1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 #include "qemu/range.h" 21 22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 23 24 #ifndef CONFIG_USER_ONLY 25 /* Cacheability and shareability attributes for a memory access */ 26 typedef struct ARMCacheAttrs { 27 unsigned int attrs:8; /* as in the MAIR register encoding */ 28 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 29 } ARMCacheAttrs; 30 31 static bool get_phys_addr(CPUARMState *env, target_ulong address, 32 MMUAccessType access_type, ARMMMUIdx mmu_idx, 33 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 34 target_ulong *page_size, 35 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 36 37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 38 MMUAccessType access_type, ARMMMUIdx mmu_idx, 39 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 40 target_ulong *page_size_ptr, 41 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 42 43 /* Security attributes for an address, as returned by v8m_security_lookup. */ 44 typedef struct V8M_SAttributes { 45 bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */ 46 bool ns; 47 bool nsc; 48 uint8_t sregion; 49 bool srvalid; 50 uint8_t iregion; 51 bool irvalid; 52 } V8M_SAttributes; 53 54 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 55 MMUAccessType access_type, ARMMMUIdx mmu_idx, 56 V8M_SAttributes *sattrs); 57 #endif 58 59 static void switch_mode(CPUARMState *env, int mode); 60 61 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 62 { 63 int nregs; 64 65 /* VFP data registers are always little-endian. */ 66 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 67 if (reg < nregs) { 68 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 69 return 8; 70 } 71 if (arm_feature(env, ARM_FEATURE_NEON)) { 72 /* Aliases for Q regs. */ 73 nregs += 16; 74 if (reg < nregs) { 75 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 76 stq_le_p(buf, q[0]); 77 stq_le_p(buf + 8, q[1]); 78 return 16; 79 } 80 } 81 switch (reg - nregs) { 82 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 83 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 84 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 85 } 86 return 0; 87 } 88 89 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 90 { 91 int nregs; 92 93 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 94 if (reg < nregs) { 95 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 96 return 8; 97 } 98 if (arm_feature(env, ARM_FEATURE_NEON)) { 99 nregs += 16; 100 if (reg < nregs) { 101 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 102 q[0] = ldq_le_p(buf); 103 q[1] = ldq_le_p(buf + 8); 104 return 16; 105 } 106 } 107 switch (reg - nregs) { 108 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 109 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 110 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 111 } 112 return 0; 113 } 114 115 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 116 { 117 switch (reg) { 118 case 0 ... 31: 119 /* 128 bit FP register */ 120 { 121 uint64_t *q = aa64_vfp_qreg(env, reg); 122 stq_le_p(buf, q[0]); 123 stq_le_p(buf + 8, q[1]); 124 return 16; 125 } 126 case 32: 127 /* FPSR */ 128 stl_p(buf, vfp_get_fpsr(env)); 129 return 4; 130 case 33: 131 /* FPCR */ 132 stl_p(buf, vfp_get_fpcr(env)); 133 return 4; 134 default: 135 return 0; 136 } 137 } 138 139 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 140 { 141 switch (reg) { 142 case 0 ... 31: 143 /* 128 bit FP register */ 144 { 145 uint64_t *q = aa64_vfp_qreg(env, reg); 146 q[0] = ldq_le_p(buf); 147 q[1] = ldq_le_p(buf + 8); 148 return 16; 149 } 150 case 32: 151 /* FPSR */ 152 vfp_set_fpsr(env, ldl_p(buf)); 153 return 4; 154 case 33: 155 /* FPCR */ 156 vfp_set_fpcr(env, ldl_p(buf)); 157 return 4; 158 default: 159 return 0; 160 } 161 } 162 163 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 164 { 165 assert(ri->fieldoffset); 166 if (cpreg_field_is_64bit(ri)) { 167 return CPREG_FIELD64(env, ri); 168 } else { 169 return CPREG_FIELD32(env, ri); 170 } 171 } 172 173 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 174 uint64_t value) 175 { 176 assert(ri->fieldoffset); 177 if (cpreg_field_is_64bit(ri)) { 178 CPREG_FIELD64(env, ri) = value; 179 } else { 180 CPREG_FIELD32(env, ri) = value; 181 } 182 } 183 184 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 185 { 186 return (char *)env + ri->fieldoffset; 187 } 188 189 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 190 { 191 /* Raw read of a coprocessor register (as needed for migration, etc). */ 192 if (ri->type & ARM_CP_CONST) { 193 return ri->resetvalue; 194 } else if (ri->raw_readfn) { 195 return ri->raw_readfn(env, ri); 196 } else if (ri->readfn) { 197 return ri->readfn(env, ri); 198 } else { 199 return raw_read(env, ri); 200 } 201 } 202 203 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 204 uint64_t v) 205 { 206 /* Raw write of a coprocessor register (as needed for migration, etc). 207 * Note that constant registers are treated as write-ignored; the 208 * caller should check for success by whether a readback gives the 209 * value written. 210 */ 211 if (ri->type & ARM_CP_CONST) { 212 return; 213 } else if (ri->raw_writefn) { 214 ri->raw_writefn(env, ri, v); 215 } else if (ri->writefn) { 216 ri->writefn(env, ri, v); 217 } else { 218 raw_write(env, ri, v); 219 } 220 } 221 222 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg) 223 { 224 ARMCPU *cpu = arm_env_get_cpu(env); 225 const ARMCPRegInfo *ri; 226 uint32_t key; 227 228 key = cpu->dyn_xml.cpregs_keys[reg]; 229 ri = get_arm_cp_reginfo(cpu->cp_regs, key); 230 if (ri) { 231 if (cpreg_field_is_64bit(ri)) { 232 return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri)); 233 } else { 234 return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri)); 235 } 236 } 237 return 0; 238 } 239 240 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg) 241 { 242 return 0; 243 } 244 245 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 246 { 247 /* Return true if the regdef would cause an assertion if you called 248 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 249 * program bug for it not to have the NO_RAW flag). 250 * NB that returning false here doesn't necessarily mean that calling 251 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 252 * read/write access functions which are safe for raw use" from "has 253 * read/write access functions which have side effects but has forgotten 254 * to provide raw access functions". 255 * The tests here line up with the conditions in read/write_raw_cp_reg() 256 * and assertions in raw_read()/raw_write(). 257 */ 258 if ((ri->type & ARM_CP_CONST) || 259 ri->fieldoffset || 260 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 261 return false; 262 } 263 return true; 264 } 265 266 bool write_cpustate_to_list(ARMCPU *cpu) 267 { 268 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 269 int i; 270 bool ok = true; 271 272 for (i = 0; i < cpu->cpreg_array_len; i++) { 273 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 274 const ARMCPRegInfo *ri; 275 276 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 277 if (!ri) { 278 ok = false; 279 continue; 280 } 281 if (ri->type & ARM_CP_NO_RAW) { 282 continue; 283 } 284 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 285 } 286 return ok; 287 } 288 289 bool write_list_to_cpustate(ARMCPU *cpu) 290 { 291 int i; 292 bool ok = true; 293 294 for (i = 0; i < cpu->cpreg_array_len; i++) { 295 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 296 uint64_t v = cpu->cpreg_values[i]; 297 const ARMCPRegInfo *ri; 298 299 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 300 if (!ri) { 301 ok = false; 302 continue; 303 } 304 if (ri->type & ARM_CP_NO_RAW) { 305 continue; 306 } 307 /* Write value and confirm it reads back as written 308 * (to catch read-only registers and partially read-only 309 * registers where the incoming migration value doesn't match) 310 */ 311 write_raw_cp_reg(&cpu->env, ri, v); 312 if (read_raw_cp_reg(&cpu->env, ri) != v) { 313 ok = false; 314 } 315 } 316 return ok; 317 } 318 319 static void add_cpreg_to_list(gpointer key, gpointer opaque) 320 { 321 ARMCPU *cpu = opaque; 322 uint64_t regidx; 323 const ARMCPRegInfo *ri; 324 325 regidx = *(uint32_t *)key; 326 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 327 328 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 329 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 330 /* The value array need not be initialized at this point */ 331 cpu->cpreg_array_len++; 332 } 333 } 334 335 static void count_cpreg(gpointer key, gpointer opaque) 336 { 337 ARMCPU *cpu = opaque; 338 uint64_t regidx; 339 const ARMCPRegInfo *ri; 340 341 regidx = *(uint32_t *)key; 342 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 343 344 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 345 cpu->cpreg_array_len++; 346 } 347 } 348 349 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 350 { 351 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 352 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 353 354 if (aidx > bidx) { 355 return 1; 356 } 357 if (aidx < bidx) { 358 return -1; 359 } 360 return 0; 361 } 362 363 void init_cpreg_list(ARMCPU *cpu) 364 { 365 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 366 * Note that we require cpreg_tuples[] to be sorted by key ID. 367 */ 368 GList *keys; 369 int arraylen; 370 371 keys = g_hash_table_get_keys(cpu->cp_regs); 372 keys = g_list_sort(keys, cpreg_key_compare); 373 374 cpu->cpreg_array_len = 0; 375 376 g_list_foreach(keys, count_cpreg, cpu); 377 378 arraylen = cpu->cpreg_array_len; 379 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 380 cpu->cpreg_values = g_new(uint64_t, arraylen); 381 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 382 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 383 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 384 cpu->cpreg_array_len = 0; 385 386 g_list_foreach(keys, add_cpreg_to_list, cpu); 387 388 assert(cpu->cpreg_array_len == arraylen); 389 390 g_list_free(keys); 391 } 392 393 /* 394 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 395 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 396 * 397 * access_el3_aa32ns: Used to check AArch32 register views. 398 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 399 */ 400 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 401 const ARMCPRegInfo *ri, 402 bool isread) 403 { 404 bool secure = arm_is_secure_below_el3(env); 405 406 assert(!arm_el_is_aa64(env, 3)); 407 if (secure) { 408 return CP_ACCESS_TRAP_UNCATEGORIZED; 409 } 410 return CP_ACCESS_OK; 411 } 412 413 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 414 const ARMCPRegInfo *ri, 415 bool isread) 416 { 417 if (!arm_el_is_aa64(env, 3)) { 418 return access_el3_aa32ns(env, ri, isread); 419 } 420 return CP_ACCESS_OK; 421 } 422 423 /* Some secure-only AArch32 registers trap to EL3 if used from 424 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 425 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 426 * We assume that the .access field is set to PL1_RW. 427 */ 428 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 429 const ARMCPRegInfo *ri, 430 bool isread) 431 { 432 if (arm_current_el(env) == 3) { 433 return CP_ACCESS_OK; 434 } 435 if (arm_is_secure_below_el3(env)) { 436 return CP_ACCESS_TRAP_EL3; 437 } 438 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 439 return CP_ACCESS_TRAP_UNCATEGORIZED; 440 } 441 442 /* Check for traps to "powerdown debug" registers, which are controlled 443 * by MDCR.TDOSA 444 */ 445 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 446 bool isread) 447 { 448 int el = arm_current_el(env); 449 bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) || 450 (env->cp15.mdcr_el2 & MDCR_TDE) || 451 (arm_hcr_el2_eff(env) & HCR_TGE); 452 453 if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) { 454 return CP_ACCESS_TRAP_EL2; 455 } 456 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 457 return CP_ACCESS_TRAP_EL3; 458 } 459 return CP_ACCESS_OK; 460 } 461 462 /* Check for traps to "debug ROM" registers, which are controlled 463 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 464 */ 465 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 466 bool isread) 467 { 468 int el = arm_current_el(env); 469 bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) || 470 (env->cp15.mdcr_el2 & MDCR_TDE) || 471 (arm_hcr_el2_eff(env) & HCR_TGE); 472 473 if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) { 474 return CP_ACCESS_TRAP_EL2; 475 } 476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 477 return CP_ACCESS_TRAP_EL3; 478 } 479 return CP_ACCESS_OK; 480 } 481 482 /* Check for traps to general debug registers, which are controlled 483 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 484 */ 485 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 486 bool isread) 487 { 488 int el = arm_current_el(env); 489 bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) || 490 (env->cp15.mdcr_el2 & MDCR_TDE) || 491 (arm_hcr_el2_eff(env) & HCR_TGE); 492 493 if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) { 494 return CP_ACCESS_TRAP_EL2; 495 } 496 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 497 return CP_ACCESS_TRAP_EL3; 498 } 499 return CP_ACCESS_OK; 500 } 501 502 /* Check for traps to performance monitor registers, which are controlled 503 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 504 */ 505 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 506 bool isread) 507 { 508 int el = arm_current_el(env); 509 510 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 511 && !arm_is_secure_below_el3(env)) { 512 return CP_ACCESS_TRAP_EL2; 513 } 514 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 515 return CP_ACCESS_TRAP_EL3; 516 } 517 return CP_ACCESS_OK; 518 } 519 520 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 521 { 522 ARMCPU *cpu = arm_env_get_cpu(env); 523 524 raw_write(env, ri, value); 525 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 526 } 527 528 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 529 { 530 ARMCPU *cpu = arm_env_get_cpu(env); 531 532 if (raw_read(env, ri) != value) { 533 /* Unlike real hardware the qemu TLB uses virtual addresses, 534 * not modified virtual addresses, so this causes a TLB flush. 535 */ 536 tlb_flush(CPU(cpu)); 537 raw_write(env, ri, value); 538 } 539 } 540 541 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 542 uint64_t value) 543 { 544 ARMCPU *cpu = arm_env_get_cpu(env); 545 546 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 547 && !extended_addresses_enabled(env)) { 548 /* For VMSA (when not using the LPAE long descriptor page table 549 * format) this register includes the ASID, so do a TLB flush. 550 * For PMSA it is purely a process ID and no action is needed. 551 */ 552 tlb_flush(CPU(cpu)); 553 } 554 raw_write(env, ri, value); 555 } 556 557 /* IS variants of TLB operations must affect all cores */ 558 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 559 uint64_t value) 560 { 561 CPUState *cs = ENV_GET_CPU(env); 562 563 tlb_flush_all_cpus_synced(cs); 564 } 565 566 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *cs = ENV_GET_CPU(env); 570 571 tlb_flush_all_cpus_synced(cs); 572 } 573 574 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 575 uint64_t value) 576 { 577 CPUState *cs = ENV_GET_CPU(env); 578 579 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 580 } 581 582 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = ENV_GET_CPU(env); 586 587 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 588 } 589 590 /* 591 * Non-IS variants of TLB operations are upgraded to 592 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to 593 * force broadcast of these operations. 594 */ 595 static bool tlb_force_broadcast(CPUARMState *env) 596 { 597 return (env->cp15.hcr_el2 & HCR_FB) && 598 arm_current_el(env) == 1 && arm_is_secure_below_el3(env); 599 } 600 601 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 /* Invalidate all (TLBIALL) */ 605 ARMCPU *cpu = arm_env_get_cpu(env); 606 607 if (tlb_force_broadcast(env)) { 608 tlbiall_is_write(env, NULL, value); 609 return; 610 } 611 612 tlb_flush(CPU(cpu)); 613 } 614 615 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 619 ARMCPU *cpu = arm_env_get_cpu(env); 620 621 if (tlb_force_broadcast(env)) { 622 tlbimva_is_write(env, NULL, value); 623 return; 624 } 625 626 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 627 } 628 629 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 630 uint64_t value) 631 { 632 /* Invalidate by ASID (TLBIASID) */ 633 ARMCPU *cpu = arm_env_get_cpu(env); 634 635 if (tlb_force_broadcast(env)) { 636 tlbiasid_is_write(env, NULL, value); 637 return; 638 } 639 640 tlb_flush(CPU(cpu)); 641 } 642 643 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 644 uint64_t value) 645 { 646 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 647 ARMCPU *cpu = arm_env_get_cpu(env); 648 649 if (tlb_force_broadcast(env)) { 650 tlbimvaa_is_write(env, NULL, value); 651 return; 652 } 653 654 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 655 } 656 657 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 658 uint64_t value) 659 { 660 CPUState *cs = ENV_GET_CPU(env); 661 662 tlb_flush_by_mmuidx(cs, 663 ARMMMUIdxBit_S12NSE1 | 664 ARMMMUIdxBit_S12NSE0 | 665 ARMMMUIdxBit_S2NS); 666 } 667 668 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 669 uint64_t value) 670 { 671 CPUState *cs = ENV_GET_CPU(env); 672 673 tlb_flush_by_mmuidx_all_cpus_synced(cs, 674 ARMMMUIdxBit_S12NSE1 | 675 ARMMMUIdxBit_S12NSE0 | 676 ARMMMUIdxBit_S2NS); 677 } 678 679 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 680 uint64_t value) 681 { 682 /* Invalidate by IPA. This has to invalidate any structures that 683 * contain only stage 2 translation information, but does not need 684 * to apply to structures that contain combined stage 1 and stage 2 685 * translation information. 686 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 687 */ 688 CPUState *cs = ENV_GET_CPU(env); 689 uint64_t pageaddr; 690 691 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 692 return; 693 } 694 695 pageaddr = sextract64(value << 12, 0, 40); 696 697 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 698 } 699 700 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 701 uint64_t value) 702 { 703 CPUState *cs = ENV_GET_CPU(env); 704 uint64_t pageaddr; 705 706 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 707 return; 708 } 709 710 pageaddr = sextract64(value << 12, 0, 40); 711 712 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 713 ARMMMUIdxBit_S2NS); 714 } 715 716 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 717 uint64_t value) 718 { 719 CPUState *cs = ENV_GET_CPU(env); 720 721 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 722 } 723 724 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 725 uint64_t value) 726 { 727 CPUState *cs = ENV_GET_CPU(env); 728 729 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 730 } 731 732 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 733 uint64_t value) 734 { 735 CPUState *cs = ENV_GET_CPU(env); 736 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 737 738 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 739 } 740 741 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 742 uint64_t value) 743 { 744 CPUState *cs = ENV_GET_CPU(env); 745 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 746 747 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 748 ARMMMUIdxBit_S1E2); 749 } 750 751 static const ARMCPRegInfo cp_reginfo[] = { 752 /* Define the secure and non-secure FCSE identifier CP registers 753 * separately because there is no secure bank in V8 (no _EL3). This allows 754 * the secure register to be properly reset and migrated. There is also no 755 * v8 EL1 version of the register so the non-secure instance stands alone. 756 */ 757 { .name = "FCSEIDR", 758 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 759 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 760 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 761 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 762 { .name = "FCSEIDR_S", 763 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 764 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 765 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 766 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 767 /* Define the secure and non-secure context identifier CP registers 768 * separately because there is no secure bank in V8 (no _EL3). This allows 769 * the secure register to be properly reset and migrated. In the 770 * non-secure case, the 32-bit register will have reset and migration 771 * disabled during registration as it is handled by the 64-bit instance. 772 */ 773 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 774 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 775 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 776 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 777 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 778 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 779 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 780 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 781 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 782 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 783 REGINFO_SENTINEL 784 }; 785 786 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 787 /* NB: Some of these registers exist in v8 but with more precise 788 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 789 */ 790 /* MMU Domain access control / MPU write buffer control */ 791 { .name = "DACR", 792 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 793 .access = PL1_RW, .resetvalue = 0, 794 .writefn = dacr_write, .raw_writefn = raw_write, 795 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 796 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 797 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 798 * For v6 and v5, these mappings are overly broad. 799 */ 800 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 801 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 802 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 803 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 804 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 805 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 806 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 807 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 808 /* Cache maintenance ops; some of this space may be overridden later. */ 809 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 810 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 811 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 812 REGINFO_SENTINEL 813 }; 814 815 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 816 /* Not all pre-v6 cores implemented this WFI, so this is slightly 817 * over-broad. 818 */ 819 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 820 .access = PL1_W, .type = ARM_CP_WFI }, 821 REGINFO_SENTINEL 822 }; 823 824 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 825 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 826 * is UNPREDICTABLE; we choose to NOP as most implementations do). 827 */ 828 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 829 .access = PL1_W, .type = ARM_CP_WFI }, 830 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 831 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 832 * OMAPCP will override this space. 833 */ 834 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 835 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 836 .resetvalue = 0 }, 837 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 838 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 839 .resetvalue = 0 }, 840 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 841 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 842 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 843 .resetvalue = 0 }, 844 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 845 * implementing it as RAZ means the "debug architecture version" bits 846 * will read as a reserved value, which should cause Linux to not try 847 * to use the debug hardware. 848 */ 849 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 850 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 851 /* MMU TLB control. Note that the wildcarding means we cover not just 852 * the unified TLB ops but also the dside/iside/inner-shareable variants. 853 */ 854 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 855 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 856 .type = ARM_CP_NO_RAW }, 857 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 858 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 859 .type = ARM_CP_NO_RAW }, 860 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 861 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 862 .type = ARM_CP_NO_RAW }, 863 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 864 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 865 .type = ARM_CP_NO_RAW }, 866 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 867 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 868 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 869 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 870 REGINFO_SENTINEL 871 }; 872 873 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 874 uint64_t value) 875 { 876 uint32_t mask = 0; 877 878 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 879 if (!arm_feature(env, ARM_FEATURE_V8)) { 880 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 881 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 882 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 883 */ 884 if (arm_feature(env, ARM_FEATURE_VFP)) { 885 /* VFP coprocessor: cp10 & cp11 [23:20] */ 886 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 887 888 if (!arm_feature(env, ARM_FEATURE_NEON)) { 889 /* ASEDIS [31] bit is RAO/WI */ 890 value |= (1 << 31); 891 } 892 893 /* VFPv3 and upwards with NEON implement 32 double precision 894 * registers (D0-D31). 895 */ 896 if (!arm_feature(env, ARM_FEATURE_NEON) || 897 !arm_feature(env, ARM_FEATURE_VFP3)) { 898 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 899 value |= (1 << 30); 900 } 901 } 902 value &= mask; 903 } 904 env->cp15.cpacr_el1 = value; 905 } 906 907 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 908 { 909 /* Call cpacr_write() so that we reset with the correct RAO bits set 910 * for our CPU features. 911 */ 912 cpacr_write(env, ri, 0); 913 } 914 915 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 916 bool isread) 917 { 918 if (arm_feature(env, ARM_FEATURE_V8)) { 919 /* Check if CPACR accesses are to be trapped to EL2 */ 920 if (arm_current_el(env) == 1 && 921 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 922 return CP_ACCESS_TRAP_EL2; 923 /* Check if CPACR accesses are to be trapped to EL3 */ 924 } else if (arm_current_el(env) < 3 && 925 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 926 return CP_ACCESS_TRAP_EL3; 927 } 928 } 929 930 return CP_ACCESS_OK; 931 } 932 933 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 934 bool isread) 935 { 936 /* Check if CPTR accesses are set to trap to EL3 */ 937 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 938 return CP_ACCESS_TRAP_EL3; 939 } 940 941 return CP_ACCESS_OK; 942 } 943 944 static const ARMCPRegInfo v6_cp_reginfo[] = { 945 /* prefetch by MVA in v6, NOP in v7 */ 946 { .name = "MVA_prefetch", 947 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 948 .access = PL1_W, .type = ARM_CP_NOP }, 949 /* We need to break the TB after ISB to execute self-modifying code 950 * correctly and also to take any pending interrupts immediately. 951 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 952 */ 953 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 954 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 955 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 956 .access = PL0_W, .type = ARM_CP_NOP }, 957 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 958 .access = PL0_W, .type = ARM_CP_NOP }, 959 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 960 .access = PL1_RW, 961 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 962 offsetof(CPUARMState, cp15.ifar_ns) }, 963 .resetvalue = 0, }, 964 /* Watchpoint Fault Address Register : should actually only be present 965 * for 1136, 1176, 11MPCore. 966 */ 967 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 968 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 969 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 970 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 971 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 972 .resetfn = cpacr_reset, .writefn = cpacr_write }, 973 REGINFO_SENTINEL 974 }; 975 976 /* Definitions for the PMU registers */ 977 #define PMCRN_MASK 0xf800 978 #define PMCRN_SHIFT 11 979 #define PMCRD 0x8 980 #define PMCRC 0x4 981 #define PMCRE 0x1 982 983 static inline uint32_t pmu_num_counters(CPUARMState *env) 984 { 985 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 986 } 987 988 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 989 static inline uint64_t pmu_counter_mask(CPUARMState *env) 990 { 991 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 992 } 993 994 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 995 bool isread) 996 { 997 /* Performance monitor registers user accessibility is controlled 998 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 999 * trapping to EL2 or EL3 for other accesses. 1000 */ 1001 int el = arm_current_el(env); 1002 1003 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1004 return CP_ACCESS_TRAP; 1005 } 1006 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 1007 && !arm_is_secure_below_el3(env)) { 1008 return CP_ACCESS_TRAP_EL2; 1009 } 1010 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1011 return CP_ACCESS_TRAP_EL3; 1012 } 1013 1014 return CP_ACCESS_OK; 1015 } 1016 1017 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1018 const ARMCPRegInfo *ri, 1019 bool isread) 1020 { 1021 /* ER: event counter read trap control */ 1022 if (arm_feature(env, ARM_FEATURE_V8) 1023 && arm_current_el(env) == 0 1024 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1025 && isread) { 1026 return CP_ACCESS_OK; 1027 } 1028 1029 return pmreg_access(env, ri, isread); 1030 } 1031 1032 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1033 const ARMCPRegInfo *ri, 1034 bool isread) 1035 { 1036 /* SW: software increment write trap control */ 1037 if (arm_feature(env, ARM_FEATURE_V8) 1038 && arm_current_el(env) == 0 1039 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1040 && !isread) { 1041 return CP_ACCESS_OK; 1042 } 1043 1044 return pmreg_access(env, ri, isread); 1045 } 1046 1047 #ifndef CONFIG_USER_ONLY 1048 1049 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1050 const ARMCPRegInfo *ri, 1051 bool isread) 1052 { 1053 /* ER: event counter read trap control */ 1054 if (arm_feature(env, ARM_FEATURE_V8) 1055 && arm_current_el(env) == 0 1056 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1057 return CP_ACCESS_OK; 1058 } 1059 1060 return pmreg_access(env, ri, isread); 1061 } 1062 1063 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1064 const ARMCPRegInfo *ri, 1065 bool isread) 1066 { 1067 /* CR: cycle counter read trap control */ 1068 if (arm_feature(env, ARM_FEATURE_V8) 1069 && arm_current_el(env) == 0 1070 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1071 && isread) { 1072 return CP_ACCESS_OK; 1073 } 1074 1075 return pmreg_access(env, ri, isread); 1076 } 1077 1078 static inline bool arm_ccnt_enabled(CPUARMState *env) 1079 { 1080 /* This does not support checking PMCCFILTR_EL0 register */ 1081 1082 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1083 return false; 1084 } 1085 1086 return true; 1087 } 1088 1089 void pmccntr_sync(CPUARMState *env) 1090 { 1091 uint64_t temp_ticks; 1092 1093 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1094 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1095 1096 if (env->cp15.c9_pmcr & PMCRD) { 1097 /* Increment once every 64 processor clock cycles */ 1098 temp_ticks /= 64; 1099 } 1100 1101 if (arm_ccnt_enabled(env)) { 1102 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1103 } 1104 } 1105 1106 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1107 uint64_t value) 1108 { 1109 pmccntr_sync(env); 1110 1111 if (value & PMCRC) { 1112 /* The counter has been reset */ 1113 env->cp15.c15_ccnt = 0; 1114 } 1115 1116 /* only the DP, X, D and E bits are writable */ 1117 env->cp15.c9_pmcr &= ~0x39; 1118 env->cp15.c9_pmcr |= (value & 0x39); 1119 1120 pmccntr_sync(env); 1121 } 1122 1123 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1124 { 1125 uint64_t total_ticks; 1126 1127 if (!arm_ccnt_enabled(env)) { 1128 /* Counter is disabled, do not change value */ 1129 return env->cp15.c15_ccnt; 1130 } 1131 1132 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1133 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1134 1135 if (env->cp15.c9_pmcr & PMCRD) { 1136 /* Increment once every 64 processor clock cycles */ 1137 total_ticks /= 64; 1138 } 1139 return total_ticks - env->cp15.c15_ccnt; 1140 } 1141 1142 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1143 uint64_t value) 1144 { 1145 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1146 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1147 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1148 * accessed. 1149 */ 1150 env->cp15.c9_pmselr = value & 0x1f; 1151 } 1152 1153 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1154 uint64_t value) 1155 { 1156 uint64_t total_ticks; 1157 1158 if (!arm_ccnt_enabled(env)) { 1159 /* Counter is disabled, set the absolute value */ 1160 env->cp15.c15_ccnt = value; 1161 return; 1162 } 1163 1164 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1165 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1166 1167 if (env->cp15.c9_pmcr & PMCRD) { 1168 /* Increment once every 64 processor clock cycles */ 1169 total_ticks /= 64; 1170 } 1171 env->cp15.c15_ccnt = total_ticks - value; 1172 } 1173 1174 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1175 uint64_t value) 1176 { 1177 uint64_t cur_val = pmccntr_read(env, NULL); 1178 1179 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1180 } 1181 1182 #else /* CONFIG_USER_ONLY */ 1183 1184 void pmccntr_sync(CPUARMState *env) 1185 { 1186 } 1187 1188 #endif 1189 1190 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1191 uint64_t value) 1192 { 1193 pmccntr_sync(env); 1194 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1195 pmccntr_sync(env); 1196 } 1197 1198 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1199 uint64_t value) 1200 { 1201 value &= pmu_counter_mask(env); 1202 env->cp15.c9_pmcnten |= value; 1203 } 1204 1205 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1206 uint64_t value) 1207 { 1208 value &= pmu_counter_mask(env); 1209 env->cp15.c9_pmcnten &= ~value; 1210 } 1211 1212 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1213 uint64_t value) 1214 { 1215 value &= pmu_counter_mask(env); 1216 env->cp15.c9_pmovsr &= ~value; 1217 } 1218 1219 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1223 * PMSELR value is equal to or greater than the number of implemented 1224 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1225 */ 1226 if (env->cp15.c9_pmselr == 0x1f) { 1227 pmccfiltr_write(env, ri, value); 1228 } 1229 } 1230 1231 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1232 { 1233 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1234 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1235 */ 1236 if (env->cp15.c9_pmselr == 0x1f) { 1237 return env->cp15.pmccfiltr_el0; 1238 } else { 1239 return 0; 1240 } 1241 } 1242 1243 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1244 uint64_t value) 1245 { 1246 if (arm_feature(env, ARM_FEATURE_V8)) { 1247 env->cp15.c9_pmuserenr = value & 0xf; 1248 } else { 1249 env->cp15.c9_pmuserenr = value & 1; 1250 } 1251 } 1252 1253 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1254 uint64_t value) 1255 { 1256 /* We have no event counters so only the C bit can be changed */ 1257 value &= pmu_counter_mask(env); 1258 env->cp15.c9_pminten |= value; 1259 } 1260 1261 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1262 uint64_t value) 1263 { 1264 value &= pmu_counter_mask(env); 1265 env->cp15.c9_pminten &= ~value; 1266 } 1267 1268 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1269 uint64_t value) 1270 { 1271 /* Note that even though the AArch64 view of this register has bits 1272 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1273 * architectural requirements for bits which are RES0 only in some 1274 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1275 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1276 */ 1277 raw_write(env, ri, value & ~0x1FULL); 1278 } 1279 1280 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1281 { 1282 /* Begin with base v8.0 state. */ 1283 uint32_t valid_mask = 0x3fff; 1284 ARMCPU *cpu = arm_env_get_cpu(env); 1285 1286 if (arm_el_is_aa64(env, 3)) { 1287 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1288 valid_mask &= ~SCR_NET; 1289 } else { 1290 valid_mask &= ~(SCR_RW | SCR_ST); 1291 } 1292 1293 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1294 valid_mask &= ~SCR_HCE; 1295 1296 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1297 * supported if EL2 exists. The bit is UNK/SBZP when 1298 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1299 * when EL2 is unavailable. 1300 * On ARMv8, this bit is always available. 1301 */ 1302 if (arm_feature(env, ARM_FEATURE_V7) && 1303 !arm_feature(env, ARM_FEATURE_V8)) { 1304 valid_mask &= ~SCR_SMD; 1305 } 1306 } 1307 if (cpu_isar_feature(aa64_lor, cpu)) { 1308 valid_mask |= SCR_TLOR; 1309 } 1310 1311 /* Clear all-context RES0 bits. */ 1312 value &= valid_mask; 1313 raw_write(env, ri, value); 1314 } 1315 1316 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1317 { 1318 ARMCPU *cpu = arm_env_get_cpu(env); 1319 1320 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1321 * bank 1322 */ 1323 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1324 ri->secure & ARM_CP_SECSTATE_S); 1325 1326 return cpu->ccsidr[index]; 1327 } 1328 1329 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1330 uint64_t value) 1331 { 1332 raw_write(env, ri, value & 0xf); 1333 } 1334 1335 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1336 { 1337 CPUState *cs = ENV_GET_CPU(env); 1338 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1339 uint64_t ret = 0; 1340 1341 if (hcr_el2 & HCR_IMO) { 1342 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1343 ret |= CPSR_I; 1344 } 1345 } else { 1346 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1347 ret |= CPSR_I; 1348 } 1349 } 1350 1351 if (hcr_el2 & HCR_FMO) { 1352 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1353 ret |= CPSR_F; 1354 } 1355 } else { 1356 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1357 ret |= CPSR_F; 1358 } 1359 } 1360 1361 /* External aborts are not possible in QEMU so A bit is always clear */ 1362 return ret; 1363 } 1364 1365 static const ARMCPRegInfo v7_cp_reginfo[] = { 1366 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1367 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1368 .access = PL1_W, .type = ARM_CP_NOP }, 1369 /* Performance monitors are implementation defined in v7, 1370 * but with an ARM recommended set of registers, which we 1371 * follow (although we don't actually implement any counters) 1372 * 1373 * Performance registers fall into three categories: 1374 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1375 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1376 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1377 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1378 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1379 */ 1380 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1381 .access = PL0_RW, .type = ARM_CP_ALIAS, 1382 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1383 .writefn = pmcntenset_write, 1384 .accessfn = pmreg_access, 1385 .raw_writefn = raw_write }, 1386 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1387 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1388 .access = PL0_RW, .accessfn = pmreg_access, 1389 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1390 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1391 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1392 .access = PL0_RW, 1393 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1394 .accessfn = pmreg_access, 1395 .writefn = pmcntenclr_write, 1396 .type = ARM_CP_ALIAS }, 1397 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1398 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1399 .access = PL0_RW, .accessfn = pmreg_access, 1400 .type = ARM_CP_ALIAS, 1401 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1402 .writefn = pmcntenclr_write }, 1403 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1404 .access = PL0_RW, 1405 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1406 .accessfn = pmreg_access, 1407 .writefn = pmovsr_write, 1408 .raw_writefn = raw_write }, 1409 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1410 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1411 .access = PL0_RW, .accessfn = pmreg_access, 1412 .type = ARM_CP_ALIAS, 1413 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1414 .writefn = pmovsr_write, 1415 .raw_writefn = raw_write }, 1416 /* Unimplemented so WI. */ 1417 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1418 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1419 #ifndef CONFIG_USER_ONLY 1420 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1421 .access = PL0_RW, .type = ARM_CP_ALIAS, 1422 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1423 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1424 .raw_writefn = raw_write}, 1425 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1426 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1427 .access = PL0_RW, .accessfn = pmreg_access_selr, 1428 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1429 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1430 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1431 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1432 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1433 .accessfn = pmreg_access_ccntr }, 1434 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1435 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1436 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1437 .type = ARM_CP_IO, 1438 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1439 #endif 1440 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1441 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1442 .writefn = pmccfiltr_write, 1443 .access = PL0_RW, .accessfn = pmreg_access, 1444 .type = ARM_CP_IO, 1445 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1446 .resetvalue = 0, }, 1447 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1448 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1449 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1450 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1451 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1452 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1453 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1454 /* Unimplemented, RAZ/WI. */ 1455 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1456 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1457 .accessfn = pmreg_access_xevcntr }, 1458 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1459 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1460 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1461 .resetvalue = 0, 1462 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1463 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1464 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1465 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1466 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1467 .resetvalue = 0, 1468 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1469 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1470 .access = PL1_RW, .accessfn = access_tpm, 1471 .type = ARM_CP_ALIAS | ARM_CP_IO, 1472 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1473 .resetvalue = 0, 1474 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1475 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1476 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1477 .access = PL1_RW, .accessfn = access_tpm, 1478 .type = ARM_CP_IO, 1479 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1480 .writefn = pmintenset_write, .raw_writefn = raw_write, 1481 .resetvalue = 0x0 }, 1482 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1483 .access = PL1_RW, .accessfn = access_tpm, 1484 .type = ARM_CP_ALIAS | ARM_CP_IO, 1485 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1486 .writefn = pmintenclr_write, }, 1487 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1488 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1489 .access = PL1_RW, .accessfn = access_tpm, 1490 .type = ARM_CP_ALIAS | ARM_CP_IO, 1491 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1492 .writefn = pmintenclr_write }, 1493 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1494 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1495 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1496 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1497 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1498 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1499 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1500 offsetof(CPUARMState, cp15.csselr_ns) } }, 1501 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1502 * just RAZ for all cores: 1503 */ 1504 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1505 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1506 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1507 /* Auxiliary fault status registers: these also are IMPDEF, and we 1508 * choose to RAZ/WI for all cores. 1509 */ 1510 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1511 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1512 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1513 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1514 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1515 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1516 /* MAIR can just read-as-written because we don't implement caches 1517 * and so don't need to care about memory attributes. 1518 */ 1519 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1520 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1521 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1522 .resetvalue = 0 }, 1523 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1524 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1525 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1526 .resetvalue = 0 }, 1527 /* For non-long-descriptor page tables these are PRRR and NMRR; 1528 * regardless they still act as reads-as-written for QEMU. 1529 */ 1530 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1531 * allows them to assign the correct fieldoffset based on the endianness 1532 * handled in the field definitions. 