 7136 * use 'frame_sp_p' after we do something that makes it invalid. 7137 */ 7138 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7139 return_to_secure, 7140 !return_to_handler, 7141 return_to_sp_process); 7142 uint32_t frameptr = *frame_sp_p; 7143 bool pop_ok = true; 7144 ARMMMUIdx mmu_idx; 7145 7146 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7147 !return_to_handler); 7148 7149 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7150 arm_feature(env, ARM_FEATURE_V8)) { 7151 qemu_log_mask(LOG_GUEST_ERROR, 7152 "M profile exception return with non-8-aligned SP " 7153 "for destination state is UNPREDICTABLE\n"); 7154 } 7155 7156 /* Do we need to pop callee-saved registers? */ 7157 if (return_to_secure && 7158 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7159 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7160 uint32_t expected_sig = 0xfefa125b; 7161 uint32_t actual_sig; 7162 7163 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7164 7165 if (pop_ok && expected_sig != actual_sig) { 7166 /* Take a SecureFault on the current stack */ 7167 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7168 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7169 v7m_exception_taken(cpu, excret, true, false); 7170 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7171 "stackframe: failed exception return integrity " 7172 "signature check\n"); 7173 return; 7174 } 7175 7176 pop_ok = pop_ok && 7177 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7178 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7179 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7180 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7181 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7182 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7183 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7184 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7185 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7186 7187 frameptr += 0x28; 7188 } 7189 7190 /* Pop registers */ 7191 pop_ok = pop_ok && 7192 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7193 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7194 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7195 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7196 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7197 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7198 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7199 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7200 7201 if (!pop_ok) { 7202 /* v7m_stack_read() pended a fault, so take it (as a tail 7203 * chained exception on the same stack frame) 7204 */ 7205 v7m_exception_taken(cpu, excret, true, false); 7206 return; 7207 } 7208 7209 /* Returning from an exception with a PC with bit 0 set is defined 7210 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7211 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7212 * the lsbit, and there are several RTOSes out there which incorrectly 7213 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7214 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7215 * complain about the badly behaved guest. 7216 */ 7217 if (env->regs[15] & 1) { 7218 env->regs[15] &= ~1U; 7219 if (!arm_feature(env, ARM_FEATURE_V8)) { 7220 qemu_log_mask(LOG_GUEST_ERROR, 7221 "M profile return from interrupt with misaligned " 7222 "PC is UNPREDICTABLE on v7M\n"); 7223 } 7224 } 7225 7226 if (arm_feature(env, ARM_FEATURE_V8)) { 7227 /* For v8M we have to check whether the xPSR exception field 7228 * matches the EXCRET value for return to handler/thread 7229 * before we commit to changing the SP and xPSR. 7230 */ 7231 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7232 if (return_to_handler != will_be_handler) { 7233 /* Take an INVPC UsageFault on the current stack. 7234 * By this point we will have switched to the security state 7235 * for the background state, so this UsageFault will target 7236 * that state. 7237 */ 7238 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7239 env->v7m.secure); 7240 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7241 v7m_exception_taken(cpu, excret, true, false); 7242 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7243 "stackframe: failed exception return integrity " 7244 "check\n"); 7245 return; 7246 } 7247 } 7248 7249 /* Commit to consuming the stack frame */ 7250 frameptr += 0x20; 7251 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7252 * pre-exception SP was not 8-aligned and we added a padding word to 7253 * align it, so we undo this by ORing in the bit that increases it 7254 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7255 * would work too but a logical OR is how the pseudocode specifies it.) 7256 */ 7257 if (xpsr & XPSR_SPREALIGN) { 7258 frameptr |= 4; 7259 } 7260 *frame_sp_p = frameptr; 7261 } 7262 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7263 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7264 7265 /* The restored xPSR exception field will be zero if we're 7266 * resuming in Thread mode. If that doesn't match what the 7267 * exception return excret specified then this is a UsageFault. 7268 * v7M requires we make this check here; v8M did it earlier. 7269 */ 7270 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7271 /* Take an INVPC UsageFault by pushing the stack again; 7272 * we know we're v7M so this is never a Secure UsageFault. 7273 */ 7274 bool ignore_stackfaults; 7275 7276 assert(!arm_feature(env, ARM_FEATURE_V8)); 7277 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7278 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7279 ignore_stackfaults = v7m_push_stack(cpu); 7280 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7281 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7282 "failed exception return integrity check\n"); 7283 return; 7284 } 7285 7286 /* Otherwise, we have a successful exception exit. */ 7287 arm_clear_exclusive(env); 7288 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7289 } 7290 7291 static bool do_v7m_function_return(ARMCPU *cpu) 7292 { 7293 /* v8M security extensions magic function return. 7294 * We may either: 7295 * (1) throw an exception (longjump) 7296 * (2) return true if we successfully handled the function return 7297 * (3) return false if we failed a consistency check and have 7298 * pended a UsageFault that needs to be taken now 7299 * 7300 * At this point the magic return value is split between env->regs[15] 7301 * and env->thumb. We don't bother to reconstitute it because we don't 7302 * need it (all values are handled the same way). 7303 */ 7304 CPUARMState *env = &cpu->env; 7305 uint32_t newpc, newpsr, newpsr_exc; 7306 7307 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7308 7309 { 7310 bool threadmode, spsel; 7311 TCGMemOpIdx oi; 7312 ARMMMUIdx mmu_idx; 7313 uint32_t *frame_sp_p; 7314 uint32_t frameptr; 7315 7316 /* Pull the return address and IPSR from the Secure stack */ 7317 threadmode = !arm_v7m_is_handler_mode(env); 7318 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7319 7320 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7321 frameptr = *frame_sp_p; 7322 7323 /* These loads may throw an exception (for MPU faults). We want to 7324 * do them as secure, so work out what MMU index that is. 7325 */ 7326 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7327 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7328 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7329 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7330 7331 /* Consistency checks on new IPSR */ 7332 newpsr_exc = newpsr & XPSR_EXCP; 7333 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7334 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7335 /* Pend the fault and tell our caller to take it */ 7336 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7337 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7338 env->v7m.secure); 7339 qemu_log_mask(CPU_LOG_INT, 7340 "...taking INVPC UsageFault: " 7341 "IPSR consistency check failed\n"); 7342 return false; 7343 } 7344 7345 *frame_sp_p = frameptr + 8; 7346 } 7347 7348 /* This invalidates frame_sp_p */ 7349 switch_v7m_security_state(env, true); 7350 env->v7m.exception = newpsr_exc; 7351 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7352 if (newpsr & XPSR_SFPA) { 7353 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7354 } 7355 xpsr_write(env, 0, XPSR_IT); 7356 env->thumb = newpc & 1; 7357 env->regs[15] = newpc & ~1; 7358 7359 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7360 return true; 7361 } 7362 7363 static void arm_log_exception(int idx) 7364 { 7365 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7366 const char *exc = NULL; 7367 static const char * const excnames[] = { 7368 [EXCP_UDEF] = "Undefined Instruction", 7369 [EXCP_SWI] = "SVC", 7370 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7371 [EXCP_DATA_ABORT] = "Data Abort", 7372 [EXCP_IRQ] = "IRQ", 7373 [EXCP_FIQ] = "FIQ", 7374 [EXCP_BKPT] = "Breakpoint", 7375 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7376 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7377 [EXCP_HVC] = "Hypervisor Call", 7378 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7379 [EXCP_SMC] = "Secure Monitor Call", 7380 [EXCP_VIRQ] = "Virtual IRQ", 7381 [EXCP_VFIQ] = "Virtual FIQ", 7382 [EXCP_SEMIHOST] = "Semihosting call", 7383 [EXCP_NOCP] = "v7M NOCP UsageFault", 7384 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7385 }; 7386 7387 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7388 exc = excnames[idx]; 7389 } 7390 if (!exc) { 7391 exc = "unknown"; 7392 } 7393 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7394 } 7395 } 7396 7397 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7398 uint32_t addr, uint16_t *insn) 7399 { 7400 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7401 * or false on failure (in which case we will have pended the appropriate 7402 * exception). 7403 * We need to do the instruction fetch's MPU and SAU checks 7404 * like this because there is no MMU index that would allow 7405 * doing the load with a single function call. Instead we must 7406 * first check that the security attributes permit the load 7407 * and that they don't mismatch on the two halves of the instruction, 7408 * and then we do the load as a secure load (ie using the security 7409 * attributes of the address, not the CPU, as architecturally required). 7410 */ 7411 CPUState *cs = CPU(cpu); 7412 CPUARMState *env = &cpu->env; 7413 V8M_SAttributes sattrs = {}; 7414 MemTxAttrs attrs = {}; 7415 ARMMMUFaultInfo fi = {}; 7416 MemTxResult txres; 7417 target_ulong page_size; 7418 hwaddr physaddr; 7419 int prot; 7420 7421 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7422 if (!sattrs.nsc || sattrs.ns) { 7423 /* This must be the second half of the insn, and it straddles a 7424 * region boundary with the second half not being S&NSC. 7425 */ 7426 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7427 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7428 qemu_log_mask(CPU_LOG_INT, 7429 "...really SecureFault with SFSR.INVEP\n"); 7430 return false; 7431 } 7432 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7433 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7434 /* the MPU lookup failed */ 7435 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7436 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7437 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7438 return false; 7439 } 7440 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7441 attrs, &txres); 7442 if (txres != MEMTX_OK) { 7443 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7444 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7445 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7446 return false; 7447 } 7448 return true; 7449 } 7450 7451 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7452 { 7453 /* Check whether this attempt to execute code in a Secure & NS-Callable 7454 * memory region is for an SG instruction; if so, then emulate the 7455 * effect of the SG instruction and return true. Otherwise pend 7456 * the correct kind of exception and return false. 7457 */ 7458 CPUARMState *env = &cpu->env; 7459 ARMMMUIdx mmu_idx; 7460 uint16_t insn; 7461 7462 /* We should never get here unless get_phys_addr_pmsav8() caused 7463 * an exception for NS executing in S&NSC memory. 7464 */ 7465 assert(!env->v7m.secure); 7466 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7467 7468 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7469 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7470 7471 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7472 return false; 7473 } 7474 7475 if (!env->thumb) { 7476 goto gen_invep; 7477 } 7478 7479 if (insn != 0xe97f) { 7480 /* Not an SG instruction first half (we choose the IMPDEF 7481 * early-SG-check option). 7482 */ 7483 goto gen_invep; 7484 } 7485 7486 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7487 return false; 7488 } 7489 7490 if (insn != 0xe97f) { 7491 /* Not an SG instruction second half (yes, both halves of the SG 7492 * insn have the same hex value) 7493 */ 7494 goto gen_invep; 7495 } 7496 7497 /* OK, we have confirmed that we really have an SG instruction. 7498 * We know we're NS in S memory so don't need to repeat those checks. 7499 */ 7500 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7501 ", executing it\n", env->regs[15]); 7502 env->regs[14] &= ~1; 7503 switch_v7m_security_state(env, true); 7504 xpsr_write(env, 0, XPSR_IT); 7505 env->regs[15] += 4; 7506 return true; 7507 7508 gen_invep: 7509 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7510 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7511 qemu_log_mask(CPU_LOG_INT, 7512 "...really SecureFault with SFSR.INVEP\n"); 7513 return false; 7514 } 7515 7516 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7517 { 7518 ARMCPU *cpu = ARM_CPU(cs); 7519 CPUARMState *env = &cpu->env; 7520 uint32_t lr; 7521 bool ignore_stackfaults; 7522 7523 arm_log_exception(cs->exception_index); 7524 7525 /* For exceptions we just mark as pending on the NVIC, and let that 7526 handle it. */ 7527 switch (cs->exception_index) { 7528 case EXCP_UDEF: 7529 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7530 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7531 break; 7532 case EXCP_NOCP: 7533 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7534 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7535 break; 7536 case EXCP_INVSTATE: 7537 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7538 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7539 break; 7540 case EXCP_SWI: 7541 /* The PC already points to the next instruction. */ 7542 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7543 break; 7544 case EXCP_PREFETCH_ABORT: 7545 case EXCP_DATA_ABORT: 7546 /* Note that for M profile we don't have a guest facing FSR, but 7547 * the env->exception.fsr will be populated by the code that 7548 * raises the fault, in the A profile short-descriptor format. 7549 */ 7550 switch (env->exception.fsr & 0xf) { 7551 case M_FAKE_FSR_NSC_EXEC: 7552 /* Exception generated when we try to execute code at an address 7553 * which is marked as Secure & Non-Secure Callable and the CPU 7554 * is in the Non-Secure state. The only instruction which can 7555 * be executed like this is SG (and that only if both halves of 7556 * the SG instruction have the same security attributes.) 7557 * Everything else must generate an INVEP SecureFault, so we 7558 * emulate the SG instruction here. 7559 */ 7560 if (v7m_handle_execute_nsc(cpu)) { 7561 return; 7562 } 7563 break; 7564 case M_FAKE_FSR_SFAULT: 7565 /* Various flavours of SecureFault for attempts to execute or 7566 * access data in the wrong security state. 7567 */ 7568 switch (cs->exception_index) { 7569 case EXCP_PREFETCH_ABORT: 7570 if (env->v7m.secure) { 7571 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7572 qemu_log_mask(CPU_LOG_INT, 7573 "...really SecureFault with SFSR.INVTRAN\n"); 7574 } else { 7575 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7576 qemu_log_mask(CPU_LOG_INT, 7577 "...really SecureFault with SFSR.INVEP\n"); 7578 } 7579 break; 7580 case EXCP_DATA_ABORT: 7581 /* This must be an NS access to S memory */ 7582 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7583 qemu_log_mask(CPU_LOG_INT, 7584 "...really SecureFault with SFSR.AUVIOL\n"); 7585 break; 7586 } 7587 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7588 break; 7589 case 0x8: /* External Abort */ 7590 switch (cs->exception_index) { 7591 case EXCP_PREFETCH_ABORT: 7592 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7593 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7594 break; 7595 case EXCP_DATA_ABORT: 7596 env->v7m.cfsr[M_REG_NS] |= 7597 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7598 env->v7m.bfar = env->exception.vaddress; 7599 qemu_log_mask(CPU_LOG_INT, 7600 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7601 env->v7m.bfar); 7602 break; 7603 } 7604 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7605 break; 7606 default: 7607 /* All other FSR values are either MPU faults or "can't happen 7608 * for M profile" cases. 7609 */ 7610 switch (cs->exception_index) { 7611 case EXCP_PREFETCH_ABORT: 7612 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7613 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7614 break; 7615 case EXCP_DATA_ABORT: 7616 env->v7m.cfsr[env->v7m.secure] |= 7617 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7618 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7619 qemu_log_mask(CPU_LOG_INT, 7620 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7621 env->v7m.mmfar[env->v7m.secure]); 7622 break; 7623 } 7624 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7625 env->v7m.secure); 7626 break; 7627 } 7628 break; 7629 case EXCP_BKPT: 7630 if (semihosting_enabled()) { 7631 int nr; 7632 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7633 if (nr == 0xab) { 7634 env->regs[15] += 2; 7635 qemu_log_mask(CPU_LOG_INT, 7636 "...handling as semihosting call 0x%x\n", 7637 env->regs[0]); 7638 env->regs[0] = do_arm_semihosting(env); 7639 return; 7640 } 7641 } 7642 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7643 break; 7644 case EXCP_IRQ: 7645 break; 7646 case EXCP_EXCEPTION_EXIT: 7647 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7648 /* Must be v8M security extension function return */ 7649 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7650 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7651 if (do_v7m_function_return(cpu)) { 7652 return; 7653 } 7654 } else { 7655 do_v7m_exception_exit(cpu); 7656 return; 7657 } 7658 break; 7659 default: 7660 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7661 return; /* Never happens. Keep compiler happy. */ 7662 } 7663 7664 if (arm_feature(env, ARM_FEATURE_V8)) { 7665 lr = R_V7M_EXCRET_RES1_MASK | 7666 R_V7M_EXCRET_DCRS_MASK | 7667 R_V7M_EXCRET_FTYPE_MASK; 7668 /* The S bit indicates whether we should return to Secure 7669 * or NonSecure (ie our current state). 7670 * The ES bit indicates whether we're taking this exception 7671 * to Secure or NonSecure (ie our target state). We set it 7672 * later, in v7m_exception_taken(). 7673 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7674 * This corresponds to the ARM ARM pseudocode for v8M setting 7675 * some LR bits in PushStack() and some in ExceptionTaken(); 7676 * the distinction matters for the tailchain cases where we 7677 * can take an exception without pushing the stack. 7678 */ 7679 if (env->v7m.secure) { 7680 lr |= R_V7M_EXCRET_S_MASK; 7681 } 7682 } else { 7683 lr = R_V7M_EXCRET_RES1_MASK | 7684 R_V7M_EXCRET_S_MASK | 7685 R_V7M_EXCRET_DCRS_MASK | 7686 R_V7M_EXCRET_FTYPE_MASK | 7687 R_V7M_EXCRET_ES_MASK; 7688 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7689 lr |= R_V7M_EXCRET_SPSEL_MASK; 7690 } 7691 } 7692 if (!arm_v7m_is_handler_mode(env)) { 7693 lr |= R_V7M_EXCRET_MODE_MASK; 7694 } 7695 7696 ignore_stackfaults = v7m_push_stack(cpu); 7697 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7698 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7699 } 7700 7701 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7702 * register set. This is necessary when switching between AArch32 and AArch64 7703 * execution state. 