xref: /openbmc/qemu/target/arm/helper.c (revision 47451466)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 
21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
22 
23 #ifndef CONFIG_USER_ONLY
24 /* Cacheability and shareability attributes for a memory access */
25 typedef struct ARMCacheAttrs {
26     unsigned int attrs:8; /* as in the MAIR register encoding */
27     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
28 } ARMCacheAttrs;
29 
30 static bool get_phys_addr(CPUARMState *env, target_ulong address,
31                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
32                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
33                           target_ulong *page_size,
34                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
35 
36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
37                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
38                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
39                                target_ulong *page_size_ptr,
40                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
41 
42 /* Security attributes for an address, as returned by v8m_security_lookup. */
43 typedef struct V8M_SAttributes {
44     bool ns;
45     bool nsc;
46     uint8_t sregion;
47     bool srvalid;
48     uint8_t iregion;
49     bool irvalid;
50 } V8M_SAttributes;
51 
52 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
53                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
54                                 V8M_SAttributes *sattrs);
55 #endif
56 
57 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
58 {
59     int nregs;
60 
61     /* VFP data registers are always little-endian.  */
62     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
63     if (reg < nregs) {
64         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
65         return 8;
66     }
67     if (arm_feature(env, ARM_FEATURE_NEON)) {
68         /* Aliases for Q regs.  */
69         nregs += 16;
70         if (reg < nregs) {
71             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
72             stq_le_p(buf, q[0]);
73             stq_le_p(buf + 8, q[1]);
74             return 16;
75         }
76     }
77     switch (reg - nregs) {
78     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
79     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
80     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
81     }
82     return 0;
83 }
84 
85 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
86 {
87     int nregs;
88 
89     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
90     if (reg < nregs) {
91         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
92         return 8;
93     }
94     if (arm_feature(env, ARM_FEATURE_NEON)) {
95         nregs += 16;
96         if (reg < nregs) {
97             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
98             q[0] = ldq_le_p(buf);
99             q[1] = ldq_le_p(buf + 8);
100             return 16;
101         }
102     }
103     switch (reg - nregs) {
104     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
105     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
106     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
107     }
108     return 0;
109 }
110 
111 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
112 {
113     switch (reg) {
114     case 0 ... 31:
115         /* 128 bit FP register */
116         {
117             uint64_t *q = aa64_vfp_qreg(env, reg);
118             stq_le_p(buf, q[0]);
119             stq_le_p(buf + 8, q[1]);
120             return 16;
121         }
122     case 32:
123         /* FPSR */
124         stl_p(buf, vfp_get_fpsr(env));
125         return 4;
126     case 33:
127         /* FPCR */
128         stl_p(buf, vfp_get_fpcr(env));
129         return 4;
130     default:
131         return 0;
132     }
133 }
134 
135 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
136 {
137     switch (reg) {
138     case 0 ... 31:
139         /* 128 bit FP register */
140         {
141             uint64_t *q = aa64_vfp_qreg(env, reg);
142             q[0] = ldq_le_p(buf);
143             q[1] = ldq_le_p(buf + 8);
144             return 16;
145         }
146     case 32:
147         /* FPSR */
148         vfp_set_fpsr(env, ldl_p(buf));
149         return 4;
150     case 33:
151         /* FPCR */
152         vfp_set_fpcr(env, ldl_p(buf));
153         return 4;
154     default:
155         return 0;
156     }
157 }
158 
159 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
160 {
161     assert(ri->fieldoffset);
162     if (cpreg_field_is_64bit(ri)) {
163         return CPREG_FIELD64(env, ri);
164     } else {
165         return CPREG_FIELD32(env, ri);
166     }
167 }
168 
169 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
170                       uint64_t value)
171 {
172     assert(ri->fieldoffset);
173     if (cpreg_field_is_64bit(ri)) {
174         CPREG_FIELD64(env, ri) = value;
175     } else {
176         CPREG_FIELD32(env, ri) = value;
177     }
178 }
179 
180 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
181 {
182     return (char *)env + ri->fieldoffset;
183 }
184 
185 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
186 {
187     /* Raw read of a coprocessor register (as needed for migration, etc). */
188     if (ri->type & ARM_CP_CONST) {
189         return ri->resetvalue;
190     } else if (ri->raw_readfn) {
191         return ri->raw_readfn(env, ri);
192     } else if (ri->readfn) {
193         return ri->readfn(env, ri);
194     } else {
195         return raw_read(env, ri);
196     }
197 }
198 
199 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
200                              uint64_t v)
201 {
202     /* Raw write of a coprocessor register (as needed for migration, etc).
203      * Note that constant registers are treated as write-ignored; the
204      * caller should check for success by whether a readback gives the
205      * value written.
206      */
207     if (ri->type & ARM_CP_CONST) {
208         return;
209     } else if (ri->raw_writefn) {
210         ri->raw_writefn(env, ri, v);
211     } else if (ri->writefn) {
212         ri->writefn(env, ri, v);
213     } else {
214         raw_write(env, ri, v);
215     }
216 }
217 
218 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
219 {
220     ARMCPU *cpu = arm_env_get_cpu(env);
221     const ARMCPRegInfo *ri;
222     uint32_t key;
223 
224     key = cpu->dyn_xml.cpregs_keys[reg];
225     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
226     if (ri) {
227         if (cpreg_field_is_64bit(ri)) {
228             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
229         } else {
230             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
231         }
232     }
233     return 0;
234 }
235 
236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
237 {
238     return 0;
239 }
240 
241 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
242 {
243    /* Return true if the regdef would cause an assertion if you called
244     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
245     * program bug for it not to have the NO_RAW flag).
246     * NB that returning false here doesn't necessarily mean that calling
247     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
248     * read/write access functions which are safe for raw use" from "has
249     * read/write access functions which have side effects but has forgotten
250     * to provide raw access functions".
251     * The tests here line up with the conditions in read/write_raw_cp_reg()
252     * and assertions in raw_read()/raw_write().
253     */
254     if ((ri->type & ARM_CP_CONST) ||
255         ri->fieldoffset ||
256         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
257         return false;
258     }
259     return true;
260 }
261 
262 bool write_cpustate_to_list(ARMCPU *cpu)
263 {
264     /* Write the coprocessor state from cpu->env to the (index,value) list. */
265     int i;
266     bool ok = true;
267 
268     for (i = 0; i < cpu->cpreg_array_len; i++) {
269         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
270         const ARMCPRegInfo *ri;
271 
272         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
273         if (!ri) {
274             ok = false;
275             continue;
276         }
277         if (ri->type & ARM_CP_NO_RAW) {
278             continue;
279         }
280         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
281     }
282     return ok;
283 }
284 
285 bool write_list_to_cpustate(ARMCPU *cpu)
286 {
287     int i;
288     bool ok = true;
289 
290     for (i = 0; i < cpu->cpreg_array_len; i++) {
291         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
292         uint64_t v = cpu->cpreg_values[i];
293         const ARMCPRegInfo *ri;
294 
295         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
296         if (!ri) {
297             ok = false;
298             continue;
299         }
300         if (ri->type & ARM_CP_NO_RAW) {
301             continue;
302         }
303         /* Write value and confirm it reads back as written
304          * (to catch read-only registers and partially read-only
305          * registers where the incoming migration value doesn't match)
306          */
307         write_raw_cp_reg(&cpu->env, ri, v);
308         if (read_raw_cp_reg(&cpu->env, ri) != v) {
309             ok = false;
310         }
311     }
312     return ok;
313 }
314 
315 static void add_cpreg_to_list(gpointer key, gpointer opaque)
316 {
317     ARMCPU *cpu = opaque;
318     uint64_t regidx;
319     const ARMCPRegInfo *ri;
320 
321     regidx = *(uint32_t *)key;
322     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
323 
324     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
325         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
326         /* The value array need not be initialized at this point */
327         cpu->cpreg_array_len++;
328     }
329 }
330 
331 static void count_cpreg(gpointer key, gpointer opaque)
332 {
333     ARMCPU *cpu = opaque;
334     uint64_t regidx;
335     const ARMCPRegInfo *ri;
336 
337     regidx = *(uint32_t *)key;
338     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
339 
340     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
341         cpu->cpreg_array_len++;
342     }
343 }
344 
345 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
346 {
347     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
348     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
349 
350     if (aidx > bidx) {
351         return 1;
352     }
353     if (aidx < bidx) {
354         return -1;
355     }
356     return 0;
357 }
358 
359 void init_cpreg_list(ARMCPU *cpu)
360 {
361     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
362      * Note that we require cpreg_tuples[] to be sorted by key ID.
363      */
364     GList *keys;
365     int arraylen;
366 
367     keys = g_hash_table_get_keys(cpu->cp_regs);
368     keys = g_list_sort(keys, cpreg_key_compare);
369 
370     cpu->cpreg_array_len = 0;
371 
372     g_list_foreach(keys, count_cpreg, cpu);
373 
374     arraylen = cpu->cpreg_array_len;
375     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
376     cpu->cpreg_values = g_new(uint64_t, arraylen);
377     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
378     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
379     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
380     cpu->cpreg_array_len = 0;
381 
382     g_list_foreach(keys, add_cpreg_to_list, cpu);
383 
384     assert(cpu->cpreg_array_len == arraylen);
385 
386     g_list_free(keys);
387 }
388 
389 /*
390  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
391  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
392  *
393  * access_el3_aa32ns: Used to check AArch32 register views.
394  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
395  */
396 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
397                                         const ARMCPRegInfo *ri,
398                                         bool isread)
399 {
400     bool secure = arm_is_secure_below_el3(env);
401 
402     assert(!arm_el_is_aa64(env, 3));
403     if (secure) {
404         return CP_ACCESS_TRAP_UNCATEGORIZED;
405     }
406     return CP_ACCESS_OK;
407 }
408 
409 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
410                                                 const ARMCPRegInfo *ri,
411                                                 bool isread)
412 {
413     if (!arm_el_is_aa64(env, 3)) {
414         return access_el3_aa32ns(env, ri, isread);
415     }
416     return CP_ACCESS_OK;
417 }
418 
419 /* Some secure-only AArch32 registers trap to EL3 if used from
420  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
421  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
422  * We assume that the .access field is set to PL1_RW.
423  */
424 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
425                                             const ARMCPRegInfo *ri,
426                                             bool isread)
427 {
428     if (arm_current_el(env) == 3) {
429         return CP_ACCESS_OK;
430     }
431     if (arm_is_secure_below_el3(env)) {
432         return CP_ACCESS_TRAP_EL3;
433     }
434     /* This will be EL1 NS and EL2 NS, which just UNDEF */
435     return CP_ACCESS_TRAP_UNCATEGORIZED;
436 }
437 
438 /* Check for traps to "powerdown debug" registers, which are controlled
439  * by MDCR.TDOSA
440  */
441 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
442                                    bool isread)
443 {
444     int el = arm_current_el(env);
445 
446     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
447         && !arm_is_secure_below_el3(env)) {
448         return CP_ACCESS_TRAP_EL2;
449     }
450     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
451         return CP_ACCESS_TRAP_EL3;
452     }
453     return CP_ACCESS_OK;
454 }
455 
456 /* Check for traps to "debug ROM" registers, which are controlled
457  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
458  */
459 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
460                                   bool isread)
461 {
462     int el = arm_current_el(env);
463 
464     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
465         && !arm_is_secure_below_el3(env)) {
466         return CP_ACCESS_TRAP_EL2;
467     }
468     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
469         return CP_ACCESS_TRAP_EL3;
470     }
471     return CP_ACCESS_OK;
472 }
473 
474 /* Check for traps to general debug registers, which are controlled
475  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
476  */
477 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
478                                   bool isread)
479 {
480     int el = arm_current_el(env);
481 
482     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
483         && !arm_is_secure_below_el3(env)) {
484         return CP_ACCESS_TRAP_EL2;
485     }
486     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
487         return CP_ACCESS_TRAP_EL3;
488     }
489     return CP_ACCESS_OK;
490 }
491 
492 /* Check for traps to performance monitor registers, which are controlled
493  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
494  */
495 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
496                                  bool isread)
497 {
498     int el = arm_current_el(env);
499 
500     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
501         && !arm_is_secure_below_el3(env)) {
502         return CP_ACCESS_TRAP_EL2;
503     }
504     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
505         return CP_ACCESS_TRAP_EL3;
506     }
507     return CP_ACCESS_OK;
508 }
509 
510 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
511 {
512     ARMCPU *cpu = arm_env_get_cpu(env);
513 
514     raw_write(env, ri, value);
515     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
516 }
517 
518 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519 {
520     ARMCPU *cpu = arm_env_get_cpu(env);
521 
522     if (raw_read(env, ri) != value) {
523         /* Unlike real hardware the qemu TLB uses virtual addresses,
524          * not modified virtual addresses, so this causes a TLB flush.
525          */
526         tlb_flush(CPU(cpu));
527         raw_write(env, ri, value);
528     }
529 }
530 
531 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
532                              uint64_t value)
533 {
534     ARMCPU *cpu = arm_env_get_cpu(env);
535 
536     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
537         && !extended_addresses_enabled(env)) {
538         /* For VMSA (when not using the LPAE long descriptor page table
539          * format) this register includes the ASID, so do a TLB flush.
540          * For PMSA it is purely a process ID and no action is needed.
541          */
542         tlb_flush(CPU(cpu));
543     }
544     raw_write(env, ri, value);
545 }
546 
547 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
548                           uint64_t value)
549 {
550     /* Invalidate all (TLBIALL) */
551     ARMCPU *cpu = arm_env_get_cpu(env);
552 
553     tlb_flush(CPU(cpu));
554 }
555 
556 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                           uint64_t value)
558 {
559     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
560     ARMCPU *cpu = arm_env_get_cpu(env);
561 
562     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
563 }
564 
565 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
566                            uint64_t value)
567 {
568     /* Invalidate by ASID (TLBIASID) */
569     ARMCPU *cpu = arm_env_get_cpu(env);
570 
571     tlb_flush(CPU(cpu));
572 }
573 
574 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
575                            uint64_t value)
576 {
577     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
578     ARMCPU *cpu = arm_env_get_cpu(env);
579 
580     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
581 }
582 
583 /* IS variants of TLB operations must affect all cores */
584 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
585                              uint64_t value)
586 {
587     CPUState *cs = ENV_GET_CPU(env);
588 
589     tlb_flush_all_cpus_synced(cs);
590 }
591 
592 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593                              uint64_t value)
594 {
595     CPUState *cs = ENV_GET_CPU(env);
596 
597     tlb_flush_all_cpus_synced(cs);
598 }
599 
600 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                              uint64_t value)
602 {
603     CPUState *cs = ENV_GET_CPU(env);
604 
605     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
606 }
607 
608 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
609                              uint64_t value)
610 {
611     CPUState *cs = ENV_GET_CPU(env);
612 
613     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
614 }
615 
616 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
617                                uint64_t value)
618 {
619     CPUState *cs = ENV_GET_CPU(env);
620 
621     tlb_flush_by_mmuidx(cs,
622                         ARMMMUIdxBit_S12NSE1 |
623                         ARMMMUIdxBit_S12NSE0 |
624                         ARMMMUIdxBit_S2NS);
625 }
626 
627 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                                   uint64_t value)
629 {
630     CPUState *cs = ENV_GET_CPU(env);
631 
632     tlb_flush_by_mmuidx_all_cpus_synced(cs,
633                                         ARMMMUIdxBit_S12NSE1 |
634                                         ARMMMUIdxBit_S12NSE0 |
635                                         ARMMMUIdxBit_S2NS);
636 }
637 
638 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
639                             uint64_t value)
640 {
641     /* Invalidate by IPA. This has to invalidate any structures that
642      * contain only stage 2 translation information, but does not need
643      * to apply to structures that contain combined stage 1 and stage 2
644      * translation information.
645      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
646      */
647     CPUState *cs = ENV_GET_CPU(env);
648     uint64_t pageaddr;
649 
650     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
651         return;
652     }
653 
654     pageaddr = sextract64(value << 12, 0, 40);
655 
656     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
657 }
658 
659 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
660                                uint64_t value)
661 {
662     CPUState *cs = ENV_GET_CPU(env);
663     uint64_t pageaddr;
664 
665     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
666         return;
667     }
668 
669     pageaddr = sextract64(value << 12, 0, 40);
670 
671     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
672                                              ARMMMUIdxBit_S2NS);
673 }
674 
675 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
676                               uint64_t value)
677 {
678     CPUState *cs = ENV_GET_CPU(env);
679 
680     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
681 }
682 
683 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
684                                  uint64_t value)
685 {
686     CPUState *cs = ENV_GET_CPU(env);
687 
688     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
689 }
690 
691 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
692                               uint64_t value)
693 {
694     CPUState *cs = ENV_GET_CPU(env);
695     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
696 
697     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
698 }
699 
700 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701                                  uint64_t value)
702 {
703     CPUState *cs = ENV_GET_CPU(env);
704     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
705 
706     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
707                                              ARMMMUIdxBit_S1E2);
708 }
709 
710 static const ARMCPRegInfo cp_reginfo[] = {
711     /* Define the secure and non-secure FCSE identifier CP registers
712      * separately because there is no secure bank in V8 (no _EL3).  This allows
713      * the secure register to be properly reset and migrated. There is also no
714      * v8 EL1 version of the register so the non-secure instance stands alone.
715      */
716     { .name = "FCSEIDR",
717       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
718       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
719       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
720       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
721     { .name = "FCSEIDR_S",
722       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
723       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
724       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
725       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
726     /* Define the secure and non-secure context identifier CP registers
727      * separately because there is no secure bank in V8 (no _EL3).  This allows
728      * the secure register to be properly reset and migrated.  In the
729      * non-secure case, the 32-bit register will have reset and migration
730      * disabled during registration as it is handled by the 64-bit instance.
731      */
732     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
733       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
734       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
735       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
736       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
737     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
738       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
739       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
740       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
741       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
742     REGINFO_SENTINEL
743 };
744 
745 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
746     /* NB: Some of these registers exist in v8 but with more precise
747      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
748      */
749     /* MMU Domain access control / MPU write buffer control */
750     { .name = "DACR",
751       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
752       .access = PL1_RW, .resetvalue = 0,
753       .writefn = dacr_write, .raw_writefn = raw_write,
754       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
755                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
756     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
757      * For v6 and v5, these mappings are overly broad.
758      */
759     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
760       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
761     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
762       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
763     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
764       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
765     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
766       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
767     /* Cache maintenance ops; some of this space may be overridden later. */
768     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
769       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
770       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
771     REGINFO_SENTINEL
772 };
773 
774 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
775     /* Not all pre-v6 cores implemented this WFI, so this is slightly
776      * over-broad.
777      */
778     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
779       .access = PL1_W, .type = ARM_CP_WFI },
780     REGINFO_SENTINEL
781 };
782 
783 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
784     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
785      * is UNPREDICTABLE; we choose to NOP as most implementations do).
786      */
787     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
788       .access = PL1_W, .type = ARM_CP_WFI },
789     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
790      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
791      * OMAPCP will override this space.
792      */
793     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
794       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
795       .resetvalue = 0 },
796     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
797       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
798       .resetvalue = 0 },
799     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
800     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
801       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
802       .resetvalue = 0 },
803     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
804      * implementing it as RAZ means the "debug architecture version" bits
805      * will read as a reserved value, which should cause Linux to not try
806      * to use the debug hardware.
807      */
808     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
809       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
810     /* MMU TLB control. Note that the wildcarding means we cover not just
811      * the unified TLB ops but also the dside/iside/inner-shareable variants.
812      */
813     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
814       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
815       .type = ARM_CP_NO_RAW },
816     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
817       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
818       .type = ARM_CP_NO_RAW },
819     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
820       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
821       .type = ARM_CP_NO_RAW },
822     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
823       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
824       .type = ARM_CP_NO_RAW },
825     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
826       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
827     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
828       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
829     REGINFO_SENTINEL
830 };
831 
832 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
833                         uint64_t value)
834 {
835     uint32_t mask = 0;
836 
837     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
838     if (!arm_feature(env, ARM_FEATURE_V8)) {
839         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
840          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
841          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
842          */
843         if (arm_feature(env, ARM_FEATURE_VFP)) {
844             /* VFP coprocessor: cp10 & cp11 [23:20] */
845             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
846 
847             if (!arm_feature(env, ARM_FEATURE_NEON)) {
848                 /* ASEDIS [31] bit is RAO/WI */
849                 value |= (1 << 31);
850             }
851 
852             /* VFPv3 and upwards with NEON implement 32 double precision
853              * registers (D0-D31).
854              */
855             if (!arm_feature(env, ARM_FEATURE_NEON) ||
856                     !arm_feature(env, ARM_FEATURE_VFP3)) {
857                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
858                 value |= (1 << 30);
859             }
860         }
861         value &= mask;
862     }
863     env->cp15.cpacr_el1 = value;
864 }
865 
866 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
867 {
868     /* Call cpacr_write() so that we reset with the correct RAO bits set
869      * for our CPU features.
870      */
871     cpacr_write(env, ri, 0);
872 }
873 
874 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
875                                    bool isread)
876 {
877     if (arm_feature(env, ARM_FEATURE_V8)) {
878         /* Check if CPACR accesses are to be trapped to EL2 */
879         if (arm_current_el(env) == 1 &&
880             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
881             return CP_ACCESS_TRAP_EL2;
882         /* Check if CPACR accesses are to be trapped to EL3 */
883         } else if (arm_current_el(env) < 3 &&
884                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
885             return CP_ACCESS_TRAP_EL3;
886         }
887     }
888 
889     return CP_ACCESS_OK;
890 }
891 
892 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
893                                   bool isread)
894 {
895     /* Check if CPTR accesses are set to trap to EL3 */
896     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
897         return CP_ACCESS_TRAP_EL3;
898     }
899 
900     return CP_ACCESS_OK;
901 }
902 
903 static const ARMCPRegInfo v6_cp_reginfo[] = {
904     /* prefetch by MVA in v6, NOP in v7 */
905     { .name = "MVA_prefetch",
906       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
907       .access = PL1_W, .type = ARM_CP_NOP },
908     /* We need to break the TB after ISB to execute self-modifying code
909      * correctly and also to take any pending interrupts immediately.
910      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
911      */
912     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
913       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
914     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
915       .access = PL0_W, .type = ARM_CP_NOP },
916     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
917       .access = PL0_W, .type = ARM_CP_NOP },
918     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
919       .access = PL1_RW,
920       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
921                              offsetof(CPUARMState, cp15.ifar_ns) },
922       .resetvalue = 0, },
923     /* Watchpoint Fault Address Register : should actually only be present
924      * for 1136, 1176, 11MPCore.
925      */
926     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
927       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
928     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
929       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
930       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
931       .resetfn = cpacr_reset, .writefn = cpacr_write },
932     REGINFO_SENTINEL
933 };
934 
935 /* Definitions for the PMU registers */
936 #define PMCRN_MASK  0xf800
937 #define PMCRN_SHIFT 11
938 #define PMCRD   0x8
939 #define PMCRC   0x4
940 #define PMCRE   0x1
941 
942 static inline uint32_t pmu_num_counters(CPUARMState *env)
943 {
944   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
945 }
946 
947 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
948 static inline uint64_t pmu_counter_mask(CPUARMState *env)
949 {
950   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
951 }
952 
953 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
954                                    bool isread)
955 {
956     /* Performance monitor registers user accessibility is controlled
957      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
958      * trapping to EL2 or EL3 for other accesses.
959      */
960     int el = arm_current_el(env);
961 
962     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
963         return CP_ACCESS_TRAP;
964     }
965     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
966         && !arm_is_secure_below_el3(env)) {
967         return CP_ACCESS_TRAP_EL2;
968     }
969     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
970         return CP_ACCESS_TRAP_EL3;
971     }
972 
973     return CP_ACCESS_OK;
974 }
975 
976 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
977                                            const ARMCPRegInfo *ri,
978                                            bool isread)
979 {
980     /* ER: event counter read trap control */
981     if (arm_feature(env, ARM_FEATURE_V8)
982         && arm_current_el(env) == 0
983         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
984         && isread) {
985         return CP_ACCESS_OK;
986     }
987 
988     return pmreg_access(env, ri, isread);
989 }
990 
991 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
992                                          const ARMCPRegInfo *ri,
993                                          bool isread)
994 {
995     /* SW: software increment write trap control */
996     if (arm_feature(env, ARM_FEATURE_V8)
997         && arm_current_el(env) == 0
998         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
999         && !isread) {
1000         return CP_ACCESS_OK;
1001     }
1002 
1003     return pmreg_access(env, ri, isread);
1004 }
1005 
1006 #ifndef CONFIG_USER_ONLY
1007 
1008 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1009                                         const ARMCPRegInfo *ri,
1010                                         bool isread)
1011 {
1012     /* ER: event counter read trap control */
1013     if (arm_feature(env, ARM_FEATURE_V8)
1014         && arm_current_el(env) == 0
1015         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1016         return CP_ACCESS_OK;
1017     }
1018 
1019     return pmreg_access(env, ri, isread);
1020 }
1021 
1022 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1023                                          const ARMCPRegInfo *ri,
1024                                          bool isread)
1025 {
1026     /* CR: cycle counter read trap control */
1027     if (arm_feature(env, ARM_FEATURE_V8)
1028         && arm_current_el(env) == 0
1029         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1030         && isread) {
1031         return CP_ACCESS_OK;
1032     }
1033 
1034     return pmreg_access(env, ri, isread);
1035 }
1036 
1037 static inline bool arm_ccnt_enabled(CPUARMState *env)
1038 {
1039     /* This does not support checking PMCCFILTR_EL0 register */
1040 
1041     if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1042         return false;
1043     }
1044 
1045     return true;
1046 }
1047 
1048 void pmccntr_sync(CPUARMState *env)
1049 {
1050     uint64_t temp_ticks;
1051 
1052     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1053                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1054 
1055     if (env->cp15.c9_pmcr & PMCRD) {
1056         /* Increment once every 64 processor clock cycles */
1057         temp_ticks /= 64;
1058     }
1059 
1060     if (arm_ccnt_enabled(env)) {
1061         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1062     }
1063 }
1064 
1065 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1066                        uint64_t value)
1067 {
1068     pmccntr_sync(env);
1069 
1070     if (value & PMCRC) {
1071         /* The counter has been reset */
1072         env->cp15.c15_ccnt = 0;
1073     }
1074 
1075     /* only the DP, X, D and E bits are writable */
1076     env->cp15.c9_pmcr &= ~0x39;
1077     env->cp15.c9_pmcr |= (value & 0x39);
1078 
1079     pmccntr_sync(env);
1080 }
1081 
1082 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1083 {
1084     uint64_t total_ticks;
1085 
1086     if (!arm_ccnt_enabled(env)) {
1087         /* Counter is disabled, do not change value */
1088         return env->cp15.c15_ccnt;
1089     }
1090 
1091     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1092                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1093 
1094     if (env->cp15.c9_pmcr & PMCRD) {
1095         /* Increment once every 64 processor clock cycles */
1096         total_ticks /= 64;
1097     }
1098     return total_ticks - env->cp15.c15_ccnt;
1099 }
1100 
1101 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1102                          uint64_t value)
1103 {
1104     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1105      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1106      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1107      * accessed.
1108      */
1109     env->cp15.c9_pmselr = value & 0x1f;
1110 }
1111 
1112 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1113                         uint64_t value)
1114 {
1115     uint64_t total_ticks;
1116 
1117     if (!arm_ccnt_enabled(env)) {
1118         /* Counter is disabled, set the absolute value */
1119         env->cp15.c15_ccnt = value;
1120         return;
1121     }
1122 
1123     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1124                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1125 
1126     if (env->cp15.c9_pmcr & PMCRD) {
1127         /* Increment once every 64 processor clock cycles */
1128         total_ticks /= 64;
1129     }
1130     env->cp15.c15_ccnt = total_ticks - value;
1131 }
1132 
1133 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1134                             uint64_t value)
1135 {
1136     uint64_t cur_val = pmccntr_read(env, NULL);
1137 
1138     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1139 }
1140 
1141 #else /* CONFIG_USER_ONLY */
1142 
1143 void pmccntr_sync(CPUARMState *env)
1144 {
1145 }
1146 
1147 #endif
1148 
1149 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1150                             uint64_t value)
1151 {
1152     pmccntr_sync(env);
1153     env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1154     pmccntr_sync(env);
1155 }
1156 
1157 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                             uint64_t value)
1159 {
1160     value &= pmu_counter_mask(env);
1161     env->cp15.c9_pmcnten |= value;
1162 }
1163 
1164 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1165                              uint64_t value)
1166 {
1167     value &= pmu_counter_mask(env);
1168     env->cp15.c9_pmcnten &= ~value;
1169 }
1170 
1171 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1172                          uint64_t value)
1173 {
1174     env->cp15.c9_pmovsr &= ~value;
1175 }
1176 
1177 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1178                              uint64_t value)
1179 {
1180     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1181      * PMSELR value is equal to or greater than the number of implemented
1182      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1183      */
1184     if (env->cp15.c9_pmselr == 0x1f) {
1185         pmccfiltr_write(env, ri, value);
1186     }
1187 }
1188 
1189 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1190 {
1191     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1192      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1193      */
1194     if (env->cp15.c9_pmselr == 0x1f) {
1195         return env->cp15.pmccfiltr_el0;
1196     } else {
1197         return 0;
1198     }
1199 }
1200 
1201 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1202                             uint64_t value)
1203 {
1204     if (arm_feature(env, ARM_FEATURE_V8)) {
1205         env->cp15.c9_pmuserenr = value & 0xf;
1206     } else {
1207         env->cp15.c9_pmuserenr = value & 1;
1208     }
1209 }
1210 
1211 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1212                              uint64_t value)
1213 {
1214     /* We have no event counters so only the C bit can be changed */
1215     value &= pmu_counter_mask(env);
1216     env->cp15.c9_pminten |= value;
1217 }
1218 
1219 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220                              uint64_t value)
1221 {
1222     value &= pmu_counter_mask(env);
1223     env->cp15.c9_pminten &= ~value;
1224 }
1225 
1226 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1227                        uint64_t value)
1228 {
1229     /* Note that even though the AArch64 view of this register has bits
1230      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1231      * architectural requirements for bits which are RES0 only in some
1232      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1233      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1234      */
1235     raw_write(env, ri, value & ~0x1FULL);
1236 }
1237 
1238 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1239 {
1240     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1241      * For bits that vary between AArch32/64, code needs to check the
1242      * current execution mode before directly using the feature bit.
1243      */
1244     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1245 
1246     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1247         valid_mask &= ~SCR_HCE;
1248 
1249         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1250          * supported if EL2 exists. The bit is UNK/SBZP when
1251          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1252          * when EL2 is unavailable.
1253          * On ARMv8, this bit is always available.
1254          */
1255         if (arm_feature(env, ARM_FEATURE_V7) &&
1256             !arm_feature(env, ARM_FEATURE_V8)) {
1257             valid_mask &= ~SCR_SMD;
1258         }
1259     }
1260 
1261     /* Clear all-context RES0 bits.  */
1262     value &= valid_mask;
1263     raw_write(env, ri, value);
1264 }
1265 
1266 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1267 {
1268     ARMCPU *cpu = arm_env_get_cpu(env);
1269 
1270     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1271      * bank
1272      */
1273     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1274                                         ri->secure & ARM_CP_SECSTATE_S);
1275 
1276     return cpu->ccsidr[index];
1277 }
1278 
1279 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1280                          uint64_t value)
1281 {
1282     raw_write(env, ri, value & 0xf);
1283 }
1284 
1285 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1286 {
1287     CPUState *cs = ENV_GET_CPU(env);
1288     uint64_t ret = 0;
1289 
1290     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1291         ret |= CPSR_I;
1292     }
1293     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1294         ret |= CPSR_F;
1295     }
1296     /* External aborts are not possible in QEMU so A bit is always clear */
1297     return ret;
1298 }
1299 
1300 static const ARMCPRegInfo v7_cp_reginfo[] = {
1301     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1302     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1303       .access = PL1_W, .type = ARM_CP_NOP },
1304     /* Performance monitors are implementation defined in v7,
1305      * but with an ARM recommended set of registers, which we
1306      * follow (although we don't actually implement any counters)
1307      *
1308      * Performance registers fall into three categories:
1309      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1310      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1311      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1312      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1313      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1314      */
1315     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1316       .access = PL0_RW, .type = ARM_CP_ALIAS,
1317       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1318       .writefn = pmcntenset_write,
1319       .accessfn = pmreg_access,
1320       .raw_writefn = raw_write },
1321     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1322       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1323       .access = PL0_RW, .accessfn = pmreg_access,
1324       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1325       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1326     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1327       .access = PL0_RW,
1328       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1329       .accessfn = pmreg_access,
1330       .writefn = pmcntenclr_write,
1331       .type = ARM_CP_ALIAS },
1332     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1333       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1334       .access = PL0_RW, .accessfn = pmreg_access,
1335       .type = ARM_CP_ALIAS,
1336       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1337       .writefn = pmcntenclr_write },
1338     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1339       .access = PL0_RW,
1340       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1341       .accessfn = pmreg_access,
1342       .writefn = pmovsr_write,
1343       .raw_writefn = raw_write },
1344     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1345       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1346       .access = PL0_RW, .accessfn = pmreg_access,
1347       .type = ARM_CP_ALIAS,
1348       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1349       .writefn = pmovsr_write,
1350       .raw_writefn = raw_write },
1351     /* Unimplemented so WI. */
1352     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1353       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1354 #ifndef CONFIG_USER_ONLY
1355     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1356       .access = PL0_RW, .type = ARM_CP_ALIAS,
1357       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1358       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1359       .raw_writefn = raw_write},
1360     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1361       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1362       .access = PL0_RW, .accessfn = pmreg_access_selr,
1363       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1364       .writefn = pmselr_write, .raw_writefn = raw_write, },
1365     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1366       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1367       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1368       .accessfn = pmreg_access_ccntr },
1369     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1370       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1371       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1372       .type = ARM_CP_IO,
1373       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1374 #endif
1375     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1376       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1377       .writefn = pmccfiltr_write,
1378       .access = PL0_RW, .accessfn = pmreg_access,
1379       .type = ARM_CP_IO,
1380       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1381       .resetvalue = 0, },
1382     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1383       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1384       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1385     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1386       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1387       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1388       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1389     /* Unimplemented, RAZ/WI. */
1390     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1391       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1392       .accessfn = pmreg_access_xevcntr },
1393     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1394       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1395       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1396       .resetvalue = 0,
1397       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1398     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1399       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1400       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1401       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1402       .resetvalue = 0,
1403       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1404     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1405       .access = PL1_RW, .accessfn = access_tpm,
1406       .type = ARM_CP_ALIAS,
1407       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1408       .resetvalue = 0,
1409       .writefn = pmintenset_write, .raw_writefn = raw_write },
1410     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1411       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1412       .access = PL1_RW, .accessfn = access_tpm,
1413       .type = ARM_CP_IO,
1414       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1415       .writefn = pmintenset_write, .raw_writefn = raw_write,
1416       .resetvalue = 0x0 },
1417     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1418       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1419       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1420       .writefn = pmintenclr_write, },
1421     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1422       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1423       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1424       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1425       .writefn = pmintenclr_write },
1426     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1427       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1428       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1429     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1430       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1431       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1432       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1433                              offsetof(CPUARMState, cp15.csselr_ns) } },
1434     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1435      * just RAZ for all cores:
1436      */
1437     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1438       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1439       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1440     /* Auxiliary fault status registers: these also are IMPDEF, and we
1441      * choose to RAZ/WI for all cores.
1442      */
1443     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1444       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1445       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1446     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1447       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1448       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1449     /* MAIR can just read-as-written because we don't implement caches
1450      * and so don't need to care about memory attributes.
1451      */
1452     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1453       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1454       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1455       .resetvalue = 0 },
1456     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1457       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1458       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1459       .resetvalue = 0 },
1460     /* For non-long-descriptor page tables these are PRRR and NMRR;
1461      * regardless they still act as reads-as-written for QEMU.
1462      */
1463      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1464       * allows them to assign the correct fieldoffset based on the endianness
1465       * handled in the field definitions.
1466       */
1467     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1468       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1469       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1470                              offsetof(CPUARMState, cp15.mair0_ns) },
1471       .resetfn = arm_cp_reset_ignore },
1472     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1473       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1474       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1475                              offsetof(CPUARMState, cp15.mair1_ns) },
1476       .resetfn = arm_cp_reset_ignore },
1477     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1478       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1479       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1480     /* 32 bit ITLB invalidates */
1481     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1482       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1483     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1484       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1485     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1486       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1487     /* 32 bit DTLB invalidates */
1488     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1489       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1490     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1491       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1492     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1493       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1494     /* 32 bit TLB invalidates */
1495     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1496       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1497     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1498       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1499     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1500       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1501     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1502       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1503     REGINFO_SENTINEL
1504 };
1505 
1506 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1507     /* 32 bit TLB invalidates, Inner Shareable */
1508     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1509       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1510     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1511       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1512     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1513       .type = ARM_CP_NO_RAW, .access = PL1_W,
1514       .writefn = tlbiasid_is_write },
1515     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1516       .type = ARM_CP_NO_RAW, .access = PL1_W,
1517       .writefn = tlbimvaa_is_write },
1518     REGINFO_SENTINEL
1519 };
1520 
1521 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1522                         uint64_t value)
1523 {
1524     value &= 1;
1525     env->teecr = value;
1526 }
1527 
1528 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1529                                     bool isread)
1530 {
1531     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1532         return CP_ACCESS_TRAP;
1533     }
1534     return CP_ACCESS_OK;
1535 }
1536 
1537 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1538     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1539       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1540       .resetvalue = 0,
1541       .writefn = teecr_write },
1542     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1543       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1544       .accessfn = teehbr_access, .resetvalue = 0 },
1545     REGINFO_SENTINEL
1546 };
1547 
1548 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1549     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1550       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1551       .access = PL0_RW,
1552       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1553     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1554       .access = PL0_RW,
1555       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1556                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1557       .resetfn = arm_cp_reset_ignore },
1558     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1559       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1560       .access = PL0_R|PL1_W,
1561       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1562       .resetvalue = 0},
1563     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1564       .access = PL0_R|PL1_W,
1565       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1566                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1567       .resetfn = arm_cp_reset_ignore },
1568     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1569       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1570       .access = PL1_RW,
1571       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1572     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1573       .access = PL1_RW,
1574       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1575                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1576       .resetvalue = 0 },
1577     REGINFO_SENTINEL
1578 };
1579 
1580 #ifndef CONFIG_USER_ONLY
1581 
1582 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1583                                        bool isread)
1584 {
1585     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1586      * Writable only at the highest implemented exception level.
1587      */
1588     int el = arm_current_el(env);
1589 
1590     switch (el) {
1591     case 0:
1592         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1593             return CP_ACCESS_TRAP;
1594         }
1595         break;
1596     case 1:
1597         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1598             arm_is_secure_below_el3(env)) {
1599             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1600             return CP_ACCESS_TRAP_UNCATEGORIZED;
1601         }
1602         break;
1603     case 2:
1604     case 3:
1605         break;
1606     }
1607 
1608     if (!isread && el < arm_highest_el(env)) {
1609         return CP_ACCESS_TRAP_UNCATEGORIZED;
1610     }
1611 
1612     return CP_ACCESS_OK;
1613 }
1614 
1615 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1616                                         bool isread)
1617 {
1618     unsigned int cur_el = arm_current_el(env);
1619     bool secure = arm_is_secure(env);
1620 
1621     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1622     if (cur_el == 0 &&
1623         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1624         return CP_ACCESS_TRAP;
1625     }
1626 
1627     if (arm_feature(env, ARM_FEATURE_EL2) &&
1628         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1629         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1630         return CP_ACCESS_TRAP_EL2;
1631     }
1632     return CP_ACCESS_OK;
1633 }
1634 
1635 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1636                                       bool isread)
1637 {
1638     unsigned int cur_el = arm_current_el(env);
1639     bool secure = arm_is_secure(env);
1640 
1641     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1642      * EL0[PV]TEN is zero.
1643      */
1644     if (cur_el == 0 &&
1645         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1646         return CP_ACCESS_TRAP;
1647     }
1648 
1649     if (arm_feature(env, ARM_FEATURE_EL2) &&
1650         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1651         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1652         return CP_ACCESS_TRAP_EL2;
1653     }
1654     return CP_ACCESS_OK;
1655 }
1656 
1657 static CPAccessResult gt_pct_access(CPUARMState *env,
1658                                     const ARMCPRegInfo *ri,
1659                                     bool isread)
1660 {
1661     return gt_counter_access(env, GTIMER_PHYS, isread);
1662 }
1663 
1664 static CPAccessResult gt_vct_access(CPUARMState *env,
1665                                     const ARMCPRegInfo *ri,
1666                                     bool isread)
1667 {
1668     return gt_counter_access(env, GTIMER_VIRT, isread);
1669 }
1670 
1671 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1672                                        bool isread)
1673 {
1674     return gt_timer_access(env, GTIMER_PHYS, isread);
1675 }
1676 
1677 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1678                                        bool isread)
1679 {
1680     return gt_timer_access(env, GTIMER_VIRT, isread);
1681 }
1682 
1683 static CPAccessResult gt_stimer_access(CPUARMState *env,
1684                                        const ARMCPRegInfo *ri,
1685                                        bool isread)
1686 {
1687     /* The AArch64 register view of the secure physical timer is
1688      * always accessible from EL3, and configurably accessible from
1689      * Secure EL1.
1690      */
1691     switch (arm_current_el(env)) {
1692     case 1:
1693         if (!arm_is_secure(env)) {
1694             return CP_ACCESS_TRAP;
1695         }
1696         if (!(env->cp15.scr_el3 & SCR_ST)) {
1697             return CP_ACCESS_TRAP_EL3;
1698         }
1699         return CP_ACCESS_OK;
1700     case 0:
1701     case 2:
1702         return CP_ACCESS_TRAP;
1703     case 3:
1704         return CP_ACCESS_OK;
1705     default:
1706         g_assert_not_reached();
1707     }
1708 }
1709 
1710 static uint64_t gt_get_countervalue(CPUARMState *env)
1711 {
1712     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1713 }
1714 
1715 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1716 {
1717     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1718 
1719     if (gt->ctl & 1) {
1720         /* Timer enabled: calculate and set current ISTATUS, irq, and
1721          * reset timer to when ISTATUS next has to change
1722          */
1723         uint64_t offset = timeridx == GTIMER_VIRT ?
1724                                       cpu->env.cp15.cntvoff_el2 : 0;
1725         uint64_t count = gt_get_countervalue(&cpu->env);
1726         /* Note that this must be unsigned 64 bit arithmetic: */
1727         int istatus = count - offset >= gt->cval;
1728         uint64_t nexttick;
1729         int irqstate;
1730 
1731         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1732 
1733         irqstate = (istatus && !(gt->ctl & 2));
1734         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1735 
1736         if (istatus) {
1737             /* Next transition is when count rolls back over to zero */
1738             nexttick = UINT64_MAX;
1739         } else {
1740             /* Next transition is when we hit cval */
1741             nexttick = gt->cval + offset;
1742         }
1743         /* Note that the desired next expiry time might be beyond the
1744          * signed-64-bit range of a QEMUTimer -- in this case we just
1745          * set the timer for as far in the future as possible. When the
1746          * timer expires we will reset the timer for any remaining period.