1533 */ 1534 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1535 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1536 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1537 offsetof(CPUARMState, cp15.mair0_ns) }, 1538 .resetfn = arm_cp_reset_ignore }, 1539 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1540 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1541 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1542 offsetof(CPUARMState, cp15.mair1_ns) }, 1543 .resetfn = arm_cp_reset_ignore }, 1544 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1545 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1546 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1547 /* 32 bit ITLB invalidates */ 1548 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1549 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1550 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1551 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1552 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1553 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1554 /* 32 bit DTLB invalidates */ 1555 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1556 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1557 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1558 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1559 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1560 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1561 /* 32 bit TLB invalidates */ 1562 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1563 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1564 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1565 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1566 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1567 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1568 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1569 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1570 REGINFO_SENTINEL 1571 }; 1572 1573 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1574 /* 32 bit TLB invalidates, Inner Shareable */ 1575 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1576 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1577 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1578 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1579 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1580 .type = ARM_CP_NO_RAW, .access = PL1_W, 1581 .writefn = tlbiasid_is_write }, 1582 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1583 .type = ARM_CP_NO_RAW, .access = PL1_W, 1584 .writefn = tlbimvaa_is_write }, 1585 REGINFO_SENTINEL 1586 }; 1587 1588 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 value &= 1; 1592 env->teecr = value; 1593 } 1594 1595 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1596 bool isread) 1597 { 1598 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1599 return CP_ACCESS_TRAP; 1600 } 1601 return CP_ACCESS_OK; 1602 } 1603 1604 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1605 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1606 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1607 .resetvalue = 0, 1608 .writefn = teecr_write }, 1609 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1610 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1611 .accessfn = teehbr_access, .resetvalue = 0 }, 1612 REGINFO_SENTINEL 1613 }; 1614 1615 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1616 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1617 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1618 .access = PL0_RW, 1619 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1620 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1621 .access = PL0_RW, 1622 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1623 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1624 .resetfn = arm_cp_reset_ignore }, 1625 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1626 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1627 .access = PL0_R|PL1_W, 1628 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1629 .resetvalue = 0}, 1630 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1631 .access = PL0_R|PL1_W, 1632 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1633 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1634 .resetfn = arm_cp_reset_ignore }, 1635 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1636 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1637 .access = PL1_RW, 1638 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1639 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1640 .access = PL1_RW, 1641 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1642 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1643 .resetvalue = 0 }, 1644 REGINFO_SENTINEL 1645 }; 1646 1647 #ifndef CONFIG_USER_ONLY 1648 1649 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1650 bool isread) 1651 { 1652 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1653 * Writable only at the highest implemented exception level. 1654 */ 1655 int el = arm_current_el(env); 1656 1657 switch (el) { 1658 case 0: 1659 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1660 return CP_ACCESS_TRAP; 1661 } 1662 break; 1663 case 1: 1664 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1665 arm_is_secure_below_el3(env)) { 1666 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1667 return CP_ACCESS_TRAP_UNCATEGORIZED; 1668 } 1669 break; 1670 case 2: 1671 case 3: 1672 break; 1673 } 1674 1675 if (!isread && el < arm_highest_el(env)) { 1676 return CP_ACCESS_TRAP_UNCATEGORIZED; 1677 } 1678 1679 return CP_ACCESS_OK; 1680 } 1681 1682 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1683 bool isread) 1684 { 1685 unsigned int cur_el = arm_current_el(env); 1686 bool secure = arm_is_secure(env); 1687 1688 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1689 if (cur_el == 0 && 1690 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1691 return CP_ACCESS_TRAP; 1692 } 1693 1694 if (arm_feature(env, ARM_FEATURE_EL2) && 1695 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1696 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1697 return CP_ACCESS_TRAP_EL2; 1698 } 1699 return CP_ACCESS_OK; 1700 } 1701 1702 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1703 bool isread) 1704 { 1705 unsigned int cur_el = arm_current_el(env); 1706 bool secure = arm_is_secure(env); 1707 1708 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1709 * EL0[PV]TEN is zero. 1710 */ 1711 if (cur_el == 0 && 1712 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1713 return CP_ACCESS_TRAP; 1714 } 1715 1716 if (arm_feature(env, ARM_FEATURE_EL2) && 1717 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1718 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1719 return CP_ACCESS_TRAP_EL2; 1720 } 1721 return CP_ACCESS_OK; 1722 } 1723 1724 static CPAccessResult gt_pct_access(CPUARMState *env, 1725 const ARMCPRegInfo *ri, 1726 bool isread) 1727 { 1728 return gt_counter_access(env, GTIMER_PHYS, isread); 1729 } 1730 1731 static CPAccessResult gt_vct_access(CPUARMState *env, 1732 const ARMCPRegInfo *ri, 1733 bool isread) 1734 { 1735 return gt_counter_access(env, GTIMER_VIRT, isread); 1736 } 1737 1738 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1739 bool isread) 1740 { 1741 return gt_timer_access(env, GTIMER_PHYS, isread); 1742 } 1743 1744 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1745 bool isread) 1746 { 1747 return gt_timer_access(env, GTIMER_VIRT, isread); 1748 } 1749 1750 static CPAccessResult gt_stimer_access(CPUARMState *env, 1751 const ARMCPRegInfo *ri, 1752 bool isread) 1753 { 1754 /* The AArch64 register view of the secure physical timer is 1755 * always accessible from EL3, and configurably accessible from 1756 * Secure EL1. 1757 */ 1758 switch (arm_current_el(env)) { 1759 case 1: 1760 if (!arm_is_secure(env)) { 1761 return CP_ACCESS_TRAP; 1762 } 1763 if (!(env->cp15.scr_el3 & SCR_ST)) { 1764 return CP_ACCESS_TRAP_EL3; 1765 } 1766 return CP_ACCESS_OK; 1767 case 0: 1768 case 2: 1769 return CP_ACCESS_TRAP; 1770 case 3: 1771 return CP_ACCESS_OK; 1772 default: 1773 g_assert_not_reached(); 1774 } 1775 } 1776 1777 static uint64_t gt_get_countervalue(CPUARMState *env) 1778 { 1779 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1780 } 1781 1782 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1783 { 1784 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1785 1786 if (gt->ctl & 1) { 1787 /* Timer enabled: calculate and set current ISTATUS, irq, and 1788 * reset timer to when ISTATUS next has to change 1789 */ 1790 uint64_t offset = timeridx == GTIMER_VIRT ? 1791 cpu->env.cp15.cntvoff_el2 : 0; 1792 uint64_t count = gt_get_countervalue(&cpu->env); 1793 /* Note that this must be unsigned 64 bit arithmetic: */ 1794 int istatus = count - offset >= gt->cval; 1795 uint64_t nexttick; 1796 int irqstate; 1797 1798 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1799 1800 irqstate = (istatus && !(gt->ctl & 2)); 1801 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1802 1803 if (istatus) { 1804 /* Next transition is when count rolls back over to zero */ 1805 nexttick = UINT64_MAX; 1806 } else { 1807 /* Next transition is when we hit cval */ 1808 nexttick = gt->cval + offset; 1809 } 1810 /* Note that the desired next expiry time might be beyond the 1811 * signed-64-bit range of a QEMUTimer -- in this case we just 1812 * set the timer for as far in the future as possible. When the 1813 * timer expires we will reset the timer for any remaining period. 1814 */ 1815 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1816 nexttick = INT64_MAX / GTIMER_SCALE; 1817 } 1818 timer_mod(cpu->gt_timer[timeridx], nexttick); 1819 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1820 } else { 1821 /* Timer disabled: ISTATUS and timer output always clear */ 1822 gt->ctl &= ~4; 1823 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1824 timer_del(cpu->gt_timer[timeridx]); 1825 trace_arm_gt_recalc_disabled(timeridx); 1826 } 1827 } 1828 1829 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1830 int timeridx) 1831 { 1832 ARMCPU *cpu = arm_env_get_cpu(env); 1833 1834 timer_del(cpu->gt_timer[timeridx]); 1835 } 1836 1837 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1838 { 1839 return gt_get_countervalue(env); 1840 } 1841 1842 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1843 { 1844 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1845 } 1846 1847 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1848 int timeridx, 1849 uint64_t value) 1850 { 1851 trace_arm_gt_cval_write(timeridx, value); 1852 env->cp15.c14_timer[timeridx].cval = value; 1853 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1854 } 1855 1856 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1857 int timeridx) 1858 { 1859 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1860 1861 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1862 (gt_get_countervalue(env) - offset)); 1863 } 1864 1865 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1866 int timeridx, 1867 uint64_t value) 1868 { 1869 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1870 1871 trace_arm_gt_tval_write(timeridx, value); 1872 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1873 sextract64(value, 0, 32); 1874 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1875 } 1876 1877 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1878 int timeridx, 1879 uint64_t value) 1880 { 1881 ARMCPU *cpu = arm_env_get_cpu(env); 1882 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1883 1884 trace_arm_gt_ctl_write(timeridx, value); 1885 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1886 if ((oldval ^ value) & 1) { 1887 /* Enable toggled */ 1888 gt_recalc_timer(cpu, timeridx); 1889 } else if ((oldval ^ value) & 2) { 1890 /* IMASK toggled: don't need to recalculate, 1891 * just set the interrupt line based on ISTATUS 1892 */ 1893 int irqstate = (oldval & 4) && !(value & 2); 1894 1895 trace_arm_gt_imask_toggle(timeridx, irqstate); 1896 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1897 } 1898 } 1899 1900 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1901 { 1902 gt_timer_reset(env, ri, GTIMER_PHYS); 1903 } 1904 1905 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1906 uint64_t value) 1907 { 1908 gt_cval_write(env, ri, GTIMER_PHYS, value); 1909 } 1910 1911 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1912 { 1913 return gt_tval_read(env, ri, GTIMER_PHYS); 1914 } 1915 1916 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1917 uint64_t value) 1918 { 1919 gt_tval_write(env, ri, GTIMER_PHYS, value); 1920 } 1921 1922 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1923 uint64_t value) 1924 { 1925 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1926 } 1927 1928 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1929 { 1930 gt_timer_reset(env, ri, GTIMER_VIRT); 1931 } 1932 1933 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1934 uint64_t value) 1935 { 1936 gt_cval_write(env, ri, GTIMER_VIRT, value); 1937 } 1938 1939 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1940 { 1941 return gt_tval_read(env, ri, GTIMER_VIRT); 1942 } 1943 1944 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1945 uint64_t value) 1946 { 1947 gt_tval_write(env, ri, GTIMER_VIRT, value); 1948 } 1949 1950 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1951 uint64_t value) 1952 { 1953 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1954 } 1955 1956 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1957 uint64_t value) 1958 { 1959 ARMCPU *cpu = arm_env_get_cpu(env); 1960 1961 trace_arm_gt_cntvoff_write(value); 1962 raw_write(env, ri, value); 1963 gt_recalc_timer(cpu, GTIMER_VIRT); 1964 } 1965 1966 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1967 { 1968 gt_timer_reset(env, ri, GTIMER_HYP); 1969 } 1970 1971 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1972 uint64_t value) 1973 { 1974 gt_cval_write(env, ri, GTIMER_HYP, value); 1975 } 1976 1977 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1978 { 1979 return gt_tval_read(env, ri, GTIMER_HYP); 1980 } 1981 1982 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1983 uint64_t value) 1984 { 1985 gt_tval_write(env, ri, GTIMER_HYP, value); 1986 } 1987 1988 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1989 uint64_t value) 1990 { 1991 gt_ctl_write(env, ri, GTIMER_HYP, value); 1992 } 1993 1994 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1995 { 1996 gt_timer_reset(env, ri, GTIMER_SEC); 1997 } 1998 1999 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2000 uint64_t value) 2001 { 2002 gt_cval_write(env, ri, GTIMER_SEC, value); 2003 } 2004 2005 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2006 { 2007 return gt_tval_read(env, ri, GTIMER_SEC); 2008 } 2009 2010 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2011 uint64_t value) 2012 { 2013 gt_tval_write(env, ri, GTIMER_SEC, value); 2014 } 2015 2016 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2017 uint64_t value) 2018 { 2019 gt_ctl_write(env, ri, GTIMER_SEC, value); 2020 } 2021 2022 void arm_gt_ptimer_cb(void *opaque) 2023 { 2024 ARMCPU *cpu = opaque; 2025 2026 gt_recalc_timer(cpu, GTIMER_PHYS); 2027 } 2028 2029 void arm_gt_vtimer_cb(void *opaque) 2030 { 2031 ARMCPU *cpu = opaque; 2032 2033 gt_recalc_timer(cpu, GTIMER_VIRT); 2034 } 2035 2036 void arm_gt_htimer_cb(void *opaque) 2037 { 2038 ARMCPU *cpu = opaque; 2039 2040 gt_recalc_timer(cpu, GTIMER_HYP); 2041 } 2042 2043 void arm_gt_stimer_cb(void *opaque) 2044 { 2045 ARMCPU *cpu = opaque; 2046 2047 gt_recalc_timer(cpu, GTIMER_SEC); 2048 } 2049 2050 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2051 /* Note that CNTFRQ is purely reads-as-written for the benefit 2052 * of software; writing it doesn't actually change the timer frequency. 2053 * Our reset value matches the fixed frequency we implement the timer at. 2054 */ 2055 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2056 .type = ARM_CP_ALIAS, 2057 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2058 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2059 }, 2060 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2061 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2062 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2063 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2064 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 2065 }, 2066 /* overall control: mostly access permissions */ 2067 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2069 .access = PL1_RW, 2070 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2071 .resetvalue = 0, 2072 }, 2073 /* per-timer control */ 2074 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2075 .secure = ARM_CP_SECSTATE_NS, 2076 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2077 .accessfn = gt_ptimer_access, 2078 .fieldoffset = offsetoflow32(CPUARMState, 2079 cp15.c14_timer[GTIMER_PHYS].ctl), 2080 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2081 }, 2082 { .name = "CNTP_CTL_S", 2083 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2084 .secure = ARM_CP_SECSTATE_S, 2085 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2086 .accessfn = gt_ptimer_access, 2087 .fieldoffset = offsetoflow32(CPUARMState, 2088 cp15.c14_timer[GTIMER_SEC].ctl), 2089 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2090 }, 2091 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2092 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2093 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2094 .accessfn = gt_ptimer_access, 2095 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2096 .resetvalue = 0, 2097 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2098 }, 2099 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2100 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2101 .accessfn = gt_vtimer_access, 2102 .fieldoffset = offsetoflow32(CPUARMState, 2103 cp15.c14_timer[GTIMER_VIRT].ctl), 2104 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2105 }, 2106 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2107 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2108 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2109 .accessfn = gt_vtimer_access, 2110 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2111 .resetvalue = 0, 2112 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2113 }, 2114 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2115 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2116 .secure = ARM_CP_SECSTATE_NS, 2117 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2118 .accessfn = gt_ptimer_access, 2119 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2120 }, 2121 { .name = "CNTP_TVAL_S", 2122 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2123 .secure = ARM_CP_SECSTATE_S, 2124 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2125 .accessfn = gt_ptimer_access, 2126 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2127 }, 2128 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2129 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2130 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2131 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2132 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2133 }, 2134 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2135 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2136 .accessfn = gt_vtimer_access, 2137 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2138 }, 2139 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2140 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2141 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2142 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2143 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2144 }, 2145 /* The counter itself */ 2146 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2147 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2148 .accessfn = gt_pct_access, 2149 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2150 }, 2151 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2152 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2153 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2154 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2155 }, 2156 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2157 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2158 .accessfn = gt_vct_access, 2159 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2160 }, 2161 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2162 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2163 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2164 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2165 }, 2166 /* Comparison value, indicating when the timer goes off */ 2167 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2168 .secure = ARM_CP_SECSTATE_NS, 2169 .access = PL1_RW | PL0_R, 2170 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2172 .accessfn = gt_ptimer_access, 2173 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2174 }, 2175 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 2176 .secure = ARM_CP_SECSTATE_S, 2177 .access = PL1_RW | PL0_R, 2178 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2179 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2180 .accessfn = gt_ptimer_access, 2181 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2182 }, 2183 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2184 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2185 .access = PL1_RW | PL0_R, 2186 .type = ARM_CP_IO, 2187 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2188 .resetvalue = 0, .accessfn = gt_ptimer_access, 2189 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2190 }, 2191 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2192 .access = PL1_RW | PL0_R, 2193 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2194 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2195 .accessfn = gt_vtimer_access, 2196 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2197 }, 2198 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2199 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2200 .access = PL1_RW | PL0_R, 2201 .type = ARM_CP_IO, 2202 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2203 .resetvalue = 0, .accessfn = gt_vtimer_access, 2204 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2205 }, 2206 /* Secure timer -- this is actually restricted to only EL3 2207 * and configurably Secure-EL1 via the accessfn. 2208 */ 2209 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2210 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2211 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2212 .accessfn = gt_stimer_access, 2213 .readfn = gt_sec_tval_read, 2214 .writefn = gt_sec_tval_write, 2215 .resetfn = gt_sec_timer_reset, 2216 }, 2217 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2219 .type = ARM_CP_IO, .access = PL1_RW, 2220 .accessfn = gt_stimer_access, 2221 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2222 .resetvalue = 0, 2223 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2224 }, 2225 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2226 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2227 .type = ARM_CP_IO, .access = PL1_RW, 2228 .accessfn = gt_stimer_access, 2229 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2230 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2231 }, 2232 REGINFO_SENTINEL 2233 }; 2234 2235 #else 2236 2237 /* In user-mode most of the generic timer registers are inaccessible 2238 * however modern kernels (4.12+) allow access to cntvct_el0 2239 */ 2240 2241 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2242 { 2243 /* Currently we have no support for QEMUTimer in linux-user so we 2244 * can't call gt_get_countervalue(env), instead we directly 2245 * call the lower level functions. 2246 */ 2247 return cpu_get_clock() / GTIMER_SCALE; 2248 } 2249 2250 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2251 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2252 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2253 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 2254 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2255 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 2256 }, 2257 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2258 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2259 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2260 .readfn = gt_virt_cnt_read, 2261 }, 2262 REGINFO_SENTINEL 2263 }; 2264 2265 #endif 2266 2267 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2268 { 2269 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2270 raw_write(env, ri, value); 2271 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2272 raw_write(env, ri, value & 0xfffff6ff); 2273 } else { 2274 raw_write(env, ri, value & 0xfffff1ff); 2275 } 2276 } 2277 2278 #ifndef CONFIG_USER_ONLY 2279 /* get_phys_addr() isn't present for user-mode-only targets */ 2280 2281 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2282 bool isread) 2283 { 2284 if (ri->opc2 & 4) { 2285 /* The ATS12NSO* operations must trap to EL3 if executed in 2286 * Secure EL1 (which can only happen if EL3 is AArch64). 2287 * They are simply UNDEF if executed from NS EL1. 2288 * They function normally from EL2 or EL3. 2289 */ 2290 if (arm_current_el(env) == 1) { 2291 if (arm_is_secure_below_el3(env)) { 2292 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2293 } 2294 return CP_ACCESS_TRAP_UNCATEGORIZED; 2295 } 2296 } 2297 return CP_ACCESS_OK; 2298 } 2299 2300 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2301 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2302 { 2303 hwaddr phys_addr; 2304 target_ulong page_size; 2305 int prot; 2306 bool ret; 2307 uint64_t par64; 2308 bool format64 = false; 2309 MemTxAttrs attrs = {}; 2310 ARMMMUFaultInfo fi = {}; 2311 ARMCacheAttrs cacheattrs = {}; 2312 2313 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2314 &prot, &page_size, &fi, &cacheattrs); 2315 2316 if (is_a64(env)) { 2317 format64 = true; 2318 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2319 /* 2320 * ATS1Cxx: 2321 * * TTBCR.EAE determines whether the result is returned using the 2322 * 32-bit or the 64-bit PAR format 2323 * * Instructions executed in Hyp mode always use the 64bit format 2324 * 2325 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2326 * * The Non-secure TTBCR.EAE bit is set to 1 2327 * * The implementation includes EL2, and the value of HCR.VM is 1 2328 * 2329 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 2330 * 2331 * ATS1Hx always uses the 64bit format. 2332 */ 2333 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2334 2335 if (arm_feature(env, ARM_FEATURE_EL2)) { 2336 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2337 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 2338 } else { 2339 format64 |= arm_current_el(env) == 2; 2340 } 2341 } 2342 } 2343 2344 if (format64) { 2345 /* Create a 64-bit PAR */ 2346 par64 = (1 << 11); /* LPAE bit always set */ 2347 if (!ret) { 2348 par64 |= phys_addr & ~0xfffULL; 2349 if (!attrs.secure) { 2350 par64 |= (1 << 9); /* NS */ 2351 } 2352 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2353 par64 |= cacheattrs.shareability << 7; /* SH */ 2354 } else { 2355 uint32_t fsr = arm_fi_to_lfsc(&fi); 2356 2357 par64 |= 1; /* F */ 2358 par64 |= (fsr & 0x3f) << 1; /* FS */ 2359 if (fi.stage2) { 2360 par64 |= (1 << 9); /* S */ 2361 } 2362 if (fi.s1ptw) { 2363 par64 |= (1 << 8); /* PTW */ 2364 } 2365 } 2366 } else { 2367 /* fsr is a DFSR/IFSR value for the short descriptor 2368 * translation table format (with WnR always clear). 2369 * Convert it to a 32-bit PAR. 2370 */ 2371 if (!ret) { 2372 /* We do not set any attribute bits in the PAR */ 2373 if (page_size == (1 << 24) 2374 && arm_feature(env, ARM_FEATURE_V7)) { 2375 par64 = (phys_addr & 0xff000000) | (1 << 1); 2376 } else { 2377 par64 = phys_addr & 0xfffff000; 2378 } 2379 if (!attrs.secure) { 2380 par64 |= (1 << 9); /* NS */ 2381 } 2382 } else { 2383 uint32_t fsr = arm_fi_to_sfsc(&fi); 2384 2385 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2386 ((fsr & 0xf) << 1) | 1; 2387 } 2388 } 2389 return par64; 2390 } 2391 2392 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2393 { 2394 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2395 uint64_t par64; 2396 ARMMMUIdx mmu_idx; 2397 int el = arm_current_el(env); 2398 bool secure = arm_is_secure_below_el3(env); 2399 2400 switch (ri->opc2 & 6) { 2401 case 0: 2402 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2403 switch (el) { 2404 case 3: 2405 mmu_idx = ARMMMUIdx_S1E3; 2406 break; 2407 case 2: 2408 mmu_idx = ARMMMUIdx_S1NSE1; 2409 break; 2410 case 1: 2411 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2412 break; 2413 default: 2414 g_assert_not_reached(); 2415 } 2416 break; 2417 case 2: 2418 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2419 switch (el) { 2420 case 3: 2421 mmu_idx = ARMMMUIdx_S1SE0; 2422 break; 2423 case 2: 2424 mmu_idx = ARMMMUIdx_S1NSE0; 2425 break; 2426 case 1: 2427 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2428 break; 2429 default: 2430 g_assert_not_reached(); 2431 } 2432 break; 2433 case 4: 2434 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2435 mmu_idx = ARMMMUIdx_S12NSE1; 2436 break; 2437 case 6: 2438 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2439 mmu_idx = ARMMMUIdx_S12NSE0; 2440 break; 2441 default: 2442 g_assert_not_reached(); 2443 } 2444 2445 par64 = do_ats_write(env, value, access_type, mmu_idx); 2446 2447 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2448 } 2449 2450 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2451 uint64_t value) 2452 { 2453 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2454 uint64_t par64; 2455 2456 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S1E2); 2457 2458 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2459 } 2460 2461 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2462 bool isread) 2463 { 2464 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2465 return CP_ACCESS_TRAP; 2466 } 2467 return CP_ACCESS_OK; 2468 } 2469 2470 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2471 uint64_t value) 2472 { 2473 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2474 ARMMMUIdx mmu_idx; 2475 int secure = arm_is_secure_below_el3(env); 2476 2477 switch (ri->opc2 & 6) { 2478 case 0: 2479 switch (ri->opc1) { 2480 case 0: /* AT S1E1R, AT S1E1W */ 2481 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2482 break; 2483 case 4: /* AT S1E2R, AT S1E2W */ 2484 mmu_idx = ARMMMUIdx_S1E2; 2485 break; 2486 case 6: /* AT S1E3R, AT S1E3W */ 2487 mmu_idx = ARMMMUIdx_S1E3; 2488 break; 2489 default: 2490 g_assert_not_reached(); 2491 } 2492 break; 2493 case 2: /* AT S1E0R, AT S1E0W */ 2494 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2495 break; 2496 case 4: /* AT S12E1R, AT S12E1W */ 2497 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2498 break; 2499 case 6: /* AT S12E0R, AT S12E0W */ 2500 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2501 break; 2502 default: 2503 g_assert_not_reached(); 2504 } 2505 2506 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2507 } 2508 #endif 2509 2510 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2511 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2512 .access = PL1_RW, .resetvalue = 0, 2513 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2514 offsetoflow32(CPUARMState, cp15.par_ns) }, 2515 .writefn = par_write }, 2516 #ifndef CONFIG_USER_ONLY 2517 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2518 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2519 .access = PL1_W, .accessfn = ats_access, 2520 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2521 #endif 2522 REGINFO_SENTINEL 2523 }; 2524 2525 /* Return basic MPU access permission bits. */ 2526 static uint32_t simple_mpu_ap_bits(uint32_t val) 2527 { 2528 uint32_t ret; 2529 uint32_t mask; 2530 int i; 2531 ret = 0; 2532 mask = 3; 2533 for (i = 0; i < 16; i += 2) { 2534 ret |= (val >> i) & mask; 2535 mask <<= 2; 2536 } 2537 return ret; 2538 } 2539 2540 /* Pad basic MPU access permission bits to extended format. */ 2541 static uint32_t extended_mpu_ap_bits(uint32_t val) 2542 { 2543 uint32_t ret; 2544 uint32_t mask; 2545 int i; 2546 ret = 0; 2547 mask = 3; 2548 for (i = 0; i < 16; i += 2) { 2549 ret |= (val & mask) << i; 2550 mask <<= 2; 2551 } 2552 return ret; 2553 } 2554 2555 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2556 uint64_t value) 2557 { 2558 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2559 } 2560 2561 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2562 { 2563 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2564 } 2565 2566 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2567 uint64_t value) 2568 { 2569 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2570 } 2571 2572 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2573 { 2574 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2575 } 2576 2577 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2578 { 2579 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2580 2581 if (!u32p) { 2582 return 0; 2583 } 2584 2585 u32p += env->pmsav7.rnr[M_REG_NS]; 2586 return *u32p; 2587 } 2588 2589 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2590 uint64_t value) 2591 { 2592 ARMCPU *cpu = arm_env_get_cpu(env); 2593 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2594 2595 if (!u32p) { 2596 return; 2597 } 2598 2599 u32p += env->pmsav7.rnr[M_REG_NS]; 2600 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2601 *u32p = value; 2602 } 2603 2604 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2605 uint64_t value) 2606 { 2607 ARMCPU *cpu = arm_env_get_cpu(env); 2608 uint32_t nrgs = cpu->pmsav7_dregion; 2609 2610 if (value >= nrgs) { 2611 qemu_log_mask(LOG_GUEST_ERROR, 2612 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2613 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2614 return; 2615 } 2616 2617 raw_write(env, ri, value); 2618 } 2619 2620 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2621 /* Reset for all these registers is handled in arm_cpu_reset(), 2622 * because the PMSAv7 is also used by M-profile CPUs, which do 2623 * not register cpregs but still need the state to be reset. 2624 */ 2625 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2626 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2627 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2628 .readfn = pmsav7_read, .writefn = pmsav7_write, 2629 .resetfn = arm_cp_reset_ignore }, 2630 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2631 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2632 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2633 .readfn = pmsav7_read, .writefn = pmsav7_write, 2634 .resetfn = arm_cp_reset_ignore }, 2635 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2636 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2637 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2638 .readfn = pmsav7_read, .writefn = pmsav7_write, 2639 .resetfn = arm_cp_reset_ignore }, 2640 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2641 .access = PL1_RW, 2642 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2643 .writefn = pmsav7_rgnr_write, 2644 .resetfn = arm_cp_reset_ignore }, 2645 REGINFO_SENTINEL 2646 }; 2647 2648 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2649 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2650 .access = PL1_RW, .type = ARM_CP_ALIAS, 2651 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2652 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2653 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2654 .access = PL1_RW, .type = ARM_CP_ALIAS, 2655 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2656 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2657 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2658 .access = PL1_RW, 2659 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2660 .resetvalue = 0, }, 2661 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2662 .access = PL1_RW, 2663 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2664 .resetvalue = 0, }, 2665 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2666 .access = PL1_RW, 2667 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2668 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2669 .access = PL1_RW, 2670 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2671 /* Protection region base and size registers */ 2672 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2673 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2674 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2675 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2676 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2677 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2678 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2679 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2680 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2681 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2682 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2683 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2684 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2685 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2686 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2687 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2688 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2689 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2690 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2691 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2692 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2693 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2694 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2695 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2696 REGINFO_SENTINEL 2697 }; 2698 2699 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2700 uint64_t value) 2701 { 2702 TCR *tcr = raw_ptr(env, ri); 2703 int maskshift = extract32(value, 0, 3); 2704 2705 if (!arm_feature(env, ARM_FEATURE_V8)) { 2706 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2707 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2708 * using Long-desciptor translation table format */ 2709 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2710 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2711 /* In an implementation that includes the Security Extensions 2712 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2713 * Short-descriptor translation table format. 2714 */ 2715 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2716 } else { 2717 value &= TTBCR_N; 2718 } 2719 } 2720 2721 /* Update the masks corresponding to the TCR bank being written 2722 * Note that we always calculate mask and base_mask, but 2723 * they are only used for short-descriptor tables (ie if EAE is 0); 2724 * for long-descriptor tables the TCR fields are used differently 2725 * and the mask and base_mask values are meaningless. 2726 */ 2727 tcr->raw_tcr = value; 2728 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2729 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2730 } 2731 2732 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2733 uint64_t value) 2734 { 2735 ARMCPU *cpu = arm_env_get_cpu(env); 2736 TCR *tcr = raw_ptr(env, ri); 2737 2738 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2739 /* With LPAE the TTBCR could result in a change of ASID 2740 * via the TTBCR.A1 bit, so do a TLB flush. 2741 */ 2742 tlb_flush(CPU(cpu)); 2743 } 2744 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 2745 value = deposit64(tcr->raw_tcr, 0, 32, value); 2746 vmsa_ttbcr_raw_write(env, ri, value); 2747 } 2748 2749 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2750 { 2751 TCR *tcr = raw_ptr(env, ri); 2752 2753 /* Reset both the TCR as well as the masks corresponding to the bank of 2754 * the TCR being reset. 2755 */ 2756 tcr->raw_tcr = 0; 2757 tcr->mask = 0; 2758 tcr->base_mask = 0xffffc000u; 2759 } 2760 2761 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2762 uint64_t value) 2763 { 2764 ARMCPU *cpu = arm_env_get_cpu(env); 2765 TCR *tcr = raw_ptr(env, ri); 2766 2767 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2768 tlb_flush(CPU(cpu)); 2769 tcr->raw_tcr = value; 2770 } 2771 2772 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2773 uint64_t value) 2774 { 2775 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 2776 if (cpreg_field_is_64bit(ri) && 2777 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 2778 ARMCPU *cpu = arm_env_get_cpu(env); 2779 tlb_flush(CPU(cpu)); 2780 } 2781 raw_write(env, ri, value); 2782 } 2783 2784 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2785 uint64_t value) 2786 { 2787 ARMCPU *cpu = arm_env_get_cpu(env); 2788 CPUState *cs = CPU(cpu); 2789 2790 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2791 if (raw_read(env, ri) != value) { 2792 tlb_flush_by_mmuidx(cs, 2793 ARMMMUIdxBit_S12NSE1 | 2794 ARMMMUIdxBit_S12NSE0 | 2795 ARMMMUIdxBit_S2NS); 2796 raw_write(env, ri, value); 2797 } 2798 } 2799 2800 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2801 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2802 .access = PL1_RW, .type = ARM_CP_ALIAS, 2803 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2804 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2805 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2806 .access = PL1_RW, .resetvalue = 0, 2807 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2808 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2809 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2810 .access = PL1_RW, .resetvalue = 0, 2811 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2812 offsetof(CPUARMState, cp15.dfar_ns) } }, 2813 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2814 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2815 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2816 .resetvalue = 0, }, 2817 REGINFO_SENTINEL 2818 }; 2819 2820 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2821 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2822 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2823 .access = PL1_RW, 2824 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2825 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2827 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2828 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2829 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2830 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2831 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2832 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2833 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2834 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2835 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2836 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2837 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2838 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2839 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2840 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2841 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2842 .raw_writefn = vmsa_ttbcr_raw_write, 2843 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2844 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2845 REGINFO_SENTINEL 2846 }; 2847 2848 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 2849 * qemu tlbs nor adjusting cached masks. 2850 */ 2851 static const ARMCPRegInfo ttbcr2_reginfo = { 2852 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 2853 .access = PL1_RW, .type = ARM_CP_ALIAS, 2854 .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 2855 offsetofhigh32(CPUARMState, cp15.tcr_el[1]) }, 2856 }; 2857 2858 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2859 uint64_t value) 2860 { 2861 env->cp15.c15_ticonfig = value & 0xe7; 2862 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2863 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2864 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2865 } 2866 2867 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2868 uint64_t value) 2869 { 2870 env->cp15.c15_threadid = value & 0xffff; 2871 } 2872 2873 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2874 uint64_t value) 2875 { 2876 /* Wait-for-interrupt (deprecated) */ 2877 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2878 } 2879 2880 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 uint64_t value) 2882 { 2883 /* On OMAP there are registers indicating the max/min index of dcache lines 2884 * containing a dirty line; cache flush operations have to reset these. 2885 */ 2886 env->cp15.c15_i_max = 0x000; 2887 env->cp15.c15_i_min = 0xff0; 2888 } 2889 2890 static const ARMCPRegInfo omap_cp_reginfo[] = { 2891 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2892 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2893 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2894 .resetvalue = 0, }, 2895 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2896 .access = PL1_RW, .type = ARM_CP_NOP }, 2897 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2898 .access = PL1_RW, 2899 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2900 .writefn = omap_ticonfig_write }, 2901 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2902 .access = PL1_RW, 2903 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2904 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2905 .access = PL1_RW, .resetvalue = 0xff0, 2906 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2907 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2908 .access = PL1_RW, 2909 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2910 .writefn = omap_threadid_write }, 2911 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2912 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2913 .type = ARM_CP_NO_RAW, 2914 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2915 /* TODO: Peripheral port remap register: 2916 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2917 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2918 * when MMU is off. 2919 */ 2920 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2921 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2922 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2923 .writefn = omap_cachemaint_write }, 2924 { .name = "C9", .cp = 15, .crn = 9, 2925 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2926 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2927 REGINFO_SENTINEL 2928 }; 2929 2930 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2931 uint64_t value) 2932 { 2933 env->cp15.c15_cpar = value & 0x3fff; 2934 } 2935 2936 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2937 { .name = "XSCALE_CPAR", 2938 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2939 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2940 .writefn = xscale_cpar_write, }, 2941 { .name = "XSCALE_AUXCR", 2942 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2943 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2944 .resetvalue = 0, }, 2945 /* XScale specific cache-lockdown: since we have no cache we NOP these 2946 * and hope the guest does not really rely on cache behaviour. 2947 */ 2948 { .name = "XSCALE_LOCK_ICACHE_LINE", 2949 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2950 .access = PL1_W, .type = ARM_CP_NOP }, 2951 { .name = "XSCALE_UNLOCK_ICACHE", 2952 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2953 .access = PL1_W, .type = ARM_CP_NOP }, 2954 { .name = "XSCALE_DCACHE_LOCK", 2955 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2956 .access = PL1_RW, .type = ARM_CP_NOP }, 2957 { .name = "XSCALE_UNLOCK_DCACHE", 2958 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2959 .access = PL1_W, .type = ARM_CP_NOP }, 2960 REGINFO_SENTINEL 2961 }; 2962 2963 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2964 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2965 * implementation of this implementation-defined space. 2966 * Ideally this should eventually disappear in favour of actually 2967 * implementing the correct behaviour for all cores. 2968 */ 2969 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2970 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2971 .access = PL1_RW, 2972 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2973 .resetvalue = 0 }, 2974 REGINFO_SENTINEL 2975 }; 2976 2977 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2978 /* Cache status: RAZ because we have no cache so it's always clean */ 2979 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2980 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2981 .resetvalue = 0 }, 2982 REGINFO_SENTINEL 2983 }; 2984 2985 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2986 /* We never have a a block transfer operation in progress */ 2987 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2988 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2989 .resetvalue = 0 }, 2990 /* The cache ops themselves: these all NOP for QEMU */ 2991 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2992 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2993 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2994 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2995 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2996 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2997 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2998 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2999 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 3000 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3001 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 3002 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 3003 REGINFO_SENTINEL 3004 }; 3005 3006 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 3007 /* The cache test-and-clean instructions always return (1 << 30) 3008 * to indicate that there are no dirty cache lines. 