7704 */ 7705 void aarch64_sync_32_to_64(CPUARMState *env) 7706 { 7707 int i; 7708 uint32_t mode = env->uncached_cpsr & CPSR_M; 7709 7710 /* We can blanket copy R[0:7] to X[0:7] */ 7711 for (i = 0; i < 8; i++) { 7712 env->xregs[i] = env->regs[i]; 7713 } 7714 7715 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7716 * Otherwise, they come from the banked user regs. 7717 */ 7718 if (mode == ARM_CPU_MODE_FIQ) { 7719 for (i = 8; i < 13; i++) { 7720 env->xregs[i] = env->usr_regs[i - 8]; 7721 } 7722 } else { 7723 for (i = 8; i < 13; i++) { 7724 env->xregs[i] = env->regs[i]; 7725 } 7726 } 7727 7728 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7729 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7730 * from the mode banked register. 7731 */ 7732 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7733 env->xregs[13] = env->regs[13]; 7734 env->xregs[14] = env->regs[14]; 7735 } else { 7736 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7737 /* HYP is an exception in that it is copied from r14 */ 7738 if (mode == ARM_CPU_MODE_HYP) { 7739 env->xregs[14] = env->regs[14]; 7740 } else { 7741 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7742 } 7743 } 7744 7745 if (mode == ARM_CPU_MODE_HYP) { 7746 env->xregs[15] = env->regs[13]; 7747 } else { 7748 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7749 } 7750 7751 if (mode == ARM_CPU_MODE_IRQ) { 7752 env->xregs[16] = env->regs[14]; 7753 env->xregs[17] = env->regs[13]; 7754 } else { 7755 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7756 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7757 } 7758 7759 if (mode == ARM_CPU_MODE_SVC) { 7760 env->xregs[18] = env->regs[14]; 7761 env->xregs[19] = env->regs[13]; 7762 } else { 7763 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7764 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7765 } 7766 7767 if (mode == ARM_CPU_MODE_ABT) { 7768 env->xregs[20] = env->regs[14]; 7769 env->xregs[21] = env->regs[13]; 7770 } else { 7771 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7772 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7773 } 7774 7775 if (mode == ARM_CPU_MODE_UND) { 7776 env->xregs[22] = env->regs[14]; 7777 env->xregs[23] = env->regs[13]; 7778 } else { 7779 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7780 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7781 } 7782 7783 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7784 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7785 * FIQ bank for r8-r14. 7786 */ 7787 if (mode == ARM_CPU_MODE_FIQ) { 7788 for (i = 24; i < 31; i++) { 7789 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7790 } 7791 } else { 7792 for (i = 24; i < 29; i++) { 7793 env->xregs[i] = env->fiq_regs[i - 24]; 7794 } 7795 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7796 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7797 } 7798 7799 env->pc = env->regs[15]; 7800 } 7801 7802 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7803 * register set. This is necessary when switching between AArch32 and AArch64 7804 * execution state. 7805 */ 7806 void aarch64_sync_64_to_32(CPUARMState *env) 7807 { 7808 int i; 7809 uint32_t mode = env->uncached_cpsr & CPSR_M; 7810 7811 /* We can blanket copy X[0:7] to R[0:7] */ 7812 for (i = 0; i < 8; i++) { 7813 env->regs[i] = env->xregs[i]; 7814 } 7815 7816 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7817 * Otherwise, we copy x8-x12 into the banked user regs. 7818 */ 7819 if (mode == ARM_CPU_MODE_FIQ) { 7820 for (i = 8; i < 13; i++) { 7821 env->usr_regs[i - 8] = env->xregs[i]; 7822 } 7823 } else { 7824 for (i = 8; i < 13; i++) { 7825 env->regs[i] = env->xregs[i]; 7826 } 7827 } 7828 7829 /* Registers r13 & r14 depend on the current mode. 7830 * If we are in a given mode, we copy the corresponding x registers to r13 7831 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7832 * for the mode. 7833 */ 7834 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7835 env->regs[13] = env->xregs[13]; 7836 env->regs[14] = env->xregs[14]; 7837 } else { 7838 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7839 7840 /* HYP is an exception in that it does not have its own banked r14 but 7841 * shares the USR r14 7842 */ 7843 if (mode == ARM_CPU_MODE_HYP) { 7844 env->regs[14] = env->xregs[14]; 7845 } else { 7846 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7847 } 7848 } 7849 7850 if (mode == ARM_CPU_MODE_HYP) { 7851 env->regs[13] = env->xregs[15]; 7852 } else { 7853 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7854 } 7855 7856 if (mode == ARM_CPU_MODE_IRQ) { 7857 env->regs[14] = env->xregs[16]; 7858 env->regs[13] = env->xregs[17]; 7859 } else { 7860 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7861 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7862 } 7863 7864 if (mode == ARM_CPU_MODE_SVC) { 7865 env->regs[14] = env->xregs[18]; 7866 env->regs[13] = env->xregs[19]; 7867 } else { 7868 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7869 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7870 } 7871 7872 if (mode == ARM_CPU_MODE_ABT) { 7873 env->regs[14] = env->xregs[20]; 7874 env->regs[13] = env->xregs[21]; 7875 } else { 7876 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7877 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7878 } 7879 7880 if (mode == ARM_CPU_MODE_UND) { 7881 env->regs[14] = env->xregs[22]; 7882 env->regs[13] = env->xregs[23]; 7883 } else { 7884 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7885 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7886 } 7887 7888 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7889 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7890 * FIQ bank for r8-r14. 7891 */ 7892 if (mode == ARM_CPU_MODE_FIQ) { 7893 for (i = 24; i < 31; i++) { 7894 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7895 } 7896 } else { 7897 for (i = 24; i < 29; i++) { 7898 env->fiq_regs[i - 24] = env->xregs[i]; 7899 } 7900 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7901 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7902 } 7903 7904 env->regs[15] = env->pc; 7905 } 7906 7907 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7908 { 7909 ARMCPU *cpu = ARM_CPU(cs); 7910 CPUARMState *env = &cpu->env; 7911 uint32_t addr; 7912 uint32_t mask; 7913 int new_mode; 7914 uint32_t offset; 7915 uint32_t moe; 7916 7917 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7918 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7919 case EC_BREAKPOINT: 7920 case EC_BREAKPOINT_SAME_EL: 7921 moe = 1; 7922 break; 7923 case EC_WATCHPOINT: 7924 case EC_WATCHPOINT_SAME_EL: 7925 moe = 10; 7926 break; 7927 case EC_AA32_BKPT: 7928 moe = 3; 7929 break; 7930 case EC_VECTORCATCH: 7931 moe = 5; 7932 break; 7933 default: 7934 moe = 0; 7935 break; 7936 } 7937 7938 if (moe) { 7939 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7940 } 7941 7942 /* TODO: Vectored interrupt controller. */ 7943 switch (cs->exception_index) { 7944 case EXCP_UDEF: 7945 new_mode = ARM_CPU_MODE_UND; 7946 addr = 0x04; 7947 mask = CPSR_I; 7948 if (env->thumb) 7949 offset = 2; 7950 else 7951 offset = 4; 7952 break; 7953 case EXCP_SWI: 7954 new_mode = ARM_CPU_MODE_SVC; 7955 addr = 0x08; 7956 mask = CPSR_I; 7957 /* The PC already points to the next instruction. */ 7958 offset = 0; 7959 break; 7960 case EXCP_BKPT: 7961 /* Fall through to prefetch abort. */ 7962 case EXCP_PREFETCH_ABORT: 7963 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7964 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7965 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7966 env->exception.fsr, (uint32_t)env->exception.vaddress); 7967 new_mode = ARM_CPU_MODE_ABT; 7968 addr = 0x0c; 7969 mask = CPSR_A | CPSR_I; 7970 offset = 4; 7971 break; 7972 case EXCP_DATA_ABORT: 7973 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7974 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7975 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7976 env->exception.fsr, 7977 (uint32_t)env->exception.vaddress); 7978 new_mode = ARM_CPU_MODE_ABT; 7979 addr = 0x10; 7980 mask = CPSR_A | CPSR_I; 7981 offset = 8; 7982 break; 7983 case EXCP_IRQ: 7984 new_mode = ARM_CPU_MODE_IRQ; 7985 addr = 0x18; 7986 /* Disable IRQ and imprecise data aborts. */ 7987 mask = CPSR_A | CPSR_I; 7988 offset = 4; 7989 if (env->cp15.scr_el3 & SCR_IRQ) { 7990 /* IRQ routed to monitor mode */ 7991 new_mode = ARM_CPU_MODE_MON; 7992 mask |= CPSR_F; 7993 } 7994 break; 7995 case EXCP_FIQ: 7996 new_mode = ARM_CPU_MODE_FIQ; 7997 addr = 0x1c; 7998 /* Disable FIQ, IRQ and imprecise data aborts. */ 7999 mask = CPSR_A | CPSR_I | CPSR_F; 8000 if (env->cp15.scr_el3 & SCR_FIQ) { 8001 /* FIQ routed to monitor mode */ 8002 new_mode = ARM_CPU_MODE_MON; 8003 } 8004 offset = 4; 8005 break; 8006 case EXCP_VIRQ: 8007 new_mode = ARM_CPU_MODE_IRQ; 8008 addr = 0x18; 8009 /* Disable IRQ and imprecise data aborts. */ 8010 mask = CPSR_A | CPSR_I; 8011 offset = 4; 8012 break; 8013 case EXCP_VFIQ: 8014 new_mode = ARM_CPU_MODE_FIQ; 8015 addr = 0x1c; 8016 /* Disable FIQ, IRQ and imprecise data aborts. */ 8017 mask = CPSR_A | CPSR_I | CPSR_F; 8018 offset = 4; 8019 break; 8020 case EXCP_SMC: 8021 new_mode = ARM_CPU_MODE_MON; 8022 addr = 0x08; 8023 mask = CPSR_A | CPSR_I | CPSR_F; 8024 offset = 0; 8025 break; 8026 default: 8027 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8028 return; /* Never happens. Keep compiler happy. */ 8029 } 8030 8031 if (new_mode == ARM_CPU_MODE_MON) { 8032 addr += env->cp15.mvbar; 8033 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8034 /* High vectors. When enabled, base address cannot be remapped. */ 8035 addr += 0xffff0000; 8036 } else { 8037 /* ARM v7 architectures provide a vector base address register to remap 8038 * the interrupt vector table. 8039 * This register is only followed in non-monitor mode, and is banked. 8040 * Note: only bits 31:5 are valid. 8041 */ 8042 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8043 } 8044 8045 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8046 env->cp15.scr_el3 &= ~SCR_NS; 8047 } 8048 8049 switch_mode (env, new_mode); 8050 /* For exceptions taken to AArch32 we must clear the SS bit in both 8051 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8052 */ 8053 env->uncached_cpsr &= ~PSTATE_SS; 8054 env->spsr = cpsr_read(env); 8055 /* Clear IT bits. */ 8056 env->condexec_bits = 0; 8057 /* Switch to the new mode, and to the correct instruction set. */ 8058 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8059 /* Set new mode endianness */ 8060 env->uncached_cpsr &= ~CPSR_E; 8061 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8062 env->uncached_cpsr |= CPSR_E; 8063 } 8064 env->daif |= mask; 8065 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8066 * and we should just guard the thumb mode on V4 */ 8067 if (arm_feature(env, ARM_FEATURE_V4T)) { 8068 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8069 } 8070 env->regs[14] = env->regs[15] + offset; 8071 env->regs[15] = addr; 8072 } 8073 8074 /* Handle exception entry to a target EL which is using AArch64 */ 8075 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8076 { 8077 ARMCPU *cpu = ARM_CPU(cs); 8078 CPUARMState *env = &cpu->env; 8079 unsigned int new_el = env->exception.target_el; 8080 target_ulong addr = env->cp15.vbar_el[new_el]; 8081 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8082 8083 if (arm_current_el(env) < new_el) { 8084 /* Entry vector offset depends on whether the implemented EL 8085 * immediately lower than the target level is using AArch32 or AArch64 8086 */ 8087 bool is_aa64; 8088 8089 switch (new_el) { 8090 case 3: 8091 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8092 break; 8093 case 2: 8094 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8095 break; 8096 case 1: 8097 is_aa64 = is_a64(env); 8098 break; 8099 default: 8100 g_assert_not_reached(); 8101 } 8102 8103 if (is_aa64) { 8104 addr += 0x400; 8105 } else { 8106 addr += 0x600; 8107 } 8108 } else if (pstate_read(env) & PSTATE_SP) { 8109 addr += 0x200; 8110 } 8111 8112 switch (cs->exception_index) { 8113 case EXCP_PREFETCH_ABORT: 8114 case EXCP_DATA_ABORT: 8115 env->cp15.far_el[new_el] = env->exception.vaddress; 8116 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8117 env->cp15.far_el[new_el]); 8118 /* fall through */ 8119 case EXCP_BKPT: 8120 case EXCP_UDEF: 8121 case EXCP_SWI: 8122 case EXCP_HVC: 8123 case EXCP_HYP_TRAP: 8124 case EXCP_SMC: 8125 env->cp15.esr_el[new_el] = env->exception.syndrome; 8126 break; 8127 case EXCP_IRQ: 8128 case EXCP_VIRQ: 8129 addr += 0x80; 8130 break; 8131 case EXCP_FIQ: 8132 case EXCP_VFIQ: 8133 addr += 0x100; 8134 break; 8135 case EXCP_SEMIHOST: 8136 qemu_log_mask(CPU_LOG_INT, 8137 "...handling as semihosting call 0x%" PRIx64 "\n", 8138 env->xregs[0]); 8139 env->xregs[0] = do_arm_semihosting(env); 8140 return; 8141 default: 8142 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8143 } 8144 8145 if (is_a64(env)) { 8146 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8147 aarch64_save_sp(env, arm_current_el(env)); 8148 env->elr_el[new_el] = env->pc; 8149 } else { 8150 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8151 env->elr_el[new_el] = env->regs[15]; 8152 8153 aarch64_sync_32_to_64(env); 8154 8155 env->condexec_bits = 0; 8156 } 8157 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8158 env->elr_el[new_el]); 8159 8160 pstate_write(env, PSTATE_DAIF | new_mode); 8161 env->aarch64 = 1; 8162 aarch64_restore_sp(env, new_el); 8163 8164 env->pc = addr; 8165 8166 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8167 new_el, env->pc, pstate_read(env)); 8168 } 8169 8170 static inline bool check_for_semihosting(CPUState *cs) 8171 { 8172 /* Check whether this exception is a semihosting call; if so 8173 * then handle it and return true; otherwise return false. 8174 */ 8175 ARMCPU *cpu = ARM_CPU(cs); 8176 CPUARMState *env = &cpu->env; 8177 8178 if (is_a64(env)) { 8179 if (cs->exception_index == EXCP_SEMIHOST) { 8180 /* This is always the 64-bit semihosting exception. 8181 * The "is this usermode" and "is semihosting enabled" 8182 * checks have been done at translate time. 8183 */ 8184 qemu_log_mask(CPU_LOG_INT, 8185 "...handling as semihosting call 0x%" PRIx64 "\n", 8186 env->xregs[0]); 8187 env->xregs[0] = do_arm_semihosting(env); 8188 return true; 8189 } 8190 return false; 8191 } else { 8192 uint32_t imm; 8193 8194 /* Only intercept calls from privileged modes, to provide some 8195 * semblance of security. 8196 */ 8197 if (cs->exception_index != EXCP_SEMIHOST && 8198 (!semihosting_enabled() || 8199 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8200 return false; 8201 } 8202 8203 switch (cs->exception_index) { 8204 case EXCP_SEMIHOST: 8205 /* This is always a semihosting call; the "is this usermode" 8206 * and "is semihosting enabled" checks have been done at 8207 * translate time. 8208 */ 8209 break; 8210 case EXCP_SWI: 8211 /* Check for semihosting interrupt. */ 8212 if (env->thumb) { 8213 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8214 & 0xff; 8215 if (imm == 0xab) { 8216 break; 8217 } 8218 } else { 8219 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8220 & 0xffffff; 8221 if (imm == 0x123456) { 8222 break; 8223 } 8224 } 8225 return false; 8226 case EXCP_BKPT: 8227 /* See if this is a semihosting syscall. */ 8228 if (env->thumb) { 8229 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8230 & 0xff; 8231 if (imm == 0xab) { 8232 env->regs[15] += 2; 8233 break; 8234 } 8235 } 8236 return false; 8237 default: 8238 return false; 8239 } 8240 8241 qemu_log_mask(CPU_LOG_INT, 8242 "...handling as semihosting call 0x%x\n", 8243 env->regs[0]); 8244 env->regs[0] = do_arm_semihosting(env); 8245 return true; 8246 } 8247 } 8248 8249 /* Handle a CPU exception for A and R profile CPUs. 8250 * Do any appropriate logging, handle PSCI calls, and then hand off 8251 * to the AArch64-entry or AArch32-entry function depending on the 8252 * target exception level's register width. 8253 */ 8254 void arm_cpu_do_interrupt(CPUState *cs) 8255 { 8256 ARMCPU *cpu = ARM_CPU(cs); 8257 CPUARMState *env = &cpu->env; 8258 unsigned int new_el = env->exception.target_el; 8259 8260 assert(!arm_feature(env, ARM_FEATURE_M)); 8261 8262 arm_log_exception(cs->exception_index); 8263 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8264 new_el); 8265 if (qemu_loglevel_mask(CPU_LOG_INT) 8266 && !excp_is_internal(cs->exception_index)) { 8267 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8268 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8269 env->exception.syndrome); 8270 } 8271 8272 if (arm_is_psci_call(cpu, cs->exception_index)) { 8273 arm_handle_psci_call(cpu); 8274 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8275 return; 8276 } 8277 8278 /* Semihosting semantics depend on the register width of the 8279 * code that caused the exception, not the target exception level, 8280 * so must be handled here. 8281 */ 8282 if (check_for_semihosting(cs)) { 8283 return; 8284 } 8285 8286 /* Hooks may change global state so BQL should be held, also the 8287 * BQL needs to be held for any modification of 8288 * cs->interrupt_request. 8289 */ 8290 g_assert(qemu_mutex_iothread_locked()); 8291 8292 arm_call_pre_el_change_hook(cpu); 8293 8294 assert(!excp_is_internal(cs->exception_index)); 8295 if (arm_el_is_aa64(env, new_el)) { 8296 arm_cpu_do_interrupt_aarch64(cs); 8297 } else { 8298 arm_cpu_do_interrupt_aarch32(cs); 8299 } 8300 8301 arm_call_el_change_hook(cpu); 8302 8303 if (!kvm_enabled()) { 8304 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8305 } 8306 } 8307 8308 /* Return the exception level which controls this address translation regime */ 8309 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8310 { 8311 switch (mmu_idx) { 8312 case ARMMMUIdx_S2NS: 8313 case ARMMMUIdx_S1E2: 8314 return 2; 8315 case ARMMMUIdx_S1E3: 8316 return 3; 8317 case ARMMMUIdx_S1SE0: 8318 return arm_el_is_aa64(env, 3) ? 