1747          */
1748         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1749             nexttick = INT64_MAX / GTIMER_SCALE;
1750         }
1751         timer_mod(cpu->gt_timer[timeridx], nexttick);
1752         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1753     } else {
1754         /* Timer disabled: ISTATUS and timer output always clear */
1755         gt->ctl &= ~4;
1756         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1757         timer_del(cpu->gt_timer[timeridx]);
1758         trace_arm_gt_recalc_disabled(timeridx);
1759     }
1760 }
1761 
1762 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1763                            int timeridx)
1764 {
1765     ARMCPU *cpu = arm_env_get_cpu(env);
1766 
1767     timer_del(cpu->gt_timer[timeridx]);
1768 }
1769 
1770 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1771 {
1772     return gt_get_countervalue(env);
1773 }
1774 
1775 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1776 {
1777     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1778 }
1779 
1780 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781                           int timeridx,
1782                           uint64_t value)
1783 {
1784     trace_arm_gt_cval_write(timeridx, value);
1785     env->cp15.c14_timer[timeridx].cval = value;
1786     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1787 }
1788 
1789 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1790                              int timeridx)
1791 {
1792     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1793 
1794     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1795                       (gt_get_countervalue(env) - offset));
1796 }
1797 
1798 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                           int timeridx,
1800                           uint64_t value)
1801 {
1802     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1803 
1804     trace_arm_gt_tval_write(timeridx, value);
1805     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1806                                          sextract64(value, 0, 32);
1807     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1808 }
1809 
1810 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1811                          int timeridx,
1812                          uint64_t value)
1813 {
1814     ARMCPU *cpu = arm_env_get_cpu(env);
1815     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1816 
1817     trace_arm_gt_ctl_write(timeridx, value);
1818     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1819     if ((oldval ^ value) & 1) {
1820         /* Enable toggled */
1821         gt_recalc_timer(cpu, timeridx);
1822     } else if ((oldval ^ value) & 2) {
1823         /* IMASK toggled: don't need to recalculate,
1824          * just set the interrupt line based on ISTATUS
1825          */
1826         int irqstate = (oldval & 4) && !(value & 2);
1827 
1828         trace_arm_gt_imask_toggle(timeridx, irqstate);
1829         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1830     }
1831 }
1832 
1833 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1834 {
1835     gt_timer_reset(env, ri, GTIMER_PHYS);
1836 }
1837 
1838 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1839                                uint64_t value)
1840 {
1841     gt_cval_write(env, ri, GTIMER_PHYS, value);
1842 }
1843 
1844 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1845 {
1846     return gt_tval_read(env, ri, GTIMER_PHYS);
1847 }
1848 
1849 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                                uint64_t value)
1851 {
1852     gt_tval_write(env, ri, GTIMER_PHYS, value);
1853 }
1854 
1855 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1856                               uint64_t value)
1857 {
1858     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1859 }
1860 
1861 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1862 {
1863     gt_timer_reset(env, ri, GTIMER_VIRT);
1864 }
1865 
1866 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867                                uint64_t value)
1868 {
1869     gt_cval_write(env, ri, GTIMER_VIRT, value);
1870 }
1871 
1872 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1873 {
1874     return gt_tval_read(env, ri, GTIMER_VIRT);
1875 }
1876 
1877 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878                                uint64_t value)
1879 {
1880     gt_tval_write(env, ri, GTIMER_VIRT, value);
1881 }
1882 
1883 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1884                               uint64_t value)
1885 {
1886     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1887 }
1888 
1889 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1890                               uint64_t value)
1891 {
1892     ARMCPU *cpu = arm_env_get_cpu(env);
1893 
1894     trace_arm_gt_cntvoff_write(value);
1895     raw_write(env, ri, value);
1896     gt_recalc_timer(cpu, GTIMER_VIRT);
1897 }
1898 
1899 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1900 {
1901     gt_timer_reset(env, ri, GTIMER_HYP);
1902 }
1903 
1904 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1905                               uint64_t value)
1906 {
1907     gt_cval_write(env, ri, GTIMER_HYP, value);
1908 }
1909 
1910 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1911 {
1912     return gt_tval_read(env, ri, GTIMER_HYP);
1913 }
1914 
1915 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1916                               uint64_t value)
1917 {
1918     gt_tval_write(env, ri, GTIMER_HYP, value);
1919 }
1920 
1921 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1922                               uint64_t value)
1923 {
1924     gt_ctl_write(env, ri, GTIMER_HYP, value);
1925 }
1926 
1927 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1928 {
1929     gt_timer_reset(env, ri, GTIMER_SEC);
1930 }
1931 
1932 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1933                               uint64_t value)
1934 {
1935     gt_cval_write(env, ri, GTIMER_SEC, value);
1936 }
1937 
1938 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1939 {
1940     return gt_tval_read(env, ri, GTIMER_SEC);
1941 }
1942 
1943 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1944                               uint64_t value)
1945 {
1946     gt_tval_write(env, ri, GTIMER_SEC, value);
1947 }
1948 
1949 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1950                               uint64_t value)
1951 {
1952     gt_ctl_write(env, ri, GTIMER_SEC, value);
1953 }
1954 
1955 void arm_gt_ptimer_cb(void *opaque)
1956 {
1957     ARMCPU *cpu = opaque;
1958 
1959     gt_recalc_timer(cpu, GTIMER_PHYS);
1960 }
1961 
1962 void arm_gt_vtimer_cb(void *opaque)
1963 {
1964     ARMCPU *cpu = opaque;
1965 
1966     gt_recalc_timer(cpu, GTIMER_VIRT);
1967 }
1968 
1969 void arm_gt_htimer_cb(void *opaque)
1970 {
1971     ARMCPU *cpu = opaque;
1972 
1973     gt_recalc_timer(cpu, GTIMER_HYP);
1974 }
1975 
1976 void arm_gt_stimer_cb(void *opaque)
1977 {
1978     ARMCPU *cpu = opaque;
1979 
1980     gt_recalc_timer(cpu, GTIMER_SEC);
1981 }
1982 
1983 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1984     /* Note that CNTFRQ is purely reads-as-written for the benefit
1985      * of software; writing it doesn't actually change the timer frequency.
1986      * Our reset value matches the fixed frequency we implement the timer at.
1987      */
1988     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1989       .type = ARM_CP_ALIAS,
1990       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1991       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1992     },
1993     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1994       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1995       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1996       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1997       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1998     },
1999     /* overall control: mostly access permissions */
2000     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2001       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2002       .access = PL1_RW,
2003       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2004       .resetvalue = 0,
2005     },
2006     /* per-timer control */
2007     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2008       .secure = ARM_CP_SECSTATE_NS,
2009       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2010       .accessfn = gt_ptimer_access,
2011       .fieldoffset = offsetoflow32(CPUARMState,
2012                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2013       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2014     },
2015     { .name = "CNTP_CTL_S",
2016       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2017       .secure = ARM_CP_SECSTATE_S,
2018       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2019       .accessfn = gt_ptimer_access,
2020       .fieldoffset = offsetoflow32(CPUARMState,
2021                                    cp15.c14_timer[GTIMER_SEC].ctl),
2022       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2023     },
2024     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2025       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2026       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2027       .accessfn = gt_ptimer_access,
2028       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2029       .resetvalue = 0,
2030       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2031     },
2032     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2033       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2034       .accessfn = gt_vtimer_access,
2035       .fieldoffset = offsetoflow32(CPUARMState,
2036                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2037       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2038     },
2039     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2041       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2042       .accessfn = gt_vtimer_access,
2043       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2044       .resetvalue = 0,
2045       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2046     },
2047     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2048     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2049       .secure = ARM_CP_SECSTATE_NS,
2050       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2051       .accessfn = gt_ptimer_access,
2052       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2053     },
2054     { .name = "CNTP_TVAL_S",
2055       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2056       .secure = ARM_CP_SECSTATE_S,
2057       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2058       .accessfn = gt_ptimer_access,
2059       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2060     },
2061     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2062       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2063       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2064       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2065       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2066     },
2067     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2068       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2069       .accessfn = gt_vtimer_access,
2070       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2071     },
2072     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2073       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2074       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2075       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2076       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2077     },
2078     /* The counter itself */
2079     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2080       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2081       .accessfn = gt_pct_access,
2082       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2083     },
2084     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2085       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2086       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2087       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2088     },
2089     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2090       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2091       .accessfn = gt_vct_access,
2092       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2093     },
2094     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2095       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2096       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2097       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2098     },
2099     /* Comparison value, indicating when the timer goes off */
2100     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2101       .secure = ARM_CP_SECSTATE_NS,
2102       .access = PL1_RW | PL0_R,
2103       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2104       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2105       .accessfn = gt_ptimer_access,
2106       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2107     },
2108     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2109       .secure = ARM_CP_SECSTATE_S,
2110       .access = PL1_RW | PL0_R,
2111       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2113       .accessfn = gt_ptimer_access,
2114       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2115     },
2116     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2117       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2118       .access = PL1_RW | PL0_R,
2119       .type = ARM_CP_IO,
2120       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2121       .resetvalue = 0, .accessfn = gt_ptimer_access,
2122       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2123     },
2124     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2125       .access = PL1_RW | PL0_R,
2126       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2127       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2128       .accessfn = gt_vtimer_access,
2129       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2130     },
2131     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2132       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2133       .access = PL1_RW | PL0_R,
2134       .type = ARM_CP_IO,
2135       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136       .resetvalue = 0, .accessfn = gt_vtimer_access,
2137       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2138     },
2139     /* Secure timer -- this is actually restricted to only EL3
2140      * and configurably Secure-EL1 via the accessfn.
2141      */
2142     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2143       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2144       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2145       .accessfn = gt_stimer_access,
2146       .readfn = gt_sec_tval_read,
2147       .writefn = gt_sec_tval_write,
2148       .resetfn = gt_sec_timer_reset,
2149     },
2150     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2151       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2152       .type = ARM_CP_IO, .access = PL1_RW,
2153       .accessfn = gt_stimer_access,
2154       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2155       .resetvalue = 0,
2156       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2157     },
2158     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2160       .type = ARM_CP_IO, .access = PL1_RW,
2161       .accessfn = gt_stimer_access,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2163       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2164     },
2165     REGINFO_SENTINEL
2166 };
2167 
2168 #else
2169 /* In user-mode none of the generic timer registers are accessible,
2170  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2171  * so instead just don't register any of them.
2172  */
2173 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2174     REGINFO_SENTINEL
2175 };
2176 
2177 #endif
2178 
2179 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2180 {
2181     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2182         raw_write(env, ri, value);
2183     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2184         raw_write(env, ri, value & 0xfffff6ff);
2185     } else {
2186         raw_write(env, ri, value & 0xfffff1ff);
2187     }
2188 }
2189 
2190 #ifndef CONFIG_USER_ONLY
2191 /* get_phys_addr() isn't present for user-mode-only targets */
2192 
2193 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2194                                  bool isread)
2195 {
2196     if (ri->opc2 & 4) {
2197         /* The ATS12NSO* operations must trap to EL3 if executed in
2198          * Secure EL1 (which can only happen if EL3 is AArch64).
2199          * They are simply UNDEF if executed from NS EL1.
2200          * They function normally from EL2 or EL3.
2201          */
2202         if (arm_current_el(env) == 1) {
2203             if (arm_is_secure_below_el3(env)) {
2204                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2205             }
2206             return CP_ACCESS_TRAP_UNCATEGORIZED;
2207         }
2208     }
2209     return CP_ACCESS_OK;
2210 }
2211 
2212 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2213                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2214 {
2215     hwaddr phys_addr;
2216     target_ulong page_size;
2217     int prot;
2218     bool ret;
2219     uint64_t par64;
2220     bool format64 = false;
2221     MemTxAttrs attrs = {};
2222     ARMMMUFaultInfo fi = {};
2223     ARMCacheAttrs cacheattrs = {};
2224 
2225     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2226                         &prot, &page_size, &fi, &cacheattrs);
2227 
2228     if (is_a64(env)) {
2229         format64 = true;
2230     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2231         /*
2232          * ATS1Cxx:
2233          * * TTBCR.EAE determines whether the result is returned using the
2234          *   32-bit or the 64-bit PAR format
2235          * * Instructions executed in Hyp mode always use the 64bit format
2236          *
2237          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2238          * * The Non-secure TTBCR.EAE bit is set to 1
2239          * * The implementation includes EL2, and the value of HCR.VM is 1
2240          *
2241          * ATS1Hx always uses the 64bit format (not supported yet).
2242          */
2243         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2244 
2245         if (arm_feature(env, ARM_FEATURE_EL2)) {
2246             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2247                 format64 |= env->cp15.hcr_el2 & HCR_VM;
2248             } else {
2249                 format64 |= arm_current_el(env) == 2;
2250             }
2251         }
2252     }
2253 
2254     if (format64) {
2255         /* Create a 64-bit PAR */
2256         par64 = (1 << 11); /* LPAE bit always set */
2257         if (!ret) {
2258             par64 |= phys_addr & ~0xfffULL;
2259             if (!attrs.secure) {
2260                 par64 |= (1 << 9); /* NS */
2261             }
2262             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2263             par64 |= cacheattrs.shareability << 7; /* SH */
2264         } else {
2265             uint32_t fsr = arm_fi_to_lfsc(&fi);
2266 
2267             par64 |= 1; /* F */
2268             par64 |= (fsr & 0x3f) << 1; /* FS */
2269             /* Note that S2WLK and FSTAGE are always zero, because we don't
2270              * implement virtualization and therefore there can't be a stage 2
2271              * fault.
2272              */
2273         }
2274     } else {
2275         /* fsr is a DFSR/IFSR value for the short descriptor
2276          * translation table format (with WnR always clear).
2277          * Convert it to a 32-bit PAR.
2278          */
2279         if (!ret) {
2280             /* We do not set any attribute bits in the PAR */
2281             if (page_size == (1 << 24)
2282                 && arm_feature(env, ARM_FEATURE_V7)) {
2283                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2284             } else {
2285                 par64 = phys_addr & 0xfffff000;
2286             }
2287             if (!attrs.secure) {
2288                 par64 |= (1 << 9); /* NS */
2289             }
2290         } else {
2291             uint32_t fsr = arm_fi_to_sfsc(&fi);
2292 
2293             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2294                     ((fsr & 0xf) << 1) | 1;
2295         }
2296     }
2297     return par64;
2298 }
2299 
2300 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2301 {
2302     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2303     uint64_t par64;
2304     ARMMMUIdx mmu_idx;
2305     int el = arm_current_el(env);
2306     bool secure = arm_is_secure_below_el3(env);
2307 
2308     switch (ri->opc2 & 6) {
2309     case 0:
2310         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2311         switch (el) {
2312         case 3:
2313             mmu_idx = ARMMMUIdx_S1E3;
2314             break;
2315         case 2:
2316             mmu_idx = ARMMMUIdx_S1NSE1;
2317             break;
2318         case 1:
2319             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2320             break;
2321         default:
2322             g_assert_not_reached();
2323         }
2324         break;
2325     case 2:
2326         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2327         switch (el) {
2328         case 3:
2329             mmu_idx = ARMMMUIdx_S1SE0;
2330             break;
2331         case 2:
2332             mmu_idx = ARMMMUIdx_S1NSE0;
2333             break;
2334         case 1:
2335             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2336             break;
2337         default:
2338             g_assert_not_reached();
2339         }
2340         break;
2341     case 4:
2342         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2343         mmu_idx = ARMMMUIdx_S12NSE1;
2344         break;
2345     case 6:
2346         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2347         mmu_idx = ARMMMUIdx_S12NSE0;
2348         break;
2349     default:
2350         g_assert_not_reached();
2351     }
2352 
2353     par64 = do_ats_write(env, value, access_type, mmu_idx);
2354 
2355     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2356 }
2357 
2358 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359                         uint64_t value)
2360 {
2361     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2362     uint64_t par64;
2363 
2364     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2365 
2366     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2367 }
2368 
2369 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2370                                      bool isread)
2371 {
2372     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2373         return CP_ACCESS_TRAP;
2374     }
2375     return CP_ACCESS_OK;
2376 }
2377 
2378 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2379                         uint64_t value)
2380 {
2381     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2382     ARMMMUIdx mmu_idx;
2383     int secure = arm_is_secure_below_el3(env);
2384 
2385     switch (ri->opc2 & 6) {
2386     case 0:
2387         switch (ri->opc1) {
2388         case 0: /* AT S1E1R, AT S1E1W */
2389             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2390             break;
2391         case 4: /* AT S1E2R, AT S1E2W */
2392             mmu_idx = ARMMMUIdx_S1E2;
2393             break;
2394         case 6: /* AT S1E3R, AT S1E3W */
2395             mmu_idx = ARMMMUIdx_S1E3;
2396             break;
2397         default:
2398             g_assert_not_reached();
2399         }
2400         break;
2401     case 2: /* AT S1E0R, AT S1E0W */
2402         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2403         break;
2404     case 4: /* AT S12E1R, AT S12E1W */
2405         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2406         break;
2407     case 6: /* AT S12E0R, AT S12E0W */
2408         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2409         break;
2410     default:
2411         g_assert_not_reached();
2412     }
2413 
2414     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2415 }
2416 #endif
2417 
2418 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2419     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2420       .access = PL1_RW, .resetvalue = 0,
2421       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2422                              offsetoflow32(CPUARMState, cp15.par_ns) },
2423       .writefn = par_write },
2424 #ifndef CONFIG_USER_ONLY
2425     /* This underdecoding is safe because the reginfo is NO_RAW. */
2426     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2427       .access = PL1_W, .accessfn = ats_access,
2428       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2429 #endif
2430     REGINFO_SENTINEL
2431 };
2432 
2433 /* Return basic MPU access permission bits.  */
2434 static uint32_t simple_mpu_ap_bits(uint32_t val)
2435 {
2436     uint32_t ret;
2437     uint32_t mask;
2438     int i;
2439     ret = 0;
2440     mask = 3;
2441     for (i = 0; i < 16; i += 2) {
2442         ret |= (val >> i) & mask;
2443         mask <<= 2;
2444     }
2445     return ret;
2446 }
2447 
2448 /* Pad basic MPU access permission bits to extended format.  */
2449 static uint32_t extended_mpu_ap_bits(uint32_t val)
2450 {
2451     uint32_t ret;
2452     uint32_t mask;
2453     int i;
2454     ret = 0;
2455     mask = 3;
2456     for (i = 0; i < 16; i += 2) {
2457         ret |= (val & mask) << i;
2458         mask <<= 2;
2459     }
2460     return ret;
2461 }
2462 
2463 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464                                  uint64_t value)
2465 {
2466     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2467 }
2468 
2469 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2470 {
2471     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2472 }
2473 
2474 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475                                  uint64_t value)
2476 {
2477     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2478 }
2479 
2480 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2481 {
2482     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2483 }
2484 
2485 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2486 {
2487     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2488 
2489     if (!u32p) {
2490         return 0;
2491     }
2492 
2493     u32p += env->pmsav7.rnr[M_REG_NS];
2494     return *u32p;
2495 }
2496 
2497 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2498                          uint64_t value)
2499 {
2500     ARMCPU *cpu = arm_env_get_cpu(env);
2501     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2502 
2503     if (!u32p) {
2504         return;
2505     }
2506 
2507     u32p += env->pmsav7.rnr[M_REG_NS];
2508     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2509     *u32p = value;
2510 }
2511 
2512 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2513                               uint64_t value)
2514 {
2515     ARMCPU *cpu = arm_env_get_cpu(env);
2516     uint32_t nrgs = cpu->pmsav7_dregion;
2517 
2518     if (value >= nrgs) {
2519         qemu_log_mask(LOG_GUEST_ERROR,
2520                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2521                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2522         return;
2523     }
2524 
2525     raw_write(env, ri, value);
2526 }
2527 
2528 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2529     /* Reset for all these registers is handled in arm_cpu_reset(),
2530      * because the PMSAv7 is also used by M-profile CPUs, which do
2531      * not register cpregs but still need the state to be reset.
2532      */
2533     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2534       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2535       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2536       .readfn = pmsav7_read, .writefn = pmsav7_write,
2537       .resetfn = arm_cp_reset_ignore },
2538     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2539       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2540       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2541       .readfn = pmsav7_read, .writefn = pmsav7_write,
2542       .resetfn = arm_cp_reset_ignore },
2543     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2544       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2545       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2546       .readfn = pmsav7_read, .writefn = pmsav7_write,
2547       .resetfn = arm_cp_reset_ignore },
2548     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2549       .access = PL1_RW,
2550       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2551       .writefn = pmsav7_rgnr_write,
2552       .resetfn = arm_cp_reset_ignore },
2553     REGINFO_SENTINEL
2554 };
2555 
2556 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2557     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2558       .access = PL1_RW, .type = ARM_CP_ALIAS,
2559       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2560       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2561     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2562       .access = PL1_RW, .type = ARM_CP_ALIAS,
2563       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2564       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2565     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2566       .access = PL1_RW,
2567       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2568       .resetvalue = 0, },
2569     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2570       .access = PL1_RW,
2571       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2572       .resetvalue = 0, },
2573     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2574       .access = PL1_RW,
2575       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2576     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2577       .access = PL1_RW,
2578       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2579     /* Protection region base and size registers */
2580     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2581       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2582       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2583     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2584       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2585       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2586     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2587       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2588       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2589     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2590       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2591       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2592     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2593       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2594       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2595     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2596       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2597       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2598     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2599       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2600       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2601     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2602       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2603       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2604     REGINFO_SENTINEL
2605 };
2606 
2607 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2608                                  uint64_t value)
2609 {
2610     TCR *tcr = raw_ptr(env, ri);
2611     int maskshift = extract32(value, 0, 3);
2612 
2613     if (!arm_feature(env, ARM_FEATURE_V8)) {
2614         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2615             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2616              * using Long-desciptor translation table format */
2617             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2618         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2619             /* In an implementation that includes the Security Extensions
2620              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2621              * Short-descriptor translation table format.
2622              */
2623             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2624         } else {
2625             value &= TTBCR_N;
2626         }
2627     }
2628 
2629     /* Update the masks corresponding to the TCR bank being written
2630      * Note that we always calculate mask and base_mask, but
2631      * they are only used for short-descriptor tables (ie if EAE is 0);
2632      * for long-descriptor tables the TCR fields are used differently
2633      * and the mask and base_mask values are meaningless.
2634      */
2635     tcr->raw_tcr = value;
2636     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2637     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2638 }
2639 
2640 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2641                              uint64_t value)
2642 {
2643     ARMCPU *cpu = arm_env_get_cpu(env);
2644 
2645     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2646         /* With LPAE the TTBCR could result in a change of ASID
2647          * via the TTBCR.A1 bit, so do a TLB flush.
2648          */
2649         tlb_flush(CPU(cpu));
2650     }
2651     vmsa_ttbcr_raw_write(env, ri, value);
2652 }
2653 
2654 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2655 {
2656     TCR *tcr = raw_ptr(env, ri);
2657 
2658     /* Reset both the TCR as well as the masks corresponding to the bank of
2659      * the TCR being reset.
2660      */
2661     tcr->raw_tcr = 0;
2662     tcr->mask = 0;
2663     tcr->base_mask = 0xffffc000u;
2664 }
2665 
2666 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2667                                uint64_t value)
2668 {
2669     ARMCPU *cpu = arm_env_get_cpu(env);
2670     TCR *tcr = raw_ptr(env, ri);
2671 
2672     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2673     tlb_flush(CPU(cpu));
2674     tcr->raw_tcr = value;
2675 }
2676 
2677 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2678                             uint64_t value)
2679 {
2680     /* 64 bit accesses to the TTBRs can change the ASID and so we
2681      * must flush the TLB.
2682      */
2683     if (cpreg_field_is_64bit(ri)) {
2684         ARMCPU *cpu = arm_env_get_cpu(env);
2685 
2686         tlb_flush(CPU(cpu));
2687     }
2688     raw_write(env, ri, value);
2689 }
2690 
2691 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2692                         uint64_t value)
2693 {
2694     ARMCPU *cpu = arm_env_get_cpu(env);
2695     CPUState *cs = CPU(cpu);
2696 
2697     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2698     if (raw_read(env, ri) != value) {
2699         tlb_flush_by_mmuidx(cs,
2700                             ARMMMUIdxBit_S12NSE1 |
2701                             ARMMMUIdxBit_S12NSE0 |
2702                             ARMMMUIdxBit_S2NS);
2703         raw_write(env, ri, value);
2704     }
2705 }
2706 
2707 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2708     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2709       .access = PL1_RW, .type = ARM_CP_ALIAS,
2710       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2711                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2712     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2713       .access = PL1_RW, .resetvalue = 0,
2714       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2715                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2716     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2717       .access = PL1_RW, .resetvalue = 0,
2718       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2719                              offsetof(CPUARMState, cp15.dfar_ns) } },
2720     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2721       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2722       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2723       .resetvalue = 0, },
2724     REGINFO_SENTINEL
2725 };
2726 
2727 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2728     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2729       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2730       .access = PL1_RW,
2731       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2732     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2733       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2734       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2735       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2736                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2737     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2738       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2739       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2740       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2741                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2742     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2743       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2744       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2745       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2746       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2747     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2748       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2749       .raw_writefn = vmsa_ttbcr_raw_write,
2750       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2751                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2752     REGINFO_SENTINEL
2753 };
2754 
2755 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2756                                 uint64_t value)
2757 {
2758     env->cp15.c15_ticonfig = value & 0xe7;
2759     /* The OS_TYPE bit in this register changes the reported CPUID! */
2760     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2761         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2762 }
2763 
2764 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2765                                 uint64_t value)
2766 {
2767     env->cp15.c15_threadid = value & 0xffff;
2768 }
2769 
2770 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771                            uint64_t value)
2772 {
2773     /* Wait-for-interrupt (deprecated) */
2774     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2775 }
2776 
2777 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2778                                   uint64_t value)
2779 {
2780     /* On OMAP there are registers indicating the max/min index of dcache lines
2781      * containing a dirty line; cache flush operations have to reset these.
2782      */
2783     env->cp15.c15_i_max = 0x000;
2784     env->cp15.c15_i_min = 0xff0;
2785 }
2786 
2787 static const ARMCPRegInfo omap_cp_reginfo[] = {
2788     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2789       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2790       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2791       .resetvalue = 0, },
2792     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2793       .access = PL1_RW, .type = ARM_CP_NOP },
2794     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2795       .access = PL1_RW,
2796       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2797       .writefn = omap_ticonfig_write },
2798     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2799       .access = PL1_RW,
2800       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2801     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2802       .access = PL1_RW, .resetvalue = 0xff0,
2803       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2804     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2805       .access = PL1_RW,
2806       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2807       .writefn = omap_threadid_write },
2808     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2809       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2810       .type = ARM_CP_NO_RAW,
2811       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2812     /* TODO: Peripheral port remap register:
2813      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2814      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2815      * when MMU is off.
2816      */
2817     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2818       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2819       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2820       .writefn = omap_cachemaint_write },
2821     { .name = "C9", .cp = 15, .crn = 9,
2822       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2823       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2824     REGINFO_SENTINEL
2825 };
2826 
2827 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2828                               uint64_t value)
2829 {
2830     env->cp15.c15_cpar = value & 0x3fff;
2831 }
2832 
2833 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2834     { .name = "XSCALE_CPAR",
2835       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2836       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2837       .writefn = xscale_cpar_write, },
2838     { .name = "XSCALE_AUXCR",
2839       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2840       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2841       .resetvalue = 0, },
2842     /* XScale specific cache-lockdown: since we have no cache we NOP these
2843      * and hope the guest does not really rely on cache behaviour.
2844      */
2845     { .name = "XSCALE_LOCK_ICACHE_LINE",
2846       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2847       .access = PL1_W, .type = ARM_CP_NOP },
2848     { .name = "XSCALE_UNLOCK_ICACHE",
2849       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2850       .access = PL1_W, .type = ARM_CP_NOP },
2851     { .name = "XSCALE_DCACHE_LOCK",
2852       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2853       .access = PL1_RW, .type = ARM_CP_NOP },
2854     { .name = "XSCALE_UNLOCK_DCACHE",
2855       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2856       .access = PL1_W, .type = ARM_CP_NOP },
2857     REGINFO_SENTINEL
2858 };
2859 
2860 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2861     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2862      * implementation of this implementation-defined space.
2863      * Ideally this should eventually disappear in favour of actually
2864      * implementing the correct behaviour for all cores.
2865      */
2866     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2867       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2868       .access = PL1_RW,
2869       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2870       .resetvalue = 0 },
2871     REGINFO_SENTINEL
2872 };
2873 
2874 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2875     /* Cache status: RAZ because we have no cache so it's always clean */
2876     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2877       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2878       .resetvalue = 0 },
2879     REGINFO_SENTINEL
2880 };
2881 
2882 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2883     /* We never have a a block transfer operation in progress */
2884     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2885       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2886       .resetvalue = 0 },
2887     /* The cache ops themselves: these all NOP for QEMU */
2888     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2889       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2890     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2891       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2892     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2893       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2894     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2895       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2896     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2897       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2898     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2899       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2900     REGINFO_SENTINEL
2901 };
2902 
2903 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2904     /* The cache test-and-clean instructions always return (1 << 30)
2905      * to indicate that there are no dirty cache lines.
2906      */
2907     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2908       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2909       .resetvalue = (1 << 30) },
2910     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2911       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2912       .resetvalue = (1 << 30) },
2913     REGINFO_SENTINEL
2914 };
2915 
2916 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2917     /* Ignore ReadBuffer accesses */
2918     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2919       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2920       .access = PL1_RW, .resetvalue = 0,
2921       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2922     REGINFO_SENTINEL
2923 };
2924 
2925 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2926 {
2927     ARMCPU *cpu = arm_env_get_cpu(env);
2928     unsigned int cur_el = arm_current_el(env);
2929     bool secure = arm_is_secure(env);
2930 
2931     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2932         return env->cp15.vpidr_el2;
2933     }
2934     return raw_read(env, ri);
2935 }
2936 
2937 static uint64_t mpidr_read_val(CPUARMState *env)
2938 {
2939     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2940     uint64_t mpidr = cpu->mp_affinity;
2941 
2942     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2943         mpidr |= (1U << 31);
2944         /* Cores which are uniprocessor (non-coherent)
2945          * but still implement the MP extensions set
2946          * bit 30. (For instance, Cortex-R5).
2947          */
2948         if (cpu->mp_is_up) {
2949             mpidr |= (1u << 30);
2950         }
2951     }
2952     return mpidr;
2953 }
2954 
2955 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2956 {
2957     unsigned int cur_el = arm_current_el(env);
2958     bool secure = arm_is_secure(env);
2959 
2960     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961         return env->cp15.vmpidr_el2;
2962     }
2963     return mpidr_read_val(env);
2964 }
2965 
2966 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2967     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2968       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2969       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2970     REGINFO_SENTINEL
2971 };
2972 
2973 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2974     /* NOP AMAIR0/1 */
2975     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2976       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2977       .access = PL1_RW, .type = ARM_CP_CONST,
2978       .resetvalue = 0 },
2979     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2980     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2981       .access = PL1_RW, .type = ARM_CP_CONST,
2982       .resetvalue = 0 },
2983     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2984       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2985       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2986                              offsetof(CPUARMState, cp15.par_ns)} },
2987     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2988       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2989       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2990                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2991       .writefn = vmsa_ttbr_write, },
2992     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2993       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2994       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2995                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2996       .writefn = vmsa_ttbr_write, },
2997     REGINFO_SENTINEL
2998 };
2999 
3000 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3001 {
3002     return vfp_get_fpcr(env);
3003 }
3004 
3005 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3006                             uint64_t value)
3007 {
3008     vfp_set_fpcr(env, value);
3009 }
3010 
3011 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3012 {
3013     return vfp_get_fpsr(env);
3014 }
3015 
3016 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3017                             uint64_t value)
3018 {
3019     vfp_set_fpsr(env, value);
3020 }
3021 
3022 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3023                                        bool isread)
3024 {
3025     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3026         return CP_ACCESS_TRAP;
3027     }
3028     return CP_ACCESS_OK;
3029 }
3030 
3031 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3032                             uint64_t value)
3033 {
3034     env->daif = value & PSTATE_DAIF;
3035 }
3036 
3037 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3038                                           const ARMCPRegInfo *ri,
3039                                           bool isread)
3040 {
3041     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3042      * SCTLR_EL1.UCI is set.
3043      */
3044     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3045         return CP_ACCESS_TRAP;
3046     }
3047     return CP_ACCESS_OK;
3048 }
3049 
3050 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3051  * Page D4-1736 (DDI0487A.b)
3052  */
3053 
3054 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3055                                     uint64_t value)
3056 {
3057     CPUState *cs = ENV_GET_CPU(env);
3058 
3059     if (arm_is_secure_below_el3(env)) {
3060         tlb_flush_by_mmuidx(cs,
3061                             ARMMMUIdxBit_S1SE1 |
3062                             ARMMMUIdxBit_S1SE0);
3063     } else {
3064         tlb_flush_by_mmuidx(cs,
3065                             ARMMMUIdxBit_S12NSE1 |
3066                             ARMMMUIdxBit_S12NSE0);
3067     }
3068 }
3069 
3070 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071                                       uint64_t value)
3072 {
3073     CPUState *cs = ENV_GET_CPU(env);
3074     bool sec = arm_is_secure_below_el3(env);
3075 
3076     if (sec) {
3077         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3078                                             ARMMMUIdxBit_S1SE1 |
3079                                             ARMMMUIdxBit_S1SE0);
3080     } else {
3081         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3082                                             ARMMMUIdxBit_S12NSE1 |
3083                                             ARMMMUIdxBit_S12NSE0);
3084     }
3085 }
3086 
3087 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3088                                   uint64_t value)
3089 {
3090     /* Note that the 'ALL' scope must invalidate both stage 1 and
3091      * stage 2 translations, whereas most other scopes only invalidate
3092      * stage 1 translations.
3093      */
3094     ARMCPU *cpu = arm_env_get_cpu(env);
3095     CPUState *cs = CPU(cpu);
3096 
3097     if (arm_is_secure_below_el3(env)) {
3098         tlb_flush_by_mmuidx(cs,
3099                             ARMMMUIdxBit_S1SE1 |
3100                             ARMMMUIdxBit_S1SE0);
3101     } else {
3102         if (arm_feature(env, ARM_FEATURE_EL2)) {
3103             tlb_flush_by_mmuidx(cs,
3104                                 ARMMMUIdxBit_S12NSE1 |
3105                                 ARMMMUIdxBit_S12NSE0 |
3106                                 ARMMMUIdxBit_S2NS);
3107         } else {
3108             tlb_flush_by_mmuidx(cs,
3109                                 ARMMMUIdxBit_S12NSE1 |
3110                                 ARMMMUIdxBit_S12NSE0);
3111         }
3112     }
3113 }
3114 
3115 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3116                                   uint64_t value)
3117 {
3118     ARMCPU *cpu = arm_env_get_cpu(env);
3119     CPUState *cs = CPU(cpu);
3120 
3121     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3122 }
3123 
3124 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3125                                   uint64_t value)
3126 {
3127     ARMCPU *cpu = arm_env_get_cpu(env);
3128     CPUState *cs = CPU(cpu);
3129 
3130     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3131 }
3132 
3133 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3134                                     uint64_t value)
3135 {
3136     /* Note that the 'ALL' scope must invalidate both stage 1 and
3137      * stage 2 translations, whereas most other scopes only invalidate
3138      * stage 1 translations.
3139      */
3140     CPUState *cs = ENV_GET_CPU(env);
3141     bool sec = arm_is_secure_below_el3(env);
3142     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3143 
3144     if (sec) {
3145         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3146                                             ARMMMUIdxBit_S1SE1 |
3147                                             ARMMMUIdxBit_S1SE0);
3148     } else if (has_el2) {
3149         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3150                                             ARMMMUIdxBit_S12NSE1 |
3151                                             ARMMMUIdxBit_S12NSE0 |
3152                                             ARMMMUIdxBit_S2NS);
3153     } else {
3154           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3155                                               ARMMMUIdxBit_S12NSE1 |
3156                                               ARMMMUIdxBit_S12NSE0);
3157     }
3158 }
3159 
3160 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3161                                     uint64_t value)
3162 {
3163     CPUState *cs = ENV_GET_CPU(env);
3164 
3165     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3166 }
3167 
3168 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3169                                     uint64_t value)
3170 {
3171     CPUState *cs = ENV_GET_CPU(env);
3172 
3173     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3174 }
3175 
3176 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3177                                  uint64_t value)
3178 {
3179     /* Invalidate by VA, EL1&0 (AArch64 version).
3180      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3181      * since we don't support flush-for-specific-ASID-only or
3182      * flush-last-level-only.
3183      */
3184     ARMCPU *cpu = arm_env_get_cpu(env);
3185     CPUState *cs = CPU(cpu);
3186     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3187 
3188     if (arm_is_secure_below_el3(env)) {
3189         tlb_flush_page_by_mmuidx(cs, pageaddr,
3190                                  ARMMMUIdxBit_S1SE1 |
3191                                  ARMMMUIdxBit_S1SE0);
3192     } else {
3193         tlb_flush_page_by_mmuidx(cs, pageaddr,
3194                                  ARMMMUIdxBit_S12NSE1 |
3195                                  ARMMMUIdxBit_S12NSE0);
3196     }
3197 }
3198 
3199 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200                                  uint64_t value)
3201 {
3202     /* Invalidate by VA, EL2
3203      * Currently handles both VAE2 and VALE2, since we don't support
3204      * flush-last-level-only.
3205      */
3206     ARMCPU *cpu = arm_env_get_cpu(env);
3207     CPUState *cs = CPU(cpu);
3208     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3209 
3210     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3211 }
3212 
3213 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3214                                  uint64_t value)
3215 {
3216     /* Invalidate by VA, EL3
3217      * Currently handles both VAE3 and VALE3, since we don't support
3218      * flush-last-level-only.
3219      */
3220     ARMCPU *cpu = arm_env_get_cpu(env);
3221     CPUState *cs = CPU(cpu);
3222     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3223 
3224     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3225 }
3226 
3227 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3228                                    uint64_t value)
3229 {
3230     ARMCPU *cpu = arm_env_get_cpu(env);
3231     CPUState *cs = CPU(cpu);
3232     bool sec = arm_is_secure_below_el3(env);
3233     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3234 
3235     if (sec) {
3236         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3237                                                  ARMMMUIdxBit_S1SE1 |
3238                                                  ARMMMUIdxBit_S1SE0);
3239     } else {
3240         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3241                                                  ARMMMUIdxBit_S12NSE1 |
3242                                                  ARMMMUIdxBit_S12NSE0);
3243     }
3244 }
3245 
3246 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3247                                    uint64_t value)
3248 {
3249     CPUState *cs = ENV_GET_CPU(env);
3250     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3251 
3252     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3253                                              ARMMMUIdxBit_S1E2);
3254 }
3255 
3256 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3257                                    uint64_t value)
3258 {
3259     CPUState *cs = ENV_GET_CPU(env);
3260     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3261 
3262     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3263                                              ARMMMUIdxBit_S1E3);
3264 }
3265 
3266 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3267                                     uint64_t value)
3268 {
3269     /* Invalidate by IPA. This has to invalidate any structures that
3270      * contain only stage 2 translation information, but does not need
3271      * to apply to structures that contain combined stage 1 and stage 2
3272      * translation information.
3273      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3274      */
3275     ARMCPU *cpu = arm_env_get_cpu(env);
3276     CPUState *cs = CPU(cpu);
3277     uint64_t pageaddr;
3278 
3279     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3280         return;
3281     }
3282 
3283     pageaddr = sextract64(value << 12, 0, 48);
3284 
3285     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3286 }
3287 
3288 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3289                                       uint64_t value)
3290 {
3291     CPUState *cs = ENV_GET_CPU(env);
3292     uint64_t pageaddr;
3293 
3294     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3295         return;
3296     }
3297 
3298     pageaddr = sextract64(value << 12, 0, 48);
3299 
3300     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3301                                              ARMMMUIdxBit_S2NS);
3302 }
3303 
3304 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3305                                       bool isread)
3306 {
3307     /* We don't implement EL2, so the only control on DC ZVA is the
3308      * bit in the SCTLR which can prohibit access for EL0.
3309      */
3310     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3311         return CP_ACCESS_TRAP;
3312     }
3313     return CP_ACCESS_OK;
3314 }
3315 
3316 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3317 {
3318     ARMCPU *cpu = arm_env_get_cpu(env);
3319     int dzp_bit = 1 << 4;
3320 
3321     /* DZP indicates whether DC ZVA access is allowed */
3322     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3323         dzp_bit = 0;
3324     }
3325     return cpu->dcz_blocksize | dzp_bit;
3326 }
3327 
3328 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3329                                     bool isread)
3330 {
3331     if (!(env->pstate & PSTATE_SP)) {
3332         /* Access to SP_EL0 is undefined if it's being used as
3333          * the stack pointer.
3334          */
3335         return CP_ACCESS_TRAP_UNCATEGORIZED;
3336     }
3337     return CP_ACCESS_OK;
3338 }
3339 
3340 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3341 {
3342     return env->pstate & PSTATE_SP;
3343 }
3344 
3345 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3346 {
3347     update_spsel(env, val);
3348 }
3349 
3350 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3351                         uint64_t value)
3352 {
3353     ARMCPU *cpu = arm_env_get_cpu(env);
3354 
3355     if (raw_read(env, ri) == value) {
3356         /* Skip the TLB flush if nothing actually changed; Linux likes
3357          * to do a lot of pointless SCTLR writes.
3358          */
3359         return;
3360     }
3361 
3362     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3363         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3364         value &= ~SCTLR_M;
3365     }
3366 
3367     raw_write(env, ri, value);
3368     /* ??? Lots of these bits are not implemented.  */
3369     /* This may enable/disable the MMU, so do a TLB flush.  */
3370     tlb_flush(CPU(cpu));
3371 }
3372 
3373 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3374                                      bool isread)
3375 {
3376     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3377         return CP_ACCESS_TRAP_FP_EL2;
3378     }
3379     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3380         return CP_ACCESS_TRAP_FP_EL3;
3381     }
3382     return CP_ACCESS_OK;
3383 }
3384 
3385 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3386                        uint64_t value)
3387 {
3388     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3389 }
3390 
3391 static const ARMCPRegInfo v8_cp_reginfo[] = {
3392     /* Minimal set of EL0-visible registers. This will need to be expanded
3393      * significantly for system emulation of AArch64 CPUs.