3009 */ 3010 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 3011 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3012 .resetvalue = (1 << 30) }, 3013 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 3014 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3015 .resetvalue = (1 << 30) }, 3016 REGINFO_SENTINEL 3017 }; 3018 3019 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 3020 /* Ignore ReadBuffer accesses */ 3021 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 3022 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3023 .access = PL1_RW, .resetvalue = 0, 3024 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 3025 REGINFO_SENTINEL 3026 }; 3027 3028 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3029 { 3030 ARMCPU *cpu = arm_env_get_cpu(env); 3031 unsigned int cur_el = arm_current_el(env); 3032 bool secure = arm_is_secure(env); 3033 3034 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3035 return env->cp15.vpidr_el2; 3036 } 3037 return raw_read(env, ri); 3038 } 3039 3040 static uint64_t mpidr_read_val(CPUARMState *env) 3041 { 3042 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 3043 uint64_t mpidr = cpu->mp_affinity; 3044 3045 if (arm_feature(env, ARM_FEATURE_V7MP)) { 3046 mpidr |= (1U << 31); 3047 /* Cores which are uniprocessor (non-coherent) 3048 * but still implement the MP extensions set 3049 * bit 30. (For instance, Cortex-R5). 3050 */ 3051 if (cpu->mp_is_up) { 3052 mpidr |= (1u << 30); 3053 } 3054 } 3055 return mpidr; 3056 } 3057 3058 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3059 { 3060 unsigned int cur_el = arm_current_el(env); 3061 bool secure = arm_is_secure(env); 3062 3063 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 3064 return env->cp15.vmpidr_el2; 3065 } 3066 return mpidr_read_val(env); 3067 } 3068 3069 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 3070 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 3071 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 3072 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 3073 REGINFO_SENTINEL 3074 }; 3075 3076 static const ARMCPRegInfo lpae_cp_reginfo[] = { 3077 /* NOP AMAIR0/1 */ 3078 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 3079 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 3080 .access = PL1_RW, .type = ARM_CP_CONST, 3081 .resetvalue = 0 }, 3082 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 3083 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 3084 .access = PL1_RW, .type = ARM_CP_CONST, 3085 .resetvalue = 0 }, 3086 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 3087 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 3088 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 3089 offsetof(CPUARMState, cp15.par_ns)} }, 3090 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 3091 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3092 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3093 offsetof(CPUARMState, cp15.ttbr0_ns) }, 3094 .writefn = vmsa_ttbr_write, }, 3095 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 3096 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3097 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3098 offsetof(CPUARMState, cp15.ttbr1_ns) }, 3099 .writefn = vmsa_ttbr_write, }, 3100 REGINFO_SENTINEL 3101 }; 3102 3103 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3104 { 3105 return vfp_get_fpcr(env); 3106 } 3107 3108 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3109 uint64_t value) 3110 { 3111 vfp_set_fpcr(env, value); 3112 } 3113 3114 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3115 { 3116 return vfp_get_fpsr(env); 3117 } 3118 3119 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3120 uint64_t value) 3121 { 3122 vfp_set_fpsr(env, value); 3123 } 3124 3125 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 3126 bool isread) 3127 { 3128 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 3129 return CP_ACCESS_TRAP; 3130 } 3131 return CP_ACCESS_OK; 3132 } 3133 3134 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3135 uint64_t value) 3136 { 3137 env->daif = value & PSTATE_DAIF; 3138 } 3139 3140 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3141 const ARMCPRegInfo *ri, 3142 bool isread) 3143 { 3144 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3145 * SCTLR_EL1.UCI is set. 3146 */ 3147 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3148 return CP_ACCESS_TRAP; 3149 } 3150 return CP_ACCESS_OK; 3151 } 3152 3153 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3154 * Page D4-1736 (DDI0487A.b) 3155 */ 3156 3157 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3158 uint64_t value) 3159 { 3160 CPUState *cs = ENV_GET_CPU(env); 3161 bool sec = arm_is_secure_below_el3(env); 3162 3163 if (sec) { 3164 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3165 ARMMMUIdxBit_S1SE1 | 3166 ARMMMUIdxBit_S1SE0); 3167 } else { 3168 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3169 ARMMMUIdxBit_S12NSE1 | 3170 ARMMMUIdxBit_S12NSE0); 3171 } 3172 } 3173 3174 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3175 uint64_t value) 3176 { 3177 CPUState *cs = ENV_GET_CPU(env); 3178 3179 if (tlb_force_broadcast(env)) { 3180 tlbi_aa64_vmalle1is_write(env, NULL, value); 3181 return; 3182 } 3183 3184 if (arm_is_secure_below_el3(env)) { 3185 tlb_flush_by_mmuidx(cs, 3186 ARMMMUIdxBit_S1SE1 | 3187 ARMMMUIdxBit_S1SE0); 3188 } else { 3189 tlb_flush_by_mmuidx(cs, 3190 ARMMMUIdxBit_S12NSE1 | 3191 ARMMMUIdxBit_S12NSE0); 3192 } 3193 } 3194 3195 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3196 uint64_t value) 3197 { 3198 /* Note that the 'ALL' scope must invalidate both stage 1 and 3199 * stage 2 translations, whereas most other scopes only invalidate 3200 * stage 1 translations. 3201 */ 3202 ARMCPU *cpu = arm_env_get_cpu(env); 3203 CPUState *cs = CPU(cpu); 3204 3205 if (arm_is_secure_below_el3(env)) { 3206 tlb_flush_by_mmuidx(cs, 3207 ARMMMUIdxBit_S1SE1 | 3208 ARMMMUIdxBit_S1SE0); 3209 } else { 3210 if (arm_feature(env, ARM_FEATURE_EL2)) { 3211 tlb_flush_by_mmuidx(cs, 3212 ARMMMUIdxBit_S12NSE1 | 3213 ARMMMUIdxBit_S12NSE0 | 3214 ARMMMUIdxBit_S2NS); 3215 } else { 3216 tlb_flush_by_mmuidx(cs, 3217 ARMMMUIdxBit_S12NSE1 | 3218 ARMMMUIdxBit_S12NSE0); 3219 } 3220 } 3221 } 3222 3223 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3224 uint64_t value) 3225 { 3226 ARMCPU *cpu = arm_env_get_cpu(env); 3227 CPUState *cs = CPU(cpu); 3228 3229 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3230 } 3231 3232 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3233 uint64_t value) 3234 { 3235 ARMCPU *cpu = arm_env_get_cpu(env); 3236 CPUState *cs = CPU(cpu); 3237 3238 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3239 } 3240 3241 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3242 uint64_t value) 3243 { 3244 /* Note that the 'ALL' scope must invalidate both stage 1 and 3245 * stage 2 translations, whereas most other scopes only invalidate 3246 * stage 1 translations. 3247 */ 3248 CPUState *cs = ENV_GET_CPU(env); 3249 bool sec = arm_is_secure_below_el3(env); 3250 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3251 3252 if (sec) { 3253 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3254 ARMMMUIdxBit_S1SE1 | 3255 ARMMMUIdxBit_S1SE0); 3256 } else if (has_el2) { 3257 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3258 ARMMMUIdxBit_S12NSE1 | 3259 ARMMMUIdxBit_S12NSE0 | 3260 ARMMMUIdxBit_S2NS); 3261 } else { 3262 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3263 ARMMMUIdxBit_S12NSE1 | 3264 ARMMMUIdxBit_S12NSE0); 3265 } 3266 } 3267 3268 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3269 uint64_t value) 3270 { 3271 CPUState *cs = ENV_GET_CPU(env); 3272 3273 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3274 } 3275 3276 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3277 uint64_t value) 3278 { 3279 CPUState *cs = ENV_GET_CPU(env); 3280 3281 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3282 } 3283 3284 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3285 uint64_t value) 3286 { 3287 /* Invalidate by VA, EL2 3288 * Currently handles both VAE2 and VALE2, since we don't support 3289 * flush-last-level-only. 3290 */ 3291 ARMCPU *cpu = arm_env_get_cpu(env); 3292 CPUState *cs = CPU(cpu); 3293 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3294 3295 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3296 } 3297 3298 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3299 uint64_t value) 3300 { 3301 /* Invalidate by VA, EL3 3302 * Currently handles both VAE3 and VALE3, since we don't support 3303 * flush-last-level-only. 3304 */ 3305 ARMCPU *cpu = arm_env_get_cpu(env); 3306 CPUState *cs = CPU(cpu); 3307 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3308 3309 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3310 } 3311 3312 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3313 uint64_t value) 3314 { 3315 ARMCPU *cpu = arm_env_get_cpu(env); 3316 CPUState *cs = CPU(cpu); 3317 bool sec = arm_is_secure_below_el3(env); 3318 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3319 3320 if (sec) { 3321 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3322 ARMMMUIdxBit_S1SE1 | 3323 ARMMMUIdxBit_S1SE0); 3324 } else { 3325 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3326 ARMMMUIdxBit_S12NSE1 | 3327 ARMMMUIdxBit_S12NSE0); 3328 } 3329 } 3330 3331 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3332 uint64_t value) 3333 { 3334 /* Invalidate by VA, EL1&0 (AArch64 version). 3335 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3336 * since we don't support flush-for-specific-ASID-only or 3337 * flush-last-level-only. 3338 */ 3339 ARMCPU *cpu = arm_env_get_cpu(env); 3340 CPUState *cs = CPU(cpu); 3341 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3342 3343 if (tlb_force_broadcast(env)) { 3344 tlbi_aa64_vae1is_write(env, NULL, value); 3345 return; 3346 } 3347 3348 if (arm_is_secure_below_el3(env)) { 3349 tlb_flush_page_by_mmuidx(cs, pageaddr, 3350 ARMMMUIdxBit_S1SE1 | 3351 ARMMMUIdxBit_S1SE0); 3352 } else { 3353 tlb_flush_page_by_mmuidx(cs, pageaddr, 3354 ARMMMUIdxBit_S12NSE1 | 3355 ARMMMUIdxBit_S12NSE0); 3356 } 3357 } 3358 3359 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3360 uint64_t value) 3361 { 3362 CPUState *cs = ENV_GET_CPU(env); 3363 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3364 3365 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3366 ARMMMUIdxBit_S1E2); 3367 } 3368 3369 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3370 uint64_t value) 3371 { 3372 CPUState *cs = ENV_GET_CPU(env); 3373 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3374 3375 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3376 ARMMMUIdxBit_S1E3); 3377 } 3378 3379 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3380 uint64_t value) 3381 { 3382 /* Invalidate by IPA. This has to invalidate any structures that 3383 * contain only stage 2 translation information, but does not need 3384 * to apply to structures that contain combined stage 1 and stage 2 3385 * translation information. 3386 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3387 */ 3388 ARMCPU *cpu = arm_env_get_cpu(env); 3389 CPUState *cs = CPU(cpu); 3390 uint64_t pageaddr; 3391 3392 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3393 return; 3394 } 3395 3396 pageaddr = sextract64(value << 12, 0, 48); 3397 3398 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3399 } 3400 3401 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3402 uint64_t value) 3403 { 3404 CPUState *cs = ENV_GET_CPU(env); 3405 uint64_t pageaddr; 3406 3407 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3408 return; 3409 } 3410 3411 pageaddr = sextract64(value << 12, 0, 48); 3412 3413 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3414 ARMMMUIdxBit_S2NS); 3415 } 3416 3417 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3418 bool isread) 3419 { 3420 /* We don't implement EL2, so the only control on DC ZVA is the 3421 * bit in the SCTLR which can prohibit access for EL0. 3422 */ 3423 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3424 return CP_ACCESS_TRAP; 3425 } 3426 return CP_ACCESS_OK; 3427 } 3428 3429 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3430 { 3431 ARMCPU *cpu = arm_env_get_cpu(env); 3432 int dzp_bit = 1 << 4; 3433 3434 /* DZP indicates whether DC ZVA access is allowed */ 3435 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3436 dzp_bit = 0; 3437 } 3438 return cpu->dcz_blocksize | dzp_bit; 3439 } 3440 3441 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3442 bool isread) 3443 { 3444 if (!(env->pstate & PSTATE_SP)) { 3445 /* Access to SP_EL0 is undefined if it's being used as 3446 * the stack pointer. 3447 */ 3448 return CP_ACCESS_TRAP_UNCATEGORIZED; 3449 } 3450 return CP_ACCESS_OK; 3451 } 3452 3453 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3454 { 3455 return env->pstate & PSTATE_SP; 3456 } 3457 3458 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3459 { 3460 update_spsel(env, val); 3461 } 3462 3463 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3464 uint64_t value) 3465 { 3466 ARMCPU *cpu = arm_env_get_cpu(env); 3467 3468 if (raw_read(env, ri) == value) { 3469 /* Skip the TLB flush if nothing actually changed; Linux likes 3470 * to do a lot of pointless SCTLR writes. 3471 */ 3472 return; 3473 } 3474 3475 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3476 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3477 value &= ~SCTLR_M; 3478 } 3479 3480 raw_write(env, ri, value); 3481 /* ??? Lots of these bits are not implemented. */ 3482 /* This may enable/disable the MMU, so do a TLB flush. */ 3483 tlb_flush(CPU(cpu)); 3484 } 3485 3486 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3487 bool isread) 3488 { 3489 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3490 return CP_ACCESS_TRAP_FP_EL2; 3491 } 3492 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3493 return CP_ACCESS_TRAP_FP_EL3; 3494 } 3495 return CP_ACCESS_OK; 3496 } 3497 3498 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3499 uint64_t value) 3500 { 3501 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3502 } 3503 3504 static const ARMCPRegInfo v8_cp_reginfo[] = { 3505 /* Minimal set of EL0-visible registers. This will need to be expanded 3506 * significantly for system emulation of AArch64 CPUs. 3507 */ 3508 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3509 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3510 .access = PL0_RW, .type = ARM_CP_NZCV }, 3511 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3512 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3513 .type = ARM_CP_NO_RAW, 3514 .access = PL0_RW, .accessfn = aa64_daif_access, 3515 .fieldoffset = offsetof(CPUARMState, daif), 3516 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3517 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3518 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3519 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3520 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3521 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3522 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3523 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3524 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3525 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3526 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3527 .access = PL0_R, .type = ARM_CP_NO_RAW, 3528 .readfn = aa64_dczid_read }, 3529 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3530 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3531 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3532 #ifndef CONFIG_USER_ONLY 3533 /* Avoid overhead of an access check that always passes in user-mode */ 3534 .accessfn = aa64_zva_access, 3535 #endif 3536 }, 3537 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3538 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3539 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3540 /* Cache ops: all NOPs since we don't emulate caches */ 3541 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3542 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3543 .access = PL1_W, .type = ARM_CP_NOP }, 3544 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3545 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3546 .access = PL1_W, .type = ARM_CP_NOP }, 3547 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3548 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3549 .access = PL0_W, .type = ARM_CP_NOP, 3550 .accessfn = aa64_cacheop_access }, 3551 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3552 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3553 .access = PL1_W, .type = ARM_CP_NOP }, 3554 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3555 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3556 .access = PL1_W, .type = ARM_CP_NOP }, 3557 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3558 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3559 .access = PL0_W, .type = ARM_CP_NOP, 3560 .accessfn = aa64_cacheop_access }, 3561 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3562 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3563 .access = PL1_W, .type = ARM_CP_NOP }, 3564 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3565 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3566 .access = PL0_W, .type = ARM_CP_NOP, 3567 .accessfn = aa64_cacheop_access }, 3568 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3569 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3570 .access = PL0_W, .type = ARM_CP_NOP, 3571 .accessfn = aa64_cacheop_access }, 3572 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3573 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3574 .access = PL1_W, .type = ARM_CP_NOP }, 3575 /* TLBI operations */ 3576 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3577 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3578 .access = PL1_W, .type = ARM_CP_NO_RAW, 3579 .writefn = tlbi_aa64_vmalle1is_write }, 3580 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3581 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3582 .access = PL1_W, .type = ARM_CP_NO_RAW, 3583 .writefn = tlbi_aa64_vae1is_write }, 3584 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3585 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3586 .access = PL1_W, .type = ARM_CP_NO_RAW, 3587 .writefn = tlbi_aa64_vmalle1is_write }, 3588 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3589 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3590 .access = PL1_W, .type = ARM_CP_NO_RAW, 3591 .writefn = tlbi_aa64_vae1is_write }, 3592 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3593 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3594 .access = PL1_W, .type = ARM_CP_NO_RAW, 3595 .writefn = tlbi_aa64_vae1is_write }, 3596 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3597 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3598 .access = PL1_W, .type = ARM_CP_NO_RAW, 3599 .writefn = tlbi_aa64_vae1is_write }, 3600 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3601 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3602 .access = PL1_W, .type = ARM_CP_NO_RAW, 3603 .writefn = tlbi_aa64_vmalle1_write }, 3604 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3605 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3606 .access = PL1_W, .type = ARM_CP_NO_RAW, 3607 .writefn = tlbi_aa64_vae1_write }, 3608 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3609 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3610 .access = PL1_W, .type = ARM_CP_NO_RAW, 3611 .writefn = tlbi_aa64_vmalle1_write }, 3612 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3613 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3614 .access = PL1_W, .type = ARM_CP_NO_RAW, 3615 .writefn = tlbi_aa64_vae1_write }, 3616 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3617 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3618 .access = PL1_W, .type = ARM_CP_NO_RAW, 3619 .writefn = tlbi_aa64_vae1_write }, 3620 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3621 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3622 .access = PL1_W, .type = ARM_CP_NO_RAW, 3623 .writefn = tlbi_aa64_vae1_write }, 3624 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3625 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3626 .access = PL2_W, .type = ARM_CP_NO_RAW, 3627 .writefn = tlbi_aa64_ipas2e1is_write }, 3628 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3629 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3630 .access = PL2_W, .type = ARM_CP_NO_RAW, 3631 .writefn = tlbi_aa64_ipas2e1is_write }, 3632 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3633 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3634 .access = PL2_W, .type = ARM_CP_NO_RAW, 3635 .writefn = tlbi_aa64_alle1is_write }, 3636 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3637 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3638 .access = PL2_W, .type = ARM_CP_NO_RAW, 3639 .writefn = tlbi_aa64_alle1is_write }, 3640 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3641 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3642 .access = PL2_W, .type = ARM_CP_NO_RAW, 3643 .writefn = tlbi_aa64_ipas2e1_write }, 3644 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3645 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3646 .access = PL2_W, .type = ARM_CP_NO_RAW, 3647 .writefn = tlbi_aa64_ipas2e1_write }, 3648 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3649 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3650 .access = PL2_W, .type = ARM_CP_NO_RAW, 3651 .writefn = tlbi_aa64_alle1_write }, 3652 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3653 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3654 .access = PL2_W, .type = ARM_CP_NO_RAW, 3655 .writefn = tlbi_aa64_alle1is_write }, 3656 #ifndef CONFIG_USER_ONLY 3657 /* 64 bit address translation operations */ 3658 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3659 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3660 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3661 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3663 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3664 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3665 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3666 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3667 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3668 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3669 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3670 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3671 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3672 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3673 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3674 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3675 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3676 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3677 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3678 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3679 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3680 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3681 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3682 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3683 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3684 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3685 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3686 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3687 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3688 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3689 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3690 .type = ARM_CP_ALIAS, 3691 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3692 .access = PL1_RW, .resetvalue = 0, 3693 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3694 .writefn = par_write }, 3695 #endif 3696 /* TLB invalidate last level of translation table walk */ 3697 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3698 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3699 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3700 .type = ARM_CP_NO_RAW, .access = PL1_W, 3701 .writefn = tlbimvaa_is_write }, 3702 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3703 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3704 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3705 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3706 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3707 .type = ARM_CP_NO_RAW, .access = PL2_W, 3708 .writefn = tlbimva_hyp_write }, 3709 { .name = "TLBIMVALHIS", 3710 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3711 .type = ARM_CP_NO_RAW, .access = PL2_W, 3712 .writefn = tlbimva_hyp_is_write }, 3713 { .name = "TLBIIPAS2", 3714 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3715 .type = ARM_CP_NO_RAW, .access = PL2_W, 3716 .writefn = tlbiipas2_write }, 3717 { .name = "TLBIIPAS2IS", 3718 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3719 .type = ARM_CP_NO_RAW, .access = PL2_W, 3720 .writefn = tlbiipas2_is_write }, 3721 { .name = "TLBIIPAS2L", 3722 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3723 .type = ARM_CP_NO_RAW, .access = PL2_W, 3724 .writefn = tlbiipas2_write }, 3725 { .name = "TLBIIPAS2LIS", 3726 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3727 .type = ARM_CP_NO_RAW, .access = PL2_W, 3728 .writefn = tlbiipas2_is_write }, 3729 /* 32 bit cache operations */ 3730 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3731 .type = ARM_CP_NOP, .access = PL1_W }, 3732 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3733 .type = ARM_CP_NOP, .access = PL1_W }, 3734 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3735 .type = ARM_CP_NOP, .access = PL1_W }, 3736 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3737 .type = ARM_CP_NOP, .access = PL1_W }, 3738 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3739 .type = ARM_CP_NOP, .access = PL1_W }, 3740 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3741 .type = ARM_CP_NOP, .access = PL1_W }, 3742 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3743 .type = ARM_CP_NOP, .access = PL1_W }, 3744 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3745 .type = ARM_CP_NOP, .access = PL1_W }, 3746 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3747 .type = ARM_CP_NOP, .access = PL1_W }, 3748 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3749 .type = ARM_CP_NOP, .access = PL1_W }, 3750 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3751 .type = ARM_CP_NOP, .access = PL1_W }, 3752 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3753 .type = ARM_CP_NOP, .access = PL1_W }, 3754 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3755 .type = ARM_CP_NOP, .access = PL1_W }, 3756 /* MMU Domain access control / MPU write buffer control */ 3757 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3758 .access = PL1_RW, .resetvalue = 0, 3759 .writefn = dacr_write, .raw_writefn = raw_write, 3760 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3761 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3762 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3763 .type = ARM_CP_ALIAS, 3764 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3765 .access = PL1_RW, 3766 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3767 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3768 .type = ARM_CP_ALIAS, 3769 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3770 .access = PL1_RW, 3771 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3772 /* We rely on the access checks not allowing the guest to write to the 3773 * state field when SPSel indicates that it's being used as the stack 3774 * pointer. 3775 */ 3776 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3777 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3778 .access = PL1_RW, .accessfn = sp_el0_access, 3779 .type = ARM_CP_ALIAS, 3780 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3781 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3782 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3783 .access = PL2_RW, .type = ARM_CP_ALIAS, 3784 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3785 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3786 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3787 .type = ARM_CP_NO_RAW, 3788 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3789 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3790 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3791 .type = ARM_CP_ALIAS, 3792 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3793 .access = PL2_RW, .accessfn = fpexc32_access }, 3794 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3795 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3796 .access = PL2_RW, .resetvalue = 0, 3797 .writefn = dacr_write, .raw_writefn = raw_write, 3798 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3799 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3800 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3801 .access = PL2_RW, .resetvalue = 0, 3802 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3803 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3804 .type = ARM_CP_ALIAS, 3805 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3806 .access = PL2_RW, 3807 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3808 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3809 .type = ARM_CP_ALIAS, 3810 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3811 .access = PL2_RW, 3812 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3813 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3814 .type = ARM_CP_ALIAS, 3815 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3816 .access = PL2_RW, 3817 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3818 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3819 .type = ARM_CP_ALIAS, 3820 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3821 .access = PL2_RW, 3822 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3823 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3824 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3825 .resetvalue = 0, 3826 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3827 { .name = "SDCR", .type = ARM_CP_ALIAS, 3828 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3829 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3830 .writefn = sdcr_write, 3831 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3832 REGINFO_SENTINEL 3833 }; 3834 3835 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3836 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3837 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 3838 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3839 .access = PL2_RW, 3840 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3841 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 3842 .type = ARM_CP_NO_RAW, 3843 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3844 .access = PL2_RW, 3845 .type = ARM_CP_CONST, .resetvalue = 0 }, 3846 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 3847 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3848 .access = PL2_RW, 3849 .type = ARM_CP_CONST, .resetvalue = 0 }, 3850 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3851 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3852 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3853 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3854 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3855 .access = PL2_RW, .type = ARM_CP_CONST, 3856 .resetvalue = 0 }, 3857 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3858 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3859 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3860 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3861 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3862 .access = PL2_RW, .type = ARM_CP_CONST, 3863 .resetvalue = 0 }, 3864 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 3865 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3866 .access = PL2_RW, .type = ARM_CP_CONST, 3867 .resetvalue = 0 }, 3868 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3869 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3870 .access = PL2_RW, .type = ARM_CP_CONST, 3871 .resetvalue = 0 }, 3872 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3873 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3874 .access = PL2_RW, .type = ARM_CP_CONST, 3875 .resetvalue = 0 }, 3876 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3877 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3878 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3879 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3880 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3881 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3882 .type = ARM_CP_CONST, .resetvalue = 0 }, 3883 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3884 .cp = 15, .opc1 = 6, .crm = 2, 3885 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3886 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3887 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3888 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3889 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3890 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3891 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3892 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3893 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3894 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3895 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3896 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3897 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3898 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3899 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3900 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3901 .resetvalue = 0 }, 3902 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3903 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3904 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3905 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3906 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3907 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3908 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3909 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3910 .resetvalue = 0 }, 3911 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3912 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3913 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3914 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3915 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3916 .resetvalue = 0 }, 3917 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3918 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3919 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3920 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3921 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3922 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3923 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3924 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3925 .access = PL2_RW, .accessfn = access_tda, 3926 .type = ARM_CP_CONST, .resetvalue = 0 }, 3927 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3928 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3929 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3930 .type = ARM_CP_CONST, .resetvalue = 0 }, 3931 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3932 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3933 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3934 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 3935 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3936 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3937 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 3938 .type = ARM_CP_CONST, 3939 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 3940 .access = PL2_RW, .resetvalue = 0 }, 3941 REGINFO_SENTINEL 3942 }; 3943 3944 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 3945 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 3946 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 3947 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 3948 .access = PL2_RW, 3949 .type = ARM_CP_CONST, .resetvalue = 0 }, 3950 REGINFO_SENTINEL 3951 }; 3952 3953 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3954 { 3955 ARMCPU *cpu = arm_env_get_cpu(env); 3956 uint64_t valid_mask = HCR_MASK; 3957 3958 if (arm_feature(env, ARM_FEATURE_EL3)) { 3959 valid_mask &= ~HCR_HCD; 3960 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3961 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3962 * However, if we're using the SMC PSCI conduit then QEMU is 3963 * effectively acting like EL3 firmware and so the guest at 3964 * EL2 should retain the ability to prevent EL1 from being 3965 * able to make SMC calls into the ersatz firmware, so in 3966 * that case HCR.TSC should be read/write. 3967 */ 3968 valid_mask &= ~HCR_TSC; 3969 } 3970 if (cpu_isar_feature(aa64_lor, cpu)) { 3971 valid_mask |= HCR_TLOR; 3972 } 3973 3974 /* Clear RES0 bits. */ 3975 value &= valid_mask; 3976 3977 /* These bits change the MMU setup: 3978 * HCR_VM enables stage 2 translation 3979 * HCR_PTW forbids certain page-table setups 3980 * HCR_DC Disables stage1 and enables stage2 translation 3981 */ 3982 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3983 tlb_flush(CPU(cpu)); 3984 } 3985 env->cp15.hcr_el2 = value; 3986 3987 /* 3988 * Updates to VI and VF require us to update the status of 3989 * virtual interrupts, which are the logical OR of these bits 3990 * and the state of the input lines from the GIC. (This requires 3991 * that we have the iothread lock, which is done by marking the 3992 * reginfo structs as ARM_CP_IO.) 3993 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 3994 * possible for it to be taken immediately, because VIRQ and 3995 * VFIQ are masked unless running at EL0 or EL1, and HCR 3996 * can only be written at EL2. 3997 */ 3998 g_assert(qemu_mutex_iothread_locked()); 3999 arm_cpu_update_virq(cpu); 4000 arm_cpu_update_vfiq(cpu); 4001 } 4002 4003 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 4004 uint64_t value) 4005 { 4006 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 4007 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 4008 hcr_write(env, NULL, value); 4009 } 4010 4011 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 4012 uint64_t value) 4013 { 4014 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 4015 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 4016 hcr_write(env, NULL, value); 4017 } 4018 4019 /* 4020 * Return the effective value of HCR_EL2. 4021 * Bits that are not included here: 4022 * RW (read from SCR_EL3.RW as needed) 4023 */ 4024 uint64_t arm_hcr_el2_eff(CPUARMState *env) 4025 { 4026 uint64_t ret = env->cp15.hcr_el2; 4027 4028 if (arm_is_secure_below_el3(env)) { 4029 /* 4030 * "This register has no effect if EL2 is not enabled in the 4031 * current Security state". This is ARMv8.4-SecEL2 speak for 4032 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 4033 * 4034 * Prior to that, the language was "In an implementation that 4035 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 4036 * as if this field is 0 for all purposes other than a direct 4037 * read or write access of HCR_EL2". With lots of enumeration 4038 * on a per-field basis. In current QEMU, this is condition 4039 * is arm_is_secure_below_el3. 4040 * 4041 * Since the v8.4 language applies to the entire register, and 4042 * appears to be backward compatible, use that. 4043 */ 4044 ret = 0; 4045 } else if (ret & HCR_TGE) { 4046 /* These bits are up-to-date as of ARMv8.4. */ 4047 if (ret & HCR_E2H) { 4048 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 4049 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 4050 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 4051 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE); 4052 } else { 4053 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 4054 } 4055 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 4056 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 4057 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 4058 HCR_TLOR); 4059 } 4060 4061 return ret; 4062 } 4063 4064 static const ARMCPRegInfo el2_cp_reginfo[] = { 4065 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 4066 .type = ARM_CP_IO, 4067 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4068 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4069 .writefn = hcr_write }, 4070 { .name = "HCR", .state = ARM_CP_STATE_AA32, 4071 .type = ARM_CP_ALIAS | ARM_CP_IO, 4072 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 4073 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 4074 .writefn = hcr_writelow }, 4075 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 4076 .type = ARM_CP_ALIAS, 4077 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 4078 .access = PL2_RW, 4079 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 4080 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 4081 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 4082 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 4083 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 4084 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 4085 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 4086 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 4087 .type = ARM_CP_ALIAS, 4088 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 4089 .access = PL2_RW, 4090 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 4091 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 4092 .type = ARM_CP_ALIAS, 4093 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 4094 .access = PL2_RW, 4095 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 4096 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 4097 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 4098 .access = PL2_RW, .writefn = vbar_write, 4099 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 4100 .resetvalue = 0 }, 4101 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 4102 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 4103 .access = PL3_RW, .type = ARM_CP_ALIAS, 4104 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 4105 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 4106 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 4107 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 4108 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 4109 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 4110 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 4111 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 4112 .resetvalue = 0 }, 4113 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 4114 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 4115 .access = PL2_RW, .type = ARM_CP_ALIAS, 4116 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 4117 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 4118 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 4119 .access = PL2_RW, .type = ARM_CP_CONST, 4120 .resetvalue = 0 }, 4121 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 4122 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 4123 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 4124 .access = PL2_RW, .type = ARM_CP_CONST, 4125 .resetvalue = 0 }, 4126 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 4127 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 4128 .access = PL2_RW, .type = ARM_CP_CONST, 4129 .resetvalue = 0 }, 4130 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 4131 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 4132 .access = PL2_RW, .type = ARM_CP_CONST, 4133 .resetvalue = 0 }, 4134 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 4135 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 4136 .access = PL2_RW, 4137 /* no .writefn needed as this can't cause an ASID change; 4138 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4139 */ 4140 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 4141 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 4142 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4143 .type = ARM_CP_ALIAS, 4144 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4145 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4146 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 4147 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 4148 .access = PL2_RW, 4149 /* no .writefn needed as this can't cause an ASID change; 4150 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 4151 */ 4152 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 4153 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 4154 .cp = 15, .opc1 = 6, .crm = 2, 4155 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4156 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4157 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 4158 .writefn = vttbr_write }, 4159 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 4160 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 4161 .access = PL2_RW, .writefn = vttbr_write, 4162 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 4163 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 4164 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 4165 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 4166 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 4167 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4168 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 4169 .access = PL2_RW, .resetvalue = 0, 4170 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 4171 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 4172 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 4173 .access = PL2_RW, .resetvalue = 0, 4174 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4175 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 4176 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4177 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 4178 { .name = "TLBIALLNSNH", 4179 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4180 .type = ARM_CP_NO_RAW, .access = PL2_W, 4181 .writefn = tlbiall_nsnh_write }, 4182 { .name = "TLBIALLNSNHIS", 4183 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4184 .type = ARM_CP_NO_RAW, .access = PL2_W, 4185 .writefn = tlbiall_nsnh_is_write }, 4186 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4187 .type = ARM_CP_NO_RAW, .access = PL2_W, 4188 .writefn = tlbiall_hyp_write }, 4189 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4190 .type = ARM_CP_NO_RAW, .access = PL2_W, 4191 .writefn = tlbiall_hyp_is_write }, 4192 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4193 .type = ARM_CP_NO_RAW, .access = PL2_W, 4194 .writefn = tlbimva_hyp_write }, 4195 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4196 .type = ARM_CP_NO_RAW, .access = PL2_W, 4197 .writefn = tlbimva_hyp_is_write }, 4198 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 4199 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 4200 .type = ARM_CP_NO_RAW, .access = PL2_W, 4201 .writefn = tlbi_aa64_alle2_write }, 4202 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 4203 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 4204 .type = ARM_CP_NO_RAW, .access = PL2_W, 4205 .writefn = tlbi_aa64_vae2_write }, 4206 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 4207 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 4208 .access = PL2_W, .type = ARM_CP_NO_RAW, 4209 .writefn = tlbi_aa64_vae2_write }, 4210 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 4211 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 4212 .access = PL2_W, .type = ARM_CP_NO_RAW, 4213 .writefn = tlbi_aa64_alle2is_write }, 4214 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 4215 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 4216 .type = ARM_CP_NO_RAW, .access = PL2_W, 4217 .writefn = tlbi_aa64_vae2is_write }, 4218 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 4219 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 4220 .access = PL2_W, .type = ARM_CP_NO_RAW, 4221 .writefn = tlbi_aa64_vae2is_write }, 4222 #ifndef CONFIG_USER_ONLY 4223 /* Unlike the other EL2-related AT operations, these must 4224 * UNDEF from EL3 if EL2 is not implemented, which is why we 4225 * define them here rather than with the rest of the AT ops. 4226 */ 4227 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 4228 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4229 .access = PL2_W, .accessfn = at_s1e2_access, 4230 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4231 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 4232 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4233 .access = PL2_W, .accessfn = at_s1e2_access, 4234 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 4235 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 4236 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 4237 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 4238 * to behave as if SCR.NS was 1. 