1 : 3; 8319 case ARMMMUIdx_S1SE1: 8320 case ARMMMUIdx_S1NSE0: 8321 case ARMMMUIdx_S1NSE1: 8322 case ARMMMUIdx_MPrivNegPri: 8323 case ARMMMUIdx_MUserNegPri: 8324 case ARMMMUIdx_MPriv: 8325 case ARMMMUIdx_MUser: 8326 case ARMMMUIdx_MSPrivNegPri: 8327 case ARMMMUIdx_MSUserNegPri: 8328 case ARMMMUIdx_MSPriv: 8329 case ARMMMUIdx_MSUser: 8330 return 1; 8331 default: 8332 g_assert_not_reached(); 8333 } 8334 } 8335 8336 /* Return the SCTLR value which controls this address translation regime */ 8337 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8338 { 8339 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8340 } 8341 8342 /* Return true if the specified stage of address translation is disabled */ 8343 static inline bool regime_translation_disabled(CPUARMState *env, 8344 ARMMMUIdx mmu_idx) 8345 { 8346 if (arm_feature(env, ARM_FEATURE_M)) { 8347 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8348 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8349 case R_V7M_MPU_CTRL_ENABLE_MASK: 8350 /* Enabled, but not for HardFault and NMI */ 8351 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8352 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8353 /* Enabled for all cases */ 8354 return false; 8355 case 0: 8356 default: 8357 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8358 * we warned about that in armv7m_nvic.c when the guest set it. 8359 */ 8360 return true; 8361 } 8362 } 8363 8364 if (mmu_idx == ARMMMUIdx_S2NS) { 8365 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8366 } 8367 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8368 } 8369 8370 static inline bool regime_translation_big_endian(CPUARMState *env, 8371 ARMMMUIdx mmu_idx) 8372 { 8373 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8374 } 8375 8376 /* Return the TCR controlling this translation regime */ 8377 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8378 { 8379 if (mmu_idx == ARMMMUIdx_S2NS) { 8380 return &env->cp15.vtcr_el2; 8381 } 8382 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8383 } 8384 8385 /* Convert a possible stage1+2 MMU index into the appropriate 8386 * stage 1 MMU index 8387 */ 8388 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8389 { 8390 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8391 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8392 } 8393 return mmu_idx; 8394 } 8395 8396 /* Returns TBI0 value for current regime el */ 8397 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8398 { 8399 TCR *tcr; 8400 uint32_t el; 8401 8402 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8403 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8404 */ 8405 mmu_idx = stage_1_mmu_idx(mmu_idx); 8406 8407 tcr = regime_tcr(env, mmu_idx); 8408 el = regime_el(env, mmu_idx); 8409 8410 if (el > 1) { 8411 return extract64(tcr->raw_tcr, 20, 1); 8412 } else { 8413 return extract64(tcr->raw_tcr, 37, 1); 8414 } 8415 } 8416 8417 /* Returns TBI1 value for current regime el */ 8418 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8419 { 8420 TCR *tcr; 8421 uint32_t el; 8422 8423 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8424 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8425 */ 8426 mmu_idx = stage_1_mmu_idx(mmu_idx); 8427 8428 tcr = regime_tcr(env, mmu_idx); 8429 el = regime_el(env, mmu_idx); 8430 8431 if (el > 1) { 8432 return 0; 8433 } else { 8434 return extract64(tcr->raw_tcr, 38, 1); 8435 } 8436 } 8437 8438 /* Return the TTBR associated with this translation regime */ 8439 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8440 int ttbrn) 8441 { 8442 if (mmu_idx == ARMMMUIdx_S2NS) { 8443 return env->cp15.vttbr_el2; 8444 } 8445 if (ttbrn == 0) { 8446 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8447 } else { 8448 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8449 } 8450 } 8451 8452 /* Return true if the translation regime is using LPAE format page tables */ 8453 static inline bool regime_using_lpae_format(CPUARMState *env, 8454 ARMMMUIdx mmu_idx) 8455 { 8456 int el = regime_el(env, mmu_idx); 8457 if (el == 2 || arm_el_is_aa64(env, el)) { 8458 return true; 8459 } 8460 if (arm_feature(env, ARM_FEATURE_LPAE) 8461 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8462 return true; 8463 } 8464 return false; 8465 } 8466 8467 /* Returns true if the stage 1 translation regime is using LPAE format page 8468 * tables. Used when raising alignment exceptions, whose FSR changes depending 8469 * on whether the long or short descriptor format is in use. */ 8470 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8471 { 8472 mmu_idx = stage_1_mmu_idx(mmu_idx); 8473 8474 return regime_using_lpae_format(env, mmu_idx); 8475 } 8476 8477 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8478 { 8479 switch (mmu_idx) { 8480 case ARMMMUIdx_S1SE0: 8481 case ARMMMUIdx_S1NSE0: 8482 case ARMMMUIdx_MUser: 8483 case ARMMMUIdx_MSUser: 8484 case ARMMMUIdx_MUserNegPri: 8485 case ARMMMUIdx_MSUserNegPri: 8486 return true; 8487 default: 8488 return false; 8489 case ARMMMUIdx_S12NSE0: 8490 case ARMMMUIdx_S12NSE1: 8491 g_assert_not_reached(); 8492 } 8493 } 8494 8495 /* Translate section/page access permissions to page 8496 * R/W protection flags 8497 * 8498 * @env: CPUARMState 8499 * @mmu_idx: MMU index indicating required translation regime 8500 * @ap: The 3-bit access permissions (AP[2:0]) 8501 * @domain_prot: The 2-bit domain access permissions 8502 */ 8503 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8504 int ap, int domain_prot) 8505 { 8506 bool is_user = regime_is_user(env, mmu_idx); 8507 8508 if (domain_prot == 3) { 8509 return PAGE_READ | PAGE_WRITE; 8510 } 8511 8512 switch (ap) { 8513 case 0: 8514 if (arm_feature(env, ARM_FEATURE_V7)) { 8515 return 0; 8516 } 8517 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8518 case SCTLR_S: 8519 return is_user ? 0 : PAGE_READ; 8520 case SCTLR_R: 8521 return PAGE_READ; 8522 default: 8523 return 0; 8524 } 8525 case 1: 8526 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8527 case 2: 8528 if (is_user) { 8529 return PAGE_READ; 8530 } else { 8531 return PAGE_READ | PAGE_WRITE; 8532 } 8533 case 3: 8534 return PAGE_READ | PAGE_WRITE; 8535 case 4: /* Reserved. */ 8536 return 0; 8537 case 5: 8538 return is_user ? 0 : PAGE_READ; 8539 case 6: 8540 return PAGE_READ; 8541 case 7: 8542 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8543 return 0; 8544 } 8545 return PAGE_READ; 8546 default: 8547 g_assert_not_reached(); 8548 } 8549 } 8550 8551 /* Translate section/page access permissions to page 8552 * R/W protection flags. 8553 * 8554 * @ap: The 2-bit simple AP (AP[2:1]) 8555 * @is_user: TRUE if accessing from PL0 8556 */ 8557 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8558 { 8559 switch (ap) { 8560 case 0: 8561 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8562 case 1: 8563 return PAGE_READ | PAGE_WRITE; 8564 case 2: 8565 return is_user ? 0 : PAGE_READ; 8566 case 3: 8567 return PAGE_READ; 8568 default: 8569 g_assert_not_reached(); 8570 } 8571 } 8572 8573 static inline int 8574 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8575 { 8576 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8577 } 8578 8579 /* Translate S2 section/page access permissions to protection flags 8580 * 8581 * @env: CPUARMState 8582 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8583 * @xn: XN (execute-never) bit 8584 */ 8585 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8586 { 8587 int prot = 0; 8588 8589 if (s2ap & 1) { 8590 prot |= PAGE_READ; 8591 } 8592 if (s2ap & 2) { 8593 prot |= PAGE_WRITE; 8594 } 8595 if (!xn) { 8596 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8597 prot |= PAGE_EXEC; 8598 } 8599 } 8600 return prot; 8601 } 8602 8603 /* Translate section/page access permissions to protection flags 8604 * 8605 * @env: CPUARMState 8606 * @mmu_idx: MMU index indicating required translation regime 8607 * @is_aa64: TRUE if AArch64 8608 * @ap: The 2-bit simple AP (AP[2:1]) 8609 * @ns: NS (non-secure) bit 8610 * @xn: XN (execute-never) bit 8611 * @pxn: PXN (privileged execute-never) bit 8612 */ 8613 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8614 int ap, int ns, int xn, int pxn) 8615 { 8616 bool is_user = regime_is_user(env, mmu_idx); 8617 int prot_rw, user_rw; 8618 bool have_wxn; 8619 int wxn = 0; 8620 8621 assert(mmu_idx != ARMMMUIdx_S2NS); 8622 8623 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8624 if (is_user) { 8625 prot_rw = user_rw; 8626 } else { 8627 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8628 } 8629 8630 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8631 return prot_rw; 8632 } 8633 8634 /* TODO have_wxn should be replaced with 8635 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8636 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8637 * compatible processors have EL2, which is required for [U]WXN. 8638 */ 8639 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8640 8641 if (have_wxn) { 8642 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8643 } 8644 8645 if (is_aa64) { 8646 switch (regime_el(env, mmu_idx)) { 8647 case 1: 8648 if (!is_user) { 8649 xn = pxn || (user_rw & PAGE_WRITE); 8650 } 8651 break; 8652 case 2: 8653 case 3: 8654 break; 8655 } 8656 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8657 switch (regime_el(env, mmu_idx)) { 8658 case 1: 8659 case 3: 8660 if (is_user) { 8661 xn = xn || !(user_rw & PAGE_READ); 8662 } else { 8663 int uwxn = 0; 8664 if (have_wxn) { 8665 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8666 } 8667 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8668 (uwxn && (user_rw & PAGE_WRITE)); 8669 } 8670 break; 8671 case 2: 8672 break; 8673 } 8674 } else { 8675 xn = wxn = 0; 8676 } 8677 8678 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8679 return prot_rw; 8680 } 8681 return prot_rw | PAGE_EXEC; 8682 } 8683 8684 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8685 uint32_t *table, uint32_t address) 8686 { 8687 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8688 TCR *tcr = regime_tcr(env, mmu_idx); 8689 8690 if (address & tcr->mask) { 8691 if (tcr->raw_tcr & TTBCR_PD1) { 8692 /* Translation table walk disabled for TTBR1 */ 8693 return false; 8694 } 8695 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8696 } else { 8697 if (tcr->raw_tcr & TTBCR_PD0) { 8698 /* Translation table walk disabled for TTBR0 */ 8699 return false; 8700 } 8701 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8702 } 8703 *table |= (address >> 18) & 0x3ffc; 8704 return true; 8705 } 8706 8707 /* Translate a S1 pagetable walk through S2 if needed. */ 8708 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8709 hwaddr addr, MemTxAttrs txattrs, 8710 ARMMMUFaultInfo *fi) 8711 { 8712 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8713 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8714 target_ulong s2size; 8715 hwaddr s2pa; 8716 int s2prot; 8717 int ret; 8718 8719 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8720 &txattrs, &s2prot, &s2size, fi, NULL); 8721 if (ret) { 8722 assert(fi->type != ARMFault_None); 8723 fi->s2addr = addr; 8724 fi->stage2 = true; 8725 fi->s1ptw = true; 8726 return ~0; 8727 } 8728 addr = s2pa; 8729 } 8730 return addr; 8731 } 8732 8733 /* All loads done in the course of a page table walk go through here. */ 8734 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8735 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8736 { 8737 ARMCPU *cpu = ARM_CPU(cs); 8738 CPUARMState *env = &cpu->env; 8739 MemTxAttrs attrs = {}; 8740 MemTxResult result = MEMTX_OK; 8741 AddressSpace *as; 8742 uint32_t data; 8743 8744 attrs.secure = is_secure; 8745 as = arm_addressspace(cs, attrs); 8746 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8747 if (fi->s1ptw) { 8748 return 0; 8749 } 8750 if (regime_translation_big_endian(env, mmu_idx)) { 8751 data = address_space_ldl_be(as, addr, attrs, &result); 8752 } else { 8753 data = address_space_ldl_le(as, addr, attrs, &result); 8754 } 8755 if (result == MEMTX_OK) { 8756 return data; 8757 } 8758 fi->type = ARMFault_SyncExternalOnWalk; 8759 fi->ea = arm_extabort_type(result); 8760 return 0; 8761 } 8762 8763 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8764 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8765 { 8766 ARMCPU *cpu = ARM_CPU(cs); 8767 CPUARMState *env = &cpu->env; 8768 MemTxAttrs attrs = {}; 8769 MemTxResult result = MEMTX_OK; 8770 AddressSpace *as; 8771 uint64_t data; 8772 8773 attrs.secure = is_secure; 8774 as = arm_addressspace(cs, attrs); 8775 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8776 if (fi->s1ptw) { 8777 return 0; 8778 } 8779 if (regime_translation_big_endian(env, mmu_idx)) { 8780 data = address_space_ldq_be(as, addr, attrs, &result); 8781 } else { 8782 data = address_space_ldq_le(as, addr, attrs, &result); 8783 } 8784 if (result == MEMTX_OK) { 8785 return data; 8786 } 8787 fi->type = ARMFault_SyncExternalOnWalk; 8788 fi->ea = arm_extabort_type(result); 8789 return 0; 8790 } 8791 8792 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8793 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8794 hwaddr *phys_ptr, int *prot, 8795 target_ulong *page_size, 8796 ARMMMUFaultInfo *fi) 8797 { 8798 CPUState *cs = CPU(arm_env_get_cpu(env)); 8799 int level = 1; 8800 uint32_t table; 8801 uint32_t desc; 8802 int type; 8803 int ap; 8804 int domain = 0; 8805 int domain_prot; 8806 hwaddr phys_addr; 8807 uint32_t dacr; 8808 8809 /* Pagetable walk. */ 8810 /* Lookup l1 descriptor. */ 8811 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8812 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8813 fi->type = ARMFault_Translation; 8814 goto do_fault; 8815 } 8816 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8817 mmu_idx, fi); 8818 if (fi->type != ARMFault_None) { 8819 goto do_fault; 8820 } 8821 type = (desc & 3); 8822 domain = (desc >> 5) & 0x0f; 8823 if (regime_el(env, mmu_idx) == 1) { 8824 dacr = env->cp15.dacr_ns; 8825 } else { 8826 dacr = env->cp15.dacr_s; 8827 } 8828 domain_prot = (dacr >> (domain * 2)) & 3; 8829 if (type == 0) { 8830 /* Section translation fault. */ 8831 fi->type = ARMFault_Translation; 8832 goto do_fault; 8833 } 8834 if (type != 2) { 8835 level = 2; 8836 } 8837 if (domain_prot == 0 || domain_prot == 2) { 8838 fi->type = ARMFault_Domain; 8839 goto do_fault; 8840 } 8841 if (type == 2) { 8842 /* 1Mb section. */ 8843 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8844 ap = (desc >> 10) & 3; 8845 *page_size = 1024 * 1024; 8846 } else { 8847 /* Lookup l2 entry. */ 8848 if (type == 1) { 8849 /* Coarse pagetable. */ 8850 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8851 } else { 8852 /* Fine pagetable. */ 8853 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8854 } 8855 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8856 mmu_idx, fi); 8857 if (fi->type != ARMFault_None) { 8858 goto do_fault; 8859 } 8860 switch (desc & 3) { 8861 case 0: /* Page translation fault. */ 8862 fi->type = ARMFault_Translation; 8863 goto do_fault; 8864 case 1: /* 64k page. */ 8865 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8866 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8867 *page_size = 0x10000; 8868 break; 8869 case 2: /* 4k page. */ 8870 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8871 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8872 *page_size = 0x1000; 8873 break; 8874 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8875 if (type == 1) { 8876 /* ARMv6/XScale extended small page format */ 8877 if (arm_feature(env, ARM_FEATURE_XSCALE) 8878 || arm_feature(env, ARM_FEATURE_V6)) { 8879 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8880 *page_size = 0x1000; 8881 } else { 8882 /* UNPREDICTABLE in ARMv5; we choose to take a 8883 * page translation fault. 8884 */ 8885 fi->type = ARMFault_Translation; 8886 goto do_fault; 8887 } 8888 } else { 8889 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8890 *page_size = 0x400; 8891 } 8892 ap = (desc >> 4) & 3; 8893 break; 8894 default: 8895 /* Never happens, but compiler isn't smart enough to tell. */ 8896 abort(); 8897 } 8898 } 8899 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8900 *prot |= *prot ? PAGE_EXEC : 0; 8901 if (!(*prot & (1 << access_type))) { 8902 /* Access permission fault. */ 8903 fi->type = ARMFault_Permission; 8904 goto do_fault; 8905 } 8906 *phys_ptr = phys_addr; 8907 return false; 8908 do_fault: 8909 fi->domain = domain; 8910 fi->level = level; 8911 return true; 8912 } 8913 8914 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8915 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8916 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8917 target_ulong *page_size, ARMMMUFaultInfo *fi) 8918 { 8919 CPUState *cs = CPU(arm_env_get_cpu(env)); 8920 int level = 1; 8921 uint32_t table; 8922 uint32_t desc; 8923 uint32_t xn; 8924 uint32_t pxn = 0; 8925 int type; 8926 int ap; 8927 int domain = 0; 8928 int domain_prot; 8929 hwaddr phys_addr; 8930 uint32_t dacr; 8931 bool ns; 8932 8933 /* Pagetable walk. */ 8934 /* Lookup l1 descriptor. */ 8935 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8936 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8937 fi->type = ARMFault_Translation; 8938 goto do_fault; 8939 } 8940 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8941 mmu_idx, fi); 8942 if (fi->type != ARMFault_None) { 8943 goto do_fault; 8944 } 8945 type = (desc & 3); 8946 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8947 /* Section translation fault, or attempt to use the encoding 8948 * which is Reserved on implementations without PXN. 8949 */ 8950 fi->type = ARMFault_Translation; 8951 goto do_fault; 8952 } 8953 if ((type == 1) || !(desc & (1 << 18))) { 8954 /* Page or Section. */ 8955 domain = (desc >> 5) & 0x0f; 8956 } 8957 if (regime_el(env, mmu_idx) == 1) { 8958 dacr = env->cp15.dacr_ns; 8959 } else { 8960 dacr = env->cp15.dacr_s; 8961 } 8962 if (type == 1) { 8963 level = 2; 8964 } 8965 domain_prot = (dacr >> (domain * 2)) & 3; 8966 if (domain_prot == 0 || domain_prot == 2) { 8967 /* Section or Page domain fault */ 8968 fi->type = ARMFault_Domain; 8969 goto do_fault; 8970 } 8971 if (type != 1) { 8972 if (desc & (1 << 18)) { 8973 /* Supersection. */ 8974 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8975 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8976 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8977 *page_size = 0x1000000; 8978 } else { 8979 /* Section. */ 8980 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8981 *page_size = 0x100000; 8982 } 8983 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8984 xn = desc & (1 << 4); 8985 pxn = desc & 1; 8986 ns = extract32(desc, 19, 1); 8987 } else { 8988 if (arm_feature(env, ARM_FEATURE_PXN)) { 8989 pxn = (desc >> 2) & 1; 8990 } 8991 ns = extract32(desc, 3, 1); 8992 /* Lookup l2 entry. */ 8993 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8994 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8995 mmu_idx, fi); 8996 if (fi->type != ARMFault_None) { 8997 goto do_fault; 8998 } 8999 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9000 switch (desc & 3) { 9001 case 0: /* Page translation fault. */ 9002 fi->type = ARMFault_Translation; 9003 goto do_fault; 9004 case 1: /* 64k page. */ 9005 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9006 xn = desc & (1 << 15); 9007 *page_size = 0x10000; 9008 break; 9009 case 2: case 3: /* 4k page. */ 9010 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9011 xn = desc & 1; 9012 *page_size = 0x1000; 9013 break; 9014 default: 9015 /* Never happens, but compiler isn't smart enough to tell. */ 9016 abort(); 9017 } 9018 } 9019 if (domain_prot == 3) { 9020 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9021 } else { 9022 if (pxn && !regime_is_user(env, mmu_idx)) { 9023 xn = 1; 9024 } 9025 if (xn && access_type == MMU_INST_FETCH) { 9026 fi->type = ARMFault_Permission; 9027 goto do_fault; 9028 } 9029 9030 if (arm_feature(env, ARM_FEATURE_V6K) && 9031 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9032 /* The simplified model uses AP[0] as an access control bit. */ 9033 if ((ap & 1) == 0) { 9034 /* Access flag fault. */ 9035 fi->type = ARMFault_AccessFlag; 9036 goto do_fault; 9037 } 9038 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9039 } else { 9040 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9041 } 9042 if (*prot && !xn) { 9043 *prot |= PAGE_EXEC; 9044 } 9045 if (!(*prot & (1 << access_type))) { 9046 /* Access permission fault. */ 9047 fi->type = ARMFault_Permission; 9048 goto do_fault; 9049 } 9050 } 9051 if (ns) { 9052 /* The NS bit will (as required by the architecture) have no effect if 9053 * the CPU doesn't support TZ or this is a non-secure translation 9054 * regime, because the attribute will already be non-secure. 9055 */ 9056 attrs->secure = false; 9057 } 9058 *phys_ptr = phys_addr; 9059 return false; 9060 do_fault: 9061 fi->domain = domain; 9062 fi->level = level; 9063 return true; 9064 } 9065 9066 /* 9067 * check_s2_mmu_setup 9068 * @cpu: ARMCPU 9069 * @is_aa64: True if the translation regime is in AArch64 state 9070 * @startlevel: Suggested starting level 9071 * @inputsize: Bitsize of IPAs 9072 * @stride: Page-table stride (See the ARM ARM) 9073 * 9074 * Returns true if the suggested S2 translation parameters are OK and 9075 * false otherwise. 9076 */ 9077 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9078 int inputsize, int stride) 9079 { 9080 const int grainsize = stride + 3; 9081 int startsizecheck; 9082 9083 /* Negative levels are never allowed. */ 9084 if (level < 0) { 9085 return false; 9086 } 9087 9088 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9089 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9090 return false; 9091 } 9092 9093 if (is_aa64) { 9094 CPUARMState *env = &cpu->env; 9095 unsigned int pamax = arm_pamax(cpu); 9096 9097 switch (stride) { 9098 case 13: /* 64KB Pages. */ 9099 if (level == 0 || (level == 1 && pamax <= 42)) { 9100 return false; 9101 } 9102 break; 9103 case 11: /* 16KB Pages. */ 9104 if (level == 0 || (level == 1 && pamax <= 40)) { 9105 return false; 9106 } 9107 break; 9108 case 9: /* 4KB Pages. */ 9109 if (level == 0 && pamax <= 42) { 9110 return false; 9111 } 9112 break; 9113 default: 9114 g_assert_not_reached(); 9115 } 9116 9117 /* Inputsize checks. */ 9118 if (inputsize > pamax && 9119 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9120 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9121 return false; 9122 } 9123 } else { 9124 /* AArch32 only supports 4KB pages. Assert on that. */ 9125 assert(stride == 9); 9126 9127 if (level == 0) { 9128 return false; 9129 } 9130 } 9131 return true; 9132 } 9133 9134 /* Translate from the 4-bit stage 2 representation of 9135 * memory attributes (without cache-allocation hints) to 9136 * the 8-bit representation of the stage 1 MAIR registers 9137 * (which includes allocation hints). 