3394      */
3395     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3396       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3397       .access = PL0_RW, .type = ARM_CP_NZCV },
3398     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3399       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3400       .type = ARM_CP_NO_RAW,
3401       .access = PL0_RW, .accessfn = aa64_daif_access,
3402       .fieldoffset = offsetof(CPUARMState, daif),
3403       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3404     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3405       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3406       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3407       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3408     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3409       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3410       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3411       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3412     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3413       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3414       .access = PL0_R, .type = ARM_CP_NO_RAW,
3415       .readfn = aa64_dczid_read },
3416     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3417       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3418       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3419 #ifndef CONFIG_USER_ONLY
3420       /* Avoid overhead of an access check that always passes in user-mode */
3421       .accessfn = aa64_zva_access,
3422 #endif
3423     },
3424     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3426       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3427     /* Cache ops: all NOPs since we don't emulate caches */
3428     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3429       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3430       .access = PL1_W, .type = ARM_CP_NOP },
3431     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3432       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3433       .access = PL1_W, .type = ARM_CP_NOP },
3434     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3436       .access = PL0_W, .type = ARM_CP_NOP,
3437       .accessfn = aa64_cacheop_access },
3438     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3440       .access = PL1_W, .type = ARM_CP_NOP },
3441     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3442       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3443       .access = PL1_W, .type = ARM_CP_NOP },
3444     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3445       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3446       .access = PL0_W, .type = ARM_CP_NOP,
3447       .accessfn = aa64_cacheop_access },
3448     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3449       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3450       .access = PL1_W, .type = ARM_CP_NOP },
3451     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3452       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3453       .access = PL0_W, .type = ARM_CP_NOP,
3454       .accessfn = aa64_cacheop_access },
3455     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3456       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3457       .access = PL0_W, .type = ARM_CP_NOP,
3458       .accessfn = aa64_cacheop_access },
3459     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3460       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3461       .access = PL1_W, .type = ARM_CP_NOP },
3462     /* TLBI operations */
3463     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3465       .access = PL1_W, .type = ARM_CP_NO_RAW,
3466       .writefn = tlbi_aa64_vmalle1is_write },
3467     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3468       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3469       .access = PL1_W, .type = ARM_CP_NO_RAW,
3470       .writefn = tlbi_aa64_vae1is_write },
3471     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3472       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3473       .access = PL1_W, .type = ARM_CP_NO_RAW,
3474       .writefn = tlbi_aa64_vmalle1is_write },
3475     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3476       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3477       .access = PL1_W, .type = ARM_CP_NO_RAW,
3478       .writefn = tlbi_aa64_vae1is_write },
3479     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3480       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3481       .access = PL1_W, .type = ARM_CP_NO_RAW,
3482       .writefn = tlbi_aa64_vae1is_write },
3483     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3484       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3485       .access = PL1_W, .type = ARM_CP_NO_RAW,
3486       .writefn = tlbi_aa64_vae1is_write },
3487     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3488       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3489       .access = PL1_W, .type = ARM_CP_NO_RAW,
3490       .writefn = tlbi_aa64_vmalle1_write },
3491     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3492       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3493       .access = PL1_W, .type = ARM_CP_NO_RAW,
3494       .writefn = tlbi_aa64_vae1_write },
3495     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3496       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3497       .access = PL1_W, .type = ARM_CP_NO_RAW,
3498       .writefn = tlbi_aa64_vmalle1_write },
3499     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3500       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3501       .access = PL1_W, .type = ARM_CP_NO_RAW,
3502       .writefn = tlbi_aa64_vae1_write },
3503     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3504       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3505       .access = PL1_W, .type = ARM_CP_NO_RAW,
3506       .writefn = tlbi_aa64_vae1_write },
3507     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3508       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3509       .access = PL1_W, .type = ARM_CP_NO_RAW,
3510       .writefn = tlbi_aa64_vae1_write },
3511     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3512       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3513       .access = PL2_W, .type = ARM_CP_NO_RAW,
3514       .writefn = tlbi_aa64_ipas2e1is_write },
3515     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3516       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3517       .access = PL2_W, .type = ARM_CP_NO_RAW,
3518       .writefn = tlbi_aa64_ipas2e1is_write },
3519     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3520       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3521       .access = PL2_W, .type = ARM_CP_NO_RAW,
3522       .writefn = tlbi_aa64_alle1is_write },
3523     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3524       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3525       .access = PL2_W, .type = ARM_CP_NO_RAW,
3526       .writefn = tlbi_aa64_alle1is_write },
3527     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3528       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3529       .access = PL2_W, .type = ARM_CP_NO_RAW,
3530       .writefn = tlbi_aa64_ipas2e1_write },
3531     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3532       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3533       .access = PL2_W, .type = ARM_CP_NO_RAW,
3534       .writefn = tlbi_aa64_ipas2e1_write },
3535     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3536       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3537       .access = PL2_W, .type = ARM_CP_NO_RAW,
3538       .writefn = tlbi_aa64_alle1_write },
3539     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3540       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3541       .access = PL2_W, .type = ARM_CP_NO_RAW,
3542       .writefn = tlbi_aa64_alle1is_write },
3543 #ifndef CONFIG_USER_ONLY
3544     /* 64 bit address translation operations */
3545     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3546       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3547       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3548     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3549       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3550       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3551     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3552       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3553       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3554     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3555       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3556       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3557     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3558       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3559       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3560     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3561       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3562       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3563     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3564       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3565       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3566     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3567       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3568       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3569     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3570     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3571       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3572       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3573     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3574       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3575       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3576     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3577       .type = ARM_CP_ALIAS,
3578       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3579       .access = PL1_RW, .resetvalue = 0,
3580       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3581       .writefn = par_write },
3582 #endif
3583     /* TLB invalidate last level of translation table walk */
3584     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3585       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3586     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3587       .type = ARM_CP_NO_RAW, .access = PL1_W,
3588       .writefn = tlbimvaa_is_write },
3589     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3590       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3591     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3592       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3593     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3594       .type = ARM_CP_NO_RAW, .access = PL2_W,
3595       .writefn = tlbimva_hyp_write },
3596     { .name = "TLBIMVALHIS",
3597       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3598       .type = ARM_CP_NO_RAW, .access = PL2_W,
3599       .writefn = tlbimva_hyp_is_write },
3600     { .name = "TLBIIPAS2",
3601       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3602       .type = ARM_CP_NO_RAW, .access = PL2_W,
3603       .writefn = tlbiipas2_write },
3604     { .name = "TLBIIPAS2IS",
3605       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3606       .type = ARM_CP_NO_RAW, .access = PL2_W,
3607       .writefn = tlbiipas2_is_write },
3608     { .name = "TLBIIPAS2L",
3609       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3610       .type = ARM_CP_NO_RAW, .access = PL2_W,
3611       .writefn = tlbiipas2_write },
3612     { .name = "TLBIIPAS2LIS",
3613       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3614       .type = ARM_CP_NO_RAW, .access = PL2_W,
3615       .writefn = tlbiipas2_is_write },
3616     /* 32 bit cache operations */
3617     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3618       .type = ARM_CP_NOP, .access = PL1_W },
3619     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3620       .type = ARM_CP_NOP, .access = PL1_W },
3621     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3622       .type = ARM_CP_NOP, .access = PL1_W },
3623     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3624       .type = ARM_CP_NOP, .access = PL1_W },
3625     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3626       .type = ARM_CP_NOP, .access = PL1_W },
3627     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3628       .type = ARM_CP_NOP, .access = PL1_W },
3629     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3630       .type = ARM_CP_NOP, .access = PL1_W },
3631     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3632       .type = ARM_CP_NOP, .access = PL1_W },
3633     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3634       .type = ARM_CP_NOP, .access = PL1_W },
3635     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3636       .type = ARM_CP_NOP, .access = PL1_W },
3637     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3638       .type = ARM_CP_NOP, .access = PL1_W },
3639     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3640       .type = ARM_CP_NOP, .access = PL1_W },
3641     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3642       .type = ARM_CP_NOP, .access = PL1_W },
3643     /* MMU Domain access control / MPU write buffer control */
3644     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3645       .access = PL1_RW, .resetvalue = 0,
3646       .writefn = dacr_write, .raw_writefn = raw_write,
3647       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3648                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3649     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3650       .type = ARM_CP_ALIAS,
3651       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3652       .access = PL1_RW,
3653       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3654     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3655       .type = ARM_CP_ALIAS,
3656       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3657       .access = PL1_RW,
3658       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3659     /* We rely on the access checks not allowing the guest to write to the
3660      * state field when SPSel indicates that it's being used as the stack
3661      * pointer.
3662      */
3663     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3664       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3665       .access = PL1_RW, .accessfn = sp_el0_access,
3666       .type = ARM_CP_ALIAS,
3667       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3668     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3669       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3670       .access = PL2_RW, .type = ARM_CP_ALIAS,
3671       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3672     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3673       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3674       .type = ARM_CP_NO_RAW,
3675       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3676     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3677       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3678       .type = ARM_CP_ALIAS,
3679       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3680       .access = PL2_RW, .accessfn = fpexc32_access },
3681     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3682       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3683       .access = PL2_RW, .resetvalue = 0,
3684       .writefn = dacr_write, .raw_writefn = raw_write,
3685       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3686     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3687       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3688       .access = PL2_RW, .resetvalue = 0,
3689       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3690     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3691       .type = ARM_CP_ALIAS,
3692       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3693       .access = PL2_RW,
3694       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3695     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3696       .type = ARM_CP_ALIAS,
3697       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3698       .access = PL2_RW,
3699       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3700     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3701       .type = ARM_CP_ALIAS,
3702       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3703       .access = PL2_RW,
3704       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3705     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3706       .type = ARM_CP_ALIAS,
3707       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3708       .access = PL2_RW,
3709       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3710     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3711       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3712       .resetvalue = 0,
3713       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3714     { .name = "SDCR", .type = ARM_CP_ALIAS,
3715       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3716       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3717       .writefn = sdcr_write,
3718       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3719     REGINFO_SENTINEL
3720 };
3721 
3722 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3723 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3724     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3725       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3726       .access = PL2_RW,
3727       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3728     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3729       .type = ARM_CP_NO_RAW,
3730       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3731       .access = PL2_RW,
3732       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3733     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3734       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3735       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3736     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3737       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3738       .access = PL2_RW, .type = ARM_CP_CONST,
3739       .resetvalue = 0 },
3740     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3741       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3742       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3743     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3744       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3745       .access = PL2_RW, .type = ARM_CP_CONST,
3746       .resetvalue = 0 },
3747     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3748       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3749       .access = PL2_RW, .type = ARM_CP_CONST,
3750       .resetvalue = 0 },
3751     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3752       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3753       .access = PL2_RW, .type = ARM_CP_CONST,
3754       .resetvalue = 0 },
3755     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3756       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3757       .access = PL2_RW, .type = ARM_CP_CONST,
3758       .resetvalue = 0 },
3759     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3760       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3761       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3762     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3763       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3764       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3765       .type = ARM_CP_CONST, .resetvalue = 0 },
3766     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3767       .cp = 15, .opc1 = 6, .crm = 2,
3768       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3769       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3770     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3771       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3772       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3773     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3774       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3775       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3776     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3777       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3778       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3779     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3780       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3781       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3782     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3783       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3784       .resetvalue = 0 },
3785     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3786       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3787       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3788     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3789       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3790       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3791     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3792       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3793       .resetvalue = 0 },
3794     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3795       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3796       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3797     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3798       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3799       .resetvalue = 0 },
3800     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3801       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3802       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3803     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3804       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3805       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3806     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3807       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3808       .access = PL2_RW, .accessfn = access_tda,
3809       .type = ARM_CP_CONST, .resetvalue = 0 },
3810     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3811       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3812       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3813       .type = ARM_CP_CONST, .resetvalue = 0 },
3814     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3815       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3816       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3817     REGINFO_SENTINEL
3818 };
3819 
3820 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3821 {
3822     ARMCPU *cpu = arm_env_get_cpu(env);
3823     uint64_t valid_mask = HCR_MASK;
3824 
3825     if (arm_feature(env, ARM_FEATURE_EL3)) {
3826         valid_mask &= ~HCR_HCD;
3827     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3828         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3829          * However, if we're using the SMC PSCI conduit then QEMU is
3830          * effectively acting like EL3 firmware and so the guest at
3831          * EL2 should retain the ability to prevent EL1 from being
3832          * able to make SMC calls into the ersatz firmware, so in
3833          * that case HCR.TSC should be read/write.
3834          */
3835         valid_mask &= ~HCR_TSC;
3836     }
3837 
3838     /* Clear RES0 bits.  */
3839     value &= valid_mask;
3840 
3841     /* These bits change the MMU setup:
3842      * HCR_VM enables stage 2 translation
3843      * HCR_PTW forbids certain page-table setups
3844      * HCR_DC Disables stage1 and enables stage2 translation
3845      */
3846     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3847         tlb_flush(CPU(cpu));
3848     }
3849     raw_write(env, ri, value);
3850 }
3851 
3852 static const ARMCPRegInfo el2_cp_reginfo[] = {
3853     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3854       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3855       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3856       .writefn = hcr_write },
3857     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3858       .type = ARM_CP_ALIAS,
3859       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3860       .access = PL2_RW,
3861       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3862     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3863       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3864       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3865     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3866       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3867       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3868     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3869       .type = ARM_CP_ALIAS,
3870       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3871       .access = PL2_RW,
3872       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3873     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3874       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3875       .access = PL2_RW, .writefn = vbar_write,
3876       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3877       .resetvalue = 0 },
3878     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3879       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3880       .access = PL3_RW, .type = ARM_CP_ALIAS,
3881       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3882     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3883       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3884       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3885       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3886     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3887       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3888       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3889       .resetvalue = 0 },
3890     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3891       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3892       .access = PL2_RW, .type = ARM_CP_ALIAS,
3893       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3894     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3895       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3896       .access = PL2_RW, .type = ARM_CP_CONST,
3897       .resetvalue = 0 },
3898     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3899     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3900       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3901       .access = PL2_RW, .type = ARM_CP_CONST,
3902       .resetvalue = 0 },
3903     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3904       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3905       .access = PL2_RW, .type = ARM_CP_CONST,
3906       .resetvalue = 0 },
3907     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3908       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3909       .access = PL2_RW, .type = ARM_CP_CONST,
3910       .resetvalue = 0 },
3911     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3912       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3913       .access = PL2_RW,
3914       /* no .writefn needed as this can't cause an ASID change;
3915        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3916        */
3917       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3918     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3919       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3920       .type = ARM_CP_ALIAS,
3921       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3922       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3923     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3924       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3925       .access = PL2_RW,
3926       /* no .writefn needed as this can't cause an ASID change;
3927        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3928        */
3929       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3930     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3931       .cp = 15, .opc1 = 6, .crm = 2,
3932       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3933       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3934       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3935       .writefn = vttbr_write },
3936     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3937       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3938       .access = PL2_RW, .writefn = vttbr_write,
3939       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3940     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3941       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3942       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3943       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3944     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3945       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3946       .access = PL2_RW, .resetvalue = 0,
3947       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3948     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3949       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3950       .access = PL2_RW, .resetvalue = 0,
3951       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3952     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3953       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3954       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3955     { .name = "TLBIALLNSNH",
3956       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3957       .type = ARM_CP_NO_RAW, .access = PL2_W,
3958       .writefn = tlbiall_nsnh_write },
3959     { .name = "TLBIALLNSNHIS",
3960       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3961       .type = ARM_CP_NO_RAW, .access = PL2_W,
3962       .writefn = tlbiall_nsnh_is_write },
3963     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3964       .type = ARM_CP_NO_RAW, .access = PL2_W,
3965       .writefn = tlbiall_hyp_write },
3966     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3967       .type = ARM_CP_NO_RAW, .access = PL2_W,
3968       .writefn = tlbiall_hyp_is_write },
3969     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3970       .type = ARM_CP_NO_RAW, .access = PL2_W,
3971       .writefn = tlbimva_hyp_write },
3972     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3973       .type = ARM_CP_NO_RAW, .access = PL2_W,
3974       .writefn = tlbimva_hyp_is_write },
3975     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3976       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3977       .type = ARM_CP_NO_RAW, .access = PL2_W,
3978       .writefn = tlbi_aa64_alle2_write },
3979     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3980       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3981       .type = ARM_CP_NO_RAW, .access = PL2_W,
3982       .writefn = tlbi_aa64_vae2_write },
3983     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3984       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3985       .access = PL2_W, .type = ARM_CP_NO_RAW,
3986       .writefn = tlbi_aa64_vae2_write },
3987     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3988       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3989       .access = PL2_W, .type = ARM_CP_NO_RAW,
3990       .writefn = tlbi_aa64_alle2is_write },
3991     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3992       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3993       .type = ARM_CP_NO_RAW, .access = PL2_W,
3994       .writefn = tlbi_aa64_vae2is_write },
3995     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3996       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3997       .access = PL2_W, .type = ARM_CP_NO_RAW,
3998       .writefn = tlbi_aa64_vae2is_write },
3999 #ifndef CONFIG_USER_ONLY
4000     /* Unlike the other EL2-related AT operations, these must
4001      * UNDEF from EL3 if EL2 is not implemented, which is why we
4002      * define them here rather than with the rest of the AT ops.
4003      */
4004     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4005       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4006       .access = PL2_W, .accessfn = at_s1e2_access,
4007       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4008     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4009       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4010       .access = PL2_W, .accessfn = at_s1e2_access,
4011       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4012     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4013      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4014      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4015      * to behave as if SCR.NS was 1.
4016      */
4017     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4018       .access = PL2_W,
4019       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4020     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4021       .access = PL2_W,
4022       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4023     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4024       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4025       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4026        * reset values as IMPDEF. We choose to reset to 3 to comply with
4027        * both ARMv7 and ARMv8.
4028        */
4029       .access = PL2_RW, .resetvalue = 3,
4030       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4031     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4032       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4033       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4034       .writefn = gt_cntvoff_write,
4035       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4036     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4037       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4038       .writefn = gt_cntvoff_write,
4039       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4040     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4041       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4042       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4043       .type = ARM_CP_IO, .access = PL2_RW,
4044       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4045     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4046       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4047       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4048       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4049     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4050       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4051       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4052       .resetfn = gt_hyp_timer_reset,
4053       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4054     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4055       .type = ARM_CP_IO,
4056       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4057       .access = PL2_RW,
4058       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4059       .resetvalue = 0,
4060       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4061 #endif
4062     /* The only field of MDCR_EL2 that has a defined architectural reset value
4063      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4064      * don't impelment any PMU event counters, so using zero as a reset
4065      * value for MDCR_EL2 is okay
4066      */
4067     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4068       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4069       .access = PL2_RW, .resetvalue = 0,
4070       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4071     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4072       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4073       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4074       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4075     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4076       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4077       .access = PL2_RW,
4078       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4079     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4080       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4081       .access = PL2_RW,
4082       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4083     REGINFO_SENTINEL
4084 };
4085 
4086 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4087                                    bool isread)
4088 {
4089     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4090      * At Secure EL1 it traps to EL3.
4091      */
4092     if (arm_current_el(env) == 3) {
4093         return CP_ACCESS_OK;
4094     }
4095     if (arm_is_secure_below_el3(env)) {
4096         return CP_ACCESS_TRAP_EL3;
4097     }
4098     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4099     if (isread) {
4100         return CP_ACCESS_OK;
4101     }
4102     return CP_ACCESS_TRAP_UNCATEGORIZED;
4103 }
4104 
4105 static const ARMCPRegInfo el3_cp_reginfo[] = {
4106     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4107       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4108       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4109       .resetvalue = 0, .writefn = scr_write },
4110     { .name = "SCR",  .type = ARM_CP_ALIAS,
4111       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4112       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4113       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4114       .writefn = scr_write },
4115     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4116       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4117       .access = PL3_RW, .resetvalue = 0,
4118       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4119     { .name = "SDER",
4120       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4121       .access = PL3_RW, .resetvalue = 0,
4122       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4123     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4124       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4125       .writefn = vbar_write, .resetvalue = 0,
4126       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4127     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4128       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4129       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4130       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4131     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4132       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4133       .access = PL3_RW,
4134       /* no .writefn needed as this can't cause an ASID change;
4135        * we must provide a .raw_writefn and .resetfn because we handle
4136        * reset and migration for the AArch32 TTBCR(S), which might be
4137        * using mask and base_mask.
4138        */
4139       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4140       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4141     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4142       .type = ARM_CP_ALIAS,
4143       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4144       .access = PL3_RW,
4145       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4146     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4147       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4148       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4149     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4150       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4151       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4152     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4153       .type = ARM_CP_ALIAS,
4154       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4155       .access = PL3_RW,
4156       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4157     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4158       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4159       .access = PL3_RW, .writefn = vbar_write,
4160       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4161       .resetvalue = 0 },
4162     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4163       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4164       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4165       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4166     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4167       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4168       .access = PL3_RW, .resetvalue = 0,
4169       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4170     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4171       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4172       .access = PL3_RW, .type = ARM_CP_CONST,
4173       .resetvalue = 0 },
4174     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4175       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4176       .access = PL3_RW, .type = ARM_CP_CONST,
4177       .resetvalue = 0 },
4178     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4179       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4180       .access = PL3_RW, .type = ARM_CP_CONST,
4181       .resetvalue = 0 },
4182     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4183       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4184       .access = PL3_W, .type = ARM_CP_NO_RAW,
4185       .writefn = tlbi_aa64_alle3is_write },
4186     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4187       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4188       .access = PL3_W, .type = ARM_CP_NO_RAW,
4189       .writefn = tlbi_aa64_vae3is_write },
4190     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4191       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4192       .access = PL3_W, .type = ARM_CP_NO_RAW,
4193       .writefn = tlbi_aa64_vae3is_write },
4194     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4195       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4196       .access = PL3_W, .type = ARM_CP_NO_RAW,
4197       .writefn = tlbi_aa64_alle3_write },
4198     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4199       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4200       .access = PL3_W, .type = ARM_CP_NO_RAW,
4201       .writefn = tlbi_aa64_vae3_write },
4202     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4203       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4204       .access = PL3_W, .type = ARM_CP_NO_RAW,
4205       .writefn = tlbi_aa64_vae3_write },
4206     REGINFO_SENTINEL
4207 };
4208 
4209 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4210                                      bool isread)
4211 {
4212     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4213      * but the AArch32 CTR has its own reginfo struct)
4214      */
4215     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4216         return CP_ACCESS_TRAP;
4217     }
4218     return CP_ACCESS_OK;
4219 }
4220 
4221 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4222                         uint64_t value)
4223 {
4224     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4225      * read via a bit in OSLSR_EL1.
4226      */
4227     int oslock;
4228 
4229     if (ri->state == ARM_CP_STATE_AA32) {
4230         oslock = (value == 0xC5ACCE55);
4231     } else {
4232         oslock = value & 1;
4233     }
4234 
4235     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4236 }
4237 
4238 static const ARMCPRegInfo debug_cp_reginfo[] = {
4239     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4240      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4241      * unlike DBGDRAR it is never accessible from EL0.
4242      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4243      * accessor.
4244      */
4245     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4246       .access = PL0_R, .accessfn = access_tdra,
4247       .type = ARM_CP_CONST, .resetvalue = 0 },
4248     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4249       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4250       .access = PL1_R, .accessfn = access_tdra,
4251       .type = ARM_CP_CONST, .resetvalue = 0 },
4252     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4253       .access = PL0_R, .accessfn = access_tdra,
4254       .type = ARM_CP_CONST, .resetvalue = 0 },
4255     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4256     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4257       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4258       .access = PL1_RW, .accessfn = access_tda,
4259       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4260       .resetvalue = 0 },
4261     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4262      * We don't implement the configurable EL0 access.
4263      */
4264     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4265       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4266       .type = ARM_CP_ALIAS,
4267       .access = PL1_R, .accessfn = access_tda,
4268       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4269     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4270       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4271       .access = PL1_W, .type = ARM_CP_NO_RAW,
4272       .accessfn = access_tdosa,
4273       .writefn = oslar_write },
4274     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4275       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4276       .access = PL1_R, .resetvalue = 10,
4277       .accessfn = access_tdosa,
4278       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4279     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4280     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4281       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4282       .access = PL1_RW, .accessfn = access_tdosa,
4283       .type = ARM_CP_NOP },
4284     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4285      * implement vector catch debug events yet.
4286      */
4287     { .name = "DBGVCR",
4288       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4289       .access = PL1_RW, .accessfn = access_tda,
4290       .type = ARM_CP_NOP },
4291     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4292      * to save and restore a 32-bit guest's DBGVCR)
4293      */
4294     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4295       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4296       .access = PL2_RW, .accessfn = access_tda,
4297       .type = ARM_CP_NOP },
4298     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4299      * Channel but Linux may try to access this register. The 32-bit
4300      * alias is DBGDCCINT.
4301      */
4302     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4303       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4304       .access = PL1_RW, .accessfn = access_tda,
4305       .type = ARM_CP_NOP },
4306     REGINFO_SENTINEL
4307 };
4308 
4309 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4310     /* 64 bit access versions of the (dummy) debug registers */
4311     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4312       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4313     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4314       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4315     REGINFO_SENTINEL
4316 };
4317 
4318 /* Return the exception level to which SVE-disabled exceptions should
4319  * be taken, or 0 if SVE is enabled.
4320  */
4321 static int sve_exception_el(CPUARMState *env)
4322 {
4323 #ifndef CONFIG_USER_ONLY
4324     unsigned current_el = arm_current_el(env);
4325 
4326     /* The CPACR.ZEN controls traps to EL1:
4327      * 0, 2 : trap EL0 and EL1 accesses
4328      * 1    : trap only EL0 accesses
4329      * 3    : trap no accesses
4330      */
4331     switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4332     default:
4333         if (current_el <= 1) {
4334             /* Trap to PL1, which might be EL1 or EL3 */
4335             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4336                 return 3;
4337             }
4338             return 1;
4339         }
4340         break;
4341     case 1:
4342         if (current_el == 0) {
4343             return 1;
4344         }
4345         break;
4346     case 3:
4347         break;
4348     }
4349 
4350     /* Similarly for CPACR.FPEN, after having checked ZEN.  */
4351     switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4352     default:
4353         if (current_el <= 1) {
4354             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4355                 return 3;
4356             }
4357             return 1;
4358         }
4359         break;
4360     case 1:
4361         if (current_el == 0) {
4362             return 1;
4363         }
4364         break;
4365     case 3:
4366         break;
4367     }
4368 
4369     /* CPTR_EL2.  Check both TZ and TFP.  */
4370     if (current_el <= 2
4371         && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4372         && !arm_is_secure_below_el3(env)) {
4373         return 2;
4374     }
4375 
4376     /* CPTR_EL3.  Check both EZ and TFP.  */
4377     if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4378         || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4379         return 3;
4380     }
4381 #endif
4382     return 0;
4383 }
4384 
4385 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4386                       uint64_t value)
4387 {
4388     /* Bits other than [3:0] are RAZ/WI.  */
4389     raw_write(env, ri, value & 0xf);
4390 }
4391 
4392 static const ARMCPRegInfo zcr_el1_reginfo = {
4393     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4394     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4395     .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4396     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4397     .writefn = zcr_write, .raw_writefn = raw_write
4398 };
4399 
4400 static const ARMCPRegInfo zcr_el2_reginfo = {
4401     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4402     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4403     .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4404     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4405     .writefn = zcr_write, .raw_writefn = raw_write
4406 };
4407 
4408 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4409     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4410     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4411     .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4412     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4413 };
4414 
4415 static const ARMCPRegInfo zcr_el3_reginfo = {
4416     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4417     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4418     .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
4419     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4420     .writefn = zcr_write, .raw_writefn = raw_write
4421 };
4422 
4423 void hw_watchpoint_update(ARMCPU *cpu, int n)
4424 {
4425     CPUARMState *env = &cpu->env;
4426     vaddr len = 0;
4427     vaddr wvr = env->cp15.dbgwvr[n];
4428     uint64_t wcr = env->cp15.dbgwcr[n];
4429     int mask;
4430     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4431 
4432     if (env->cpu_watchpoint[n]) {
4433         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4434         env->cpu_watchpoint[n] = NULL;
4435     }
4436 
4437     if (!extract64(wcr, 0, 1)) {
4438         /* E bit clear : watchpoint disabled */
4439         return;
4440     }
4441 
4442     switch (extract64(wcr, 3, 2)) {
4443     case 0:
4444         /* LSC 00 is reserved and must behave as if the wp is disabled */
4445         return;
4446     case 1:
4447         flags |= BP_MEM_READ;
4448         break;
4449     case 2:
4450         flags |= BP_MEM_WRITE;
4451         break;
4452     case 3:
4453         flags |= BP_MEM_ACCESS;
4454         break;
4455     }
4456 
4457     /* Attempts to use both MASK and BAS fields simultaneously are
4458      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4459      * thus generating a watchpoint for every byte in the masked region.
4460      */
4461     mask = extract64(wcr, 24, 4);
4462     if (mask == 1 || mask == 2) {
4463         /* Reserved values of MASK; we must act as if the mask value was
4464          * some non-reserved value, or as if the watchpoint were disabled.
4465          * We choose the latter.
4466          */
4467         return;
4468     } else if (mask) {
4469         /* Watchpoint covers an aligned area up to 2GB in size */
4470         len = 1ULL << mask;
4471         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4472          * whether the watchpoint fires when the unmasked bits match; we opt
4473          * to generate the exceptions.
4474          */
4475         wvr &= ~(len - 1);
4476     } else {
4477         /* Watchpoint covers bytes defined by the byte address select bits */
4478         int bas = extract64(wcr, 5, 8);
4479         int basstart;
4480 
4481         if (bas == 0) {
4482             /* This must act as if the watchpoint is disabled */
4483             return;
4484         }
4485 
4486         if (extract64(wvr, 2, 1)) {
4487             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4488              * ignored, and BAS[3:0] define which bytes to watch.
4489              */
4490             bas &= 0xf;
4491         }
4492         /* The BAS bits are supposed to be programmed to indicate a contiguous
4493          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4494          * we fire for each byte in the word/doubleword addressed by the WVR.
4495          * We choose to ignore any non-zero bits after the first range of 1s.
4496          */
4497         basstart = ctz32(bas);
4498         len = cto32(bas >> basstart);
4499         wvr += basstart;
4500     }
4501 
4502     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4503                           &env->cpu_watchpoint[n]);
4504 }
4505 
4506 void hw_watchpoint_update_all(ARMCPU *cpu)
4507 {
4508     int i;
4509     CPUARMState *env = &cpu->env;
4510 
4511     /* Completely clear out existing QEMU watchpoints and our array, to
4512      * avoid possible stale entries following migration load.
4513      */
4514     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4515     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4516 
4517     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4518         hw_watchpoint_update(cpu, i);
4519     }
4520 }
4521 
4522 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4523                          uint64_t value)
4524 {
4525     ARMCPU *cpu = arm_env_get_cpu(env);
4526     int i = ri->crm;
4527 
4528     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4529      * register reads and behaves as if values written are sign extended.
4530      * Bits [1:0] are RES0.
4531      */
4532     value = sextract64(value, 0, 49) & ~3ULL;
4533 
4534     raw_write(env, ri, value);
4535     hw_watchpoint_update(cpu, i);
4536 }
4537 
4538 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4539                          uint64_t value)
4540 {
4541     ARMCPU *cpu = arm_env_get_cpu(env);
4542     int i = ri->crm;
4543 
4544     raw_write(env, ri, value);
4545     hw_watchpoint_update(cpu, i);
4546 }
4547 
4548 void hw_breakpoint_update(ARMCPU *cpu, int n)
4549 {
4550     CPUARMState *env = &cpu->env;
4551     uint64_t bvr = env->cp15.dbgbvr[n];
4552     uint64_t bcr = env->cp15.dbgbcr[n];
4553     vaddr addr;
4554     int bt;
4555     int flags = BP_CPU;
4556 
4557     if (env->cpu_breakpoint[n]) {
4558         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4559         env->cpu_breakpoint[n] = NULL;
4560     }
4561 
4562     if (!extract64(bcr, 0, 1)) {
4563         /* E bit clear : watchpoint disabled */
4564         return;
4565     }
4566 
4567     bt = extract64(bcr, 20, 4);
4568 
4569     switch (bt) {
4570     case 4: /* unlinked address mismatch (reserved if AArch64) */
4571     case 5: /* linked address mismatch (reserved if AArch64) */
4572         qemu_log_mask(LOG_UNIMP,
4573                       "arm: address mismatch breakpoint types not implemented\n");
4574         return;
4575     case 0: /* unlinked address match */
4576     case 1: /* linked address match */
4577     {
4578         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4579          * we behave as if the register was sign extended. Bits [1:0] are
4580          * RES0. The BAS field is used to allow setting breakpoints on 16
4581          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4582          * a bp will fire if the addresses covered by the bp and the addresses
4583          * covered by the insn overlap but the insn doesn't start at the
4584          * start of the bp address range. We choose to require the insn and
4585          * the bp to have the same address. The constraints on writing to
4586          * BAS enforced in dbgbcr_write mean we have only four cases:
4587          *  0b0000  => no breakpoint
4588          *  0b0011  => breakpoint on addr
4589          *  0b1100  => breakpoint on addr + 2
4590          *  0b1111  => breakpoint on addr
4591          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4592          */
4593         int bas = extract64(bcr, 5, 4);
4594         addr = sextract64(bvr, 0, 49) & ~3ULL;
4595         if (bas == 0) {
4596             return;
4597         }
4598         if (bas == 0xc) {
4599             addr += 2;
4600         }
4601         break;
4602     }
4603     case 2: /* unlinked context ID match */
4604     case 8: /* unlinked VMID match (reserved if no EL2) */
4605     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4606         qemu_log_mask(LOG_UNIMP,
4607                       "arm: unlinked context breakpoint types not implemented\n");
4608         return;
4609     case 9: /* linked VMID match (reserved if no EL2) */
4610     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4611     case 3: /* linked context ID match */
4612     default:
4613         /* We must generate no events for Linked context matches (unless
4614          * they are linked to by some other bp/wp, which is handled in
4615          * updates for the linking bp/wp). We choose to also generate no events
4616          * for reserved values.
4617          */
4618         return;
4619     }
4620 
4621     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4622 }
4623 
4624 void hw_breakpoint_update_all(ARMCPU *cpu)
4625 {
4626     int i;
4627     CPUARMState *env = &cpu->env;
4628 
4629     /* Completely clear out existing QEMU breakpoints and our array, to
4630      * avoid possible stale entries following migration load.
4631      */
4632     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4633     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4634 
4635     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4636         hw_breakpoint_update(cpu, i);
4637     }
4638 }
4639 
4640 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4641                          uint64_t value)
4642 {
4643     ARMCPU *cpu = arm_env_get_cpu(env);
4644     int i = ri->crm;
4645 
4646     raw_write(env, ri, value);
4647     hw_breakpoint_update(cpu, i);
4648 }
4649 
4650 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4651                          uint64_t value)
4652 {
4653     ARMCPU *cpu = arm_env_get_cpu(env);
4654     int i = ri->crm;
4655 
4656     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4657      * copy of BAS[0].
4658      */
4659     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4660     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4661 
4662     raw_write(env, ri, value);
4663     hw_breakpoint_update(cpu, i);
4664 }
4665 
4666 static void define_debug_regs(ARMCPU *cpu)
4667 {
4668     /* Define v7 and v8 architectural debug registers.
4669      * These are just dummy implementations for now.
4670      */
4671     int i;
4672     int wrps, brps, ctx_cmps;
4673     ARMCPRegInfo dbgdidr = {
4674         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4675         .access = PL0_R, .accessfn = access_tda,
4676         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4677     };
4678 
4679     /* Note that all these register fields hold "number of Xs minus 1". */
4680     brps = extract32(cpu->dbgdidr, 24, 4);
4681     wrps = extract32(cpu->dbgdidr, 28, 4);
4682     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4683 
4684     assert(ctx_cmps <= brps);
4685 
4686     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4687      * of the debug registers such as number of breakpoints;
4688      * check that if they both exist then they agree.
4689      */
4690     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4691         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4692         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4693         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4694     }
4695 
4696     define_one_arm_cp_reg(cpu, &dbgdidr);
4697     define_arm_cp_regs(cpu, debug_cp_reginfo);
4698 
4699     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4700         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4701     }
4702 
4703     for (i = 0; i < brps + 1; i++) {
4704         ARMCPRegInfo dbgregs[] = {
4705             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4706               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4707               .access = PL1_RW, .accessfn = access_tda,
4708               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4709               .writefn = dbgbvr_write, .raw_writefn = raw_write
4710             },
4711             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4712               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4713               .access = PL1_RW, .accessfn = access_tda,
4714               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4715               .writefn = dbgbcr_write, .raw_writefn = raw_write
4716             },
4717             REGINFO_SENTINEL
4718         };
4719         define_arm_cp_regs(cpu, dbgregs);
4720     }
4721 
4722     for (i = 0; i < wrps + 1; i++) {
4723         ARMCPRegInfo dbgregs[] = {
4724             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4725               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4726               .access = PL1_RW, .accessfn = access_tda,
4727               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4728               .writefn = dbgwvr_write, .raw_writefn = raw_write
4729             },
4730             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4731               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4732               .access = PL1_RW, .accessfn = access_tda,
4733               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4734               .writefn = dbgwcr_write, .raw_writefn = raw_write
4735             },
4736             REGINFO_SENTINEL
4737         };
4738         define_arm_cp_regs(cpu, dbgregs);
4739     }
4740 }
4741 
4742 /* We don't know until after realize whether there's a GICv3
4743  * attached, and that is what registers the gicv3 sysregs.
4744  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4745  * at runtime.
4746  */
4747 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4748 {
4749     ARMCPU *cpu = arm_env_get_cpu(env);
4750     uint64_t pfr1 = cpu->id_pfr1;
4751 
4752     if (env->gicv3state) {
4753         pfr1 |= 1 << 28;
4754     }
4755     return pfr1;
4756 }
4757 
4758 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4759 {
4760     ARMCPU *cpu = arm_env_get_cpu(env);
4761     uint64_t pfr0 = cpu->id_aa64pfr0;
4762 
4763     if (env->gicv3state) {
4764         pfr0 |= 1 << 24;
4765     }
4766     return pfr0;
4767 }
4768 
4769 void register_cp_regs_for_features(ARMCPU *cpu)
4770 {
4771     /* Register all the coprocessor registers based on feature bits */
4772     CPUARMState *env = &cpu->env;
4773     if (arm_feature(env, ARM_FEATURE_M)) {
4774         /* M profile has no coprocessor registers */
4775         return;
4776     }
4777 
4778     define_arm_cp_regs(cpu, cp_reginfo);
4779     if (!arm_feature(env, ARM_FEATURE_V8)) {
4780         /* Must go early as it is full of wildcards that may be
4781          * overridden by later definitions.
4782          */
4783         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4784     }
4785 
4786     if (arm_feature(env, ARM_FEATURE_V6)) {
4787         /* The ID registers all have impdef reset values */
4788         ARMCPRegInfo v6_idregs[] = {
4789             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4790               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4791               .access = PL1_R, .type = ARM_CP_CONST,
4792               .resetvalue = cpu->id_pfr0 },
4793             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4794              * the value of the GIC field until after we define these regs.
4795              */
4796             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4797               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4798               .access = PL1_R, .type = ARM_CP_NO_RAW,
4799               .readfn = id_pfr1_read,
4800               .writefn = arm_cp_write_ignore },
4801             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4802               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4803               .access = PL1_R, .type = ARM_CP_CONST,
4804               .resetvalue = cpu->id_dfr0 },
4805             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4806               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4807               .access = PL1_R, .type = ARM_CP_CONST,
4808               .resetvalue = cpu->id_afr0 },
4809             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4810               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4811               .access = PL1_R, .type = ARM_CP_CONST,
4812               .resetvalue = cpu->id_mmfr0 },
4813             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4814               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4815               .access = PL1_R, .type = ARM_CP_CONST,
4816               .resetvalue = cpu->id_mmfr1 },
4817             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4818               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4819               .access = PL1_R, .type = ARM_CP_CONST,
4820               .resetvalue = cpu->id_mmfr2 },
4821             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4822               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4823               .access = PL1_R, .type = ARM_CP_CONST,
4824               .resetvalue = cpu->id_mmfr3 },
4825             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4826               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4827               .access = PL1_R, .type = ARM_CP_CONST,
4828               .resetvalue = cpu->id_isar0 },
4829             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4830               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4831               .access = PL1_R, .type = ARM_CP_CONST,
4832               .resetvalue = cpu->id_isar1 },
4833             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4834               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4835               .access = PL1_R, .type = ARM_CP_CONST,
4836               .resetvalue = cpu->id_isar2 },
4837             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4838               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4839               .access = PL1_R, .type = ARM_CP_CONST,
4840               .resetvalue = cpu->id_isar3 },
4841             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4842               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4843               .access = PL1_R, .type = ARM_CP_CONST,
4844               .resetvalue = cpu->id_isar4 },
4845             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4846               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4847               .access = PL1_R, .type = ARM_CP_CONST,
4848               .resetvalue = cpu->id_isar5 },
4849             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4850               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4851               .access = PL1_R, .type = ARM_CP_CONST,
4852               .resetvalue = cpu->id_mmfr4 },
4853             /* 7 is as yet unallocated and must RAZ */
4854             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4855               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4856               .access = PL1_R, .type = ARM_CP_CONST,
4857               .resetvalue = 0 },
4858             REGINFO_SENTINEL
4859         };
4860         define_arm_cp_regs(cpu, v6_idregs);
4861         define_arm_cp_regs(cpu, v6_cp_reginfo);
4862     } else {
4863         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4864     }
4865     if (arm_feature(env, ARM_FEATURE_V6K)) {
4866         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4867     }
4868     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4869         !arm_feature(env, ARM_FEATURE_PMSA)) {
4870         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4871     }
4872     if (arm_feature(env, ARM_FEATURE_V7)) {
4873         /* v7 performance monitor control register: same implementor
4874          * field as main ID register, and we implement only the cycle
4875          * count register.
4876          */
4877 #ifndef CONFIG_USER_ONLY
4878         ARMCPRegInfo pmcr = {
4879             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4880             .access = PL0_RW,
4881             .type = ARM_CP_IO | ARM_CP_ALIAS,
4882             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4883             .accessfn = pmreg_access, .writefn = pmcr_write,
4884             .raw_writefn = raw_write,
4885         };
4886         ARMCPRegInfo pmcr64 = {
4887             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4888             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4889             .access = PL0_RW, .accessfn = pmreg_access,
4890             .type = ARM_CP_IO,
4891             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4892             .resetvalue = cpu->midr & 0xff000000,
4893             .writefn = pmcr_write, .raw_writefn = raw_write,
4894         };
4895         define_one_arm_cp_reg(cpu, &pmcr);
4896         define_one_arm_cp_reg(cpu, &pmcr64);
4897 #endif
4898         ARMCPRegInfo clidr = {
4899             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4900             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4901             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4902         };
4903         define_one_arm_cp_reg(cpu, &clidr);
4904         define_arm_cp_regs(cpu, v7_cp_reginfo);
4905         define_debug_regs(cpu);
4906     } else {
4907         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4908     }
4909     if (arm_feature(env, ARM_FEATURE_V8)) {
4910         /* AArch64 ID registers, which all have impdef reset values.
4911          * Note that within the ID register ranges the unused slots
4912          * must all RAZ, not UNDEF; future architecture versions may
4913          * define new registers here.
4914          */
4915         ARMCPRegInfo v8_idregs[] = {
4916             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4917              * know the right value for the GIC field until after we
4918              * define these regs.
4919              */
4920             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4921               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4922               .access = PL1_R, .type = ARM_CP_NO_RAW,
4923               .readfn = id_aa64pfr0_read,
4924               .writefn = arm_cp_write_ignore },
4925             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4926               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4927               .access = PL1_R, .type = ARM_CP_CONST,
4928               .resetvalue = cpu->id_aa64pfr1},
4929             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4930               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4931               .access = PL1_R, .type = ARM_CP_CONST,
4932               .resetvalue = 0 },
4933             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4934               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4935               .access = PL1_R, .type = ARM_CP_CONST,
4936               .resetvalue = 0 },
4937             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4938               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4939               .access = PL1_R, .type = ARM_CP_CONST,
4940               .resetvalue = 0 },
4941             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4942               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4943               .access = PL1_R, .type = ARM_CP_CONST,
4944               .resetvalue = 0 },
4945             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4946               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4947               .access = PL1_R, .type = ARM_CP_CONST,
4948               .resetvalue = 0 },
4949             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4950               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4951               .access = PL1_R, .type = ARM_CP_CONST,
4952               .resetvalue = 0 },
4953             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4954               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4955               .access = PL1_R, .type = ARM_CP_CONST,
4956               .resetvalue = cpu->id_aa64dfr0 },
4957             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4958               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4959               .access = PL1_R, .type = ARM_CP_CONST,
4960               .resetvalue = cpu->id_aa64dfr1 },
4961             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4962               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4963               .access = PL1_R, .type = ARM_CP_CONST,
4964               .resetvalue = 0 },
4965             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4966               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4967               .access = PL1_R, .type = ARM_CP_CONST,
4968               .resetvalue = 0 },
4969             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4971               .access = PL1_R, .type = ARM_CP_CONST,
4972               .resetvalue = cpu->id_aa64afr0 },
4973             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4974               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4975               .access = PL1_R, .type = ARM_CP_CONST,
4976               .resetvalue = cpu->id_aa64afr1 },
4977             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4978               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4979               .access = PL1_R, .type = ARM_CP_CONST,
4980               .resetvalue = 0 },
4981             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4982               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4983               .access = PL1_R, .type = ARM_CP_CONST,
4984               .resetvalue = 0 },
4985             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4986               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4987               .access = PL1_R, .type = ARM_CP_CONST,
4988               .resetvalue = cpu->id_aa64isar0 },
4989             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4991               .access = PL1_R, .type = ARM_CP_CONST,
4992               .resetvalue = cpu->id_aa64isar1 },
4993             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4994               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4995               .access = PL1_R, .type = ARM_CP_CONST,
4996               .resetvalue = 0 },
4997             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4999               .access = PL1_R, .type = ARM_CP_CONST,
5000               .resetvalue = 0 },
5001             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5003               .access = PL1_R, .type = ARM_CP_CONST,
5004               .resetvalue = 0 },
5005             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5006               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5007               .access = PL1_R, .type = ARM_CP_CONST,
5008               .resetvalue = 0 },
5009             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5011               .access = PL1_R, .type = ARM_CP_CONST,
5012               .resetvalue = 0 },
5013             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5015               .access = PL1_R, .type = ARM_CP_CONST,
5016               .resetvalue = 0 },
5017             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5019               .access = PL1_R, .type = ARM_CP_CONST,
5020               .resetvalue = cpu->id_aa64mmfr0 },
5021             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5023               .access = PL1_R, .type = ARM_CP_CONST,
5024               .resetvalue = cpu->id_aa64mmfr1 },
5025             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5026               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5027               .access = PL1_R, .type = ARM_CP_CONST,
5028               .resetvalue = 0 },
5029             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5031               .access = PL1_R, .type = ARM_CP_CONST,
5032               .resetvalue = 0 },
5033             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5035               .access = PL1_R, .type = ARM_CP_CONST,
5036               .resetvalue = 0 },
5037             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5039               .access = PL1_R, .type = ARM_CP_CONST,
5040               .resetvalue = 0 },
5041             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5043               .access = PL1_R, .type = ARM_CP_CONST,
5044               .resetvalue = 0 },
5045             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5047               .access = PL1_R, .type = ARM_CP_CONST,
5048               .resetvalue = 0 },
5049             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5051               .access = PL1_R, .type = ARM_CP_CONST,
5052               .resetvalue = cpu->mvfr0 },
5053             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5055               .access = PL1_R, .type = ARM_CP_CONST,
5056               .resetvalue = cpu->mvfr1 },
5057             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5058               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5059               .access = PL1_R, .type = ARM_CP_CONST,
5060               .resetvalue = cpu->mvfr2 },
5061             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5063               .access = PL1_R, .type = ARM_CP_CONST,
5064               .resetvalue = 0 },
5065             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5067               .access = PL1_R, .type = ARM_CP_CONST,
5068               .resetvalue = 0 },
5069             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5071               .access = PL1_R, .type = ARM_CP_CONST,
5072               .resetvalue = 0 },
5073             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5075               .access = PL1_R, .type = ARM_CP_CONST,
5076               .resetvalue = 0 },
5077             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5079               .access = PL1_R, .type = ARM_CP_CONST,
5080               .resetvalue = 0 },
5081             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5082               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5083               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5084               .resetvalue = cpu->pmceid0 },
5085             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5086               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5087               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5088               .resetvalue = cpu->pmceid0 },
5089             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5090               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5091               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5092               .resetvalue = cpu->pmceid1 },
5093             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5094               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5095               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5096               .resetvalue = cpu->pmceid1 },
5097             REGINFO_SENTINEL
5098         };
5099         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5100         if (!arm_feature(env, ARM_FEATURE_EL3) &&
5101             !arm_feature(env, ARM_FEATURE_EL2)) {
5102             ARMCPRegInfo rvbar = {
5103                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5104                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5105                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5106             };
5107             define_one_arm_cp_reg(cpu, &rvbar);
5108         }
5109         define_arm_cp_regs(cpu, v8_idregs);
5110         define_arm_cp_regs(cpu, v8_cp_reginfo);
5111     }
5112     if (arm_feature(env, ARM_FEATURE_EL2)) {
5113         uint64_t vmpidr_def = mpidr_read_val(env);
5114         ARMCPRegInfo vpidr_regs[] = {
5115             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5116               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5117               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5118               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5119               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5120             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5121               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5122               .access = PL2_RW, .resetvalue = cpu->midr,
5123               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5124             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5125               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5126               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5127               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5128               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5129             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5130               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5131               .access = PL2_RW,
5132               .resetvalue = vmpidr_def,
5133               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5134             REGINFO_SENTINEL
5135         };
5136         define_arm_cp_regs(cpu, vpidr_regs);
5137         define_arm_cp_regs(cpu, el2_cp_reginfo);
5138         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5139         if (!arm_feature(env, ARM_FEATURE_EL3)) {
5140             ARMCPRegInfo rvbar = {
5141                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5142                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5143                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5144             };
5145             define_one_arm_cp_reg(cpu, &rvbar);
5146         }
5147     } else {
5148         /* If EL2 is missing but higher ELs are enabled, we need to
5149          * register the no_el2 reginfos.