4239 */ 4240 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 4241 .access = PL2_W, 4242 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4243 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 4244 .access = PL2_W, 4245 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 4246 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 4247 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 4248 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 4249 * reset values as IMPDEF. We choose to reset to 3 to comply with 4250 * both ARMv7 and ARMv8. 4251 */ 4252 .access = PL2_RW, .resetvalue = 3, 4253 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4254 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4255 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4256 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4257 .writefn = gt_cntvoff_write, 4258 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4259 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4260 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4261 .writefn = gt_cntvoff_write, 4262 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4263 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4264 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4265 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4266 .type = ARM_CP_IO, .access = PL2_RW, 4267 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4268 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4269 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4270 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4271 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4272 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4273 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4274 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4275 .resetfn = gt_hyp_timer_reset, 4276 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4277 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4278 .type = ARM_CP_IO, 4279 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4280 .access = PL2_RW, 4281 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4282 .resetvalue = 0, 4283 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4284 #endif 4285 /* The only field of MDCR_EL2 that has a defined architectural reset value 4286 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4287 * don't impelment any PMU event counters, so using zero as a reset 4288 * value for MDCR_EL2 is okay 4289 */ 4290 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4291 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4292 .access = PL2_RW, .resetvalue = 0, 4293 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4294 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4295 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4296 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4297 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4298 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4299 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4300 .access = PL2_RW, 4301 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4302 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4303 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4304 .access = PL2_RW, 4305 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4306 REGINFO_SENTINEL 4307 }; 4308 4309 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 4310 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 4311 .type = ARM_CP_ALIAS | ARM_CP_IO, 4312 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 4313 .access = PL2_RW, 4314 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 4315 .writefn = hcr_writehigh }, 4316 REGINFO_SENTINEL 4317 }; 4318 4319 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4320 bool isread) 4321 { 4322 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4323 * At Secure EL1 it traps to EL3. 4324 */ 4325 if (arm_current_el(env) == 3) { 4326 return CP_ACCESS_OK; 4327 } 4328 if (arm_is_secure_below_el3(env)) { 4329 return CP_ACCESS_TRAP_EL3; 4330 } 4331 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4332 if (isread) { 4333 return CP_ACCESS_OK; 4334 } 4335 return CP_ACCESS_TRAP_UNCATEGORIZED; 4336 } 4337 4338 static const ARMCPRegInfo el3_cp_reginfo[] = { 4339 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4340 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4341 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4342 .resetvalue = 0, .writefn = scr_write }, 4343 { .name = "SCR", .type = ARM_CP_ALIAS, 4344 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4345 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4346 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4347 .writefn = scr_write }, 4348 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4349 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4350 .access = PL3_RW, .resetvalue = 0, 4351 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4352 { .name = "SDER", 4353 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4354 .access = PL3_RW, .resetvalue = 0, 4355 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4356 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4357 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4358 .writefn = vbar_write, .resetvalue = 0, 4359 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4360 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4361 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4362 .access = PL3_RW, .resetvalue = 0, 4363 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4364 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4365 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4366 .access = PL3_RW, 4367 /* no .writefn needed as this can't cause an ASID change; 4368 * we must provide a .raw_writefn and .resetfn because we handle 4369 * reset and migration for the AArch32 TTBCR(S), which might be 4370 * using mask and base_mask. 4371 */ 4372 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4373 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4374 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4375 .type = ARM_CP_ALIAS, 4376 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4377 .access = PL3_RW, 4378 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4379 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4380 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4381 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4382 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4383 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4384 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4385 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4386 .type = ARM_CP_ALIAS, 4387 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4388 .access = PL3_RW, 4389 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4390 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4391 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4392 .access = PL3_RW, .writefn = vbar_write, 4393 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4394 .resetvalue = 0 }, 4395 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4396 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4397 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4398 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4399 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4400 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4401 .access = PL3_RW, .resetvalue = 0, 4402 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4403 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4404 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4405 .access = PL3_RW, .type = ARM_CP_CONST, 4406 .resetvalue = 0 }, 4407 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4408 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4409 .access = PL3_RW, .type = ARM_CP_CONST, 4410 .resetvalue = 0 }, 4411 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4412 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4413 .access = PL3_RW, .type = ARM_CP_CONST, 4414 .resetvalue = 0 }, 4415 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4416 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4417 .access = PL3_W, .type = ARM_CP_NO_RAW, 4418 .writefn = tlbi_aa64_alle3is_write }, 4419 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4420 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4421 .access = PL3_W, .type = ARM_CP_NO_RAW, 4422 .writefn = tlbi_aa64_vae3is_write }, 4423 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4424 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4425 .access = PL3_W, .type = ARM_CP_NO_RAW, 4426 .writefn = tlbi_aa64_vae3is_write }, 4427 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4428 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4429 .access = PL3_W, .type = ARM_CP_NO_RAW, 4430 .writefn = tlbi_aa64_alle3_write }, 4431 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4432 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4433 .access = PL3_W, .type = ARM_CP_NO_RAW, 4434 .writefn = tlbi_aa64_vae3_write }, 4435 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4436 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4437 .access = PL3_W, .type = ARM_CP_NO_RAW, 4438 .writefn = tlbi_aa64_vae3_write }, 4439 REGINFO_SENTINEL 4440 }; 4441 4442 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4443 bool isread) 4444 { 4445 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4446 * but the AArch32 CTR has its own reginfo struct) 4447 */ 4448 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4449 return CP_ACCESS_TRAP; 4450 } 4451 return CP_ACCESS_OK; 4452 } 4453 4454 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4455 uint64_t value) 4456 { 4457 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4458 * read via a bit in OSLSR_EL1. 4459 */ 4460 int oslock; 4461 4462 if (ri->state == ARM_CP_STATE_AA32) { 4463 oslock = (value == 0xC5ACCE55); 4464 } else { 4465 oslock = value & 1; 4466 } 4467 4468 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4469 } 4470 4471 static const ARMCPRegInfo debug_cp_reginfo[] = { 4472 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4473 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4474 * unlike DBGDRAR it is never accessible from EL0. 4475 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4476 * accessor. 4477 */ 4478 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4479 .access = PL0_R, .accessfn = access_tdra, 4480 .type = ARM_CP_CONST, .resetvalue = 0 }, 4481 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4482 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4483 .access = PL1_R, .accessfn = access_tdra, 4484 .type = ARM_CP_CONST, .resetvalue = 0 }, 4485 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4486 .access = PL0_R, .accessfn = access_tdra, 4487 .type = ARM_CP_CONST, .resetvalue = 0 }, 4488 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4489 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4490 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4491 .access = PL1_RW, .accessfn = access_tda, 4492 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4493 .resetvalue = 0 }, 4494 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4495 * We don't implement the configurable EL0 access. 4496 */ 4497 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4498 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4499 .type = ARM_CP_ALIAS, 4500 .access = PL1_R, .accessfn = access_tda, 4501 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4502 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4503 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4504 .access = PL1_W, .type = ARM_CP_NO_RAW, 4505 .accessfn = access_tdosa, 4506 .writefn = oslar_write }, 4507 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4508 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4509 .access = PL1_R, .resetvalue = 10, 4510 .accessfn = access_tdosa, 4511 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4512 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4513 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4514 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4515 .access = PL1_RW, .accessfn = access_tdosa, 4516 .type = ARM_CP_NOP }, 4517 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4518 * implement vector catch debug events yet. 4519 */ 4520 { .name = "DBGVCR", 4521 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4522 .access = PL1_RW, .accessfn = access_tda, 4523 .type = ARM_CP_NOP }, 4524 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4525 * to save and restore a 32-bit guest's DBGVCR) 4526 */ 4527 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4528 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4529 .access = PL2_RW, .accessfn = access_tda, 4530 .type = ARM_CP_NOP }, 4531 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4532 * Channel but Linux may try to access this register. The 32-bit 4533 * alias is DBGDCCINT. 4534 */ 4535 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4536 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4537 .access = PL1_RW, .accessfn = access_tda, 4538 .type = ARM_CP_NOP }, 4539 REGINFO_SENTINEL 4540 }; 4541 4542 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4543 /* 64 bit access versions of the (dummy) debug registers */ 4544 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4545 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4546 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4547 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4548 REGINFO_SENTINEL 4549 }; 4550 4551 /* Return the exception level to which exceptions should be taken 4552 * via SVEAccessTrap. If an exception should be routed through 4553 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 4554 * take care of raising that exception. 4555 * C.f. the ARM pseudocode function CheckSVEEnabled. 4556 */ 4557 int sve_exception_el(CPUARMState *env, int el) 4558 { 4559 #ifndef CONFIG_USER_ONLY 4560 if (el <= 1) { 4561 bool disabled = false; 4562 4563 /* The CPACR.ZEN controls traps to EL1: 4564 * 0, 2 : trap EL0 and EL1 accesses 4565 * 1 : trap only EL0 accesses 4566 * 3 : trap no accesses 4567 */ 4568 if (!extract32(env->cp15.cpacr_el1, 16, 1)) { 4569 disabled = true; 4570 } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) { 4571 disabled = el == 0; 4572 } 4573 if (disabled) { 4574 /* route_to_el2 */ 4575 return (arm_feature(env, ARM_FEATURE_EL2) 4576 && (arm_hcr_el2_eff(env) & HCR_TGE) ? 2 : 1); 4577 } 4578 4579 /* Check CPACR.FPEN. */ 4580 if (!extract32(env->cp15.cpacr_el1, 20, 1)) { 4581 disabled = true; 4582 } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) { 4583 disabled = el == 0; 4584 } 4585 if (disabled) { 4586 return 0; 4587 } 4588 } 4589 4590 /* CPTR_EL2. Since TZ and TFP are positive, 4591 * they will be zero when EL2 is not present. 4592 */ 4593 if (el <= 2 && !arm_is_secure_below_el3(env)) { 4594 if (env->cp15.cptr_el[2] & CPTR_TZ) { 4595 return 2; 4596 } 4597 if (env->cp15.cptr_el[2] & CPTR_TFP) { 4598 return 0; 4599 } 4600 } 4601 4602 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 4603 if (arm_feature(env, ARM_FEATURE_EL3) 4604 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 4605 return 3; 4606 } 4607 #endif 4608 return 0; 4609 } 4610 4611 /* 4612 * Given that SVE is enabled, return the vector length for EL. 4613 */ 4614 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 4615 { 4616 ARMCPU *cpu = arm_env_get_cpu(env); 4617 uint32_t zcr_len = cpu->sve_max_vq - 1; 4618 4619 if (el <= 1) { 4620 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 4621 } 4622 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 4623 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 4624 } 4625 if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 4626 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 4627 } 4628 return zcr_len; 4629 } 4630 4631 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4632 uint64_t value) 4633 { 4634 int cur_el = arm_current_el(env); 4635 int old_len = sve_zcr_len_for_el(env, cur_el); 4636 int new_len; 4637 4638 /* Bits other than [3:0] are RAZ/WI. */ 4639 raw_write(env, ri, value & 0xf); 4640 4641 /* 4642 * Because we arrived here, we know both FP and SVE are enabled; 4643 * otherwise we would have trapped access to the ZCR_ELn register. 4644 */ 4645 new_len = sve_zcr_len_for_el(env, cur_el); 4646 if (new_len < old_len) { 4647 aarch64_sve_narrow_vq(env, new_len + 1); 4648 } 4649 } 4650 4651 static const ARMCPRegInfo zcr_el1_reginfo = { 4652 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4653 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4654 .access = PL1_RW, .type = ARM_CP_SVE, 4655 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4656 .writefn = zcr_write, .raw_writefn = raw_write 4657 }; 4658 4659 static const ARMCPRegInfo zcr_el2_reginfo = { 4660 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4661 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4662 .access = PL2_RW, .type = ARM_CP_SVE, 4663 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4664 .writefn = zcr_write, .raw_writefn = raw_write 4665 }; 4666 4667 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4668 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4669 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4670 .access = PL2_RW, .type = ARM_CP_SVE, 4671 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4672 }; 4673 4674 static const ARMCPRegInfo zcr_el3_reginfo = { 4675 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4677 .access = PL3_RW, .type = ARM_CP_SVE, 4678 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4679 .writefn = zcr_write, .raw_writefn = raw_write 4680 }; 4681 4682 void hw_watchpoint_update(ARMCPU *cpu, int n) 4683 { 4684 CPUARMState *env = &cpu->env; 4685 vaddr len = 0; 4686 vaddr wvr = env->cp15.dbgwvr[n]; 4687 uint64_t wcr = env->cp15.dbgwcr[n]; 4688 int mask; 4689 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4690 4691 if (env->cpu_watchpoint[n]) { 4692 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4693 env->cpu_watchpoint[n] = NULL; 4694 } 4695 4696 if (!extract64(wcr, 0, 1)) { 4697 /* E bit clear : watchpoint disabled */ 4698 return; 4699 } 4700 4701 switch (extract64(wcr, 3, 2)) { 4702 case 0: 4703 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4704 return; 4705 case 1: 4706 flags |= BP_MEM_READ; 4707 break; 4708 case 2: 4709 flags |= BP_MEM_WRITE; 4710 break; 4711 case 3: 4712 flags |= BP_MEM_ACCESS; 4713 break; 4714 } 4715 4716 /* Attempts to use both MASK and BAS fields simultaneously are 4717 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4718 * thus generating a watchpoint for every byte in the masked region. 4719 */ 4720 mask = extract64(wcr, 24, 4); 4721 if (mask == 1 || mask == 2) { 4722 /* Reserved values of MASK; we must act as if the mask value was 4723 * some non-reserved value, or as if the watchpoint were disabled. 4724 * We choose the latter. 4725 */ 4726 return; 4727 } else if (mask) { 4728 /* Watchpoint covers an aligned area up to 2GB in size */ 4729 len = 1ULL << mask; 4730 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4731 * whether the watchpoint fires when the unmasked bits match; we opt 4732 * to generate the exceptions. 4733 */ 4734 wvr &= ~(len - 1); 4735 } else { 4736 /* Watchpoint covers bytes defined by the byte address select bits */ 4737 int bas = extract64(wcr, 5, 8); 4738 int basstart; 4739 4740 if (bas == 0) { 4741 /* This must act as if the watchpoint is disabled */ 4742 return; 4743 } 4744 4745 if (extract64(wvr, 2, 1)) { 4746 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4747 * ignored, and BAS[3:0] define which bytes to watch. 4748 */ 4749 bas &= 0xf; 4750 } 4751 /* The BAS bits are supposed to be programmed to indicate a contiguous 4752 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4753 * we fire for each byte in the word/doubleword addressed by the WVR. 4754 * We choose to ignore any non-zero bits after the first range of 1s. 4755 */ 4756 basstart = ctz32(bas); 4757 len = cto32(bas >> basstart); 4758 wvr += basstart; 4759 } 4760 4761 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4762 &env->cpu_watchpoint[n]); 4763 } 4764 4765 void hw_watchpoint_update_all(ARMCPU *cpu) 4766 { 4767 int i; 4768 CPUARMState *env = &cpu->env; 4769 4770 /* Completely clear out existing QEMU watchpoints and our array, to 4771 * avoid possible stale entries following migration load. 4772 */ 4773 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4774 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4775 4776 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4777 hw_watchpoint_update(cpu, i); 4778 } 4779 } 4780 4781 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4782 uint64_t value) 4783 { 4784 ARMCPU *cpu = arm_env_get_cpu(env); 4785 int i = ri->crm; 4786 4787 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4788 * register reads and behaves as if values written are sign extended. 4789 * Bits [1:0] are RES0. 4790 */ 4791 value = sextract64(value, 0, 49) & ~3ULL; 4792 4793 raw_write(env, ri, value); 4794 hw_watchpoint_update(cpu, i); 4795 } 4796 4797 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4798 uint64_t value) 4799 { 4800 ARMCPU *cpu = arm_env_get_cpu(env); 4801 int i = ri->crm; 4802 4803 raw_write(env, ri, value); 4804 hw_watchpoint_update(cpu, i); 4805 } 4806 4807 void hw_breakpoint_update(ARMCPU *cpu, int n) 4808 { 4809 CPUARMState *env = &cpu->env; 4810 uint64_t bvr = env->cp15.dbgbvr[n]; 4811 uint64_t bcr = env->cp15.dbgbcr[n]; 4812 vaddr addr; 4813 int bt; 4814 int flags = BP_CPU; 4815 4816 if (env->cpu_breakpoint[n]) { 4817 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4818 env->cpu_breakpoint[n] = NULL; 4819 } 4820 4821 if (!extract64(bcr, 0, 1)) { 4822 /* E bit clear : watchpoint disabled */ 4823 return; 4824 } 4825 4826 bt = extract64(bcr, 20, 4); 4827 4828 switch (bt) { 4829 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4830 case 5: /* linked address mismatch (reserved if AArch64) */ 4831 qemu_log_mask(LOG_UNIMP, 4832 "arm: address mismatch breakpoint types not implemented\n"); 4833 return; 4834 case 0: /* unlinked address match */ 4835 case 1: /* linked address match */ 4836 { 4837 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4838 * we behave as if the register was sign extended. Bits [1:0] are 4839 * RES0. The BAS field is used to allow setting breakpoints on 16 4840 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4841 * a bp will fire if the addresses covered by the bp and the addresses 4842 * covered by the insn overlap but the insn doesn't start at the 4843 * start of the bp address range. We choose to require the insn and 4844 * the bp to have the same address. The constraints on writing to 4845 * BAS enforced in dbgbcr_write mean we have only four cases: 4846 * 0b0000 => no breakpoint 4847 * 0b0011 => breakpoint on addr 4848 * 0b1100 => breakpoint on addr + 2 4849 * 0b1111 => breakpoint on addr 4850 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4851 */ 4852 int bas = extract64(bcr, 5, 4); 4853 addr = sextract64(bvr, 0, 49) & ~3ULL; 4854 if (bas == 0) { 4855 return; 4856 } 4857 if (bas == 0xc) { 4858 addr += 2; 4859 } 4860 break; 4861 } 4862 case 2: /* unlinked context ID match */ 4863 case 8: /* unlinked VMID match (reserved if no EL2) */ 4864 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4865 qemu_log_mask(LOG_UNIMP, 4866 "arm: unlinked context breakpoint types not implemented\n"); 4867 return; 4868 case 9: /* linked VMID match (reserved if no EL2) */ 4869 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4870 case 3: /* linked context ID match */ 4871 default: 4872 /* We must generate no events for Linked context matches (unless 4873 * they are linked to by some other bp/wp, which is handled in 4874 * updates for the linking bp/wp). We choose to also generate no events 4875 * for reserved values. 4876 */ 4877 return; 4878 } 4879 4880 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4881 } 4882 4883 void hw_breakpoint_update_all(ARMCPU *cpu) 4884 { 4885 int i; 4886 CPUARMState *env = &cpu->env; 4887 4888 /* Completely clear out existing QEMU breakpoints and our array, to 4889 * avoid possible stale entries following migration load. 4890 */ 4891 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4892 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4893 4894 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4895 hw_breakpoint_update(cpu, i); 4896 } 4897 } 4898 4899 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4900 uint64_t value) 4901 { 4902 ARMCPU *cpu = arm_env_get_cpu(env); 4903 int i = ri->crm; 4904 4905 raw_write(env, ri, value); 4906 hw_breakpoint_update(cpu, i); 4907 } 4908 4909 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4910 uint64_t value) 4911 { 4912 ARMCPU *cpu = arm_env_get_cpu(env); 4913 int i = ri->crm; 4914 4915 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4916 * copy of BAS[0]. 4917 */ 4918 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4919 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4920 4921 raw_write(env, ri, value); 4922 hw_breakpoint_update(cpu, i); 4923 } 4924 4925 static void define_debug_regs(ARMCPU *cpu) 4926 { 4927 /* Define v7 and v8 architectural debug registers. 4928 * These are just dummy implementations for now. 4929 */ 4930 int i; 4931 int wrps, brps, ctx_cmps; 4932 ARMCPRegInfo dbgdidr = { 4933 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4934 .access = PL0_R, .accessfn = access_tda, 4935 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4936 }; 4937 4938 /* Note that all these register fields hold "number of Xs minus 1". */ 4939 brps = extract32(cpu->dbgdidr, 24, 4); 4940 wrps = extract32(cpu->dbgdidr, 28, 4); 4941 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4942 4943 assert(ctx_cmps <= brps); 4944 4945 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4946 * of the debug registers such as number of breakpoints; 4947 * check that if they both exist then they agree. 4948 */ 4949 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4950 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4951 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4952 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4953 } 4954 4955 define_one_arm_cp_reg(cpu, &dbgdidr); 4956 define_arm_cp_regs(cpu, debug_cp_reginfo); 4957 4958 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4959 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4960 } 4961 4962 for (i = 0; i < brps + 1; i++) { 4963 ARMCPRegInfo dbgregs[] = { 4964 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4965 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4966 .access = PL1_RW, .accessfn = access_tda, 4967 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4968 .writefn = dbgbvr_write, .raw_writefn = raw_write 4969 }, 4970 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4971 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4972 .access = PL1_RW, .accessfn = access_tda, 4973 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4974 .writefn = dbgbcr_write, .raw_writefn = raw_write 4975 }, 4976 REGINFO_SENTINEL 4977 }; 4978 define_arm_cp_regs(cpu, dbgregs); 4979 } 4980 4981 for (i = 0; i < wrps + 1; i++) { 4982 ARMCPRegInfo dbgregs[] = { 4983 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4984 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4985 .access = PL1_RW, .accessfn = access_tda, 4986 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4987 .writefn = dbgwvr_write, .raw_writefn = raw_write 4988 }, 4989 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4990 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4991 .access = PL1_RW, .accessfn = access_tda, 4992 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4993 .writefn = dbgwcr_write, .raw_writefn = raw_write 4994 }, 4995 REGINFO_SENTINEL 4996 }; 4997 define_arm_cp_regs(cpu, dbgregs); 4998 } 4999 } 5000 5001 /* We don't know until after realize whether there's a GICv3 5002 * attached, and that is what registers the gicv3 sysregs. 5003 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 5004 * at runtime. 5005 */ 5006 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 5007 { 5008 ARMCPU *cpu = arm_env_get_cpu(env); 5009 uint64_t pfr1 = cpu->id_pfr1; 5010 5011 if (env->gicv3state) { 5012 pfr1 |= 1 << 28; 5013 } 5014 return pfr1; 5015 } 5016 5017 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 5018 { 5019 ARMCPU *cpu = arm_env_get_cpu(env); 5020 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 5021 5022 if (env->gicv3state) { 5023 pfr0 |= 1 << 24; 5024 } 5025 return pfr0; 5026 } 5027 5028 /* Shared logic between LORID and the rest of the LOR* registers. 5029 * Secure state has already been delt with. 5030 */ 5031 static CPAccessResult access_lor_ns(CPUARMState *env) 5032 { 5033 int el = arm_current_el(env); 5034 5035 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 5036 return CP_ACCESS_TRAP_EL2; 5037 } 5038 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 5039 return CP_ACCESS_TRAP_EL3; 5040 } 5041 return CP_ACCESS_OK; 5042 } 5043 5044 static CPAccessResult access_lorid(CPUARMState *env, const ARMCPRegInfo *ri, 5045 bool isread) 5046 { 5047 if (arm_is_secure_below_el3(env)) { 5048 /* Access ok in secure mode. */ 5049 return CP_ACCESS_OK; 5050 } 5051 return access_lor_ns(env); 5052 } 5053 5054 static CPAccessResult access_lor_other(CPUARMState *env, 5055 const ARMCPRegInfo *ri, bool isread) 5056 { 5057 if (arm_is_secure_below_el3(env)) { 5058 /* Access denied in secure mode. */ 5059 return CP_ACCESS_TRAP; 5060 } 5061 return access_lor_ns(env); 5062 } 5063 5064 void register_cp_regs_for_features(ARMCPU *cpu) 5065 { 5066 /* Register all the coprocessor registers based on feature bits */ 5067 CPUARMState *env = &cpu->env; 5068 if (arm_feature(env, ARM_FEATURE_M)) { 5069 /* M profile has no coprocessor registers */ 5070 return; 5071 } 5072 5073 define_arm_cp_regs(cpu, cp_reginfo); 5074 if (!arm_feature(env, ARM_FEATURE_V8)) { 5075 /* Must go early as it is full of wildcards that may be 5076 * overridden by later definitions. 5077 */ 5078 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 5079 } 5080 5081 if (arm_feature(env, ARM_FEATURE_V6)) { 5082 /* The ID registers all have impdef reset values */ 5083 ARMCPRegInfo v6_idregs[] = { 5084 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 5085 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 5086 .access = PL1_R, .type = ARM_CP_CONST, 5087 .resetvalue = cpu->id_pfr0 }, 5088 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 5089 * the value of the GIC field until after we define these regs. 5090 */ 5091 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 5092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 5093 .access = PL1_R, .type = ARM_CP_NO_RAW, 5094 .readfn = id_pfr1_read, 5095 .writefn = arm_cp_write_ignore }, 5096 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 5097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 5098 .access = PL1_R, .type = ARM_CP_CONST, 5099 .resetvalue = cpu->id_dfr0 }, 5100 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 5101 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 5102 .access = PL1_R, .type = ARM_CP_CONST, 5103 .resetvalue = cpu->id_afr0 }, 5104 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 5105 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 5106 .access = PL1_R, .type = ARM_CP_CONST, 5107 .resetvalue = cpu->id_mmfr0 }, 5108 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 5109 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 5110 .access = PL1_R, .type = ARM_CP_CONST, 5111 .resetvalue = cpu->id_mmfr1 }, 5112 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 5113 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 5114 .access = PL1_R, .type = ARM_CP_CONST, 5115 .resetvalue = cpu->id_mmfr2 }, 5116 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 5117 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 5118 .access = PL1_R, .type = ARM_CP_CONST, 5119 .resetvalue = cpu->id_mmfr3 }, 5120 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 5121 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 5122 .access = PL1_R, .type = ARM_CP_CONST, 5123 .resetvalue = cpu->isar.id_isar0 }, 5124 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 5125 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 5126 .access = PL1_R, .type = ARM_CP_CONST, 5127 .resetvalue = cpu->isar.id_isar1 }, 5128 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 5129 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 5130 .access = PL1_R, .type = ARM_CP_CONST, 5131 .resetvalue = cpu->isar.id_isar2 }, 5132 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 5133 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 5134 .access = PL1_R, .type = ARM_CP_CONST, 5135 .resetvalue = cpu->isar.id_isar3 }, 5136 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 5137 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 5138 .access = PL1_R, .type = ARM_CP_CONST, 5139 .resetvalue = cpu->isar.id_isar4 }, 5140 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 5141 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 5142 .access = PL1_R, .type = ARM_CP_CONST, 5143 .resetvalue = cpu->isar.id_isar5 }, 5144 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 5145 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 5146 .access = PL1_R, .type = ARM_CP_CONST, 5147 .resetvalue = cpu->id_mmfr4 }, 5148 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 5149 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 5150 .access = PL1_R, .type = ARM_CP_CONST, 5151 .resetvalue = cpu->isar.id_isar6 }, 5152 REGINFO_SENTINEL 5153 }; 5154 define_arm_cp_regs(cpu, v6_idregs); 5155 define_arm_cp_regs(cpu, v6_cp_reginfo); 5156 } else { 5157 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 5158 } 5159 if (arm_feature(env, ARM_FEATURE_V6K)) { 5160 define_arm_cp_regs(cpu, v6k_cp_reginfo); 5161 } 5162 if (arm_feature(env, ARM_FEATURE_V7MP) && 5163 !arm_feature(env, ARM_FEATURE_PMSA)) { 5164 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 5165 } 5166 if (arm_feature(env, ARM_FEATURE_V7)) { 5167 /* v7 performance monitor control register: same implementor 5168 * field as main ID register, and we implement only the cycle 5169 * count register. 5170 */ 5171 #ifndef CONFIG_USER_ONLY 5172 ARMCPRegInfo pmcr = { 5173 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 5174 .access = PL0_RW, 5175 .type = ARM_CP_IO | ARM_CP_ALIAS, 5176 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 5177 .accessfn = pmreg_access, .writefn = pmcr_write, 5178 .raw_writefn = raw_write, 5179 }; 5180 ARMCPRegInfo pmcr64 = { 5181 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 5182 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 5183 .access = PL0_RW, .accessfn = pmreg_access, 5184 .type = ARM_CP_IO, 5185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 5186 .resetvalue = cpu->midr & 0xff000000, 5187 .writefn = pmcr_write, .raw_writefn = raw_write, 5188 }; 5189 define_one_arm_cp_reg(cpu, &pmcr); 5190 define_one_arm_cp_reg(cpu, &pmcr64); 5191 #endif 5192 ARMCPRegInfo clidr = { 5193 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 5194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 5195 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 5196 }; 5197 define_one_arm_cp_reg(cpu, &clidr); 5198 define_arm_cp_regs(cpu, v7_cp_reginfo); 5199 define_debug_regs(cpu); 5200 } else { 5201 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 5202 } 5203 if (arm_feature(env, ARM_FEATURE_V8)) { 5204 /* AArch64 ID registers, which all have impdef reset values. 5205 * Note that within the ID register ranges the unused slots 5206 * must all RAZ, not UNDEF; future architecture versions may 5207 * define new registers here. 5208 */ 5209 ARMCPRegInfo v8_idregs[] = { 5210 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 5211 * know the right value for the GIC field until after we 5212 * define these regs. 5213 */ 5214 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 5215 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 5216 .access = PL1_R, .type = ARM_CP_NO_RAW, 5217 .readfn = id_aa64pfr0_read, 5218 .writefn = arm_cp_write_ignore }, 5219 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 5220 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 5221 .access = PL1_R, .type = ARM_CP_CONST, 5222 .resetvalue = cpu->isar.id_aa64pfr1}, 5223 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5224 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 5225 .access = PL1_R, .type = ARM_CP_CONST, 5226 .resetvalue = 0 }, 5227 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5228 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 5229 .access = PL1_R, .type = ARM_CP_CONST, 5230 .resetvalue = 0 }, 5231 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 5232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 5233 .access = PL1_R, .type = ARM_CP_CONST, 5234 /* At present, only SVEver == 0 is defined anyway. */ 5235 .resetvalue = 0 }, 5236 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 5238 .access = PL1_R, .type = ARM_CP_CONST, 5239 .resetvalue = 0 }, 5240 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5241 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 5242 .access = PL1_R, .type = ARM_CP_CONST, 5243 .resetvalue = 0 }, 5244 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5245 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 5246 .access = PL1_R, .type = ARM_CP_CONST, 5247 .resetvalue = 0 }, 5248 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 5249 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 5250 .access = PL1_R, .type = ARM_CP_CONST, 5251 .resetvalue = cpu->id_aa64dfr0 }, 5252 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 5253 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 5254 .access = PL1_R, .type = ARM_CP_CONST, 5255 .resetvalue = cpu->id_aa64dfr1 }, 5256 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 5258 .access = PL1_R, .type = ARM_CP_CONST, 5259 .resetvalue = 0 }, 5260 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5261 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 5262 .access = PL1_R, .type = ARM_CP_CONST, 5263 .resetvalue = 0 }, 5264 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 5265 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 5266 .access = PL1_R, .type = ARM_CP_CONST, 5267 .resetvalue = cpu->id_aa64afr0 }, 5268 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 5269 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 5270 .access = PL1_R, .type = ARM_CP_CONST, 5271 .resetvalue = cpu->id_aa64afr1 }, 5272 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5273 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 5274 .access = PL1_R, .type = ARM_CP_CONST, 5275 .resetvalue = 0 }, 5276 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 5278 .access = PL1_R, .type = ARM_CP_CONST, 5279 .resetvalue = 0 }, 5280 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 5281 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 5282 .access = PL1_R, .type = ARM_CP_CONST, 5283 .resetvalue = cpu->isar.id_aa64isar0 }, 5284 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 5285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 5286 .access = PL1_R, .type = ARM_CP_CONST, 5287 .resetvalue = cpu->isar.id_aa64isar1 }, 5288 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5289 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 5290 .access = PL1_R, .type = ARM_CP_CONST, 5291 .resetvalue = 0 }, 5292 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 5294 .access = PL1_R, .type = ARM_CP_CONST, 5295 .resetvalue = 0 }, 5296 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 5298 .access = PL1_R, .type = ARM_CP_CONST, 5299 .resetvalue = 0 }, 5300 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5301 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 5302 .access = PL1_R, .type = ARM_CP_CONST, 5303 .resetvalue = 0 }, 5304 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5305 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 5306 .access = PL1_R, .type = ARM_CP_CONST, 5307 .resetvalue = 0 }, 5308 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5309 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 5310 .access = PL1_R, .type = ARM_CP_CONST, 5311 .resetvalue = 0 }, 5312 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 5313 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 5314 .access = PL1_R, .type = ARM_CP_CONST, 5315 .resetvalue = cpu->isar.id_aa64mmfr0 }, 5316 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 5317 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 5318 .access = PL1_R, .type = ARM_CP_CONST, 5319 .resetvalue = cpu->isar.id_aa64mmfr1 }, 5320 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 5322 .access = PL1_R, .type = ARM_CP_CONST, 5323 .resetvalue = 0 }, 5324 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5325 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5326 .access = PL1_R, .type = ARM_CP_CONST, 5327 .resetvalue = 0 }, 5328 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5329 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5330 .access = PL1_R, .type = ARM_CP_CONST, 5331 .resetvalue = 0 }, 5332 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5333 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5334 .access = PL1_R, .type = ARM_CP_CONST, 5335 .resetvalue = 0 }, 5336 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5337 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5338 .access = PL1_R, .type = ARM_CP_CONST, 5339 .resetvalue = 0 }, 5340 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5342 .access = PL1_R, .type = ARM_CP_CONST, 5343 .resetvalue = 0 }, 5344 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5345 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5346 .access = PL1_R, .type = ARM_CP_CONST, 5347 .resetvalue = cpu->isar.mvfr0 }, 5348 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5350 .access = PL1_R, .type = ARM_CP_CONST, 5351 .resetvalue = cpu->isar.mvfr1 }, 5352 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5353 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5354 .access = PL1_R, .type = ARM_CP_CONST, 5355 .resetvalue = cpu->isar.mvfr2 }, 5356 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5357 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5358 .access = PL1_R, .type = ARM_CP_CONST, 5359 .resetvalue = 0 }, 5360 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5361 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5362 .access = PL1_R, .type = ARM_CP_CONST, 5363 .resetvalue = 0 }, 5364 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5365 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5366 .access = PL1_R, .type = ARM_CP_CONST, 5367 .resetvalue = 0 }, 5368 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5369 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5370 .access = PL1_R, .type = ARM_CP_CONST, 5371 .resetvalue = 0 }, 5372 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5373 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5374 .access = PL1_R, .type = ARM_CP_CONST, 5375 .resetvalue = 0 }, 5376 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5377 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5378 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5379 .resetvalue = cpu->pmceid0 }, 5380 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5381 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5382 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5383 .resetvalue = cpu->pmceid0 }, 5384 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5385 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5386 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5387 .resetvalue = cpu->pmceid1 }, 5388 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5389 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5390 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5391 .resetvalue = cpu->pmceid1 }, 5392 REGINFO_SENTINEL 5393 }; 5394 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5395 if (!arm_feature(env, ARM_FEATURE_EL3) && 5396 !arm_feature(env, ARM_FEATURE_EL2)) { 5397 ARMCPRegInfo rvbar = { 5398 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5399 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5400 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5401 }; 5402 define_one_arm_cp_reg(cpu, &rvbar); 5403 } 5404 define_arm_cp_regs(cpu, v8_idregs); 5405 define_arm_cp_regs(cpu, v8_cp_reginfo); 5406 } 5407 if (arm_feature(env, ARM_FEATURE_EL2)) { 5408 uint64_t vmpidr_def = mpidr_read_val(env); 5409 ARMCPRegInfo vpidr_regs[] = { 5410 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5411 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5412 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5413 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5414 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5415 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5416 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5417 .access = PL2_RW, .resetvalue = cpu->midr, 5418 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5419 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5420 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5421 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5422 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5423 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5424 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5425 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5426 .access = PL2_RW, 5427 .resetvalue = vmpidr_def, 5428 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5429 REGINFO_SENTINEL 5430 }; 5431 define_arm_cp_regs(cpu, vpidr_regs); 5432 define_arm_cp_regs(cpu, el2_cp_reginfo); 5433 if (arm_feature(env, ARM_FEATURE_V8)) { 5434 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 5435 } 5436 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5437 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5438 ARMCPRegInfo rvbar = { 5439 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5440 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5441 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5442 }; 5443 define_one_arm_cp_reg(cpu, &rvbar); 5444 } 5445 } else { 5446 /* If EL2 is missing but higher ELs are enabled, we need to 5447 * register the no_el2 reginfos. 5448 */ 5449 if (arm_feature(env, ARM_FEATURE_EL3)) { 5450 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5451 * of MIDR_EL1 and MPIDR_EL1. 