9138 * 9139 * ref: shared/translation/attrs/S2AttrDecode() 9140 * .../S2ConvertAttrsHints() 9141 */ 9142 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9143 { 9144 uint8_t hiattr = extract32(s2attrs, 2, 2); 9145 uint8_t loattr = extract32(s2attrs, 0, 2); 9146 uint8_t hihint = 0, lohint = 0; 9147 9148 if (hiattr != 0) { /* normal memory */ 9149 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9150 hiattr = loattr = 1; /* non-cacheable */ 9151 } else { 9152 if (hiattr != 1) { /* Write-through or write-back */ 9153 hihint = 3; /* RW allocate */ 9154 } 9155 if (loattr != 1) { /* Write-through or write-back */ 9156 lohint = 3; /* RW allocate */ 9157 } 9158 } 9159 } 9160 9161 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9162 } 9163 9164 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9165 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9166 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9167 target_ulong *page_size_ptr, 9168 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9169 { 9170 ARMCPU *cpu = arm_env_get_cpu(env); 9171 CPUState *cs = CPU(cpu); 9172 /* Read an LPAE long-descriptor translation table. */ 9173 ARMFaultType fault_type = ARMFault_Translation; 9174 uint32_t level; 9175 uint32_t epd = 0; 9176 int32_t t0sz, t1sz; 9177 uint32_t tg; 9178 uint64_t ttbr; 9179 int ttbr_select; 9180 hwaddr descaddr, indexmask, indexmask_grainsize; 9181 uint32_t tableattrs; 9182 target_ulong page_size; 9183 uint32_t attrs; 9184 int32_t stride = 9; 9185 int32_t addrsize; 9186 int inputsize; 9187 int32_t tbi = 0; 9188 TCR *tcr = regime_tcr(env, mmu_idx); 9189 int ap, ns, xn, pxn; 9190 uint32_t el = regime_el(env, mmu_idx); 9191 bool ttbr1_valid = true; 9192 uint64_t descaddrmask; 9193 bool aarch64 = arm_el_is_aa64(env, el); 9194 9195 /* TODO: 9196 * This code does not handle the different format TCR for VTCR_EL2. 9197 * This code also does not support shareability levels. 9198 * Attribute and permission bit handling should also be checked when adding 9199 * support for those page table walks. 9200 */ 9201 if (aarch64) { 9202 level = 0; 9203 addrsize = 64; 9204 if (el > 1) { 9205 if (mmu_idx != ARMMMUIdx_S2NS) { 9206 tbi = extract64(tcr->raw_tcr, 20, 1); 9207 } 9208 } else { 9209 if (extract64(address, 55, 1)) { 9210 tbi = extract64(tcr->raw_tcr, 38, 1); 9211 } else { 9212 tbi = extract64(tcr->raw_tcr, 37, 1); 9213 } 9214 } 9215 tbi *= 8; 9216 9217 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9218 * invalid. 9219 */ 9220 if (el > 1) { 9221 ttbr1_valid = false; 9222 } 9223 } else { 9224 level = 1; 9225 addrsize = 32; 9226 /* There is no TTBR1 for EL2 */ 9227 if (el == 2) { 9228 ttbr1_valid = false; 9229 } 9230 } 9231 9232 /* Determine whether this address is in the region controlled by 9233 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9234 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9235 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9236 */ 9237 if (aarch64) { 9238 /* AArch64 translation. */ 9239 t0sz = extract32(tcr->raw_tcr, 0, 6); 9240 t0sz = MIN(t0sz, 39); 9241 t0sz = MAX(t0sz, 16); 9242 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9243 /* AArch32 stage 1 translation. */ 9244 t0sz = extract32(tcr->raw_tcr, 0, 3); 9245 } else { 9246 /* AArch32 stage 2 translation. */ 9247 bool sext = extract32(tcr->raw_tcr, 4, 1); 9248 bool sign = extract32(tcr->raw_tcr, 3, 1); 9249 /* Address size is 40-bit for a stage 2 translation, 9250 * and t0sz can be negative (from -8 to 7), 9251 * so we need to adjust it to use the TTBR selecting logic below. 9252 */ 9253 addrsize = 40; 9254 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9255 9256 /* If the sign-extend bit is not the same as t0sz[3], the result 9257 * is unpredictable. Flag this as a guest error. */ 9258 if (sign != sext) { 9259 qemu_log_mask(LOG_GUEST_ERROR, 9260 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9261 } 9262 } 9263 t1sz = extract32(tcr->raw_tcr, 16, 6); 9264 if (aarch64) { 9265 t1sz = MIN(t1sz, 39); 9266 t1sz = MAX(t1sz, 16); 9267 } 9268 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9269 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9270 ttbr_select = 0; 9271 } else if (ttbr1_valid && t1sz && 9272 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9273 /* there is a ttbr1 region and we are in it (high bits all one) */ 9274 ttbr_select = 1; 9275 } else if (!t0sz) { 9276 /* ttbr0 region is "everything not in the ttbr1 region" */ 9277 ttbr_select = 0; 9278 } else if (!t1sz && ttbr1_valid) { 9279 /* ttbr1 region is "everything not in the ttbr0 region" */ 9280 ttbr_select = 1; 9281 } else { 9282 /* in the gap between the two regions, this is a Translation fault */ 9283 fault_type = ARMFault_Translation; 9284 goto do_fault; 9285 } 9286 9287 /* Note that QEMU ignores shareability and cacheability attributes, 9288 * so we don't need to do anything with the SH, ORGN, IRGN fields 9289 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9290 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9291 * implement any ASID-like capability so we can ignore it (instead 9292 * we will always flush the TLB any time the ASID is changed). 9293 */ 9294 if (ttbr_select == 0) { 9295 ttbr = regime_ttbr(env, mmu_idx, 0); 9296 if (el < 2) { 9297 epd = extract32(tcr->raw_tcr, 7, 1); 9298 } 9299 inputsize = addrsize - t0sz; 9300 9301 tg = extract32(tcr->raw_tcr, 14, 2); 9302 if (tg == 1) { /* 64KB pages */ 9303 stride = 13; 9304 } 9305 if (tg == 2) { /* 16KB pages */ 9306 stride = 11; 9307 } 9308 } else { 9309 /* We should only be here if TTBR1 is valid */ 9310 assert(ttbr1_valid); 9311 9312 ttbr = regime_ttbr(env, mmu_idx, 1); 9313 epd = extract32(tcr->raw_tcr, 23, 1); 9314 inputsize = addrsize - t1sz; 9315 9316 tg = extract32(tcr->raw_tcr, 30, 2); 9317 if (tg == 3) { /* 64KB pages */ 9318 stride = 13; 9319 } 9320 if (tg == 1) { /* 16KB pages */ 9321 stride = 11; 9322 } 9323 } 9324 9325 /* Here we should have set up all the parameters for the translation: 9326 * inputsize, ttbr, epd, stride, tbi 9327 */ 9328 9329 if (epd) { 9330 /* Translation table walk disabled => Translation fault on TLB miss 9331 * Note: This is always 0 on 64-bit EL2 and EL3. 9332 */ 9333 goto do_fault; 9334 } 9335 9336 if (mmu_idx != ARMMMUIdx_S2NS) { 9337 /* The starting level depends on the virtual address size (which can 9338 * be up to 48 bits) and the translation granule size. It indicates 9339 * the number of strides (stride bits at a time) needed to 9340 * consume the bits of the input address. In the pseudocode this is: 9341 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9342 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9343 * our 'stride + 3' and 'stride' is our 'stride'. 9344 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9345 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9346 * = 4 - (inputsize - 4) / stride; 9347 */ 9348 level = 4 - (inputsize - 4) / stride; 9349 } else { 9350 /* For stage 2 translations the starting level is specified by the 9351 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9352 */ 9353 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9354 uint32_t startlevel; 9355 bool ok; 9356 9357 if (!aarch64 || stride == 9) { 9358 /* AArch32 or 4KB pages */ 9359 startlevel = 2 - sl0; 9360 } else { 9361 /* 16KB or 64KB pages */ 9362 startlevel = 3 - sl0; 9363 } 9364 9365 /* Check that the starting level is valid. */ 9366 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9367 inputsize, stride); 9368 if (!ok) { 9369 fault_type = ARMFault_Translation; 9370 goto do_fault; 9371 } 9372 level = startlevel; 9373 } 9374 9375 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9376 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9377 9378 /* Now we can extract the actual base address from the TTBR */ 9379 descaddr = extract64(ttbr, 0, 48); 9380 descaddr &= ~indexmask; 9381 9382 /* The address field in the descriptor goes up to bit 39 for ARMv7 9383 * but up to bit 47 for ARMv8, but we use the descaddrmask 9384 * up to bit 39 for AArch32, because we don't need other bits in that case 9385 * to construct next descriptor address (anyway they should be all zeroes). 9386 */ 9387 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9388 ~indexmask_grainsize; 9389 9390 /* Secure accesses start with the page table in secure memory and 9391 * can be downgraded to non-secure at any step. Non-secure accesses 9392 * remain non-secure. We implement this by just ORing in the NSTable/NS 9393 * bits at each step. 9394 */ 9395 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9396 for (;;) { 9397 uint64_t descriptor; 9398 bool nstable; 9399 9400 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9401 descaddr &= ~7ULL; 9402 nstable = extract32(tableattrs, 4, 1); 9403 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9404 if (fi->type != ARMFault_None) { 9405 goto do_fault; 9406 } 9407 9408 if (!(descriptor & 1) || 9409 (!(descriptor & 2) && (level == 3))) { 9410 /* Invalid, or the Reserved level 3 encoding */ 9411 goto do_fault; 9412 } 9413 descaddr = descriptor & descaddrmask; 9414 9415 if ((descriptor & 2) && (level < 3)) { 9416 /* Table entry. The top five bits are attributes which may 9417 * propagate down through lower levels of the table (and 9418 * which are all arranged so that 0 means "no effect", so 9419 * we can gather them up by ORing in the bits at each level). 9420 */ 9421 tableattrs |= extract64(descriptor, 59, 5); 9422 level++; 9423 indexmask = indexmask_grainsize; 9424 continue; 9425 } 9426 /* Block entry at level 1 or 2, or page entry at level 3. 9427 * These are basically the same thing, although the number 9428 * of bits we pull in from the vaddr varies. 9429 */ 9430 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9431 descaddr |= (address & (page_size - 1)); 9432 /* Extract attributes from the descriptor */ 9433 attrs = extract64(descriptor, 2, 10) 9434 | (extract64(descriptor, 52, 12) << 10); 9435 9436 if (mmu_idx == ARMMMUIdx_S2NS) { 9437 /* Stage 2 table descriptors do not include any attribute fields */ 9438 break; 9439 } 9440 /* Merge in attributes from table descriptors */ 9441 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9442 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9443 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9444 * means "force PL1 access only", which means forcing AP[1] to 0. 9445 */ 9446 if (extract32(tableattrs, 2, 1)) { 9447 attrs &= ~(1 << 4); 9448 } 9449 attrs |= nstable << 3; /* NS */ 9450 break; 9451 } 9452 /* Here descaddr is the final physical address, and attributes 9453 * are all in attrs. 9454 */ 9455 fault_type = ARMFault_AccessFlag; 9456 if ((attrs & (1 << 8)) == 0) { 9457 /* Access flag */ 9458 goto do_fault; 9459 } 9460 9461 ap = extract32(attrs, 4, 2); 9462 xn = extract32(attrs, 12, 1); 9463 9464 if (mmu_idx == ARMMMUIdx_S2NS) { 9465 ns = true; 9466 *prot = get_S2prot(env, ap, xn); 9467 } else { 9468 ns = extract32(attrs, 3, 1); 9469 pxn = extract32(attrs, 11, 1); 9470 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9471 } 9472 9473 fault_type = ARMFault_Permission; 9474 if (!(*prot & (1 << access_type))) { 9475 goto do_fault; 9476 } 9477 9478 if (ns) { 9479 /* The NS bit will (as required by the architecture) have no effect if 9480 * the CPU doesn't support TZ or this is a non-secure translation 9481 * regime, because the attribute will already be non-secure. 9482 */ 9483 txattrs->secure = false; 9484 } 9485 9486 if (cacheattrs != NULL) { 9487 if (mmu_idx == ARMMMUIdx_S2NS) { 9488 cacheattrs->attrs = convert_stage2_attrs(env, 9489 extract32(attrs, 0, 4)); 9490 } else { 9491 /* Index into MAIR registers for cache attributes */ 9492 uint8_t attrindx = extract32(attrs, 0, 3); 9493 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9494 assert(attrindx <= 7); 9495 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9496 } 9497 cacheattrs->shareability = extract32(attrs, 6, 2); 9498 } 9499 9500 *phys_ptr = descaddr; 9501 *page_size_ptr = page_size; 9502 return false; 9503 9504 do_fault: 9505 fi->type = fault_type; 9506 fi->level = level; 9507 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9508 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9509 return true; 9510 } 9511 9512 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9513 ARMMMUIdx mmu_idx, 9514 int32_t address, int *prot) 9515 { 9516 if (!arm_feature(env, ARM_FEATURE_M)) { 9517 *prot = PAGE_READ | PAGE_WRITE; 9518 switch (address) { 9519 case 0xF0000000 ... 0xFFFFFFFF: 9520 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9521 /* hivecs execing is ok */ 9522 *prot |= PAGE_EXEC; 9523 } 9524 break; 9525 case 0x00000000 ... 0x7FFFFFFF: 9526 *prot |= PAGE_EXEC; 9527 break; 9528 } 9529 } else { 9530 /* Default system address map for M profile cores. 9531 * The architecture specifies which regions are execute-never; 9532 * at the MPU level no other checks are defined. 9533 */ 9534 switch (address) { 9535 case 0x00000000 ... 0x1fffffff: /* ROM */ 9536 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9537 case 0x60000000 ... 0x7fffffff: /* RAM */ 9538 case 0x80000000 ... 0x9fffffff: /* RAM */ 9539 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9540 break; 9541 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9542 case 0xa0000000 ... 0xbfffffff: /* Device */ 9543 case 0xc0000000 ... 0xdfffffff: /* Device */ 9544 case 0xe0000000 ... 0xffffffff: /* System */ 9545 *prot = PAGE_READ | PAGE_WRITE; 9546 break; 9547 default: 9548 g_assert_not_reached(); 9549 } 9550 } 9551 } 9552 9553 static bool pmsav7_use_background_region(ARMCPU *cpu, 9554 ARMMMUIdx mmu_idx, bool is_user) 9555 { 9556 /* Return true if we should use the default memory map as a 9557 * "background" region if there are no hits against any MPU regions. 9558 */ 9559 CPUARMState *env = &cpu->env; 9560 9561 if (is_user) { 9562 return false; 9563 } 9564 9565 if (arm_feature(env, ARM_FEATURE_M)) { 9566 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9567 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9568 } else { 9569 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9570 } 9571 } 9572 9573 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9574 { 9575 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9576 return arm_feature(env, ARM_FEATURE_M) && 9577 extract32(address, 20, 12) == 0xe00; 9578 } 9579 9580 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9581 { 9582 /* True if address is in the M profile system region 9583 * 0xe0000000 - 0xffffffff 9584 */ 9585 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9586 } 9587 9588 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9589 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9590 hwaddr *phys_ptr, int *prot, 9591 ARMMMUFaultInfo *fi) 9592 { 9593 ARMCPU *cpu = arm_env_get_cpu(env); 9594 int n; 9595 bool is_user = regime_is_user(env, mmu_idx); 9596 9597 *phys_ptr = address; 9598 *prot = 0; 9599 9600 if (regime_translation_disabled(env, mmu_idx) || 9601 m_is_ppb_region(env, address)) { 9602 /* MPU disabled or M profile PPB access: use default memory map. 9603 * The other case which uses the default memory map in the 9604 * v7M ARM ARM pseudocode is exception vector reads from the vector 9605 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9606 * which always does a direct read using address_space_ldl(), rather 9607 * than going via this function, so we don't need to check that here. 9608 */ 9609 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9610 } else { /* MPU enabled */ 9611 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9612 /* region search */ 9613 uint32_t base = env->pmsav7.drbar[n]; 9614 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9615 uint32_t rmask; 9616 bool srdis = false; 9617 9618 if (!(env->pmsav7.drsr[n] & 0x1)) { 9619 continue; 9620 } 9621 9622 if (!rsize) { 9623 qemu_log_mask(LOG_GUEST_ERROR, 9624 "DRSR[%d]: Rsize field cannot be 0\n", n); 9625 continue; 9626 } 9627 rsize++; 9628 rmask = (1ull << rsize) - 1; 9629 9630 if (base & rmask) { 9631 qemu_log_mask(LOG_GUEST_ERROR, 9632 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9633 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9634 n, base, rmask); 9635 continue; 9636 } 9637 9638 if (address < base || address > base + rmask) { 9639 continue; 9640 } 9641 9642 /* Region matched */ 9643 9644 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9645 int i, snd; 9646 uint32_t srdis_mask; 9647 9648 rsize -= 3; /* sub region size (power of 2) */ 9649 snd = ((address - base) >> rsize) & 0x7; 9650 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9651 9652 srdis_mask = srdis ? 0x3 : 0x0; 9653 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9654 /* This will check in groups of 2, 4 and then 8, whether 9655 * the subregion bits are consistent. rsize is incremented 9656 * back up to give the region size, considering consistent 9657 * adjacent subregions as one region. Stop testing if rsize 9658 * is already big enough for an entire QEMU page. 9659 */ 9660 int snd_rounded = snd & ~(i - 1); 9661 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9662 snd_rounded + 8, i); 9663 if (srdis_mask ^ srdis_multi) { 9664 break; 9665 } 9666 srdis_mask = (srdis_mask << i) | srdis_mask; 9667 rsize++; 9668 } 9669 } 9670 if (rsize < TARGET_PAGE_BITS) { 9671 qemu_log_mask(LOG_UNIMP, 9672 "DRSR[%d]: No support for MPU (sub)region size of" 9673 " %" PRIu32 " bytes. Minimum is %d.\n", 9674 n, (1 << rsize), TARGET_PAGE_SIZE); 9675 continue; 9676 } 9677 if (srdis) { 9678 continue; 9679 } 9680 break; 9681 } 9682 9683 if (n == -1) { /* no hits */ 9684 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9685 /* background fault */ 9686 fi->type = ARMFault_Background; 9687 return true; 9688 } 9689 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9690 } else { /* a MPU hit! */ 9691 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9692 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9693 9694 if (m_is_system_region(env, address)) { 9695 /* System space is always execute never */ 9696 xn = 1; 9697 } 9698 9699 if (is_user) { /* User mode AP bit decoding */ 9700 switch (ap) { 9701 case 0: 9702 case 1: 9703 case 5: 9704 break; /* no access */ 9705 case 3: 9706 *prot |= PAGE_WRITE; 9707 /* fall through */ 9708 case 2: 9709 case 6: 9710 *prot |= PAGE_READ | PAGE_EXEC; 9711 break; 9712 case 7: 9713 /* for v7M, same as 6; for R profile a reserved value */ 9714 if (arm_feature(env, ARM_FEATURE_M)) { 9715 *prot |= PAGE_READ | PAGE_EXEC; 9716 break; 9717 } 9718 /* fall through */ 9719 default: 9720 qemu_log_mask(LOG_GUEST_ERROR, 9721 "DRACR[%d]: Bad value for AP bits: 0x%" 9722 PRIx32 "\n", n, ap); 9723 } 9724 } else { /* Priv. mode AP bits decoding */ 9725 switch (ap) { 9726 case 0: 9727 break; /* no access */ 9728 case 1: 9729 case 2: 9730 case 3: 9731 *prot |= PAGE_WRITE; 9732 /* fall through */ 9733 case 5: 9734 case 6: 9735 *prot |= PAGE_READ | PAGE_EXEC; 9736 break; 9737 case 7: 9738 /* for v7M, same as 6; for R profile a reserved value */ 9739 if (arm_feature(env, ARM_FEATURE_M)) { 9740 *prot |= PAGE_READ | PAGE_EXEC; 9741 break; 9742 } 9743 /* fall through */ 9744 default: 9745 qemu_log_mask(LOG_GUEST_ERROR, 9746 "DRACR[%d]: Bad value for AP bits: 0x%" 9747 PRIx32 "\n", n, ap); 9748 } 9749 } 9750 9751 /* execute never */ 9752 if (xn) { 9753 *prot &= ~PAGE_EXEC; 9754 } 9755 } 9756 } 9757 9758 fi->type = ARMFault_Permission; 9759 fi->level = 1; 9760 return !(*prot & (1 << access_type)); 9761 } 9762 9763 static bool v8m_is_sau_exempt(CPUARMState *env, 9764 uint32_t address, MMUAccessType access_type) 9765 { 9766 /* The architecture specifies that certain address ranges are 9767 * exempt from v8M SAU/IDAU checks. 