5150          */
5151         if (arm_feature(env, ARM_FEATURE_EL3)) {
5152             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5153              * of MIDR_EL1 and MPIDR_EL1.
5154              */
5155             ARMCPRegInfo vpidr_regs[] = {
5156                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5157                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5158                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5159                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5160                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5161                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5162                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5163                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5164                   .type = ARM_CP_NO_RAW,
5165                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5166                 REGINFO_SENTINEL
5167             };
5168             define_arm_cp_regs(cpu, vpidr_regs);
5169             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5170         }
5171     }
5172     if (arm_feature(env, ARM_FEATURE_EL3)) {
5173         define_arm_cp_regs(cpu, el3_cp_reginfo);
5174         ARMCPRegInfo el3_regs[] = {
5175             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5176               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5177               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5178             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5179               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5180               .access = PL3_RW,
5181               .raw_writefn = raw_write, .writefn = sctlr_write,
5182               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5183               .resetvalue = cpu->reset_sctlr },
5184             REGINFO_SENTINEL
5185         };
5186 
5187         define_arm_cp_regs(cpu, el3_regs);
5188     }
5189     /* The behaviour of NSACR is sufficiently various that we don't
5190      * try to describe it in a single reginfo:
5191      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5192      *     reads as constant 0xc00 from NS EL1 and NS EL2
5193      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5194      *  if v7 without EL3, register doesn't exist
5195      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5196      */
5197     if (arm_feature(env, ARM_FEATURE_EL3)) {
5198         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5199             ARMCPRegInfo nsacr = {
5200                 .name = "NSACR", .type = ARM_CP_CONST,
5201                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5202                 .access = PL1_RW, .accessfn = nsacr_access,
5203                 .resetvalue = 0xc00
5204             };
5205             define_one_arm_cp_reg(cpu, &nsacr);
5206         } else {
5207             ARMCPRegInfo nsacr = {
5208                 .name = "NSACR",
5209                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5210                 .access = PL3_RW | PL1_R,
5211                 .resetvalue = 0,
5212                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5213             };
5214             define_one_arm_cp_reg(cpu, &nsacr);
5215         }
5216     } else {
5217         if (arm_feature(env, ARM_FEATURE_V8)) {
5218             ARMCPRegInfo nsacr = {
5219                 .name = "NSACR", .type = ARM_CP_CONST,
5220                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5221                 .access = PL1_R,
5222                 .resetvalue = 0xc00
5223             };
5224             define_one_arm_cp_reg(cpu, &nsacr);
5225         }
5226     }
5227 
5228     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5229         if (arm_feature(env, ARM_FEATURE_V6)) {
5230             /* PMSAv6 not implemented */
5231             assert(arm_feature(env, ARM_FEATURE_V7));
5232             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5233             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5234         } else {
5235             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5236         }
5237     } else {
5238         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5239         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5240     }
5241     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5242         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5243     }
5244     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5245         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5246     }
5247     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5248         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5249     }
5250     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5251         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5252     }
5253     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5254         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5255     }
5256     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5257         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5258     }
5259     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5260         define_arm_cp_regs(cpu, omap_cp_reginfo);
5261     }
5262     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5263         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5264     }
5265     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5266         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5267     }
5268     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5269         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5270     }
5271     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5272         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5273     }
5274     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5275      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5276      * be read-only (ie write causes UNDEF exception).
5277      */
5278     {
5279         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5280             /* Pre-v8 MIDR space.
5281              * Note that the MIDR isn't a simple constant register because
5282              * of the TI925 behaviour where writes to another register can
5283              * cause the MIDR value to change.
5284              *
5285              * Unimplemented registers in the c15 0 0 0 space default to
5286              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5287              * and friends override accordingly.
5288              */
5289             { .name = "MIDR",
5290               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5291               .access = PL1_R, .resetvalue = cpu->midr,
5292               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5293               .readfn = midr_read,
5294               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5295               .type = ARM_CP_OVERRIDE },
5296             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5297             { .name = "DUMMY",
5298               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5299               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5300             { .name = "DUMMY",
5301               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5302               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5303             { .name = "DUMMY",
5304               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5305               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5306             { .name = "DUMMY",
5307               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5308               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5309             { .name = "DUMMY",
5310               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5311               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5312             REGINFO_SENTINEL
5313         };
5314         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5315             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5316               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5317               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5318               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5319               .readfn = midr_read },
5320             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5321             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5322               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5323               .access = PL1_R, .resetvalue = cpu->midr },
5324             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5325               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5326               .access = PL1_R, .resetvalue = cpu->midr },
5327             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5328               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5329               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5330             REGINFO_SENTINEL
5331         };
5332         ARMCPRegInfo id_cp_reginfo[] = {
5333             /* These are common to v8 and pre-v8 */
5334             { .name = "CTR",
5335               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5336               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5337             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5338               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5339               .access = PL0_R, .accessfn = ctr_el0_access,
5340               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5341             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5342             { .name = "TCMTR",
5343               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5344               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5345             REGINFO_SENTINEL
5346         };
5347         /* TLBTR is specific to VMSA */
5348         ARMCPRegInfo id_tlbtr_reginfo = {
5349               .name = "TLBTR",
5350               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5351               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5352         };
5353         /* MPUIR is specific to PMSA V6+ */
5354         ARMCPRegInfo id_mpuir_reginfo = {
5355               .name = "MPUIR",
5356               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5357               .access = PL1_R, .type = ARM_CP_CONST,
5358               .resetvalue = cpu->pmsav7_dregion << 8
5359         };
5360         ARMCPRegInfo crn0_wi_reginfo = {
5361             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5362             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5363             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5364         };
5365         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5366             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5367             ARMCPRegInfo *r;
5368             /* Register the blanket "writes ignored" value first to cover the
5369              * whole space. Then update the specific ID registers to allow write
5370              * access, so that they ignore writes rather than causing them to
5371              * UNDEF.
5372              */
5373             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5374             for (r = id_pre_v8_midr_cp_reginfo;
5375                  r->type != ARM_CP_SENTINEL; r++) {
5376                 r->access = PL1_RW;
5377             }
5378             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5379                 r->access = PL1_RW;
5380             }
5381             id_mpuir_reginfo.access = PL1_RW;
5382             id_tlbtr_reginfo.access = PL1_RW;
5383         }
5384         if (arm_feature(env, ARM_FEATURE_V8)) {
5385             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5386         } else {
5387             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5388         }
5389         define_arm_cp_regs(cpu, id_cp_reginfo);
5390         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5391             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5392         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5393             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5394         }
5395     }
5396 
5397     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5398         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5399     }
5400 
5401     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5402         ARMCPRegInfo auxcr_reginfo[] = {
5403             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5404               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5405               .access = PL1_RW, .type = ARM_CP_CONST,
5406               .resetvalue = cpu->reset_auxcr },
5407             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5408               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5409               .access = PL2_RW, .type = ARM_CP_CONST,
5410               .resetvalue = 0 },
5411             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5412               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5413               .access = PL3_RW, .type = ARM_CP_CONST,
5414               .resetvalue = 0 },
5415             REGINFO_SENTINEL
5416         };
5417         define_arm_cp_regs(cpu, auxcr_reginfo);
5418     }
5419 
5420     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5421         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5422             /* 32 bit view is [31:18] 0...0 [43:32]. */
5423             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5424                 | extract64(cpu->reset_cbar, 32, 12);
5425             ARMCPRegInfo cbar_reginfo[] = {
5426                 { .name = "CBAR",
5427                   .type = ARM_CP_CONST,
5428                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5429                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5430                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5431                   .type = ARM_CP_CONST,
5432                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5433                   .access = PL1_R, .resetvalue = cbar32 },
5434                 REGINFO_SENTINEL
5435             };
5436             /* We don't implement a r/w 64 bit CBAR currently */
5437             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5438             define_arm_cp_regs(cpu, cbar_reginfo);
5439         } else {
5440             ARMCPRegInfo cbar = {
5441                 .name = "CBAR",
5442                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5443                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5444                 .fieldoffset = offsetof(CPUARMState,
5445                                         cp15.c15_config_base_address)
5446             };
5447             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5448                 cbar.access = PL1_R;
5449                 cbar.fieldoffset = 0;
5450                 cbar.type = ARM_CP_CONST;
5451             }
5452             define_one_arm_cp_reg(cpu, &cbar);
5453         }
5454     }
5455 
5456     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5457         ARMCPRegInfo vbar_cp_reginfo[] = {
5458             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5459               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5460               .access = PL1_RW, .writefn = vbar_write,
5461               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5462                                      offsetof(CPUARMState, cp15.vbar_ns) },
5463               .resetvalue = 0 },
5464             REGINFO_SENTINEL
5465         };
5466         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5467     }
5468 
5469     /* Generic registers whose values depend on the implementation */
5470     {
5471         ARMCPRegInfo sctlr = {
5472             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5473             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5474             .access = PL1_RW,
5475             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5476                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5477             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5478             .raw_writefn = raw_write,
5479         };
5480         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5481             /* Normally we would always end the TB on an SCTLR write, but Linux
5482              * arch/arm/mach-pxa/sleep.S expects two instructions following
5483              * an MMU enable to execute from cache.  Imitate this behaviour.
5484              */
5485             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5486         }
5487         define_one_arm_cp_reg(cpu, &sctlr);
5488     }
5489 
5490     if (arm_feature(env, ARM_FEATURE_SVE)) {
5491         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5492         if (arm_feature(env, ARM_FEATURE_EL2)) {
5493             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5494         } else {
5495             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5496         }
5497         if (arm_feature(env, ARM_FEATURE_EL3)) {
5498             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5499         }
5500     }
5501 }
5502 
5503 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5504 {
5505     CPUState *cs = CPU(cpu);
5506     CPUARMState *env = &cpu->env;
5507 
5508     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5509         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5510                                  aarch64_fpu_gdb_set_reg,
5511                                  34, "aarch64-fpu.xml", 0);
5512     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5513         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5514                                  51, "arm-neon.xml", 0);
5515     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5516         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5517                                  35, "arm-vfp3.xml", 0);
5518     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5519         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5520                                  19, "arm-vfp.xml", 0);
5521     }
5522     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5523                              arm_gen_dynamic_xml(cs),
5524                              "system-registers.xml", 0);
5525 }
5526 
5527 /* Sort alphabetically by type name, except for "any". */
5528 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5529 {
5530     ObjectClass *class_a = (ObjectClass *)a;
5531     ObjectClass *class_b = (ObjectClass *)b;
5532     const char *name_a, *name_b;
5533 
5534     name_a = object_class_get_name(class_a);
5535     name_b = object_class_get_name(class_b);
5536     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5537         return 1;
5538     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5539         return -1;
5540     } else {
5541         return strcmp(name_a, name_b);
5542     }
5543 }
5544 
5545 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5546 {
5547     ObjectClass *oc = data;
5548     CPUListState *s = user_data;
5549     const char *typename;
5550     char *name;
5551 
5552     typename = object_class_get_name(oc);
5553     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5554     (*s->cpu_fprintf)(s->file, "  %s\n",
5555                       name);
5556     g_free(name);
5557 }
5558 
5559 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5560 {
5561     CPUListState s = {
5562         .file = f,
5563         .cpu_fprintf = cpu_fprintf,
5564     };
5565     GSList *list;
5566 
5567     list = object_class_get_list(TYPE_ARM_CPU, false);
5568     list = g_slist_sort(list, arm_cpu_list_compare);
5569     (*cpu_fprintf)(f, "Available CPUs:\n");
5570     g_slist_foreach(list, arm_cpu_list_entry, &s);
5571     g_slist_free(list);
5572 #ifdef CONFIG_KVM
5573     /* The 'host' CPU type is dynamically registered only if KVM is
5574      * enabled, so we have to special-case it here:
5575      */
5576     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5577 #endif
5578 }
5579 
5580 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5581 {
5582     ObjectClass *oc = data;
5583     CpuDefinitionInfoList **cpu_list = user_data;
5584     CpuDefinitionInfoList *entry;
5585     CpuDefinitionInfo *info;
5586     const char *typename;
5587 
5588     typename = object_class_get_name(oc);
5589     info = g_malloc0(sizeof(*info));
5590     info->name = g_strndup(typename,
5591                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5592     info->q_typename = g_strdup(typename);
5593 
5594     entry = g_malloc0(sizeof(*entry));
5595     entry->value = info;
5596     entry->next = *cpu_list;
5597     *cpu_list = entry;
5598 }
5599 
5600 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5601 {
5602     CpuDefinitionInfoList *cpu_list = NULL;
5603     GSList *list;
5604 
5605     list = object_class_get_list(TYPE_ARM_CPU, false);
5606     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5607     g_slist_free(list);
5608 
5609     return cpu_list;
5610 }
5611 
5612 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5613                                    void *opaque, int state, int secstate,
5614                                    int crm, int opc1, int opc2,
5615                                    const char *name)
5616 {
5617     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5618      * add a single reginfo struct to the hash table.
5619      */
5620     uint32_t *key = g_new(uint32_t, 1);
5621     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5622     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5623     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5624 
5625     r2->name = g_strdup(name);
5626     /* Reset the secure state to the specific incoming state.  This is
5627      * necessary as the register may have been defined with both states.
5628      */
5629     r2->secure = secstate;
5630 
5631     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5632         /* Register is banked (using both entries in array).
5633          * Overwriting fieldoffset as the array is only used to define
5634          * banked registers but later only fieldoffset is used.
5635          */
5636         r2->fieldoffset = r->bank_fieldoffsets[ns];
5637     }
5638 
5639     if (state == ARM_CP_STATE_AA32) {
5640         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5641             /* If the register is banked then we don't need to migrate or
5642              * reset the 32-bit instance in certain cases:
5643              *
5644              * 1) If the register has both 32-bit and 64-bit instances then we
5645              *    can count on the 64-bit instance taking care of the
5646              *    non-secure bank.
5647              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5648              *    taking care of the secure bank.  This requires that separate
5649              *    32 and 64-bit definitions are provided.
5650              */
5651             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5652                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5653                 r2->type |= ARM_CP_ALIAS;
5654             }
5655         } else if ((secstate != r->secure) && !ns) {
5656             /* The register is not banked so we only want to allow migration of
5657              * the non-secure instance.
5658              */
5659             r2->type |= ARM_CP_ALIAS;
5660         }
5661 
5662         if (r->state == ARM_CP_STATE_BOTH) {
5663             /* We assume it is a cp15 register if the .cp field is left unset.
5664              */
5665             if (r2->cp == 0) {
5666                 r2->cp = 15;
5667             }
5668 
5669 #ifdef HOST_WORDS_BIGENDIAN
5670             if (r2->fieldoffset) {
5671                 r2->fieldoffset += sizeof(uint32_t);
5672             }
5673 #endif
5674         }
5675     }
5676     if (state == ARM_CP_STATE_AA64) {
5677         /* To allow abbreviation of ARMCPRegInfo
5678          * definitions, we treat cp == 0 as equivalent to
5679          * the value for "standard guest-visible sysreg".
5680          * STATE_BOTH definitions are also always "standard
5681          * sysreg" in their AArch64 view (the .cp value may
5682          * be non-zero for the benefit of the AArch32 view).
5683          */
5684         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5685             r2->cp = CP_REG_ARM64_SYSREG_CP;
5686         }
5687         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5688                                   r2->opc0, opc1, opc2);
5689     } else {
5690         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5691     }
5692     if (opaque) {
5693         r2->opaque = opaque;
5694     }
5695     /* reginfo passed to helpers is correct for the actual access,
5696      * and is never ARM_CP_STATE_BOTH:
5697      */
5698     r2->state = state;
5699     /* Make sure reginfo passed to helpers for wildcarded regs
5700      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5701      */
5702     r2->crm = crm;
5703     r2->opc1 = opc1;
5704     r2->opc2 = opc2;
5705     /* By convention, for wildcarded registers only the first
5706      * entry is used for migration; the others are marked as
5707      * ALIAS so we don't try to transfer the register
5708      * multiple times. Special registers (ie NOP/WFI) are
5709      * never migratable and not even raw-accessible.
5710      */
5711     if ((r->type & ARM_CP_SPECIAL)) {
5712         r2->type |= ARM_CP_NO_RAW;
5713     }
5714     if (((r->crm == CP_ANY) && crm != 0) ||
5715         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5716         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5717         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5718     }
5719 
5720     /* Check that raw accesses are either forbidden or handled. Note that
5721      * we can't assert this earlier because the setup of fieldoffset for
5722      * banked registers has to be done first.
5723      */
5724     if (!(r2->type & ARM_CP_NO_RAW)) {
5725         assert(!raw_accessors_invalid(r2));
5726     }
5727 
5728     /* Overriding of an existing definition must be explicitly
5729      * requested.
5730      */
5731     if (!(r->type & ARM_CP_OVERRIDE)) {
5732         ARMCPRegInfo *oldreg;
5733         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5734         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5735             fprintf(stderr, "Register redefined: cp=%d %d bit "
5736                     "crn=%d crm=%d opc1=%d opc2=%d, "
5737                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5738                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5739                     oldreg->name, r2->name);
5740             g_assert_not_reached();
5741         }
5742     }
5743     g_hash_table_insert(cpu->cp_regs, key, r2);
5744 }
5745 
5746 
5747 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5748                                        const ARMCPRegInfo *r, void *opaque)
5749 {
5750     /* Define implementations of coprocessor registers.
5751      * We store these in a hashtable because typically
5752      * there are less than 150 registers in a space which
5753      * is 16*16*16*8*8 = 262144 in size.
5754      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5755      * If a register is defined twice then the second definition is
5756      * used, so this can be used to define some generic registers and
5757      * then override them with implementation specific variations.
5758      * At least one of the original and the second definition should
5759      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5760      * against accidental use.
5761      *
5762      * The state field defines whether the register is to be
5763      * visible in the AArch32 or AArch64 execution state. If the
5764      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5765      * reginfo structure for the AArch32 view, which sees the lower
5766      * 32 bits of the 64 bit register.
5767      *
5768      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5769      * be wildcarded. AArch64 registers are always considered to be 64
5770      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5771      * the register, if any.
5772      */
5773     int crm, opc1, opc2, state;
5774     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5775     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5776     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5777     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5778     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5779     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5780     /* 64 bit registers have only CRm and Opc1 fields */
5781     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5782     /* op0 only exists in the AArch64 encodings */
5783     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5784     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5785     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5786     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5787      * encodes a minimum access level for the register. We roll this
5788      * runtime check into our general permission check code, so check
5789      * here that the reginfo's specified permissions are strict enough
5790      * to encompass the generic architectural permission check.
5791      */
5792     if (r->state != ARM_CP_STATE_AA32) {
5793         int mask = 0;
5794         switch (r->opc1) {
5795         case 0: case 1: case 2:
5796             /* min_EL EL1 */
5797             mask = PL1_RW;
5798             break;
5799         case 3:
5800             /* min_EL EL0 */
5801             mask = PL0_RW;
5802             break;
5803         case 4:
5804             /* min_EL EL2 */
5805             mask = PL2_RW;
5806             break;
5807         case 5:
5808             /* unallocated encoding, so not possible */
5809             assert(false);
5810             break;
5811         case 6:
5812             /* min_EL EL3 */
5813             mask = PL3_RW;
5814             break;
5815         case 7:
5816             /* min_EL EL1, secure mode only (we don't check the latter) */
5817             mask = PL1_RW;
5818             break;
5819         default:
5820             /* broken reginfo with out-of-range opc1 */
5821             assert(false);
5822             break;
5823         }
5824         /* assert our permissions are not too lax (stricter is fine) */
5825         assert((r->access & ~mask) == 0);
5826     }
5827 
5828     /* Check that the register definition has enough info to handle
5829      * reads and writes if they are permitted.
5830      */
5831     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5832         if (r->access & PL3_R) {
5833             assert((r->fieldoffset ||
5834                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5835                    r->readfn);
5836         }
5837         if (r->access & PL3_W) {
5838             assert((r->fieldoffset ||
5839                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5840                    r->writefn);
5841         }
5842     }
5843     /* Bad type field probably means missing sentinel at end of reg list */
5844     assert(cptype_valid(r->type));
5845     for (crm = crmmin; crm <= crmmax; crm++) {
5846         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5847             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5848                 for (state = ARM_CP_STATE_AA32;
5849                      state <= ARM_CP_STATE_AA64; state++) {
5850                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5851                         continue;
5852                     }
5853                     if (state == ARM_CP_STATE_AA32) {
5854                         /* Under AArch32 CP registers can be common
5855                          * (same for secure and non-secure world) or banked.
5856                          */
5857                         char *name;
5858 
5859                         switch (r->secure) {
5860                         case ARM_CP_SECSTATE_S:
5861                         case ARM_CP_SECSTATE_NS:
5862                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5863                                                    r->secure, crm, opc1, opc2,
5864                                                    r->name);
5865                             break;
5866                         default:
5867                             name = g_strdup_printf("%s_S", r->name);
5868                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5869                                                    ARM_CP_SECSTATE_S,
5870                                                    crm, opc1, opc2, name);
5871                             g_free(name);
5872                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5873                                                    ARM_CP_SECSTATE_NS,
5874                                                    crm, opc1, opc2, r->name);
5875                             break;
5876                         }
5877                     } else {
5878                         /* AArch64 registers get mapped to non-secure instance
5879                          * of AArch32 */
5880                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5881                                                ARM_CP_SECSTATE_NS,
5882                                                crm, opc1, opc2, r->name);
5883                     }
5884                 }
5885             }
5886         }
5887     }
5888 }
5889 
5890 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5891                                     const ARMCPRegInfo *regs, void *opaque)
5892 {
5893     /* Define a whole list of registers */
5894     const ARMCPRegInfo *r;
5895     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5896         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5897     }
5898 }
5899 
5900 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5901 {
5902     return g_hash_table_lookup(cpregs, &encoded_cp);
5903 }
5904 
5905 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5906                          uint64_t value)
5907 {
5908     /* Helper coprocessor write function for write-ignore registers */
5909 }
5910 
5911 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5912 {
5913     /* Helper coprocessor write function for read-as-zero registers */
5914     return 0;
5915 }
5916 
5917 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5918 {
5919     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5920 }
5921 
5922 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5923 {
5924     /* Return true if it is not valid for us to switch to
5925      * this CPU mode (ie all the UNPREDICTABLE cases in
5926      * the ARM ARM CPSRWriteByInstr pseudocode).
5927      */
5928 
5929     /* Changes to or from Hyp via MSR and CPS are illegal. */
5930     if (write_type == CPSRWriteByInstr &&
5931         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5932          mode == ARM_CPU_MODE_HYP)) {
5933         return 1;
5934     }
5935 
5936     switch (mode) {
5937     case ARM_CPU_MODE_USR:
5938         return 0;
5939     case ARM_CPU_MODE_SYS:
5940     case ARM_CPU_MODE_SVC:
5941     case ARM_CPU_MODE_ABT:
5942     case ARM_CPU_MODE_UND:
5943     case ARM_CPU_MODE_IRQ:
5944     case ARM_CPU_MODE_FIQ:
5945         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5946          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5947          */
5948         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5949          * and CPS are treated as illegal mode changes.
5950          */
5951         if (write_type == CPSRWriteByInstr &&
5952             (env->cp15.hcr_el2 & HCR_TGE) &&
5953             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5954             !arm_is_secure_below_el3(env)) {
5955             return 1;
5956         }
5957         return 0;
5958     case ARM_CPU_MODE_HYP:
5959         return !arm_feature(env, ARM_FEATURE_EL2)
5960             || arm_current_el(env) < 2 || arm_is_secure(env);
5961     case ARM_CPU_MODE_MON:
5962         return arm_current_el(env) < 3;
5963     default:
5964         return 1;
5965     }
5966 }
5967 
5968 uint32_t cpsr_read(CPUARMState *env)
5969 {
5970     int ZF;
5971     ZF = (env->ZF == 0);
5972     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5973         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5974         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5975         | ((env->condexec_bits & 0xfc) << 8)
5976         | (env->GE << 16) | (env->daif & CPSR_AIF);
5977 }
5978 
5979 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5980                 CPSRWriteType write_type)
5981 {
5982     uint32_t changed_daif;
5983 
5984     if (mask & CPSR_NZCV) {
5985         env->ZF = (~val) & CPSR_Z;
5986         env->NF = val;
5987         env->CF = (val >> 29) & 1;
5988         env->VF = (val << 3) & 0x80000000;
5989     }
5990     if (mask & CPSR_Q)
5991         env->QF = ((val & CPSR_Q) != 0);
5992     if (mask & CPSR_T)
5993         env->thumb = ((val & CPSR_T) != 0);
5994     if (mask & CPSR_IT_0_1) {
5995         env->condexec_bits &= ~3;
5996         env->condexec_bits |= (val >> 25) & 3;
5997     }
5998     if (mask & CPSR_IT_2_7) {
5999         env->condexec_bits &= 3;
6000         env->condexec_bits |= (val >> 8) & 0xfc;
6001     }
6002     if (mask & CPSR_GE) {
6003         env->GE = (val >> 16) & 0xf;
6004     }
6005 
6006     /* In a V7 implementation that includes the security extensions but does
6007      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6008      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6009      * bits respectively.
6010      *
6011      * In a V8 implementation, it is permitted for privileged software to
6012      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6013      */
6014     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6015         arm_feature(env, ARM_FEATURE_EL3) &&
6016         !arm_feature(env, ARM_FEATURE_EL2) &&
6017         !arm_is_secure(env)) {
6018 
6019         changed_daif = (env->daif ^ val) & mask;
6020 
6021         if (changed_daif & CPSR_A) {
6022             /* Check to see if we are allowed to change the masking of async
6023              * abort exceptions from a non-secure state.
6024              */
6025             if (!(env->cp15.scr_el3 & SCR_AW)) {
6026                 qemu_log_mask(LOG_GUEST_ERROR,
6027                               "Ignoring attempt to switch CPSR_A flag from "
6028                               "non-secure world with SCR.AW bit clear\n");
6029                 mask &= ~CPSR_A;
6030             }
6031         }
6032 
6033         if (changed_daif & CPSR_F) {
6034             /* Check to see if we are allowed to change the masking of FIQ
6035              * exceptions from a non-secure state.
6036              */
6037             if (!(env->cp15.scr_el3 & SCR_FW)) {
6038                 qemu_log_mask(LOG_GUEST_ERROR,
6039                               "Ignoring attempt to switch CPSR_F flag from "
6040                               "non-secure world with SCR.FW bit clear\n");
6041                 mask &= ~CPSR_F;
6042             }
6043 
6044             /* Check whether non-maskable FIQ (NMFI) support is enabled.
6045              * If this bit is set software is not allowed to mask
6046              * FIQs, but is allowed to set CPSR_F to 0.
6047              */
6048             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6049                 (val & CPSR_F)) {
6050                 qemu_log_mask(LOG_GUEST_ERROR,
6051                               "Ignoring attempt to enable CPSR_F flag "
6052                               "(non-maskable FIQ [NMFI] support enabled)\n");
6053                 mask &= ~CPSR_F;
6054             }
6055         }
6056     }
6057 
6058     env->daif &= ~(CPSR_AIF & mask);
6059     env->daif |= val & CPSR_AIF & mask;
6060 
6061     if (write_type != CPSRWriteRaw &&
6062         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6063         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6064             /* Note that we can only get here in USR mode if this is a
6065              * gdb stub write; for this case we follow the architectural
6066              * behaviour for guest writes in USR mode of ignoring an attempt
6067              * to switch mode. (Those are caught by translate.c for writes
6068              * triggered by guest instructions.)
6069              */
6070             mask &= ~CPSR_M;
6071         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6072             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6073              * v7, and has defined behaviour in v8:
6074              *  + leave CPSR.M untouched
6075              *  + allow changes to the other CPSR fields
6076              *  + set PSTATE.IL
6077              * For user changes via the GDB stub, we don't set PSTATE.IL,
6078              * as this would be unnecessarily harsh for a user error.
6079              */
6080             mask &= ~CPSR_M;
6081             if (write_type != CPSRWriteByGDBStub &&
6082                 arm_feature(env, ARM_FEATURE_V8)) {
6083                 mask |= CPSR_IL;
6084                 val |= CPSR_IL;
6085             }
6086         } else {
6087             switch_mode(env, val & CPSR_M);
6088         }
6089     }
6090     mask &= ~CACHED_CPSR_BITS;
6091     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6092 }
6093 
6094 /* Sign/zero extend */
6095 uint32_t HELPER(sxtb16)(uint32_t x)
6096 {
6097     uint32_t res;
6098     res = (uint16_t)(int8_t)x;
6099     res |= (uint32_t)(int8_t)(x >> 16) << 16;
6100     return res;
6101 }
6102 
6103 uint32_t HELPER(uxtb16)(uint32_t x)
6104 {
6105     uint32_t res;
6106     res = (uint16_t)(uint8_t)x;
6107     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6108     return res;
6109 }
6110 
6111 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6112 {
6113     if (den == 0)
6114       return 0;
6115     if (num == INT_MIN && den == -1)
6116       return INT_MIN;
6117     return num / den;
6118 }
6119 
6120 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6121 {
6122     if (den == 0)
6123       return 0;
6124     return num / den;
6125 }
6126 
6127 uint32_t HELPER(rbit)(uint32_t x)
6128 {
6129     return revbit32(x);
6130 }
6131 
6132 #if defined(CONFIG_USER_ONLY)
6133 
6134 /* These should probably raise undefined insn exceptions.  */
6135 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6136 {
6137     ARMCPU *cpu = arm_env_get_cpu(env);
6138 
6139     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6140 }
6141 
6142 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6143 {
6144     ARMCPU *cpu = arm_env_get_cpu(env);
6145 
6146     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6147     return 0;
6148 }
6149 
6150 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6151 {
6152     /* translate.c should never generate calls here in user-only mode */
6153     g_assert_not_reached();
6154 }
6155 
6156 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6157 {
6158     /* translate.c should never generate calls here in user-only mode */
6159     g_assert_not_reached();
6160 }
6161 
6162 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6163 {
6164     /* The TT instructions can be used by unprivileged code, but in
6165      * user-only emulation we don't have the MPU.
6166      * Luckily since we know we are NonSecure unprivileged (and that in
6167      * turn means that the A flag wasn't specified), all the bits in the
6168      * register must be zero:
6169      *  IREGION: 0 because IRVALID is 0
6170      *  IRVALID: 0 because NS
6171      *  S: 0 because NS
6172      *  NSRW: 0 because NS
6173      *  NSR: 0 because NS
6174      *  RW: 0 because unpriv and A flag not set
6175      *  R: 0 because unpriv and A flag not set
6176      *  SRVALID: 0 because NS
6177      *  MRVALID: 0 because unpriv and A flag not set
6178      *  SREGION: 0 becaus SRVALID is 0
6179      *  MREGION: 0 because MRVALID is 0
6180      */
6181     return 0;
6182 }
6183 
6184 void switch_mode(CPUARMState *env, int mode)
6185 {
6186     ARMCPU *cpu = arm_env_get_cpu(env);
6187 
6188     if (mode != ARM_CPU_MODE_USR) {
6189         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6190     }
6191 }
6192 
6193 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6194                                  uint32_t cur_el, bool secure)
6195 {
6196     return 1;
6197 }
6198 
6199 void aarch64_sync_64_to_32(CPUARMState *env)
6200 {
6201     g_assert_not_reached();
6202 }
6203 
6204 #else
6205 
6206 void switch_mode(CPUARMState *env, int mode)
6207 {
6208     int old_mode;
6209     int i;
6210 
6211     old_mode = env->uncached_cpsr & CPSR_M;
6212     if (mode == old_mode)
6213         return;
6214 
6215     if (old_mode == ARM_CPU_MODE_FIQ) {
6216         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6217         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6218     } else if (mode == ARM_CPU_MODE_FIQ) {
6219         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6220         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6221     }
6222 
6223     i = bank_number(old_mode);
6224     env->banked_r13[i] = env->regs[13];
6225     env->banked_r14[i] = env->regs[14];
6226     env->banked_spsr[i] = env->spsr;
6227 
6228     i = bank_number(mode);
6229     env->regs[13] = env->banked_r13[i];
6230     env->regs[14] = env->banked_r14[i];
6231     env->spsr = env->banked_spsr[i];
6232 }
6233 
6234 /* Physical Interrupt Target EL Lookup Table
6235  *
6236  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6237  *
6238  * The below multi-dimensional table is used for looking up the target
6239  * exception level given numerous condition criteria.  Specifically, the
6240  * target EL is based on SCR and HCR routing controls as well as the
6241  * currently executing EL and secure state.
6242  *
6243  *    Dimensions:
6244  *    target_el_table[2][2][2][2][2][4]
6245  *                    |  |  |  |  |  +--- Current EL
6246  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6247  *                    |  |  |  +--------- HCR mask override
6248  *                    |  |  +------------ SCR exec state control
6249  *                    |  +--------------- SCR mask override
6250  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6251  *
6252  *    The table values are as such:
6253  *    0-3 = EL0-EL3
6254  *     -1 = Cannot occur
6255  *
6256  * The ARM ARM target EL table includes entries indicating that an "exception
6257  * is not taken".  The two cases where this is applicable are:
6258  *    1) An exception is taken from EL3 but the SCR does not have the exception
6259  *    routed to EL3.
6260  *    2) An exception is taken from EL2 but the HCR does not have the exception
6261  *    routed to EL2.
6262  * In these two cases, the below table contain a target of EL1.  This value is
6263  * returned as it is expected that the consumer of the table data will check
6264  * for "target EL >= current EL" to ensure the exception is not taken.
6265  *
6266  *            SCR     HCR
6267  *         64  EA     AMO                 From
6268  *        BIT IRQ     IMO      Non-secure         Secure
6269  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6270  */
6271 static const int8_t target_el_table[2][2][2][2][2][4] = {
6272     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6273        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6274       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6275        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6276      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6277        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6278       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6279        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6280     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6281        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6282       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6283        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6284      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6285        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6286       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6287        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6288 };
6289 
6290 /*
6291  * Determine the target EL for physical exceptions
6292  */
6293 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6294                                  uint32_t cur_el, bool secure)
6295 {
6296     CPUARMState *env = cs->env_ptr;
6297     int rw;
6298     int scr;
6299     int hcr;
6300     int target_el;
6301     /* Is the highest EL AArch64? */
6302     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6303 
6304     if (arm_feature(env, ARM_FEATURE_EL3)) {
6305         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6306     } else {
6307         /* Either EL2 is the highest EL (and so the EL2 register width
6308          * is given by is64); or there is no EL2 or EL3, in which case
6309          * the value of 'rw' does not affect the table lookup anyway.
6310          */
6311         rw = is64;
6312     }
6313 
6314     switch (excp_idx) {
6315     case EXCP_IRQ:
6316         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6317         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6318         break;
6319     case EXCP_FIQ:
6320         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6321         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6322         break;
6323     default:
6324         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6325         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6326         break;
6327     };
6328 
6329     /* If HCR.TGE is set then HCR is treated as being 1 */
6330     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6331 
6332     /* Perform a table-lookup for the target EL given the current state */
6333     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6334 
6335     assert(target_el > 0);
6336 
6337     return target_el;
6338 }
6339 
6340 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6341                             ARMMMUIdx mmu_idx, bool ignfault)
6342 {
6343     CPUState *cs = CPU(cpu);
6344     CPUARMState *env = &cpu->env;
6345     MemTxAttrs attrs = {};
6346     MemTxResult txres;
6347     target_ulong page_size;
6348     hwaddr physaddr;
6349     int prot;
6350     ARMMMUFaultInfo fi;
6351     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6352     int exc;
6353     bool exc_secure;
6354 
6355     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6356                       &attrs, &prot, &page_size, &fi, NULL)) {
6357         /* MPU/SAU lookup failed */
6358         if (fi.type == ARMFault_QEMU_SFault) {
6359             qemu_log_mask(CPU_LOG_INT,
6360                           "...SecureFault with SFSR.AUVIOL during stacking\n");
6361             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6362             env->v7m.sfar = addr;
6363             exc = ARMV7M_EXCP_SECURE;
6364             exc_secure = false;
6365         } else {
6366             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6367             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6368             exc = ARMV7M_EXCP_MEM;
6369             exc_secure = secure;
6370         }
6371         goto pend_fault;
6372     }
6373     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6374                          attrs, &txres);
6375     if (txres != MEMTX_OK) {
6376         /* BusFault trying to write the data */
6377         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6378         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6379         exc = ARMV7M_EXCP_BUS;
6380         exc_secure = false;
6381         goto pend_fault;
6382     }
6383     return true;
6384 
6385 pend_fault:
6386     /* By pending the exception at this point we are making
6387      * the IMPDEF choice "overridden exceptions pended" (see the
6388      * MergeExcInfo() pseudocode). The other choice would be to not
6389      * pend them now and then make a choice about which to throw away
6390      * later if we have two derived exceptions.
6391      * The only case when we must not pend the exception but instead
6392      * throw it away is if we are doing the push of the callee registers
6393      * and we've already generated a derived exception. Even in this
6394      * case we will still update the fault status registers.
6395      */
6396     if (!ignfault) {
6397         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6398     }
6399     return false;
6400 }
6401 
6402 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6403                            ARMMMUIdx mmu_idx)
6404 {
6405     CPUState *cs = CPU(cpu);
6406     CPUARMState *env = &cpu->env;
6407     MemTxAttrs attrs = {};
6408     MemTxResult txres;
6409     target_ulong page_size;
6410     hwaddr physaddr;
6411     int prot;
6412     ARMMMUFaultInfo fi;
6413     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6414     int exc;
6415     bool exc_secure;
6416     uint32_t value;
6417 
6418     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6419                       &attrs, &prot, &page_size, &fi, NULL)) {
6420         /* MPU/SAU lookup failed */
6421         if (fi.type == ARMFault_QEMU_SFault) {
6422             qemu_log_mask(CPU_LOG_INT,
6423                           "...SecureFault with SFSR.AUVIOL during unstack\n");
6424             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6425             env->v7m.sfar = addr;
6426             exc = ARMV7M_EXCP_SECURE;
6427             exc_secure = false;
6428         } else {
6429             qemu_log_mask(CPU_LOG_INT,
6430                           "...MemManageFault with CFSR.MUNSTKERR\n");
6431             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6432             exc = ARMV7M_EXCP_MEM;
6433             exc_secure = secure;
6434         }
6435         goto pend_fault;
6436     }
6437 
6438     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6439                               attrs, &txres);
6440     if (txres != MEMTX_OK) {
6441         /* BusFault trying to read the data */
6442         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6443         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6444         exc = ARMV7M_EXCP_BUS;
6445         exc_secure = false;
6446         goto pend_fault;
6447     }
6448 
6449     *dest = value;
6450     return true;
6451 
6452 pend_fault:
6453     /* By pending the exception at this point we are making
6454      * the IMPDEF choice "overridden exceptions pended" (see the
6455      * MergeExcInfo() pseudocode). The other choice would be to not
6456      * pend them now and then make a choice about which to throw away
6457      * later if we have two derived exceptions.
6458      */
6459     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6460     return false;
6461 }
6462 
6463 /* Return true if we're using the process stack pointer (not the MSP) */
6464 static bool v7m_using_psp(CPUARMState *env)
6465 {
6466     /* Handler mode always uses the main stack; for thread mode
6467      * the CONTROL.SPSEL bit determines the answer.
6468      * Note that in v7M it is not possible to be in Handler mode with
6469      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6470      */
6471     return !arm_v7m_is_handler_mode(env) &&
6472         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6473 }
6474 
6475 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6476  * This may change the current stack pointer between Main and Process
6477  * stack pointers if it is done for the CONTROL register for the current
6478  * security state.
6479  */
6480 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6481                                                  bool new_spsel,
6482                                                  bool secstate)
6483 {
6484     bool old_is_psp = v7m_using_psp(env);
6485 
6486     env->v7m.control[secstate] =
6487         deposit32(env->v7m.control[secstate],
6488                   R_V7M_CONTROL_SPSEL_SHIFT,
6489                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6490 
6491     if (secstate == env->v7m.secure) {
6492         bool new_is_psp = v7m_using_psp(env);
6493         uint32_t tmp;
6494 
6495         if (old_is_psp != new_is_psp) {
6496             tmp = env->v7m.other_sp;
6497             env->v7m.other_sp = env->regs[13];
6498             env->regs[13] = tmp;
6499         }
6500     }
6501 }
6502 
6503 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6504  * stack pointer between Main and Process stack pointers.
6505  */
6506 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6507 {
6508     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6509 }
6510 
6511 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6512 {
6513     /* Write a new value to v7m.exception, thus transitioning into or out
6514      * of Handler mode; this may result in a change of active stack pointer.
6515      */
6516     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6517     uint32_t tmp;
6518 
6519     env->v7m.exception = new_exc;
6520 
6521     new_is_psp = v7m_using_psp(env);
6522 
6523     if (old_is_psp != new_is_psp) {
6524         tmp = env->v7m.other_sp;
6525         env->v7m.other_sp = env->regs[13];
6526         env->regs[13] = tmp;
6527     }
6528 }
6529 
6530 /* Switch M profile security state between NS and S */
6531 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6532 {
6533     uint32_t new_ss_msp, new_ss_psp;
6534 
6535     if (env->v7m.secure == new_secstate) {
6536         return;
6537     }
6538 
6539     /* All the banked state is accessed by looking at env->v7m.secure
6540      * except for the stack pointer; rearrange the SP appropriately.