5452 */ 5453 ARMCPRegInfo vpidr_regs[] = { 5454 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5455 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5456 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5457 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5458 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5459 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5460 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5461 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5462 .type = ARM_CP_NO_RAW, 5463 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5464 REGINFO_SENTINEL 5465 }; 5466 define_arm_cp_regs(cpu, vpidr_regs); 5467 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5468 if (arm_feature(env, ARM_FEATURE_V8)) { 5469 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 5470 } 5471 } 5472 } 5473 if (arm_feature(env, ARM_FEATURE_EL3)) { 5474 define_arm_cp_regs(cpu, el3_cp_reginfo); 5475 ARMCPRegInfo el3_regs[] = { 5476 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5477 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5478 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5479 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5480 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5481 .access = PL3_RW, 5482 .raw_writefn = raw_write, .writefn = sctlr_write, 5483 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5484 .resetvalue = cpu->reset_sctlr }, 5485 REGINFO_SENTINEL 5486 }; 5487 5488 define_arm_cp_regs(cpu, el3_regs); 5489 } 5490 /* The behaviour of NSACR is sufficiently various that we don't 5491 * try to describe it in a single reginfo: 5492 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5493 * reads as constant 0xc00 from NS EL1 and NS EL2 5494 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5495 * if v7 without EL3, register doesn't exist 5496 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5497 */ 5498 if (arm_feature(env, ARM_FEATURE_EL3)) { 5499 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5500 ARMCPRegInfo nsacr = { 5501 .name = "NSACR", .type = ARM_CP_CONST, 5502 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5503 .access = PL1_RW, .accessfn = nsacr_access, 5504 .resetvalue = 0xc00 5505 }; 5506 define_one_arm_cp_reg(cpu, &nsacr); 5507 } else { 5508 ARMCPRegInfo nsacr = { 5509 .name = "NSACR", 5510 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5511 .access = PL3_RW | PL1_R, 5512 .resetvalue = 0, 5513 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5514 }; 5515 define_one_arm_cp_reg(cpu, &nsacr); 5516 } 5517 } else { 5518 if (arm_feature(env, ARM_FEATURE_V8)) { 5519 ARMCPRegInfo nsacr = { 5520 .name = "NSACR", .type = ARM_CP_CONST, 5521 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5522 .access = PL1_R, 5523 .resetvalue = 0xc00 5524 }; 5525 define_one_arm_cp_reg(cpu, &nsacr); 5526 } 5527 } 5528 5529 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5530 if (arm_feature(env, ARM_FEATURE_V6)) { 5531 /* PMSAv6 not implemented */ 5532 assert(arm_feature(env, ARM_FEATURE_V7)); 5533 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5534 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5535 } else { 5536 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5537 } 5538 } else { 5539 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5540 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5541 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */ 5542 if (FIELD_EX32(cpu->id_mmfr4, ID_MMFR4, HPDS) != 0) { 5543 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 5544 } 5545 } 5546 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5547 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5548 } 5549 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5550 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5551 } 5552 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5553 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5554 } 5555 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5556 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5557 } 5558 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5559 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5560 } 5561 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5562 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5563 } 5564 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5565 define_arm_cp_regs(cpu, omap_cp_reginfo); 5566 } 5567 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5568 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5569 } 5570 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5571 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5572 } 5573 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5574 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5575 } 5576 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5577 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5578 } 5579 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5580 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5581 * be read-only (ie write causes UNDEF exception). 5582 */ 5583 { 5584 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5585 /* Pre-v8 MIDR space. 5586 * Note that the MIDR isn't a simple constant register because 5587 * of the TI925 behaviour where writes to another register can 5588 * cause the MIDR value to change. 5589 * 5590 * Unimplemented registers in the c15 0 0 0 space default to 5591 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5592 * and friends override accordingly. 5593 */ 5594 { .name = "MIDR", 5595 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5596 .access = PL1_R, .resetvalue = cpu->midr, 5597 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5598 .readfn = midr_read, 5599 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5600 .type = ARM_CP_OVERRIDE }, 5601 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5602 { .name = "DUMMY", 5603 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5604 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5605 { .name = "DUMMY", 5606 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5607 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5608 { .name = "DUMMY", 5609 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5610 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5611 { .name = "DUMMY", 5612 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5613 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5614 { .name = "DUMMY", 5615 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5616 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5617 REGINFO_SENTINEL 5618 }; 5619 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5620 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5621 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5622 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5623 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5624 .readfn = midr_read }, 5625 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5626 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5627 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5628 .access = PL1_R, .resetvalue = cpu->midr }, 5629 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5630 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5631 .access = PL1_R, .resetvalue = cpu->midr }, 5632 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5634 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5635 REGINFO_SENTINEL 5636 }; 5637 ARMCPRegInfo id_cp_reginfo[] = { 5638 /* These are common to v8 and pre-v8 */ 5639 { .name = "CTR", 5640 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5641 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5642 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5644 .access = PL0_R, .accessfn = ctr_el0_access, 5645 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5646 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5647 { .name = "TCMTR", 5648 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5649 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5650 REGINFO_SENTINEL 5651 }; 5652 /* TLBTR is specific to VMSA */ 5653 ARMCPRegInfo id_tlbtr_reginfo = { 5654 .name = "TLBTR", 5655 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5656 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5657 }; 5658 /* MPUIR is specific to PMSA V6+ */ 5659 ARMCPRegInfo id_mpuir_reginfo = { 5660 .name = "MPUIR", 5661 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5662 .access = PL1_R, .type = ARM_CP_CONST, 5663 .resetvalue = cpu->pmsav7_dregion << 8 5664 }; 5665 ARMCPRegInfo crn0_wi_reginfo = { 5666 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5667 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5668 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5669 }; 5670 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5671 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5672 ARMCPRegInfo *r; 5673 /* Register the blanket "writes ignored" value first to cover the 5674 * whole space. Then update the specific ID registers to allow write 5675 * access, so that they ignore writes rather than causing them to 5676 * UNDEF. 5677 */ 5678 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5679 for (r = id_pre_v8_midr_cp_reginfo; 5680 r->type != ARM_CP_SENTINEL; r++) { 5681 r->access = PL1_RW; 5682 } 5683 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5684 r->access = PL1_RW; 5685 } 5686 id_mpuir_reginfo.access = PL1_RW; 5687 id_tlbtr_reginfo.access = PL1_RW; 5688 } 5689 if (arm_feature(env, ARM_FEATURE_V8)) { 5690 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5691 } else { 5692 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5693 } 5694 define_arm_cp_regs(cpu, id_cp_reginfo); 5695 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5696 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5697 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5698 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5699 } 5700 } 5701 5702 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5703 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5704 } 5705 5706 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5707 ARMCPRegInfo auxcr_reginfo[] = { 5708 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5709 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5710 .access = PL1_RW, .type = ARM_CP_CONST, 5711 .resetvalue = cpu->reset_auxcr }, 5712 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5714 .access = PL2_RW, .type = ARM_CP_CONST, 5715 .resetvalue = 0 }, 5716 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5717 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5718 .access = PL3_RW, .type = ARM_CP_CONST, 5719 .resetvalue = 0 }, 5720 REGINFO_SENTINEL 5721 }; 5722 define_arm_cp_regs(cpu, auxcr_reginfo); 5723 if (arm_feature(env, ARM_FEATURE_V8)) { 5724 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */ 5725 ARMCPRegInfo hactlr2_reginfo = { 5726 .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 5727 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 5728 .access = PL2_RW, .type = ARM_CP_CONST, 5729 .resetvalue = 0 5730 }; 5731 define_one_arm_cp_reg(cpu, &hactlr2_reginfo); 5732 } 5733 } 5734 5735 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5736 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5737 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5738 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5739 | extract64(cpu->reset_cbar, 32, 12); 5740 ARMCPRegInfo cbar_reginfo[] = { 5741 { .name = "CBAR", 5742 .type = ARM_CP_CONST, 5743 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5744 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5745 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5746 .type = ARM_CP_CONST, 5747 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5748 .access = PL1_R, .resetvalue = cbar32 }, 5749 REGINFO_SENTINEL 5750 }; 5751 /* We don't implement a r/w 64 bit CBAR currently */ 5752 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5753 define_arm_cp_regs(cpu, cbar_reginfo); 5754 } else { 5755 ARMCPRegInfo cbar = { 5756 .name = "CBAR", 5757 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5758 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5759 .fieldoffset = offsetof(CPUARMState, 5760 cp15.c15_config_base_address) 5761 }; 5762 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5763 cbar.access = PL1_R; 5764 cbar.fieldoffset = 0; 5765 cbar.type = ARM_CP_CONST; 5766 } 5767 define_one_arm_cp_reg(cpu, &cbar); 5768 } 5769 } 5770 5771 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5772 ARMCPRegInfo vbar_cp_reginfo[] = { 5773 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5774 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5775 .access = PL1_RW, .writefn = vbar_write, 5776 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5777 offsetof(CPUARMState, cp15.vbar_ns) }, 5778 .resetvalue = 0 }, 5779 REGINFO_SENTINEL 5780 }; 5781 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5782 } 5783 5784 /* Generic registers whose values depend on the implementation */ 5785 { 5786 ARMCPRegInfo sctlr = { 5787 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5788 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5789 .access = PL1_RW, 5790 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5791 offsetof(CPUARMState, cp15.sctlr_ns) }, 5792 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5793 .raw_writefn = raw_write, 5794 }; 5795 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5796 /* Normally we would always end the TB on an SCTLR write, but Linux 5797 * arch/arm/mach-pxa/sleep.S expects two instructions following 5798 * an MMU enable to execute from cache. Imitate this behaviour. 5799 */ 5800 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5801 } 5802 define_one_arm_cp_reg(cpu, &sctlr); 5803 } 5804 5805 if (cpu_isar_feature(aa64_lor, cpu)) { 5806 /* 5807 * A trivial implementation of ARMv8.1-LOR leaves all of these 5808 * registers fixed at 0, which indicates that there are zero 5809 * supported Limited Ordering regions. 5810 */ 5811 static const ARMCPRegInfo lor_reginfo[] = { 5812 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 5814 .access = PL1_RW, .accessfn = access_lor_other, 5815 .type = ARM_CP_CONST, .resetvalue = 0 }, 5816 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 5817 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 5818 .access = PL1_RW, .accessfn = access_lor_other, 5819 .type = ARM_CP_CONST, .resetvalue = 0 }, 5820 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 5821 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 5822 .access = PL1_RW, .accessfn = access_lor_other, 5823 .type = ARM_CP_CONST, .resetvalue = 0 }, 5824 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 5825 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 5826 .access = PL1_RW, .accessfn = access_lor_other, 5827 .type = ARM_CP_CONST, .resetvalue = 0 }, 5828 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 5830 .access = PL1_R, .accessfn = access_lorid, 5831 .type = ARM_CP_CONST, .resetvalue = 0 }, 5832 REGINFO_SENTINEL 5833 }; 5834 define_arm_cp_regs(cpu, lor_reginfo); 5835 } 5836 5837 if (cpu_isar_feature(aa64_sve, cpu)) { 5838 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5839 if (arm_feature(env, ARM_FEATURE_EL2)) { 5840 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5841 } else { 5842 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5843 } 5844 if (arm_feature(env, ARM_FEATURE_EL3)) { 5845 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5846 } 5847 } 5848 } 5849 5850 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5851 { 5852 CPUState *cs = CPU(cpu); 5853 CPUARMState *env = &cpu->env; 5854 5855 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5856 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5857 aarch64_fpu_gdb_set_reg, 5858 34, "aarch64-fpu.xml", 0); 5859 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5860 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5861 51, "arm-neon.xml", 0); 5862 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5863 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5864 35, "arm-vfp3.xml", 0); 5865 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5866 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5867 19, "arm-vfp.xml", 0); 5868 } 5869 gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg, 5870 arm_gen_dynamic_xml(cs), 5871 "system-registers.xml", 0); 5872 } 5873 5874 /* Sort alphabetically by type name, except for "any". */ 5875 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5876 { 5877 ObjectClass *class_a = (ObjectClass *)a; 5878 ObjectClass *class_b = (ObjectClass *)b; 5879 const char *name_a, *name_b; 5880 5881 name_a = object_class_get_name(class_a); 5882 name_b = object_class_get_name(class_b); 5883 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5884 return 1; 5885 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5886 return -1; 5887 } else { 5888 return strcmp(name_a, name_b); 5889 } 5890 } 5891 5892 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5893 { 5894 ObjectClass *oc = data; 5895 CPUListState *s = user_data; 5896 const char *typename; 5897 char *name; 5898 5899 typename = object_class_get_name(oc); 5900 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5901 (*s->cpu_fprintf)(s->file, " %s\n", 5902 name); 5903 g_free(name); 5904 } 5905 5906 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5907 { 5908 CPUListState s = { 5909 .file = f, 5910 .cpu_fprintf = cpu_fprintf, 5911 }; 5912 GSList *list; 5913 5914 list = object_class_get_list(TYPE_ARM_CPU, false); 5915 list = g_slist_sort(list, arm_cpu_list_compare); 5916 (*cpu_fprintf)(f, "Available CPUs:\n"); 5917 g_slist_foreach(list, arm_cpu_list_entry, &s); 5918 g_slist_free(list); 5919 } 5920 5921 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5922 { 5923 ObjectClass *oc = data; 5924 CpuDefinitionInfoList **cpu_list = user_data; 5925 CpuDefinitionInfoList *entry; 5926 CpuDefinitionInfo *info; 5927 const char *typename; 5928 5929 typename = object_class_get_name(oc); 5930 info = g_malloc0(sizeof(*info)); 5931 info->name = g_strndup(typename, 5932 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5933 info->q_typename = g_strdup(typename); 5934 5935 entry = g_malloc0(sizeof(*entry)); 5936 entry->value = info; 5937 entry->next = *cpu_list; 5938 *cpu_list = entry; 5939 } 5940 5941 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5942 { 5943 CpuDefinitionInfoList *cpu_list = NULL; 5944 GSList *list; 5945 5946 list = object_class_get_list(TYPE_ARM_CPU, false); 5947 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5948 g_slist_free(list); 5949 5950 return cpu_list; 5951 } 5952 5953 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5954 void *opaque, int state, int secstate, 5955 int crm, int opc1, int opc2, 5956 const char *name) 5957 { 5958 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5959 * add a single reginfo struct to the hash table. 5960 */ 5961 uint32_t *key = g_new(uint32_t, 1); 5962 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5963 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5964 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5965 5966 r2->name = g_strdup(name); 5967 /* Reset the secure state to the specific incoming state. This is 5968 * necessary as the register may have been defined with both states. 5969 */ 5970 r2->secure = secstate; 5971 5972 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5973 /* Register is banked (using both entries in array). 5974 * Overwriting fieldoffset as the array is only used to define 5975 * banked registers but later only fieldoffset is used. 5976 */ 5977 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5978 } 5979 5980 if (state == ARM_CP_STATE_AA32) { 5981 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5982 /* If the register is banked then we don't need to migrate or 5983 * reset the 32-bit instance in certain cases: 5984 * 5985 * 1) If the register has both 32-bit and 64-bit instances then we 5986 * can count on the 64-bit instance taking care of the 5987 * non-secure bank. 5988 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5989 * taking care of the secure bank. This requires that separate 5990 * 32 and 64-bit definitions are provided. 5991 */ 5992 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5993 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5994 r2->type |= ARM_CP_ALIAS; 5995 } 5996 } else if ((secstate != r->secure) && !ns) { 5997 /* The register is not banked so we only want to allow migration of 5998 * the non-secure instance. 5999 */ 6000 r2->type |= ARM_CP_ALIAS; 6001 } 6002 6003 if (r->state == ARM_CP_STATE_BOTH) { 6004 /* We assume it is a cp15 register if the .cp field is left unset. 6005 */ 6006 if (r2->cp == 0) { 6007 r2->cp = 15; 6008 } 6009 6010 #ifdef HOST_WORDS_BIGENDIAN 6011 if (r2->fieldoffset) { 6012 r2->fieldoffset += sizeof(uint32_t); 6013 } 6014 #endif 6015 } 6016 } 6017 if (state == ARM_CP_STATE_AA64) { 6018 /* To allow abbreviation of ARMCPRegInfo 6019 * definitions, we treat cp == 0 as equivalent to 6020 * the value for "standard guest-visible sysreg". 6021 * STATE_BOTH definitions are also always "standard 6022 * sysreg" in their AArch64 view (the .cp value may 6023 * be non-zero for the benefit of the AArch32 view). 6024 */ 6025 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 6026 r2->cp = CP_REG_ARM64_SYSREG_CP; 6027 } 6028 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 6029 r2->opc0, opc1, opc2); 6030 } else { 6031 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 6032 } 6033 if (opaque) { 6034 r2->opaque = opaque; 6035 } 6036 /* reginfo passed to helpers is correct for the actual access, 6037 * and is never ARM_CP_STATE_BOTH: 6038 */ 6039 r2->state = state; 6040 /* Make sure reginfo passed to helpers for wildcarded regs 6041 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 6042 */ 6043 r2->crm = crm; 6044 r2->opc1 = opc1; 6045 r2->opc2 = opc2; 6046 /* By convention, for wildcarded registers only the first 6047 * entry is used for migration; the others are marked as 6048 * ALIAS so we don't try to transfer the register 6049 * multiple times. Special registers (ie NOP/WFI) are 6050 * never migratable and not even raw-accessible. 6051 */ 6052 if ((r->type & ARM_CP_SPECIAL)) { 6053 r2->type |= ARM_CP_NO_RAW; 6054 } 6055 if (((r->crm == CP_ANY) && crm != 0) || 6056 ((r->opc1 == CP_ANY) && opc1 != 0) || 6057 ((r->opc2 == CP_ANY) && opc2 != 0)) { 6058 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 6059 } 6060 6061 /* Check that raw accesses are either forbidden or handled. Note that 6062 * we can't assert this earlier because the setup of fieldoffset for 6063 * banked registers has to be done first. 6064 */ 6065 if (!(r2->type & ARM_CP_NO_RAW)) { 6066 assert(!raw_accessors_invalid(r2)); 6067 } 6068 6069 /* Overriding of an existing definition must be explicitly 6070 * requested. 6071 */ 6072 if (!(r->type & ARM_CP_OVERRIDE)) { 6073 ARMCPRegInfo *oldreg; 6074 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 6075 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 6076 fprintf(stderr, "Register redefined: cp=%d %d bit " 6077 "crn=%d crm=%d opc1=%d opc2=%d, " 6078 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 6079 r2->crn, r2->crm, r2->opc1, r2->opc2, 6080 oldreg->name, r2->name); 6081 g_assert_not_reached(); 6082 } 6083 } 6084 g_hash_table_insert(cpu->cp_regs, key, r2); 6085 } 6086 6087 6088 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 6089 const ARMCPRegInfo *r, void *opaque) 6090 { 6091 /* Define implementations of coprocessor registers. 6092 * We store these in a hashtable because typically 6093 * there are less than 150 registers in a space which 6094 * is 16*16*16*8*8 = 262144 in size. 6095 * Wildcarding is supported for the crm, opc1 and opc2 fields. 6096 * If a register is defined twice then the second definition is 6097 * used, so this can be used to define some generic registers and 6098 * then override them with implementation specific variations. 6099 * At least one of the original and the second definition should 6100 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 6101 * against accidental use. 6102 * 6103 * The state field defines whether the register is to be 6104 * visible in the AArch32 or AArch64 execution state. If the 6105 * state is set to ARM_CP_STATE_BOTH then we synthesise a 6106 * reginfo structure for the AArch32 view, which sees the lower 6107 * 32 bits of the 64 bit register. 6108 * 6109 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 6110 * be wildcarded. AArch64 registers are always considered to be 64 6111 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 6112 * the register, if any. 6113 */ 6114 int crm, opc1, opc2, state; 6115 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 6116 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 6117 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 6118 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 6119 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 6120 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 6121 /* 64 bit registers have only CRm and Opc1 fields */ 6122 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 6123 /* op0 only exists in the AArch64 encodings */ 6124 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 6125 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 6126 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 6127 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 6128 * encodes a minimum access level for the register. We roll this 6129 * runtime check into our general permission check code, so check 6130 * here that the reginfo's specified permissions are strict enough 6131 * to encompass the generic architectural permission check. 6132 */ 6133 if (r->state != ARM_CP_STATE_AA32) { 6134 int mask = 0; 6135 switch (r->opc1) { 6136 case 0: case 1: case 2: 6137 /* min_EL EL1 */ 6138 mask = PL1_RW; 6139 break; 6140 case 3: 6141 /* min_EL EL0 */ 6142 mask = PL0_RW; 6143 break; 6144 case 4: 6145 /* min_EL EL2 */ 6146 mask = PL2_RW; 6147 break; 6148 case 5: 6149 /* unallocated encoding, so not possible */ 6150 assert(false); 6151 break; 6152 case 6: 6153 /* min_EL EL3 */ 6154 mask = PL3_RW; 6155 break; 6156 case 7: 6157 /* min_EL EL1, secure mode only (we don't check the latter) */ 6158 mask = PL1_RW; 6159 break; 6160 default: 6161 /* broken reginfo with out-of-range opc1 */ 6162 assert(false); 6163 break; 6164 } 6165 /* assert our permissions are not too lax (stricter is fine) */ 6166 assert((r->access & ~mask) == 0); 6167 } 6168 6169 /* Check that the register definition has enough info to handle 6170 * reads and writes if they are permitted. 6171 */ 6172 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 6173 if (r->access & PL3_R) { 6174 assert((r->fieldoffset || 6175 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 6176 r->readfn); 6177 } 6178 if (r->access & PL3_W) { 6179 assert((r->fieldoffset || 6180 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 6181 r->writefn); 6182 } 6183 } 6184 /* Bad type field probably means missing sentinel at end of reg list */ 6185 assert(cptype_valid(r->type)); 6186 for (crm = crmmin; crm <= crmmax; crm++) { 6187 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 6188 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 6189 for (state = ARM_CP_STATE_AA32; 6190 state <= ARM_CP_STATE_AA64; state++) { 6191 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 6192 continue; 6193 } 6194 if (state == ARM_CP_STATE_AA32) { 6195 /* Under AArch32 CP registers can be common 6196 * (same for secure and non-secure world) or banked. 6197 */ 6198 char *name; 6199 6200 switch (r->secure) { 6201 case ARM_CP_SECSTATE_S: 6202 case ARM_CP_SECSTATE_NS: 6203 add_cpreg_to_hashtable(cpu, r, opaque, state, 6204 r->secure, crm, opc1, opc2, 6205 r->name); 6206 break; 6207 default: 6208 name = g_strdup_printf("%s_S", r->name); 6209 add_cpreg_to_hashtable(cpu, r, opaque, state, 6210 ARM_CP_SECSTATE_S, 6211 crm, opc1, opc2, name); 6212 g_free(name); 6213 add_cpreg_to_hashtable(cpu, r, opaque, state, 6214 ARM_CP_SECSTATE_NS, 6215 crm, opc1, opc2, r->name); 6216 break; 6217 } 6218 } else { 6219 /* AArch64 registers get mapped to non-secure instance 6220 * of AArch32 */ 6221 add_cpreg_to_hashtable(cpu, r, opaque, state, 6222 ARM_CP_SECSTATE_NS, 6223 crm, opc1, opc2, r->name); 6224 } 6225 } 6226 } 6227 } 6228 } 6229 } 6230 6231 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 6232 const ARMCPRegInfo *regs, void *opaque) 6233 { 6234 /* Define a whole list of registers */ 6235 const ARMCPRegInfo *r; 6236 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 6237 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 6238 } 6239 } 6240 6241 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 6242 { 6243 return g_hash_table_lookup(cpregs, &encoded_cp); 6244 } 6245 6246 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 6247 uint64_t value) 6248 { 6249 /* Helper coprocessor write function for write-ignore registers */ 6250 } 6251 6252 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 6253 { 6254 /* Helper coprocessor write function for read-as-zero registers */ 6255 return 0; 6256 } 6257 6258 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 6259 { 6260 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 6261 } 6262 6263 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 6264 { 6265 /* Return true if it is not valid for us to switch to 6266 * this CPU mode (ie all the UNPREDICTABLE cases in 6267 * the ARM ARM CPSRWriteByInstr pseudocode). 6268 */ 6269 6270 /* Changes to or from Hyp via MSR and CPS are illegal. */ 6271 if (write_type == CPSRWriteByInstr && 6272 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 6273 mode == ARM_CPU_MODE_HYP)) { 6274 return 1; 6275 } 6276 6277 switch (mode) { 6278 case ARM_CPU_MODE_USR: 6279 return 0; 6280 case ARM_CPU_MODE_SYS: 6281 case ARM_CPU_MODE_SVC: 6282 case ARM_CPU_MODE_ABT: 6283 case ARM_CPU_MODE_UND: 6284 case ARM_CPU_MODE_IRQ: 6285 case ARM_CPU_MODE_FIQ: 6286 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 6287 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 6288 */ 6289 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 6290 * and CPS are treated as illegal mode changes. 6291 */ 6292 if (write_type == CPSRWriteByInstr && 6293 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 6294 (arm_hcr_el2_eff(env) & HCR_TGE)) { 6295 return 1; 6296 } 6297 return 0; 6298 case ARM_CPU_MODE_HYP: 6299 return !arm_feature(env, ARM_FEATURE_EL2) 6300 || arm_current_el(env) < 2 || arm_is_secure(env); 6301 case ARM_CPU_MODE_MON: 6302 return arm_current_el(env) < 3; 6303 default: 6304 return 1; 6305 } 6306 } 6307 6308 uint32_t cpsr_read(CPUARMState *env) 6309 { 6310 int ZF; 6311 ZF = (env->ZF == 0); 6312 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 6313 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 6314 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 6315 | ((env->condexec_bits & 0xfc) << 8) 6316 | (env->GE << 16) | (env->daif & CPSR_AIF); 6317 } 6318 6319 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 6320 CPSRWriteType write_type) 6321 { 6322 uint32_t changed_daif; 6323 6324 if (mask & CPSR_NZCV) { 6325 env->ZF = (~val) & CPSR_Z; 6326 env->NF = val; 6327 env->CF = (val >> 29) & 1; 6328 env->VF = (val << 3) & 0x80000000; 6329 } 6330 if (mask & CPSR_Q) 6331 env->QF = ((val & CPSR_Q) != 0); 6332 if (mask & CPSR_T) 6333 env->thumb = ((val & CPSR_T) != 0); 6334 if (mask & CPSR_IT_0_1) { 6335 env->condexec_bits &= ~3; 6336 env->condexec_bits |= (val >> 25) & 3; 6337 } 6338 if (mask & CPSR_IT_2_7) { 6339 env->condexec_bits &= 3; 6340 env->condexec_bits |= (val >> 8) & 0xfc; 6341 } 6342 if (mask & CPSR_GE) { 6343 env->GE = (val >> 16) & 0xf; 6344 } 6345 6346 /* In a V7 implementation that includes the security extensions but does 6347 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 6348 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 6349 * bits respectively. 6350 * 6351 * In a V8 implementation, it is permitted for privileged software to 6352 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 6353 */ 6354 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 6355 arm_feature(env, ARM_FEATURE_EL3) && 6356 !arm_feature(env, ARM_FEATURE_EL2) && 6357 !arm_is_secure(env)) { 6358 6359 changed_daif = (env->daif ^ val) & mask; 6360 6361 if (changed_daif & CPSR_A) { 6362 /* Check to see if we are allowed to change the masking of async 6363 * abort exceptions from a non-secure state. 6364 */ 6365 if (!(env->cp15.scr_el3 & SCR_AW)) { 6366 qemu_log_mask(LOG_GUEST_ERROR, 6367 "Ignoring attempt to switch CPSR_A flag from " 6368 "non-secure world with SCR.AW bit clear\n"); 6369 mask &= ~CPSR_A; 6370 } 6371 } 6372 6373 if (changed_daif & CPSR_F) { 6374 /* Check to see if we are allowed to change the masking of FIQ 6375 * exceptions from a non-secure state. 6376 */ 6377 if (!(env->cp15.scr_el3 & SCR_FW)) { 6378 qemu_log_mask(LOG_GUEST_ERROR, 6379 "Ignoring attempt to switch CPSR_F flag from " 6380 "non-secure world with SCR.FW bit clear\n"); 6381 mask &= ~CPSR_F; 6382 } 6383 6384 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6385 * If this bit is set software is not allowed to mask 6386 * FIQs, but is allowed to set CPSR_F to 0. 6387 */ 6388 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6389 (val & CPSR_F)) { 6390 qemu_log_mask(LOG_GUEST_ERROR, 6391 "Ignoring attempt to enable CPSR_F flag " 6392 "(non-maskable FIQ [NMFI] support enabled)\n"); 6393 mask &= ~CPSR_F; 6394 } 6395 } 6396 } 6397 6398 env->daif &= ~(CPSR_AIF & mask); 6399 env->daif |= val & CPSR_AIF & mask; 6400 6401 if (write_type != CPSRWriteRaw && 6402 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6403 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6404 /* Note that we can only get here in USR mode if this is a 6405 * gdb stub write; for this case we follow the architectural 6406 * behaviour for guest writes in USR mode of ignoring an attempt 6407 * to switch mode. (Those are caught by translate.c for writes 6408 * triggered by guest instructions.) 6409 */ 6410 mask &= ~CPSR_M; 6411 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6412 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6413 * v7, and has defined behaviour in v8: 6414 * + leave CPSR.M untouched 6415 * + allow changes to the other CPSR fields 6416 * + set PSTATE.IL 6417 * For user changes via the GDB stub, we don't set PSTATE.IL, 6418 * as this would be unnecessarily harsh for a user error. 6419 */ 6420 mask &= ~CPSR_M; 6421 if (write_type != CPSRWriteByGDBStub && 6422 arm_feature(env, ARM_FEATURE_V8)) { 6423 mask |= CPSR_IL; 6424 val |= CPSR_IL; 6425 } 6426 qemu_log_mask(LOG_GUEST_ERROR, 6427 "Illegal AArch32 mode switch attempt from %s to %s\n", 6428 aarch32_mode_name(env->uncached_cpsr), 6429 aarch32_mode_name(val)); 6430 } else { 6431 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 6432 write_type == CPSRWriteExceptionReturn ? 6433 "Exception return from AArch32" : 6434 "AArch32 mode switch from", 6435 aarch32_mode_name(env->uncached_cpsr), 6436 aarch32_mode_name(val), env->regs[15]); 6437 switch_mode(env, val & CPSR_M); 6438 } 6439 } 6440 mask &= ~CACHED_CPSR_BITS; 6441 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6442 } 6443 6444 /* Sign/zero extend */ 6445 uint32_t HELPER(sxtb16)(uint32_t x) 6446 { 6447 uint32_t res; 6448 res = (uint16_t)(int8_t)x; 6449 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6450 return res; 6451 } 6452 6453 uint32_t HELPER(uxtb16)(uint32_t x) 6454 { 6455 uint32_t res; 6456 res = (uint16_t)(uint8_t)x; 6457 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6458 return res; 6459 } 6460 6461 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6462 { 6463 if (den == 0) 6464 return 0; 6465 if (num == INT_MIN && den == -1) 6466 return INT_MIN; 6467 return num / den; 6468 } 6469 6470 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6471 { 6472 if (den == 0) 6473 return 0; 6474 return num / den; 6475 } 6476 6477 uint32_t HELPER(rbit)(uint32_t x) 6478 { 6479 return revbit32(x); 6480 } 6481 6482 #if defined(CONFIG_USER_ONLY) 6483 6484 /* These should probably raise undefined insn exceptions. */ 6485 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6486 { 6487 ARMCPU *cpu = arm_env_get_cpu(env); 6488 6489 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6490 } 6491 6492 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6493 { 6494 ARMCPU *cpu = arm_env_get_cpu(env); 6495 6496 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6497 return 0; 6498 } 6499 6500 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6501 { 6502 /* translate.c should never generate calls here in user-only mode */ 6503 g_assert_not_reached(); 6504 } 6505 6506 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6507 { 6508 /* translate.c should never generate calls here in user-only mode */ 6509 g_assert_not_reached(); 6510 } 6511 6512 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6513 { 6514 /* The TT instructions can be used by unprivileged code, but in 6515 * user-only emulation we don't have the MPU. 6516 * Luckily since we know we are NonSecure unprivileged (and that in 6517 * turn means that the A flag wasn't specified), all the bits in the 6518 * register must be zero: 6519 * IREGION: 0 because IRVALID is 0 6520 * IRVALID: 0 because NS 6521 * S: 0 because NS 6522 * NSRW: 0 because NS 6523 * NSR: 0 because NS 6524 * RW: 0 because unpriv and A flag not set 6525 * R: 0 because unpriv and A flag not set 6526 * SRVALID: 0 because NS 6527 * MRVALID: 0 because unpriv and A flag not set 6528 * SREGION: 0 becaus SRVALID is 0 6529 * MREGION: 0 because MRVALID is 0 6530 */ 6531 return 0; 6532 } 6533 6534 static void switch_mode(CPUARMState *env, int mode) 6535 { 6536 ARMCPU *cpu = arm_env_get_cpu(env); 6537 6538 if (mode != ARM_CPU_MODE_USR) { 6539 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6540 } 6541 } 6542 6543 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6544 uint32_t cur_el, bool secure) 6545 { 6546 return 1; 6547 } 6548 6549 void aarch64_sync_64_to_32(CPUARMState *env) 6550 { 6551 g_assert_not_reached(); 6552 } 6553 6554 #else 6555 6556 static void switch_mode(CPUARMState *env, int mode) 6557 { 6558 int old_mode; 6559 int i; 6560 6561 old_mode = env->uncached_cpsr & CPSR_M; 6562 if (mode == old_mode) 6563 return; 6564 6565 if (old_mode == ARM_CPU_MODE_FIQ) { 6566 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6567 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6568 } else if (mode == ARM_CPU_MODE_FIQ) { 6569 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6570 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6571 } 6572 6573 i = bank_number(old_mode); 6574 env->banked_r13[i] = env->regs[13]; 6575 env->banked_spsr[i] = env->spsr; 6576 6577 i = bank_number(mode); 6578 env->regs[13] = env->banked_r13[i]; 6579 env->spsr = env->banked_spsr[i]; 6580 6581 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 6582 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 6583 } 6584 6585 /* Physical Interrupt Target EL Lookup Table 6586 * 6587 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6588 * 6589 * The below multi-dimensional table is used for looking up the target 6590 * exception level given numerous condition criteria. Specifically, the 6591 * target EL is based on SCR and HCR routing controls as well as the 6592 * currently executing EL and secure state. 6593 * 6594 * Dimensions: 6595 * target_el_table[2][2][2][2][2][4] 6596 * | | | | | +--- Current EL 6597 * | | | | +------ Non-secure(0)/Secure(1) 6598 * | | | +--------- HCR mask override 6599 * | | +------------ SCR exec state control 6600 * | +--------------- SCR mask override 6601 * +------------------ 32-bit(0)/64-bit(1) EL3 6602 * 6603 * The table values are as such: 6604 * 0-3 = EL0-EL3 6605 * -1 = Cannot occur 6606 * 6607 * The ARM ARM target EL table includes entries indicating that an "exception 6608 * is not taken". The two cases where this is applicable are: 6609 * 1) An exception is taken from EL3 but the SCR does not have the exception 6610 * routed to EL3. 6611 * 2) An exception is taken from EL2 but the HCR does not have the exception 6612 * routed to EL2. 6613 * In these two cases, the below table contain a target of EL1. This value is 6614 * returned as it is expected that the consumer of the table data will check 6615 * for "target EL >= current EL" to ensure the exception is not taken. 6616 * 6617 * SCR HCR 6618 * 64 EA AMO From 6619 * BIT IRQ IMO Non-secure Secure 6620 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6621 */ 6622 static const int8_t target_el_table[2][2][2][2][2][4] = { 6623 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6624 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6625 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6626 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6627 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6628 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6629 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6630 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6631 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6632 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6633 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6634 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6635 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6636 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6637 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6638 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6639 }; 6640 6641 /* 6642 * Determine the target EL for physical exceptions 6643 */ 6644 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6645 uint32_t cur_el, bool secure) 6646 { 6647 CPUARMState *env = cs->env_ptr; 6648 bool rw; 6649 bool scr; 6650 bool hcr; 6651 int target_el; 6652 /* Is the highest EL AArch64? */ 6653 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6654 uint64_t hcr_el2; 6655 6656 if (arm_feature(env, ARM_FEATURE_EL3)) { 6657 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6658 } else { 6659 /* Either EL2 is the highest EL (and so the EL2 register width 6660 * is given by is64); or there is no EL2 or EL3, in which case 6661 * the value of 'rw' does not affect the table lookup anyway. 6662 */ 6663 rw = is64; 6664 } 6665 6666 hcr_el2 = arm_hcr_el2_eff(env); 6667 switch (excp_idx) { 6668 case EXCP_IRQ: 6669 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6670 hcr = hcr_el2 & HCR_IMO; 6671 break; 6672 case EXCP_FIQ: 6673 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6674 hcr = hcr_el2 & HCR_FMO; 6675 break; 6676 default: 6677 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6678 hcr = hcr_el2 & HCR_AMO; 6679 break; 6680 }; 6681 6682 /* Perform a table-lookup for the target EL given the current state */ 6683 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6684 6685 assert(target_el > 0); 6686 6687 return target_el; 6688 } 6689 6690 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6691 ARMMMUIdx mmu_idx, bool ignfault) 6692 { 6693 CPUState *cs = CPU(cpu); 6694 CPUARMState *env = &cpu->env; 6695 MemTxAttrs attrs = {}; 6696 MemTxResult txres; 6697 target_ulong page_size; 6698 hwaddr physaddr; 6699 int prot; 6700 ARMMMUFaultInfo fi = {}; 6701 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6702 int exc; 6703 bool exc_secure; 6704 6705 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6706 &attrs, &prot, &page_size, &fi, NULL)) { 6707 /* MPU/SAU lookup failed */ 6708 if (fi.type == ARMFault_QEMU_SFault) { 6709 qemu_log_mask(CPU_LOG_INT, 6710 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6711 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6712 env->v7m.sfar = addr; 6713 exc = ARMV7M_EXCP_SECURE; 6714 exc_secure = false; 6715 } else { 6716 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6717 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6718 exc = ARMV7M_EXCP_MEM; 6719 exc_secure = secure; 6720 } 6721 goto pend_fault; 6722 } 6723 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6724 attrs, &txres); 6725 if (txres != MEMTX_OK) { 6726 /* BusFault trying to write the data */ 6727 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6728 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6729 exc = ARMV7M_EXCP_BUS; 6730 exc_secure = false; 6731 goto pend_fault; 6732 } 6733 return true; 6734 6735 pend_fault: 6736 /* By pending the exception at this point we are making 6737 * the IMPDEF choice "overridden exceptions pended" (see the 6738 * MergeExcInfo() pseudocode). The other choice would be to not 6739 * pend them now and then make a choice about which to throw away 6740 * later if we have two derived exceptions. 6741 * The only case when we must not pend the exception but instead 6742 * throw it away is if we are doing the push of the callee registers 6743 * and we've already generated a derived exception. Even in this 6744 * case we will still update the fault status registers. 6745 */ 6746 if (!ignfault) { 6747 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6748 } 6749 return false; 6750 } 6751 6752 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6753 ARMMMUIdx mmu_idx) 6754 { 6755 CPUState *cs = CPU(cpu); 6756 CPUARMState *env = &cpu->env; 6757 MemTxAttrs attrs = {}; 6758 MemTxResult txres; 6759 target_ulong page_size; 6760 hwaddr physaddr; 6761 int prot; 6762 ARMMMUFaultInfo fi = {}; 6763 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6764 int exc; 6765 bool exc_secure; 6766 uint32_t value; 6767 6768 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6769 &attrs, &prot, &page_size, &fi, NULL)) { 6770 /* MPU/SAU lookup failed */ 6771 if (fi.type == ARMFault_QEMU_SFault) { 6772 qemu_log_mask(CPU_LOG_INT, 6773 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6774 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6775 env->v7m.sfar = addr; 6776 exc = ARMV7M_EXCP_SECURE; 6777 exc_secure = false; 6778 } else { 6779 qemu_log_mask(CPU_LOG_INT, 6780 "...MemManageFault with CFSR.MUNSTKERR\n"); 6781 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6782 exc = ARMV7M_EXCP_MEM; 6783 exc_secure = secure; 6784 } 6785 goto pend_fault; 6786 } 6787 6788 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6789 attrs, &txres); 6790 if (txres != MEMTX_OK) { 6791 /* BusFault trying to read the data */ 6792 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6793 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6794 exc = ARMV7M_EXCP_BUS; 6795 exc_secure = false; 6796 goto pend_fault; 6797 } 6798 6799 *dest = value; 6800 return true; 6801 6802 pend_fault: 6803 /* By pending the exception at this point we are making 6804 * the IMPDEF choice "overridden exceptions pended" (see the 6805 * MergeExcInfo() pseudocode). The other choice would be to not 6806 * pend them now and then make a choice about which to throw away 6807 * later if we have two derived exceptions. 6808 */ 6809 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6810 return false; 6811 } 6812 6813 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6814 * This may change the current stack pointer between Main and Process 6815 * stack pointers if it is done for the CONTROL register for the current 6816 * security state. 6817 */ 6818 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6819 bool new_spsel, 6820 bool secstate) 6821 { 6822 bool old_is_psp = v7m_using_psp(env); 6823 6824 env->v7m.control[secstate] = 6825 deposit32(env->v7m.control[secstate], 6826 R_V7M_CONTROL_SPSEL_SHIFT, 6827 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6828 6829 if (secstate == env->v7m.secure) { 6830 bool new_is_psp = v7m_using_psp(env); 6831 uint32_t tmp; 6832 6833 if (old_is_psp != new_is_psp) { 6834 tmp = env->v7m.other_sp; 6835 env->v7m.other_sp = env->regs[13]; 6836 env->regs[13] = tmp; 6837 } 6838 } 6839 } 6840 6841 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6842 * stack pointer between Main and Process stack pointers. 6843 */ 6844 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6845 { 6846 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6847 } 6848 6849 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6850 { 6851 /* Write a new value to v7m.exception, thus transitioning into or out 6852 * of Handler mode; this may result in a change of active stack pointer. 