9768 */ 9769 return 9770 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9771 (address >= 0xe0000000 && address <= 0xe0002fff) || 9772 (address >= 0xe000e000 && address <= 0xe000efff) || 9773 (address >= 0xe002e000 && address <= 0xe002efff) || 9774 (address >= 0xe0040000 && address <= 0xe0041fff) || 9775 (address >= 0xe00ff000 && address <= 0xe00fffff); 9776 } 9777 9778 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9779 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9780 V8M_SAttributes *sattrs) 9781 { 9782 /* Look up the security attributes for this address. Compare the 9783 * pseudocode SecurityCheck() function. 9784 * We assume the caller has zero-initialized *sattrs. 9785 */ 9786 ARMCPU *cpu = arm_env_get_cpu(env); 9787 int r; 9788 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9789 int idau_region = IREGION_NOTVALID; 9790 9791 if (cpu->idau) { 9792 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9793 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9794 9795 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9796 &idau_nsc); 9797 } 9798 9799 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9800 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9801 return; 9802 } 9803 9804 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9805 sattrs->ns = !regime_is_secure(env, mmu_idx); 9806 return; 9807 } 9808 9809 if (idau_region != IREGION_NOTVALID) { 9810 sattrs->irvalid = true; 9811 sattrs->iregion = idau_region; 9812 } 9813 9814 switch (env->sau.ctrl & 3) { 9815 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9816 break; 9817 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9818 sattrs->ns = true; 9819 break; 9820 default: /* SAU.ENABLE == 1 */ 9821 for (r = 0; r < cpu->sau_sregion; r++) { 9822 if (env->sau.rlar[r] & 1) { 9823 uint32_t base = env->sau.rbar[r] & ~0x1f; 9824 uint32_t limit = env->sau.rlar[r] | 0x1f; 9825 9826 if (base <= address && limit >= address) { 9827 if (sattrs->srvalid) { 9828 /* If we hit in more than one region then we must report 9829 * as Secure, not NS-Callable, with no valid region 9830 * number info. 9831 */ 9832 sattrs->ns = false; 9833 sattrs->nsc = false; 9834 sattrs->sregion = 0; 9835 sattrs->srvalid = false; 9836 break; 9837 } else { 9838 if (env->sau.rlar[r] & 2) { 9839 sattrs->nsc = true; 9840 } else { 9841 sattrs->ns = true; 9842 } 9843 sattrs->srvalid = true; 9844 sattrs->sregion = r; 9845 } 9846 } 9847 } 9848 } 9849 9850 /* The IDAU will override the SAU lookup results if it specifies 9851 * higher security than the SAU does. 9852 */ 9853 if (!idau_ns) { 9854 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 9855 sattrs->ns = false; 9856 sattrs->nsc = idau_nsc; 9857 } 9858 } 9859 break; 9860 } 9861 } 9862 9863 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9864 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9865 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9866 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9867 { 9868 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9869 * that a full phys-to-virt translation does). 9870 * mregion is (if not NULL) set to the region number which matched, 9871 * or -1 if no region number is returned (MPU off, address did not 9872 * hit a region, address hit in multiple regions). 9873 */ 9874 ARMCPU *cpu = arm_env_get_cpu(env); 9875 bool is_user = regime_is_user(env, mmu_idx); 9876 uint32_t secure = regime_is_secure(env, mmu_idx); 9877 int n; 9878 int matchregion = -1; 9879 bool hit = false; 9880 9881 *phys_ptr = address; 9882 *prot = 0; 9883 if (mregion) { 9884 *mregion = -1; 9885 } 9886 9887 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9888 * was an exception vector read from the vector table (which is always 9889 * done using the default system address map), because those accesses 9890 * are done in arm_v7m_load_vector(), which always does a direct 9891 * read using address_space_ldl(), rather than going via this function. 9892 */ 9893 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9894 hit = true; 9895 } else if (m_is_ppb_region(env, address)) { 9896 hit = true; 9897 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9898 hit = true; 9899 } else { 9900 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9901 /* region search */ 9902 /* Note that the base address is bits [31:5] from the register 9903 * with bits [4:0] all zeroes, but the limit address is bits 9904 * [31:5] from the register with bits [4:0] all ones. 9905 */ 9906 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9907 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9908 9909 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9910 /* Region disabled */ 9911 continue; 9912 } 9913 9914 if (address < base || address > limit) { 9915 continue; 9916 } 9917 9918 if (hit) { 9919 /* Multiple regions match -- always a failure (unlike 9920 * PMSAv7 where highest-numbered-region wins) 9921 */ 9922 fi->type = ARMFault_Permission; 9923 fi->level = 1; 9924 return true; 9925 } 9926 9927 matchregion = n; 9928 hit = true; 9929 9930 if (base & ~TARGET_PAGE_MASK) { 9931 qemu_log_mask(LOG_UNIMP, 9932 "MPU_RBAR[%d]: No support for MPU region base" 9933 "address of 0x%" PRIx32 ". Minimum alignment is " 9934 "%d\n", 9935 n, base, TARGET_PAGE_BITS); 9936 continue; 9937 } 9938 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9939 qemu_log_mask(LOG_UNIMP, 9940 "MPU_RBAR[%d]: No support for MPU region limit" 9941 "address of 0x%" PRIx32 ". Minimum alignment is " 9942 "%d\n", 9943 n, limit, TARGET_PAGE_BITS); 9944 continue; 9945 } 9946 } 9947 } 9948 9949 if (!hit) { 9950 /* background fault */ 9951 fi->type = ARMFault_Background; 9952 return true; 9953 } 9954 9955 if (matchregion == -1) { 9956 /* hit using the background region */ 9957 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9958 } else { 9959 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9960 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9961 9962 if (m_is_system_region(env, address)) { 9963 /* System space is always execute never */ 9964 xn = 1; 9965 } 9966 9967 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9968 if (*prot && !xn) { 9969 *prot |= PAGE_EXEC; 9970 } 9971 /* We don't need to look the attribute up in the MAIR0/MAIR1 9972 * registers because that only tells us about cacheability. 9973 */ 9974 if (mregion) { 9975 *mregion = matchregion; 9976 } 9977 } 9978 9979 fi->type = ARMFault_Permission; 9980 fi->level = 1; 9981 return !(*prot & (1 << access_type)); 9982 } 9983 9984 9985 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9986 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9987 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9988 int *prot, ARMMMUFaultInfo *fi) 9989 { 9990 uint32_t secure = regime_is_secure(env, mmu_idx); 9991 V8M_SAttributes sattrs = {}; 9992 9993 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9994 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9995 if (access_type == MMU_INST_FETCH) { 9996 /* Instruction fetches always use the MMU bank and the 9997 * transaction attribute determined by the fetch address, 9998 * regardless of CPU state. This is painful for QEMU 9999 * to handle, because it would mean we need to encode 10000 * into the mmu_idx not just the (user, negpri) information 10001 * for the current security state but also that for the 10002 * other security state, which would balloon the number 10003 * of mmu_idx values needed alarmingly. 10004 * Fortunately we can avoid this because it's not actually 10005 * possible to arbitrarily execute code from memory with 10006 * the wrong security attribute: it will always generate 10007 * an exception of some kind or another, apart from the 10008 * special case of an NS CPU executing an SG instruction 10009 * in S&NSC memory. So we always just fail the translation 10010 * here and sort things out in the exception handler 10011 * (including possibly emulating an SG instruction). 10012 */ 10013 if (sattrs.ns != !secure) { 10014 if (sattrs.nsc) { 10015 fi->type = ARMFault_QEMU_NSCExec; 10016 } else { 10017 fi->type = ARMFault_QEMU_SFault; 10018 } 10019 *phys_ptr = address; 10020 *prot = 0; 10021 return true; 10022 } 10023 } else { 10024 /* For data accesses we always use the MMU bank indicated 10025 * by the current CPU state, but the security attributes 10026 * might downgrade a secure access to nonsecure. 10027 */ 10028 if (sattrs.ns) { 10029 txattrs->secure = false; 10030 } else if (!secure) { 10031 /* NS access to S memory must fault. 10032 * Architecturally we should first check whether the 10033 * MPU information for this address indicates that we 10034 * are doing an unaligned access to Device memory, which 10035 * should generate a UsageFault instead. QEMU does not 10036 * currently check for that kind of unaligned access though. 10037 * If we added it we would need to do so as a special case 10038 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10039 */ 10040 fi->type = ARMFault_QEMU_SFault; 10041 *phys_ptr = address; 10042 *prot = 0; 10043 return true; 10044 } 10045 } 10046 } 10047 10048 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10049 txattrs, prot, fi, NULL); 10050 } 10051 10052 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10053 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10054 hwaddr *phys_ptr, int *prot, 10055 ARMMMUFaultInfo *fi) 10056 { 10057 int n; 10058 uint32_t mask; 10059 uint32_t base; 10060 bool is_user = regime_is_user(env, mmu_idx); 10061 10062 if (regime_translation_disabled(env, mmu_idx)) { 10063 /* MPU disabled. */ 10064 *phys_ptr = address; 10065 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10066 return false; 10067 } 10068 10069 *phys_ptr = address; 10070 for (n = 7; n >= 0; n--) { 10071 base = env->cp15.c6_region[n]; 10072 if ((base & 1) == 0) { 10073 continue; 10074 } 10075 mask = 1 << ((base >> 1) & 0x1f); 10076 /* Keep this shift separate from the above to avoid an 10077 (undefined) << 32. */ 10078 mask = (mask << 1) - 1; 10079 if (((base ^ address) & ~mask) == 0) { 10080 break; 10081 } 10082 } 10083 if (n < 0) { 10084 fi->type = ARMFault_Background; 10085 return true; 10086 } 10087 10088 if (access_type == MMU_INST_FETCH) { 10089 mask = env->cp15.pmsav5_insn_ap; 10090 } else { 10091 mask = env->cp15.pmsav5_data_ap; 10092 } 10093 mask = (mask >> (n * 4)) & 0xf; 10094 switch (mask) { 10095 case 0: 10096 fi->type = ARMFault_Permission; 10097 fi->level = 1; 10098 return true; 10099 case 1: 10100 if (is_user) { 10101 fi->type = ARMFault_Permission; 10102 fi->level = 1; 10103 return true; 10104 } 10105 *prot = PAGE_READ | PAGE_WRITE; 10106 break; 10107 case 2: 10108 *prot = PAGE_READ; 10109 if (!is_user) { 10110 *prot |= PAGE_WRITE; 10111 } 10112 break; 10113 case 3: 10114 *prot = PAGE_READ | PAGE_WRITE; 10115 break; 10116 case 5: 10117 if (is_user) { 10118 fi->type = ARMFault_Permission; 10119 fi->level = 1; 10120 return true; 10121 } 10122 *prot = PAGE_READ; 10123 break; 10124 case 6: 10125 *prot = PAGE_READ; 10126 break; 10127 default: 10128 /* Bad permission. */ 10129 fi->type = ARMFault_Permission; 10130 fi->level = 1; 10131 return true; 10132 } 10133 *prot |= PAGE_EXEC; 10134 return false; 10135 } 10136 10137 /* Combine either inner or outer cacheability attributes for normal 10138 * memory, according to table D4-42 and pseudocode procedure 10139 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10140 * 10141 * NB: only stage 1 includes allocation hints (RW bits), leading to 10142 * some asymmetry. 10143 */ 10144 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10145 { 10146 if (s1 == 4 || s2 == 4) { 10147 /* non-cacheable has precedence */ 10148 return 4; 10149 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10150 /* stage 1 write-through takes precedence */ 10151 return s1; 10152 } else if (extract32(s2, 2, 2) == 2) { 10153 /* stage 2 write-through takes precedence, but the allocation hint 10154 * is still taken from stage 1 10155 */ 10156 return (2 << 2) | extract32(s1, 0, 2); 10157 } else { /* write-back */ 10158 return s1; 10159 } 10160 } 10161 10162 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10163 * and CombineS1S2Desc() 10164 * 10165 * @s1: Attributes from stage 1 walk 10166 * @s2: Attributes from stage 2 walk 10167 */ 10168 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10169 { 10170 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10171 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10172 ARMCacheAttrs ret; 10173 10174 /* Combine shareability attributes (table D4-43) */ 10175 if (s1.shareability == 2 || s2.shareability == 2) { 10176 /* if either are outer-shareable, the result is outer-shareable */ 10177 ret.shareability = 2; 10178 } else if (s1.shareability == 3 || s2.shareability == 3) { 10179 /* if either are inner-shareable, the result is inner-shareable */ 10180 ret.shareability = 3; 10181 } else { 10182 /* both non-shareable */ 10183 ret.shareability = 0; 10184 } 10185 10186 /* Combine memory type and cacheability attributes */ 10187 if (s1hi == 0 || s2hi == 0) { 10188 /* Device has precedence over normal */ 10189 if (s1lo == 0 || s2lo == 0) { 10190 /* nGnRnE has precedence over anything */ 10191 ret.attrs = 0; 10192 } else if (s1lo == 4 || s2lo == 4) { 10193 /* non-Reordering has precedence over Reordering */ 10194 ret.attrs = 4; /* nGnRE */ 10195 } else if (s1lo == 8 || s2lo == 8) { 10196 /* non-Gathering has precedence over Gathering */ 10197 ret.attrs = 8; /* nGRE */ 10198 } else { 10199 ret.attrs = 0xc; /* GRE */ 10200 } 10201 10202 /* Any location for which the resultant memory type is any 10203 * type of Device memory is always treated as Outer Shareable. 10204 */ 10205 ret.shareability = 2; 10206 } else { /* Normal memory */ 10207 /* Outer/inner cacheability combine independently */ 10208 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10209 | combine_cacheattr_nibble(s1lo, s2lo); 10210 10211 if (ret.attrs == 0x44) { 10212 /* Any location for which the resultant memory type is Normal 10213 * Inner Non-cacheable, Outer Non-cacheable is always treated 10214 * as Outer Shareable. 10215 */ 10216 ret.shareability = 2; 10217 } 10218 } 10219 10220 return ret; 10221 } 10222 10223 10224 /* get_phys_addr - get the physical address for this virtual address 10225 * 10226 * Find the physical address corresponding to the given virtual address, 10227 * by doing a translation table walk on MMU based systems or using the 10228 * MPU state on MPU based systems. 10229 * 10230 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10231 * prot and page_size may not be filled in, and the populated fsr value provides 10232 * information on why the translation aborted, in the format of a 10233 * DFSR/IFSR fault register, with the following caveats: 10234 * * we honour the short vs long DFSR format differences. 10235 * * the WnR bit is never set (the caller must do this). 10236 * * for PSMAv5 based systems we don't bother to return a full FSR format 10237 * value. 10238 * 10239 * @env: CPUARMState 10240 * @address: virtual address to get physical address for 10241 * @access_type: 0 for read, 1 for write, 2 for execute 10242 * @mmu_idx: MMU index indicating required translation regime 10243 * @phys_ptr: set to the physical address corresponding to the virtual address 10244 * @attrs: set to the memory transaction attributes to use 10245 * @prot: set to the permissions for the page containing phys_ptr 10246 * @page_size: set to the size of the page containing phys_ptr 10247 * @fi: set to fault info if the translation fails 10248 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10249 */ 10250 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10251 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10252 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10253 target_ulong *page_size, 10254 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10255 { 10256 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10257 /* Call ourselves recursively to do the stage 1 and then stage 2 10258 * translations. 10259 */ 10260 if (arm_feature(env, ARM_FEATURE_EL2)) { 10261 hwaddr ipa; 10262 int s2_prot; 10263 int ret; 10264 ARMCacheAttrs cacheattrs2 = {}; 10265 10266 ret = get_phys_addr(env, address, access_type, 10267 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10268 prot, page_size, fi, cacheattrs); 10269 10270 /* If S1 fails or S2 is disabled, return early. */ 10271 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10272 *phys_ptr = ipa; 10273 return ret; 10274 } 10275 10276 /* S1 is done. Now do S2 translation. */ 10277 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10278 phys_ptr, attrs, &s2_prot, 10279 page_size, fi, 10280 cacheattrs != NULL ? &cacheattrs2 : NULL); 10281 fi->s2addr = ipa; 10282 /* Combine the S1 and S2 perms. */ 10283 *prot &= s2_prot; 10284 10285 /* Combine the S1 and S2 cache attributes, if needed */ 10286 if (!ret && cacheattrs != NULL) { 10287 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10288 } 10289 10290 return ret; 10291 } else { 10292 /* 10293 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10294 */ 10295 mmu_idx = stage_1_mmu_idx(mmu_idx); 10296 } 10297 } 10298 10299 /* The page table entries may downgrade secure to non-secure, but 10300 * cannot upgrade an non-secure translation regime's attributes 10301 * to secure. 10302 */ 10303 attrs->secure = regime_is_secure(env, mmu_idx); 10304 attrs->user = regime_is_user(env, mmu_idx); 10305 10306 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10307 * In v7 and earlier it affects all stage 1 translations. 10308 */ 10309 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10310 && !arm_feature(env, ARM_FEATURE_V8)) { 10311 if (regime_el(env, mmu_idx) == 3) { 10312 address += env->cp15.fcseidr_s; 10313 } else { 10314 address += env->cp15.fcseidr_ns; 10315 } 10316 } 10317 10318 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10319 bool ret; 10320 *page_size = TARGET_PAGE_SIZE; 10321 10322 if (arm_feature(env, ARM_FEATURE_V8)) { 10323 /* PMSAv8 */ 10324 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10325 phys_ptr, attrs, prot, fi); 10326 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10327 /* PMSAv7 */ 10328 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10329 phys_ptr, prot, fi); 10330 } else { 10331 /* Pre-v7 MPU */ 10332 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10333 phys_ptr, prot, fi); 10334 } 10335 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10336 " mmu_idx %u -> %s (prot %c%c%c)\n", 10337 access_type == MMU_DATA_LOAD ? "reading" : 10338 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10339 (uint32_t)address, mmu_idx, 10340 ret ? "Miss" : "Hit", 10341 *prot & PAGE_READ ? 'r' : '-', 10342 *prot & PAGE_WRITE ? 'w' : '-', 10343 *prot & PAGE_EXEC ? 'x' : '-'); 10344 10345 return ret; 10346 } 10347 10348 /* Definitely a real MMU, not an MPU */ 10349 10350 if (regime_translation_disabled(env, mmu_idx)) { 10351 /* MMU disabled. */ 10352 *phys_ptr = address; 10353 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10354 *page_size = TARGET_PAGE_SIZE; 10355 return 0; 10356 } 10357 10358 if (regime_using_lpae_format(env, mmu_idx)) { 10359 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10360 phys_ptr, attrs, prot, page_size, 10361 fi, cacheattrs); 10362 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10363 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10364 phys_ptr, attrs, prot, page_size, fi); 10365 } else { 10366 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10367 phys_ptr, prot, page_size, fi); 10368 } 10369 } 10370 10371 /* Walk the page table and (if the mapping exists) add the page 10372 * to the TLB. Return false on success, or true on failure. Populate 10373 * fsr with ARM DFSR/IFSR fault register format value on failure. 