6541      */
6542     new_ss_msp = env->v7m.other_ss_msp;
6543     new_ss_psp = env->v7m.other_ss_psp;
6544 
6545     if (v7m_using_psp(env)) {
6546         env->v7m.other_ss_psp = env->regs[13];
6547         env->v7m.other_ss_msp = env->v7m.other_sp;
6548     } else {
6549         env->v7m.other_ss_msp = env->regs[13];
6550         env->v7m.other_ss_psp = env->v7m.other_sp;
6551     }
6552 
6553     env->v7m.secure = new_secstate;
6554 
6555     if (v7m_using_psp(env)) {
6556         env->regs[13] = new_ss_psp;
6557         env->v7m.other_sp = new_ss_msp;
6558     } else {
6559         env->regs[13] = new_ss_msp;
6560         env->v7m.other_sp = new_ss_psp;
6561     }
6562 }
6563 
6564 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6565 {
6566     /* Handle v7M BXNS:
6567      *  - if the return value is a magic value, do exception return (like BX)
6568      *  - otherwise bit 0 of the return value is the target security state
6569      */
6570     uint32_t min_magic;
6571 
6572     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6573         /* Covers FNC_RETURN and EXC_RETURN magic */
6574         min_magic = FNC_RETURN_MIN_MAGIC;
6575     } else {
6576         /* EXC_RETURN magic only */
6577         min_magic = EXC_RETURN_MIN_MAGIC;
6578     }
6579 
6580     if (dest >= min_magic) {
6581         /* This is an exception return magic value; put it where
6582          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6583          * Note that if we ever add gen_ss_advance() singlestep support to
6584          * M profile this should count as an "instruction execution complete"
6585          * event (compare gen_bx_excret_final_code()).
6586          */
6587         env->regs[15] = dest & ~1;
6588         env->thumb = dest & 1;
6589         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6590         /* notreached */
6591     }
6592 
6593     /* translate.c should have made BXNS UNDEF unless we're secure */
6594     assert(env->v7m.secure);
6595 
6596     switch_v7m_security_state(env, dest & 1);
6597     env->thumb = 1;
6598     env->regs[15] = dest & ~1;
6599 }
6600 
6601 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6602 {
6603     /* Handle v7M BLXNS:
6604      *  - bit 0 of the destination address is the target security state
6605      */
6606 
6607     /* At this point regs[15] is the address just after the BLXNS */
6608     uint32_t nextinst = env->regs[15] | 1;
6609     uint32_t sp = env->regs[13] - 8;
6610     uint32_t saved_psr;
6611 
6612     /* translate.c will have made BLXNS UNDEF unless we're secure */
6613     assert(env->v7m.secure);
6614 
6615     if (dest & 1) {
6616         /* target is Secure, so this is just a normal BLX,
6617          * except that the low bit doesn't indicate Thumb/not.
6618          */
6619         env->regs[14] = nextinst;
6620         env->thumb = 1;
6621         env->regs[15] = dest & ~1;
6622         return;
6623     }
6624 
6625     /* Target is non-secure: first push a stack frame */
6626     if (!QEMU_IS_ALIGNED(sp, 8)) {
6627         qemu_log_mask(LOG_GUEST_ERROR,
6628                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6629     }
6630 
6631     saved_psr = env->v7m.exception;
6632     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6633         saved_psr |= XPSR_SFPA;
6634     }
6635 
6636     /* Note that these stores can throw exceptions on MPU faults */
6637     cpu_stl_data(env, sp, nextinst);
6638     cpu_stl_data(env, sp + 4, saved_psr);
6639 
6640     env->regs[13] = sp;
6641     env->regs[14] = 0xfeffffff;
6642     if (arm_v7m_is_handler_mode(env)) {
6643         /* Write a dummy value to IPSR, to avoid leaking the current secure
6644          * exception number to non-secure code. This is guaranteed not
6645          * to cause write_v7m_exception() to actually change stacks.
6646          */
6647         write_v7m_exception(env, 1);
6648     }
6649     switch_v7m_security_state(env, 0);
6650     env->thumb = 1;
6651     env->regs[15] = dest;
6652 }
6653 
6654 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6655                                 bool spsel)
6656 {
6657     /* Return a pointer to the location where we currently store the
6658      * stack pointer for the requested security state and thread mode.
6659      * This pointer will become invalid if the CPU state is updated
6660      * such that the stack pointers are switched around (eg changing
6661      * the SPSEL control bit).
6662      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6663      * Unlike that pseudocode, we require the caller to pass us in the
6664      * SPSEL control bit value; this is because we also use this
6665      * function in handling of pushing of the callee-saves registers
6666      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6667      * and in the tailchain codepath the SPSEL bit comes from the exception
6668      * return magic LR value from the previous exception. The pseudocode
6669      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6670      * to make this utility function generic enough to do the job.
6671      */
6672     bool want_psp = threadmode && spsel;
6673 
6674     if (secure == env->v7m.secure) {
6675         if (want_psp == v7m_using_psp(env)) {
6676             return &env->regs[13];
6677         } else {
6678             return &env->v7m.other_sp;
6679         }
6680     } else {
6681         if (want_psp) {
6682             return &env->v7m.other_ss_psp;
6683         } else {
6684             return &env->v7m.other_ss_msp;
6685         }
6686     }
6687 }
6688 
6689 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6690                                 uint32_t *pvec)
6691 {
6692     CPUState *cs = CPU(cpu);
6693     CPUARMState *env = &cpu->env;
6694     MemTxResult result;
6695     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6696     uint32_t vector_entry;
6697     MemTxAttrs attrs = {};
6698     ARMMMUIdx mmu_idx;
6699     bool exc_secure;
6700 
6701     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6702 
6703     /* We don't do a get_phys_addr() here because the rules for vector
6704      * loads are special: they always use the default memory map, and
6705      * the default memory map permits reads from all addresses.
6706      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6707      * that we want this special case which would always say "yes",
6708      * we just do the SAU lookup here followed by a direct physical load.
6709      */
6710     attrs.secure = targets_secure;
6711     attrs.user = false;
6712 
6713     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6714         V8M_SAttributes sattrs = {};
6715 
6716         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6717         if (sattrs.ns) {
6718             attrs.secure = false;
6719         } else if (!targets_secure) {
6720             /* NS access to S memory */
6721             goto load_fail;
6722         }
6723     }
6724 
6725     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6726                                      attrs, &result);
6727     if (result != MEMTX_OK) {
6728         goto load_fail;
6729     }
6730     *pvec = vector_entry;
6731     return true;
6732 
6733 load_fail:
6734     /* All vector table fetch fails are reported as HardFault, with
6735      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6736      * technically the underlying exception is a MemManage or BusFault
6737      * that is escalated to HardFault.) This is a terminal exception,
6738      * so we will either take the HardFault immediately or else enter
6739      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6740      */
6741     exc_secure = targets_secure ||
6742         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6743     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6744     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6745     return false;
6746 }
6747 
6748 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6749                                   bool ignore_faults)
6750 {
6751     /* For v8M, push the callee-saves register part of the stack frame.
6752      * Compare the v8M pseudocode PushCalleeStack().
6753      * In the tailchaining case this may not be the current stack.
6754      */
6755     CPUARMState *env = &cpu->env;
6756     uint32_t *frame_sp_p;
6757     uint32_t frameptr;
6758     ARMMMUIdx mmu_idx;
6759     bool stacked_ok;
6760 
6761     if (dotailchain) {
6762         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6763         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6764             !mode;
6765 
6766         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6767         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6768                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6769     } else {
6770         mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6771         frame_sp_p = &env->regs[13];
6772     }
6773 
6774     frameptr = *frame_sp_p - 0x28;
6775 
6776     /* Write as much of the stack frame as we can. A write failure may
6777      * cause us to pend a derived exception.
6778      */
6779     stacked_ok =
6780         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6781         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6782                         ignore_faults) &&
6783         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6784                         ignore_faults) &&
6785         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6786                         ignore_faults) &&
6787         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6788                         ignore_faults) &&
6789         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6790                         ignore_faults) &&
6791         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6792                         ignore_faults) &&
6793         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6794                         ignore_faults) &&
6795         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6796                         ignore_faults);
6797 
6798     /* Update SP regardless of whether any of the stack accesses failed.
6799      * When we implement v8M stack limit checking then this attempt to
6800      * update SP might also fail and result in a derived exception.
6801      */
6802     *frame_sp_p = frameptr;
6803 
6804     return !stacked_ok;
6805 }
6806 
6807 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6808                                 bool ignore_stackfaults)
6809 {
6810     /* Do the "take the exception" parts of exception entry,
6811      * but not the pushing of state to the stack. This is
6812      * similar to the pseudocode ExceptionTaken() function.
6813      */
6814     CPUARMState *env = &cpu->env;
6815     uint32_t addr;
6816     bool targets_secure;
6817     int exc;
6818     bool push_failed = false;
6819 
6820     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6821 
6822     if (arm_feature(env, ARM_FEATURE_V8)) {
6823         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6824             (lr & R_V7M_EXCRET_S_MASK)) {
6825             /* The background code (the owner of the registers in the
6826              * exception frame) is Secure. This means it may either already
6827              * have or now needs to push callee-saves registers.
6828              */
6829             if (targets_secure) {
6830                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6831                     /* We took an exception from Secure to NonSecure
6832                      * (which means the callee-saved registers got stacked)
6833                      * and are now tailchaining to a Secure exception.
6834                      * Clear DCRS so eventual return from this Secure
6835                      * exception unstacks the callee-saved registers.
6836                      */
6837                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6838                 }
6839             } else {
6840                 /* We're going to a non-secure exception; push the
6841                  * callee-saves registers to the stack now, if they're
6842                  * not already saved.
6843                  */
6844                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6845                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6846                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6847                                                         ignore_stackfaults);
6848                 }
6849                 lr |= R_V7M_EXCRET_DCRS_MASK;
6850             }
6851         }
6852 
6853         lr &= ~R_V7M_EXCRET_ES_MASK;
6854         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6855             lr |= R_V7M_EXCRET_ES_MASK;
6856         }
6857         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6858         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6859             lr |= R_V7M_EXCRET_SPSEL_MASK;
6860         }
6861 
6862         /* Clear registers if necessary to prevent non-secure exception
6863          * code being able to see register values from secure code.
6864          * Where register values become architecturally UNKNOWN we leave
6865          * them with their previous values.
6866          */
6867         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6868             if (!targets_secure) {
6869                 /* Always clear the caller-saved registers (they have been
6870                  * pushed to the stack earlier in v7m_push_stack()).
6871                  * Clear callee-saved registers if the background code is
6872                  * Secure (in which case these regs were saved in
6873                  * v7m_push_callee_stack()).
6874                  */
6875                 int i;
6876 
6877                 for (i = 0; i < 13; i++) {
6878                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6879                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6880                         env->regs[i] = 0;
6881                     }
6882                 }
6883                 /* Clear EAPSR */
6884                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6885             }
6886         }
6887     }
6888 
6889     if (push_failed && !ignore_stackfaults) {
6890         /* Derived exception on callee-saves register stacking:
6891          * we might now want to take a different exception which
6892          * targets a different security state, so try again from the top.
6893          */
6894         v7m_exception_taken(cpu, lr, true, true);
6895         return;
6896     }
6897 
6898     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6899         /* Vector load failed: derived exception */
6900         v7m_exception_taken(cpu, lr, true, true);
6901         return;
6902     }
6903 
6904     /* Now we've done everything that might cause a derived exception
6905      * we can go ahead and activate whichever exception we're going to
6906      * take (which might now be the derived exception).
6907      */
6908     armv7m_nvic_acknowledge_irq(env->nvic);
6909 
6910     /* Switch to target security state -- must do this before writing SPSEL */
6911     switch_v7m_security_state(env, targets_secure);
6912     write_v7m_control_spsel(env, 0);
6913     arm_clear_exclusive(env);
6914     /* Clear IT bits */
6915     env->condexec_bits = 0;
6916     env->regs[14] = lr;
6917     env->regs[15] = addr & 0xfffffffe;
6918     env->thumb = addr & 1;
6919 }
6920 
6921 static bool v7m_push_stack(ARMCPU *cpu)
6922 {
6923     /* Do the "set up stack frame" part of exception entry,
6924      * similar to pseudocode PushStack().
6925      * Return true if we generate a derived exception (and so
6926      * should ignore further stack faults trying to process
6927      * that derived exception.)
6928      */
6929     bool stacked_ok;
6930     CPUARMState *env = &cpu->env;
6931     uint32_t xpsr = xpsr_read(env);
6932     uint32_t frameptr = env->regs[13];
6933     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6934 
6935     /* Align stack pointer if the guest wants that */
6936     if ((frameptr & 4) &&
6937         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6938         frameptr -= 4;
6939         xpsr |= XPSR_SPREALIGN;
6940     }
6941 
6942     frameptr -= 0x20;
6943 
6944     /* Write as much of the stack frame as we can. If we fail a stack
6945      * write this will result in a derived exception being pended
6946      * (which may be taken in preference to the one we started with
6947      * if it has higher priority).
6948      */
6949     stacked_ok =
6950         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6951         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6952         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6953         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6954         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6955         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6956         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6957         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6958 
6959     /* Update SP regardless of whether any of the stack accesses failed.
6960      * When we implement v8M stack limit checking then this attempt to
6961      * update SP might also fail and result in a derived exception.
6962      */
6963     env->regs[13] = frameptr;
6964 
6965     return !stacked_ok;
6966 }
6967 
6968 static void do_v7m_exception_exit(ARMCPU *cpu)
6969 {
6970     CPUARMState *env = &cpu->env;
6971     uint32_t excret;
6972     uint32_t xpsr;
6973     bool ufault = false;
6974     bool sfault = false;
6975     bool return_to_sp_process;
6976     bool return_to_handler;
6977     bool rettobase = false;
6978     bool exc_secure = false;
6979     bool return_to_secure;
6980 
6981     /* If we're not in Handler mode then jumps to magic exception-exit
6982      * addresses don't have magic behaviour. However for the v8M
6983      * security extensions the magic secure-function-return has to
6984      * work in thread mode too, so to avoid doing an extra check in
6985      * the generated code we allow exception-exit magic to also cause the
6986      * internal exception and bring us here in thread mode. Correct code
6987      * will never try to do this (the following insn fetch will always
6988      * fault) so we the overhead of having taken an unnecessary exception
6989      * doesn't matter.
6990      */
6991     if (!arm_v7m_is_handler_mode(env)) {
6992         return;
6993     }
6994 
6995     /* In the spec pseudocode ExceptionReturn() is called directly
6996      * from BXWritePC() and gets the full target PC value including
6997      * bit zero. In QEMU's implementation we treat it as a normal
6998      * jump-to-register (which is then caught later on), and so split
6999      * the target value up between env->regs[15] and env->thumb in
7000      * gen_bx(). Reconstitute it.
7001      */
7002     excret = env->regs[15];
7003     if (env->thumb) {
7004         excret |= 1;
7005     }
7006 
7007     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7008                   " previous exception %d\n",
7009                   excret, env->v7m.exception);
7010 
7011     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7012         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7013                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7014                       excret);
7015     }
7016 
7017     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7018         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7019          * we pick which FAULTMASK to clear.
7020          */
7021         if (!env->v7m.secure &&
7022             ((excret & R_V7M_EXCRET_ES_MASK) ||
7023              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7024             sfault = 1;
7025             /* For all other purposes, treat ES as 0 (R_HXSR) */
7026             excret &= ~R_V7M_EXCRET_ES_MASK;
7027         }
7028     }
7029 
7030     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7031         /* Auto-clear FAULTMASK on return from other than NMI.
7032          * If the security extension is implemented then this only
7033          * happens if the raw execution priority is >= 0; the
7034          * value of the ES bit in the exception return value indicates
7035          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7036          */
7037         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7038             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7039             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7040                 env->v7m.faultmask[exc_secure] = 0;
7041             }
7042         } else {
7043             env->v7m.faultmask[M_REG_NS] = 0;
7044         }
7045     }
7046 
7047     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7048                                      exc_secure)) {
7049     case -1:
7050         /* attempt to exit an exception that isn't active */
7051         ufault = true;
7052         break;
7053     case 0:
7054         /* still an irq active now */
7055         break;
7056     case 1:
7057         /* we returned to base exception level, no nesting.
7058          * (In the pseudocode this is written using "NestedActivation != 1"
7059          * where we have 'rettobase == false'.)
7060          */
7061         rettobase = true;
7062         break;
7063     default:
7064         g_assert_not_reached();
7065     }
7066 
7067     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7068     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7069     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7070         (excret & R_V7M_EXCRET_S_MASK);
7071 
7072     if (arm_feature(env, ARM_FEATURE_V8)) {
7073         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7074             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7075              * we choose to take the UsageFault.
7076              */
7077             if ((excret & R_V7M_EXCRET_S_MASK) ||
7078                 (excret & R_V7M_EXCRET_ES_MASK) ||
7079                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7080                 ufault = true;
7081             }
7082         }
7083         if (excret & R_V7M_EXCRET_RES0_MASK) {
7084             ufault = true;
7085         }
7086     } else {
7087         /* For v7M we only recognize certain combinations of the low bits */
7088         switch (excret & 0xf) {
7089         case 1: /* Return to Handler */
7090             break;
7091         case 13: /* Return to Thread using Process stack */
7092         case 9: /* Return to Thread using Main stack */
7093             /* We only need to check NONBASETHRDENA for v7M, because in
7094              * v8M this bit does not exist (it is RES1).
7095              */
7096             if (!rettobase &&
7097                 !(env->v7m.ccr[env->v7m.secure] &
7098                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
7099                 ufault = true;
7100             }
7101             break;
7102         default:
7103             ufault = true;
7104         }
7105     }
7106 
7107     if (sfault) {
7108         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7109         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7110         v7m_exception_taken(cpu, excret, true, false);
7111         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7112                       "stackframe: failed EXC_RETURN.ES validity check\n");
7113         return;
7114     }
7115 
7116     if (ufault) {
7117         /* Bad exception return: instead of popping the exception
7118          * stack, directly take a usage fault on the current stack.
7119          */
7120         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7121         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7122         v7m_exception_taken(cpu, excret, true, false);
7123         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7124                       "stackframe: failed exception return integrity check\n");
7125         return;
7126     }
7127 
7128     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7129      * Handler mode (and will be until we write the new XPSR.Interrupt
7130      * field) this does not switch around the current stack pointer.
7131      */
7132     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7133 
7134     switch_v7m_security_state(env, return_to_secure);
7135 
7136     {
7137         /* The stack pointer we should be reading the exception frame from
7138          * depends on bits in the magic exception return type value (and
7139          * for v8M isn't necessarily the stack pointer we will eventually
7140          * end up resuming execution with). Get a pointer to the location
7141          * in the CPU state struct where the SP we need is currently being
7142          * stored; we will use and modify it in place.
7143          * We use this limited C variable scope so we don't accidentally
7144          * use 'frame_sp_p' after we do something that makes it invalid.
7145          */
7146         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7147                                               return_to_secure,
7148                                               !return_to_handler,
7149                                               return_to_sp_process);
7150         uint32_t frameptr = *frame_sp_p;
7151         bool pop_ok = true;
7152         ARMMMUIdx mmu_idx;
7153 
7154         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7155                                                         !return_to_handler);
7156 
7157         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7158             arm_feature(env, ARM_FEATURE_V8)) {
7159             qemu_log_mask(LOG_GUEST_ERROR,
7160                           "M profile exception return with non-8-aligned SP "
7161                           "for destination state is UNPREDICTABLE\n");
7162         }
7163 
7164         /* Do we need to pop callee-saved registers? */
7165         if (return_to_secure &&
7166             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7167              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7168             uint32_t expected_sig = 0xfefa125b;
7169             uint32_t actual_sig;
7170 
7171             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7172 
7173             if (pop_ok && expected_sig != actual_sig) {
7174                 /* Take a SecureFault on the current stack */
7175                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7176                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7177                 v7m_exception_taken(cpu, excret, true, false);
7178                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7179                               "stackframe: failed exception return integrity "
7180                               "signature check\n");
7181                 return;
7182             }
7183 
7184             pop_ok = pop_ok &&
7185                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7186                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7187                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7188                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7189                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7190                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7191                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7192                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7193                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7194 
7195             frameptr += 0x28;
7196         }
7197 
7198         /* Pop registers */
7199         pop_ok = pop_ok &&
7200             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7201             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7202             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7203             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7204             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7205             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7206             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7207             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7208 
7209         if (!pop_ok) {
7210             /* v7m_stack_read() pended a fault, so take it (as a tail
7211              * chained exception on the same stack frame)
7212              */
7213             v7m_exception_taken(cpu, excret, true, false);
7214             return;
7215         }
7216 
7217         /* Returning from an exception with a PC with bit 0 set is defined
7218          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7219          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7220          * the lsbit, and there are several RTOSes out there which incorrectly
7221          * assume the r15 in the stack frame should be a Thumb-style "lsbit
7222          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7223          * complain about the badly behaved guest.
7224          */
7225         if (env->regs[15] & 1) {
7226             env->regs[15] &= ~1U;
7227             if (!arm_feature(env, ARM_FEATURE_V8)) {
7228                 qemu_log_mask(LOG_GUEST_ERROR,
7229                               "M profile return from interrupt with misaligned "
7230                               "PC is UNPREDICTABLE on v7M\n");
7231             }
7232         }
7233 
7234         if (arm_feature(env, ARM_FEATURE_V8)) {
7235             /* For v8M we have to check whether the xPSR exception field
7236              * matches the EXCRET value for return to handler/thread
7237              * before we commit to changing the SP and xPSR.
7238              */
7239             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7240             if (return_to_handler != will_be_handler) {
7241                 /* Take an INVPC UsageFault on the current stack.
7242                  * By this point we will have switched to the security state
7243                  * for the background state, so this UsageFault will target
7244                  * that state.
7245                  */
7246                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7247                                         env->v7m.secure);
7248                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7249                 v7m_exception_taken(cpu, excret, true, false);
7250                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7251                               "stackframe: failed exception return integrity "
7252                               "check\n");
7253                 return;
7254             }
7255         }
7256 
7257         /* Commit to consuming the stack frame */
7258         frameptr += 0x20;
7259         /* Undo stack alignment (the SPREALIGN bit indicates that the original
7260          * pre-exception SP was not 8-aligned and we added a padding word to
7261          * align it, so we undo this by ORing in the bit that increases it
7262          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7263          * would work too but a logical OR is how the pseudocode specifies it.)
7264          */
7265         if (xpsr & XPSR_SPREALIGN) {
7266             frameptr |= 4;
7267         }
7268         *frame_sp_p = frameptr;
7269     }
7270     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7271     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7272 
7273     /* The restored xPSR exception field will be zero if we're
7274      * resuming in Thread mode. If that doesn't match what the
7275      * exception return excret specified then this is a UsageFault.
7276      * v7M requires we make this check here; v8M did it earlier.
7277      */
7278     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7279         /* Take an INVPC UsageFault by pushing the stack again;
7280          * we know we're v7M so this is never a Secure UsageFault.
7281          */
7282         bool ignore_stackfaults;
7283 
7284         assert(!arm_feature(env, ARM_FEATURE_V8));
7285         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7286         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7287         ignore_stackfaults = v7m_push_stack(cpu);
7288         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7289         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7290                       "failed exception return integrity check\n");
7291         return;
7292     }
7293 
7294     /* Otherwise, we have a successful exception exit. */
7295     arm_clear_exclusive(env);
7296     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7297 }
7298 
7299 static bool do_v7m_function_return(ARMCPU *cpu)
7300 {
7301     /* v8M security extensions magic function return.
7302      * We may either:
7303      *  (1) throw an exception (longjump)
7304      *  (2) return true if we successfully handled the function return
7305      *  (3) return false if we failed a consistency check and have
7306      *      pended a UsageFault that needs to be taken now
7307      *
7308      * At this point the magic return value is split between env->regs[15]
7309      * and env->thumb. We don't bother to reconstitute it because we don't
7310      * need it (all values are handled the same way).
7311      */
7312     CPUARMState *env = &cpu->env;
7313     uint32_t newpc, newpsr, newpsr_exc;
7314 
7315     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7316 
7317     {
7318         bool threadmode, spsel;
7319         TCGMemOpIdx oi;
7320         ARMMMUIdx mmu_idx;
7321         uint32_t *frame_sp_p;
7322         uint32_t frameptr;
7323 
7324         /* Pull the return address and IPSR from the Secure stack */
7325         threadmode = !arm_v7m_is_handler_mode(env);
7326         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7327 
7328         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7329         frameptr = *frame_sp_p;
7330 
7331         /* These loads may throw an exception (for MPU faults). We want to
7332          * do them as secure, so work out what MMU index that is.
7333          */
7334         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7335         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7336         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7337         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7338 
7339         /* Consistency checks on new IPSR */
7340         newpsr_exc = newpsr & XPSR_EXCP;
7341         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7342               (env->v7m.exception == 1 && newpsr_exc != 0))) {
7343             /* Pend the fault and tell our caller to take it */
7344             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7345             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7346                                     env->v7m.secure);
7347             qemu_log_mask(CPU_LOG_INT,
7348                           "...taking INVPC UsageFault: "
7349                           "IPSR consistency check failed\n");
7350             return false;
7351         }
7352 
7353         *frame_sp_p = frameptr + 8;
7354     }
7355 
7356     /* This invalidates frame_sp_p */
7357     switch_v7m_security_state(env, true);
7358     env->v7m.exception = newpsr_exc;
7359     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7360     if (newpsr & XPSR_SFPA) {
7361         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7362     }
7363     xpsr_write(env, 0, XPSR_IT);
7364     env->thumb = newpc & 1;
7365     env->regs[15] = newpc & ~1;
7366 
7367     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7368     return true;
7369 }
7370 
7371 static void arm_log_exception(int idx)
7372 {
7373     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7374         const char *exc = NULL;
7375         static const char * const excnames[] = {
7376             [EXCP_UDEF] = "Undefined Instruction",
7377             [EXCP_SWI] = "SVC",
7378             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7379             [EXCP_DATA_ABORT] = "Data Abort",
7380             [EXCP_IRQ] = "IRQ",
7381             [EXCP_FIQ] = "FIQ",
7382             [EXCP_BKPT] = "Breakpoint",
7383             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7384             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7385             [EXCP_HVC] = "Hypervisor Call",
7386             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7387             [EXCP_SMC] = "Secure Monitor Call",
7388             [EXCP_VIRQ] = "Virtual IRQ",
7389             [EXCP_VFIQ] = "Virtual FIQ",
7390             [EXCP_SEMIHOST] = "Semihosting call",
7391             [EXCP_NOCP] = "v7M NOCP UsageFault",
7392             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7393         };
7394 
7395         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7396             exc = excnames[idx];
7397         }
7398         if (!exc) {
7399             exc = "unknown";
7400         }
7401         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7402     }
7403 }
7404 
7405 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7406                                uint32_t addr, uint16_t *insn)
7407 {
7408     /* Load a 16-bit portion of a v7M instruction, returning true on success,
7409      * or false on failure (in which case we will have pended the appropriate
7410      * exception).
7411      * We need to do the instruction fetch's MPU and SAU checks
7412      * like this because there is no MMU index that would allow
7413      * doing the load with a single function call. Instead we must
7414      * first check that the security attributes permit the load
7415      * and that they don't mismatch on the two halves of the instruction,
7416      * and then we do the load as a secure load (ie using the security
7417      * attributes of the address, not the CPU, as architecturally required).
7418      */
7419     CPUState *cs = CPU(cpu);
7420     CPUARMState *env = &cpu->env;
7421     V8M_SAttributes sattrs = {};
7422     MemTxAttrs attrs = {};
7423     ARMMMUFaultInfo fi = {};
7424     MemTxResult txres;
7425     target_ulong page_size;
7426     hwaddr physaddr;
7427     int prot;
7428 
7429     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7430     if (!sattrs.nsc || sattrs.ns) {
7431         /* This must be the second half of the insn, and it straddles a
7432          * region boundary with the second half not being S&NSC.
7433          */
7434         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7435         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7436         qemu_log_mask(CPU_LOG_INT,
7437                       "...really SecureFault with SFSR.INVEP\n");
7438         return false;
7439     }
7440     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7441                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7442         /* the MPU lookup failed */
7443         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7444         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7445         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7446         return false;
7447     }
7448     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7449                                  attrs, &txres);
7450     if (txres != MEMTX_OK) {
7451         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7452         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7453         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7454         return false;
7455     }
7456     return true;
7457 }
7458 
7459 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7460 {
7461     /* Check whether this attempt to execute code in a Secure & NS-Callable
7462      * memory region is for an SG instruction; if so, then emulate the
7463      * effect of the SG instruction and return true. Otherwise pend
7464      * the correct kind of exception and return false.
7465      */
7466     CPUARMState *env = &cpu->env;
7467     ARMMMUIdx mmu_idx;
7468     uint16_t insn;
7469 
7470     /* We should never get here unless get_phys_addr_pmsav8() caused
7471      * an exception for NS executing in S&NSC memory.
7472      */
7473     assert(!env->v7m.secure);
7474     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7475 
7476     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7477     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7478 
7479     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7480         return false;
7481     }
7482 
7483     if (!env->thumb) {
7484         goto gen_invep;
7485     }
7486 
7487     if (insn != 0xe97f) {
7488         /* Not an SG instruction first half (we choose the IMPDEF
7489          * early-SG-check option).
7490          */
7491         goto gen_invep;
7492     }
7493 
7494     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7495         return false;
7496     }
7497 
7498     if (insn != 0xe97f) {
7499         /* Not an SG instruction second half (yes, both halves of the SG
7500          * insn have the same hex value)
7501          */
7502         goto gen_invep;
7503     }
7504 
7505     /* OK, we have confirmed that we really have an SG instruction.
7506      * We know we're NS in S memory so don't need to repeat those checks.
7507      */
7508     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7509                   ", executing it\n", env->regs[15]);
7510     env->regs[14] &= ~1;
7511     switch_v7m_security_state(env, true);
7512     xpsr_write(env, 0, XPSR_IT);
7513     env->regs[15] += 4;
7514     return true;
7515 
7516 gen_invep:
7517     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7518     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7519     qemu_log_mask(CPU_LOG_INT,
7520                   "...really SecureFault with SFSR.INVEP\n");
7521     return false;
7522 }
7523 
7524 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7525 {
7526     ARMCPU *cpu = ARM_CPU(cs);
7527     CPUARMState *env = &cpu->env;
7528     uint32_t lr;
7529     bool ignore_stackfaults;
7530 
7531     arm_log_exception(cs->exception_index);
7532 
7533     /* For exceptions we just mark as pending on the NVIC, and let that
7534        handle it.  */
7535     switch (cs->exception_index) {
7536     case EXCP_UDEF:
7537         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7538         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7539         break;
7540     case EXCP_NOCP:
7541         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7542         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7543         break;
7544     case EXCP_INVSTATE:
7545         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7546         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7547         break;
7548     case EXCP_SWI:
7549         /* The PC already points to the next instruction.  */
7550         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7551         break;
7552     case EXCP_PREFETCH_ABORT:
7553     case EXCP_DATA_ABORT:
7554         /* Note that for M profile we don't have a guest facing FSR, but
7555          * the env->exception.fsr will be populated by the code that
7556          * raises the fault, in the A profile short-descriptor format.
7557          */
7558         switch (env->exception.fsr & 0xf) {
7559         case M_FAKE_FSR_NSC_EXEC:
7560             /* Exception generated when we try to execute code at an address
7561              * which is marked as Secure & Non-Secure Callable and the CPU
7562              * is in the Non-Secure state. The only instruction which can
7563              * be executed like this is SG (and that only if both halves of
7564              * the SG instruction have the same security attributes.)
7565              * Everything else must generate an INVEP SecureFault, so we
7566              * emulate the SG instruction here.
7567              */
7568             if (v7m_handle_execute_nsc(cpu)) {
7569                 return;
7570             }
7571             break;
7572         case M_FAKE_FSR_SFAULT:
7573             /* Various flavours of SecureFault for attempts to execute or
7574              * access data in the wrong security state.
7575              */
7576             switch (cs->exception_index) {
7577             case EXCP_PREFETCH_ABORT:
7578                 if (env->v7m.secure) {
7579                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7580                     qemu_log_mask(CPU_LOG_INT,
7581                                   "...really SecureFault with SFSR.INVTRAN\n");
7582                 } else {
7583                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7584                     qemu_log_mask(CPU_LOG_INT,
7585                                   "...really SecureFault with SFSR.INVEP\n");
7586                 }
7587                 break;
7588             case EXCP_DATA_ABORT:
7589                 /* This must be an NS access to S memory */
7590                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7591                 qemu_log_mask(CPU_LOG_INT,
7592                               "...really SecureFault with SFSR.AUVIOL\n");
7593                 break;
7594             }
7595             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7596             break;
7597         case 0x8: /* External Abort */
7598             switch (cs->exception_index) {
7599             case EXCP_PREFETCH_ABORT:
7600                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7601                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7602                 break;
7603             case EXCP_DATA_ABORT:
7604                 env->v7m.cfsr[M_REG_NS] |=
7605                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7606                 env->v7m.bfar = env->exception.vaddress;
7607                 qemu_log_mask(CPU_LOG_INT,
7608                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7609                               env->v7m.bfar);
7610                 break;
7611             }
7612             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7613             break;
7614         default:
7615             /* All other FSR values are either MPU faults or "can't happen
7616              * for M profile" cases.
7617              */
7618             switch (cs->exception_index) {
7619             case EXCP_PREFETCH_ABORT:
7620                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7621                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7622                 break;
7623             case EXCP_DATA_ABORT:
7624                 env->v7m.cfsr[env->v7m.secure] |=
7625                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7626                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7627                 qemu_log_mask(CPU_LOG_INT,
7628                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7629                               env->v7m.mmfar[env->v7m.secure]);
7630                 break;
7631             }
7632             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7633                                     env->v7m.secure);
7634             break;
7635         }
7636         break;
7637     case EXCP_BKPT:
7638         if (semihosting_enabled()) {
7639             int nr;
7640             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7641             if (nr == 0xab) {
7642                 env->regs[15] += 2;
7643                 qemu_log_mask(CPU_LOG_INT,
7644                               "...handling as semihosting call 0x%x\n",
7645                               env->regs[0]);
7646                 env->regs[0] = do_arm_semihosting(env);
7647                 return;
7648             }
7649         }
7650         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7651         break;
7652     case EXCP_IRQ:
7653         break;
7654     case EXCP_EXCEPTION_EXIT:
7655         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7656             /* Must be v8M security extension function return */
7657             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7658             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7659             if (do_v7m_function_return(cpu)) {
7660                 return;
7661             }
7662         } else {
7663             do_v7m_exception_exit(cpu);
7664             return;
7665         }
7666         break;
7667     default:
7668         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7669         return; /* Never happens.  Keep compiler happy.  */
7670     }
7671 
7672     if (arm_feature(env, ARM_FEATURE_V8)) {
7673         lr = R_V7M_EXCRET_RES1_MASK |
7674             R_V7M_EXCRET_DCRS_MASK |
7675             R_V7M_EXCRET_FTYPE_MASK;
7676         /* The S bit indicates whether we should return to Secure
7677          * or NonSecure (ie our current state).
7678          * The ES bit indicates whether we're taking this exception
7679          * to Secure or NonSecure (ie our target state). We set it
7680          * later, in v7m_exception_taken().
7681          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7682          * This corresponds to the ARM ARM pseudocode for v8M setting
7683          * some LR bits in PushStack() and some in ExceptionTaken();
7684          * the distinction matters for the tailchain cases where we
7685          * can take an exception without pushing the stack.
7686          */
7687         if (env->v7m.secure) {
7688             lr |= R_V7M_EXCRET_S_MASK;
7689         }
7690     } else {
7691         lr = R_V7M_EXCRET_RES1_MASK |
7692             R_V7M_EXCRET_S_MASK |
7693             R_V7M_EXCRET_DCRS_MASK |
7694             R_V7M_EXCRET_FTYPE_MASK |
7695             R_V7M_EXCRET_ES_MASK;
7696         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7697             lr |= R_V7M_EXCRET_SPSEL_MASK;
7698         }
7699     }
7700     if (!arm_v7m_is_handler_mode(env)) {
7701         lr |= R_V7M_EXCRET_MODE_MASK;
7702     }
7703 
7704     ignore_stackfaults = v7m_push_stack(cpu);
7705     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7706     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7707 }
7708 
7709 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7710  * register set.  This is necessary when switching between AArch32 and AArch64
7711  * execution state.
7712  */
7713 void aarch64_sync_32_to_64(CPUARMState *env)
7714 {
7715     int i;
7716     uint32_t mode = env->uncached_cpsr & CPSR_M;
7717 
7718     /* We can blanket copy R[0:7] to X[0:7] */
7719     for (i = 0; i < 8; i++) {
7720         env->xregs[i] = env->regs[i];
7721     }
7722 
7723     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7724      * Otherwise, they come from the banked user regs.
7725      */
7726     if (mode == ARM_CPU_MODE_FIQ) {
7727         for (i = 8; i < 13; i++) {
7728             env->xregs[i] = env->usr_regs[i - 8];
7729         }
7730     } else {
7731         for (i = 8; i < 13; i++) {
7732             env->xregs[i] = env->regs[i];
7733         }
7734     }
7735 
7736     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7737      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7738      * from the mode banked register.
7739      */
7740     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7741         env->xregs[13] = env->regs[13];
7742         env->xregs[14] = env->regs[14];
7743     } else {
7744         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7745         /* HYP is an exception in that it is copied from r14 */
7746         if (mode == ARM_CPU_MODE_HYP) {
7747             env->xregs[14] = env->regs[14];
7748         } else {
7749             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7750         }
7751     }
7752 
7753     if (mode == ARM_CPU_MODE_HYP) {
7754         env->xregs[15] = env->regs[13];
7755     } else {
7756         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7757     }
7758 
7759     if (mode == ARM_CPU_MODE_IRQ) {
7760         env->xregs[16] = env->regs[14];
7761         env->xregs[17] = env->regs[13];
7762     } else {
7763         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7764         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7765     }
7766 
7767     if (mode == ARM_CPU_MODE_SVC) {
7768         env->xregs[18] = env->regs[14];
7769         env->xregs[19] = env->regs[13];
7770     } else {
7771         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7772         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7773     }
7774 
7775     if (mode == ARM_CPU_MODE_ABT) {
7776         env->xregs[20] = env->regs[14];
7777         env->xregs[21] = env->regs[13];
7778     } else {
7779         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7780         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7781     }
7782 
7783     if (mode == ARM_CPU_MODE_UND) {
7784         env->xregs[22] = env->regs[14];
7785         env->xregs[23] = env->regs[13];
7786     } else {
7787         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7788         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7789     }
7790 
7791     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7792      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7793      * FIQ bank for r8-r14.
7794      */
7795     if (mode == ARM_CPU_MODE_FIQ) {
7796         for (i = 24; i < 31; i++) {
7797             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7798         }
7799     } else {
7800         for (i = 24; i < 29; i++) {
7801             env->xregs[i] = env->fiq_regs[i - 24];
7802         }
7803         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7804         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7805     }
7806 
7807     env->pc = env->regs[15];
7808 }
7809 
7810 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7811  * register set.  This is necessary when switching between AArch32 and AArch64
7812  * execution state.
7813  */
7814 void aarch64_sync_64_to_32(CPUARMState *env)
7815 {
7816     int i;
7817     uint32_t mode = env->uncached_cpsr & CPSR_M;
7818 
7819     /* We can blanket copy X[0:7] to R[0:7] */
7820     for (i = 0; i < 8; i++) {
7821         env->regs[i] = env->xregs[i];
7822     }
7823 
7824     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7825      * Otherwise, we copy x8-x12 into the banked user regs.
7826      */
7827     if (mode == ARM_CPU_MODE_FIQ) {
7828         for (i = 8; i < 13; i++) {
7829             env->usr_regs[i - 8] = env->xregs[i];
7830         }
7831     } else {
7832         for (i = 8; i < 13; i++) {
7833             env->regs[i] = env->xregs[i];
7834         }
7835     }
7836 
7837     /* Registers r13 & r14 depend on the current mode.
7838      * If we are in a given mode, we copy the corresponding x registers to r13
7839      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7840      * for the mode.
7841      */
7842     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7843         env->regs[13] = env->xregs[13];
7844         env->regs[14] = env->xregs[14];
7845     } else {
7846         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7847 
7848         /* HYP is an exception in that it does not have its own banked r14 but
7849          * shares the USR r14
7850          */
7851         if (mode == ARM_CPU_MODE_HYP) {
7852             env->regs[14] = env->xregs[14];
7853         } else {
7854             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7855         }
7856     }
7857 
7858     if (mode == ARM_CPU_MODE_HYP) {
7859         env->regs[13] = env->xregs[15];
7860     } else {
7861         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7862     }
7863 
7864     if (mode == ARM_CPU_MODE_IRQ) {
7865         env->regs[14] = env->xregs[16];
7866         env->regs[13] = env->xregs[17];
7867     } else {
7868         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7869         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7870     }
7871 
7872     if (mode == ARM_CPU_MODE_SVC) {
7873         env->regs[14] = env->xregs[18];
7874         env->regs[13] = env->xregs[19];
7875     } else {
7876         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7877         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7878     }
7879 
7880     if (mode == ARM_CPU_MODE_ABT) {
7881         env->regs[14] = env->xregs[20];
7882         env->regs[13] = env->xregs[21];
7883     } else {
7884         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7885         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7886     }
7887 
7888     if (mode == ARM_CPU_MODE_UND) {
7889         env->regs[14] = env->xregs[22];
7890         env->regs[13] = env->xregs[23];
7891     } else {
7892         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7893         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7894     }
7895 
7896     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7897      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7898      * FIQ bank for r8-r14.
7899      */
7900     if (mode == ARM_CPU_MODE_FIQ) {
7901         for (i = 24; i < 31; i++) {
7902             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7903         }
7904     } else {
7905         for (i = 24; i < 29; i++) {
7906             env->fiq_regs[i - 24] = env->xregs[i];
7907         }
7908         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7909         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7910     }
7911 
7912     env->regs[15] = env->pc;
7913 }
7914 
7915 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7916 {
7917     ARMCPU *cpu = ARM_CPU(cs);
7918     CPUARMState *env = &cpu->env;
7919     uint32_t addr;
7920     uint32_t mask;
7921     int new_mode;
7922     uint32_t offset;
7923     uint32_t moe;
7924 
7925     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7926     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7927     case EC_BREAKPOINT:
7928     case EC_BREAKPOINT_SAME_EL:
7929         moe = 1;
7930         break;
7931     case EC_WATCHPOINT:
7932     case EC_WATCHPOINT_SAME_EL:
7933         moe = 10;
7934         break;
7935     case EC_AA32_BKPT:
7936         moe = 3;
7937         break;
7938     case EC_VECTORCATCH:
7939         moe = 5;
7940         break;
7941     default:
7942         moe = 0;
7943         break;
7944     }
7945 
7946     if (moe) {
7947         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7948     }
7949 
7950     /* TODO: Vectored interrupt controller.  */
7951     switch (cs->exception_index) {
7952     case EXCP_UDEF:
7953         new_mode = ARM_CPU_MODE_UND;
7954         addr = 0x04;
7955         mask = CPSR_I;
7956         if (env->thumb)
7957             offset = 2;
7958         else
7959             offset = 4;
7960         break;
7961     case EXCP_SWI:
7962         new_mode = ARM_CPU_MODE_SVC;
7963         addr = 0x08;
7964         mask = CPSR_I;
7965         /* The PC already points to the next instruction.  */
7966         offset = 0;
7967         break;
7968     case EXCP_BKPT:
7969         /* Fall through to prefetch abort.  */
7970     case EXCP_PREFETCH_ABORT:
7971         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7972         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7973         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7974                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7975         new_mode = ARM_CPU_MODE_ABT;
7976         addr = 0x0c;
7977         mask = CPSR_A | CPSR_I;
7978         offset = 4;
7979         break;
7980     case EXCP_DATA_ABORT:
7981         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7982         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7983         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7984                       env->exception.fsr,
7985                       (uint32_t)env->exception.vaddress);
7986         new_mode = ARM_CPU_MODE_ABT;
7987         addr = 0x10;
7988         mask = CPSR_A | CPSR_I;
7989         offset = 8;
7990         break;
7991     case EXCP_IRQ:
7992         new_mode = ARM_CPU_MODE_IRQ;
7993         addr = 0x18;
7994         /* Disable IRQ and imprecise data aborts.  */
7995         mask = CPSR_A | CPSR_I;
7996         offset = 4;
7997         if (env->cp15.scr_el3 & SCR_IRQ) {
7998             /* IRQ routed to monitor mode */
7999             new_mode = ARM_CPU_MODE_MON;
8000             mask |= CPSR_F;
8001         }
8002         break;
8003     case EXCP_FIQ:
8004         new_mode = ARM_CPU_MODE_FIQ;
8005         addr = 0x1c;
8006         /* Disable FIQ, IRQ and imprecise data aborts.  */
8007         mask = CPSR_A | CPSR_I | CPSR_F;
8008         if (env->cp15.scr_el3 & SCR_FIQ) {
8009             /* FIQ routed to monitor mode */
8010             new_mode = ARM_CPU_MODE_MON;
8011         }
8012         offset = 4;
8013         break;
8014     case EXCP_VIRQ:
8015         new_mode = ARM_CPU_MODE_IRQ;
8016         addr = 0x18;
8017         /* Disable IRQ and imprecise data aborts.  */
8018         mask = CPSR_A | CPSR_I;
8019         offset = 4;
8020         break;
8021     case EXCP_VFIQ:
8022         new_mode = ARM_CPU_MODE_FIQ;
8023         addr = 0x1c;
8024         /* Disable FIQ, IRQ and imprecise data aborts.  */
8025         mask = CPSR_A | CPSR_I | CPSR_F;
8026         offset = 4;
8027         break;
8028     case EXCP_SMC:
8029         new_mode = ARM_CPU_MODE_MON;
8030         addr = 0x08;
8031         mask = CPSR_A | CPSR_I | CPSR_F;
8032         offset = 0;
8033         break;
8034     default:
8035         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8036         return; /* Never happens.  Keep compiler happy.  */
8037     }
8038 
8039     if (new_mode == ARM_CPU_MODE_MON) {
8040         addr += env->cp15.mvbar;
8041     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8042         /* High vectors. When enabled, base address cannot be remapped. */
8043         addr += 0xffff0000;
8044     } else {
8045         /* ARM v7 architectures provide a vector base address register to remap
8046          * the interrupt vector table.