6853 */ 6854 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6855 uint32_t tmp; 6856 6857 env->v7m.exception = new_exc; 6858 6859 new_is_psp = v7m_using_psp(env); 6860 6861 if (old_is_psp != new_is_psp) { 6862 tmp = env->v7m.other_sp; 6863 env->v7m.other_sp = env->regs[13]; 6864 env->regs[13] = tmp; 6865 } 6866 } 6867 6868 /* Switch M profile security state between NS and S */ 6869 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6870 { 6871 uint32_t new_ss_msp, new_ss_psp; 6872 6873 if (env->v7m.secure == new_secstate) { 6874 return; 6875 } 6876 6877 /* All the banked state is accessed by looking at env->v7m.secure 6878 * except for the stack pointer; rearrange the SP appropriately. 6879 */ 6880 new_ss_msp = env->v7m.other_ss_msp; 6881 new_ss_psp = env->v7m.other_ss_psp; 6882 6883 if (v7m_using_psp(env)) { 6884 env->v7m.other_ss_psp = env->regs[13]; 6885 env->v7m.other_ss_msp = env->v7m.other_sp; 6886 } else { 6887 env->v7m.other_ss_msp = env->regs[13]; 6888 env->v7m.other_ss_psp = env->v7m.other_sp; 6889 } 6890 6891 env->v7m.secure = new_secstate; 6892 6893 if (v7m_using_psp(env)) { 6894 env->regs[13] = new_ss_psp; 6895 env->v7m.other_sp = new_ss_msp; 6896 } else { 6897 env->regs[13] = new_ss_msp; 6898 env->v7m.other_sp = new_ss_psp; 6899 } 6900 } 6901 6902 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6903 { 6904 /* Handle v7M BXNS: 6905 * - if the return value is a magic value, do exception return (like BX) 6906 * - otherwise bit 0 of the return value is the target security state 6907 */ 6908 uint32_t min_magic; 6909 6910 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6911 /* Covers FNC_RETURN and EXC_RETURN magic */ 6912 min_magic = FNC_RETURN_MIN_MAGIC; 6913 } else { 6914 /* EXC_RETURN magic only */ 6915 min_magic = EXC_RETURN_MIN_MAGIC; 6916 } 6917 6918 if (dest >= min_magic) { 6919 /* This is an exception return magic value; put it where 6920 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6921 * Note that if we ever add gen_ss_advance() singlestep support to 6922 * M profile this should count as an "instruction execution complete" 6923 * event (compare gen_bx_excret_final_code()). 6924 */ 6925 env->regs[15] = dest & ~1; 6926 env->thumb = dest & 1; 6927 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6928 /* notreached */ 6929 } 6930 6931 /* translate.c should have made BXNS UNDEF unless we're secure */ 6932 assert(env->v7m.secure); 6933 6934 switch_v7m_security_state(env, dest & 1); 6935 env->thumb = 1; 6936 env->regs[15] = dest & ~1; 6937 } 6938 6939 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6940 { 6941 /* Handle v7M BLXNS: 6942 * - bit 0 of the destination address is the target security state 6943 */ 6944 6945 /* At this point regs[15] is the address just after the BLXNS */ 6946 uint32_t nextinst = env->regs[15] | 1; 6947 uint32_t sp = env->regs[13] - 8; 6948 uint32_t saved_psr; 6949 6950 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6951 assert(env->v7m.secure); 6952 6953 if (dest & 1) { 6954 /* target is Secure, so this is just a normal BLX, 6955 * except that the low bit doesn't indicate Thumb/not. 6956 */ 6957 env->regs[14] = nextinst; 6958 env->thumb = 1; 6959 env->regs[15] = dest & ~1; 6960 return; 6961 } 6962 6963 /* Target is non-secure: first push a stack frame */ 6964 if (!QEMU_IS_ALIGNED(sp, 8)) { 6965 qemu_log_mask(LOG_GUEST_ERROR, 6966 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6967 } 6968 6969 if (sp < v7m_sp_limit(env)) { 6970 raise_exception(env, EXCP_STKOF, 0, 1); 6971 } 6972 6973 saved_psr = env->v7m.exception; 6974 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6975 saved_psr |= XPSR_SFPA; 6976 } 6977 6978 /* Note that these stores can throw exceptions on MPU faults */ 6979 cpu_stl_data(env, sp, nextinst); 6980 cpu_stl_data(env, sp + 4, saved_psr); 6981 6982 env->regs[13] = sp; 6983 env->regs[14] = 0xfeffffff; 6984 if (arm_v7m_is_handler_mode(env)) { 6985 /* Write a dummy value to IPSR, to avoid leaking the current secure 6986 * exception number to non-secure code. This is guaranteed not 6987 * to cause write_v7m_exception() to actually change stacks. 6988 */ 6989 write_v7m_exception(env, 1); 6990 } 6991 switch_v7m_security_state(env, 0); 6992 env->thumb = 1; 6993 env->regs[15] = dest; 6994 } 6995 6996 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6997 bool spsel) 6998 { 6999 /* Return a pointer to the location where we currently store the 7000 * stack pointer for the requested security state and thread mode. 7001 * This pointer will become invalid if the CPU state is updated 7002 * such that the stack pointers are switched around (eg changing 7003 * the SPSEL control bit). 7004 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 7005 * Unlike that pseudocode, we require the caller to pass us in the 7006 * SPSEL control bit value; this is because we also use this 7007 * function in handling of pushing of the callee-saves registers 7008 * part of the v8M stack frame (pseudocode PushCalleeStack()), 7009 * and in the tailchain codepath the SPSEL bit comes from the exception 7010 * return magic LR value from the previous exception. The pseudocode 7011 * opencodes the stack-selection in PushCalleeStack(), but we prefer 7012 * to make this utility function generic enough to do the job. 7013 */ 7014 bool want_psp = threadmode && spsel; 7015 7016 if (secure == env->v7m.secure) { 7017 if (want_psp == v7m_using_psp(env)) { 7018 return &env->regs[13]; 7019 } else { 7020 return &env->v7m.other_sp; 7021 } 7022 } else { 7023 if (want_psp) { 7024 return &env->v7m.other_ss_psp; 7025 } else { 7026 return &env->v7m.other_ss_msp; 7027 } 7028 } 7029 } 7030 7031 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 7032 uint32_t *pvec) 7033 { 7034 CPUState *cs = CPU(cpu); 7035 CPUARMState *env = &cpu->env; 7036 MemTxResult result; 7037 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 7038 uint32_t vector_entry; 7039 MemTxAttrs attrs = {}; 7040 ARMMMUIdx mmu_idx; 7041 bool exc_secure; 7042 7043 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 7044 7045 /* We don't do a get_phys_addr() here because the rules for vector 7046 * loads are special: they always use the default memory map, and 7047 * the default memory map permits reads from all addresses. 7048 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 7049 * that we want this special case which would always say "yes", 7050 * we just do the SAU lookup here followed by a direct physical load. 7051 */ 7052 attrs.secure = targets_secure; 7053 attrs.user = false; 7054 7055 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7056 V8M_SAttributes sattrs = {}; 7057 7058 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 7059 if (sattrs.ns) { 7060 attrs.secure = false; 7061 } else if (!targets_secure) { 7062 /* NS access to S memory */ 7063 goto load_fail; 7064 } 7065 } 7066 7067 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 7068 attrs, &result); 7069 if (result != MEMTX_OK) { 7070 goto load_fail; 7071 } 7072 *pvec = vector_entry; 7073 return true; 7074 7075 load_fail: 7076 /* All vector table fetch fails are reported as HardFault, with 7077 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 7078 * technically the underlying exception is a MemManage or BusFault 7079 * that is escalated to HardFault.) This is a terminal exception, 7080 * so we will either take the HardFault immediately or else enter 7081 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 7082 */ 7083 exc_secure = targets_secure || 7084 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 7085 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 7086 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 7087 return false; 7088 } 7089 7090 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 7091 bool ignore_faults) 7092 { 7093 /* For v8M, push the callee-saves register part of the stack frame. 7094 * Compare the v8M pseudocode PushCalleeStack(). 7095 * In the tailchaining case this may not be the current stack. 7096 */ 7097 CPUARMState *env = &cpu->env; 7098 uint32_t *frame_sp_p; 7099 uint32_t frameptr; 7100 ARMMMUIdx mmu_idx; 7101 bool stacked_ok; 7102 uint32_t limit; 7103 bool want_psp; 7104 7105 if (dotailchain) { 7106 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 7107 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 7108 !mode; 7109 7110 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 7111 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 7112 lr & R_V7M_EXCRET_SPSEL_MASK); 7113 want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK); 7114 if (want_psp) { 7115 limit = env->v7m.psplim[M_REG_S]; 7116 } else { 7117 limit = env->v7m.msplim[M_REG_S]; 7118 } 7119 } else { 7120 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 7121 frame_sp_p = &env->regs[13]; 7122 limit = v7m_sp_limit(env); 7123 } 7124 7125 frameptr = *frame_sp_p - 0x28; 7126 if (frameptr < limit) { 7127 /* 7128 * Stack limit failure: set SP to the limit value, and generate 7129 * STKOF UsageFault. Stack pushes below the limit must not be 7130 * performed. It is IMPDEF whether pushes above the limit are 7131 * performed; we choose not to. 7132 */ 7133 qemu_log_mask(CPU_LOG_INT, 7134 "...STKOF during callee-saves register stacking\n"); 7135 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7136 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7137 env->v7m.secure); 7138 *frame_sp_p = limit; 7139 return true; 7140 } 7141 7142 /* Write as much of the stack frame as we can. A write failure may 7143 * cause us to pend a derived exception. 7144 */ 7145 stacked_ok = 7146 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 7147 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 7148 ignore_faults) && 7149 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 7150 ignore_faults) && 7151 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 7152 ignore_faults) && 7153 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 7154 ignore_faults) && 7155 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 7156 ignore_faults) && 7157 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 7158 ignore_faults) && 7159 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 7160 ignore_faults) && 7161 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 7162 ignore_faults); 7163 7164 /* Update SP regardless of whether any of the stack accesses failed. */ 7165 *frame_sp_p = frameptr; 7166 7167 return !stacked_ok; 7168 } 7169 7170 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 7171 bool ignore_stackfaults) 7172 { 7173 /* Do the "take the exception" parts of exception entry, 7174 * but not the pushing of state to the stack. This is 7175 * similar to the pseudocode ExceptionTaken() function. 7176 */ 7177 CPUARMState *env = &cpu->env; 7178 uint32_t addr; 7179 bool targets_secure; 7180 int exc; 7181 bool push_failed = false; 7182 7183 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 7184 qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n", 7185 targets_secure ? "secure" : "nonsecure", exc); 7186 7187 if (arm_feature(env, ARM_FEATURE_V8)) { 7188 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 7189 (lr & R_V7M_EXCRET_S_MASK)) { 7190 /* The background code (the owner of the registers in the 7191 * exception frame) is Secure. This means it may either already 7192 * have or now needs to push callee-saves registers. 7193 */ 7194 if (targets_secure) { 7195 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 7196 /* We took an exception from Secure to NonSecure 7197 * (which means the callee-saved registers got stacked) 7198 * and are now tailchaining to a Secure exception. 7199 * Clear DCRS so eventual return from this Secure 7200 * exception unstacks the callee-saved registers. 7201 */ 7202 lr &= ~R_V7M_EXCRET_DCRS_MASK; 7203 } 7204 } else { 7205 /* We're going to a non-secure exception; push the 7206 * callee-saves registers to the stack now, if they're 7207 * not already saved. 7208 */ 7209 if (lr & R_V7M_EXCRET_DCRS_MASK && 7210 !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) { 7211 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 7212 ignore_stackfaults); 7213 } 7214 lr |= R_V7M_EXCRET_DCRS_MASK; 7215 } 7216 } 7217 7218 lr &= ~R_V7M_EXCRET_ES_MASK; 7219 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7220 lr |= R_V7M_EXCRET_ES_MASK; 7221 } 7222 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 7223 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 7224 lr |= R_V7M_EXCRET_SPSEL_MASK; 7225 } 7226 7227 /* Clear registers if necessary to prevent non-secure exception 7228 * code being able to see register values from secure code. 7229 * Where register values become architecturally UNKNOWN we leave 7230 * them with their previous values. 7231 */ 7232 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7233 if (!targets_secure) { 7234 /* Always clear the caller-saved registers (they have been 7235 * pushed to the stack earlier in v7m_push_stack()). 7236 * Clear callee-saved registers if the background code is 7237 * Secure (in which case these regs were saved in 7238 * v7m_push_callee_stack()). 7239 */ 7240 int i; 7241 7242 for (i = 0; i < 13; i++) { 7243 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 7244 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 7245 env->regs[i] = 0; 7246 } 7247 } 7248 /* Clear EAPSR */ 7249 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 7250 } 7251 } 7252 } 7253 7254 if (push_failed && !ignore_stackfaults) { 7255 /* Derived exception on callee-saves register stacking: 7256 * we might now want to take a different exception which 7257 * targets a different security state, so try again from the top. 7258 */ 7259 qemu_log_mask(CPU_LOG_INT, 7260 "...derived exception on callee-saves register stacking"); 7261 v7m_exception_taken(cpu, lr, true, true); 7262 return; 7263 } 7264 7265 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 7266 /* Vector load failed: derived exception */ 7267 qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load"); 7268 v7m_exception_taken(cpu, lr, true, true); 7269 return; 7270 } 7271 7272 /* Now we've done everything that might cause a derived exception 7273 * we can go ahead and activate whichever exception we're going to 7274 * take (which might now be the derived exception). 7275 */ 7276 armv7m_nvic_acknowledge_irq(env->nvic); 7277 7278 /* Switch to target security state -- must do this before writing SPSEL */ 7279 switch_v7m_security_state(env, targets_secure); 7280 write_v7m_control_spsel(env, 0); 7281 arm_clear_exclusive(env); 7282 /* Clear IT bits */ 7283 env->condexec_bits = 0; 7284 env->regs[14] = lr; 7285 env->regs[15] = addr & 0xfffffffe; 7286 env->thumb = addr & 1; 7287 } 7288 7289 static bool v7m_push_stack(ARMCPU *cpu) 7290 { 7291 /* Do the "set up stack frame" part of exception entry, 7292 * similar to pseudocode PushStack(). 7293 * Return true if we generate a derived exception (and so 7294 * should ignore further stack faults trying to process 7295 * that derived exception.) 7296 */ 7297 bool stacked_ok; 7298 CPUARMState *env = &cpu->env; 7299 uint32_t xpsr = xpsr_read(env); 7300 uint32_t frameptr = env->regs[13]; 7301 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 7302 7303 /* Align stack pointer if the guest wants that */ 7304 if ((frameptr & 4) && 7305 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 7306 frameptr -= 4; 7307 xpsr |= XPSR_SPREALIGN; 7308 } 7309 7310 frameptr -= 0x20; 7311 7312 if (arm_feature(env, ARM_FEATURE_V8)) { 7313 uint32_t limit = v7m_sp_limit(env); 7314 7315 if (frameptr < limit) { 7316 /* 7317 * Stack limit failure: set SP to the limit value, and generate 7318 * STKOF UsageFault. Stack pushes below the limit must not be 7319 * performed. It is IMPDEF whether pushes above the limit are 7320 * performed; we choose not to. 7321 */ 7322 qemu_log_mask(CPU_LOG_INT, 7323 "...STKOF during stacking\n"); 7324 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7325 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7326 env->v7m.secure); 7327 env->regs[13] = limit; 7328 return true; 7329 } 7330 } 7331 7332 /* Write as much of the stack frame as we can. If we fail a stack 7333 * write this will result in a derived exception being pended 7334 * (which may be taken in preference to the one we started with 7335 * if it has higher priority). 7336 */ 7337 stacked_ok = 7338 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 7339 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 7340 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 7341 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 7342 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 7343 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 7344 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 7345 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 7346 7347 /* Update SP regardless of whether any of the stack accesses failed. */ 7348 env->regs[13] = frameptr; 7349 7350 return !stacked_ok; 7351 } 7352 7353 static void do_v7m_exception_exit(ARMCPU *cpu) 7354 { 7355 CPUARMState *env = &cpu->env; 7356 uint32_t excret; 7357 uint32_t xpsr; 7358 bool ufault = false; 7359 bool sfault = false; 7360 bool return_to_sp_process; 7361 bool return_to_handler; 7362 bool rettobase = false; 7363 bool exc_secure = false; 7364 bool return_to_secure; 7365 7366 /* If we're not in Handler mode then jumps to magic exception-exit 7367 * addresses don't have magic behaviour. However for the v8M 7368 * security extensions the magic secure-function-return has to 7369 * work in thread mode too, so to avoid doing an extra check in 7370 * the generated code we allow exception-exit magic to also cause the 7371 * internal exception and bring us here in thread mode. Correct code 7372 * will never try to do this (the following insn fetch will always 7373 * fault) so we the overhead of having taken an unnecessary exception 7374 * doesn't matter. 7375 */ 7376 if (!arm_v7m_is_handler_mode(env)) { 7377 return; 7378 } 7379 7380 /* In the spec pseudocode ExceptionReturn() is called directly 7381 * from BXWritePC() and gets the full target PC value including 7382 * bit zero. In QEMU's implementation we treat it as a normal 7383 * jump-to-register (which is then caught later on), and so split 7384 * the target value up between env->regs[15] and env->thumb in 7385 * gen_bx(). Reconstitute it. 7386 */ 7387 excret = env->regs[15]; 7388 if (env->thumb) { 7389 excret |= 1; 7390 } 7391 7392 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 7393 " previous exception %d\n", 7394 excret, env->v7m.exception); 7395 7396 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 7397 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 7398 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 7399 excret); 7400 } 7401 7402 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7403 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 7404 * we pick which FAULTMASK to clear. 7405 */ 7406 if (!env->v7m.secure && 7407 ((excret & R_V7M_EXCRET_ES_MASK) || 7408 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 7409 sfault = 1; 7410 /* For all other purposes, treat ES as 0 (R_HXSR) */ 7411 excret &= ~R_V7M_EXCRET_ES_MASK; 7412 } 7413 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 7414 } 7415 7416 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 7417 /* Auto-clear FAULTMASK on return from other than NMI. 7418 * If the security extension is implemented then this only 7419 * happens if the raw execution priority is >= 0; the 7420 * value of the ES bit in the exception return value indicates 7421 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 7422 */ 7423 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7424 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 7425 env->v7m.faultmask[exc_secure] = 0; 7426 } 7427 } else { 7428 env->v7m.faultmask[M_REG_NS] = 0; 7429 } 7430 } 7431 7432 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7433 exc_secure)) { 7434 case -1: 7435 /* attempt to exit an exception that isn't active */ 7436 ufault = true; 7437 break; 7438 case 0: 7439 /* still an irq active now */ 7440 break; 7441 case 1: 7442 /* we returned to base exception level, no nesting. 7443 * (In the pseudocode this is written using "NestedActivation != 1" 7444 * where we have 'rettobase == false'.) 7445 */ 7446 rettobase = true; 7447 break; 7448 default: 7449 g_assert_not_reached(); 7450 } 7451 7452 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7453 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7454 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7455 (excret & R_V7M_EXCRET_S_MASK); 7456 7457 if (arm_feature(env, ARM_FEATURE_V8)) { 7458 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7459 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7460 * we choose to take the UsageFault. 7461 */ 7462 if ((excret & R_V7M_EXCRET_S_MASK) || 7463 (excret & R_V7M_EXCRET_ES_MASK) || 7464 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7465 ufault = true; 7466 } 7467 } 7468 if (excret & R_V7M_EXCRET_RES0_MASK) { 7469 ufault = true; 7470 } 7471 } else { 7472 /* For v7M we only recognize certain combinations of the low bits */ 7473 switch (excret & 0xf) { 7474 case 1: /* Return to Handler */ 7475 break; 7476 case 13: /* Return to Thread using Process stack */ 7477 case 9: /* Return to Thread using Main stack */ 7478 /* We only need to check NONBASETHRDENA for v7M, because in 7479 * v8M this bit does not exist (it is RES1). 7480 */ 7481 if (!rettobase && 7482 !(env->v7m.ccr[env->v7m.secure] & 7483 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7484 ufault = true; 7485 } 7486 break; 7487 default: 7488 ufault = true; 7489 } 7490 } 7491 7492 /* 7493 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7494 * Handler mode (and will be until we write the new XPSR.Interrupt 7495 * field) this does not switch around the current stack pointer. 7496 * We must do this before we do any kind of tailchaining, including 7497 * for the derived exceptions on integrity check failures, or we will 7498 * give the guest an incorrect EXCRET.SPSEL value on exception entry. 7499 */ 7500 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7501 7502 if (sfault) { 7503 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7504 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7505 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7506 "stackframe: failed EXC_RETURN.ES validity check\n"); 7507 v7m_exception_taken(cpu, excret, true, false); 7508 return; 7509 } 7510 7511 if (ufault) { 7512 /* Bad exception return: instead of popping the exception 7513 * stack, directly take a usage fault on the current stack. 7514 */ 7515 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7516 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7517 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7518 "stackframe: failed exception return integrity check\n"); 7519 v7m_exception_taken(cpu, excret, true, false); 7520 return; 7521 } 7522 7523 /* 7524 * Tailchaining: if there is currently a pending exception that 7525 * is high enough priority to preempt execution at the level we're 7526 * about to return to, then just directly take that exception now, 7527 * avoiding an unstack-and-then-stack. Note that now we have 7528 * deactivated the previous exception by calling armv7m_nvic_complete_irq() 7529 * our current execution priority is already the execution priority we are 7530 * returning to -- none of the state we would unstack or set based on 7531 * the EXCRET value affects it. 7532 */ 7533 if (armv7m_nvic_can_take_pending_exception(env->nvic)) { 7534 qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n"); 7535 v7m_exception_taken(cpu, excret, true, false); 7536 return; 7537 } 7538 7539 switch_v7m_security_state(env, return_to_secure); 7540 7541 { 7542 /* The stack pointer we should be reading the exception frame from 7543 * depends on bits in the magic exception return type value (and 7544 * for v8M isn't necessarily the stack pointer we will eventually 7545 * end up resuming execution with). Get a pointer to the location 7546 * in the CPU state struct where the SP we need is currently being 7547 * stored; we will use and modify it in place. 7548 * We use this limited C variable scope so we don't accidentally 7549 * use 'frame_sp_p' after we do something that makes it invalid. 7550 */ 7551 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7552 return_to_secure, 7553 !return_to_handler, 7554 return_to_sp_process); 7555 uint32_t frameptr = *frame_sp_p; 7556 bool pop_ok = true; 7557 ARMMMUIdx mmu_idx; 7558 bool return_to_priv = return_to_handler || 7559 !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK); 7560 7561 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7562 return_to_priv); 7563 7564 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7565 arm_feature(env, ARM_FEATURE_V8)) { 7566 qemu_log_mask(LOG_GUEST_ERROR, 7567 "M profile exception return with non-8-aligned SP " 7568 "for destination state is UNPREDICTABLE\n"); 7569 } 7570 7571 /* Do we need to pop callee-saved registers? */ 7572 if (return_to_secure && 7573 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7574 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7575 uint32_t expected_sig = 0xfefa125b; 7576 uint32_t actual_sig; 7577 7578 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7579 7580 if (pop_ok && expected_sig != actual_sig) { 7581 /* Take a SecureFault on the current stack */ 7582 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7583 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7584 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7585 "stackframe: failed exception return integrity " 7586 "signature check\n"); 7587 v7m_exception_taken(cpu, excret, true, false); 7588 return; 7589 } 7590 7591 pop_ok = pop_ok && 7592 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7593 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7594 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7595 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7596 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7597 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7598 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7599 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7600 7601 frameptr += 0x28; 7602 } 7603 7604 /* Pop registers */ 7605 pop_ok = pop_ok && 7606 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7607 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7608 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7609 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7610 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7611 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7612 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7613 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7614 7615 if (!pop_ok) { 7616 /* v7m_stack_read() pended a fault, so take it (as a tail 7617 * chained exception on the same stack frame) 7618 */ 7619 qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n"); 7620 v7m_exception_taken(cpu, excret, true, false); 7621 return; 7622 } 7623 7624 /* Returning from an exception with a PC with bit 0 set is defined 7625 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7626 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7627 * the lsbit, and there are several RTOSes out there which incorrectly 7628 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7629 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7630 * complain about the badly behaved guest. 7631 */ 7632 if (env->regs[15] & 1) { 7633 env->regs[15] &= ~1U; 7634 if (!arm_feature(env, ARM_FEATURE_V8)) { 7635 qemu_log_mask(LOG_GUEST_ERROR, 7636 "M profile return from interrupt with misaligned " 7637 "PC is UNPREDICTABLE on v7M\n"); 7638 } 7639 } 7640 7641 if (arm_feature(env, ARM_FEATURE_V8)) { 7642 /* For v8M we have to check whether the xPSR exception field 7643 * matches the EXCRET value for return to handler/thread 7644 * before we commit to changing the SP and xPSR. 7645 */ 7646 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7647 if (return_to_handler != will_be_handler) { 7648 /* Take an INVPC UsageFault on the current stack. 7649 * By this point we will have switched to the security state 7650 * for the background state, so this UsageFault will target 7651 * that state. 7652 */ 7653 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7654 env->v7m.secure); 7655 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7656 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7657 "stackframe: failed exception return integrity " 7658 "check\n"); 7659 v7m_exception_taken(cpu, excret, true, false); 7660 return; 7661 } 7662 } 7663 7664 /* Commit to consuming the stack frame */ 7665 frameptr += 0x20; 7666 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7667 * pre-exception SP was not 8-aligned and we added a padding word to 7668 * align it, so we undo this by ORing in the bit that increases it 7669 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7670 * would work too but a logical OR is how the pseudocode specifies it.) 7671 */ 7672 if (xpsr & XPSR_SPREALIGN) { 7673 frameptr |= 4; 7674 } 7675 *frame_sp_p = frameptr; 7676 } 7677 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7678 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7679 7680 /* The restored xPSR exception field will be zero if we're 7681 * resuming in Thread mode. If that doesn't match what the 7682 * exception return excret specified then this is a UsageFault. 7683 * v7M requires we make this check here; v8M did it earlier. 7684 */ 7685 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7686 /* Take an INVPC UsageFault by pushing the stack again; 7687 * we know we're v7M so this is never a Secure UsageFault. 7688 */ 7689 bool ignore_stackfaults; 7690 7691 assert(!arm_feature(env, ARM_FEATURE_V8)); 7692 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7693 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7694 ignore_stackfaults = v7m_push_stack(cpu); 7695 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7696 "failed exception return integrity check\n"); 7697 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7698 return; 7699 } 7700 7701 /* Otherwise, we have a successful exception exit. */ 7702 arm_clear_exclusive(env); 7703 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7704 } 7705 7706 static bool do_v7m_function_return(ARMCPU *cpu) 7707 { 7708 /* v8M security extensions magic function return. 7709 * We may either: 7710 * (1) throw an exception (longjump) 7711 * (2) return true if we successfully handled the function return 7712 * (3) return false if we failed a consistency check and have 7713 * pended a UsageFault that needs to be taken now 7714 * 7715 * At this point the magic return value is split between env->regs[15] 7716 * and env->thumb. We don't bother to reconstitute it because we don't 7717 * need it (all values are handled the same way). 7718 */ 7719 CPUARMState *env = &cpu->env; 7720 uint32_t newpc, newpsr, newpsr_exc; 7721 7722 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7723 7724 { 7725 bool threadmode, spsel; 7726 TCGMemOpIdx oi; 7727 ARMMMUIdx mmu_idx; 7728 uint32_t *frame_sp_p; 7729 uint32_t frameptr; 7730 7731 /* Pull the return address and IPSR from the Secure stack */ 7732 threadmode = !arm_v7m_is_handler_mode(env); 7733 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7734 7735 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7736 frameptr = *frame_sp_p; 7737 7738 /* These loads may throw an exception (for MPU faults). We want to 7739 * do them as secure, so work out what MMU index that is. 7740 */ 7741 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7742 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7743 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7744 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7745 7746 /* Consistency checks on new IPSR */ 7747 newpsr_exc = newpsr & XPSR_EXCP; 7748 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7749 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7750 /* Pend the fault and tell our caller to take it */ 7751 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7752 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7753 env->v7m.secure); 7754 qemu_log_mask(CPU_LOG_INT, 7755 "...taking INVPC UsageFault: " 7756 "IPSR consistency check failed\n"); 7757 return false; 7758 } 7759 7760 *frame_sp_p = frameptr + 8; 7761 } 7762 7763 /* This invalidates frame_sp_p */ 7764 switch_v7m_security_state(env, true); 7765 env->v7m.exception = newpsr_exc; 7766 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7767 if (newpsr & XPSR_SFPA) { 7768 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7769 } 7770 xpsr_write(env, 0, XPSR_IT); 7771 env->thumb = newpc & 1; 7772 env->regs[15] = newpc & ~1; 7773 7774 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7775 return true; 7776 } 7777 7778 static void arm_log_exception(int idx) 7779 { 7780 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7781 const char *exc = NULL; 7782 static const char * const excnames[] = { 7783 [EXCP_UDEF] = "Undefined Instruction", 7784 [EXCP_SWI] = "SVC", 7785 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7786 [EXCP_DATA_ABORT] = "Data Abort", 7787 [EXCP_IRQ] = "IRQ", 7788 [EXCP_FIQ] = "FIQ", 7789 [EXCP_BKPT] = "Breakpoint", 7790 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7791 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7792 [EXCP_HVC] = "Hypervisor Call", 7793 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7794 [EXCP_SMC] = "Secure Monitor Call", 7795 [EXCP_VIRQ] = "Virtual IRQ", 7796 [EXCP_VFIQ] = "Virtual FIQ", 7797 [EXCP_SEMIHOST] = "Semihosting call", 7798 [EXCP_NOCP] = "v7M NOCP UsageFault", 7799 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7800 [EXCP_STKOF] = "v8M STKOF UsageFault", 7801 }; 7802 7803 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7804 exc = excnames[idx]; 7805 } 7806 if (!exc) { 7807 exc = "unknown"; 7808 } 7809 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7810 } 7811 } 7812 7813 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7814 uint32_t addr, uint16_t *insn) 7815 { 7816 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7817 * or false on failure (in which case we will have pended the appropriate 7818 * exception). 7819 * We need to do the instruction fetch's MPU and SAU checks 7820 * like this because there is no MMU index that would allow 7821 * doing the load with a single function call. Instead we must 7822 * first check that the security attributes permit the load 7823 * and that they don't mismatch on the two halves of the instruction, 7824 * and then we do the load as a secure load (ie using the security 7825 * attributes of the address, not the CPU, as architecturally required). 7826 */ 7827 CPUState *cs = CPU(cpu); 7828 CPUARMState *env = &cpu->env; 7829 V8M_SAttributes sattrs = {}; 7830 MemTxAttrs attrs = {}; 7831 ARMMMUFaultInfo fi = {}; 7832 MemTxResult txres; 7833 target_ulong page_size; 7834 hwaddr physaddr; 7835 int prot; 7836 7837 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7838 if (!sattrs.nsc || sattrs.ns) { 7839 /* This must be the second half of the insn, and it straddles a 7840 * region boundary with the second half not being S&NSC. 7841 */ 7842 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7843 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7844 qemu_log_mask(CPU_LOG_INT, 7845 "...really SecureFault with SFSR.INVEP\n"); 7846 return false; 7847 } 7848 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7849 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7850 /* the MPU lookup failed */ 7851 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7852 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7853 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7854 return false; 7855 } 7856 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7857 attrs, &txres); 7858 if (txres != MEMTX_OK) { 7859 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7860 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7861 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7862 return false; 7863 } 7864 return true; 7865 } 7866 7867 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7868 { 7869 /* Check whether this attempt to execute code in a Secure & NS-Callable 7870 * memory region is for an SG instruction; if so, then emulate the 7871 * effect of the SG instruction and return true. Otherwise pend 7872 * the correct kind of exception and return false. 7873 */ 7874 CPUARMState *env = &cpu->env; 7875 ARMMMUIdx mmu_idx; 7876 uint16_t insn; 7877 7878 /* We should never get here unless get_phys_addr_pmsav8() caused 7879 * an exception for NS executing in S&NSC memory. 7880 */ 7881 assert(!env->v7m.secure); 7882 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7883 7884 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7885 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7886 7887 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7888 return false; 7889 } 7890 7891 if (!env->thumb) { 7892 goto gen_invep; 7893 } 7894 7895 if (insn != 0xe97f) { 7896 /* Not an SG instruction first half (we choose the IMPDEF 7897 * early-SG-check option). 7898 */ 7899 goto gen_invep; 7900 } 7901 7902 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7903 return false; 7904 } 7905 7906 if (insn != 0xe97f) { 7907 /* Not an SG instruction second half (yes, both halves of the SG 7908 * insn have the same hex value) 7909 */ 7910 goto gen_invep; 7911 } 7912 7913 /* OK, we have confirmed that we really have an SG instruction. 7914 * We know we're NS in S memory so don't need to repeat those checks. 7915 */ 7916 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7917 ", executing it\n", env->regs[15]); 7918 env->regs[14] &= ~1; 7919 switch_v7m_security_state(env, true); 7920 xpsr_write(env, 0, XPSR_IT); 7921 env->regs[15] += 4; 7922 return true; 7923 7924 gen_invep: 7925 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7926 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7927 qemu_log_mask(CPU_LOG_INT, 7928 "...really SecureFault with SFSR.INVEP\n"); 7929 return false; 7930 } 7931 7932 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7933 { 7934 ARMCPU *cpu = ARM_CPU(cs); 7935 CPUARMState *env = &cpu->env; 7936 uint32_t lr; 7937 bool ignore_stackfaults; 7938 7939 arm_log_exception(cs->exception_index); 7940 7941 /* For exceptions we just mark as pending on the NVIC, and let that 7942 handle it. */ 7943 switch (cs->exception_index) { 7944 case EXCP_UDEF: 7945 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7946 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7947 break; 7948 case EXCP_NOCP: 7949 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7950 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7951 break; 7952 case EXCP_INVSTATE: 7953 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7954 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7955 break; 7956 case EXCP_STKOF: 7957 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7958 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK; 7959 break; 7960 case EXCP_SWI: 7961 /* The PC already points to the next instruction. */ 7962 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7963 break; 7964 case EXCP_PREFETCH_ABORT: 7965 case EXCP_DATA_ABORT: 7966 /* Note that for M profile we don't have a guest facing FSR, but 7967 * the env->exception.fsr will be populated by the code that 7968 * raises the fault, in the A profile short-descriptor format. 7969 */ 7970 switch (env->exception.fsr & 0xf) { 7971 case M_FAKE_FSR_NSC_EXEC: 7972 /* Exception generated when we try to execute code at an address 7973 * which is marked as Secure & Non-Secure Callable and the CPU 7974 * is in the Non-Secure state. The only instruction which can 7975 * be executed like this is SG (and that only if both halves of 7976 * the SG instruction have the same security attributes.) 7977 * Everything else must generate an INVEP SecureFault, so we 7978 * emulate the SG instruction here. 7979 */ 7980 if (v7m_handle_execute_nsc(cpu)) { 7981 return; 7982 } 7983 break; 7984 case M_FAKE_FSR_SFAULT: 7985 /* Various flavours of SecureFault for attempts to execute or 7986 * access data in the wrong security state. 7987 */ 7988 switch (cs->exception_index) { 7989 case EXCP_PREFETCH_ABORT: 7990 if (env->v7m.secure) { 7991 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7992 qemu_log_mask(CPU_LOG_INT, 7993 "...really SecureFault with SFSR.INVTRAN\n"); 7994 } else { 7995 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7996 qemu_log_mask(CPU_LOG_INT, 7997 "...really SecureFault with SFSR.INVEP\n"); 7998 } 7999 break; 8000 case EXCP_DATA_ABORT: 8001 /* This must be an NS access to S memory */ 8002 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 8003 qemu_log_mask(CPU_LOG_INT, 8004 "...really SecureFault with SFSR.AUVIOL\n"); 8005 break; 8006 } 8007 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 8008 break; 8009 case 0x8: /* External Abort */ 8010 switch (cs->exception_index) { 8011 case EXCP_PREFETCH_ABORT: 8012 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 8013 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 8014 break; 8015 case EXCP_DATA_ABORT: 8016 env->v7m.cfsr[M_REG_NS] |= 8017 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 8018 env->v7m.bfar = env->exception.vaddress; 8019 qemu_log_mask(CPU_LOG_INT, 8020 "...with CFSR.PRECISERR and BFAR 0x%x\n", 8021 env->v7m.bfar); 8022 break; 8023 } 8024 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 8025 break; 8026 default: 8027 /* All other FSR values are either MPU faults or "can't happen 8028 * for M profile" cases. 8029 */ 8030 switch (cs->exception_index) { 8031 case EXCP_PREFETCH_ABORT: 8032 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 8033 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 8034 break; 8035 case EXCP_DATA_ABORT: 8036 env->v7m.cfsr[env->v7m.secure] |= 8037 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 8038 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 8039 qemu_log_mask(CPU_LOG_INT, 8040 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 8041 env->v7m.mmfar[env->v7m.secure]); 8042 break; 8043 } 8044 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 8045 env->v7m.secure); 8046 break; 8047 } 8048 break; 8049 case EXCP_BKPT: 8050 if (semihosting_enabled()) { 8051 int nr; 8052 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 8053 if (nr == 0xab) { 8054 env->regs[15] += 2; 8055 qemu_log_mask(CPU_LOG_INT, 8056 "...handling as semihosting call 0x%x\n", 8057 env->regs[0]); 8058 env->regs[0] = do_arm_semihosting(env); 8059 return; 8060 } 8061 } 8062 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 8063 break; 8064 case EXCP_IRQ: 8065 break; 8066 case EXCP_EXCEPTION_EXIT: 8067 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 8068 /* Must be v8M security extension function return */ 8069 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 8070 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 8071 if (do_v7m_function_return(cpu)) { 8072 return; 8073 } 8074 } else { 8075 do_v7m_exception_exit(cpu); 8076 return; 8077 } 8078 break; 8079 default: 8080 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8081 return; /* Never happens. Keep compiler happy. */ 8082 } 8083 8084 if (arm_feature(env, ARM_FEATURE_V8)) { 8085 lr = R_V7M_EXCRET_RES1_MASK | 8086 R_V7M_EXCRET_DCRS_MASK | 8087 R_V7M_EXCRET_FTYPE_MASK; 8088 /* The S bit indicates whether we should return to Secure 8089 * or NonSecure (ie our current state). 8090 * The ES bit indicates whether we're taking this exception 8091 * to Secure or NonSecure (ie our target state). We set it 8092 * later, in v7m_exception_taken(). 8093 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 8094 * This corresponds to the ARM ARM pseudocode for v8M setting 8095 * some LR bits in PushStack() and some in ExceptionTaken(); 8096 * the distinction matters for the tailchain cases where we 8097 * can take an exception without pushing the stack. 8098 */ 8099 if (env->v7m.secure) { 8100 lr |= R_V7M_EXCRET_S_MASK; 8101 } 8102 } else { 8103 lr = R_V7M_EXCRET_RES1_MASK | 8104 R_V7M_EXCRET_S_MASK | 8105 R_V7M_EXCRET_DCRS_MASK | 8106 R_V7M_EXCRET_FTYPE_MASK | 8107 R_V7M_EXCRET_ES_MASK; 8108 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 8109 lr |= R_V7M_EXCRET_SPSEL_MASK; 8110 } 8111 } 8112 if (!arm_v7m_is_handler_mode(env)) { 8113 lr |= R_V7M_EXCRET_MODE_MASK; 8114 } 8115 8116 ignore_stackfaults = v7m_push_stack(cpu); 8117 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 8118 } 8119 8120 /* Function used to synchronize QEMU's AArch64 register set with AArch32 8121 * register set. This is necessary when switching between AArch32 and AArch64 8122 * execution state. 8123 */ 8124 void aarch64_sync_32_to_64(CPUARMState *env) 8125 { 8126 int i; 8127 uint32_t mode = env->uncached_cpsr & CPSR_M; 8128 8129 /* We can blanket copy R[0:7] to X[0:7] */ 8130 for (i = 0; i < 8; i++) { 8131 env->xregs[i] = env->regs[i]; 8132 } 8133 8134 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 8135 * Otherwise, they come from the banked user regs. 8136 */ 8137 if (mode == ARM_CPU_MODE_FIQ) { 8138 for (i = 8; i < 13; i++) { 8139 env->xregs[i] = env->usr_regs[i - 8]; 8140 } 8141 } else { 8142 for (i = 8; i < 13; i++) { 8143 env->xregs[i] = env->regs[i]; 8144 } 8145 } 8146 8147 /* Registers x13-x23 are the various mode SP and FP registers. Registers 8148 * r13 and r14 are only copied if we are in that mode, otherwise we copy 8149 * from the mode banked register. 8150 */ 8151 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8152 env->xregs[13] = env->regs[13]; 8153 env->xregs[14] = env->regs[14]; 8154 } else { 8155 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 8156 /* HYP is an exception in that it is copied from r14 */ 8157 if (mode == ARM_CPU_MODE_HYP) { 8158 env->xregs[14] = env->regs[14]; 8159 } else { 8160 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 8161 } 8162 } 8163 8164 if (mode == ARM_CPU_MODE_HYP) { 8165 env->xregs[15] = env->regs[13]; 8166 } else { 8167 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 8168 } 8169 8170 if (mode == ARM_CPU_MODE_IRQ) { 8171 env->xregs[16] = env->regs[14]; 8172 env->xregs[17] = env->regs[13]; 8173 } else { 8174 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 8175 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 8176 } 8177 8178 if (mode == ARM_CPU_MODE_SVC) { 8179 env->xregs[18] = env->regs[14]; 8180 env->xregs[19] = env->regs[13]; 8181 } else { 8182 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 8183 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 8184 } 8185 8186 if (mode == ARM_CPU_MODE_ABT) { 8187 env->xregs[20] = env->regs[14]; 8188 env->xregs[21] = env->regs[13]; 8189 } else { 8190 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 8191 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 8192 } 8193 8194 if (mode == ARM_CPU_MODE_UND) { 8195 env->xregs[22] = env->regs[14]; 8196 env->xregs[23] = env->regs[13]; 8197 } else { 8198 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 8199 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 8200 } 8201 8202 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8203 * mode, then we can copy from r8-r14. Otherwise, we copy from the 8204 * FIQ bank for r8-r14. 8205 */ 8206 if (mode == ARM_CPU_MODE_FIQ) { 8207 for (i = 24; i < 31; i++) { 8208 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 8209 } 8210 } else { 8211 for (i = 24; i < 29; i++) { 8212 env->xregs[i] = env->fiq_regs[i - 24]; 8213 } 8214 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 8215 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 8216 } 8217 8218 env->pc = env->regs[15]; 8219 } 8220 8221 /* Function used to synchronize QEMU's AArch32 register set with AArch64 8222 * register set. This is necessary when switching between AArch32 and AArch64 8223 * execution state. 