10374 */ 10375 bool arm_tlb_fill(CPUState *cs, vaddr address, 10376 MMUAccessType access_type, int mmu_idx, 10377 ARMMMUFaultInfo *fi) 10378 { 10379 ARMCPU *cpu = ARM_CPU(cs); 10380 CPUARMState *env = &cpu->env; 10381 hwaddr phys_addr; 10382 target_ulong page_size; 10383 int prot; 10384 int ret; 10385 MemTxAttrs attrs = {}; 10386 10387 ret = get_phys_addr(env, address, access_type, 10388 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10389 &attrs, &prot, &page_size, fi, NULL); 10390 if (!ret) { 10391 /* Map a single [sub]page. */ 10392 phys_addr &= TARGET_PAGE_MASK; 10393 address &= TARGET_PAGE_MASK; 10394 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10395 prot, mmu_idx, page_size); 10396 return 0; 10397 } 10398 10399 return ret; 10400 } 10401 10402 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10403 MemTxAttrs *attrs) 10404 { 10405 ARMCPU *cpu = ARM_CPU(cs); 10406 CPUARMState *env = &cpu->env; 10407 hwaddr phys_addr; 10408 target_ulong page_size; 10409 int prot; 10410 bool ret; 10411 ARMMMUFaultInfo fi = {}; 10412 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10413 10414 *attrs = (MemTxAttrs) {}; 10415 10416 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10417 attrs, &prot, &page_size, &fi, NULL); 10418 10419 if (ret) { 10420 return -1; 10421 } 10422 return phys_addr; 10423 } 10424 10425 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10426 { 10427 uint32_t mask; 10428 unsigned el = arm_current_el(env); 10429 10430 /* First handle registers which unprivileged can read */ 10431 10432 switch (reg) { 10433 case 0 ... 7: /* xPSR sub-fields */ 10434 mask = 0; 10435 if ((reg & 1) && el) { 10436 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10437 } 10438 if (!(reg & 4)) { 10439 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10440 } 10441 /* EPSR reads as zero */ 10442 return xpsr_read(env) & mask; 10443 break; 10444 case 20: /* CONTROL */ 10445 return env->v7m.control[env->v7m.secure]; 10446 case 0x94: /* CONTROL_NS */ 10447 /* We have to handle this here because unprivileged Secure code 10448 * can read the NS CONTROL register. 10449 */ 10450 if (!env->v7m.secure) { 10451 return 0; 10452 } 10453 return env->v7m.control[M_REG_NS]; 10454 } 10455 10456 if (el == 0) { 10457 return 0; /* unprivileged reads others as zero */ 10458 } 10459 10460 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10461 switch (reg) { 10462 case 0x88: /* MSP_NS */ 10463 if (!env->v7m.secure) { 10464 return 0; 10465 } 10466 return env->v7m.other_ss_msp; 10467 case 0x89: /* PSP_NS */ 10468 if (!env->v7m.secure) { 10469 return 0; 10470 } 10471 return env->v7m.other_ss_psp; 10472 case 0x8a: /* MSPLIM_NS */ 10473 if (!env->v7m.secure) { 10474 return 0; 10475 } 10476 return env->v7m.msplim[M_REG_NS]; 10477 case 0x8b: /* PSPLIM_NS */ 10478 if (!env->v7m.secure) { 10479 return 0; 10480 } 10481 return env->v7m.psplim[M_REG_NS]; 10482 case 0x90: /* PRIMASK_NS */ 10483 if (!env->v7m.secure) { 10484 return 0; 10485 } 10486 return env->v7m.primask[M_REG_NS]; 10487 case 0x91: /* BASEPRI_NS */ 10488 if (!env->v7m.secure) { 10489 return 0; 10490 } 10491 return env->v7m.basepri[M_REG_NS]; 10492 case 0x93: /* FAULTMASK_NS */ 10493 if (!env->v7m.secure) { 10494 return 0; 10495 } 10496 return env->v7m.faultmask[M_REG_NS]; 10497 case 0x98: /* SP_NS */ 10498 { 10499 /* This gives the non-secure SP selected based on whether we're 10500 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10501 */ 10502 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10503 10504 if (!env->v7m.secure) { 10505 return 0; 10506 } 10507 if (!arm_v7m_is_handler_mode(env) && spsel) { 10508 return env->v7m.other_ss_psp; 10509 } else { 10510 return env->v7m.other_ss_msp; 10511 } 10512 } 10513 default: 10514 break; 10515 } 10516 } 10517 10518 switch (reg) { 10519 case 8: /* MSP */ 10520 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10521 case 9: /* PSP */ 10522 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10523 case 10: /* MSPLIM */ 10524 if (!arm_feature(env, ARM_FEATURE_V8)) { 10525 goto bad_reg; 10526 } 10527 return env->v7m.msplim[env->v7m.secure]; 10528 case 11: /* PSPLIM */ 10529 if (!arm_feature(env, ARM_FEATURE_V8)) { 10530 goto bad_reg; 10531 } 10532 return env->v7m.psplim[env->v7m.secure]; 10533 case 16: /* PRIMASK */ 10534 return env->v7m.primask[env->v7m.secure]; 10535 case 17: /* BASEPRI */ 10536 case 18: /* BASEPRI_MAX */ 10537 return env->v7m.basepri[env->v7m.secure]; 10538 case 19: /* FAULTMASK */ 10539 return env->v7m.faultmask[env->v7m.secure]; 10540 default: 10541 bad_reg: 10542 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10543 " register %d\n", reg); 10544 return 0; 10545 } 10546 } 10547 10548 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10549 { 10550 /* We're passed bits [11..0] of the instruction; extract 10551 * SYSm and the mask bits. 10552 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10553 * we choose to treat them as if the mask bits were valid. 10554 * NB that the pseudocode 'mask' variable is bits [11..10], 10555 * whereas ours is [11..8]. 10556 */ 10557 uint32_t mask = extract32(maskreg, 8, 4); 10558 uint32_t reg = extract32(maskreg, 0, 8); 10559 10560 if (arm_current_el(env) == 0 && reg > 7) { 10561 /* only xPSR sub-fields may be written by unprivileged */ 10562 return; 10563 } 10564 10565 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10566 switch (reg) { 10567 case 0x88: /* MSP_NS */ 10568 if (!env->v7m.secure) { 10569 return; 10570 } 10571 env->v7m.other_ss_msp = val; 10572 return; 10573 case 0x89: /* PSP_NS */ 10574 if (!env->v7m.secure) { 10575 return; 10576 } 10577 env->v7m.other_ss_psp = val; 10578 return; 10579 case 0x8a: /* MSPLIM_NS */ 10580 if (!env->v7m.secure) { 10581 return; 10582 } 10583 env->v7m.msplim[M_REG_NS] = val & ~7; 10584 return; 10585 case 0x8b: /* PSPLIM_NS */ 10586 if (!env->v7m.secure) { 10587 return; 10588 } 10589 env->v7m.psplim[M_REG_NS] = val & ~7; 10590 return; 10591 case 0x90: /* PRIMASK_NS */ 10592 if (!env->v7m.secure) { 10593 return; 10594 } 10595 env->v7m.primask[M_REG_NS] = val & 1; 10596 return; 10597 case 0x91: /* BASEPRI_NS */ 10598 if (!env->v7m.secure) { 10599 return; 10600 } 10601 env->v7m.basepri[M_REG_NS] = val & 0xff; 10602 return; 10603 case 0x93: /* FAULTMASK_NS */ 10604 if (!env->v7m.secure) { 10605 return; 10606 } 10607 env->v7m.faultmask[M_REG_NS] = val & 1; 10608 return; 10609 case 0x94: /* CONTROL_NS */ 10610 if (!env->v7m.secure) { 10611 return; 10612 } 10613 write_v7m_control_spsel_for_secstate(env, 10614 val & R_V7M_CONTROL_SPSEL_MASK, 10615 M_REG_NS); 10616 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10617 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10618 return; 10619 case 0x98: /* SP_NS */ 10620 { 10621 /* This gives the non-secure SP selected based on whether we're 10622 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10623 */ 10624 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10625 10626 if (!env->v7m.secure) { 10627 return; 10628 } 10629 if (!arm_v7m_is_handler_mode(env) && spsel) { 10630 env->v7m.other_ss_psp = val; 10631 } else { 10632 env->v7m.other_ss_msp = val; 10633 } 10634 return; 10635 } 10636 default: 10637 break; 10638 } 10639 } 10640 10641 switch (reg) { 10642 case 0 ... 7: /* xPSR sub-fields */ 10643 /* only APSR is actually writable */ 10644 if (!(reg & 4)) { 10645 uint32_t apsrmask = 0; 10646 10647 if (mask & 8) { 10648 apsrmask |= XPSR_NZCV | XPSR_Q; 10649 } 10650 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10651 apsrmask |= XPSR_GE; 10652 } 10653 xpsr_write(env, val, apsrmask); 10654 } 10655 break; 10656 case 8: /* MSP */ 10657 if (v7m_using_psp(env)) { 10658 env->v7m.other_sp = val; 10659 } else { 10660 env->regs[13] = val; 10661 } 10662 break; 10663 case 9: /* PSP */ 10664 if (v7m_using_psp(env)) { 10665 env->regs[13] = val; 10666 } else { 10667 env->v7m.other_sp = val; 10668 } 10669 break; 10670 case 10: /* MSPLIM */ 10671 if (!arm_feature(env, ARM_FEATURE_V8)) { 10672 goto bad_reg; 10673 } 10674 env->v7m.msplim[env->v7m.secure] = val & ~7; 10675 break; 10676 case 11: /* PSPLIM */ 10677 if (!arm_feature(env, ARM_FEATURE_V8)) { 10678 goto bad_reg; 10679 } 10680 env->v7m.psplim[env->v7m.secure] = val & ~7; 10681 break; 10682 case 16: /* PRIMASK */ 10683 env->v7m.primask[env->v7m.secure] = val & 1; 10684 break; 10685 case 17: /* BASEPRI */ 10686 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10687 break; 10688 case 18: /* BASEPRI_MAX */ 10689 val &= 0xff; 10690 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10691 || env->v7m.basepri[env->v7m.secure] == 0)) { 10692 env->v7m.basepri[env->v7m.secure] = val; 10693 } 10694 break; 10695 case 19: /* FAULTMASK */ 10696 env->v7m.faultmask[env->v7m.secure] = val & 1; 10697 break; 10698 case 20: /* CONTROL */ 10699 /* Writing to the SPSEL bit only has an effect if we are in 10700 * thread mode; other bits can be updated by any privileged code. 10701 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10702 * env->v7m.control, so we only need update the others. 10703 * For v7M, we must just ignore explicit writes to SPSEL in handler 10704 * mode; for v8M the write is permitted but will have no effect. 10705 */ 10706 if (arm_feature(env, ARM_FEATURE_V8) || 10707 !arm_v7m_is_handler_mode(env)) { 10708 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10709 } 10710 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10711 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10712 break; 10713 default: 10714 bad_reg: 10715 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10716 " register %d\n", reg); 10717 return; 10718 } 10719 } 10720 10721 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10722 { 10723 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10724 bool forceunpriv = op & 1; 10725 bool alt = op & 2; 10726 V8M_SAttributes sattrs = {}; 10727 uint32_t tt_resp; 10728 bool r, rw, nsr, nsrw, mrvalid; 10729 int prot; 10730 ARMMMUFaultInfo fi = {}; 10731 MemTxAttrs attrs = {}; 10732 hwaddr phys_addr; 10733 ARMMMUIdx mmu_idx; 10734 uint32_t mregion; 10735 bool targetpriv; 10736 bool targetsec = env->v7m.secure; 10737 10738 /* Work out what the security state and privilege level we're 10739 * interested in is... 10740 */ 10741 if (alt) { 10742 targetsec = !targetsec; 10743 } 10744 10745 if (forceunpriv) { 10746 targetpriv = false; 10747 } else { 10748 targetpriv = arm_v7m_is_handler_mode(env) || 10749 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10750 } 10751 10752 /* ...and then figure out which MMU index this is */ 10753 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10754 10755 /* We know that the MPU and SAU don't care about the access type 10756 * for our purposes beyond that we don't want to claim to be 10757 * an insn fetch, so we arbitrarily call this a read. 10758 */ 10759 10760 /* MPU region info only available for privileged or if 10761 * inspecting the other MPU state. 10762 */ 10763 if (arm_current_el(env) != 0 || alt) { 10764 /* We can ignore the return value as prot is always set */ 10765 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10766 &phys_addr, &attrs, &prot, &fi, &mregion); 10767 if (mregion == -1) { 10768 mrvalid = false; 10769 mregion = 0; 10770 } else { 10771 mrvalid = true; 10772 } 10773 r = prot & PAGE_READ; 10774 rw = prot & PAGE_WRITE; 10775 } else { 10776 r = false; 10777 rw = false; 10778 mrvalid = false; 10779 mregion = 0; 10780 } 10781 10782 if (env->v7m.secure) { 10783 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10784 nsr = sattrs.ns && r; 10785 nsrw = sattrs.ns && rw; 10786 } else { 10787 sattrs.ns = true; 10788 nsr = false; 10789 nsrw = false; 10790 } 10791 10792 tt_resp = (sattrs.iregion << 24) | 10793 (sattrs.irvalid << 23) | 10794 ((!sattrs.ns) << 22) | 10795 (nsrw << 21) | 10796 (nsr << 20) | 10797 (rw << 19) | 10798 (r << 18) | 10799 (sattrs.srvalid << 17) | 10800 (mrvalid << 16) | 10801 (sattrs.sregion << 8) | 10802 mregion; 10803 10804 return tt_resp; 10805 } 10806 10807 #endif 10808 10809 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10810 { 10811 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10812 * Note that we do not implement the (architecturally mandated) 10813 * alignment fault for attempts to use this on Device memory 10814 * (which matches the usual QEMU behaviour of not implementing either 10815 * alignment faults or any memory attribute handling). 10816 */ 10817 10818 ARMCPU *cpu = arm_env_get_cpu(env); 10819 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10820 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10821 10822 #ifndef CONFIG_USER_ONLY 10823 { 10824 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10825 * the block size so we might have to do more than one TLB lookup. 10826 * We know that in fact for any v8 CPU the page size is at least 4K 10827 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10828 * 1K as an artefact of legacy v5 subpage support being present in the 10829 * same QEMU executable. 10830 */ 10831 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10832 void *hostaddr[maxidx]; 10833 int try, i; 10834 unsigned mmu_idx = cpu_mmu_index(env, false); 10835 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10836 10837 for (try = 0; try < 2; try++) { 10838 10839 for (i = 0; i < maxidx; i++) { 10840 hostaddr[i] = tlb_vaddr_to_host(env, 10841 vaddr + TARGET_PAGE_SIZE * i, 10842 1, mmu_idx); 10843 if (!hostaddr[i]) { 10844 break; 10845 } 10846 } 10847 if (i == maxidx) { 10848 /* If it's all in the TLB it's fair game for just writing to; 10849 * we know we don't need to update dirty status, etc. 10850 */ 10851 for (i = 0; i < maxidx - 1; i++) { 10852 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10853 } 10854 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10855 return; 10856 } 10857 /* OK, try a store and see if we can populate the tlb. This 10858 * might cause an exception if the memory isn't writable, 10859 * in which case we will longjmp out of here. We must for 10860 * this purpose use the actual register value passed to us 10861 * so that we get the fault address right. 10862 */ 10863 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10864 /* Now we can populate the other TLB entries, if any */ 10865 for (i = 0; i < maxidx; i++) { 10866 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10867 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10868 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10869 } 10870 } 10871 } 10872 10873 /* Slow path (probably attempt to do this to an I/O device or 10874 * similar, or clearing of a block of code we have translations 10875 * cached for). Just do a series of byte writes as the architecture 10876 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10877 * memset(), unmap() sequence here because: 10878 * + we'd need to account for the blocksize being larger than a page 10879 * + the direct-RAM access case is almost always going to be dealt 10880 * with in the fastpath code above, so there's no speed benefit 10881 * + we would have to deal with the map returning NULL because the 10882 * bounce buffer was in use 10883 */ 10884 for (i = 0; i < blocklen; i++) { 10885 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10886 } 10887 } 10888 #else 10889 memset(g2h(vaddr), 0, blocklen); 10890 #endif 10891 } 10892 10893 /* Note that signed overflow is undefined in C. The following routines are 10894 careful to use unsigned types where modulo arithmetic is required. 10895 Failure to do so _will_ break on newer gcc. */ 10896 10897 /* Signed saturating arithmetic. */ 10898 10899 /* Perform 16-bit signed saturating addition. */ 10900 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10901 { 10902 uint16_t res; 10903 10904 res = a + b; 10905 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10906 if (a & 0x8000) 10907 res = 0x8000; 10908 else 10909 res = 0x7fff; 10910 } 10911 return res; 10912 } 10913 10914 /* Perform 8-bit signed saturating addition. */ 10915 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10916 { 10917 uint8_t res; 10918 10919 res = a + b; 10920 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10921 if (a & 0x80) 10922 res = 0x80; 10923 else 10924 res = 0x7f; 10925 } 10926 return res; 10927 } 10928 10929 /* Perform 16-bit signed saturating subtraction. */ 10930 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10931 { 10932 uint16_t res; 10933 10934 res = a - b; 10935 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10936 if (a & 0x8000) 10937 res = 0x8000; 10938 else 10939 res = 0x7fff; 10940 } 10941 return res; 10942 } 10943 10944 /* Perform 8-bit signed saturating subtraction. */ 10945 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10946 { 10947 uint8_t res; 10948 10949 res = a - b; 10950 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10951 if (a & 0x80) 10952 res = 0x80; 10953 else 10954 res = 0x7f; 10955 } 10956 return res; 10957 } 10958 10959 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10960 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10961 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10962 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10963 #define PFX q 10964 10965 #include "op_addsub.h" 10966 10967 /* Unsigned saturating arithmetic. */ 10968 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10969 { 10970 uint16_t res; 10971 res = a + b; 10972 if (res < a) 10973 res = 0xffff; 10974 return res; 10975 } 10976 10977 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10978 { 10979 if (a > b) 10980 return a - b; 10981 else 10982 return 0; 10983 } 10984 10985 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10986 { 10987 uint8_t res; 10988 res = a + b; 10989 if (res < a) 10990 res = 0xff; 10991 return res; 10992 } 10993 10994 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10995 { 10996 if (a > b) 10997 return a - b; 10998 else 10999 return 0; 11000 } 11001 11002 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11003 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11004 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11005 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11006 #define PFX uq 11007 11008 #include "op_addsub.h" 11009 11010 /* Signed modulo arithmetic. */ 11011 #define SARITH16(a, b, n, op) do { \ 11012 int32_t sum; \ 11013 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11014 RESULT(sum, n, 16); \ 11015 if (sum >= 0) \ 11016 ge |= 3 << (n * 2); \ 11017 } while(0) 11018 11019 #define SARITH8(a, b, n, op) do { \ 11020 int32_t sum; \ 11021 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11022 RESULT(sum, n, 8); \ 11023 if (sum >= 0) \ 11024 ge |= 1 << n; \ 11025 } while(0) 11026 11027 11028 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11029 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11030 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11031 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11032 #define PFX s 11033 #define ARITH_GE 11034 11035 #include "op_addsub.h" 11036 11037 /* Unsigned modulo arithmetic. */ 11038 #define ADD16(a, b, n) do { \ 11039 uint32_t sum; \ 11040 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11041 RESULT(sum, n, 16); \ 11042 if ((sum >> 16) == 1) \ 11043 ge |= 3 << (n * 2); \ 11044 } while(0) 11045 11046 #define ADD8(a, b, n) do { \ 11047 uint32_t sum; \ 11048 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11049 RESULT(sum, n, 8); \ 11050 if ((sum >> 8) == 1) \ 11051 ge |= 1 << n; \ 11052 } while(0) 11053 11054 #define SUB16(a, b, n) do { \ 11055 uint32_t sum; \ 11056 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11057 RESULT(sum, n, 16); \ 11058 if ((sum >> 16) == 0) \ 11059 ge |= 3 << (n * 2); \ 11060 } while(0) 11061 11062 #define SUB8(a, b, n) do { \ 11063 uint32_t sum; \ 11064 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11065 RESULT(sum, n, 8); \ 11066 if ((sum >> 8) == 0) \ 11067 ge |= 1 << n; \ 11068 } while(0) 11069 11070 #define PFX u 11071 #define ARITH_GE 11072 11073 #include "op_addsub.h" 11074 11075 /* Halved signed arithmetic. */ 11076 #define ADD16(a, b, n) \ 11077 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11078 #define SUB16(a, b, n) \ 11079 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11080 #define ADD8(a, b, n) \ 11081 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11082 #define SUB8(a, b, n) \ 11083 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11084 #define PFX sh 11085 11086 #include "op_addsub.h" 11087 11088 /* Halved unsigned arithmetic. */ 11089 #define ADD16(a, b, n) \ 11090 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11091 #define SUB16(a, b, n) \ 11092 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11093 #define ADD8(a, b, n) \ 11094 