8047          * This register is only followed in non-monitor mode, and is banked.
8048          * Note: only bits 31:5 are valid.
8049          */
8050         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8051     }
8052 
8053     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8054         env->cp15.scr_el3 &= ~SCR_NS;
8055     }
8056 
8057     switch_mode (env, new_mode);
8058     /* For exceptions taken to AArch32 we must clear the SS bit in both
8059      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8060      */
8061     env->uncached_cpsr &= ~PSTATE_SS;
8062     env->spsr = cpsr_read(env);
8063     /* Clear IT bits.  */
8064     env->condexec_bits = 0;
8065     /* Switch to the new mode, and to the correct instruction set.  */
8066     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8067     /* Set new mode endianness */
8068     env->uncached_cpsr &= ~CPSR_E;
8069     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8070         env->uncached_cpsr |= CPSR_E;
8071     }
8072     env->daif |= mask;
8073     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8074      * and we should just guard the thumb mode on V4 */
8075     if (arm_feature(env, ARM_FEATURE_V4T)) {
8076         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8077     }
8078     env->regs[14] = env->regs[15] + offset;
8079     env->regs[15] = addr;
8080 }
8081 
8082 /* Handle exception entry to a target EL which is using AArch64 */
8083 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8084 {
8085     ARMCPU *cpu = ARM_CPU(cs);
8086     CPUARMState *env = &cpu->env;
8087     unsigned int new_el = env->exception.target_el;
8088     target_ulong addr = env->cp15.vbar_el[new_el];
8089     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8090 
8091     if (arm_current_el(env) < new_el) {
8092         /* Entry vector offset depends on whether the implemented EL
8093          * immediately lower than the target level is using AArch32 or AArch64
8094          */
8095         bool is_aa64;
8096 
8097         switch (new_el) {
8098         case 3:
8099             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8100             break;
8101         case 2:
8102             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8103             break;
8104         case 1:
8105             is_aa64 = is_a64(env);
8106             break;
8107         default:
8108             g_assert_not_reached();
8109         }
8110 
8111         if (is_aa64) {
8112             addr += 0x400;
8113         } else {
8114             addr += 0x600;
8115         }
8116     } else if (pstate_read(env) & PSTATE_SP) {
8117         addr += 0x200;
8118     }
8119 
8120     switch (cs->exception_index) {
8121     case EXCP_PREFETCH_ABORT:
8122     case EXCP_DATA_ABORT:
8123         env->cp15.far_el[new_el] = env->exception.vaddress;
8124         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8125                       env->cp15.far_el[new_el]);
8126         /* fall through */
8127     case EXCP_BKPT:
8128     case EXCP_UDEF:
8129     case EXCP_SWI:
8130     case EXCP_HVC:
8131     case EXCP_HYP_TRAP:
8132     case EXCP_SMC:
8133         env->cp15.esr_el[new_el] = env->exception.syndrome;
8134         break;
8135     case EXCP_IRQ:
8136     case EXCP_VIRQ:
8137         addr += 0x80;
8138         break;
8139     case EXCP_FIQ:
8140     case EXCP_VFIQ:
8141         addr += 0x100;
8142         break;
8143     case EXCP_SEMIHOST:
8144         qemu_log_mask(CPU_LOG_INT,
8145                       "...handling as semihosting call 0x%" PRIx64 "\n",
8146                       env->xregs[0]);
8147         env->xregs[0] = do_arm_semihosting(env);
8148         return;
8149     default:
8150         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8151     }
8152 
8153     if (is_a64(env)) {
8154         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8155         aarch64_save_sp(env, arm_current_el(env));
8156         env->elr_el[new_el] = env->pc;
8157     } else {
8158         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8159         env->elr_el[new_el] = env->regs[15];
8160 
8161         aarch64_sync_32_to_64(env);
8162 
8163         env->condexec_bits = 0;
8164     }
8165     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8166                   env->elr_el[new_el]);
8167 
8168     pstate_write(env, PSTATE_DAIF | new_mode);
8169     env->aarch64 = 1;
8170     aarch64_restore_sp(env, new_el);
8171 
8172     env->pc = addr;
8173 
8174     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8175                   new_el, env->pc, pstate_read(env));
8176 }
8177 
8178 static inline bool check_for_semihosting(CPUState *cs)
8179 {
8180     /* Check whether this exception is a semihosting call; if so
8181      * then handle it and return true; otherwise return false.
8182      */
8183     ARMCPU *cpu = ARM_CPU(cs);
8184     CPUARMState *env = &cpu->env;
8185 
8186     if (is_a64(env)) {
8187         if (cs->exception_index == EXCP_SEMIHOST) {
8188             /* This is always the 64-bit semihosting exception.
8189              * The "is this usermode" and "is semihosting enabled"
8190              * checks have been done at translate time.
8191              */
8192             qemu_log_mask(CPU_LOG_INT,
8193                           "...handling as semihosting call 0x%" PRIx64 "\n",
8194                           env->xregs[0]);
8195             env->xregs[0] = do_arm_semihosting(env);
8196             return true;
8197         }
8198         return false;
8199     } else {
8200         uint32_t imm;
8201 
8202         /* Only intercept calls from privileged modes, to provide some
8203          * semblance of security.
8204          */
8205         if (cs->exception_index != EXCP_SEMIHOST &&
8206             (!semihosting_enabled() ||
8207              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8208             return false;
8209         }
8210 
8211         switch (cs->exception_index) {
8212         case EXCP_SEMIHOST:
8213             /* This is always a semihosting call; the "is this usermode"
8214              * and "is semihosting enabled" checks have been done at
8215              * translate time.
8216              */
8217             break;
8218         case EXCP_SWI:
8219             /* Check for semihosting interrupt.  */
8220             if (env->thumb) {
8221                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8222                     & 0xff;
8223                 if (imm == 0xab) {
8224                     break;
8225                 }
8226             } else {
8227                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8228                     & 0xffffff;
8229                 if (imm == 0x123456) {
8230                     break;
8231                 }
8232             }
8233             return false;
8234         case EXCP_BKPT:
8235             /* See if this is a semihosting syscall.  */
8236             if (env->thumb) {
8237                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8238                     & 0xff;
8239                 if (imm == 0xab) {
8240                     env->regs[15] += 2;
8241                     break;
8242                 }
8243             }
8244             return false;
8245         default:
8246             return false;
8247         }
8248 
8249         qemu_log_mask(CPU_LOG_INT,
8250                       "...handling as semihosting call 0x%x\n",
8251                       env->regs[0]);
8252         env->regs[0] = do_arm_semihosting(env);
8253         return true;
8254     }
8255 }
8256 
8257 /* Handle a CPU exception for A and R profile CPUs.
8258  * Do any appropriate logging, handle PSCI calls, and then hand off
8259  * to the AArch64-entry or AArch32-entry function depending on the
8260  * target exception level's register width.
8261  */
8262 void arm_cpu_do_interrupt(CPUState *cs)
8263 {
8264     ARMCPU *cpu = ARM_CPU(cs);
8265     CPUARMState *env = &cpu->env;
8266     unsigned int new_el = env->exception.target_el;
8267 
8268     assert(!arm_feature(env, ARM_FEATURE_M));
8269 
8270     arm_log_exception(cs->exception_index);
8271     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8272                   new_el);
8273     if (qemu_loglevel_mask(CPU_LOG_INT)
8274         && !excp_is_internal(cs->exception_index)) {
8275         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8276                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
8277                       env->exception.syndrome);
8278     }
8279 
8280     if (arm_is_psci_call(cpu, cs->exception_index)) {
8281         arm_handle_psci_call(cpu);
8282         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8283         return;
8284     }
8285 
8286     /* Semihosting semantics depend on the register width of the
8287      * code that caused the exception, not the target exception level,
8288      * so must be handled here.
8289      */
8290     if (check_for_semihosting(cs)) {
8291         return;
8292     }
8293 
8294     /* Hooks may change global state so BQL should be held, also the
8295      * BQL needs to be held for any modification of
8296      * cs->interrupt_request.
8297      */
8298     g_assert(qemu_mutex_iothread_locked());
8299 
8300     arm_call_pre_el_change_hook(cpu);
8301 
8302     assert(!excp_is_internal(cs->exception_index));
8303     if (arm_el_is_aa64(env, new_el)) {
8304         arm_cpu_do_interrupt_aarch64(cs);
8305     } else {
8306         arm_cpu_do_interrupt_aarch32(cs);
8307     }
8308 
8309     arm_call_el_change_hook(cpu);
8310 
8311     if (!kvm_enabled()) {
8312         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8313     }
8314 }
8315 
8316 /* Return the exception level which controls this address translation regime */
8317 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8318 {
8319     switch (mmu_idx) {
8320     case ARMMMUIdx_S2NS:
8321     case ARMMMUIdx_S1E2:
8322         return 2;
8323     case ARMMMUIdx_S1E3:
8324         return 3;
8325     case ARMMMUIdx_S1SE0:
8326         return arm_el_is_aa64(env, 3) ? 1 : 3;
8327     case ARMMMUIdx_S1SE1:
8328     case ARMMMUIdx_S1NSE0:
8329     case ARMMMUIdx_S1NSE1:
8330     case ARMMMUIdx_MPrivNegPri:
8331     case ARMMMUIdx_MUserNegPri:
8332     case ARMMMUIdx_MPriv:
8333     case ARMMMUIdx_MUser:
8334     case ARMMMUIdx_MSPrivNegPri:
8335     case ARMMMUIdx_MSUserNegPri:
8336     case ARMMMUIdx_MSPriv:
8337     case ARMMMUIdx_MSUser:
8338         return 1;
8339     default:
8340         g_assert_not_reached();
8341     }
8342 }
8343 
8344 /* Return the SCTLR value which controls this address translation regime */
8345 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8346 {
8347     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8348 }
8349 
8350 /* Return true if the specified stage of address translation is disabled */
8351 static inline bool regime_translation_disabled(CPUARMState *env,
8352                                                ARMMMUIdx mmu_idx)
8353 {
8354     if (arm_feature(env, ARM_FEATURE_M)) {
8355         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8356                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8357         case R_V7M_MPU_CTRL_ENABLE_MASK:
8358             /* Enabled, but not for HardFault and NMI */
8359             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8360         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8361             /* Enabled for all cases */
8362             return false;
8363         case 0:
8364         default:
8365             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8366              * we warned about that in armv7m_nvic.c when the guest set it.
8367              */
8368             return true;
8369         }
8370     }
8371 
8372     if (mmu_idx == ARMMMUIdx_S2NS) {
8373         return (env->cp15.hcr_el2 & HCR_VM) == 0;
8374     }
8375     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8376 }
8377 
8378 static inline bool regime_translation_big_endian(CPUARMState *env,
8379                                                  ARMMMUIdx mmu_idx)
8380 {
8381     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8382 }
8383 
8384 /* Return the TCR controlling this translation regime */
8385 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8386 {
8387     if (mmu_idx == ARMMMUIdx_S2NS) {
8388         return &env->cp15.vtcr_el2;
8389     }
8390     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8391 }
8392 
8393 /* Convert a possible stage1+2 MMU index into the appropriate
8394  * stage 1 MMU index
8395  */
8396 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8397 {
8398     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8399         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8400     }
8401     return mmu_idx;
8402 }
8403 
8404 /* Returns TBI0 value for current regime el */
8405 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8406 {
8407     TCR *tcr;
8408     uint32_t el;
8409 
8410     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8411      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8412      */
8413     mmu_idx = stage_1_mmu_idx(mmu_idx);
8414 
8415     tcr = regime_tcr(env, mmu_idx);
8416     el = regime_el(env, mmu_idx);
8417 
8418     if (el > 1) {
8419         return extract64(tcr->raw_tcr, 20, 1);
8420     } else {
8421         return extract64(tcr->raw_tcr, 37, 1);
8422     }
8423 }
8424 
8425 /* Returns TBI1 value for current regime el */
8426 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8427 {
8428     TCR *tcr;
8429     uint32_t el;
8430 
8431     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8432      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8433      */
8434     mmu_idx = stage_1_mmu_idx(mmu_idx);
8435 
8436     tcr = regime_tcr(env, mmu_idx);
8437     el = regime_el(env, mmu_idx);
8438 
8439     if (el > 1) {
8440         return 0;
8441     } else {
8442         return extract64(tcr->raw_tcr, 38, 1);
8443     }
8444 }
8445 
8446 /* Return the TTBR associated with this translation regime */
8447 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8448                                    int ttbrn)
8449 {
8450     if (mmu_idx == ARMMMUIdx_S2NS) {
8451         return env->cp15.vttbr_el2;
8452     }
8453     if (ttbrn == 0) {
8454         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8455     } else {
8456         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8457     }
8458 }
8459 
8460 /* Return true if the translation regime is using LPAE format page tables */
8461 static inline bool regime_using_lpae_format(CPUARMState *env,
8462                                             ARMMMUIdx mmu_idx)
8463 {
8464     int el = regime_el(env, mmu_idx);
8465     if (el == 2 || arm_el_is_aa64(env, el)) {
8466         return true;
8467     }
8468     if (arm_feature(env, ARM_FEATURE_LPAE)
8469         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8470         return true;
8471     }
8472     return false;
8473 }
8474 
8475 /* Returns true if the stage 1 translation regime is using LPAE format page
8476  * tables. Used when raising alignment exceptions, whose FSR changes depending
8477  * on whether the long or short descriptor format is in use. */
8478 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8479 {
8480     mmu_idx = stage_1_mmu_idx(mmu_idx);
8481 
8482     return regime_using_lpae_format(env, mmu_idx);
8483 }
8484 
8485 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8486 {
8487     switch (mmu_idx) {
8488     case ARMMMUIdx_S1SE0:
8489     case ARMMMUIdx_S1NSE0:
8490     case ARMMMUIdx_MUser:
8491     case ARMMMUIdx_MSUser:
8492     case ARMMMUIdx_MUserNegPri:
8493     case ARMMMUIdx_MSUserNegPri:
8494         return true;
8495     default:
8496         return false;
8497     case ARMMMUIdx_S12NSE0:
8498     case ARMMMUIdx_S12NSE1:
8499         g_assert_not_reached();
8500     }
8501 }
8502 
8503 /* Translate section/page access permissions to page
8504  * R/W protection flags
8505  *
8506  * @env:         CPUARMState
8507  * @mmu_idx:     MMU index indicating required translation regime
8508  * @ap:          The 3-bit access permissions (AP[2:0])
8509  * @domain_prot: The 2-bit domain access permissions
8510  */
8511 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8512                                 int ap, int domain_prot)
8513 {
8514     bool is_user = regime_is_user(env, mmu_idx);
8515 
8516     if (domain_prot == 3) {
8517         return PAGE_READ | PAGE_WRITE;
8518     }
8519 
8520     switch (ap) {
8521     case 0:
8522         if (arm_feature(env, ARM_FEATURE_V7)) {
8523             return 0;
8524         }
8525         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8526         case SCTLR_S:
8527             return is_user ? 0 : PAGE_READ;
8528         case SCTLR_R:
8529             return PAGE_READ;
8530         default:
8531             return 0;
8532         }
8533     case 1:
8534         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8535     case 2:
8536         if (is_user) {
8537             return PAGE_READ;
8538         } else {
8539             return PAGE_READ | PAGE_WRITE;
8540         }
8541     case 3:
8542         return PAGE_READ | PAGE_WRITE;
8543     case 4: /* Reserved.  */
8544         return 0;
8545     case 5:
8546         return is_user ? 0 : PAGE_READ;
8547     case 6:
8548         return PAGE_READ;
8549     case 7:
8550         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8551             return 0;
8552         }
8553         return PAGE_READ;
8554     default:
8555         g_assert_not_reached();
8556     }
8557 }
8558 
8559 /* Translate section/page access permissions to page
8560  * R/W protection flags.
8561  *
8562  * @ap:      The 2-bit simple AP (AP[2:1])
8563  * @is_user: TRUE if accessing from PL0
8564  */
8565 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8566 {
8567     switch (ap) {
8568     case 0:
8569         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8570     case 1:
8571         return PAGE_READ | PAGE_WRITE;
8572     case 2:
8573         return is_user ? 0 : PAGE_READ;
8574     case 3:
8575         return PAGE_READ;
8576     default:
8577         g_assert_not_reached();
8578     }
8579 }
8580 
8581 static inline int
8582 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8583 {
8584     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8585 }
8586 
8587 /* Translate S2 section/page access permissions to protection flags
8588  *
8589  * @env:     CPUARMState
8590  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8591  * @xn:      XN (execute-never) bit
8592  */
8593 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8594 {
8595     int prot = 0;
8596 
8597     if (s2ap & 1) {
8598         prot |= PAGE_READ;
8599     }
8600     if (s2ap & 2) {
8601         prot |= PAGE_WRITE;
8602     }
8603     if (!xn) {
8604         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8605             prot |= PAGE_EXEC;
8606         }
8607     }
8608     return prot;
8609 }
8610 
8611 /* Translate section/page access permissions to protection flags
8612  *
8613  * @env:     CPUARMState
8614  * @mmu_idx: MMU index indicating required translation regime
8615  * @is_aa64: TRUE if AArch64
8616  * @ap:      The 2-bit simple AP (AP[2:1])
8617  * @ns:      NS (non-secure) bit
8618  * @xn:      XN (execute-never) bit
8619  * @pxn:     PXN (privileged execute-never) bit
8620  */
8621 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8622                       int ap, int ns, int xn, int pxn)
8623 {
8624     bool is_user = regime_is_user(env, mmu_idx);
8625     int prot_rw, user_rw;
8626     bool have_wxn;
8627     int wxn = 0;
8628 
8629     assert(mmu_idx != ARMMMUIdx_S2NS);
8630 
8631     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8632     if (is_user) {
8633         prot_rw = user_rw;
8634     } else {
8635         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8636     }
8637 
8638     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8639         return prot_rw;
8640     }
8641 
8642     /* TODO have_wxn should be replaced with
8643      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8644      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8645      * compatible processors have EL2, which is required for [U]WXN.
8646      */
8647     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8648 
8649     if (have_wxn) {
8650         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8651     }
8652 
8653     if (is_aa64) {
8654         switch (regime_el(env, mmu_idx)) {
8655         case 1:
8656             if (!is_user) {
8657                 xn = pxn || (user_rw & PAGE_WRITE);
8658             }
8659             break;
8660         case 2:
8661         case 3:
8662             break;
8663         }
8664     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8665         switch (regime_el(env, mmu_idx)) {
8666         case 1:
8667         case 3:
8668             if (is_user) {
8669                 xn = xn || !(user_rw & PAGE_READ);
8670             } else {
8671                 int uwxn = 0;
8672                 if (have_wxn) {
8673                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8674                 }
8675                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8676                      (uwxn && (user_rw & PAGE_WRITE));
8677             }
8678             break;
8679         case 2:
8680             break;
8681         }
8682     } else {
8683         xn = wxn = 0;
8684     }
8685 
8686     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8687         return prot_rw;
8688     }
8689     return prot_rw | PAGE_EXEC;
8690 }
8691 
8692 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8693                                      uint32_t *table, uint32_t address)
8694 {
8695     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8696     TCR *tcr = regime_tcr(env, mmu_idx);
8697 
8698     if (address & tcr->mask) {
8699         if (tcr->raw_tcr & TTBCR_PD1) {
8700             /* Translation table walk disabled for TTBR1 */
8701             return false;
8702         }
8703         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8704     } else {
8705         if (tcr->raw_tcr & TTBCR_PD0) {
8706             /* Translation table walk disabled for TTBR0 */
8707             return false;
8708         }
8709         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8710     }
8711     *table |= (address >> 18) & 0x3ffc;
8712     return true;
8713 }
8714 
8715 /* Translate a S1 pagetable walk through S2 if needed.  */
8716 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8717                                hwaddr addr, MemTxAttrs txattrs,
8718                                ARMMMUFaultInfo *fi)
8719 {
8720     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8721         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8722         target_ulong s2size;
8723         hwaddr s2pa;
8724         int s2prot;
8725         int ret;
8726 
8727         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8728                                  &txattrs, &s2prot, &s2size, fi, NULL);
8729         if (ret) {
8730             assert(fi->type != ARMFault_None);
8731             fi->s2addr = addr;
8732             fi->stage2 = true;
8733             fi->s1ptw = true;
8734             return ~0;
8735         }
8736         addr = s2pa;
8737     }
8738     return addr;
8739 }
8740 
8741 /* All loads done in the course of a page table walk go through here. */
8742 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8743                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8744 {
8745     ARMCPU *cpu = ARM_CPU(cs);
8746     CPUARMState *env = &cpu->env;
8747     MemTxAttrs attrs = {};
8748     MemTxResult result = MEMTX_OK;
8749     AddressSpace *as;
8750     uint32_t data;
8751 
8752     attrs.secure = is_secure;
8753     as = arm_addressspace(cs, attrs);
8754     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8755     if (fi->s1ptw) {
8756         return 0;
8757     }
8758     if (regime_translation_big_endian(env, mmu_idx)) {
8759         data = address_space_ldl_be(as, addr, attrs, &result);
8760     } else {
8761         data = address_space_ldl_le(as, addr, attrs, &result);
8762     }
8763     if (result == MEMTX_OK) {
8764         return data;
8765     }
8766     fi->type = ARMFault_SyncExternalOnWalk;
8767     fi->ea = arm_extabort_type(result);
8768     return 0;
8769 }
8770 
8771 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8772                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8773 {
8774     ARMCPU *cpu = ARM_CPU(cs);
8775     CPUARMState *env = &cpu->env;
8776     MemTxAttrs attrs = {};
8777     MemTxResult result = MEMTX_OK;
8778     AddressSpace *as;
8779     uint64_t data;
8780 
8781     attrs.secure = is_secure;
8782     as = arm_addressspace(cs, attrs);
8783     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8784     if (fi->s1ptw) {
8785         return 0;
8786     }
8787     if (regime_translation_big_endian(env, mmu_idx)) {
8788         data = address_space_ldq_be(as, addr, attrs, &result);
8789     } else {
8790         data = address_space_ldq_le(as, addr, attrs, &result);
8791     }
8792     if (result == MEMTX_OK) {
8793         return data;
8794     }
8795     fi->type = ARMFault_SyncExternalOnWalk;
8796     fi->ea = arm_extabort_type(result);
8797     return 0;
8798 }
8799 
8800 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8801                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8802                              hwaddr *phys_ptr, int *prot,
8803                              target_ulong *page_size,
8804                              ARMMMUFaultInfo *fi)
8805 {
8806     CPUState *cs = CPU(arm_env_get_cpu(env));
8807     int level = 1;
8808     uint32_t table;
8809     uint32_t desc;
8810     int type;
8811     int ap;
8812     int domain = 0;
8813     int domain_prot;
8814     hwaddr phys_addr;
8815     uint32_t dacr;
8816 
8817     /* Pagetable walk.  */
8818     /* Lookup l1 descriptor.  */
8819     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8820         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8821         fi->type = ARMFault_Translation;
8822         goto do_fault;
8823     }
8824     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8825                        mmu_idx, fi);
8826     if (fi->type != ARMFault_None) {
8827         goto do_fault;
8828     }
8829     type = (desc & 3);
8830     domain = (desc >> 5) & 0x0f;
8831     if (regime_el(env, mmu_idx) == 1) {
8832         dacr = env->cp15.dacr_ns;
8833     } else {
8834         dacr = env->cp15.dacr_s;
8835     }
8836     domain_prot = (dacr >> (domain * 2)) & 3;
8837     if (type == 0) {
8838         /* Section translation fault.  */
8839         fi->type = ARMFault_Translation;
8840         goto do_fault;
8841     }
8842     if (type != 2) {
8843         level = 2;
8844     }
8845     if (domain_prot == 0 || domain_prot == 2) {
8846         fi->type = ARMFault_Domain;
8847         goto do_fault;
8848     }
8849     if (type == 2) {
8850         /* 1Mb section.  */
8851         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8852         ap = (desc >> 10) & 3;
8853         *page_size = 1024 * 1024;
8854     } else {
8855         /* Lookup l2 entry.  */
8856         if (type == 1) {
8857             /* Coarse pagetable.  */
8858             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8859         } else {
8860             /* Fine pagetable.  */
8861             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8862         }
8863         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8864                            mmu_idx, fi);
8865         if (fi->type != ARMFault_None) {
8866             goto do_fault;
8867         }
8868         switch (desc & 3) {
8869         case 0: /* Page translation fault.  */
8870             fi->type = ARMFault_Translation;
8871             goto do_fault;
8872         case 1: /* 64k page.  */
8873             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8874             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8875             *page_size = 0x10000;
8876             break;
8877         case 2: /* 4k page.  */
8878             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8879             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8880             *page_size = 0x1000;
8881             break;
8882         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8883             if (type == 1) {
8884                 /* ARMv6/XScale extended small page format */
8885                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8886                     || arm_feature(env, ARM_FEATURE_V6)) {
8887                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8888                     *page_size = 0x1000;
8889                 } else {
8890                     /* UNPREDICTABLE in ARMv5; we choose to take a
8891                      * page translation fault.
8892                      */
8893                     fi->type = ARMFault_Translation;
8894                     goto do_fault;
8895                 }
8896             } else {
8897                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8898                 *page_size = 0x400;
8899             }
8900             ap = (desc >> 4) & 3;
8901             break;
8902         default:
8903             /* Never happens, but compiler isn't smart enough to tell.  */
8904             abort();
8905         }
8906     }
8907     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8908     *prot |= *prot ? PAGE_EXEC : 0;
8909     if (!(*prot & (1 << access_type))) {
8910         /* Access permission fault.  */
8911         fi->type = ARMFault_Permission;
8912         goto do_fault;
8913     }
8914     *phys_ptr = phys_addr;
8915     return false;
8916 do_fault:
8917     fi->domain = domain;
8918     fi->level = level;
8919     return true;
8920 }
8921 
8922 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8923                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8924                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8925                              target_ulong *page_size, ARMMMUFaultInfo *fi)
8926 {
8927     CPUState *cs = CPU(arm_env_get_cpu(env));
8928     int level = 1;
8929     uint32_t table;
8930     uint32_t desc;
8931     uint32_t xn;
8932     uint32_t pxn = 0;
8933     int type;
8934     int ap;
8935     int domain = 0;
8936     int domain_prot;
8937     hwaddr phys_addr;
8938     uint32_t dacr;
8939     bool ns;
8940 
8941     /* Pagetable walk.  */
8942     /* Lookup l1 descriptor.  */
8943     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8944         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8945         fi->type = ARMFault_Translation;
8946         goto do_fault;
8947     }
8948     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8949                        mmu_idx, fi);
8950     if (fi->type != ARMFault_None) {
8951         goto do_fault;
8952     }
8953     type = (desc & 3);
8954     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8955         /* Section translation fault, or attempt to use the encoding
8956          * which is Reserved on implementations without PXN.
8957          */
8958         fi->type = ARMFault_Translation;
8959         goto do_fault;
8960     }
8961     if ((type == 1) || !(desc & (1 << 18))) {
8962         /* Page or Section.  */
8963         domain = (desc >> 5) & 0x0f;
8964     }
8965     if (regime_el(env, mmu_idx) == 1) {
8966         dacr = env->cp15.dacr_ns;
8967     } else {
8968         dacr = env->cp15.dacr_s;
8969     }
8970     if (type == 1) {
8971         level = 2;
8972     }
8973     domain_prot = (dacr >> (domain * 2)) & 3;
8974     if (domain_prot == 0 || domain_prot == 2) {
8975         /* Section or Page domain fault */
8976         fi->type = ARMFault_Domain;
8977         goto do_fault;
8978     }
8979     if (type != 1) {
8980         if (desc & (1 << 18)) {
8981             /* Supersection.  */
8982             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8983             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8984             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8985             *page_size = 0x1000000;
8986         } else {
8987             /* Section.  */
8988             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8989             *page_size = 0x100000;
8990         }
8991         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8992         xn = desc & (1 << 4);
8993         pxn = desc & 1;
8994         ns = extract32(desc, 19, 1);
8995     } else {
8996         if (arm_feature(env, ARM_FEATURE_PXN)) {
8997             pxn = (desc >> 2) & 1;
8998         }
8999         ns = extract32(desc, 3, 1);
9000         /* Lookup l2 entry.  */
9001         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9002         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9003                            mmu_idx, fi);
9004         if (fi->type != ARMFault_None) {
9005             goto do_fault;
9006         }
9007         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9008         switch (desc & 3) {
9009         case 0: /* Page translation fault.  */
9010             fi->type = ARMFault_Translation;
9011             goto do_fault;
9012         case 1: /* 64k page.  */
9013             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9014             xn = desc & (1 << 15);
9015             *page_size = 0x10000;
9016             break;
9017         case 2: case 3: /* 4k page.  */
9018             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9019             xn = desc & 1;
9020             *page_size = 0x1000;
9021             break;
9022         default:
9023             /* Never happens, but compiler isn't smart enough to tell.  */
9024             abort();
9025         }
9026     }
9027     if (domain_prot == 3) {
9028         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9029     } else {
9030         if (pxn && !regime_is_user(env, mmu_idx)) {
9031             xn = 1;
9032         }
9033         if (xn && access_type == MMU_INST_FETCH) {
9034             fi->type = ARMFault_Permission;
9035             goto do_fault;
9036         }
9037 
9038         if (arm_feature(env, ARM_FEATURE_V6K) &&
9039                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9040             /* The simplified model uses AP[0] as an access control bit.  */
9041             if ((ap & 1) == 0) {
9042                 /* Access flag fault.  */
9043                 fi->type = ARMFault_AccessFlag;
9044                 goto do_fault;
9045             }
9046             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9047         } else {
9048             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9049         }
9050         if (*prot && !xn) {
9051             *prot |= PAGE_EXEC;
9052         }
9053         if (!(*prot & (1 << access_type))) {
9054             /* Access permission fault.  */
9055             fi->type = ARMFault_Permission;
9056             goto do_fault;
9057         }
9058     }
9059     if (ns) {
9060         /* The NS bit will (as required by the architecture) have no effect if
9061          * the CPU doesn't support TZ or this is a non-secure translation
9062          * regime, because the attribute will already be non-secure.
9063          */
9064         attrs->secure = false;
9065     }
9066     *phys_ptr = phys_addr;
9067     return false;
9068 do_fault:
9069     fi->domain = domain;
9070     fi->level = level;
9071     return true;
9072 }
9073 
9074 /*
9075  * check_s2_mmu_setup
9076  * @cpu:        ARMCPU
9077  * @is_aa64:    True if the translation regime is in AArch64 state
9078  * @startlevel: Suggested starting level
9079  * @inputsize:  Bitsize of IPAs
9080  * @stride:     Page-table stride (See the ARM ARM)
9081  *
9082  * Returns true if the suggested S2 translation parameters are OK and
9083  * false otherwise.
9084  */
9085 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9086                                int inputsize, int stride)
9087 {
9088     const int grainsize = stride + 3;
9089     int startsizecheck;
9090 
9091     /* Negative levels are never allowed.  */
9092     if (level < 0) {
9093         return false;
9094     }
9095 
9096     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9097     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9098         return false;
9099     }
9100 
9101     if (is_aa64) {
9102         CPUARMState *env = &cpu->env;
9103         unsigned int pamax = arm_pamax(cpu);
9104 
9105         switch (stride) {
9106         case 13: /* 64KB Pages.  */
9107             if (level == 0 || (level == 1 && pamax <= 42)) {
9108                 return false;
9109             }
9110             break;
9111         case 11: /* 16KB Pages.  */
9112             if (level == 0 || (level == 1 && pamax <= 40)) {
9113                 return false;
9114             }
9115             break;
9116         case 9: /* 4KB Pages.  */
9117             if (level == 0 && pamax <= 42) {
9118                 return false;
9119             }
9120             break;
9121         default:
9122             g_assert_not_reached();
9123         }
9124 
9125         /* Inputsize checks.  */
9126         if (inputsize > pamax &&
9127             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9128             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9129             return false;
9130         }
9131     } else {
9132         /* AArch32 only supports 4KB pages. Assert on that.  */
9133         assert(stride == 9);
9134 
9135         if (level == 0) {
9136             return false;
9137         }
9138     }
9139     return true;
9140 }
9141 
9142 /* Translate from the 4-bit stage 2 representation of
9143  * memory attributes (without cache-allocation hints) to
9144  * the 8-bit representation of the stage 1 MAIR registers
9145  * (which includes allocation hints).
9146  *
9147  * ref: shared/translation/attrs/S2AttrDecode()
9148  *      .../S2ConvertAttrsHints()
9149  */
9150 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9151 {
9152     uint8_t hiattr = extract32(s2attrs, 2, 2);
9153     uint8_t loattr = extract32(s2attrs, 0, 2);
9154     uint8_t hihint = 0, lohint = 0;
9155 
9156     if (hiattr != 0) { /* normal memory */
9157         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9158             hiattr = loattr = 1; /* non-cacheable */
9159         } else {
9160             if (hiattr != 1) { /* Write-through or write-back */
9161                 hihint = 3; /* RW allocate */
9162             }
9163             if (loattr != 1) { /* Write-through or write-back */
9164                 lohint = 3; /* RW allocate */
9165             }
9166         }
9167     }
9168 
9169     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9170 }
9171 
9172 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9173                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9174                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9175                                target_ulong *page_size_ptr,
9176                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9177 {
9178     ARMCPU *cpu = arm_env_get_cpu(env);
9179     CPUState *cs = CPU(cpu);
9180     /* Read an LPAE long-descriptor translation table. */
9181     ARMFaultType fault_type = ARMFault_Translation;
9182     uint32_t level;
9183     uint32_t epd = 0;
9184     int32_t t0sz, t1sz;
9185     uint32_t tg;
9186     uint64_t ttbr;
9187     int ttbr_select;
9188     hwaddr descaddr, indexmask, indexmask_grainsize;
9189     uint32_t tableattrs;
9190     target_ulong page_size;
9191     uint32_t attrs;
9192     int32_t stride = 9;
9193     int32_t addrsize;
9194     int inputsize;
9195     int32_t tbi = 0;
9196     TCR *tcr = regime_tcr(env, mmu_idx);
9197     int ap, ns, xn, pxn;
9198     uint32_t el = regime_el(env, mmu_idx);
9199     bool ttbr1_valid = true;
9200     uint64_t descaddrmask;
9201     bool aarch64 = arm_el_is_aa64(env, el);
9202 
9203     /* TODO:
9204      * This code does not handle the different format TCR for VTCR_EL2.
9205      * This code also does not support shareability levels.
9206      * Attribute and permission bit handling should also be checked when adding
9207      * support for those page table walks.
9208      */
9209     if (aarch64) {
9210         level = 0;
9211         addrsize = 64;
9212         if (el > 1) {
9213             if (mmu_idx != ARMMMUIdx_S2NS) {
9214                 tbi = extract64(tcr->raw_tcr, 20, 1);
9215             }
9216         } else {
9217             if (extract64(address, 55, 1)) {
9218                 tbi = extract64(tcr->raw_tcr, 38, 1);
9219             } else {
9220                 tbi = extract64(tcr->raw_tcr, 37, 1);
9221             }
9222         }
9223         tbi *= 8;
9224 
9225         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9226          * invalid.
9227          */
9228         if (el > 1) {
9229             ttbr1_valid = false;
9230         }
9231     } else {
9232         level = 1;
9233         addrsize = 32;
9234         /* There is no TTBR1 for EL2 */
9235         if (el == 2) {
9236             ttbr1_valid = false;
9237         }
9238     }
9239 
9240     /* Determine whether this address is in the region controlled by
9241      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9242      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9243      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9244      */
9245     if (aarch64) {
9246         /* AArch64 translation.  */
9247         t0sz = extract32(tcr->raw_tcr, 0, 6);
9248         t0sz = MIN(t0sz, 39);
9249         t0sz = MAX(t0sz, 16);
9250     } else if (mmu_idx != ARMMMUIdx_S2NS) {
9251         /* AArch32 stage 1 translation.  */
9252         t0sz = extract32(tcr->raw_tcr, 0, 3);
9253     } else {
9254         /* AArch32 stage 2 translation.  */
9255         bool sext = extract32(tcr->raw_tcr, 4, 1);
9256         bool sign = extract32(tcr->raw_tcr, 3, 1);
9257         /* Address size is 40-bit for a stage 2 translation,
9258          * and t0sz can be negative (from -8 to 7),
9259          * so we need to adjust it to use the TTBR selecting logic below.
9260          */
9261         addrsize = 40;
9262         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9263 
9264         /* If the sign-extend bit is not the same as t0sz[3], the result
9265          * is unpredictable. Flag this as a guest error.  */
9266         if (sign != sext) {
9267             qemu_log_mask(LOG_GUEST_ERROR,
9268                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9269         }
9270     }
9271     t1sz = extract32(tcr->raw_tcr, 16, 6);
9272     if (aarch64) {
9273         t1sz = MIN(t1sz, 39);
9274         t1sz = MAX(t1sz, 16);
9275     }
9276     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9277         /* there is a ttbr0 region and we are in it (high bits all zero) */
9278         ttbr_select = 0;
9279     } else if (ttbr1_valid && t1sz &&
9280                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9281         /* there is a ttbr1 region and we are in it (high bits all one) */
9282         ttbr_select = 1;
9283     } else if (!t0sz) {
9284         /* ttbr0 region is "everything not in the ttbr1 region" */
9285         ttbr_select = 0;
9286     } else if (!t1sz && ttbr1_valid) {
9287         /* ttbr1 region is "everything not in the ttbr0 region" */
9288         ttbr_select = 1;
9289     } else {
9290         /* in the gap between the two regions, this is a Translation fault */
9291         fault_type = ARMFault_Translation;
9292         goto do_fault;
9293     }
9294 
9295     /* Note that QEMU ignores shareability and cacheability attributes,
9296      * so we don't need to do anything with the SH, ORGN, IRGN fields
9297      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9298      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9299      * implement any ASID-like capability so we can ignore it (instead
9300      * we will always flush the TLB any time the ASID is changed).
9301      */
9302     if (ttbr_select == 0) {
9303         ttbr = regime_ttbr(env, mmu_idx, 0);
9304         if (el < 2) {
9305             epd = extract32(tcr->raw_tcr, 7, 1);
9306         }
9307         inputsize = addrsize - t0sz;
9308 
9309         tg = extract32(tcr->raw_tcr, 14, 2);
9310         if (tg == 1) { /* 64KB pages */
9311             stride = 13;
9312         }
9313         if (tg == 2) { /* 16KB pages */
9314             stride = 11;
9315         }
9316     } else {
9317         /* We should only be here if TTBR1 is valid */
9318         assert(ttbr1_valid);
9319 
9320         ttbr = regime_ttbr(env, mmu_idx, 1);
9321         epd = extract32(tcr->raw_tcr, 23, 1);
9322         inputsize = addrsize - t1sz;
9323 
9324         tg = extract32(tcr->raw_tcr, 30, 2);
9325         if (tg == 3)  { /* 64KB pages */
9326             stride = 13;
9327         }
9328         if (tg == 1) { /* 16KB pages */
9329             stride = 11;
9330         }
9331     }
9332 
9333     /* Here we should have set up all the parameters for the translation:
9334      * inputsize, ttbr, epd, stride, tbi
9335      */
9336 
9337     if (epd) {
9338         /* Translation table walk disabled => Translation fault on TLB miss
9339          * Note: This is always 0 on 64-bit EL2 and EL3.
9340          */
9341         goto do_fault;
9342     }
9343 
9344     if (mmu_idx != ARMMMUIdx_S2NS) {
9345         /* The starting level depends on the virtual address size (which can
9346          * be up to 48 bits) and the translation granule size. It indicates
9347          * the number of strides (stride bits at a time) needed to
9348          * consume the bits of the input address. In the pseudocode this is:
9349          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9350          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9351          * our 'stride + 3' and 'stride' is our 'stride'.
9352          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9353          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9354          * = 4 - (inputsize - 4) / stride;
9355          */
9356         level = 4 - (inputsize - 4) / stride;
9357     } else {
9358         /* For stage 2 translations the starting level is specified by the
9359          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9360          */
9361         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9362         uint32_t startlevel;
9363         bool ok;
9364 
9365         if (!aarch64 || stride == 9) {
9366             /* AArch32 or 4KB pages */
9367             startlevel = 2 - sl0;
9368         } else {
9369             /* 16KB or 64KB pages */
9370             startlevel = 3 - sl0;
9371         }
9372 
9373         /* Check that the starting level is valid. */
9374         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9375                                 inputsize, stride);
9376         if (!ok) {
9377             fault_type = ARMFault_Translation;
9378             goto do_fault;
9379         }
9380         level = startlevel;
9381     }
9382 
9383     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9384     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9385 
9386     /* Now we can extract the actual base address from the TTBR */
9387     descaddr = extract64(ttbr, 0, 48);
9388     descaddr &= ~indexmask;
9389 
9390     /* The address field in the descriptor goes up to bit 39 for ARMv7
9391      * but up to bit 47 for ARMv8, but we use the descaddrmask
9392      * up to bit 39 for AArch32, because we don't need other bits in that case
9393      * to construct next descriptor address (anyway they should be all zeroes).
9394      */
9395     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9396                    ~indexmask_grainsize;
9397 
9398     /* Secure accesses start with the page table in secure memory and
9399      * can be downgraded to non-secure at any step. Non-secure accesses
9400      * remain non-secure. We implement this by just ORing in the NSTable/NS
9401      * bits at each step.
9402      */
9403     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9404     for (;;) {
9405         uint64_t descriptor;
9406         bool nstable;
9407 
9408         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9409         descaddr &= ~7ULL;
9410         nstable = extract32(tableattrs, 4, 1);
9411         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9412         if (fi->type != ARMFault_None) {
9413             goto do_fault;
9414         }
9415 
9416         if (!(descriptor & 1) ||
9417             (!(descriptor & 2) && (level == 3))) {
9418             /* Invalid, or the Reserved level 3 encoding */
9419             goto do_fault;
9420         }
9421         descaddr = descriptor & descaddrmask;
9422 
9423         if ((descriptor & 2) && (level < 3)) {
9424             /* Table entry. The top five bits are attributes which  may
9425              * propagate down through lower levels of the table (and
9426              * which are all arranged so that 0 means "no effect", so
9427              * we can gather them up by ORing in the bits at each level).
9428              */
9429             tableattrs |= extract64(descriptor, 59, 5);
9430             level++;
9431             indexmask = indexmask_grainsize;
9432             continue;
9433         }
9434         /* Block entry at level 1 or 2, or page entry at level 3.