8224 */ 8225 void aarch64_sync_64_to_32(CPUARMState *env) 8226 { 8227 int i; 8228 uint32_t mode = env->uncached_cpsr & CPSR_M; 8229 8230 /* We can blanket copy X[0:7] to R[0:7] */ 8231 for (i = 0; i < 8; i++) { 8232 env->regs[i] = env->xregs[i]; 8233 } 8234 8235 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 8236 * Otherwise, we copy x8-x12 into the banked user regs. 8237 */ 8238 if (mode == ARM_CPU_MODE_FIQ) { 8239 for (i = 8; i < 13; i++) { 8240 env->usr_regs[i - 8] = env->xregs[i]; 8241 } 8242 } else { 8243 for (i = 8; i < 13; i++) { 8244 env->regs[i] = env->xregs[i]; 8245 } 8246 } 8247 8248 /* Registers r13 & r14 depend on the current mode. 8249 * If we are in a given mode, we copy the corresponding x registers to r13 8250 * and r14. Otherwise, we copy the x register to the banked r13 and r14 8251 * for the mode. 8252 */ 8253 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 8254 env->regs[13] = env->xregs[13]; 8255 env->regs[14] = env->xregs[14]; 8256 } else { 8257 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 8258 8259 /* HYP is an exception in that it does not have its own banked r14 but 8260 * shares the USR r14 8261 */ 8262 if (mode == ARM_CPU_MODE_HYP) { 8263 env->regs[14] = env->xregs[14]; 8264 } else { 8265 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 8266 } 8267 } 8268 8269 if (mode == ARM_CPU_MODE_HYP) { 8270 env->regs[13] = env->xregs[15]; 8271 } else { 8272 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 8273 } 8274 8275 if (mode == ARM_CPU_MODE_IRQ) { 8276 env->regs[14] = env->xregs[16]; 8277 env->regs[13] = env->xregs[17]; 8278 } else { 8279 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 8280 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 8281 } 8282 8283 if (mode == ARM_CPU_MODE_SVC) { 8284 env->regs[14] = env->xregs[18]; 8285 env->regs[13] = env->xregs[19]; 8286 } else { 8287 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 8288 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 8289 } 8290 8291 if (mode == ARM_CPU_MODE_ABT) { 8292 env->regs[14] = env->xregs[20]; 8293 env->regs[13] = env->xregs[21]; 8294 } else { 8295 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 8296 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 8297 } 8298 8299 if (mode == ARM_CPU_MODE_UND) { 8300 env->regs[14] = env->xregs[22]; 8301 env->regs[13] = env->xregs[23]; 8302 } else { 8303 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 8304 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 8305 } 8306 8307 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 8308 * mode, then we can copy to r8-r14. Otherwise, we copy to the 8309 * FIQ bank for r8-r14. 8310 */ 8311 if (mode == ARM_CPU_MODE_FIQ) { 8312 for (i = 24; i < 31; i++) { 8313 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 8314 } 8315 } else { 8316 for (i = 24; i < 29; i++) { 8317 env->fiq_regs[i - 24] = env->xregs[i]; 8318 } 8319 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 8320 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 8321 } 8322 8323 env->regs[15] = env->pc; 8324 } 8325 8326 static void take_aarch32_exception(CPUARMState *env, int new_mode, 8327 uint32_t mask, uint32_t offset, 8328 uint32_t newpc) 8329 { 8330 /* Change the CPU state so as to actually take the exception. */ 8331 switch_mode(env, new_mode); 8332 /* 8333 * For exceptions taken to AArch32 we must clear the SS bit in both 8334 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8335 */ 8336 env->uncached_cpsr &= ~PSTATE_SS; 8337 env->spsr = cpsr_read(env); 8338 /* Clear IT bits. */ 8339 env->condexec_bits = 0; 8340 /* Switch to the new mode, and to the correct instruction set. */ 8341 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8342 /* Set new mode endianness */ 8343 env->uncached_cpsr &= ~CPSR_E; 8344 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8345 env->uncached_cpsr |= CPSR_E; 8346 } 8347 /* J and IL must always be cleared for exception entry */ 8348 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 8349 env->daif |= mask; 8350 8351 if (new_mode == ARM_CPU_MODE_HYP) { 8352 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 8353 env->elr_el[2] = env->regs[15]; 8354 } else { 8355 /* 8356 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 8357 * and we should just guard the thumb mode on V4 8358 */ 8359 if (arm_feature(env, ARM_FEATURE_V4T)) { 8360 env->thumb = 8361 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8362 } 8363 env->regs[14] = env->regs[15] + offset; 8364 } 8365 env->regs[15] = newpc; 8366 } 8367 8368 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 8369 { 8370 /* 8371 * Handle exception entry to Hyp mode; this is sufficiently 8372 * different to entry to other AArch32 modes that we handle it 8373 * separately here. 8374 * 8375 * The vector table entry used is always the 0x14 Hyp mode entry point, 8376 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp. 8377 * The offset applied to the preferred return address is always zero 8378 * (see DDI0487C.a section G1.12.3). 8379 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 8380 */ 8381 uint32_t addr, mask; 8382 ARMCPU *cpu = ARM_CPU(cs); 8383 CPUARMState *env = &cpu->env; 8384 8385 switch (cs->exception_index) { 8386 case EXCP_UDEF: 8387 addr = 0x04; 8388 break; 8389 case EXCP_SWI: 8390 addr = 0x14; 8391 break; 8392 case EXCP_BKPT: 8393 /* Fall through to prefetch abort. */ 8394 case EXCP_PREFETCH_ABORT: 8395 env->cp15.ifar_s = env->exception.vaddress; 8396 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 8397 (uint32_t)env->exception.vaddress); 8398 addr = 0x0c; 8399 break; 8400 case EXCP_DATA_ABORT: 8401 env->cp15.dfar_s = env->exception.vaddress; 8402 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 8403 (uint32_t)env->exception.vaddress); 8404 addr = 0x10; 8405 break; 8406 case EXCP_IRQ: 8407 addr = 0x18; 8408 break; 8409 case EXCP_FIQ: 8410 addr = 0x1c; 8411 break; 8412 case EXCP_HVC: 8413 addr = 0x08; 8414 break; 8415 case EXCP_HYP_TRAP: 8416 addr = 0x14; 8417 default: 8418 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8419 } 8420 8421 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 8422 if (!arm_feature(env, ARM_FEATURE_V8)) { 8423 /* 8424 * QEMU syndrome values are v8-style. v7 has the IL bit 8425 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 8426 * If this is a v7 CPU, squash the IL bit in those cases. 8427 */ 8428 if (cs->exception_index == EXCP_PREFETCH_ABORT || 8429 (cs->exception_index == EXCP_DATA_ABORT && 8430 !(env->exception.syndrome & ARM_EL_ISV)) || 8431 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 8432 env->exception.syndrome &= ~ARM_EL_IL; 8433 } 8434 } 8435 env->cp15.esr_el[2] = env->exception.syndrome; 8436 } 8437 8438 if (arm_current_el(env) != 2 && addr < 0x14) { 8439 addr = 0x14; 8440 } 8441 8442 mask = 0; 8443 if (!(env->cp15.scr_el3 & SCR_EA)) { 8444 mask |= CPSR_A; 8445 } 8446 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 8447 mask |= CPSR_I; 8448 } 8449 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 8450 mask |= CPSR_F; 8451 } 8452 8453 addr += env->cp15.hvbar; 8454 8455 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 8456 } 8457 8458 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 8459 { 8460 ARMCPU *cpu = ARM_CPU(cs); 8461 CPUARMState *env = &cpu->env; 8462 uint32_t addr; 8463 uint32_t mask; 8464 int new_mode; 8465 uint32_t offset; 8466 uint32_t moe; 8467 8468 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 8469 switch (syn_get_ec(env->exception.syndrome)) { 8470 case EC_BREAKPOINT: 8471 case EC_BREAKPOINT_SAME_EL: 8472 moe = 1; 8473 break; 8474 case EC_WATCHPOINT: 8475 case EC_WATCHPOINT_SAME_EL: 8476 moe = 10; 8477 break; 8478 case EC_AA32_BKPT: 8479 moe = 3; 8480 break; 8481 case EC_VECTORCATCH: 8482 moe = 5; 8483 break; 8484 default: 8485 moe = 0; 8486 break; 8487 } 8488 8489 if (moe) { 8490 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 8491 } 8492 8493 if (env->exception.target_el == 2) { 8494 arm_cpu_do_interrupt_aarch32_hyp(cs); 8495 return; 8496 } 8497 8498 switch (cs->exception_index) { 8499 case EXCP_UDEF: 8500 new_mode = ARM_CPU_MODE_UND; 8501 addr = 0x04; 8502 mask = CPSR_I; 8503 if (env->thumb) 8504 offset = 2; 8505 else 8506 offset = 4; 8507 break; 8508 case EXCP_SWI: 8509 new_mode = ARM_CPU_MODE_SVC; 8510 addr = 0x08; 8511 mask = CPSR_I; 8512 /* The PC already points to the next instruction. */ 8513 offset = 0; 8514 break; 8515 case EXCP_BKPT: 8516 /* Fall through to prefetch abort. */ 8517 case EXCP_PREFETCH_ABORT: 8518 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 8519 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 8520 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 8521 env->exception.fsr, (uint32_t)env->exception.vaddress); 8522 new_mode = ARM_CPU_MODE_ABT; 8523 addr = 0x0c; 8524 mask = CPSR_A | CPSR_I; 8525 offset = 4; 8526 break; 8527 case EXCP_DATA_ABORT: 8528 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 8529 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 8530 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 8531 env->exception.fsr, 8532 (uint32_t)env->exception.vaddress); 8533 new_mode = ARM_CPU_MODE_ABT; 8534 addr = 0x10; 8535 mask = CPSR_A | CPSR_I; 8536 offset = 8; 8537 break; 8538 case EXCP_IRQ: 8539 new_mode = ARM_CPU_MODE_IRQ; 8540 addr = 0x18; 8541 /* Disable IRQ and imprecise data aborts. */ 8542 mask = CPSR_A | CPSR_I; 8543 offset = 4; 8544 if (env->cp15.scr_el3 & SCR_IRQ) { 8545 /* IRQ routed to monitor mode */ 8546 new_mode = ARM_CPU_MODE_MON; 8547 mask |= CPSR_F; 8548 } 8549 break; 8550 case EXCP_FIQ: 8551 new_mode = ARM_CPU_MODE_FIQ; 8552 addr = 0x1c; 8553 /* Disable FIQ, IRQ and imprecise data aborts. */ 8554 mask = CPSR_A | CPSR_I | CPSR_F; 8555 if (env->cp15.scr_el3 & SCR_FIQ) { 8556 /* FIQ routed to monitor mode */ 8557 new_mode = ARM_CPU_MODE_MON; 8558 } 8559 offset = 4; 8560 break; 8561 case EXCP_VIRQ: 8562 new_mode = ARM_CPU_MODE_IRQ; 8563 addr = 0x18; 8564 /* Disable IRQ and imprecise data aborts. */ 8565 mask = CPSR_A | CPSR_I; 8566 offset = 4; 8567 break; 8568 case EXCP_VFIQ: 8569 new_mode = ARM_CPU_MODE_FIQ; 8570 addr = 0x1c; 8571 /* Disable FIQ, IRQ and imprecise data aborts. */ 8572 mask = CPSR_A | CPSR_I | CPSR_F; 8573 offset = 4; 8574 break; 8575 case EXCP_SMC: 8576 new_mode = ARM_CPU_MODE_MON; 8577 addr = 0x08; 8578 mask = CPSR_A | CPSR_I | CPSR_F; 8579 offset = 0; 8580 break; 8581 default: 8582 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8583 return; /* Never happens. Keep compiler happy. */ 8584 } 8585 8586 if (new_mode == ARM_CPU_MODE_MON) { 8587 addr += env->cp15.mvbar; 8588 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8589 /* High vectors. When enabled, base address cannot be remapped. */ 8590 addr += 0xffff0000; 8591 } else { 8592 /* ARM v7 architectures provide a vector base address register to remap 8593 * the interrupt vector table. 8594 * This register is only followed in non-monitor mode, and is banked. 8595 * Note: only bits 31:5 are valid. 8596 */ 8597 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8598 } 8599 8600 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8601 env->cp15.scr_el3 &= ~SCR_NS; 8602 } 8603 8604 take_aarch32_exception(env, new_mode, mask, offset, addr); 8605 } 8606 8607 /* Handle exception entry to a target EL which is using AArch64 */ 8608 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8609 { 8610 ARMCPU *cpu = ARM_CPU(cs); 8611 CPUARMState *env = &cpu->env; 8612 unsigned int new_el = env->exception.target_el; 8613 target_ulong addr = env->cp15.vbar_el[new_el]; 8614 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8615 unsigned int cur_el = arm_current_el(env); 8616 8617 /* 8618 * Note that new_el can never be 0. If cur_el is 0, then 8619 * el0_a64 is is_a64(), else el0_a64 is ignored. 8620 */ 8621 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 8622 8623 if (cur_el < new_el) { 8624 /* Entry vector offset depends on whether the implemented EL 8625 * immediately lower than the target level is using AArch32 or AArch64 8626 */ 8627 bool is_aa64; 8628 8629 switch (new_el) { 8630 case 3: 8631 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8632 break; 8633 case 2: 8634 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8635 break; 8636 case 1: 8637 is_aa64 = is_a64(env); 8638 break; 8639 default: 8640 g_assert_not_reached(); 8641 } 8642 8643 if (is_aa64) { 8644 addr += 0x400; 8645 } else { 8646 addr += 0x600; 8647 } 8648 } else if (pstate_read(env) & PSTATE_SP) { 8649 addr += 0x200; 8650 } 8651 8652 switch (cs->exception_index) { 8653 case EXCP_PREFETCH_ABORT: 8654 case EXCP_DATA_ABORT: 8655 env->cp15.far_el[new_el] = env->exception.vaddress; 8656 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8657 env->cp15.far_el[new_el]); 8658 /* fall through */ 8659 case EXCP_BKPT: 8660 case EXCP_UDEF: 8661 case EXCP_SWI: 8662 case EXCP_HVC: 8663 case EXCP_HYP_TRAP: 8664 case EXCP_SMC: 8665 if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) { 8666 /* 8667 * QEMU internal FP/SIMD syndromes from AArch32 include the 8668 * TA and coproc fields which are only exposed if the exception 8669 * is taken to AArch32 Hyp mode. Mask them out to get a valid 8670 * AArch64 format syndrome. 8671 */ 8672 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 8673 } 8674 env->cp15.esr_el[new_el] = env->exception.syndrome; 8675 break; 8676 case EXCP_IRQ: 8677 case EXCP_VIRQ: 8678 addr += 0x80; 8679 break; 8680 case EXCP_FIQ: 8681 case EXCP_VFIQ: 8682 addr += 0x100; 8683 break; 8684 case EXCP_SEMIHOST: 8685 qemu_log_mask(CPU_LOG_INT, 8686 "...handling as semihosting call 0x%" PRIx64 "\n", 8687 env->xregs[0]); 8688 env->xregs[0] = do_arm_semihosting(env); 8689 return; 8690 default: 8691 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8692 } 8693 8694 if (is_a64(env)) { 8695 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8696 aarch64_save_sp(env, arm_current_el(env)); 8697 env->elr_el[new_el] = env->pc; 8698 } else { 8699 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8700 env->elr_el[new_el] = env->regs[15]; 8701 8702 aarch64_sync_32_to_64(env); 8703 8704 env->condexec_bits = 0; 8705 } 8706 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8707 env->elr_el[new_el]); 8708 8709 pstate_write(env, PSTATE_DAIF | new_mode); 8710 env->aarch64 = 1; 8711 aarch64_restore_sp(env, new_el); 8712 8713 env->pc = addr; 8714 8715 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8716 new_el, env->pc, pstate_read(env)); 8717 } 8718 8719 static inline bool check_for_semihosting(CPUState *cs) 8720 { 8721 /* Check whether this exception is a semihosting call; if so 8722 * then handle it and return true; otherwise return false. 8723 */ 8724 ARMCPU *cpu = ARM_CPU(cs); 8725 CPUARMState *env = &cpu->env; 8726 8727 if (is_a64(env)) { 8728 if (cs->exception_index == EXCP_SEMIHOST) { 8729 /* This is always the 64-bit semihosting exception. 8730 * The "is this usermode" and "is semihosting enabled" 8731 * checks have been done at translate time. 8732 */ 8733 qemu_log_mask(CPU_LOG_INT, 8734 "...handling as semihosting call 0x%" PRIx64 "\n", 8735 env->xregs[0]); 8736 env->xregs[0] = do_arm_semihosting(env); 8737 return true; 8738 } 8739 return false; 8740 } else { 8741 uint32_t imm; 8742 8743 /* Only intercept calls from privileged modes, to provide some 8744 * semblance of security. 8745 */ 8746 if (cs->exception_index != EXCP_SEMIHOST && 8747 (!semihosting_enabled() || 8748 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8749 return false; 8750 } 8751 8752 switch (cs->exception_index) { 8753 case EXCP_SEMIHOST: 8754 /* This is always a semihosting call; the "is this usermode" 8755 * and "is semihosting enabled" checks have been done at 8756 * translate time. 8757 */ 8758 break; 8759 case EXCP_SWI: 8760 /* Check for semihosting interrupt. */ 8761 if (env->thumb) { 8762 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8763 & 0xff; 8764 if (imm == 0xab) { 8765 break; 8766 } 8767 } else { 8768 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8769 & 0xffffff; 8770 if (imm == 0x123456) { 8771 break; 8772 } 8773 } 8774 return false; 8775 case EXCP_BKPT: 8776 /* See if this is a semihosting syscall. */ 8777 if (env->thumb) { 8778 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8779 & 0xff; 8780 if (imm == 0xab) { 8781 env->regs[15] += 2; 8782 break; 8783 } 8784 } 8785 return false; 8786 default: 8787 return false; 8788 } 8789 8790 qemu_log_mask(CPU_LOG_INT, 8791 "...handling as semihosting call 0x%x\n", 8792 env->regs[0]); 8793 env->regs[0] = do_arm_semihosting(env); 8794 return true; 8795 } 8796 } 8797 8798 /* Handle a CPU exception for A and R profile CPUs. 8799 * Do any appropriate logging, handle PSCI calls, and then hand off 8800 * to the AArch64-entry or AArch32-entry function depending on the 8801 * target exception level's register width. 8802 */ 8803 void arm_cpu_do_interrupt(CPUState *cs) 8804 { 8805 ARMCPU *cpu = ARM_CPU(cs); 8806 CPUARMState *env = &cpu->env; 8807 unsigned int new_el = env->exception.target_el; 8808 8809 assert(!arm_feature(env, ARM_FEATURE_M)); 8810 8811 arm_log_exception(cs->exception_index); 8812 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8813 new_el); 8814 if (qemu_loglevel_mask(CPU_LOG_INT) 8815 && !excp_is_internal(cs->exception_index)) { 8816 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8817 syn_get_ec(env->exception.syndrome), 8818 env->exception.syndrome); 8819 } 8820 8821 if (arm_is_psci_call(cpu, cs->exception_index)) { 8822 arm_handle_psci_call(cpu); 8823 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8824 return; 8825 } 8826 8827 /* Semihosting semantics depend on the register width of the 8828 * code that caused the exception, not the target exception level, 8829 * so must be handled here. 8830 */ 8831 if (check_for_semihosting(cs)) { 8832 return; 8833 } 8834 8835 /* Hooks may change global state so BQL should be held, also the 8836 * BQL needs to be held for any modification of 8837 * cs->interrupt_request. 8838 */ 8839 g_assert(qemu_mutex_iothread_locked()); 8840 8841 arm_call_pre_el_change_hook(cpu); 8842 8843 assert(!excp_is_internal(cs->exception_index)); 8844 if (arm_el_is_aa64(env, new_el)) { 8845 arm_cpu_do_interrupt_aarch64(cs); 8846 } else { 8847 arm_cpu_do_interrupt_aarch32(cs); 8848 } 8849 8850 arm_call_el_change_hook(cpu); 8851 8852 if (!kvm_enabled()) { 8853 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8854 } 8855 } 8856 8857 /* Return the exception level which controls this address translation regime */ 8858 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8859 { 8860 switch (mmu_idx) { 8861 case ARMMMUIdx_S2NS: 8862 case ARMMMUIdx_S1E2: 8863 return 2; 8864 case ARMMMUIdx_S1E3: 8865 return 3; 8866 case ARMMMUIdx_S1SE0: 8867 return arm_el_is_aa64(env, 3) ? 1 : 3; 8868 case ARMMMUIdx_S1SE1: 8869 case ARMMMUIdx_S1NSE0: 8870 case ARMMMUIdx_S1NSE1: 8871 case ARMMMUIdx_MPrivNegPri: 8872 case ARMMMUIdx_MUserNegPri: 8873 case ARMMMUIdx_MPriv: 8874 case ARMMMUIdx_MUser: 8875 case ARMMMUIdx_MSPrivNegPri: 8876 case ARMMMUIdx_MSUserNegPri: 8877 case ARMMMUIdx_MSPriv: 8878 case ARMMMUIdx_MSUser: 8879 return 1; 8880 default: 8881 g_assert_not_reached(); 8882 } 8883 } 8884 8885 /* Return the SCTLR value which controls this address translation regime */ 8886 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8887 { 8888 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8889 } 8890 8891 /* Return true if the specified stage of address translation is disabled */ 8892 static inline bool regime_translation_disabled(CPUARMState *env, 8893 ARMMMUIdx mmu_idx) 8894 { 8895 if (arm_feature(env, ARM_FEATURE_M)) { 8896 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8897 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8898 case R_V7M_MPU_CTRL_ENABLE_MASK: 8899 /* Enabled, but not for HardFault and NMI */ 8900 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8901 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8902 /* Enabled for all cases */ 8903 return false; 8904 case 0: 8905 default: 8906 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8907 * we warned about that in armv7m_nvic.c when the guest set it. 8908 */ 8909 return true; 8910 } 8911 } 8912 8913 if (mmu_idx == ARMMMUIdx_S2NS) { 8914 /* HCR.DC means HCR.VM behaves as 1 */ 8915 return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0; 8916 } 8917 8918 if (env->cp15.hcr_el2 & HCR_TGE) { 8919 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 8920 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 8921 return true; 8922 } 8923 } 8924 8925 if ((env->cp15.hcr_el2 & HCR_DC) && 8926 (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) { 8927 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 8928 return true; 8929 } 8930 8931 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8932 } 8933 8934 static inline bool regime_translation_big_endian(CPUARMState *env, 8935 ARMMMUIdx mmu_idx) 8936 { 8937 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8938 } 8939 8940 /* Return the TCR controlling this translation regime */ 8941 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8942 { 8943 if (mmu_idx == ARMMMUIdx_S2NS) { 8944 return &env->cp15.vtcr_el2; 8945 } 8946 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8947 } 8948 8949 /* Convert a possible stage1+2 MMU index into the appropriate 8950 * stage 1 MMU index 8951 */ 8952 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8953 { 8954 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8955 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8956 } 8957 return mmu_idx; 8958 } 8959 8960 /* Returns TBI0 value for current regime el */ 8961 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8962 { 8963 TCR *tcr; 8964 uint32_t el; 8965 8966 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8967 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8968 */ 8969 mmu_idx = stage_1_mmu_idx(mmu_idx); 8970 8971 tcr = regime_tcr(env, mmu_idx); 8972 el = regime_el(env, mmu_idx); 8973 8974 if (el > 1) { 8975 return extract64(tcr->raw_tcr, 20, 1); 8976 } else { 8977 return extract64(tcr->raw_tcr, 37, 1); 8978 } 8979 } 8980 8981 /* Returns TBI1 value for current regime el */ 8982 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8983 { 8984 TCR *tcr; 8985 uint32_t el; 8986 8987 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8988 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8989 */ 8990 mmu_idx = stage_1_mmu_idx(mmu_idx); 8991 8992 tcr = regime_tcr(env, mmu_idx); 8993 el = regime_el(env, mmu_idx); 8994 8995 if (el > 1) { 8996 return 0; 8997 } else { 8998 return extract64(tcr->raw_tcr, 38, 1); 8999 } 9000 } 9001 9002 /* Return the TTBR associated with this translation regime */ 9003 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 9004 int ttbrn) 9005 { 9006 if (mmu_idx == ARMMMUIdx_S2NS) { 9007 return env->cp15.vttbr_el2; 9008 } 9009 if (ttbrn == 0) { 9010 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 9011 } else { 9012 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 9013 } 9014 } 9015 9016 /* Return true if the translation regime is using LPAE format page tables */ 9017 static inline bool regime_using_lpae_format(CPUARMState *env, 9018 ARMMMUIdx mmu_idx) 9019 { 9020 int el = regime_el(env, mmu_idx); 9021 if (el == 2 || arm_el_is_aa64(env, el)) { 9022 return true; 9023 } 9024 if (arm_feature(env, ARM_FEATURE_LPAE) 9025 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 9026 return true; 9027 } 9028 return false; 9029 } 9030 9031 /* Returns true if the stage 1 translation regime is using LPAE format page 9032 * tables. Used when raising alignment exceptions, whose FSR changes depending 9033 * on whether the long or short descriptor format is in use. */ 9034 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 9035 { 9036 mmu_idx = stage_1_mmu_idx(mmu_idx); 9037 9038 return regime_using_lpae_format(env, mmu_idx); 9039 } 9040 9041 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 9042 { 9043 switch (mmu_idx) { 9044 case ARMMMUIdx_S1SE0: 9045 case ARMMMUIdx_S1NSE0: 9046 case ARMMMUIdx_MUser: 9047 case ARMMMUIdx_MSUser: 9048 case ARMMMUIdx_MUserNegPri: 9049 case ARMMMUIdx_MSUserNegPri: 9050 return true; 9051 default: 9052 return false; 9053 case ARMMMUIdx_S12NSE0: 9054 case ARMMMUIdx_S12NSE1: 9055 g_assert_not_reached(); 9056 } 9057 } 9058 9059 /* Translate section/page access permissions to page 9060 * R/W protection flags 9061 * 9062 * @env: CPUARMState 9063 * @mmu_idx: MMU index indicating required translation regime 9064 * @ap: The 3-bit access permissions (AP[2:0]) 9065 * @domain_prot: The 2-bit domain access permissions 9066 */ 9067 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 9068 int ap, int domain_prot) 9069 { 9070 bool is_user = regime_is_user(env, mmu_idx); 9071 9072 if (domain_prot == 3) { 9073 return PAGE_READ | PAGE_WRITE; 9074 } 9075 9076 switch (ap) { 9077 case 0: 9078 if (arm_feature(env, ARM_FEATURE_V7)) { 9079 return 0; 9080 } 9081 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 9082 case SCTLR_S: 9083 return is_user ? 0 : PAGE_READ; 9084 case SCTLR_R: 9085 return PAGE_READ; 9086 default: 9087 return 0; 9088 } 9089 case 1: 9090 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9091 case 2: 9092 if (is_user) { 9093 return PAGE_READ; 9094 } else { 9095 return PAGE_READ | PAGE_WRITE; 9096 } 9097 case 3: 9098 return PAGE_READ | PAGE_WRITE; 9099 case 4: /* Reserved. */ 9100 return 0; 9101 case 5: 9102 return is_user ? 0 : PAGE_READ; 9103 case 6: 9104 return PAGE_READ; 9105 case 7: 9106 if (!arm_feature(env, ARM_FEATURE_V6K)) { 9107 return 0; 9108 } 9109 return PAGE_READ; 9110 default: 9111 g_assert_not_reached(); 9112 } 9113 } 9114 9115 /* Translate section/page access permissions to page 9116 * R/W protection flags. 9117 * 9118 * @ap: The 2-bit simple AP (AP[2:1]) 9119 * @is_user: TRUE if accessing from PL0 9120 */ 9121 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 9122 { 9123 switch (ap) { 9124 case 0: 9125 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 9126 case 1: 9127 return PAGE_READ | PAGE_WRITE; 9128 case 2: 9129 return is_user ? 0 : PAGE_READ; 9130 case 3: 9131 return PAGE_READ; 9132 default: 9133 g_assert_not_reached(); 9134 } 9135 } 9136 9137 static inline int 9138 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 9139 { 9140 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 9141 } 9142 9143 /* Translate S2 section/page access permissions to protection flags 9144 * 9145 * @env: CPUARMState 9146 * @s2ap: The 2-bit stage2 access permissions (S2AP) 9147 * @xn: XN (execute-never) bit 9148 */ 9149 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 9150 { 9151 int prot = 0; 9152 9153 if (s2ap & 1) { 9154 prot |= PAGE_READ; 9155 } 9156 if (s2ap & 2) { 9157 prot |= PAGE_WRITE; 9158 } 9159 if (!xn) { 9160 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 9161 prot |= PAGE_EXEC; 9162 } 9163 } 9164 return prot; 9165 } 9166 9167 /* Translate section/page access permissions to protection flags 9168 * 9169 * @env: CPUARMState 9170 * @mmu_idx: MMU index indicating required translation regime 9171 * @is_aa64: TRUE if AArch64 9172 * @ap: The 2-bit simple AP (AP[2:1]) 9173 * @ns: NS (non-secure) bit 9174 * @xn: XN (execute-never) bit 9175 * @pxn: PXN (privileged execute-never) bit 9176 */ 9177 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 9178 int ap, int ns, int xn, int pxn) 9179 { 9180 bool is_user = regime_is_user(env, mmu_idx); 9181 int prot_rw, user_rw; 9182 bool have_wxn; 9183 int wxn = 0; 9184 9185 assert(mmu_idx != ARMMMUIdx_S2NS); 9186 9187 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 9188 if (is_user) { 9189 prot_rw = user_rw; 9190 } else { 9191 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 9192 } 9193 9194 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 9195 return prot_rw; 9196 } 9197 9198 /* TODO have_wxn should be replaced with 9199 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 9200 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 9201 * compatible processors have EL2, which is required for [U]WXN. 9202 */ 9203 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 9204 9205 if (have_wxn) { 9206 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 9207 } 9208 9209 if (is_aa64) { 9210 switch (regime_el(env, mmu_idx)) { 9211 case 1: 9212 if (!is_user) { 9213 xn = pxn || (user_rw & PAGE_WRITE); 9214 } 9215 break; 9216 case 2: 9217 case 3: 9218 break; 9219 } 9220 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9221 switch (regime_el(env, mmu_idx)) { 9222 case 1: 9223 case 3: 9224 if (is_user) { 9225 xn = xn || !(user_rw & PAGE_READ); 9226 } else { 9227 int uwxn = 0; 9228 if (have_wxn) { 9229 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 9230 } 9231 xn = xn || !(prot_rw & PAGE_READ) || pxn || 9232 (uwxn && (user_rw & PAGE_WRITE)); 9233 } 9234 break; 9235 case 2: 9236 break; 9237 } 9238 } else { 9239 xn = wxn = 0; 9240 } 9241 9242 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 9243 return prot_rw; 9244 } 9245 return prot_rw | PAGE_EXEC; 9246 } 9247 9248 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 9249 uint32_t *table, uint32_t address) 9250 { 9251 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 9252 TCR *tcr = regime_tcr(env, mmu_idx); 9253 9254 if (address & tcr->mask) { 9255 if (tcr->raw_tcr & TTBCR_PD1) { 9256 /* Translation table walk disabled for TTBR1 */ 9257 return false; 9258 } 9259 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 9260 } else { 9261 if (tcr->raw_tcr & TTBCR_PD0) { 9262 /* Translation table walk disabled for TTBR0 */ 9263 return false; 9264 } 9265 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 9266 } 9267 *table |= (address >> 18) & 0x3ffc; 9268 return true; 9269 } 9270 9271 /* Translate a S1 pagetable walk through S2 if needed. */ 9272 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 9273 hwaddr addr, MemTxAttrs txattrs, 9274 ARMMMUFaultInfo *fi) 9275 { 9276 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 9277 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9278 target_ulong s2size; 9279 hwaddr s2pa; 9280 int s2prot; 9281 int ret; 9282 ARMCacheAttrs cacheattrs = {}; 9283 ARMCacheAttrs *pcacheattrs = NULL; 9284 9285 if (env->cp15.hcr_el2 & HCR_PTW) { 9286 /* 9287 * PTW means we must fault if this S1 walk touches S2 Device 9288 * memory; otherwise we don't care about the attributes and can 9289 * save the S2 translation the effort of computing them. 9290 */ 9291 pcacheattrs = &cacheattrs; 9292 } 9293 9294 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 9295 &txattrs, &s2prot, &s2size, fi, pcacheattrs); 9296 if (ret) { 9297 assert(fi->type != ARMFault_None); 9298 fi->s2addr = addr; 9299 fi->stage2 = true; 9300 fi->s1ptw = true; 9301 return ~0; 9302 } 9303 if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) { 9304 /* Access was to Device memory: generate Permission fault */ 9305 fi->type = ARMFault_Permission; 9306 fi->s2addr = addr; 9307 fi->stage2 = true; 9308 fi->s1ptw = true; 9309 return ~0; 9310 } 9311 addr = s2pa; 9312 } 9313 return addr; 9314 } 9315 9316 /* All loads done in the course of a page table walk go through here. */ 9317 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9318 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9319 { 9320 ARMCPU *cpu = ARM_CPU(cs); 9321 CPUARMState *env = &cpu->env; 9322 MemTxAttrs attrs = {}; 9323 MemTxResult result = MEMTX_OK; 9324 AddressSpace *as; 9325 uint32_t data; 9326 9327 attrs.secure = is_secure; 9328 as = arm_addressspace(cs, attrs); 9329 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9330 if (fi->s1ptw) { 9331 return 0; 9332 } 9333 if (regime_translation_big_endian(env, mmu_idx)) { 9334 data = address_space_ldl_be(as, addr, attrs, &result); 9335 } else { 9336 data = address_space_ldl_le(as, addr, attrs, &result); 9337 } 9338 if (result == MEMTX_OK) { 9339 return data; 9340 } 9341 fi->type = ARMFault_SyncExternalOnWalk; 9342 fi->ea = arm_extabort_type(result); 9343 return 0; 9344 } 9345 9346 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 9347 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 9348 { 9349 ARMCPU *cpu = ARM_CPU(cs); 9350 CPUARMState *env = &cpu->env; 9351 MemTxAttrs attrs = {}; 9352 MemTxResult result = MEMTX_OK; 9353 AddressSpace *as; 9354 uint64_t data; 9355 9356 attrs.secure = is_secure; 9357 as = arm_addressspace(cs, attrs); 9358 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 9359 if (fi->s1ptw) { 9360 return 0; 9361 } 9362 if (regime_translation_big_endian(env, mmu_idx)) { 9363 data = address_space_ldq_be(as, addr, attrs, &result); 9364 } else { 9365 data = address_space_ldq_le(as, addr, attrs, &result); 9366 } 9367 if (result == MEMTX_OK) { 9368 return data; 9369 } 9370 fi->type = ARMFault_SyncExternalOnWalk; 9371 fi->ea = arm_extabort_type(result); 9372 return 0; 9373 } 9374 9375 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 9376 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9377 hwaddr *phys_ptr, int *prot, 9378 target_ulong *page_size, 9379 ARMMMUFaultInfo *fi) 9380 { 9381 CPUState *cs = CPU(arm_env_get_cpu(env)); 9382 int level = 1; 9383 uint32_t table; 9384 uint32_t desc; 9385 int type; 9386 int ap; 9387 int domain = 0; 9388 int domain_prot; 9389 hwaddr phys_addr; 9390 uint32_t dacr; 9391 9392 /* Pagetable walk. */ 9393 /* Lookup l1 descriptor. */ 9394 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9395 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9396 fi->type = ARMFault_Translation; 9397 goto do_fault; 9398 } 9399 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9400 mmu_idx, fi); 9401 if (fi->type != ARMFault_None) { 9402 goto do_fault; 9403 } 9404 type = (desc & 3); 9405 domain = (desc >> 5) & 0x0f; 9406 if (regime_el(env, mmu_idx) == 1) { 9407 dacr = env->cp15.dacr_ns; 9408 } else { 9409 dacr = env->cp15.dacr_s; 9410 } 9411 domain_prot = (dacr >> (domain * 2)) & 3; 9412 if (type == 0) { 9413 /* Section translation fault. */ 9414 fi->type = ARMFault_Translation; 9415 goto do_fault; 9416 } 9417 if (type != 2) { 9418 level = 2; 9419 } 9420 if (domain_prot == 0 || domain_prot == 2) { 9421 fi->type = ARMFault_Domain; 9422 goto do_fault; 9423 } 9424 if (type == 2) { 9425 /* 1Mb section. */ 9426 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9427 ap = (desc >> 10) & 3; 9428 *page_size = 1024 * 1024; 9429 } else { 9430 /* Lookup l2 entry. */ 9431 if (type == 1) { 9432 /* Coarse pagetable. */ 9433 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9434 } else { 9435 /* Fine pagetable. */ 9436 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 9437 } 9438 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9439 mmu_idx, fi); 9440 if (fi->type != ARMFault_None) { 9441 goto do_fault; 9442 } 9443 switch (desc & 3) { 9444 case 0: /* Page translation fault. */ 9445 fi->type = ARMFault_Translation; 9446 goto do_fault; 9447 case 1: /* 64k page. */ 9448 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9449 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 9450 *page_size = 0x10000; 9451 break; 9452 case 2: /* 4k page. */ 9453 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9454 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 9455 *page_size = 0x1000; 9456 break; 9457 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 9458 if (type == 1) { 9459 /* ARMv6/XScale extended small page format */ 9460 if (arm_feature(env, ARM_FEATURE_XSCALE) 9461 || arm_feature(env, ARM_FEATURE_V6)) { 9462 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9463 *page_size = 0x1000; 9464 } else { 9465 /* UNPREDICTABLE in ARMv5; we choose to take a 9466 * page translation fault. 9467 */ 9468 fi->type = ARMFault_Translation; 9469 goto do_fault; 9470 } 9471 } else { 9472 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 9473 *page_size = 0x400; 9474 } 9475 ap = (desc >> 4) & 3; 9476 break; 9477 default: 9478 /* Never happens, but compiler isn't smart enough to tell. */ 9479 abort(); 9480 } 9481 } 9482 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9483 *prot |= *prot ? PAGE_EXEC : 0; 9484 if (!(*prot & (1 << access_type))) { 9485 /* Access permission fault. */ 9486 fi->type = ARMFault_Permission; 9487 goto do_fault; 9488 } 9489 *phys_ptr = phys_addr; 9490 return false; 9491 do_fault: 9492 fi->domain = domain; 9493 fi->level = level; 9494 return true; 9495 } 9496 9497 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 9498 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9499 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9500 target_ulong *page_size, ARMMMUFaultInfo *fi) 9501 { 9502 CPUState *cs = CPU(arm_env_get_cpu(env)); 9503 int level = 1; 9504 uint32_t table; 9505 uint32_t desc; 9506 uint32_t xn; 9507 uint32_t pxn = 0; 9508 int type; 9509 int ap; 9510 int domain = 0; 9511 int domain_prot; 9512 hwaddr phys_addr; 9513 uint32_t dacr; 9514 bool ns; 9515 9516 /* Pagetable walk. */ 9517 /* Lookup l1 descriptor. */ 9518 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 9519 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 9520 fi->type = ARMFault_Translation; 9521 goto do_fault; 9522 } 9523 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9524 mmu_idx, fi); 9525 if (fi->type != ARMFault_None) { 9526 goto do_fault; 9527 } 9528 type = (desc & 3); 9529 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 9530 /* Section translation fault, or attempt to use the encoding 9531 * which is Reserved on implementations without PXN. 9532 */ 9533 fi->type = ARMFault_Translation; 9534 goto do_fault; 9535 } 9536 if ((type == 1) || !(desc & (1 << 18))) { 9537 /* Page or Section. */ 9538 domain = (desc >> 5) & 0x0f; 9539 } 9540 if (regime_el(env, mmu_idx) == 1) { 9541 dacr = env->cp15.dacr_ns; 9542 } else { 9543 dacr = env->cp15.dacr_s; 9544 } 9545 if (type == 1) { 9546 level = 2; 9547 } 9548 domain_prot = (dacr >> (domain * 2)) & 3; 9549 if (domain_prot == 0 || domain_prot == 2) { 9550 /* Section or Page domain fault */ 9551 fi->type = ARMFault_Domain; 9552 goto do_fault; 9553 } 9554 if (type != 1) { 9555 if (desc & (1 << 18)) { 9556 /* Supersection. */ 9557 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 9558 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 9559 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 9560 *page_size = 0x1000000; 9561 } else { 9562 /* Section. */ 9563 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 9564 *page_size = 0x100000; 9565 } 9566 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 9567 xn = desc & (1 << 4); 9568 pxn = desc & 1; 9569 ns = extract32(desc, 19, 1); 9570 } else { 9571 if (arm_feature(env, ARM_FEATURE_PXN)) { 9572 pxn = (desc >> 2) & 1; 9573 } 9574 ns = extract32(desc, 3, 1); 9575 /* Lookup l2 entry. */ 9576 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 9577 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 9578 mmu_idx, fi); 9579 if (fi->type != ARMFault_None) { 9580 goto do_fault; 9581 } 9582 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 9583 switch (desc & 3) { 9584 case 0: /* Page translation fault. */ 9585 fi->type = ARMFault_Translation; 9586 goto do_fault; 9587 case 1: /* 64k page. */ 9588 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 9589 xn = desc & (1 << 15); 9590 *page_size = 0x10000; 9591 break; 9592 case 2: case 3: /* 4k page. */ 9593 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 9594 xn = desc & 1; 9595 *page_size = 0x1000; 9596 break; 9597 default: 9598 /* Never happens, but compiler isn't smart enough to tell. */ 9599 abort(); 9600 } 9601 } 9602 if (domain_prot == 3) { 9603 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9604 } else { 9605 if (pxn && !regime_is_user(env, mmu_idx)) { 9606 xn = 1; 9607 } 9608 if (xn && access_type == MMU_INST_FETCH) { 9609 fi->type = ARMFault_Permission; 9610 goto do_fault; 9611 } 9612 9613 if (arm_feature(env, ARM_FEATURE_V6K) && 9614 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 9615 /* The simplified model uses AP[0] as an access control bit. */ 9616 if ((ap & 1) == 0) { 9617 /* Access flag fault. */ 9618 fi->type = ARMFault_AccessFlag; 9619 goto do_fault; 9620 } 9621 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9622 } else { 9623 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9624 } 9625 if (*prot && !xn) { 9626 *prot |= PAGE_EXEC; 9627 } 9628 if (!(*prot & (1 << access_type))) { 9629 /* Access permission fault. */ 9630 fi->type = ARMFault_Permission; 9631 goto do_fault; 9632 } 9633 } 9634 if (ns) { 9635 /* The NS bit will (as required by the architecture) have no effect if 9636 * the CPU doesn't support TZ or this is a non-secure translation 9637 * regime, because the attribute will already be non-secure. 9638 */ 9639 attrs->secure = false; 9640 } 9641 *phys_ptr = phys_addr; 9642 return false; 9643 do_fault: 9644 fi->domain = domain; 9645 fi->level = level; 9646 return true; 9647 } 9648 9649 /* 9650 * check_s2_mmu_setup 9651 * @cpu: ARMCPU 9652 * @is_aa64: True if the translation regime is in AArch64 state 9653 * @startlevel: Suggested starting level 9654 * @inputsize: Bitsize of IPAs 9655 * @stride: Page-table stride (See the ARM ARM) 9656 * 9657 * Returns true if the suggested S2 translation parameters are OK and 9658 * false otherwise. 9659 */ 9660 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9661 int inputsize, int stride) 9662 { 9663 const int grainsize = stride + 3; 9664 int startsizecheck; 9665 9666 /* Negative levels are never allowed. */ 9667 if (level < 0) { 9668 return false; 9669 } 9670 9671 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9672 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9673 return false; 9674 } 9675 9676 if (is_aa64) { 9677 CPUARMState *env = &cpu->env; 9678 unsigned int pamax = arm_pamax(cpu); 9679 9680 switch (stride) { 9681 case 13: /* 64KB Pages. */ 9682 if (level == 0 || (level == 1 && pamax <= 42)) { 9683 return false; 9684 } 9685 break; 9686 case 11: /* 16KB Pages. */ 9687 if (level == 0 || (level == 1 && pamax <= 40)) { 9688 return false; 9689 } 9690 break; 9691 case 9: /* 4KB Pages. */ 9692 if (level == 0 && pamax <= 42) { 9693 return false; 9694 } 9695 break; 9696 default: 9697 g_assert_not_reached(); 9698 } 9699 9700 /* Inputsize checks. */ 9701 if (inputsize > pamax && 9702 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9703 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9704 return false; 9705 } 9706 } else { 9707 /* AArch32 only supports 4KB pages. Assert on that. */ 9708 assert(stride == 9); 9709 9710 if (level == 0) { 9711 return false; 9712 } 9713 } 9714 return true; 9715 } 9716 9717 /* Translate from the 4-bit stage 2 representation of 9718 * memory attributes (without cache-allocation hints) to 9719 * the 8-bit representation of the stage 1 MAIR registers 9720 * (which includes allocation hints). 9721 * 9722 * ref: shared/translation/attrs/S2AttrDecode() 9723 * .../S2ConvertAttrsHints() 9724 */ 9725 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9726 { 9727 uint8_t hiattr = extract32(s2attrs, 2, 2); 9728 uint8_t loattr = extract32(s2attrs, 0, 2); 9729 uint8_t hihint = 0, lohint = 0; 9730 9731 if (hiattr != 0) { /* normal memory */ 9732 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9733 hiattr = loattr = 1; /* non-cacheable */ 9734 } else { 9735 if (hiattr != 1) { /* Write-through or write-back */ 9736 hihint = 3; /* RW allocate */ 9737 } 9738 if (loattr != 1) { /* Write-through or write-back */ 9739 lohint = 3; /* RW allocate */ 9740 } 9741 } 9742 } 9743 9744 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9745 } 9746 9747 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9748 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9749 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9750 target_ulong *page_size_ptr, 9751 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9752 { 9753 ARMCPU *cpu = arm_env_get_cpu(env); 9754 CPUState *cs = CPU(cpu); 9755 /* Read an LPAE long-descriptor translation table. */ 9756 ARMFaultType fault_type = ARMFault_Translation; 9757 uint32_t level; 9758 uint32_t epd = 0; 9759 int32_t t0sz, t1sz; 9760 uint32_t tg; 9761 uint64_t ttbr; 9762 int ttbr_select; 9763 hwaddr descaddr, indexmask, indexmask_grainsize; 9764 uint32_t tableattrs; 9765 target_ulong page_size; 9766 uint32_t attrs; 9767 int32_t stride = 9; 9768 int32_t addrsize; 9769 int inputsize; 9770 int32_t tbi = 0; 9771 TCR *tcr = regime_tcr(env, mmu_idx); 9772 int ap, ns, xn, pxn; 9773 uint32_t el = regime_el(env, mmu_idx); 9774 bool ttbr1_valid = true; 9775 uint64_t descaddrmask; 9776 bool aarch64 = arm_el_is_aa64(env, el); 9777 bool hpd = false; 9778 9779 /* TODO: 9780 * This code does not handle the different format TCR for VTCR_EL2. 9781 * This code also does not support shareability levels. 9782 * Attribute and permission bit handling should also be checked when adding 9783 * support for those page table walks. 9784 */ 9785 if (aarch64) { 9786 level = 0; 9787 addrsize = 64; 9788 if (el > 1) { 9789 if (mmu_idx != ARMMMUIdx_S2NS) { 9790 tbi = extract64(tcr->raw_tcr, 20, 1); 9791 } 9792 } else { 9793 if (extract64(address, 55, 1)) { 9794 tbi = extract64(tcr->raw_tcr, 38, 1); 9795 } else { 9796 tbi = extract64(tcr->raw_tcr, 37, 1); 9797 } 9798 } 9799 tbi *= 8; 9800 9801 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9802 * invalid. 9803 */ 9804 if (el > 1) { 9805 ttbr1_valid = false; 9806 } 9807 } else { 9808 level = 1; 9809 addrsize = 32; 9810 /* There is no TTBR1 for EL2 */ 9811 if (el == 2) { 9812 ttbr1_valid = false; 9813 } 9814 } 9815 9816 /* Determine whether this address is in the region controlled by 9817 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9818 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9819 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9820 */ 9821 if (aarch64) { 9822 /* AArch64 translation. */ 9823 t0sz = extract32(tcr->raw_tcr, 0, 6); 9824 t0sz = MIN(t0sz, 39); 9825 t0sz = MAX(t0sz, 16); 9826 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9827 /* AArch32 stage 1 translation. */ 9828 t0sz = extract32(tcr->raw_tcr, 0, 3); 9829 } else { 9830 /* AArch32 stage 2 translation. */ 9831 bool sext = extract32(tcr->raw_tcr, 4, 1); 9832 bool sign = extract32(tcr->raw_tcr, 3, 1); 9833 /* Address size is 40-bit for a stage 2 translation, 9834 * and t0sz can be negative (from -8 to 7), 9835 * so we need to adjust it to use the TTBR selecting logic below. 9836 */ 9837 addrsize = 40; 9838 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9839 9840 /* If the sign-extend bit is not the same as t0sz[3], the result 9841 * is unpredictable. Flag this as a guest error. */ 9842 if (sign != sext) { 9843 qemu_log_mask(LOG_GUEST_ERROR, 9844 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9845 } 9846 } 9847 t1sz = extract32(tcr->raw_tcr, 16, 6); 9848 if (aarch64) { 9849 t1sz = MIN(t1sz, 39); 9850 t1sz = MAX(t1sz, 16); 9851 } 9852 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9853 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9854 ttbr_select = 0; 9855 } else if (ttbr1_valid && t1sz && 9856 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9857 /* there is a ttbr1 region and we are in it (high bits all one) */ 9858 ttbr_select = 1; 9859 } else if (!t0sz) { 9860 /* ttbr0 region is "everything not in the ttbr1 region" */ 9861 ttbr_select = 0; 9862 } else if (!t1sz && ttbr1_valid) { 9863 /* ttbr1 region is "everything not in the ttbr0 region" */ 9864 ttbr_select = 1; 9865 } else { 9866 /* in the gap between the two regions, this is a Translation fault */ 9867 fault_type = ARMFault_Translation; 9868 goto do_fault; 9869 } 9870 9871 /* Note that QEMU ignores shareability and cacheability attributes, 9872 * so we don't need to do anything with the SH, ORGN, IRGN fields 9873 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9874 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9875 * implement any ASID-like capability so we can ignore it (instead 9876 * we will always flush the TLB any time the ASID is changed). 9877 */ 9878 if (ttbr_select == 0) { 9879 ttbr = regime_ttbr(env, mmu_idx, 0); 9880 if (el < 2) { 9881 epd = extract32(tcr->raw_tcr, 7, 1); 9882 } 9883 inputsize = addrsize - t0sz; 9884 9885 tg = extract32(tcr->raw_tcr, 14, 2); 9886 if (tg == 1) { /* 64KB pages */ 9887 stride = 13; 9888 } 9889 if (tg == 2) { /* 16KB pages */ 9890 stride = 11; 9891 } 9892 if (aarch64 && el > 1) { 9893 hpd = extract64(tcr->raw_tcr, 24, 1); 9894 } else { 9895 hpd = extract64(tcr->raw_tcr, 41, 1); 9896 } 9897 if (!aarch64) { 9898 /* For aarch32, hpd0 is not enabled without t2e as well. */ 9899 hpd &= extract64(tcr->raw_tcr, 6, 1); 9900 } 9901 } else { 9902 /* We should only be here if TTBR1 is valid */ 9903 assert(ttbr1_valid); 9904 9905 ttbr = regime_ttbr(env, mmu_idx, 1); 9906 epd = extract32(tcr->raw_tcr, 23, 1); 9907 inputsize = addrsize - t1sz; 9908 9909 tg = extract32(tcr->raw_tcr, 30, 2); 9910 if (tg == 3) { /* 64KB pages */ 9911 stride = 13; 9912 } 9913 if (tg == 1) { /* 16KB pages */ 9914 stride = 11; 9915 } 9916 hpd = extract64(tcr->raw_tcr, 42, 1); 9917 if (!aarch64) { 9918 /* For aarch32, hpd1 is not enabled without t2e as well. */ 9919 hpd &= extract64(tcr->raw_tcr, 6, 1); 9920 } 9921 } 9922 9923 /* Here we should have set up all the parameters for the translation: 9924 * inputsize, ttbr, epd, stride, tbi 9925 */ 9926 9927 if (epd) { 9928 /* Translation table walk disabled => Translation fault on TLB miss 9929 * Note: This is always 0 on 64-bit EL2 and EL3. 