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11095 #define SUB8(a, b, n) \ 11096 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11097 #define PFX uh 11098 11099 #include "op_addsub.h" 11100 11101 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11102 { 11103 if (a > b) 11104 return a - b; 11105 else 11106 return b - a; 11107 } 11108 11109 /* Unsigned sum of absolute byte differences. */ 11110 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11111 { 11112 uint32_t sum; 11113 sum = do_usad(a, b); 11114 sum += do_usad(a >> 8, b >> 8); 11115 sum += do_usad(a >> 16, b >>16); 11116 sum += do_usad(a >> 24, b >> 24); 11117 return sum; 11118 } 11119 11120 /* For ARMv6 SEL instruction. */ 11121 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11122 { 11123 uint32_t mask; 11124 11125 mask = 0; 11126 if (flags & 1) 11127 mask |= 0xff; 11128 if (flags & 2) 11129 mask |= 0xff00; 11130 if (flags & 4) 11131 mask |= 0xff0000; 11132 if (flags & 8) 11133 mask |= 0xff000000; 11134 return (a & mask) | (b & ~mask); 11135 } 11136 11137 /* VFP support. We follow the convention used for VFP instructions: 11138 Single precision routines have a "s" suffix, double precision a 11139 "d" suffix. */ 11140 11141 /* Convert host exception flags to vfp form. */ 11142 static inline int vfp_exceptbits_from_host(int host_bits) 11143 { 11144 int target_bits = 0; 11145 11146 if (host_bits & float_flag_invalid) 11147 target_bits |= 1; 11148 if (host_bits & float_flag_divbyzero) 11149 target_bits |= 2; 11150 if (host_bits & float_flag_overflow) 11151 target_bits |= 4; 11152 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11153 target_bits |= 8; 11154 if (host_bits & float_flag_inexact) 11155 target_bits |= 0x10; 11156 if (host_bits & float_flag_input_denormal) 11157 target_bits |= 0x80; 11158 return target_bits; 11159 } 11160 11161 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11162 { 11163 int i; 11164 uint32_t fpscr; 11165 11166 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11167 | (env->vfp.vec_len << 16) 11168 | (env->vfp.vec_stride << 20); 11169 i = get_float_exception_flags(&env->vfp.fp_status); 11170 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11171 i |= get_float_exception_flags(&env->vfp.fp_status_f16); 11172 fpscr |= vfp_exceptbits_from_host(i); 11173 return fpscr; 11174 } 11175 11176 uint32_t vfp_get_fpscr(CPUARMState *env) 11177 { 11178 return HELPER(vfp_get_fpscr)(env); 11179 } 11180 11181 /* Convert vfp exception flags to target form. */ 11182 static inline int vfp_exceptbits_to_host(int target_bits) 11183 { 11184 int host_bits = 0; 11185 11186 if (target_bits & 1) 11187 host_bits |= float_flag_invalid; 11188 if (target_bits & 2) 11189 host_bits |= float_flag_divbyzero; 11190 if (target_bits & 4) 11191 host_bits |= float_flag_overflow; 11192 if (target_bits & 8) 11193 host_bits |= float_flag_underflow; 11194 if (target_bits & 0x10) 11195 host_bits |= float_flag_inexact; 11196 if (target_bits & 0x80) 11197 host_bits |= float_flag_input_denormal; 11198 return host_bits; 11199 } 11200 11201 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11202 { 11203 int i; 11204 uint32_t changed; 11205 11206 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11207 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11208 env->vfp.vec_len = (val >> 16) & 7; 11209 env->vfp.vec_stride = (val >> 20) & 3; 11210 11211 changed ^= val; 11212 if (changed & (3 << 22)) { 11213 i = (val >> 22) & 3; 11214 switch (i) { 11215 case FPROUNDING_TIEEVEN: 11216 i = float_round_nearest_even; 11217 break; 11218 case FPROUNDING_POSINF: 11219 i = float_round_up; 11220 break; 11221 case FPROUNDING_NEGINF: 11222 i = float_round_down; 11223 break; 11224 case FPROUNDING_ZERO: 11225 i = float_round_to_zero; 11226 break; 11227 } 11228 set_float_rounding_mode(i, &env->vfp.fp_status); 11229 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11230 } 11231 if (changed & FPCR_FZ16) { 11232 bool ftz_enabled = val & FPCR_FZ16; 11233 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11234 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11235 } 11236 if (changed & FPCR_FZ) { 11237 bool ftz_enabled = val & FPCR_FZ; 11238 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11239 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11240 } 11241 if (changed & FPCR_DN) { 11242 bool dnan_enabled = val & FPCR_DN; 11243 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11244 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11245 } 11246 11247 /* The exception flags are ORed together when we read fpscr so we 11248 * only need to preserve the current state in one of our 11249 * float_status values. 11250 */ 11251 i = vfp_exceptbits_to_host(val); 11252 set_float_exception_flags(i, &env->vfp.fp_status); 11253 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11254 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11255 } 11256 11257 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11258 { 11259 HELPER(vfp_set_fpscr)(env, val); 11260 } 11261 11262 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11263 11264 #define VFP_BINOP(name) \ 11265 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11266 { \ 11267 float_status *fpst = fpstp; \ 11268 return float32_ ## name(a, b, fpst); \ 11269 } \ 11270 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11271 { \ 11272 float_status *fpst = fpstp; \ 11273 return float64_ ## name(a, b, fpst); \ 11274 } 11275 VFP_BINOP(add) 11276 VFP_BINOP(sub) 11277 VFP_BINOP(mul) 11278 VFP_BINOP(div) 11279 VFP_BINOP(min) 11280 VFP_BINOP(max) 11281 VFP_BINOP(minnum) 11282 VFP_BINOP(maxnum) 11283 #undef VFP_BINOP 11284 11285 float32 VFP_HELPER(neg, s)(float32 a) 11286 { 11287 return float32_chs(a); 11288 } 11289 11290 float64 VFP_HELPER(neg, d)(float64 a) 11291 { 11292 return float64_chs(a); 11293 } 11294 11295 float32 VFP_HELPER(abs, s)(float32 a) 11296 { 11297 return float32_abs(a); 11298 } 11299 11300 float64 VFP_HELPER(abs, d)(float64 a) 11301 { 11302 return float64_abs(a); 11303 } 11304 11305 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11306 { 11307 return float32_sqrt(a, &env->vfp.fp_status); 11308 } 11309 11310 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11311 { 11312 return float64_sqrt(a, &env->vfp.fp_status); 11313 } 11314 11315 /* XXX: check quiet/signaling case */ 11316 #define DO_VFP_cmp(p, type) \ 11317 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11318 { \ 11319 uint32_t flags; \ 11320 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11321 case 0: flags = 0x6; break; \ 11322 case -1: flags = 0x8; break; \ 11323 case 1: flags = 0x2; break; \ 11324 default: case 2: flags = 0x3; break; \ 11325 } \ 11326 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11327 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11328 } \ 11329 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11330 { \ 11331 uint32_t flags; \ 11332 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11333 case 0: flags = 0x6; break; \ 11334 case -1: flags = 0x8; break; \ 11335 case 1: flags = 0x2; break; \ 11336 default: case 2: flags = 0x3; break; \ 11337 } \ 11338 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11339 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11340 } 11341 DO_VFP_cmp(s, float32) 11342 DO_VFP_cmp(d, float64) 11343 #undef DO_VFP_cmp 11344 11345 /* Integer to float and float to integer conversions */ 11346 11347 #define CONV_ITOF(name, fsz, sign) \ 11348 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 11349 { \ 11350 float_status *fpst = fpstp; \ 11351 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11352 } 11353 11354 #define CONV_FTOI(name, fsz, sign, round) \ 11355 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 11356 { \ 11357 float_status *fpst = fpstp; \ 11358 if (float##fsz##_is_any_nan(x)) { \ 11359 float_raise(float_flag_invalid, fpst); \ 11360 return 0; \ 11361 } \ 11362 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11363 } 11364 11365 #define FLOAT_CONVS(name, p, fsz, sign) \ 11366 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 11367 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 11368 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 11369 11370 FLOAT_CONVS(si, h, 16, ) 11371 FLOAT_CONVS(si, s, 32, ) 11372 FLOAT_CONVS(si, d, 64, ) 11373 FLOAT_CONVS(ui, h, 16, u) 11374 FLOAT_CONVS(ui, s, 32, u) 11375 FLOAT_CONVS(ui, d, 64, u) 11376 11377 #undef CONV_ITOF 11378 #undef CONV_FTOI 11379 #undef FLOAT_CONVS 11380 11381 /* floating point conversion */ 11382 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11383 { 11384 return float32_to_float64(x, &env->vfp.fp_status); 11385 } 11386 11387 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11388 { 11389 return float64_to_float32(x, &env->vfp.fp_status); 11390 } 11391 11392 /* VFP3 fixed point conversion. */ 11393 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11394 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11395 void *fpstp) \ 11396 { \ 11397 float_status *fpst = fpstp; \ 11398 float##fsz tmp; \ 11399 tmp = itype##_to_##float##fsz(x, fpst); \ 11400 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11401 } 11402 11403 /* Notice that we want only input-denormal exception flags from the 11404 * scalbn operation: the other possible flags (overflow+inexact if 11405 * we overflow to infinity, output-denormal) aren't correct for the 11406 * complete scale-and-convert operation. 11407 */ 11408 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11409 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11410 uint32_t shift, \ 11411 void *fpstp) \ 11412 { \ 11413 float_status *fpst = fpstp; \ 11414 int old_exc_flags = get_float_exception_flags(fpst); \ 11415 float##fsz tmp; \ 11416 if (float##fsz##_is_any_nan(x)) { \ 11417 float_raise(float_flag_invalid, fpst); \ 11418 return 0; \ 11419 } \ 11420 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11421 old_exc_flags |= get_float_exception_flags(fpst) \ 11422 & float_flag_input_denormal; \ 11423 set_float_exception_flags(old_exc_flags, fpst); \ 11424 return float##fsz##_to_##itype##round(tmp, fpst); \ 11425 } 11426 11427 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11428 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11429 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11430 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11431 11432 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11433 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11434 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11435 11436 VFP_CONV_FIX(sh, d, 64, 64, int16) 11437 VFP_CONV_FIX(sl, d, 64, 64, int32) 11438 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11439 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11440 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11441 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11442 VFP_CONV_FIX(sh, s, 32, 32, int16) 11443 VFP_CONV_FIX(sl, s, 32, 32, int32) 11444 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11445 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11446 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11447 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11448 11449 #undef VFP_CONV_FIX 11450 #undef VFP_CONV_FIX_FLOAT 11451 #undef VFP_CONV_FLOAT_FIX_ROUND 11452 #undef VFP_CONV_FIX_A64 11453 11454 /* Conversion to/from f16 can overflow to infinity before/after scaling. 11455 * Therefore we convert to f64, scale, and then convert f64 to f16; or 11456 * vice versa for conversion to integer. 11457 * 11458 * For 16- and 32-bit integers, the conversion to f64 never rounds. 11459 * For 64-bit integers, any integer that would cause rounding will also 11460 * overflow to f16 infinity, so there is no double rounding problem. 11461 */ 11462 11463 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst) 11464 { 11465 return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst); 11466 } 11467 11468 float16 HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 11469 { 11470 return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst); 11471 } 11472 11473 float16 HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 11474 { 11475 return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst); 11476 } 11477 11478 float16 HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 11479 { 11480 return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst); 11481 } 11482 11483 float16 HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 11484 { 11485 return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst); 11486 } 11487 11488 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst) 11489 { 11490 if (unlikely(float16_is_any_nan(f))) { 11491 float_raise(float_flag_invalid, fpst); 11492 return 0; 11493 } else { 11494 int old_exc_flags = get_float_exception_flags(fpst); 11495 float64 ret; 11496 11497 ret = float16_to_float64(f, true, fpst); 11498 ret = float64_scalbn(ret, shift, fpst); 11499 old_exc_flags |= get_float_exception_flags(fpst) 11500 & float_flag_input_denormal; 11501 set_float_exception_flags(old_exc_flags, fpst); 11502 11503 return ret; 11504 } 11505 } 11506 11507 uint32_t HELPER(vfp_toshh)(float16 x, uint32_t shift, void *fpst) 11508 { 11509 return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst); 11510 } 11511 11512 uint32_t HELPER(vfp_touhh)(float16 x, uint32_t shift, void *fpst) 11513 { 11514 return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst); 11515 } 11516 11517 uint32_t HELPER(vfp_toslh)(float16 x, uint32_t shift, void *fpst) 11518 { 11519 return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst); 11520 } 11521 11522 uint32_t HELPER(vfp_toulh)(float16 x, uint32_t shift, void *fpst) 11523 { 11524 return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst); 11525 } 11526 11527 uint64_t HELPER(vfp_tosqh)(float16 x, uint32_t shift, void *fpst) 11528 { 11529 return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst); 11530 } 11531 11532 uint64_t HELPER(vfp_touqh)(float16 x, uint32_t shift, void *fpst) 11533 { 11534 return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst); 11535 } 11536 11537 /* Set the current fp rounding mode and return the old one. 11538 * The argument is a softfloat float_round_ value. 11539 */ 11540 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11541 { 11542 float_status *fp_status = fpstp; 11543 11544 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11545 set_float_rounding_mode(rmode, fp_status); 11546 11547 return prev_rmode; 11548 } 11549 11550 /* Set the current fp rounding mode in the standard fp status and return 11551 * the old one. This is for NEON instructions that need to change the 11552 * rounding mode but wish to use the standard FPSCR values for everything 11553 * else. Always set the rounding mode back to the correct value after 11554 * modifying it. 11555 * The argument is a softfloat float_round_ value. 11556 */ 11557 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11558 { 11559 float_status *fp_status = &env->vfp.standard_fp_status; 11560 11561 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11562 set_float_rounding_mode(rmode, fp_status); 11563 11564 return prev_rmode; 11565 } 11566 11567 /* Half precision conversions. */ 11568 float32 HELPER(vfp_fcvt_f16_to_f32)(float16 a, void *fpstp, uint32_t ahp_mode) 11569 { 11570 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11571 * it would affect flushing input denormals. 11572 */ 11573 float_status *fpst = fpstp; 11574 flag save = get_flush_inputs_to_zero(fpst); 11575 set_flush_inputs_to_zero(false, fpst); 11576 float32 r = float16_to_float32(a, !ahp_mode, fpst); 11577 set_flush_inputs_to_zero(save, fpst); 11578 return r; 11579 } 11580 11581 float16 HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 11582 { 11583 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11584 * it would affect flushing output denormals. 11585 */ 11586 float_status *fpst = fpstp; 11587 flag save = get_flush_to_zero(fpst); 11588 set_flush_to_zero(false, fpst); 11589 float16 r = float32_to_float16(a, !ahp_mode, fpst); 11590 set_flush_to_zero(save, fpst); 11591 return r; 11592 } 11593 11594 float64 HELPER(vfp_fcvt_f16_to_f64)(float16 a, void *fpstp, uint32_t ahp_mode) 11595 { 11596 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11597 * it would affect flushing input denormals. 11598 */ 11599 float_status *fpst = fpstp; 11600 flag save = get_flush_inputs_to_zero(fpst); 11601 set_flush_inputs_to_zero(false, fpst); 11602 float64 r = float16_to_float64(a, !ahp_mode, fpst); 11603 set_flush_inputs_to_zero(save, fpst); 11604 return r; 11605 } 11606 11607 float16 HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 11608 { 11609 /* Squash FZ16 to 0 for the duration of conversion. In this case, 11610 * it would affect flushing output denormals. 11611 */ 11612 float_status *fpst = fpstp; 11613 flag save = get_flush_to_zero(fpst); 11614 set_flush_to_zero(false, fpst); 11615 float16 r = float64_to_float16(a, !ahp_mode, fpst); 11616 set_flush_to_zero(save, fpst); 11617 return r; 11618 } 11619 11620 #define float32_two make_float32(0x40000000) 11621 #define float32_three make_float32(0x40400000) 11622 #define float32_one_point_five make_float32(0x3fc00000) 11623 11624 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11625 { 11626 float_status *s = &env->vfp.standard_fp_status; 11627 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11628 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11629 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11630 float_raise(float_flag_input_denormal, s); 11631 } 11632 return float32_two; 11633 } 11634 return float32_sub(float32_two, float32_mul(a, b, s), s); 11635 } 11636 11637 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11638 { 11639 float_status *s = &env->vfp.standard_fp_status; 11640 float32 product; 11641 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11642 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11643 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11644 float_raise(float_flag_input_denormal, s); 11645 } 11646 return float32_one_point_five; 11647 } 11648 product = float32_mul(a, b, s); 11649 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11650 } 11651 11652 /* NEON helpers. */ 11653 11654 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11655 * int->float conversions at run-time. */ 11656 #define float64_256 make_float64(0x4070000000000000LL) 11657 #define float64_512 make_float64(0x4080000000000000LL) 11658 #define float16_maxnorm make_float16(0x7bff) 11659 #define float32_maxnorm make_float32(0x7f7fffff) 11660 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11661 11662 /* Reciprocal functions 11663 * 11664 * The algorithm that must be used to calculate the estimate 11665 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 11666 */ 11667 11668 /* See RecipEstimate() 11669 * 11670 * input is a 9 bit fixed point number 11671 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 11672 * result range 256 .. 511 for a number from 1.0 to 511/256. 11673 */ 11674 11675 static int recip_estimate(int input) 11676 { 11677 int a, b, r; 11678 assert(256 <= input && input < 512); 11679 a = (input * 2) + 1; 11680 b = (1 << 19) / a; 11681 r = (b + 1) >> 1; 11682 assert(256 <= r && r < 512); 11683 return r; 11684 } 11685 11686 /* 11687 * Common wrapper to call recip_estimate 11688 * 11689 * The parameters are exponent and 64 bit fraction (without implicit 11690 * bit) where the binary point is nominally at bit 52. Returns a 11691 * float64 which can then be rounded to the appropriate size by the 11692 * callee. 