9435          * These are basically the same thing, although the number
9436          * of bits we pull in from the vaddr varies.
9437          */
9438         page_size = (1ULL << ((stride * (4 - level)) + 3));
9439         descaddr |= (address & (page_size - 1));
9440         /* Extract attributes from the descriptor */
9441         attrs = extract64(descriptor, 2, 10)
9442             | (extract64(descriptor, 52, 12) << 10);
9443 
9444         if (mmu_idx == ARMMMUIdx_S2NS) {
9445             /* Stage 2 table descriptors do not include any attribute fields */
9446             break;
9447         }
9448         /* Merge in attributes from table descriptors */
9449         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9450         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9451         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9452          * means "force PL1 access only", which means forcing AP[1] to 0.
9453          */
9454         if (extract32(tableattrs, 2, 1)) {
9455             attrs &= ~(1 << 4);
9456         }
9457         attrs |= nstable << 3; /* NS */
9458         break;
9459     }
9460     /* Here descaddr is the final physical address, and attributes
9461      * are all in attrs.
9462      */
9463     fault_type = ARMFault_AccessFlag;
9464     if ((attrs & (1 << 8)) == 0) {
9465         /* Access flag */
9466         goto do_fault;
9467     }
9468 
9469     ap = extract32(attrs, 4, 2);
9470     xn = extract32(attrs, 12, 1);
9471 
9472     if (mmu_idx == ARMMMUIdx_S2NS) {
9473         ns = true;
9474         *prot = get_S2prot(env, ap, xn);
9475     } else {
9476         ns = extract32(attrs, 3, 1);
9477         pxn = extract32(attrs, 11, 1);
9478         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9479     }
9480 
9481     fault_type = ARMFault_Permission;
9482     if (!(*prot & (1 << access_type))) {
9483         goto do_fault;
9484     }
9485 
9486     if (ns) {
9487         /* The NS bit will (as required by the architecture) have no effect if
9488          * the CPU doesn't support TZ or this is a non-secure translation
9489          * regime, because the attribute will already be non-secure.
9490          */
9491         txattrs->secure = false;
9492     }
9493 
9494     if (cacheattrs != NULL) {
9495         if (mmu_idx == ARMMMUIdx_S2NS) {
9496             cacheattrs->attrs = convert_stage2_attrs(env,
9497                                                      extract32(attrs, 0, 4));
9498         } else {
9499             /* Index into MAIR registers for cache attributes */
9500             uint8_t attrindx = extract32(attrs, 0, 3);
9501             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9502             assert(attrindx <= 7);
9503             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9504         }
9505         cacheattrs->shareability = extract32(attrs, 6, 2);
9506     }
9507 
9508     *phys_ptr = descaddr;
9509     *page_size_ptr = page_size;
9510     return false;
9511 
9512 do_fault:
9513     fi->type = fault_type;
9514     fi->level = level;
9515     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9516     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9517     return true;
9518 }
9519 
9520 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9521                                                 ARMMMUIdx mmu_idx,
9522                                                 int32_t address, int *prot)
9523 {
9524     if (!arm_feature(env, ARM_FEATURE_M)) {
9525         *prot = PAGE_READ | PAGE_WRITE;
9526         switch (address) {
9527         case 0xF0000000 ... 0xFFFFFFFF:
9528             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9529                 /* hivecs execing is ok */
9530                 *prot |= PAGE_EXEC;
9531             }
9532             break;
9533         case 0x00000000 ... 0x7FFFFFFF:
9534             *prot |= PAGE_EXEC;
9535             break;
9536         }
9537     } else {
9538         /* Default system address map for M profile cores.
9539          * The architecture specifies which regions are execute-never;
9540          * at the MPU level no other checks are defined.
9541          */
9542         switch (address) {
9543         case 0x00000000 ... 0x1fffffff: /* ROM */
9544         case 0x20000000 ... 0x3fffffff: /* SRAM */
9545         case 0x60000000 ... 0x7fffffff: /* RAM */
9546         case 0x80000000 ... 0x9fffffff: /* RAM */
9547             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9548             break;
9549         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9550         case 0xa0000000 ... 0xbfffffff: /* Device */
9551         case 0xc0000000 ... 0xdfffffff: /* Device */
9552         case 0xe0000000 ... 0xffffffff: /* System */
9553             *prot = PAGE_READ | PAGE_WRITE;
9554             break;
9555         default:
9556             g_assert_not_reached();
9557         }
9558     }
9559 }
9560 
9561 static bool pmsav7_use_background_region(ARMCPU *cpu,
9562                                          ARMMMUIdx mmu_idx, bool is_user)
9563 {
9564     /* Return true if we should use the default memory map as a
9565      * "background" region if there are no hits against any MPU regions.
9566      */
9567     CPUARMState *env = &cpu->env;
9568 
9569     if (is_user) {
9570         return false;
9571     }
9572 
9573     if (arm_feature(env, ARM_FEATURE_M)) {
9574         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9575             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9576     } else {
9577         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9578     }
9579 }
9580 
9581 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9582 {
9583     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9584     return arm_feature(env, ARM_FEATURE_M) &&
9585         extract32(address, 20, 12) == 0xe00;
9586 }
9587 
9588 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9589 {
9590     /* True if address is in the M profile system region
9591      * 0xe0000000 - 0xffffffff
9592      */
9593     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9594 }
9595 
9596 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9597                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9598                                  hwaddr *phys_ptr, int *prot,
9599                                  ARMMMUFaultInfo *fi)
9600 {
9601     ARMCPU *cpu = arm_env_get_cpu(env);
9602     int n;
9603     bool is_user = regime_is_user(env, mmu_idx);
9604 
9605     *phys_ptr = address;
9606     *prot = 0;
9607 
9608     if (regime_translation_disabled(env, mmu_idx) ||
9609         m_is_ppb_region(env, address)) {
9610         /* MPU disabled or M profile PPB access: use default memory map.
9611          * The other case which uses the default memory map in the
9612          * v7M ARM ARM pseudocode is exception vector reads from the vector
9613          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9614          * which always does a direct read using address_space_ldl(), rather
9615          * than going via this function, so we don't need to check that here.
9616          */
9617         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9618     } else { /* MPU enabled */
9619         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9620             /* region search */
9621             uint32_t base = env->pmsav7.drbar[n];
9622             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9623             uint32_t rmask;
9624             bool srdis = false;
9625 
9626             if (!(env->pmsav7.drsr[n] & 0x1)) {
9627                 continue;
9628             }
9629 
9630             if (!rsize) {
9631                 qemu_log_mask(LOG_GUEST_ERROR,
9632                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9633                 continue;
9634             }
9635             rsize++;
9636             rmask = (1ull << rsize) - 1;
9637 
9638             if (base & rmask) {
9639                 qemu_log_mask(LOG_GUEST_ERROR,
9640                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9641                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9642                               n, base, rmask);
9643                 continue;
9644             }
9645 
9646             if (address < base || address > base + rmask) {
9647                 continue;
9648             }
9649 
9650             /* Region matched */
9651 
9652             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9653                 int i, snd;
9654                 uint32_t srdis_mask;
9655 
9656                 rsize -= 3; /* sub region size (power of 2) */
9657                 snd = ((address - base) >> rsize) & 0x7;
9658                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9659 
9660                 srdis_mask = srdis ? 0x3 : 0x0;
9661                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9662                     /* This will check in groups of 2, 4 and then 8, whether
9663                      * the subregion bits are consistent. rsize is incremented
9664                      * back up to give the region size, considering consistent
9665                      * adjacent subregions as one region. Stop testing if rsize
9666                      * is already big enough for an entire QEMU page.
9667                      */
9668                     int snd_rounded = snd & ~(i - 1);
9669                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9670                                                      snd_rounded + 8, i);
9671                     if (srdis_mask ^ srdis_multi) {
9672                         break;
9673                     }
9674                     srdis_mask = (srdis_mask << i) | srdis_mask;
9675                     rsize++;
9676                 }
9677             }
9678             if (rsize < TARGET_PAGE_BITS) {
9679                 qemu_log_mask(LOG_UNIMP,
9680                               "DRSR[%d]: No support for MPU (sub)region size of"
9681                               " %" PRIu32 " bytes. Minimum is %d.\n",
9682                               n, (1 << rsize), TARGET_PAGE_SIZE);
9683                 continue;
9684             }
9685             if (srdis) {
9686                 continue;
9687             }
9688             break;
9689         }
9690 
9691         if (n == -1) { /* no hits */
9692             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9693                 /* background fault */
9694                 fi->type = ARMFault_Background;
9695                 return true;
9696             }
9697             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9698         } else { /* a MPU hit! */
9699             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9700             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9701 
9702             if (m_is_system_region(env, address)) {
9703                 /* System space is always execute never */
9704                 xn = 1;
9705             }
9706 
9707             if (is_user) { /* User mode AP bit decoding */
9708                 switch (ap) {
9709                 case 0:
9710                 case 1:
9711                 case 5:
9712                     break; /* no access */
9713                 case 3:
9714                     *prot |= PAGE_WRITE;
9715                     /* fall through */
9716                 case 2:
9717                 case 6:
9718                     *prot |= PAGE_READ | PAGE_EXEC;
9719                     break;
9720                 case 7:
9721                     /* for v7M, same as 6; for R profile a reserved value */
9722                     if (arm_feature(env, ARM_FEATURE_M)) {
9723                         *prot |= PAGE_READ | PAGE_EXEC;
9724                         break;
9725                     }
9726                     /* fall through */
9727                 default:
9728                     qemu_log_mask(LOG_GUEST_ERROR,
9729                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9730                                   PRIx32 "\n", n, ap);
9731                 }
9732             } else { /* Priv. mode AP bits decoding */
9733                 switch (ap) {
9734                 case 0:
9735                     break; /* no access */
9736                 case 1:
9737                 case 2:
9738                 case 3:
9739                     *prot |= PAGE_WRITE;
9740                     /* fall through */
9741                 case 5:
9742                 case 6:
9743                     *prot |= PAGE_READ | PAGE_EXEC;
9744                     break;
9745                 case 7:
9746                     /* for v7M, same as 6; for R profile a reserved value */
9747                     if (arm_feature(env, ARM_FEATURE_M)) {
9748                         *prot |= PAGE_READ | PAGE_EXEC;
9749                         break;
9750                     }
9751                     /* fall through */
9752                 default:
9753                     qemu_log_mask(LOG_GUEST_ERROR,
9754                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9755                                   PRIx32 "\n", n, ap);
9756                 }
9757             }
9758 
9759             /* execute never */
9760             if (xn) {
9761                 *prot &= ~PAGE_EXEC;
9762             }
9763         }
9764     }
9765 
9766     fi->type = ARMFault_Permission;
9767     fi->level = 1;
9768     return !(*prot & (1 << access_type));
9769 }
9770 
9771 static bool v8m_is_sau_exempt(CPUARMState *env,
9772                               uint32_t address, MMUAccessType access_type)
9773 {
9774     /* The architecture specifies that certain address ranges are
9775      * exempt from v8M SAU/IDAU checks.
9776      */
9777     return
9778         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9779         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9780         (address >= 0xe000e000 && address <= 0xe000efff) ||
9781         (address >= 0xe002e000 && address <= 0xe002efff) ||
9782         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9783         (address >= 0xe00ff000 && address <= 0xe00fffff);
9784 }
9785 
9786 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9787                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9788                                 V8M_SAttributes *sattrs)
9789 {
9790     /* Look up the security attributes for this address. Compare the
9791      * pseudocode SecurityCheck() function.
9792      * We assume the caller has zero-initialized *sattrs.
9793      */
9794     ARMCPU *cpu = arm_env_get_cpu(env);
9795     int r;
9796     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9797     int idau_region = IREGION_NOTVALID;
9798 
9799     if (cpu->idau) {
9800         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9801         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9802 
9803         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9804                    &idau_nsc);
9805     }
9806 
9807     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9808         /* 0xf0000000..0xffffffff is always S for insn fetches */
9809         return;
9810     }
9811 
9812     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9813         sattrs->ns = !regime_is_secure(env, mmu_idx);
9814         return;
9815     }
9816 
9817     if (idau_region != IREGION_NOTVALID) {
9818         sattrs->irvalid = true;
9819         sattrs->iregion = idau_region;
9820     }
9821 
9822     switch (env->sau.ctrl & 3) {
9823     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9824         break;
9825     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9826         sattrs->ns = true;
9827         break;
9828     default: /* SAU.ENABLE == 1 */
9829         for (r = 0; r < cpu->sau_sregion; r++) {
9830             if (env->sau.rlar[r] & 1) {
9831                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9832                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9833 
9834                 if (base <= address && limit >= address) {
9835                     if (sattrs->srvalid) {
9836                         /* If we hit in more than one region then we must report
9837                          * as Secure, not NS-Callable, with no valid region
9838                          * number info.
9839                          */
9840                         sattrs->ns = false;
9841                         sattrs->nsc = false;
9842                         sattrs->sregion = 0;
9843                         sattrs->srvalid = false;
9844                         break;
9845                     } else {
9846                         if (env->sau.rlar[r] & 2) {
9847                             sattrs->nsc = true;
9848                         } else {
9849                             sattrs->ns = true;
9850                         }
9851                         sattrs->srvalid = true;
9852                         sattrs->sregion = r;
9853                     }
9854                 }
9855             }
9856         }
9857 
9858         /* The IDAU will override the SAU lookup results if it specifies
9859          * higher security than the SAU does.
9860          */
9861         if (!idau_ns) {
9862             if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9863                 sattrs->ns = false;
9864                 sattrs->nsc = idau_nsc;
9865             }
9866         }
9867         break;
9868     }
9869 }
9870 
9871 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9872                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9873                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
9874                               int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9875 {
9876     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9877      * that a full phys-to-virt translation does).
9878      * mregion is (if not NULL) set to the region number which matched,
9879      * or -1 if no region number is returned (MPU off, address did not
9880      * hit a region, address hit in multiple regions).
9881      */
9882     ARMCPU *cpu = arm_env_get_cpu(env);
9883     bool is_user = regime_is_user(env, mmu_idx);
9884     uint32_t secure = regime_is_secure(env, mmu_idx);
9885     int n;
9886     int matchregion = -1;
9887     bool hit = false;
9888 
9889     *phys_ptr = address;
9890     *prot = 0;
9891     if (mregion) {
9892         *mregion = -1;
9893     }
9894 
9895     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9896      * was an exception vector read from the vector table (which is always
9897      * done using the default system address map), because those accesses
9898      * are done in arm_v7m_load_vector(), which always does a direct
9899      * read using address_space_ldl(), rather than going via this function.
9900      */
9901     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9902         hit = true;
9903     } else if (m_is_ppb_region(env, address)) {
9904         hit = true;
9905     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9906         hit = true;
9907     } else {
9908         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9909             /* region search */
9910             /* Note that the base address is bits [31:5] from the register
9911              * with bits [4:0] all zeroes, but the limit address is bits
9912              * [31:5] from the register with bits [4:0] all ones.
9913              */
9914             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9915             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9916 
9917             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9918                 /* Region disabled */
9919                 continue;
9920             }
9921 
9922             if (address < base || address > limit) {
9923                 continue;
9924             }
9925 
9926             if (hit) {
9927                 /* Multiple regions match -- always a failure (unlike
9928                  * PMSAv7 where highest-numbered-region wins)
9929                  */
9930                 fi->type = ARMFault_Permission;
9931                 fi->level = 1;
9932                 return true;
9933             }
9934 
9935             matchregion = n;
9936             hit = true;
9937 
9938             if (base & ~TARGET_PAGE_MASK) {
9939                 qemu_log_mask(LOG_UNIMP,
9940                               "MPU_RBAR[%d]: No support for MPU region base"
9941                               "address of 0x%" PRIx32 ". Minimum alignment is "
9942                               "%d\n",
9943                               n, base, TARGET_PAGE_BITS);
9944                 continue;
9945             }
9946             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9947                 qemu_log_mask(LOG_UNIMP,
9948                               "MPU_RBAR[%d]: No support for MPU region limit"
9949                               "address of 0x%" PRIx32 ". Minimum alignment is "
9950                               "%d\n",
9951                               n, limit, TARGET_PAGE_BITS);
9952                 continue;
9953             }
9954         }
9955     }
9956 
9957     if (!hit) {
9958         /* background fault */
9959         fi->type = ARMFault_Background;
9960         return true;
9961     }
9962 
9963     if (matchregion == -1) {
9964         /* hit using the background region */
9965         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9966     } else {
9967         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9968         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9969 
9970         if (m_is_system_region(env, address)) {
9971             /* System space is always execute never */
9972             xn = 1;
9973         }
9974 
9975         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9976         if (*prot && !xn) {
9977             *prot |= PAGE_EXEC;
9978         }
9979         /* We don't need to look the attribute up in the MAIR0/MAIR1
9980          * registers because that only tells us about cacheability.
9981          */
9982         if (mregion) {
9983             *mregion = matchregion;
9984         }
9985     }
9986 
9987     fi->type = ARMFault_Permission;
9988     fi->level = 1;
9989     return !(*prot & (1 << access_type));
9990 }
9991 
9992 
9993 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9994                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9995                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9996                                  int *prot, ARMMMUFaultInfo *fi)
9997 {
9998     uint32_t secure = regime_is_secure(env, mmu_idx);
9999     V8M_SAttributes sattrs = {};
10000 
10001     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10002         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10003         if (access_type == MMU_INST_FETCH) {
10004             /* Instruction fetches always use the MMU bank and the
10005              * transaction attribute determined by the fetch address,
10006              * regardless of CPU state. This is painful for QEMU
10007              * to handle, because it would mean we need to encode
10008              * into the mmu_idx not just the (user, negpri) information
10009              * for the current security state but also that for the
10010              * other security state, which would balloon the number
10011              * of mmu_idx values needed alarmingly.
10012              * Fortunately we can avoid this because it's not actually
10013              * possible to arbitrarily execute code from memory with
10014              * the wrong security attribute: it will always generate
10015              * an exception of some kind or another, apart from the
10016              * special case of an NS CPU executing an SG instruction
10017              * in S&NSC memory. So we always just fail the translation
10018              * here and sort things out in the exception handler
10019              * (including possibly emulating an SG instruction).
10020              */
10021             if (sattrs.ns != !secure) {
10022                 if (sattrs.nsc) {
10023                     fi->type = ARMFault_QEMU_NSCExec;
10024                 } else {
10025                     fi->type = ARMFault_QEMU_SFault;
10026                 }
10027                 *phys_ptr = address;
10028                 *prot = 0;
10029                 return true;
10030             }
10031         } else {
10032             /* For data accesses we always use the MMU bank indicated
10033              * by the current CPU state, but the security attributes
10034              * might downgrade a secure access to nonsecure.
10035              */
10036             if (sattrs.ns) {
10037                 txattrs->secure = false;
10038             } else if (!secure) {
10039                 /* NS access to S memory must fault.
10040                  * Architecturally we should first check whether the
10041                  * MPU information for this address indicates that we
10042                  * are doing an unaligned access to Device memory, which
10043                  * should generate a UsageFault instead. QEMU does not
10044                  * currently check for that kind of unaligned access though.
10045                  * If we added it we would need to do so as a special case
10046                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10047                  */
10048                 fi->type = ARMFault_QEMU_SFault;
10049                 *phys_ptr = address;
10050                 *prot = 0;
10051                 return true;
10052             }
10053         }
10054     }
10055 
10056     return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10057                              txattrs, prot, fi, NULL);
10058 }
10059 
10060 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10061                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10062                                  hwaddr *phys_ptr, int *prot,
10063                                  ARMMMUFaultInfo *fi)
10064 {
10065     int n;
10066     uint32_t mask;
10067     uint32_t base;
10068     bool is_user = regime_is_user(env, mmu_idx);
10069 
10070     if (regime_translation_disabled(env, mmu_idx)) {
10071         /* MPU disabled.  */
10072         *phys_ptr = address;
10073         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10074         return false;
10075     }
10076 
10077     *phys_ptr = address;
10078     for (n = 7; n >= 0; n--) {
10079         base = env->cp15.c6_region[n];
10080         if ((base & 1) == 0) {
10081             continue;
10082         }
10083         mask = 1 << ((base >> 1) & 0x1f);
10084         /* Keep this shift separate from the above to avoid an
10085            (undefined) << 32.  */
10086         mask = (mask << 1) - 1;
10087         if (((base ^ address) & ~mask) == 0) {
10088             break;
10089         }
10090     }
10091     if (n < 0) {
10092         fi->type = ARMFault_Background;
10093         return true;
10094     }
10095 
10096     if (access_type == MMU_INST_FETCH) {
10097         mask = env->cp15.pmsav5_insn_ap;
10098     } else {
10099         mask = env->cp15.pmsav5_data_ap;
10100     }
10101     mask = (mask >> (n * 4)) & 0xf;
10102     switch (mask) {
10103     case 0:
10104         fi->type = ARMFault_Permission;
10105         fi->level = 1;
10106         return true;
10107     case 1:
10108         if (is_user) {
10109             fi->type = ARMFault_Permission;
10110             fi->level = 1;
10111             return true;
10112         }
10113         *prot = PAGE_READ | PAGE_WRITE;
10114         break;
10115     case 2:
10116         *prot = PAGE_READ;
10117         if (!is_user) {
10118             *prot |= PAGE_WRITE;
10119         }
10120         break;
10121     case 3:
10122         *prot = PAGE_READ | PAGE_WRITE;
10123         break;
10124     case 5:
10125         if (is_user) {
10126             fi->type = ARMFault_Permission;
10127             fi->level = 1;
10128             return true;
10129         }
10130         *prot = PAGE_READ;
10131         break;
10132     case 6:
10133         *prot = PAGE_READ;
10134         break;
10135     default:
10136         /* Bad permission.  */
10137         fi->type = ARMFault_Permission;
10138         fi->level = 1;
10139         return true;
10140     }
10141     *prot |= PAGE_EXEC;
10142     return false;
10143 }
10144 
10145 /* Combine either inner or outer cacheability attributes for normal
10146  * memory, according to table D4-42 and pseudocode procedure
10147  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10148  *
10149  * NB: only stage 1 includes allocation hints (RW bits), leading to
10150  * some asymmetry.
10151  */
10152 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10153 {
10154     if (s1 == 4 || s2 == 4) {
10155         /* non-cacheable has precedence */
10156         return 4;
10157     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10158         /* stage 1 write-through takes precedence */
10159         return s1;
10160     } else if (extract32(s2, 2, 2) == 2) {
10161         /* stage 2 write-through takes precedence, but the allocation hint
10162          * is still taken from stage 1
10163          */
10164         return (2 << 2) | extract32(s1, 0, 2);
10165     } else { /* write-back */
10166         return s1;
10167     }
10168 }
10169 
10170 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10171  * and CombineS1S2Desc()
10172  *
10173  * @s1:      Attributes from stage 1 walk
10174  * @s2:      Attributes from stage 2 walk
10175  */
10176 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10177 {
10178     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10179     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10180     ARMCacheAttrs ret;
10181 
10182     /* Combine shareability attributes (table D4-43) */
10183     if (s1.shareability == 2 || s2.shareability == 2) {
10184         /* if either are outer-shareable, the result is outer-shareable */
10185         ret.shareability = 2;
10186     } else if (s1.shareability == 3 || s2.shareability == 3) {
10187         /* if either are inner-shareable, the result is inner-shareable */
10188         ret.shareability = 3;
10189     } else {
10190         /* both non-shareable */
10191         ret.shareability = 0;
10192     }
10193 
10194     /* Combine memory type and cacheability attributes */
10195     if (s1hi == 0 || s2hi == 0) {
10196         /* Device has precedence over normal */
10197         if (s1lo == 0 || s2lo == 0) {
10198             /* nGnRnE has precedence over anything */
10199             ret.attrs = 0;
10200         } else if (s1lo == 4 || s2lo == 4) {
10201             /* non-Reordering has precedence over Reordering */
10202             ret.attrs = 4;  /* nGnRE */
10203         } else if (s1lo == 8 || s2lo == 8) {
10204             /* non-Gathering has precedence over Gathering */
10205             ret.attrs = 8;  /* nGRE */
10206         } else {
10207             ret.attrs = 0xc; /* GRE */
10208         }
10209 
10210         /* Any location for which the resultant memory type is any
10211          * type of Device memory is always treated as Outer Shareable.
10212          */
10213         ret.shareability = 2;
10214     } else { /* Normal memory */
10215         /* Outer/inner cacheability combine independently */
10216         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10217                   | combine_cacheattr_nibble(s1lo, s2lo);
10218 
10219         if (ret.attrs == 0x44) {
10220             /* Any location for which the resultant memory type is Normal
10221              * Inner Non-cacheable, Outer Non-cacheable is always treated
10222              * as Outer Shareable.
10223              */
10224             ret.shareability = 2;
10225         }
10226     }
10227 
10228     return ret;
10229 }
10230 
10231 
10232 /* get_phys_addr - get the physical address for this virtual address
10233  *
10234  * Find the physical address corresponding to the given virtual address,
10235  * by doing a translation table walk on MMU based systems or using the
10236  * MPU state on MPU based systems.
10237  *
10238  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10239  * prot and page_size may not be filled in, and the populated fsr value provides
10240  * information on why the translation aborted, in the format of a
10241  * DFSR/IFSR fault register, with the following caveats:
10242  *  * we honour the short vs long DFSR format differences.
10243  *  * the WnR bit is never set (the caller must do this).
10244  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10245  *    value.
10246  *
10247  * @env: CPUARMState
10248  * @address: virtual address to get physical address for
10249  * @access_type: 0 for read, 1 for write, 2 for execute
10250  * @mmu_idx: MMU index indicating required translation regime
10251  * @phys_ptr: set to the physical address corresponding to the virtual address
10252  * @attrs: set to the memory transaction attributes to use
10253  * @prot: set to the permissions for the page containing phys_ptr
10254  * @page_size: set to the size of the page containing phys_ptr
10255  * @fi: set to fault info if the translation fails
10256  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10257  */
10258 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10259                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
10260                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10261                           target_ulong *page_size,
10262                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10263 {
10264     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10265         /* Call ourselves recursively to do the stage 1 and then stage 2
10266          * translations.
10267          */
10268         if (arm_feature(env, ARM_FEATURE_EL2)) {
10269             hwaddr ipa;
10270             int s2_prot;
10271             int ret;
10272             ARMCacheAttrs cacheattrs2 = {};
10273 
10274             ret = get_phys_addr(env, address, access_type,
10275                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10276                                 prot, page_size, fi, cacheattrs);
10277 
10278             /* If S1 fails or S2 is disabled, return early.  */
10279             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10280                 *phys_ptr = ipa;
10281                 return ret;
10282             }
10283 
10284             /* S1 is done. Now do S2 translation.  */
10285             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10286                                      phys_ptr, attrs, &s2_prot,
10287                                      page_size, fi,
10288                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10289             fi->s2addr = ipa;
10290             /* Combine the S1 and S2 perms.  */
10291             *prot &= s2_prot;
10292 
10293             /* Combine the S1 and S2 cache attributes, if needed */
10294             if (!ret && cacheattrs != NULL) {
10295                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10296             }
10297 
10298             return ret;
10299         } else {
10300             /*
10301              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10302              */
10303             mmu_idx = stage_1_mmu_idx(mmu_idx);
10304         }
10305     }
10306 
10307     /* The page table entries may downgrade secure to non-secure, but
10308      * cannot upgrade an non-secure translation regime's attributes
10309      * to secure.
10310      */
10311     attrs->secure = regime_is_secure(env, mmu_idx);
10312     attrs->user = regime_is_user(env, mmu_idx);
10313 
10314     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10315      * In v7 and earlier it affects all stage 1 translations.
10316      */
10317     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10318         && !arm_feature(env, ARM_FEATURE_V8)) {
10319         if (regime_el(env, mmu_idx) == 3) {
10320             address += env->cp15.fcseidr_s;
10321         } else {
10322             address += env->cp15.fcseidr_ns;
10323         }
10324     }
10325 
10326     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10327         bool ret;
10328         *page_size = TARGET_PAGE_SIZE;
10329 
10330         if (arm_feature(env, ARM_FEATURE_V8)) {
10331             /* PMSAv8 */
10332             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10333                                        phys_ptr, attrs, prot, fi);
10334         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10335             /* PMSAv7 */
10336             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10337                                        phys_ptr, prot, fi);
10338         } else {
10339             /* Pre-v7 MPU */
10340             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10341                                        phys_ptr, prot, fi);
10342         }
10343         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10344                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10345                       access_type == MMU_DATA_LOAD ? "reading" :
10346                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10347                       (uint32_t)address, mmu_idx,
10348                       ret ? "Miss" : "Hit",
10349                       *prot & PAGE_READ ? 'r' : '-',
10350                       *prot & PAGE_WRITE ? 'w' : '-',
10351                       *prot & PAGE_EXEC ? 'x' : '-');
10352 
10353         return ret;
10354     }
10355 
10356     /* Definitely a real MMU, not an MPU */
10357 
10358     if (regime_translation_disabled(env, mmu_idx)) {
10359         /* MMU disabled. */
10360         *phys_ptr = address;
10361         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10362         *page_size = TARGET_PAGE_SIZE;
10363         return 0;
10364     }
10365 
10366     if (regime_using_lpae_format(env, mmu_idx)) {
10367         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10368                                   phys_ptr, attrs, prot, page_size,
10369                                   fi, cacheattrs);
10370     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10371         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10372                                 phys_ptr, attrs, prot, page_size, fi);
10373     } else {
10374         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10375                                     phys_ptr, prot, page_size, fi);
10376     }
10377 }
10378 
10379 /* Walk the page table and (if the mapping exists) add the page
10380  * to the TLB. Return false on success, or true on failure. Populate
10381  * fsr with ARM DFSR/IFSR fault register format value on failure.
10382  */
10383 bool arm_tlb_fill(CPUState *cs, vaddr address,
10384                   MMUAccessType access_type, int mmu_idx,
10385                   ARMMMUFaultInfo *fi)
10386 {
10387     ARMCPU *cpu = ARM_CPU(cs);
10388     CPUARMState *env = &cpu->env;
10389     hwaddr phys_addr;
10390     target_ulong page_size;
10391     int prot;
10392     int ret;
10393     MemTxAttrs attrs = {};
10394 
10395     ret = get_phys_addr(env, address, access_type,
10396                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10397                         &attrs, &prot, &page_size, fi, NULL);
10398     if (!ret) {
10399         /* Map a single [sub]page.  */
10400         phys_addr &= TARGET_PAGE_MASK;
10401         address &= TARGET_PAGE_MASK;
10402         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10403                                 prot, mmu_idx, page_size);
10404         return 0;
10405     }
10406 
10407     return ret;
10408 }
10409 
10410 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10411                                          MemTxAttrs *attrs)
10412 {
10413     ARMCPU *cpu = ARM_CPU(cs);
10414     CPUARMState *env = &cpu->env;
10415     hwaddr phys_addr;
10416     target_ulong page_size;
10417     int prot;
10418     bool ret;
10419     ARMMMUFaultInfo fi = {};
10420     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10421 
10422     *attrs = (MemTxAttrs) {};
10423 
10424     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10425                         attrs, &prot, &page_size, &fi, NULL);
10426 
10427     if (ret) {
10428         return -1;
10429     }
10430     return phys_addr;
10431 }
10432 
10433 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10434 {
10435     uint32_t mask;
10436     unsigned el = arm_current_el(env);
10437 
10438     /* First handle registers which unprivileged can read */
10439 
10440     switch (reg) {
10441     case 0 ... 7: /* xPSR sub-fields */
10442         mask = 0;
10443         if ((reg & 1) && el) {
10444             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10445         }
10446         if (!(reg & 4)) {
10447             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10448         }
10449         /* EPSR reads as zero */
10450         return xpsr_read(env) & mask;
10451         break;
10452     case 20: /* CONTROL */
10453         return env->v7m.control[env->v7m.secure];
10454     case 0x94: /* CONTROL_NS */
10455         /* We have to handle this here because unprivileged Secure code
10456          * can read the NS CONTROL register.
10457          */
10458         if (!env->v7m.secure) {
10459             return 0;
10460         }
10461         return env->v7m.control[M_REG_NS];
10462     }
10463 
10464     if (el == 0) {
10465         return 0; /* unprivileged reads others as zero */
10466     }
10467 
10468     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10469         switch (reg) {
10470         case 0x88: /* MSP_NS */
10471             if (!env->v7m.secure) {
10472                 return 0;
10473             }
10474             return env->v7m.other_ss_msp;
10475         case 0x89: /* PSP_NS */
10476             if (!env->v7m.secure) {
10477                 return 0;
10478             }
10479             return env->v7m.other_ss_psp;
10480         case 0x8a: /* MSPLIM_NS */
10481             if (!env->v7m.secure) {
10482                 return 0;
10483             }
10484             return env->v7m.msplim[M_REG_NS];
10485         case 0x8b: /* PSPLIM_NS */
10486             if (!env->v7m.secure) {
10487                 return 0;
10488             }
10489             return env->v7m.psplim[M_REG_NS];
10490         case 0x90: /* PRIMASK_NS */
10491             if (!env->v7m.secure) {
10492                 return 0;
10493             }
10494             return env->v7m.primask[M_REG_NS];
10495         case 0x91: /* BASEPRI_NS */
10496             if (!env->v7m.secure) {
10497                 return 0;
10498             }
10499             return env->v7m.basepri[M_REG_NS];
10500         case 0x93: /* FAULTMASK_NS */
10501             if (!env->v7m.secure) {
10502                 return 0;
10503             }
10504             return env->v7m.faultmask[M_REG_NS];
10505         case 0x98: /* SP_NS */
10506         {
10507             /* This gives the non-secure SP selected based on whether we're
10508              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10509              */
10510             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10511 
10512             if (!env->v7m.secure) {
10513                 return 0;
10514             }
10515             if (!arm_v7m_is_handler_mode(env) && spsel) {
10516                 return env->v7m.other_ss_psp;
10517             } else {
10518                 return env->v7m.other_ss_msp;
10519             }
10520         }
10521         default:
10522             break;
10523         }
10524     }
10525 
10526     switch (reg) {
10527     case 8: /* MSP */
10528         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10529     case 9: /* PSP */
10530         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10531     case 10: /* MSPLIM */
10532         if (!arm_feature(env, ARM_FEATURE_V8)) {
10533             goto bad_reg;
10534         }
10535         return env->v7m.msplim[env->v7m.secure];
10536     case 11: /* PSPLIM */
10537         if (!arm_feature(env, ARM_FEATURE_V8)) {
10538             goto bad_reg;
10539         }
10540         return env->v7m.psplim[env->v7m.secure];
10541     case 16: /* PRIMASK */
10542         return env->v7m.primask[env->v7m.secure];
10543     case 17: /* BASEPRI */
10544     case 18: /* BASEPRI_MAX */
10545         return env->v7m.basepri[env->v7m.secure];
10546     case 19: /* FAULTMASK */
10547         return env->v7m.faultmask[env->v7m.secure];
10548     default:
10549     bad_reg:
10550         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10551                                        " register %d\n", reg);
10552         return 0;
10553     }
10554 }
10555 
10556 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10557 {
10558     /* We're passed bits [11..0] of the instruction; extract
10559      * SYSm and the mask bits.
10560      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10561      * we choose to treat them as if the mask bits were valid.
10562      * NB that the pseudocode 'mask' variable is bits [11..10],
10563      * whereas ours is [11..8].
10564      */
10565     uint32_t mask = extract32(maskreg, 8, 4);
10566     uint32_t reg = extract32(maskreg, 0, 8);
10567 
10568     if (arm_current_el(env) == 0 && reg > 7) {
10569         /* only xPSR sub-fields may be written by unprivileged */
10570         return;
10571     }
10572 
10573     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10574         switch (reg) {
10575         case 0x88: /* MSP_NS */
10576             if (!env->v7m.secure) {
10577                 return;
10578             }
10579             env->v7m.other_ss_msp = val;
10580             return;
10581         case 0x89: /* PSP_NS */
10582             if (!env->v7m.secure) {
10583                 return;
10584             }
10585             env->v7m.other_ss_psp = val;
10586             return;
10587         case 0x8a: /* MSPLIM_NS */
10588             if (!env->v7m.secure) {
10589                 return;
10590             }
10591             env->v7m.msplim[M_REG_NS] = val & ~7;
10592             return;
10593         case 0x8b: /* PSPLIM_NS */
10594             if (!env->v7m.secure) {
10595                 return;
10596             }
10597             env->v7m.psplim[M_REG_NS] = val & ~7;
10598             return;
10599         case 0x90: /* PRIMASK_NS */
10600             if (!env->v7m.secure) {
10601                 return;
10602             }
10603             env->v7m.primask[M_REG_NS] = val & 1;
10604             return;
10605         case 0x91: /* BASEPRI_NS */
10606             if (!env->v7m.secure) {
10607                 return;
10608             }
10609             env->v7m.basepri[M_REG_NS] = val & 0xff;
10610             return;
10611         case 0x93: /* FAULTMASK_NS */
10612             if (!env->v7m.secure) {
10613                 return;
10614             }
10615             env->v7m.faultmask[M_REG_NS] = val & 1;
10616             return;
10617         case 0x94: /* CONTROL_NS */
10618             if (!env->v7m.secure) {
10619                 return;
10620             }
10621             write_v7m_control_spsel_for_secstate(env,
10622                                                  val & R_V7M_CONTROL_SPSEL_MASK,
10623                                                  M_REG_NS);
10624             env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10625             env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10626             return;
10627         case 0x98: /* SP_NS */
10628         {
10629             /* This gives the non-secure SP selected based on whether we're
10630              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10631              */
10632             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10633 
10634             if (!env->v7m.secure) {
10635                 return;
10636             }
10637             if (!arm_v7m_is_handler_mode(env) && spsel) {
10638                 env->v7m.other_ss_psp = val;
10639             } else {
10640                 env->v7m.other_ss_msp = val;
10641             }
10642             return;
10643         }
10644         default:
10645             break;
10646         }
10647     }
10648 
10649     switch (reg) {
10650     case 0 ... 7: /* xPSR sub-fields */
10651         /* only APSR is actually writable */
10652         if (!(reg & 4)) {
10653             uint32_t apsrmask = 0;
10654 
10655             if (mask & 8) {
10656                 apsrmask |= XPSR_NZCV | XPSR_Q;
10657             }
10658             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10659                 apsrmask |= XPSR_GE;
10660             }
10661             xpsr_write(env, val, apsrmask);
10662         }
10663         break;
10664     case 8: /* MSP */
10665         if (v7m_using_psp(env)) {
10666             env->v7m.other_sp = val;
10667         } else {
10668             env->regs[13] = val;
10669         }
10670         break;
10671     case 9: /* PSP */
10672         if (v7m_using_psp(env)) {
10673             env->regs[13] = val;
10674         } else {
10675             env->v7m.other_sp = val;
10676         }
10677         break;
10678     case 10: /* MSPLIM */
10679         if (!arm_feature(env, ARM_FEATURE_V8)) {
10680             goto bad_reg;
10681         }
10682         env->v7m.msplim[env->v7m.secure] = val & ~7;
10683         break;
10684     case 11: /* PSPLIM */
10685         if (!arm_feature(env, ARM_FEATURE_V8)) {
10686             goto bad_reg;
10687         }
10688         env->v7m.psplim[env->v7m.secure] = val & ~7;
10689         break;
10690     case 16: /* PRIMASK */
10691         env->v7m.primask[env->v7m.secure] = val & 1;
10692         break;
10693     case 17: /* BASEPRI */
10694         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10695         break;
10696     case 18: /* BASEPRI_MAX */
10697         val &= 0xff;
10698         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10699                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10700             env->v7m.basepri[env->v7m.secure] = val;
10701         }
10702         break;
10703     case 19: /* FAULTMASK */
10704         env->v7m.faultmask[env->v7m.secure] = val & 1;
10705         break;
10706     case 20: /* CONTROL */
10707         /* Writing to the SPSEL bit only has an effect if we are in
10708          * thread mode; other bits can be updated by any privileged code.
10709          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10710          * env->v7m.control, so we only need update the others.
10711          * For v7M, we must just ignore explicit writes to SPSEL in handler
10712          * mode; for v8M the write is permitted but will have no effect.
10713          */
10714         if (arm_feature(env, ARM_FEATURE_V8) ||
10715             !arm_v7m_is_handler_mode(env)) {
10716             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10717         }
10718         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10719         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10720         break;
10721     default:
10722     bad_reg:
10723         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10724                                        " register %d\n", reg);
10725         return;
10726     }
10727 }
10728 
10729 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10730 {
10731     /* Implement the TT instruction. op is bits [7:6] of the insn. */
10732     bool forceunpriv = op & 1;
10733     bool alt = op & 2;
10734     V8M_SAttributes sattrs = {};
10735     uint32_t tt_resp;
10736     bool r, rw, nsr, nsrw, mrvalid;
10737     int prot;
10738     ARMMMUFaultInfo fi = {};
10739     MemTxAttrs attrs = {};
10740     hwaddr phys_addr;
10741     ARMMMUIdx mmu_idx;
10742     uint32_t mregion;
10743     bool targetpriv;
10744     bool targetsec = env->v7m.secure;
10745 
10746     /* Work out what the security state and privilege level we're
10747      * interested in is...
10748      */
10749     if (alt) {
10750         targetsec = !targetsec;
10751     }
10752 
10753     if (forceunpriv) {
10754         targetpriv = false;
10755     } else {
10756         targetpriv = arm_v7m_is_handler_mode(env) ||
10757             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10758     }
10759 
10760     /* ...and then figure out which MMU index this is */
10761     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10762 
10763     /* We know that the MPU and SAU don't care about the access type
10764      * for our purposes beyond that we don't want to claim to be
10765      * an insn fetch, so we arbitrarily call this a read.
10766      */
10767 
10768     /* MPU region info only available for privileged or if
10769      * inspecting the other MPU state.
10770      */
10771     if (arm_current_el(env) != 0 || alt) {
10772         /* We can ignore the return value as prot is always set */
10773         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10774                           &phys_addr, &attrs, &prot, &fi, &mregion);
10775         if (mregion == -1) {
10776             mrvalid = false;
10777             mregion = 0;
10778         } else {
10779             mrvalid = true;
10780         }
10781         r = prot & PAGE_READ;
10782         rw = prot & PAGE_WRITE;
10783     } else {
10784         r = false;
10785         rw = false;
10786         mrvalid = false;
10787         mregion = 0;
10788     }
10789 
10790     if (env->v7m.secure) {
10791         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10792         nsr = sattrs.ns && r;
10793         nsrw = sattrs.ns && rw;
10794     } else {
10795         sattrs.ns = true;
10796         nsr = false;
10797         nsrw = false;
10798     }
10799 
10800     tt_resp = (sattrs.iregion << 24) |
10801         (sattrs.irvalid << 23) |
10802         ((!sattrs.ns) << 22) |
10803         (nsrw << 21) |
10804         (nsr << 20) |
10805         (rw << 19) |
10806         (r << 18) |
10807         (sattrs.srvalid << 17) |
10808         (mrvalid << 16) |
10809         (sattrs.sregion << 8) |
10810         mregion;
10811 
10812     return tt_resp;
10813 }
10814 
10815 #endif
10816 
10817 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10818 {
10819     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10820      * Note that we do not implement the (architecturally mandated)
10821      * alignment fault for attempts to use this on Device memory
10822      * (which matches the usual QEMU behaviour of not implementing either
10823      * alignment faults or any memory attribute handling).
10824      */
10825 
10826     ARMCPU *cpu = arm_env_get_cpu(env);
10827     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10828     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10829 
10830 #ifndef CONFIG_USER_ONLY
10831     {
10832         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10833          * the block size so we might have to do more than one TLB lookup.
10834          * We know that in fact for any v8 CPU the page size is at least 4K
10835          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10836          * 1K as an artefact of legacy v5 subpage support being present in the
10837          * same QEMU executable.
10838          */
10839         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10840         void *hostaddr[maxidx];
10841         int try, i;
10842         unsigned mmu_idx = cpu_mmu_index(env, false);
10843         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10844 
10845         for (try = 0; try < 2; try++) {
10846 
10847             for (i = 0; i < maxidx; i++) {
10848                 hostaddr[i] = tlb_vaddr_to_host(env,
10849                                                 vaddr + TARGET_PAGE_SIZE * i,
10850                                                 1, mmu_idx);
10851                 if (!hostaddr[i]) {
10852                     break;
10853                 }
10854             }
10855             if (i == maxidx) {
10856                 /* If it's all in the TLB it's fair game for just writing to;
10857                  * we know we don't need to update dirty status, etc.
10858                  */
10859                 for (i = 0; i < maxidx - 1; i++) {
10860                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10861                 }
10862                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10863                 return;
10864             }
10865             /* OK, try a store and see if we can populate the tlb. This
10866              * might cause an exception if the memory isn't writable,
10867              * in which case we will longjmp out of here. We must for
10868              * this purpose use the actual register value passed to us
10869              * so that we get the fault address right.
10870              */
10871             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10872             /* Now we can populate the other TLB entries, if any */
10873             for (i = 0; i < maxidx; i++) {
10874                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10875                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10876                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10877                 }
10878             }
10879         }
10880 
10881         /* Slow path (probably attempt to do this to an I/O device or
10882          * similar, or clearing of a block of code we have translations
10883          * cached for). Just do a series of byte writes as the architecture
10884          * demands. It's not worth trying to use a cpu_physical_memory_map(),
10885          * memset(), unmap() sequence here because:
10886          *  + we'd need to account for the blocksize being larger than a page
10887          *  + the direct-RAM access case is almost always going to be dealt
10888          *    with in the fastpath code above, so there's no speed benefit
10889          *  + we would have to deal with the map returning NULL because the
10890          *    bounce buffer was in use
10891          */
10892         for (i = 0; i < blocklen; i++) {
10893             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10894         }
10895     }
10896 #else
10897     memset(g2h(vaddr), 0, blocklen);
10898 #endif
10899 }
10900 
10901 /* Note that signed overflow is undefined in C.  The following routines are
10902    careful to use unsigned types where modulo arithmetic is required.
10903    Failure to do so _will_ break on newer gcc.  */
10904 
10905 /* Signed saturating arithmetic.  */
10906 
10907 /* Perform 16-bit signed saturating addition.  */
10908 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10909 {
10910     uint16_t res;
10911 
10912     res = a + b;
10913     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10914         if (a & 0x8000)
10915             res = 0x8000;
10916         else
10917             res = 0x7fff;
10918     }
10919     return res;
10920 }
10921 
10922 /* Perform 8-bit signed saturating addition.  */
10923 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10924 {
10925     uint8_t res;
10926 
10927     res = a + b;
10928     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10929         if (a & 0x80)
10930             res = 0x80;
10931         else
10932             res = 0x7f;
10933     }
10934     return res;
10935 }
10936 
10937 /* Perform 16-bit signed saturating subtraction.  */
10938 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10939 {
10940     uint16_t res;
10941 
10942     res = a - b;
10943     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10944         if (a & 0x8000)
10945             res = 0x8000;
10946         else
10947             res = 0x7fff;
10948     }
10949     return res;
10950 }
10951 
10952 /* Perform 8-bit signed saturating subtraction.  */
10953 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10954 {
10955     uint8_t res;
10956 
10957     res = a - b;
10958     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10959         if (a & 0x80)
10960             res = 0x80;
10961         else
10962             res = 0x7f;
10963     }
10964     return res;
10965 }
10966 
10967 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10968 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10969 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10970 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10971 #define PFX q
10972 
10973 #include "op_addsub.h"
10974 
10975 /* Unsigned saturating arithmetic.  */
10976 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10977 {
10978     uint16_t res;
10979     res = a + b;
10980     if (res < a)
10981         res = 0xffff;
10982     return res;
10983 }
10984 
10985 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10986 {
10987     if (a > b)
10988         return a - b;
10989     else
10990         return 0;
10991 }
10992 
10993 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10994 {
10995     uint8_t res;
10996     res = a + b;
10997     if (res < a)
10998         res = 0xff;
10999     return res;
11000 }
11001 
11002 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11003 {
11004     if (a > b)
11005         return a - b;
11006     else
11007         return 0;
11008 }
11009 
11010 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11011 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11012 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11013 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11014 #define PFX uq
11015 
11016 #include "op_addsub.h"
11017 
11018 /* Signed modulo arithmetic.  */
11019 #define SARITH16(a, b, n, op) do { \
11020     int32_t sum; \
11021     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11022     RESULT(sum, n, 16); \
11023     if (sum >= 0) \
11024         ge |= 3 << (n * 2); \
11025     } while(0)
11026 
11027 #define SARITH8(a, b, n, op) do { \
11028     int32_t sum; \
11029     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11030     RESULT(sum, n, 8); \
11031     if (sum >= 0) \
11032         ge |= 1 << n; \
11033     } while(0)
11034 
11035 
11036 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11037 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11038 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11039 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11040 #define PFX s
11041 #define ARITH_GE
11042 
11043 #include "op_addsub.h"
11044 
11045 /* Unsigned modulo arithmetic.  */
11046 #define ADD16(a, b, n) do { \
11047     uint32_t sum; \
11048     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11049     RESULT(sum, n, 16); \
11050     if ((sum >> 16) == 1) \
11051         ge |= 3 << (n * 2); \
11052     } while(0)
11053 
11054 #define ADD8(a, b, n) do { \
11055     uint32_t sum; \
11056     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11057     RESULT(sum, n, 8); \
11058     if ((sum >> 8) == 1) \
11059         ge |= 1 << n; \
11060     } while(0)
11061 
11062 #define SUB16(a, b, n) do { \
11063     uint32_t sum; \
11064     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11065     RESULT(sum, n, 16); \
11066     if ((sum >> 16) == 0) \
11067         ge |= 3 << (n * 2); \
11068     } while(0)
11069 
11070 #define SUB8(a, b, n) do { \
11071     uint32_t sum; \
11072     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11073     RESULT(sum, n, 8); \
11074     if ((sum >> 8) == 0) \
11075         ge |= 1 << n; \
11076     } while(0)
11077 
11078 #define PFX u
11079 #define ARITH_GE
11080 
11081 #include "op_addsub.h"
11082 
11083 /* Halved signed arithmetic.  */
11084 #define ADD16(a, b, n) \
11085   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11086 #define SUB16(a, b, n) \
11087   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11088 #define ADD8(a, b, n) \
11089   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11090 #define SUB8(a, b, n) \
11091   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11092 #define PFX sh
11093 
11094 #include "op_addsub.h"
11095 
11096 /* Halved unsigned arithmetic.  */
11097 #define ADD16(a, b, n) \
11098   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11099 #define SUB16(a, b, n) \
11100   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11101 #define ADD8(a, b, n) \
11102   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11103 #define SUB8(a, b, n) \
11104   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11105 #define PFX uh
11106 
11107 #include "op_addsub.h"
11108 
11109 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11110 {
11111     if (a > b)
11112         return a - b;
11113     else
11114         return b - a;
11115 }
11116 
11117 /* Unsigned sum of absolute byte differences.  */
11118 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11119 {
11120     uint32_t sum;
11121     sum = do_usad(a, b);
11122     sum += do_usad(a >> 8, b >> 8);
11123     sum += do_usad(a >> 16, b >>16);
11124     sum += do_usad(a >> 24, b >> 24);
11125     return sum;
11126 }
11127 
11128 /* For ARMv6 SEL instruction.  */
11129 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11130 {
11131     uint32_t mask;
11132 
11133     mask = 0;
11134     if (flags & 1)
11135         mask |= 0xff;
11136     if (flags & 2)
11137         mask |= 0xff00;
11138     if (flags & 4)
11139         mask |= 0xff0000;
11140     if (flags & 8)
11141         mask |= 0xff000000;
11142     return (a & mask) | (b & ~mask);
11143 }
11144 
11145 /* VFP support.  We follow the convention used for VFP instructions:
11146    Single precision routines have a "s" suffix, double precision a
11147    "d" suffix.  */
11148 
11149 /* Convert host exception flags to vfp form.  */
11150 static inline int vfp_exceptbits_from_host(int host_bits)
11151 {
11152     int target_bits = 0;
11153 
11154     if (host_bits & float_flag_invalid)
11155         target_bits |= 1;
11156     if (host_bits & float_flag_divbyzero)
11157         target_bits |= 2;
11158     if (host_bits & float_flag_overflow)
11159         target_bits |= 4;
11160     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11161         target_bits |= 8;
11162     if (host_bits & float_flag_inexact)
11163         target_bits |= 0x10;
11164     if (host_bits & float_flag_input_denormal)
11165         target_bits |= 0x80;
11166     return target_bits;
11167 }
11168 
11169 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11170 {
11171     int i;
11172     uint32_t fpscr;
11173 
11174     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11175             | (env->vfp.vec_len << 16)
11176             | (env->vfp.vec_stride << 20);
11177     i = get_float_exception_flags(&env->vfp.fp_status);
11178     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11179     i |= get_float_exception_flags(&env->vfp.fp_status_f16);
11180     fpscr |= vfp_exceptbits_from_host(i);
11181     return fpscr;
11182 }
11183 
11184 uint32_t vfp_get_fpscr(CPUARMState *env)
11185 {
11186     return HELPER(vfp_get_fpscr)(env);
11187 }
11188 
11189 /* Convert vfp exception flags to target form.  */
11190 static inline int vfp_exceptbits_to_host(int target_bits)
11191 {
11192     int host_bits = 0;
11193 
11194     if (target_bits & 1)
11195         host_bits |= float_flag_invalid;
11196     if (target_bits & 2)
11197         host_bits |= float_flag_divbyzero;
11198     if (target_bits & 4)
11199         host_bits |= float_flag_overflow;
11200     if (target_bits & 8)
11201         host_bits |= float_flag_underflow;
11202     if (target_bits & 0x10)
11203         host_bits |= float_flag_inexact;
11204     if (target_bits & 0x80)
11205         host_bits |= float_flag_input_denormal;
11206     return host_bits;
11207 }
11208 
11209 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11210 {
11211     int i;
11212     uint32_t changed;
11213 
11214     changed = env->vfp.xregs[ARM_VFP_FPSCR];
11215     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11216     env->vfp.vec_len = (val >> 16) & 7;
11217     env->vfp.vec_stride = (val >> 20) & 3;
11218 
11219     changed ^= val;
11220     if (changed & (3 << 22)) {
11221         i = (val >> 22) & 3;
11222         switch (i) {
11223         case FPROUNDING_TIEEVEN:
11224             i = float_round_nearest_even;
11225             break;
11226         case FPROUNDING_POSINF:
11227             i = float_round_up;
11228             break;
11229         case FPROUNDING_NEGINF:
11230             i = float_round_down;
11231             break;
11232         case FPROUNDING_ZERO:
11233             i = float_round_to_zero;
11234             break;
11235         }
11236         set_float_rounding_mode(i, &env->vfp.fp_status);
11237         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11238     }
11239     if (changed & FPCR_FZ16) {
11240         bool ftz_enabled = val & FPCR_FZ16;
11241         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11242         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11243     }
11244     if (changed & FPCR_FZ) {
11245         bool ftz_enabled = val & FPCR_FZ;
11246         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11247         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11248     }
11249     if (changed & FPCR_DN) {
11250         bool dnan_enabled = val & FPCR_DN;
11251         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11252         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11253     }
11254 
11255     /* The exception flags are ORed together when we read fpscr so we
11256      * only need to preserve the current state in one of our
11257      * float_status values.
11258      */
11259     i = vfp_exceptbits_to_host(val);
11260     set_float_exception_flags(i, &env->vfp.fp_status);
11261     set_float_exception_flags(0, &env->vfp.fp_status_f16);
11262     set_float_exception_flags(0, &env->vfp.standard_fp_status);
11263 }
11264 
11265 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11266 {
11267     HELPER(vfp_set_fpscr)(env, val);
11268 }
11269 
11270 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11271 
11272 #define VFP_BINOP(name) \
11273 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11274 { \
11275     float_status *fpst = fpstp; \
11276     return float32_ ## name(a, b, fpst); \
11277 } \
11278 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11279 { \
11280     float_status *fpst = fpstp; \
11281     return float64_ ## name(a, b, fpst); \
11282 }
11283 VFP_BINOP(add)
11284 VFP_BINOP(sub)
11285 VFP_BINOP(mul)
11286 VFP_BINOP(div)
11287 VFP_BINOP(min)
11288 VFP_BINOP(max)
11289 VFP_BINOP(minnum)
11290 VFP_BINOP(maxnum)
11291 #undef VFP_BINOP
11292 
11293 float32 VFP_HELPER(neg, s)(float32 a)
11294 {
11295     return float32_chs(a);
11296 }
11297 
11298 float64 VFP_HELPER(neg, d)(float64 a)
11299 {
11300     return float64_chs(a);
11301 }
11302 
11303 float32 VFP_HELPER(abs, s)(float32 a)
11304 {
11305     return float32_abs(a);
11306 }
11307 
11308 float64 VFP_HELPER(abs, d)(float64 a)
11309 {
11310     return float64_abs(a);
11311 }
11312 
11313 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11314 {
11315     return float32_sqrt(a, &env->vfp.fp_status);
11316 }
11317 
11318 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11319 {
11320     return float64_sqrt(a, &env->vfp.fp_status);
11321 }
11322 
11323 /* XXX: check quiet/signaling case */
11324 #define DO_VFP_cmp(p, type) \
11325 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
11326 { \
11327     uint32_t flags; \
11328     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11329     case 0: flags = 0x6; break; \
11330     case -1: flags = 0x8; break; \
11331     case 1: flags = 0x2; break; \
11332     default: case 2: flags = 0x3; break; \
11333     } \
11334     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11335         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11336 } \
11337 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11338 { \
11339     uint32_t flags; \
11340     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11341     case 0: flags = 0x6; break; \
11342     case -1: flags = 0x8; break; \
11343     case 1: flags = 0x2; break; \
11344     default: case 2: flags = 0x3; break; \
11345     } \
11346     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11347         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11348 }
11349 DO_VFP_cmp(s, float32)
11350 DO_VFP_cmp(d, float64)
11351 #undef DO_VFP_cmp
11352 
11353 /* Integer to float and float to integer conversions */
11354 
11355 #define CONV_ITOF(name, ftype, fsz, sign)                           \
11356 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
11357 {                                                                   \
11358     float_status *fpst = fpstp;                                     \
11359     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
11360 }
11361 
11362 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
11363 uint32_t HELPER(name)(ftype x, void *fpstp)                     \
11364 {                                                               \
11365     float_status *fpst = fpstp;                                 \
11366     if (float##fsz##_is_any_nan(x)) {                           \
11367         float_raise(float_flag_invalid, fpst);                  \
11368         return 0;                                               \
11369     }                                                           \
11370     return float##fsz##_to_##sign##int32##round(x, fpst);       \
11371 }
11372 
11373 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
11374     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
11375     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
11376     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11377 
11378 FLOAT_CONVS(si, h, uint32_t, 16, )
11379 FLOAT_CONVS(si, s, float32, 32, )
11380 FLOAT_CONVS(si, d, float64, 64, )
11381 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11382 FLOAT_CONVS(ui, s, float32, 32, u)
11383 FLOAT_CONVS(ui, d, float64, 64, u)
11384 
11385 #undef CONV_ITOF
11386 #undef CONV_FTOI
11387 #undef FLOAT_CONVS
11388 
11389 /* floating point conversion */
11390 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11391 {
11392     return float32_to_float64(x, &env->vfp.fp_status);
11393 }
11394 
11395 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11396 {
11397     return float64_to_float32(x, &env->vfp.fp_status);
11398 }
11399 
11400 /* VFP3 fixed point conversion.  */
11401 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11402 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
11403                                      void *fpstp) \
11404 { \
11405     float_status *fpst = fpstp; \
11406     float##fsz tmp; \
11407     tmp = itype##_to_##float##fsz(x, fpst); \
11408     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11409 }
11410 
11411 /* Notice that we want only input-denormal exception flags from the
11412  * scalbn operation: the other possible flags (overflow+inexact if
11413  * we overflow to infinity, output-denormal) aren't correct for the
11414  * complete scale-and-convert operation.
11415  */
11416 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11417 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11418                                              uint32_t shift, \
11419                                              void *fpstp) \
11420 { \
11421     float_status *fpst = fpstp; \
11422     int old_exc_flags = get_float_exception_flags(fpst); \
11423     float##fsz tmp; \
11424     if (float##fsz##_is_any_nan(x)) { \
11425         float_raise(float_flag_invalid, fpst); \
11426         return 0; \
11427     } \
11428     tmp = float##fsz##_scalbn(x, shift, fpst); \
11429     old_exc_flags |= get_float_exception_flags(fpst) \
11430         & float_flag_input_denormal; \
11431     set_float_exception_flags(old_exc_flags, fpst); \
11432     return float##fsz##_to_##itype##round(tmp, fpst); \
11433 }
11434 
11435 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
11436 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11437 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11438 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11439 
11440 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
11441 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11442 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11443 
11444 VFP_CONV_FIX(sh, d, 64, 64, int16)
11445 VFP_CONV_FIX(sl, d, 64, 64, int32)
11446 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11447 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11448 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11449 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11450 VFP_CONV_FIX(sh, s, 32, 32, int16)
11451 VFP_CONV_FIX(sl, s, 32, 32, int32)
11452 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11453 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11454 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11455 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11456 
11457 #undef VFP_CONV_FIX
11458 #undef VFP_CONV_FIX_FLOAT
11459 #undef VFP_CONV_FLOAT_FIX_ROUND
11460 #undef VFP_CONV_FIX_A64
11461 
11462 /* Conversion to/from f16 can overflow to infinity before/after scaling.
11463  * Therefore we convert to f64, scale, and then convert f64 to f16; or
11464  * vice versa for conversion to integer.
11465  *
11466  * For 16- and 32-bit integers, the conversion to f64 never rounds.
11467  * For 64-bit integers, any integer that would cause rounding will also
11468  * overflow to f16 infinity, so there is no double rounding problem.
11469  */
11470 
11471 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
11472 {
11473     return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
11474 }
11475 
11476 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11477 {
11478     return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
11479 }
11480 
11481 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11482 {
11483     return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
11484 }
11485 
11486 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11487 {
11488     return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
11489 }
11490 
11491 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11492 {
11493     return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
11494 }
11495 
11496 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
11497 {
11498     if (unlikely(float16_is_any_nan(f))) {
11499         float_raise(float_flag_invalid, fpst);
11500         return 0;
11501     } else {
11502         int old_exc_flags = get_float_exception_flags(fpst);
11503         float64 ret;
11504 
11505         ret = float16_to_float64(f, true, fpst);
11506         ret = float64_scalbn(ret, shift, fpst);
11507         old_exc_flags |= get_float_exception_flags(fpst)
11508             & float_flag_input_denormal;
11509         set_float_exception_flags(old_exc_flags, fpst);
11510 
11511         return ret;
11512     }
11513 }
11514 
11515 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11516 {
11517     return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
11518 }
11519 
11520 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11521 {
11522     return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
11523 }
11524 
11525 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11526 {
11527     return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
11528 }
11529 
11530 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11531 {
11532     return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
11533 }
11534 
11535 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11536 {
11537     return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
11538 }
11539 
11540 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11541 {
11542     return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
11543 }
11544 
11545 /* Set the current fp rounding mode and return the old one.
11546  * The argument is a softfloat float_round_ value.
11547  */
11548 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11549 {
11550     float_status *fp_status = fpstp;
11551 
11552     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11553     set_float_rounding_mode(rmode, fp_status);
11554 
11555     return prev_rmode;
11556 }
11557 
11558 /* Set the current fp rounding mode in the standard fp status and return
11559  * the old one. This is for NEON instructions that need to change the
11560  * rounding mode but wish to use the standard FPSCR values for everything
11561  * else. Always set the rounding mode back to the correct value after
11562  * modifying it.
11563  * The argument is a softfloat float_round_ value.
11564  */
11565 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11566 {
11567     float_status *fp_status = &env->vfp.standard_fp_status;
11568 
11569     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11570     set_float_rounding_mode(rmode, fp_status);
11571 
11572     return prev_rmode;
11573 }
11574 
11575 /* Half precision conversions.  */
11576 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11577 {
11578     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11579      * it would affect flushing input denormals.
11580      */
11581     float_status *fpst = fpstp;
11582     flag save = get_flush_inputs_to_zero(fpst);
11583     set_flush_inputs_to_zero(false, fpst);
11584     float32 r = float16_to_float32(a, !ahp_mode, fpst);
11585     set_flush_inputs_to_zero(save, fpst);
11586     return r;
11587 }
11588 
11589 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11590 {
11591     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11592      * it would affect flushing output denormals.
11593      */
11594     float_status *fpst = fpstp;
11595     flag save = get_flush_to_zero(fpst);
11596     set_flush_to_zero(false, fpst);
11597     float16 r = float32_to_float16(a, !ahp_mode, fpst);
11598     set_flush_to_zero(save, fpst);
11599     return r;
11600 }
11601 
11602 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11603 {
11604     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11605      * it would affect flushing input denormals.
11606      */
11607     float_status *fpst = fpstp;
11608     flag save = get_flush_inputs_to_zero(fpst);
11609     set_flush_inputs_to_zero(false, fpst);
11610     float64 r = float16_to_float64(a, !ahp_mode, fpst);
11611     set_flush_inputs_to_zero(save, fpst);
11612     return r;
11613 }
11614 
11615 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11616 {
11617     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11618      * it would affect flushing output denormals.
11619      */
11620     float_status *fpst = fpstp;
11621     flag save = get_flush_to_zero(fpst);
11622     set_flush_to_zero(false, fpst);
11623     float16 r = float64_to_float16(a, !ahp_mode, fpst);
11624     set_flush_to_zero(save, fpst);
11625     return r;
11626 }
11627 
11628 #define float32_two make_float32(0x40000000)
11629 #define float32_three make_float32(0x40400000)
11630 #define float32_one_point_five make_float32(0x3fc00000)
11631 
11632 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11633 {
11634     float_status *s = &env->vfp.standard_fp_status;
11635     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11636         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11637         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11638             float_raise(float_flag_input_denormal, s);
11639         }
11640         return float32_two;
11641     }
11642     return float32_sub(float32_two, float32_mul(a, b, s), s);
11643 }
11644 
11645 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11646 {
11647     float_status *s = &env->vfp.standard_fp_status;
11648     float32 product;
11649     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11650         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11651         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11652             float_raise(float_flag_input_denormal, s);
11653         }
11654         return float32_one_point_five;
11655     }
11656     product = float32_mul(a, b, s);
11657     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11658 }
11659 
11660 /* NEON helpers.  */
11661 
11662 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11663  * int->float conversions at run-time.  */
11664 #define float64_256 make_float64(0x4070000000000000LL)
11665 #define float64_512 make_float64(0x4080000000000000LL)
11666 #define float16_maxnorm make_float16(0x7bff)
11667 #define float32_maxnorm make_float32(0x7f7fffff)
11668 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11669 
11670 /* Reciprocal functions
11671  *
11672  * The algorithm that must be used to calculate the estimate
11673  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11674  */
11675 
11676 /* See RecipEstimate()
11677  *
11678  * input is a 9 bit fixed point number
11679  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11680  * result range 256 .. 511 for a number from 1.0 to 511/256.
11681  */
11682 
11683 static int recip_estimate(int input)
11684 {
11685     int a, b, r;
11686     assert(256 <= input && input < 512);
11687     a = (input * 2) + 1;
11688     b = (1 << 19) / a;
11689     r = (b + 1) >> 1;
11690     assert(256 <= r && r < 512);
11691     return r;
11692 }
11693 
11694 /*
11695  * Common wrapper to call recip_estimate
11696  *
11697  * The parameters are exponent and 64 bit fraction (without implicit
11698  * bit) where the binary point is nominally at bit 52. Returns a
11699  * float64 which can then be rounded to the appropriate size by the
11700  * callee.
11701  */
11702 
11703 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11704 {
11705     uint32_t scaled, estimate;
11706     uint64_t result_frac;
11707     int result_exp;
11708 
11709     /* Handle sub-normals */
11710     if (*exp == 0) {
11711         if (extract64(frac, 51, 1) == 0) {
11712             *exp = -1;
11713             frac <<= 2;
11714         } else {
11715             frac <<= 1;
11716         }
11717     }
11718 
11719     /* scaled = UInt('1':fraction<51:44>) */
11720     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11721     estimate = recip_estimate(scaled);
11722 
11723     result_exp = exp_off - *exp;
11724     result_frac = deposit64(0, 44, 8, estimate);
11725     if (result_exp == 0) {
11726         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11727     } else if (result_exp == -1) {
11728         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11729         result_exp = 0;
11730     }
11731 
11732     *exp = result_exp;
11733 
11734     return result_frac;
11735 }
11736 
11737 static bool round_to_inf(float_status *fpst, bool sign_bit)
11738 {
11739     switch (fpst->float_rounding_mode) {
11740     case float_round_nearest_even: /* Round to Nearest */
11741         return true;
11742     case float_round_up: /* Round to +Inf */
11743         return !sign_bit;
11744     case float_round_down: /* Round to -Inf */
11745         return sign_bit;
11746     case float_round_to_zero: /* Round to Zero */
11747         return false;
11748     }
11749 
11750     g_assert_not_reached();
11751 }
11752 
11753 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11754 {
11755     float_status *fpst = fpstp;
11756     float16 f16 = float16_squash_input_denormal(input, fpst);
11757     uint32_t f16_val = float16_val(f16);
11758     uint32_t f16_sign = float16_is_neg(f16);
11759     int f16_exp = extract32(f16_val, 10, 5);
11760     uint32_t f16_frac = extract32(f16_val, 0, 10);
11761     uint64_t f64_frac;
11762 
11763     if (float16_is_any_nan(f16)) {
11764         float16 nan = f16;
11765         if (float16_is_signaling_nan(f16, fpst)) {
11766             float_raise(float_flag_invalid, fpst);
11767             nan = float16_silence_nan(f16, fpst);
11768         }
11769         if (fpst->default_nan_mode) {
11770             nan =  float16_default_nan(fpst);
11771         }
11772         return nan;
11773     } else if (float16_is_infinity(f16)) {
11774         return float16_set_sign(float16_zero, float16_is_neg(f16));
11775     } else if (float16_is_zero(f16)) {
11776         float_raise(float_flag_divbyzero, fpst);
11777         return float16_set_sign(float16_infinity, float16_is_neg(f16));
11778     } else if (float16_abs(f16) < (1 << 8)) {
11779         /* Abs(value) < 2.0^-16 */
11780         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11781         if (round_to_inf(fpst, f16_sign)) {
11782             return float16_set_sign(float16_infinity, f16_sign);
11783         } else {
11784             return float16_set_sign(float16_maxnorm, f16_sign);
11785         }
11786     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11787         float_raise(float_flag_underflow, fpst);
11788         return float16_set_sign(float16_zero, float16_is_neg(f16));
11789     }
11790 
11791     f64_frac = call_recip_estimate(&f16_exp, 29,
11792                                    ((uint64_t) f16_frac) << (52 - 10));
11793 
11794     /* result = sign : result_exp<4:0> : fraction<51:42> */
11795     f16_val = deposit32(0, 15, 1, f16_sign);
11796     f16_val = deposit32(f16_val, 10, 5, f16_exp);
11797     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11798     return make_float16(f16_val);
11799 }
11800 
11801 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11802 {
11803     float_status *fpst = fpstp;
11804     float32 f32 = float32_squash_input_denormal(input, fpst);
11805     uint32_t f32_val = float32_val(f32);
11806     bool f32_sign = float32_is_neg(f32);
11807     int f32_exp = extract32(f32_val, 23, 8);
11808     uint32_t f32_frac = extract32(f32_val, 0, 23);
11809     uint64_t f64_frac;
11810 
11811     if (float32_is_any_nan(f32)) {
11812         float32 nan = f32;
11813         if (float32_is_signaling_nan(f32, fpst)) {
11814             float_raise(float_flag_invalid, fpst);
11815             nan = float32_silence_nan(f32, fpst);
11816         }
11817         if (fpst->default_nan_mode) {
11818             nan =  float32_default_nan(fpst);
11819         }
11820         return nan;
11821     } else if (float32_is_infinity(f32)) {
11822         return float32_set_sign(float32_zero, float32_is_neg(f32));
11823     } else if (float32_is_zero(f32)) {
11824         float_raise(float_flag_divbyzero, fpst);
11825         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11826     } else if (float32_abs(f32) < (1ULL << 21)) {
11827         /* Abs(value) < 2.0^-128 */
11828         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11829         if (round_to_inf(fpst, f32_sign)) {
11830             return float32_set_sign(float32_infinity, f32_sign);
11831         } else {
11832             return float32_set_sign(float32_maxnorm, f32_sign);
11833         }
11834     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11835         float_raise(float_flag_underflow, fpst);
11836         return float32_set_sign(float32_zero, float32_is_neg(f32));
11837     }
11838 
11839     f64_frac = call_recip_estimate(&f32_exp, 253,
11840                                    ((uint64_t) f32_frac) << (52 - 23));
11841 
11842     /* result = sign : result_exp<7:0> : fraction<51:29> */
11843     f32_val = deposit32(0, 31, 1, f32_sign);
11844     f32_val = deposit32(f32_val, 23, 8, f32_exp);
11845     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
11846     return make_float32(f32_val);
11847 }
11848 
11849 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11850 {
11851     float_status *fpst = fpstp;
11852     float64 f64 = float64_squash_input_denormal(input, fpst);
11853     uint64_t f64_val = float64_val(f64);
11854     bool f64_sign = float64_is_neg(f64);
11855     int f64_exp = extract64(f64_val, 52, 11);
11856     uint64_t f64_frac = extract64(f64_val, 0, 52);
11857 
11858     /* Deal with any special cases */
11859     if (float64_is_any_nan(f64)) {
11860         float64 nan = f64;
11861         if (float64_is_signaling_nan(f64, fpst)) {
11862             float_raise(float_flag_invalid, fpst);
11863             nan = float64_silence_nan(f64, fpst);
11864         }
11865         if (fpst->default_nan_mode) {
11866             nan =  float64_default_nan(fpst);
11867         }
11868         return nan;
11869     } else if (float64_is_infinity(f64)) {
11870         return float64_set_sign(float64_zero, float64_is_neg(f64));
11871     } else if (float64_is_zero(f64)) {
11872         float_raise(float_flag_divbyzero, fpst);
11873         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11874     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11875         /* Abs(value) < 2.0^-1024 */
11876         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11877         if (round_to_inf(fpst, f64_sign)) {
11878             return float64_set_sign(float64_infinity, f64_sign);
11879         } else {
11880             return float64_set_sign(float64_maxnorm, f64_sign);
11881         }
11882     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11883         float_raise(float_flag_underflow, fpst);
11884         return float64_set_sign(float64_zero, float64_is_neg(f64));
11885     }
11886 
11887     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
11888 
11889     /* result = sign : result_exp<10:0> : fraction<51:0>; */
11890     f64_val = deposit64(0, 63, 1, f64_sign);
11891     f64_val = deposit64(f64_val, 52, 11, f64_exp);
11892     f64_val = deposit64(f64_val, 0, 52, f64_frac);
11893     return make_float64(f64_val);
11894 }
11895 
11896 /* The algorithm that must be used to calculate the estimate
11897  * is specified by the ARM ARM.
11898  */
11899 
11900 static int do_recip_sqrt_estimate(int a)
11901 {
11902     int b, estimate;
11903 
11904     assert(128 <= a && a < 512);
11905     if (a < 256) {
11906         a = a * 2 + 1;
11907     } else {
11908         a = (a >> 1) << 1;
11909         a = (a + 1) * 2;
11910     }
11911     b = 512;
11912     while (a * (b + 1) * (b + 1) < (1 << 28)) {
11913         b += 1;
11914     }
11915     estimate = (b + 1) / 2;
11916     assert(256 <= estimate && estimate < 512);
11917 
11918     return estimate;
11919 }
11920 
11921 
11922 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
11923 {
11924     int estimate;
11925     uint32_t scaled;
11926 
11927     if (*exp == 0) {
11928         while (extract64(frac, 51, 1) == 0) {
11929             frac = frac << 1;
11930             *exp -= 1;
11931         }
11932         frac = extract64(frac, 0, 51) << 1;
11933     }
11934 
11935     if (*exp & 1) {
11936         /* scaled = UInt('01':fraction<51:45>) */
11937         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
11938     } else {
11939         /* scaled = UInt('1':fraction<51:44>) */
11940         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11941     }
11942     estimate = do_recip_sqrt_estimate(scaled);
11943 
11944     *exp = (exp_off - *exp) / 2;
11945     return extract64(estimate, 0, 8) << 44;
11946 }
11947 
11948 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
11949 {
11950     float_status *s = fpstp;
11951     float16 f16 = float16_squash_input_denormal(input, s);
11952     uint16_t val = float16_val(f16);
11953     bool f16_sign = float16_is_neg(f16);
11954     int f16_exp = extract32(val, 10, 5);
11955     uint16_t f16_frac = extract32(val, 0, 10);
11956     uint64_t f64_frac;
11957 
11958     if (float16_is_any_nan(f16)) {
11959         float16 nan = f16;
11960         if (float16_is_signaling_nan(f16, s)) {
11961             float_raise(float_flag_invalid, s);
11962             nan = float16_silence_nan(f16, s);
11963         }
11964         if (s->default_nan_mode) {
11965             nan =  float16_default_nan(s);
11966         }
11967         return nan;
11968     } else if (float16_is_zero(f16)) {
11969         float_raise(float_flag_divbyzero, s);
11970         return float16_set_sign(float16_infinity, f16_sign);
11971     } else if (f16_sign) {
11972         float_raise(float_flag_invalid, s);
11973         return float16_default_nan(s);
11974     } else if (float16_is_infinity(f16)) {
11975         return float16_zero;
11976     }
11977 
11978     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11979      * preserving the parity of the exponent.  */
11980 
11981     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
11982 
11983     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
11984 
11985     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
11986     val = deposit32(0, 15, 1, f16_sign);
11987     val = deposit32(val, 10, 5, f16_exp);
11988     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
11989     return make_float16(val);
11990 }
11991 
11992 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11993 {
11994     float_status *s = fpstp;
11995     float32 f32 = float32_squash_input_denormal(input, s);
11996     uint32_t val = float32_val(f32);
11997     uint32_t f32_sign = float32_is_neg(f32);
11998     int f32_exp = extract32(val, 23, 8);
11999     uint32_t f32_frac = extract32(val, 0, 23);
12000     uint64_t f64_frac;
12001 
12002     if (float32_is_any_nan(f32)) {
12003         float32 nan = f32;
12004         if (float32_is_signaling_nan(f32, s)) {
12005             float_raise(float_flag_invalid, s);
12006             nan = float32_silence_nan(f32, s);
12007         }
12008         if (s->default_nan_mode) {
12009             nan =  float32_default_nan(s);
12010         }
12011         return nan;
12012     } else if (float32_is_zero(f32)) {
12013         float_raise(float_flag_divbyzero, s);
12014         return float32_set_sign(float32_infinity, float32_is_neg(f32));
12015     } else if (float32_is_neg(f32)) {
12016         float_raise(float_flag_invalid, s);
12017         return float32_default_nan(s);
12018     } else if (float32_is_infinity(f32)) {
12019         return float32_zero;
12020     }
12021 
12022     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12023      * preserving the parity of the exponent.  */
12024 
12025     f64_frac = ((uint64_t) f32_frac) << 29;
12026 
12027     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12028 
12029     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12030     val = deposit32(0, 31, 1, f32_sign);
12031     val = deposit32(val, 23, 8, f32_exp);
12032     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12033     return make_float32(val);
12034 }
12035 
12036 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12037 {
12038     float_status *s = fpstp;
12039     float64 f64 = float64_squash_input_denormal(input, s);
12040     uint64_t val = float64_val(f64);
12041     bool f64_sign = float64_is_neg(f64);
12042     int f64_exp = extract64(val, 52, 11);
12043     uint64_t f64_frac = extract64(val, 0, 52);
12044 
12045     if (float64_is_any_nan(f64)) {
12046         float64 nan = f64;
12047         if (float64_is_signaling_nan(f64, s)) {
12048             float_raise(float_flag_invalid, s);
12049             nan = float64_silence_nan(f64, s);
12050         }
12051         if (s->default_nan_mode) {
12052             nan =  float64_default_nan(s);
12053         }
12054         return nan;
12055     } else if (float64_is_zero(f64)) {
12056         float_raise(float_flag_divbyzero, s);
12057         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12058     } else if (float64_is_neg(f64)) {
12059         float_raise(float_flag_invalid, s);
12060         return float64_default_nan(s);
12061     } else if (float64_is_infinity(f64)) {
12062         return float64_zero;
12063     }
12064 
12065     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12066 
12067     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12068     val = deposit64(0, 61, 1, f64_sign);
12069     val = deposit64(val, 52, 11, f64_exp);
12070     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12071     return make_float64(val);
12072 }
12073 
12074 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12075 {
12076     /* float_status *s = fpstp; */
12077     int input, estimate;
12078 
12079     if ((a & 0x80000000) == 0) {
12080         return 0xffffffff;
12081     }
12082 
12083     input = extract32(a, 23, 9);
12084     estimate = recip_estimate(input);
12085 
12086     return deposit32(0, (32 - 9), 9, estimate);
12087 }
12088 
12089 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12090 {
12091     int estimate;
12092 
12093     if ((a & 0xc0000000) == 0) {
12094         return 0xffffffff;
12095     }
12096 
12097     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12098 
12099     return deposit32(0, 23, 9, estimate);
12100 }
12101 
12102 /* VFPv4 fused multiply-accumulate */
12103 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12104 {
12105     float_status *fpst = fpstp;
12106     return float32_muladd(a, b, c, 0, fpst);
12107 }
12108 
12109 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12110 {
12111     float_status *fpst = fpstp;
12112     return float64_muladd(a, b, c, 0, fpst);
12113 }
12114 
12115 /* ARMv8 round to integral */
12116 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12117 {
12118     return float32_round_to_int(x, fp_status);
12119 }
12120 
12121 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12122 {
12123     return float64_round_to_int(x, fp_status);
12124 }
12125 
12126 float32 HELPER(rints)(float32 x, void *fp_status)
12127 {
12128     int old_flags = get_float_exception_flags(fp_status), new_flags;
12129     float32 ret;
12130 
12131     ret = float32_round_to_int(x, fp_status);
12132 
12133     /* Suppress any inexact exceptions the conversion produced */
12134     if (!(old_flags & float_flag_inexact)) {
12135         new_flags = get_float_exception_flags(fp_status);
12136         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12137     }
12138 
12139     return ret;
12140 }
12141 
12142 float64 HELPER(rintd)(float64 x, void *fp_status)
12143 {
12144     int old_flags = get_float_exception_flags(fp_status), new_flags;
12145     float64 ret;
12146 
12147     ret = float64_round_to_int(x, fp_status);
12148 
12149     new_flags = get_float_exception_flags(fp_status);
12150 
12151     /* Suppress any inexact exceptions the conversion produced */
12152     if (!(old_flags & float_flag_inexact)) {
12153         new_flags = get_float_exception_flags(fp_status);
12154         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12155     }
12156 
12157     return ret;
12158 }
12159 
12160 /* Convert ARM rounding mode to softfloat */
12161 int arm_rmode_to_sf(int rmode)
12162 {
12163     switch (rmode) {
12164     case FPROUNDING_TIEAWAY:
12165         rmode = float_round_ties_away;
12166         break;
12167     case FPROUNDING_ODD:
12168         /* FIXME: add support for TIEAWAY and ODD */
12169         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12170                       rmode);
12171     case FPROUNDING_TIEEVEN:
12172     default:
12173         rmode = float_round_nearest_even;
12174         break;
12175     case FPROUNDING_POSINF:
12176         rmode = float_round_up;
12177         break;
12178     case FPROUNDING_NEGINF:
12179         rmode = float_round_down;
12180         break;
12181     case FPROUNDING_ZERO:
12182         rmode = float_round_to_zero;
12183         break;
12184     }
12185     return rmode;
12186 }
12187 
12188 /* CRC helpers.
12189  * The upper bytes of val (above the number specified by 'bytes') must have
12190  * been zeroed out by the caller.
12191  */
12192 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12193 {
12194     uint8_t buf[4];
12195 
12196     stl_le_p(buf, val);
12197 
12198     /* zlib crc32 converts the accumulator and output to one's complement.  */
12199     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12200 }
12201 
12202 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12203 {
12204     uint8_t buf[4];
12205 
12206     stl_le_p(buf, val);
12207 
12208     /* Linux crc32c converts the output to one's complement.  */
12209     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12210 }
12211 
12212 /* Return the exception level to which FP-disabled exceptions should
12213  * be taken, or 0 if FP is enabled.
12214  */
12215 static inline int fp_exception_el(CPUARMState *env)
12216 {
12217 #ifndef CONFIG_USER_ONLY
12218     int fpen;
12219     int cur_el = arm_current_el(env);
12220 
12221     /* CPACR and the CPTR registers don't exist before v6, so FP is
12222      * always accessible
12223      */
12224     if (!arm_feature(env, ARM_FEATURE_V6)) {
12225         return 0;
12226     }
12227 
12228     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12229      * 0, 2 : trap EL0 and EL1/PL1 accesses
12230      * 1    : trap only EL0 accesses
12231      * 3    : trap no accesses
12232      */
12233     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12234     switch (fpen) {
12235     case 0:
12236     case 2:
12237         if (cur_el == 0 || cur_el == 1) {
12238             /* Trap to PL1, which might be EL1 or EL3 */
12239             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12240                 return 3;
12241             }
12242             return 1;
12243         }
12244         if (cur_el == 3 && !is_a64(env)) {
12245             /* Secure PL1 running at EL3 */
12246             return 3;
12247         }
12248         break;
12249     case 1:
12250         if (cur_el == 0) {
12251             return 1;
12252         }
12253         break;
12254     case 3:
12255         break;
12256     }
12257 
12258     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12259      * check because zero bits in the registers mean "don't trap".
12260      */
12261 
12262     /* CPTR_EL2 : present in v7VE or v8 */
12263     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12264         && !arm_is_secure_below_el3(env)) {
12265         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12266         return 2;
12267     }
12268 
12269     /* CPTR_EL3 : present in v8 */
12270     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12271         /* Trap all FP ops to EL3 */
12272         return 3;
12273     }
12274 #endif
12275     return 0;
12276 }
12277 
12278 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12279                           target_ulong *cs_base, uint32_t *pflags)
12280 {
12281     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12282     int fp_el = fp_exception_el(env);
12283     uint32_t flags;
12284 
12285     if (is_a64(env)) {
12286         int sve_el = sve_exception_el(env);
12287         uint32_t zcr_len;
12288 
12289         *pc = env->pc;
12290         flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12291         /* Get control bits for tagged addresses */
12292         flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12293         flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12294         flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12295 
12296         /* If SVE is disabled, but FP is enabled,
12297            then the effective len is 0.  */
12298         if (sve_el != 0 && fp_el == 0) {
12299             zcr_len = 0;
12300         } else {
12301             int current_el = arm_current_el(env);
12302 
12303             zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
12304             zcr_len &= 0xf;
12305             if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12306                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12307             }
12308             if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12309                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12310             }
12311         }
12312         flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12313     } else {
12314         *pc = env->regs[15];
12315         flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12316             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12317             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12318             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12319             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12320         if (!(access_secure_reg(env))) {
12321             flags |= ARM_TBFLAG_NS_MASK;
12322         }
12323         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12324             || arm_el_is_aa64(env, 1)) {
12325             flags |= ARM_TBFLAG_VFPEN_MASK;
12326         }
12327         flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12328                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12329     }
12330 
12331     flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12332 
12333     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12334      * states defined in the ARM ARM for software singlestep:
12335      *  SS_ACTIVE   PSTATE.SS   State
12336      *     0            x       Inactive (the TB flag for SS is always 0)
12337      *     1            0       Active-pending
12338      *     1            1       Active-not-pending
12339      */
12340     if (arm_singlestep_active(env)) {
12341         flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12342         if (is_a64(env)) {
12343             if (env->pstate & PSTATE_SS) {
12344                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12345             }
12346         } else {
12347             if (env->uncached_cpsr & PSTATE_SS) {
12348                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12349             }
12350         }
12351     }
12352     if (arm_cpu_data_is_big_endian(env)) {
12353         flags |= ARM_TBFLAG_BE_DATA_MASK;
12354     }
12355     flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12356 
12357     if (arm_v7m_is_handler_mode(env)) {
12358         flags |= ARM_TBFLAG_HANDLER_MASK;
12359     }
12360 
12361     *pflags = flags;
12362     *cs_base = 0;
12363 }
12364