11693 */ 11694 11695 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 11696 { 11697 uint32_t scaled, estimate; 11698 uint64_t result_frac; 11699 int result_exp; 11700 11701 /* Handle sub-normals */ 11702 if (*exp == 0) { 11703 if (extract64(frac, 51, 1) == 0) { 11704 *exp = -1; 11705 frac <<= 2; 11706 } else { 11707 frac <<= 1; 11708 } 11709 } 11710 11711 /* scaled = UInt('1':fraction<51:44>) */ 11712 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11713 estimate = recip_estimate(scaled); 11714 11715 result_exp = exp_off - *exp; 11716 result_frac = deposit64(0, 44, 8, estimate); 11717 if (result_exp == 0) { 11718 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 11719 } else if (result_exp == -1) { 11720 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 11721 result_exp = 0; 11722 } 11723 11724 *exp = result_exp; 11725 11726 return result_frac; 11727 } 11728 11729 static bool round_to_inf(float_status *fpst, bool sign_bit) 11730 { 11731 switch (fpst->float_rounding_mode) { 11732 case float_round_nearest_even: /* Round to Nearest */ 11733 return true; 11734 case float_round_up: /* Round to +Inf */ 11735 return !sign_bit; 11736 case float_round_down: /* Round to -Inf */ 11737 return sign_bit; 11738 case float_round_to_zero: /* Round to Zero */ 11739 return false; 11740 } 11741 11742 g_assert_not_reached(); 11743 } 11744 11745 float16 HELPER(recpe_f16)(float16 input, void *fpstp) 11746 { 11747 float_status *fpst = fpstp; 11748 float16 f16 = float16_squash_input_denormal(input, fpst); 11749 uint32_t f16_val = float16_val(f16); 11750 uint32_t f16_sign = float16_is_neg(f16); 11751 int f16_exp = extract32(f16_val, 10, 5); 11752 uint32_t f16_frac = extract32(f16_val, 0, 10); 11753 uint64_t f64_frac; 11754 11755 if (float16_is_any_nan(f16)) { 11756 float16 nan = f16; 11757 if (float16_is_signaling_nan(f16, fpst)) { 11758 float_raise(float_flag_invalid, fpst); 11759 nan = float16_silence_nan(f16, fpst); 11760 } 11761 if (fpst->default_nan_mode) { 11762 nan = float16_default_nan(fpst); 11763 } 11764 return nan; 11765 } else if (float16_is_infinity(f16)) { 11766 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11767 } else if (float16_is_zero(f16)) { 11768 float_raise(float_flag_divbyzero, fpst); 11769 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 11770 } else if (float16_abs(f16) < (1 << 8)) { 11771 /* Abs(value) < 2.0^-16 */ 11772 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11773 if (round_to_inf(fpst, f16_sign)) { 11774 return float16_set_sign(float16_infinity, f16_sign); 11775 } else { 11776 return float16_set_sign(float16_maxnorm, f16_sign); 11777 } 11778 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 11779 float_raise(float_flag_underflow, fpst); 11780 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11781 } 11782 11783 f64_frac = call_recip_estimate(&f16_exp, 29, 11784 ((uint64_t) f16_frac) << (52 - 10)); 11785 11786 /* result = sign : result_exp<4:0> : fraction<51:42> */ 11787 f16_val = deposit32(0, 15, 1, f16_sign); 11788 f16_val = deposit32(f16_val, 10, 5, f16_exp); 11789 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 11790 return make_float16(f16_val); 11791 } 11792 11793 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11794 { 11795 float_status *fpst = fpstp; 11796 float32 f32 = float32_squash_input_denormal(input, fpst); 11797 uint32_t f32_val = float32_val(f32); 11798 bool f32_sign = float32_is_neg(f32); 11799 int f32_exp = extract32(f32_val, 23, 8); 11800 uint32_t f32_frac = extract32(f32_val, 0, 23); 11801 uint64_t f64_frac; 11802 11803 if (float32_is_any_nan(f32)) { 11804 float32 nan = f32; 11805 if (float32_is_signaling_nan(f32, fpst)) { 11806 float_raise(float_flag_invalid, fpst); 11807 nan = float32_silence_nan(f32, fpst); 11808 } 11809 if (fpst->default_nan_mode) { 11810 nan = float32_default_nan(fpst); 11811 } 11812 return nan; 11813 } else if (float32_is_infinity(f32)) { 11814 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11815 } else if (float32_is_zero(f32)) { 11816 float_raise(float_flag_divbyzero, fpst); 11817 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11818 } else if (float32_abs(f32) < (1ULL << 21)) { 11819 /* Abs(value) < 2.0^-128 */ 11820 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11821 if (round_to_inf(fpst, f32_sign)) { 11822 return float32_set_sign(float32_infinity, f32_sign); 11823 } else { 11824 return float32_set_sign(float32_maxnorm, f32_sign); 11825 } 11826 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11827 float_raise(float_flag_underflow, fpst); 11828 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11829 } 11830 11831 f64_frac = call_recip_estimate(&f32_exp, 253, 11832 ((uint64_t) f32_frac) << (52 - 23)); 11833 11834 /* result = sign : result_exp<7:0> : fraction<51:29> */ 11835 f32_val = deposit32(0, 31, 1, f32_sign); 11836 f32_val = deposit32(f32_val, 23, 8, f32_exp); 11837 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 11838 return make_float32(f32_val); 11839 } 11840 11841 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11842 { 11843 float_status *fpst = fpstp; 11844 float64 f64 = float64_squash_input_denormal(input, fpst); 11845 uint64_t f64_val = float64_val(f64); 11846 bool f64_sign = float64_is_neg(f64); 11847 int f64_exp = extract64(f64_val, 52, 11); 11848 uint64_t f64_frac = extract64(f64_val, 0, 52); 11849 11850 /* Deal with any special cases */ 11851 if (float64_is_any_nan(f64)) { 11852 float64 nan = f64; 11853 if (float64_is_signaling_nan(f64, fpst)) { 11854 float_raise(float_flag_invalid, fpst); 11855 nan = float64_silence_nan(f64, fpst); 11856 } 11857 if (fpst->default_nan_mode) { 11858 nan = float64_default_nan(fpst); 11859 } 11860 return nan; 11861 } else if (float64_is_infinity(f64)) { 11862 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11863 } else if (float64_is_zero(f64)) { 11864 float_raise(float_flag_divbyzero, fpst); 11865 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11866 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11867 /* Abs(value) < 2.0^-1024 */ 11868 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11869 if (round_to_inf(fpst, f64_sign)) { 11870 return float64_set_sign(float64_infinity, f64_sign); 11871 } else { 11872 return float64_set_sign(float64_maxnorm, f64_sign); 11873 } 11874 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11875 float_raise(float_flag_underflow, fpst); 11876 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11877 } 11878 11879 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 11880 11881 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 11882 f64_val = deposit64(0, 63, 1, f64_sign); 11883 f64_val = deposit64(f64_val, 52, 11, f64_exp); 11884 f64_val = deposit64(f64_val, 0, 52, f64_frac); 11885 return make_float64(f64_val); 11886 } 11887 11888 /* The algorithm that must be used to calculate the estimate 11889 * is specified by the ARM ARM. 11890 */ 11891 11892 static int do_recip_sqrt_estimate(int a) 11893 { 11894 int b, estimate; 11895 11896 assert(128 <= a && a < 512); 11897 if (a < 256) { 11898 a = a * 2 + 1; 11899 } else { 11900 a = (a >> 1) << 1; 11901 a = (a + 1) * 2; 11902 } 11903 b = 512; 11904 while (a * (b + 1) * (b + 1) < (1 << 28)) { 11905 b += 1; 11906 } 11907 estimate = (b + 1) / 2; 11908 assert(256 <= estimate && estimate < 512); 11909 11910 return estimate; 11911 } 11912 11913 11914 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 11915 { 11916 int estimate; 11917 uint32_t scaled; 11918 11919 if (*exp == 0) { 11920 while (extract64(frac, 51, 1) == 0) { 11921 frac = frac << 1; 11922 *exp -= 1; 11923 } 11924 frac = extract64(frac, 0, 51) << 1; 11925 } 11926 11927 if (*exp & 1) { 11928 /* scaled = UInt('01':fraction<51:45>) */ 11929 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 11930 } else { 11931 /* scaled = UInt('1':fraction<51:44>) */ 11932 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11933 } 11934 estimate = do_recip_sqrt_estimate(scaled); 11935 11936 *exp = (exp_off - *exp) / 2; 11937 return extract64(estimate, 0, 8) << 44; 11938 } 11939 11940 float16 HELPER(rsqrte_f16)(float16 input, void *fpstp) 11941 { 11942 float_status *s = fpstp; 11943 float16 f16 = float16_squash_input_denormal(input, s); 11944 uint16_t val = float16_val(f16); 11945 bool f16_sign = float16_is_neg(f16); 11946 int f16_exp = extract32(val, 10, 5); 11947 uint16_t f16_frac = extract32(val, 0, 10); 11948 uint64_t f64_frac; 11949 11950 if (float16_is_any_nan(f16)) { 11951 float16 nan = f16; 11952 if (float16_is_signaling_nan(f16, s)) { 11953 float_raise(float_flag_invalid, s); 11954 nan = float16_silence_nan(f16, s); 11955 } 11956 if (s->default_nan_mode) { 11957 nan = float16_default_nan(s); 11958 } 11959 return nan; 11960 } else if (float16_is_zero(f16)) { 11961 float_raise(float_flag_divbyzero, s); 11962 return float16_set_sign(float16_infinity, f16_sign); 11963 } else if (f16_sign) { 11964 float_raise(float_flag_invalid, s); 11965 return float16_default_nan(s); 11966 } else if (float16_is_infinity(f16)) { 11967 return float16_zero; 11968 } 11969 11970 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11971 * preserving the parity of the exponent. */ 11972 11973 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 11974 11975 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 11976 11977 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 11978 val = deposit32(0, 15, 1, f16_sign); 11979 val = deposit32(val, 10, 5, f16_exp); 11980 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 11981 return make_float16(val); 11982 } 11983 11984 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11985 { 11986 float_status *s = fpstp; 11987 float32 f32 = float32_squash_input_denormal(input, s); 11988 uint32_t val = float32_val(f32); 11989 uint32_t f32_sign = float32_is_neg(f32); 11990 int f32_exp = extract32(val, 23, 8); 11991 uint32_t f32_frac = extract32(val, 0, 23); 11992 uint64_t f64_frac; 11993 11994 if (float32_is_any_nan(f32)) { 11995 float32 nan = f32; 11996 if (float32_is_signaling_nan(f32, s)) { 11997 float_raise(float_flag_invalid, s); 11998 nan = float32_silence_nan(f32, s); 11999 } 12000 if (s->default_nan_mode) { 12001 nan = float32_default_nan(s); 12002 } 12003 return nan; 12004 } else if (float32_is_zero(f32)) { 12005 float_raise(float_flag_divbyzero, s); 12006 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12007 } else if (float32_is_neg(f32)) { 12008 float_raise(float_flag_invalid, s); 12009 return float32_default_nan(s); 12010 } else if (float32_is_infinity(f32)) { 12011 return float32_zero; 12012 } 12013 12014 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12015 * preserving the parity of the exponent. */ 12016 12017 f64_frac = ((uint64_t) f32_frac) << 29; 12018 12019 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 12020 12021 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 12022 val = deposit32(0, 31, 1, f32_sign); 12023 val = deposit32(val, 23, 8, f32_exp); 12024 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 12025 return make_float32(val); 12026 } 12027 12028 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 12029 { 12030 float_status *s = fpstp; 12031 float64 f64 = float64_squash_input_denormal(input, s); 12032 uint64_t val = float64_val(f64); 12033 bool f64_sign = float64_is_neg(f64); 12034 int f64_exp = extract64(val, 52, 11); 12035 uint64_t f64_frac = extract64(val, 0, 52); 12036 12037 if (float64_is_any_nan(f64)) { 12038 float64 nan = f64; 12039 if (float64_is_signaling_nan(f64, s)) { 12040 float_raise(float_flag_invalid, s); 12041 nan = float64_silence_nan(f64, s); 12042 } 12043 if (s->default_nan_mode) { 12044 nan = float64_default_nan(s); 12045 } 12046 return nan; 12047 } else if (float64_is_zero(f64)) { 12048 float_raise(float_flag_divbyzero, s); 12049 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12050 } else if (float64_is_neg(f64)) { 12051 float_raise(float_flag_invalid, s); 12052 return float64_default_nan(s); 12053 } else if (float64_is_infinity(f64)) { 12054 return float64_zero; 12055 } 12056 12057 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 12058 12059 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 12060 val = deposit64(0, 61, 1, f64_sign); 12061 val = deposit64(val, 52, 11, f64_exp); 12062 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 12063 return make_float64(val); 12064 } 12065 12066 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 12067 { 12068 /* float_status *s = fpstp; */ 12069 int input, estimate; 12070 12071 if ((a & 0x80000000) == 0) { 12072 return 0xffffffff; 12073 } 12074 12075 input = extract32(a, 23, 9); 12076 estimate = recip_estimate(input); 12077 12078 return deposit32(0, (32 - 9), 9, estimate); 12079 } 12080 12081 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 12082 { 12083 int estimate; 12084 12085 if ((a & 0xc0000000) == 0) { 12086 return 0xffffffff; 12087 } 12088 12089 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 12090 12091 return deposit32(0, 23, 9, estimate); 12092 } 12093 12094 /* VFPv4 fused multiply-accumulate */ 12095 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 12096 { 12097 float_status *fpst = fpstp; 12098 return float32_muladd(a, b, c, 0, fpst); 12099 } 12100 12101 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12102 { 12103 float_status *fpst = fpstp; 12104 return float64_muladd(a, b, c, 0, fpst); 12105 } 12106 12107 /* ARMv8 round to integral */ 12108 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12109 { 12110 return float32_round_to_int(x, fp_status); 12111 } 12112 12113 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12114 { 12115 return float64_round_to_int(x, fp_status); 12116 } 12117 12118 float32 HELPER(rints)(float32 x, void *fp_status) 12119 { 12120 int old_flags = get_float_exception_flags(fp_status), new_flags; 12121 float32 ret; 12122 12123 ret = float32_round_to_int(x, fp_status); 12124 12125 /* Suppress any inexact exceptions the conversion produced */ 12126 if (!(old_flags & float_flag_inexact)) { 12127 new_flags = get_float_exception_flags(fp_status); 12128 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12129 } 12130 12131 return ret; 12132 } 12133 12134 float64 HELPER(rintd)(float64 x, void *fp_status) 12135 { 12136 int old_flags = get_float_exception_flags(fp_status), new_flags; 12137 float64 ret; 12138 12139 ret = float64_round_to_int(x, fp_status); 12140 12141 new_flags = get_float_exception_flags(fp_status); 12142 12143 /* Suppress any inexact exceptions the conversion produced */ 12144 if (!(old_flags & float_flag_inexact)) { 12145 new_flags = get_float_exception_flags(fp_status); 12146 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12147 } 12148 12149 return ret; 12150 } 12151 12152 /* Convert ARM rounding mode to softfloat */ 12153 int arm_rmode_to_sf(int rmode) 12154 { 12155 switch (rmode) { 12156 case FPROUNDING_TIEAWAY: 12157 rmode = float_round_ties_away; 12158 break; 12159 case FPROUNDING_ODD: 12160 /* FIXME: add support for TIEAWAY and ODD */ 12161 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12162 rmode); 12163 case FPROUNDING_TIEEVEN: 12164 default: 12165 rmode = float_round_nearest_even; 12166 break; 12167 case FPROUNDING_POSINF: 12168 rmode = float_round_up; 12169 break; 12170 case FPROUNDING_NEGINF: 12171 rmode = float_round_down; 12172 break; 12173 case FPROUNDING_ZERO: 12174 rmode = float_round_to_zero; 12175 break; 12176 } 12177 return rmode; 12178 } 12179 12180 /* CRC helpers. 12181 * The upper bytes of val (above the number specified by 'bytes') must have 12182 * been zeroed out by the caller. 12183 */ 12184 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12185 { 12186 uint8_t buf[4]; 12187 12188 stl_le_p(buf, val); 12189 12190 /* zlib crc32 converts the accumulator and output to one's complement. */ 12191 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12192 } 12193 12194 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12195 { 12196 uint8_t buf[4]; 12197 12198 stl_le_p(buf, val); 12199 12200 /* Linux crc32c converts the output to one's complement. */ 12201 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12202 } 12203 12204 /* Return the exception level to which FP-disabled exceptions should 12205 * be taken, or 0 if FP is enabled. 12206 */ 12207 static inline int fp_exception_el(CPUARMState *env) 12208 { 12209 #ifndef CONFIG_USER_ONLY 12210 int fpen; 12211 int cur_el = arm_current_el(env); 12212 12213 /* CPACR and the CPTR registers don't exist before v6, so FP is 12214 * always accessible 12215 */ 12216 if (!arm_feature(env, ARM_FEATURE_V6)) { 12217 return 0; 12218 } 12219 12220 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12221 * 0, 2 : trap EL0 and EL1/PL1 accesses 12222 * 1 : trap only EL0 accesses 12223 * 3 : trap no accesses 12224 */ 12225 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12226 switch (fpen) { 12227 case 0: 12228 case 2: 12229 if (cur_el == 0 || cur_el == 1) { 12230 /* Trap to PL1, which might be EL1 or EL3 */ 12231 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12232 return 3; 12233 } 12234 return 1; 12235 } 12236 if (cur_el == 3 && !is_a64(env)) { 12237 /* Secure PL1 running at EL3 */ 12238 return 3; 12239 } 12240 break; 12241 case 1: 12242 if (cur_el == 0) { 12243 return 1; 12244 } 12245 break; 12246 case 3: 12247 break; 12248 } 12249 12250 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12251 * check because zero bits in the registers mean "don't trap". 12252 */ 12253 12254 /* CPTR_EL2 : present in v7VE or v8 */ 12255 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12256 && !arm_is_secure_below_el3(env)) { 12257 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12258 return 2; 12259 } 12260 12261 /* CPTR_EL3 : present in v8 */ 12262 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12263 /* Trap all FP ops to EL3 */ 12264 return 3; 12265 } 12266 #endif 12267 return 0; 12268 } 12269 12270 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12271 target_ulong *cs_base, uint32_t *pflags) 12272 { 12273 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12274 int fp_el = fp_exception_el(env); 12275 uint32_t flags; 12276 12277 if (is_a64(env)) { 12278 int sve_el = sve_exception_el(env); 12279 uint32_t zcr_len; 12280 12281 *pc = env->pc; 12282 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12283 /* Get control bits for tagged addresses */ 12284 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12285 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12286 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12287 12288 /* If SVE is disabled, but FP is enabled, 12289 then the effective len is 0. */ 12290 if (sve_el != 0 && fp_el == 0) { 12291 zcr_len = 0; 12292 } else { 12293 int current_el = arm_current_el(env); 12294 12295 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el]; 12296 zcr_len &= 0xf; 12297 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12298 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12299 } 12300 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12301 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12302 } 12303 } 12304 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12305 } else { 12306 *pc = env->regs[15]; 12307 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12308 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12309 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12310 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12311 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12312 if (!(access_secure_reg(env))) { 12313 flags |= ARM_TBFLAG_NS_MASK; 12314 } 12315 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12316 || arm_el_is_aa64(env, 1)) { 12317 flags |= ARM_TBFLAG_VFPEN_MASK; 12318 } 12319 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12320 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12321 } 12322 12323 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12324 12325 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12326 * states defined in the ARM ARM for software singlestep: 12327 * SS_ACTIVE PSTATE.SS State 12328 * 0 x Inactive (the TB flag for SS is always 0) 12329 * 1 0 Active-pending 12330 * 1 1 Active-not-pending 12331 */ 12332 if (arm_singlestep_active(env)) { 12333 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12334 if (is_a64(env)) { 12335 if (env->pstate & PSTATE_SS) { 12336 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12337 } 12338 } else { 12339 if (env->uncached_cpsr & PSTATE_SS) { 12340 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12341 } 12342 } 12343 } 12344 if (arm_cpu_data_is_big_endian(env)) { 12345 flags |= ARM_TBFLAG_BE_DATA_MASK; 12346 } 12347 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12348 12349 if (arm_v7m_is_handler_mode(env)) { 12350 flags |= ARM_TBFLAG_HANDLER_MASK; 12351 } 12352 12353 *pflags = flags; 12354 *cs_base = 0; 12355 } 12356