9930 */ 9931 goto do_fault; 9932 } 9933 9934 if (mmu_idx != ARMMMUIdx_S2NS) { 9935 /* The starting level depends on the virtual address size (which can 9936 * be up to 48 bits) and the translation granule size. It indicates 9937 * the number of strides (stride bits at a time) needed to 9938 * consume the bits of the input address. In the pseudocode this is: 9939 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9940 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9941 * our 'stride + 3' and 'stride' is our 'stride'. 9942 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9943 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9944 * = 4 - (inputsize - 4) / stride; 9945 */ 9946 level = 4 - (inputsize - 4) / stride; 9947 } else { 9948 /* For stage 2 translations the starting level is specified by the 9949 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9950 */ 9951 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9952 uint32_t startlevel; 9953 bool ok; 9954 9955 if (!aarch64 || stride == 9) { 9956 /* AArch32 or 4KB pages */ 9957 startlevel = 2 - sl0; 9958 } else { 9959 /* 16KB or 64KB pages */ 9960 startlevel = 3 - sl0; 9961 } 9962 9963 /* Check that the starting level is valid. */ 9964 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9965 inputsize, stride); 9966 if (!ok) { 9967 fault_type = ARMFault_Translation; 9968 goto do_fault; 9969 } 9970 level = startlevel; 9971 } 9972 9973 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9974 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9975 9976 /* Now we can extract the actual base address from the TTBR */ 9977 descaddr = extract64(ttbr, 0, 48); 9978 descaddr &= ~indexmask; 9979 9980 /* The address field in the descriptor goes up to bit 39 for ARMv7 9981 * but up to bit 47 for ARMv8, but we use the descaddrmask 9982 * up to bit 39 for AArch32, because we don't need other bits in that case 9983 * to construct next descriptor address (anyway they should be all zeroes). 9984 */ 9985 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9986 ~indexmask_grainsize; 9987 9988 /* Secure accesses start with the page table in secure memory and 9989 * can be downgraded to non-secure at any step. Non-secure accesses 9990 * remain non-secure. We implement this by just ORing in the NSTable/NS 9991 * bits at each step. 9992 */ 9993 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9994 for (;;) { 9995 uint64_t descriptor; 9996 bool nstable; 9997 9998 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9999 descaddr &= ~7ULL; 10000 nstable = extract32(tableattrs, 4, 1); 10001 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 10002 if (fi->type != ARMFault_None) { 10003 goto do_fault; 10004 } 10005 10006 if (!(descriptor & 1) || 10007 (!(descriptor & 2) && (level == 3))) { 10008 /* Invalid, or the Reserved level 3 encoding */ 10009 goto do_fault; 10010 } 10011 descaddr = descriptor & descaddrmask; 10012 10013 if ((descriptor & 2) && (level < 3)) { 10014 /* Table entry. The top five bits are attributes which may 10015 * propagate down through lower levels of the table (and 10016 * which are all arranged so that 0 means "no effect", so 10017 * we can gather them up by ORing in the bits at each level). 10018 */ 10019 tableattrs |= extract64(descriptor, 59, 5); 10020 level++; 10021 indexmask = indexmask_grainsize; 10022 continue; 10023 } 10024 /* Block entry at level 1 or 2, or page entry at level 3. 10025 * These are basically the same thing, although the number 10026 * of bits we pull in from the vaddr varies. 10027 */ 10028 page_size = (1ULL << ((stride * (4 - level)) + 3)); 10029 descaddr |= (address & (page_size - 1)); 10030 /* Extract attributes from the descriptor */ 10031 attrs = extract64(descriptor, 2, 10) 10032 | (extract64(descriptor, 52, 12) << 10); 10033 10034 if (mmu_idx == ARMMMUIdx_S2NS) { 10035 /* Stage 2 table descriptors do not include any attribute fields */ 10036 break; 10037 } 10038 /* Merge in attributes from table descriptors */ 10039 attrs |= nstable << 3; /* NS */ 10040 if (hpd) { 10041 /* HPD disables all the table attributes except NSTable. */ 10042 break; 10043 } 10044 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 10045 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 10046 * means "force PL1 access only", which means forcing AP[1] to 0. 10047 */ 10048 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 10049 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 10050 break; 10051 } 10052 /* Here descaddr is the final physical address, and attributes 10053 * are all in attrs. 10054 */ 10055 fault_type = ARMFault_AccessFlag; 10056 if ((attrs & (1 << 8)) == 0) { 10057 /* Access flag */ 10058 goto do_fault; 10059 } 10060 10061 ap = extract32(attrs, 4, 2); 10062 xn = extract32(attrs, 12, 1); 10063 10064 if (mmu_idx == ARMMMUIdx_S2NS) { 10065 ns = true; 10066 *prot = get_S2prot(env, ap, xn); 10067 } else { 10068 ns = extract32(attrs, 3, 1); 10069 pxn = extract32(attrs, 11, 1); 10070 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 10071 } 10072 10073 fault_type = ARMFault_Permission; 10074 if (!(*prot & (1 << access_type))) { 10075 goto do_fault; 10076 } 10077 10078 if (ns) { 10079 /* The NS bit will (as required by the architecture) have no effect if 10080 * the CPU doesn't support TZ or this is a non-secure translation 10081 * regime, because the attribute will already be non-secure. 10082 */ 10083 txattrs->secure = false; 10084 } 10085 10086 if (cacheattrs != NULL) { 10087 if (mmu_idx == ARMMMUIdx_S2NS) { 10088 cacheattrs->attrs = convert_stage2_attrs(env, 10089 extract32(attrs, 0, 4)); 10090 } else { 10091 /* Index into MAIR registers for cache attributes */ 10092 uint8_t attrindx = extract32(attrs, 0, 3); 10093 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 10094 assert(attrindx <= 7); 10095 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 10096 } 10097 cacheattrs->shareability = extract32(attrs, 6, 2); 10098 } 10099 10100 *phys_ptr = descaddr; 10101 *page_size_ptr = page_size; 10102 return false; 10103 10104 do_fault: 10105 fi->type = fault_type; 10106 fi->level = level; 10107 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 10108 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 10109 return true; 10110 } 10111 10112 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 10113 ARMMMUIdx mmu_idx, 10114 int32_t address, int *prot) 10115 { 10116 if (!arm_feature(env, ARM_FEATURE_M)) { 10117 *prot = PAGE_READ | PAGE_WRITE; 10118 switch (address) { 10119 case 0xF0000000 ... 0xFFFFFFFF: 10120 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 10121 /* hivecs execing is ok */ 10122 *prot |= PAGE_EXEC; 10123 } 10124 break; 10125 case 0x00000000 ... 0x7FFFFFFF: 10126 *prot |= PAGE_EXEC; 10127 break; 10128 } 10129 } else { 10130 /* Default system address map for M profile cores. 10131 * The architecture specifies which regions are execute-never; 10132 * at the MPU level no other checks are defined. 10133 */ 10134 switch (address) { 10135 case 0x00000000 ... 0x1fffffff: /* ROM */ 10136 case 0x20000000 ... 0x3fffffff: /* SRAM */ 10137 case 0x60000000 ... 0x7fffffff: /* RAM */ 10138 case 0x80000000 ... 0x9fffffff: /* RAM */ 10139 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10140 break; 10141 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 10142 case 0xa0000000 ... 0xbfffffff: /* Device */ 10143 case 0xc0000000 ... 0xdfffffff: /* Device */ 10144 case 0xe0000000 ... 0xffffffff: /* System */ 10145 *prot = PAGE_READ | PAGE_WRITE; 10146 break; 10147 default: 10148 g_assert_not_reached(); 10149 } 10150 } 10151 } 10152 10153 static bool pmsav7_use_background_region(ARMCPU *cpu, 10154 ARMMMUIdx mmu_idx, bool is_user) 10155 { 10156 /* Return true if we should use the default memory map as a 10157 * "background" region if there are no hits against any MPU regions. 10158 */ 10159 CPUARMState *env = &cpu->env; 10160 10161 if (is_user) { 10162 return false; 10163 } 10164 10165 if (arm_feature(env, ARM_FEATURE_M)) { 10166 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 10167 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 10168 } else { 10169 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 10170 } 10171 } 10172 10173 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 10174 { 10175 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 10176 return arm_feature(env, ARM_FEATURE_M) && 10177 extract32(address, 20, 12) == 0xe00; 10178 } 10179 10180 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 10181 { 10182 /* True if address is in the M profile system region 10183 * 0xe0000000 - 0xffffffff 10184 */ 10185 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 10186 } 10187 10188 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 10189 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10190 hwaddr *phys_ptr, int *prot, 10191 target_ulong *page_size, 10192 ARMMMUFaultInfo *fi) 10193 { 10194 ARMCPU *cpu = arm_env_get_cpu(env); 10195 int n; 10196 bool is_user = regime_is_user(env, mmu_idx); 10197 10198 *phys_ptr = address; 10199 *page_size = TARGET_PAGE_SIZE; 10200 *prot = 0; 10201 10202 if (regime_translation_disabled(env, mmu_idx) || 10203 m_is_ppb_region(env, address)) { 10204 /* MPU disabled or M profile PPB access: use default memory map. 10205 * The other case which uses the default memory map in the 10206 * v7M ARM ARM pseudocode is exception vector reads from the vector 10207 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 10208 * which always does a direct read using address_space_ldl(), rather 10209 * than going via this function, so we don't need to check that here. 10210 */ 10211 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10212 } else { /* MPU enabled */ 10213 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10214 /* region search */ 10215 uint32_t base = env->pmsav7.drbar[n]; 10216 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 10217 uint32_t rmask; 10218 bool srdis = false; 10219 10220 if (!(env->pmsav7.drsr[n] & 0x1)) { 10221 continue; 10222 } 10223 10224 if (!rsize) { 10225 qemu_log_mask(LOG_GUEST_ERROR, 10226 "DRSR[%d]: Rsize field cannot be 0\n", n); 10227 continue; 10228 } 10229 rsize++; 10230 rmask = (1ull << rsize) - 1; 10231 10232 if (base & rmask) { 10233 qemu_log_mask(LOG_GUEST_ERROR, 10234 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 10235 "to DRSR region size, mask = 0x%" PRIx32 "\n", 10236 n, base, rmask); 10237 continue; 10238 } 10239 10240 if (address < base || address > base + rmask) { 10241 /* 10242 * Address not in this region. We must check whether the 10243 * region covers addresses in the same page as our address. 10244 * In that case we must not report a size that covers the 10245 * whole page for a subsequent hit against a different MPU 10246 * region or the background region, because it would result in 10247 * incorrect TLB hits for subsequent accesses to addresses that 10248 * are in this MPU region. 10249 */ 10250 if (ranges_overlap(base, rmask, 10251 address & TARGET_PAGE_MASK, 10252 TARGET_PAGE_SIZE)) { 10253 *page_size = 1; 10254 } 10255 continue; 10256 } 10257 10258 /* Region matched */ 10259 10260 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 10261 int i, snd; 10262 uint32_t srdis_mask; 10263 10264 rsize -= 3; /* sub region size (power of 2) */ 10265 snd = ((address - base) >> rsize) & 0x7; 10266 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 10267 10268 srdis_mask = srdis ? 0x3 : 0x0; 10269 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 10270 /* This will check in groups of 2, 4 and then 8, whether 10271 * the subregion bits are consistent. rsize is incremented 10272 * back up to give the region size, considering consistent 10273 * adjacent subregions as one region. Stop testing if rsize 10274 * is already big enough for an entire QEMU page. 10275 */ 10276 int snd_rounded = snd & ~(i - 1); 10277 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 10278 snd_rounded + 8, i); 10279 if (srdis_mask ^ srdis_multi) { 10280 break; 10281 } 10282 srdis_mask = (srdis_mask << i) | srdis_mask; 10283 rsize++; 10284 } 10285 } 10286 if (srdis) { 10287 continue; 10288 } 10289 if (rsize < TARGET_PAGE_BITS) { 10290 *page_size = 1 << rsize; 10291 } 10292 break; 10293 } 10294 10295 if (n == -1) { /* no hits */ 10296 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10297 /* background fault */ 10298 fi->type = ARMFault_Background; 10299 return true; 10300 } 10301 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10302 } else { /* a MPU hit! */ 10303 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 10304 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 10305 10306 if (m_is_system_region(env, address)) { 10307 /* System space is always execute never */ 10308 xn = 1; 10309 } 10310 10311 if (is_user) { /* User mode AP bit decoding */ 10312 switch (ap) { 10313 case 0: 10314 case 1: 10315 case 5: 10316 break; /* no access */ 10317 case 3: 10318 *prot |= PAGE_WRITE; 10319 /* fall through */ 10320 case 2: 10321 case 6: 10322 *prot |= PAGE_READ | PAGE_EXEC; 10323 break; 10324 case 7: 10325 /* for v7M, same as 6; for R profile a reserved value */ 10326 if (arm_feature(env, ARM_FEATURE_M)) { 10327 *prot |= PAGE_READ | PAGE_EXEC; 10328 break; 10329 } 10330 /* fall through */ 10331 default: 10332 qemu_log_mask(LOG_GUEST_ERROR, 10333 "DRACR[%d]: Bad value for AP bits: 0x%" 10334 PRIx32 "\n", n, ap); 10335 } 10336 } else { /* Priv. mode AP bits decoding */ 10337 switch (ap) { 10338 case 0: 10339 break; /* no access */ 10340 case 1: 10341 case 2: 10342 case 3: 10343 *prot |= PAGE_WRITE; 10344 /* fall through */ 10345 case 5: 10346 case 6: 10347 *prot |= PAGE_READ | PAGE_EXEC; 10348 break; 10349 case 7: 10350 /* for v7M, same as 6; for R profile a reserved value */ 10351 if (arm_feature(env, ARM_FEATURE_M)) { 10352 *prot |= PAGE_READ | PAGE_EXEC; 10353 break; 10354 } 10355 /* fall through */ 10356 default: 10357 qemu_log_mask(LOG_GUEST_ERROR, 10358 "DRACR[%d]: Bad value for AP bits: 0x%" 10359 PRIx32 "\n", n, ap); 10360 } 10361 } 10362 10363 /* execute never */ 10364 if (xn) { 10365 *prot &= ~PAGE_EXEC; 10366 } 10367 } 10368 } 10369 10370 fi->type = ARMFault_Permission; 10371 fi->level = 1; 10372 return !(*prot & (1 << access_type)); 10373 } 10374 10375 static bool v8m_is_sau_exempt(CPUARMState *env, 10376 uint32_t address, MMUAccessType access_type) 10377 { 10378 /* The architecture specifies that certain address ranges are 10379 * exempt from v8M SAU/IDAU checks. 10380 */ 10381 return 10382 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 10383 (address >= 0xe0000000 && address <= 0xe0002fff) || 10384 (address >= 0xe000e000 && address <= 0xe000efff) || 10385 (address >= 0xe002e000 && address <= 0xe002efff) || 10386 (address >= 0xe0040000 && address <= 0xe0041fff) || 10387 (address >= 0xe00ff000 && address <= 0xe00fffff); 10388 } 10389 10390 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 10391 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10392 V8M_SAttributes *sattrs) 10393 { 10394 /* Look up the security attributes for this address. Compare the 10395 * pseudocode SecurityCheck() function. 10396 * We assume the caller has zero-initialized *sattrs. 10397 */ 10398 ARMCPU *cpu = arm_env_get_cpu(env); 10399 int r; 10400 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 10401 int idau_region = IREGION_NOTVALID; 10402 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10403 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10404 10405 if (cpu->idau) { 10406 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 10407 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 10408 10409 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 10410 &idau_nsc); 10411 } 10412 10413 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 10414 /* 0xf0000000..0xffffffff is always S for insn fetches */ 10415 return; 10416 } 10417 10418 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 10419 sattrs->ns = !regime_is_secure(env, mmu_idx); 10420 return; 10421 } 10422 10423 if (idau_region != IREGION_NOTVALID) { 10424 sattrs->irvalid = true; 10425 sattrs->iregion = idau_region; 10426 } 10427 10428 switch (env->sau.ctrl & 3) { 10429 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 10430 break; 10431 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 10432 sattrs->ns = true; 10433 break; 10434 default: /* SAU.ENABLE == 1 */ 10435 for (r = 0; r < cpu->sau_sregion; r++) { 10436 if (env->sau.rlar[r] & 1) { 10437 uint32_t base = env->sau.rbar[r] & ~0x1f; 10438 uint32_t limit = env->sau.rlar[r] | 0x1f; 10439 10440 if (base <= address && limit >= address) { 10441 if (base > addr_page_base || limit < addr_page_limit) { 10442 sattrs->subpage = true; 10443 } 10444 if (sattrs->srvalid) { 10445 /* If we hit in more than one region then we must report 10446 * as Secure, not NS-Callable, with no valid region 10447 * number info. 10448 */ 10449 sattrs->ns = false; 10450 sattrs->nsc = false; 10451 sattrs->sregion = 0; 10452 sattrs->srvalid = false; 10453 break; 10454 } else { 10455 if (env->sau.rlar[r] & 2) { 10456 sattrs->nsc = true; 10457 } else { 10458 sattrs->ns = true; 10459 } 10460 sattrs->srvalid = true; 10461 sattrs->sregion = r; 10462 } 10463 } else { 10464 /* 10465 * Address not in this region. We must check whether the 10466 * region covers addresses in the same page as our address. 10467 * In that case we must not report a size that covers the 10468 * whole page for a subsequent hit against a different MPU 10469 * region or the background region, because it would result 10470 * in incorrect TLB hits for subsequent accesses to 10471 * addresses that are in this MPU region. 10472 */ 10473 if (limit >= base && 10474 ranges_overlap(base, limit - base + 1, 10475 addr_page_base, 10476 TARGET_PAGE_SIZE)) { 10477 sattrs->subpage = true; 10478 } 10479 } 10480 } 10481 } 10482 10483 /* The IDAU will override the SAU lookup results if it specifies 10484 * higher security than the SAU does. 10485 */ 10486 if (!idau_ns) { 10487 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 10488 sattrs->ns = false; 10489 sattrs->nsc = idau_nsc; 10490 } 10491 } 10492 break; 10493 } 10494 } 10495 10496 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 10497 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10498 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10499 int *prot, bool *is_subpage, 10500 ARMMMUFaultInfo *fi, uint32_t *mregion) 10501 { 10502 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 10503 * that a full phys-to-virt translation does). 10504 * mregion is (if not NULL) set to the region number which matched, 10505 * or -1 if no region number is returned (MPU off, address did not 10506 * hit a region, address hit in multiple regions). 10507 * We set is_subpage to true if the region hit doesn't cover the 10508 * entire TARGET_PAGE the address is within. 10509 */ 10510 ARMCPU *cpu = arm_env_get_cpu(env); 10511 bool is_user = regime_is_user(env, mmu_idx); 10512 uint32_t secure = regime_is_secure(env, mmu_idx); 10513 int n; 10514 int matchregion = -1; 10515 bool hit = false; 10516 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 10517 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 10518 10519 *is_subpage = false; 10520 *phys_ptr = address; 10521 *prot = 0; 10522 if (mregion) { 10523 *mregion = -1; 10524 } 10525 10526 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 10527 * was an exception vector read from the vector table (which is always 10528 * done using the default system address map), because those accesses 10529 * are done in arm_v7m_load_vector(), which always does a direct 10530 * read using address_space_ldl(), rather than going via this function. 10531 */ 10532 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 10533 hit = true; 10534 } else if (m_is_ppb_region(env, address)) { 10535 hit = true; 10536 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 10537 hit = true; 10538 } else { 10539 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 10540 /* region search */ 10541 /* Note that the base address is bits [31:5] from the register 10542 * with bits [4:0] all zeroes, but the limit address is bits 10543 * [31:5] from the register with bits [4:0] all ones. 10544 */ 10545 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 10546 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 10547 10548 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 10549 /* Region disabled */ 10550 continue; 10551 } 10552 10553 if (address < base || address > limit) { 10554 /* 10555 * Address not in this region. We must check whether the 10556 * region covers addresses in the same page as our address. 10557 * In that case we must not report a size that covers the 10558 * whole page for a subsequent hit against a different MPU 10559 * region or the background region, because it would result in 10560 * incorrect TLB hits for subsequent accesses to addresses that 10561 * are in this MPU region. 10562 */ 10563 if (limit >= base && 10564 ranges_overlap(base, limit - base + 1, 10565 addr_page_base, 10566 TARGET_PAGE_SIZE)) { 10567 *is_subpage = true; 10568 } 10569 continue; 10570 } 10571 10572 if (base > addr_page_base || limit < addr_page_limit) { 10573 *is_subpage = true; 10574 } 10575 10576 if (hit) { 10577 /* Multiple regions match -- always a failure (unlike 10578 * PMSAv7 where highest-numbered-region wins) 10579 */ 10580 fi->type = ARMFault_Permission; 10581 fi->level = 1; 10582 return true; 10583 } 10584 10585 matchregion = n; 10586 hit = true; 10587 } 10588 } 10589 10590 if (!hit) { 10591 /* background fault */ 10592 fi->type = ARMFault_Background; 10593 return true; 10594 } 10595 10596 if (matchregion == -1) { 10597 /* hit using the background region */ 10598 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 10599 } else { 10600 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 10601 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 10602 10603 if (m_is_system_region(env, address)) { 10604 /* System space is always execute never */ 10605 xn = 1; 10606 } 10607 10608 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 10609 if (*prot && !xn) { 10610 *prot |= PAGE_EXEC; 10611 } 10612 /* We don't need to look the attribute up in the MAIR0/MAIR1 10613 * registers because that only tells us about cacheability. 10614 */ 10615 if (mregion) { 10616 *mregion = matchregion; 10617 } 10618 } 10619 10620 fi->type = ARMFault_Permission; 10621 fi->level = 1; 10622 return !(*prot & (1 << access_type)); 10623 } 10624 10625 10626 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 10627 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10628 hwaddr *phys_ptr, MemTxAttrs *txattrs, 10629 int *prot, target_ulong *page_size, 10630 ARMMMUFaultInfo *fi) 10631 { 10632 uint32_t secure = regime_is_secure(env, mmu_idx); 10633 V8M_SAttributes sattrs = {}; 10634 bool ret; 10635 bool mpu_is_subpage; 10636 10637 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10638 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 10639 if (access_type == MMU_INST_FETCH) { 10640 /* Instruction fetches always use the MMU bank and the 10641 * transaction attribute determined by the fetch address, 10642 * regardless of CPU state. This is painful for QEMU 10643 * to handle, because it would mean we need to encode 10644 * into the mmu_idx not just the (user, negpri) information 10645 * for the current security state but also that for the 10646 * other security state, which would balloon the number 10647 * of mmu_idx values needed alarmingly. 10648 * Fortunately we can avoid this because it's not actually 10649 * possible to arbitrarily execute code from memory with 10650 * the wrong security attribute: it will always generate 10651 * an exception of some kind or another, apart from the 10652 * special case of an NS CPU executing an SG instruction 10653 * in S&NSC memory. So we always just fail the translation 10654 * here and sort things out in the exception handler 10655 * (including possibly emulating an SG instruction). 10656 */ 10657 if (sattrs.ns != !secure) { 10658 if (sattrs.nsc) { 10659 fi->type = ARMFault_QEMU_NSCExec; 10660 } else { 10661 fi->type = ARMFault_QEMU_SFault; 10662 } 10663 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10664 *phys_ptr = address; 10665 *prot = 0; 10666 return true; 10667 } 10668 } else { 10669 /* For data accesses we always use the MMU bank indicated 10670 * by the current CPU state, but the security attributes 10671 * might downgrade a secure access to nonsecure. 10672 */ 10673 if (sattrs.ns) { 10674 txattrs->secure = false; 10675 } else if (!secure) { 10676 /* NS access to S memory must fault. 10677 * Architecturally we should first check whether the 10678 * MPU information for this address indicates that we 10679 * are doing an unaligned access to Device memory, which 10680 * should generate a UsageFault instead. QEMU does not 10681 * currently check for that kind of unaligned access though. 10682 * If we added it we would need to do so as a special case 10683 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10684 */ 10685 fi->type = ARMFault_QEMU_SFault; 10686 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 10687 *phys_ptr = address; 10688 *prot = 0; 10689 return true; 10690 } 10691 } 10692 } 10693 10694 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10695 txattrs, prot, &mpu_is_subpage, fi, NULL); 10696 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 10697 return ret; 10698 } 10699 10700 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10701 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10702 hwaddr *phys_ptr, int *prot, 10703 ARMMMUFaultInfo *fi) 10704 { 10705 int n; 10706 uint32_t mask; 10707 uint32_t base; 10708 bool is_user = regime_is_user(env, mmu_idx); 10709 10710 if (regime_translation_disabled(env, mmu_idx)) { 10711 /* MPU disabled. */ 10712 *phys_ptr = address; 10713 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10714 return false; 10715 } 10716 10717 *phys_ptr = address; 10718 for (n = 7; n >= 0; n--) { 10719 base = env->cp15.c6_region[n]; 10720 if ((base & 1) == 0) { 10721 continue; 10722 } 10723 mask = 1 << ((base >> 1) & 0x1f); 10724 /* Keep this shift separate from the above to avoid an 10725 (undefined) << 32. */ 10726 mask = (mask << 1) - 1; 10727 if (((base ^ address) & ~mask) == 0) { 10728 break; 10729 } 10730 } 10731 if (n < 0) { 10732 fi->type = ARMFault_Background; 10733 return true; 10734 } 10735 10736 if (access_type == MMU_INST_FETCH) { 10737 mask = env->cp15.pmsav5_insn_ap; 10738 } else { 10739 mask = env->cp15.pmsav5_data_ap; 10740 } 10741 mask = (mask >> (n * 4)) & 0xf; 10742 switch (mask) { 10743 case 0: 10744 fi->type = ARMFault_Permission; 10745 fi->level = 1; 10746 return true; 10747 case 1: 10748 if (is_user) { 10749 fi->type = ARMFault_Permission; 10750 fi->level = 1; 10751 return true; 10752 } 10753 *prot = PAGE_READ | PAGE_WRITE; 10754 break; 10755 case 2: 10756 *prot = PAGE_READ; 10757 if (!is_user) { 10758 *prot |= PAGE_WRITE; 10759 } 10760 break; 10761 case 3: 10762 *prot = PAGE_READ | PAGE_WRITE; 10763 break; 10764 case 5: 10765 if (is_user) { 10766 fi->type = ARMFault_Permission; 10767 fi->level = 1; 10768 return true; 10769 } 10770 *prot = PAGE_READ; 10771 break; 10772 case 6: 10773 *prot = PAGE_READ; 10774 break; 10775 default: 10776 /* Bad permission. */ 10777 fi->type = ARMFault_Permission; 10778 fi->level = 1; 10779 return true; 10780 } 10781 *prot |= PAGE_EXEC; 10782 return false; 10783 } 10784 10785 /* Combine either inner or outer cacheability attributes for normal 10786 * memory, according to table D4-42 and pseudocode procedure 10787 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10788 * 10789 * NB: only stage 1 includes allocation hints (RW bits), leading to 10790 * some asymmetry. 10791 */ 10792 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10793 { 10794 if (s1 == 4 || s2 == 4) { 10795 /* non-cacheable has precedence */ 10796 return 4; 10797 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10798 /* stage 1 write-through takes precedence */ 10799 return s1; 10800 } else if (extract32(s2, 2, 2) == 2) { 10801 /* stage 2 write-through takes precedence, but the allocation hint 10802 * is still taken from stage 1 10803 */ 10804 return (2 << 2) | extract32(s1, 0, 2); 10805 } else { /* write-back */ 10806 return s1; 10807 } 10808 } 10809 10810 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10811 * and CombineS1S2Desc() 10812 * 10813 * @s1: Attributes from stage 1 walk 10814 * @s2: Attributes from stage 2 walk 10815 */ 10816 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10817 { 10818 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10819 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10820 ARMCacheAttrs ret; 10821 10822 /* Combine shareability attributes (table D4-43) */ 10823 if (s1.shareability == 2 || s2.shareability == 2) { 10824 /* if either are outer-shareable, the result is outer-shareable */ 10825 ret.shareability = 2; 10826 } else if (s1.shareability == 3 || s2.shareability == 3) { 10827 /* if either are inner-shareable, the result is inner-shareable */ 10828 ret.shareability = 3; 10829 } else { 10830 /* both non-shareable */ 10831 ret.shareability = 0; 10832 } 10833 10834 /* Combine memory type and cacheability attributes */ 10835 if (s1hi == 0 || s2hi == 0) { 10836 /* Device has precedence over normal */ 10837 if (s1lo == 0 || s2lo == 0) { 10838 /* nGnRnE has precedence over anything */ 10839 ret.attrs = 0; 10840 } else if (s1lo == 4 || s2lo == 4) { 10841 /* non-Reordering has precedence over Reordering */ 10842 ret.attrs = 4; /* nGnRE */ 10843 } else if (s1lo == 8 || s2lo == 8) { 10844 /* non-Gathering has precedence over Gathering */ 10845 ret.attrs = 8; /* nGRE */ 10846 } else { 10847 ret.attrs = 0xc; /* GRE */ 10848 } 10849 10850 /* Any location for which the resultant memory type is any 10851 * type of Device memory is always treated as Outer Shareable. 10852 */ 10853 ret.shareability = 2; 10854 } else { /* Normal memory */ 10855 /* Outer/inner cacheability combine independently */ 10856 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10857 | combine_cacheattr_nibble(s1lo, s2lo); 10858 10859 if (ret.attrs == 0x44) { 10860 /* Any location for which the resultant memory type is Normal 10861 * Inner Non-cacheable, Outer Non-cacheable is always treated 10862 * as Outer Shareable. 10863 */ 10864 ret.shareability = 2; 10865 } 10866 } 10867 10868 return ret; 10869 } 10870 10871 10872 /* get_phys_addr - get the physical address for this virtual address 10873 * 10874 * Find the physical address corresponding to the given virtual address, 10875 * by doing a translation table walk on MMU based systems or using the 10876 * MPU state on MPU based systems. 10877 * 10878 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10879 * prot and page_size may not be filled in, and the populated fsr value provides 10880 * information on why the translation aborted, in the format of a 10881 * DFSR/IFSR fault register, with the following caveats: 10882 * * we honour the short vs long DFSR format differences. 10883 * * the WnR bit is never set (the caller must do this). 10884 * * for PSMAv5 based systems we don't bother to return a full FSR format 10885 * value. 10886 * 10887 * @env: CPUARMState 10888 * @address: virtual address to get physical address for 10889 * @access_type: 0 for read, 1 for write, 2 for execute 10890 * @mmu_idx: MMU index indicating required translation regime 10891 * @phys_ptr: set to the physical address corresponding to the virtual address 10892 * @attrs: set to the memory transaction attributes to use 10893 * @prot: set to the permissions for the page containing phys_ptr 10894 * @page_size: set to the size of the page containing phys_ptr 10895 * @fi: set to fault info if the translation fails 10896 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10897 */ 10898 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10899 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10900 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10901 target_ulong *page_size, 10902 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10903 { 10904 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10905 /* Call ourselves recursively to do the stage 1 and then stage 2 10906 * translations. 10907 */ 10908 if (arm_feature(env, ARM_FEATURE_EL2)) { 10909 hwaddr ipa; 10910 int s2_prot; 10911 int ret; 10912 ARMCacheAttrs cacheattrs2 = {}; 10913 10914 ret = get_phys_addr(env, address, access_type, 10915 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10916 prot, page_size, fi, cacheattrs); 10917 10918 /* If S1 fails or S2 is disabled, return early. */ 10919 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10920 *phys_ptr = ipa; 10921 return ret; 10922 } 10923 10924 /* S1 is done. Now do S2 translation. */ 10925 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10926 phys_ptr, attrs, &s2_prot, 10927 page_size, fi, 10928 cacheattrs != NULL ? &cacheattrs2 : NULL); 10929 fi->s2addr = ipa; 10930 /* Combine the S1 and S2 perms. */ 10931 *prot &= s2_prot; 10932 10933 /* Combine the S1 and S2 cache attributes, if needed */ 10934 if (!ret && cacheattrs != NULL) { 10935 if (env->cp15.hcr_el2 & HCR_DC) { 10936 /* 10937 * HCR.DC forces the first stage attributes to 10938 * Normal Non-Shareable, 10939 * Inner Write-Back Read-Allocate Write-Allocate, 10940 * Outer Write-Back Read-Allocate Write-Allocate. 10941 */ 10942 cacheattrs->attrs = 0xff; 10943 cacheattrs->shareability = 0; 10944 } 10945 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10946 } 10947 10948 return ret; 10949 } else { 10950 /* 10951 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10952 */ 10953 mmu_idx = stage_1_mmu_idx(mmu_idx); 10954 } 10955 } 10956 10957 /* The page table entries may downgrade secure to non-secure, but 10958 * cannot upgrade an non-secure translation regime's attributes 10959 * to secure. 10960 */ 10961 attrs->secure = regime_is_secure(env, mmu_idx); 10962 attrs->user = regime_is_user(env, mmu_idx); 10963 10964 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10965 * In v7 and earlier it affects all stage 1 translations. 10966 */ 10967 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10968 && !arm_feature(env, ARM_FEATURE_V8)) { 10969 if (regime_el(env, mmu_idx) == 3) { 10970 address += env->cp15.fcseidr_s; 10971 } else { 10972 address += env->cp15.fcseidr_ns; 10973 } 10974 } 10975 10976 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10977 bool ret; 10978 *page_size = TARGET_PAGE_SIZE; 10979 10980 if (arm_feature(env, ARM_FEATURE_V8)) { 10981 /* PMSAv8 */ 10982 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10983 phys_ptr, attrs, prot, page_size, fi); 10984 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10985 /* PMSAv7 */ 10986 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10987 phys_ptr, prot, page_size, fi); 10988 } else { 10989 /* Pre-v7 MPU */ 10990 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10991 phys_ptr, prot, fi); 10992 } 10993 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10994 " mmu_idx %u -> %s (prot %c%c%c)\n", 10995 access_type == MMU_DATA_LOAD ? "reading" : 10996 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10997 (uint32_t)address, mmu_idx, 10998 ret ? "Miss" : "Hit", 10999 *prot & PAGE_READ ? 'r' : '-', 11000 *prot & PAGE_WRITE ? 'w' : '-', 11001 *prot & PAGE_EXEC ? 'x' : '-'); 11002 11003 return ret; 11004 } 11005 11006 /* Definitely a real MMU, not an MPU */ 11007 11008 if (regime_translation_disabled(env, mmu_idx)) { 11009 /* MMU disabled. */ 11010 *phys_ptr = address; 11011 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11012 *page_size = TARGET_PAGE_SIZE; 11013 return 0; 11014 } 11015 11016 if (regime_using_lpae_format(env, mmu_idx)) { 11017 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 11018 phys_ptr, attrs, prot, page_size, 11019 fi, cacheattrs); 11020 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 11021 return get_phys_addr_v6(env, address, access_type, mmu_idx, 11022 phys_ptr, attrs, prot, page_size, fi); 11023 } else { 11024 return get_phys_addr_v5(env, address, access_type, mmu_idx, 11025 phys_ptr, prot, page_size, fi); 11026 } 11027 } 11028 11029 /* Walk the page table and (if the mapping exists) add the page 11030 * to the TLB. Return false on success, or true on failure. Populate 11031 * fsr with ARM DFSR/IFSR fault register format value on failure. 11032 */ 11033 bool arm_tlb_fill(CPUState *cs, vaddr address, 11034 MMUAccessType access_type, int mmu_idx, 11035 ARMMMUFaultInfo *fi) 11036 { 11037 ARMCPU *cpu = ARM_CPU(cs); 11038 CPUARMState *env = &cpu->env; 11039 hwaddr phys_addr; 11040 target_ulong page_size; 11041 int prot; 11042 int ret; 11043 MemTxAttrs attrs = {}; 11044 11045 ret = get_phys_addr(env, address, access_type, 11046 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 11047 &attrs, &prot, &page_size, fi, NULL); 11048 if (!ret) { 11049 /* 11050 * Map a single [sub]page. Regions smaller than our declared 11051 * target page size are handled specially, so for those we 11052 * pass in the exact addresses. 11053 */ 11054 if (page_size >= TARGET_PAGE_SIZE) { 11055 phys_addr &= TARGET_PAGE_MASK; 11056 address &= TARGET_PAGE_MASK; 11057 } 11058 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 11059 prot, mmu_idx, page_size); 11060 return 0; 11061 } 11062 11063 return ret; 11064 } 11065 11066 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 11067 MemTxAttrs *attrs) 11068 { 11069 ARMCPU *cpu = ARM_CPU(cs); 11070 CPUARMState *env = &cpu->env; 11071 hwaddr phys_addr; 11072 target_ulong page_size; 11073 int prot; 11074 bool ret; 11075 ARMMMUFaultInfo fi = {}; 11076 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 11077 11078 *attrs = (MemTxAttrs) {}; 11079 11080 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 11081 attrs, &prot, &page_size, &fi, NULL); 11082 11083 if (ret) { 11084 return -1; 11085 } 11086 return phys_addr; 11087 } 11088 11089 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 11090 { 11091 uint32_t mask; 11092 unsigned el = arm_current_el(env); 11093 11094 /* First handle registers which unprivileged can read */ 11095 11096 switch (reg) { 11097 case 0 ... 7: /* xPSR sub-fields */ 11098 mask = 0; 11099 if ((reg & 1) && el) { 11100 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 11101 } 11102 if (!(reg & 4)) { 11103 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 11104 } 11105 /* EPSR reads as zero */ 11106 return xpsr_read(env) & mask; 11107 break; 11108 case 20: /* CONTROL */ 11109 return env->v7m.control[env->v7m.secure]; 11110 case 0x94: /* CONTROL_NS */ 11111 /* We have to handle this here because unprivileged Secure code 11112 * can read the NS CONTROL register. 11113 */ 11114 if (!env->v7m.secure) { 11115 return 0; 11116 } 11117 return env->v7m.control[M_REG_NS]; 11118 } 11119 11120 if (el == 0) { 11121 return 0; /* unprivileged reads others as zero */ 11122 } 11123 11124 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11125 switch (reg) { 11126 case 0x88: /* MSP_NS */ 11127 if (!env->v7m.secure) { 11128 return 0; 11129 } 11130 return env->v7m.other_ss_msp; 11131 case 0x89: /* PSP_NS */ 11132 if (!env->v7m.secure) { 11133 return 0; 11134 } 11135 return env->v7m.other_ss_psp; 11136 case 0x8a: /* MSPLIM_NS */ 11137 if (!env->v7m.secure) { 11138 return 0; 11139 } 11140 return env->v7m.msplim[M_REG_NS]; 11141 case 0x8b: /* PSPLIM_NS */ 11142 if (!env->v7m.secure) { 11143 return 0; 11144 } 11145 return env->v7m.psplim[M_REG_NS]; 11146 case 0x90: /* PRIMASK_NS */ 11147 if (!env->v7m.secure) { 11148 return 0; 11149 } 11150 return env->v7m.primask[M_REG_NS]; 11151 case 0x91: /* BASEPRI_NS */ 11152 if (!env->v7m.secure) { 11153 return 0; 11154 } 11155 return env->v7m.basepri[M_REG_NS]; 11156 case 0x93: /* FAULTMASK_NS */ 11157 if (!env->v7m.secure) { 11158 return 0; 11159 } 11160 return env->v7m.faultmask[M_REG_NS]; 11161 case 0x98: /* SP_NS */ 11162 { 11163 /* This gives the non-secure SP selected based on whether we're 11164 * currently in handler mode or not, using the NS CONTROL.SPSEL. 11165 */ 11166 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 11167 11168 if (!env->v7m.secure) { 11169 return 0; 11170 } 11171 if (!arm_v7m_is_handler_mode(env) && spsel) { 11172 return env->v7m.other_ss_psp; 11173 } else { 11174 return env->v7m.other_ss_msp; 11175 } 11176 } 11177 default: 11178 break; 11179 } 11180 } 11181 11182 switch (reg) { 11183 case 8: /* MSP */ 11184 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 11185 case 9: /* PSP */ 11186 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 11187 case 10: /* MSPLIM */ 11188 if (!arm_feature(env, ARM_FEATURE_V8)) { 11189 goto bad_reg; 11190 } 11191 return env->v7m.msplim[env->v7m.secure]; 11192 case 11: /* PSPLIM */ 11193 if (!arm_feature(env, ARM_FEATURE_V8)) { 11194 goto bad_reg; 11195 } 11196 return env->v7m.psplim[env->v7m.secure]; 11197 case 16: /* PRIMASK */ 11198 return env->v7m.primask[env->v7m.secure]; 11199 case 17: /* BASEPRI */ 11200 case 18: /* BASEPRI_MAX */ 11201 return env->v7m.basepri[env->v7m.secure]; 11202 case 19: /* FAULTMASK */ 11203 return env->v7m.faultmask[env->v7m.secure]; 11204 default: 11205 bad_reg: 11206 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 11207 " register %d\n", reg); 11208 return 0; 11209 } 11210 } 11211 11212 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 11213 { 11214 /* We're passed bits [11..0] of the instruction; extract 11215 * SYSm and the mask bits. 11216 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 11217 * we choose to treat them as if the mask bits were valid. 11218 * NB that the pseudocode 'mask' variable is bits [11..10], 11219 * whereas ours is [11..8]. 11220 */ 11221 uint32_t mask = extract32(maskreg, 8, 4); 11222 uint32_t reg = extract32(maskreg, 0, 8); 11223 11224 if (arm_current_el(env) == 0 && reg > 7) { 11225 /* only xPSR sub-fields may be written by unprivileged */ 11226 return; 11227 } 11228 11229 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 11230 switch (reg) { 11231 case 0x88: /* MSP_NS */ 11232 if (!env->v7m.secure) { 11233 return; 11234 } 11235 env->v7m.other_ss_msp = val; 11236 return; 11237 case 0x89: /* PSP_NS */ 11238 if (!env->v7m.secure) { 11239 return; 11240 } 11241 env->v7m.other_ss_psp = val; 11242 return; 11243 case 0x8a: /* MSPLIM_NS */ 11244 if (!env->v7m.secure) { 11245 return; 11246 } 11247 env->v7m.msplim[M_REG_NS] = val & ~7; 11248 return; 11249 case 0x8b: /* PSPLIM_NS */ 11250 if (!env->v7m.secure) { 11251 return; 11252 } 11253 env->v7m.psplim[M_REG_NS] = val & ~7; 11254 return; 11255 case 0x90: /* PRIMASK_NS */ 11256 if (!env->v7m.secure) { 11257 return; 11258 } 11259 env->v7m.primask[M_REG_NS] = val & 1; 11260 return; 11261 case 0x91: /* BASEPRI_NS */ 11262 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 11263 return; 11264 } 11265 env->v7m.basepri[M_REG_NS] = val & 0xff; 11266 return; 11267 case 0x93: /* FAULTMASK_NS */ 11268 if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) { 11269 return; 11270 } 11271 env->v7m.faultmask[M_REG_NS] = val & 1; 11272 return; 11273 case 0x94: /* CONTROL_NS */ 11274 if (!env->v7m.secure) { 11275 return; 11276 } 11277 write_v7m_control_spsel_for_secstate(env, 11278 val & R_V7M_CONTROL_SPSEL_MASK, 11279 M_REG_NS); 11280 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 11281 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 11282 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 11283 } 11284 return; 11285 case 0x98: /* SP_NS */ 11286 { 11287 /* This gives the non-secure SP selected based on whether we're 11288 * currently in handler mode or not, using the NS CONTROL.SPSEL. 11289 */ 11290 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 11291 bool is_psp = !arm_v7m_is_handler_mode(env) && spsel; 11292 uint32_t limit; 11293 11294 if (!env->v7m.secure) { 11295 return; 11296 } 11297 11298 limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false]; 11299 11300 if (val < limit) { 11301 CPUState *cs = CPU(arm_env_get_cpu(env)); 11302 11303 cpu_restore_state(cs, GETPC(), true); 11304 raise_exception(env, EXCP_STKOF, 0, 1); 11305 } 11306 11307 if (is_psp) { 11308 env->v7m.other_ss_psp = val; 11309 } else { 11310 env->v7m.other_ss_msp = val; 11311 } 11312 return; 11313 } 11314 default: 11315 break; 11316 } 11317 } 11318 11319 switch (reg) { 11320 case 0 ... 7: /* xPSR sub-fields */ 11321 /* only APSR is actually writable */ 11322 if (!(reg & 4)) { 11323 uint32_t apsrmask = 0; 11324 11325 if (mask & 8) { 11326 apsrmask |= XPSR_NZCV | XPSR_Q; 11327 } 11328 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 11329 apsrmask |= XPSR_GE; 11330 } 11331 xpsr_write(env, val, apsrmask); 11332 } 11333 break; 11334 case 8: /* MSP */ 11335 if (v7m_using_psp(env)) { 11336 env->v7m.other_sp = val; 11337 } else { 11338 env->regs[13] = val; 11339 } 11340 break; 11341 case 9: /* PSP */ 11342 if (v7m_using_psp(env)) { 11343 env->regs[13] = val; 11344 } else { 11345 env->v7m.other_sp = val; 11346 } 11347 break; 11348 case 10: /* MSPLIM */ 11349 if (!arm_feature(env, ARM_FEATURE_V8)) { 11350 goto bad_reg; 11351 } 11352 env->v7m.msplim[env->v7m.secure] = val & ~7; 11353 break; 11354 case 11: /* PSPLIM */ 11355 if (!arm_feature(env, ARM_FEATURE_V8)) { 11356 goto bad_reg; 11357 } 11358 env->v7m.psplim[env->v7m.secure] = val & ~7; 11359 break; 11360 case 16: /* PRIMASK */ 11361 env->v7m.primask[env->v7m.secure] = val & 1; 11362 break; 11363 case 17: /* BASEPRI */ 11364 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11365 goto bad_reg; 11366 } 11367 env->v7m.basepri[env->v7m.secure] = val & 0xff; 11368 break; 11369 case 18: /* BASEPRI_MAX */ 11370 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11371 goto bad_reg; 11372 } 11373 val &= 0xff; 11374 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 11375 || env->v7m.basepri[env->v7m.secure] == 0)) { 11376 env->v7m.basepri[env->v7m.secure] = val; 11377 } 11378 break; 11379 case 19: /* FAULTMASK */ 11380 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) { 11381 goto bad_reg; 11382 } 11383 env->v7m.faultmask[env->v7m.secure] = val & 1; 11384 break; 11385 case 20: /* CONTROL */ 11386 /* Writing to the SPSEL bit only has an effect if we are in 11387 * thread mode; other bits can be updated by any privileged code. 11388 * write_v7m_control_spsel() deals with updating the SPSEL bit in 11389 * env->v7m.control, so we only need update the others. 11390 * For v7M, we must just ignore explicit writes to SPSEL in handler 11391 * mode; for v8M the write is permitted but will have no effect. 11392 */ 11393 if (arm_feature(env, ARM_FEATURE_V8) || 11394 !arm_v7m_is_handler_mode(env)) { 11395 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 11396 } 11397 if (arm_feature(env, ARM_FEATURE_M_MAIN)) { 11398 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 11399 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 11400 } 11401 break; 11402 default: 11403 bad_reg: 11404 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 11405 " register %d\n", reg); 11406 return; 11407 } 11408 } 11409 11410 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 11411 { 11412 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 11413 bool forceunpriv = op & 1; 11414 bool alt = op & 2; 11415 V8M_SAttributes sattrs = {}; 11416 uint32_t tt_resp; 11417 bool r, rw, nsr, nsrw, mrvalid; 11418 int prot; 11419 ARMMMUFaultInfo fi = {}; 11420 MemTxAttrs attrs = {}; 11421 hwaddr phys_addr; 11422 ARMMMUIdx mmu_idx; 11423 uint32_t mregion; 11424 bool targetpriv; 11425 bool targetsec = env->v7m.secure; 11426 bool is_subpage; 11427 11428 /* Work out what the security state and privilege level we're 11429 * interested in is... 11430 */ 11431 if (alt) { 11432 targetsec = !targetsec; 11433 } 11434 11435 if (forceunpriv) { 11436 targetpriv = false; 11437 } else { 11438 targetpriv = arm_v7m_is_handler_mode(env) || 11439 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 11440 } 11441 11442 /* ...and then figure out which MMU index this is */ 11443 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 11444 11445 /* We know that the MPU and SAU don't care about the access type 11446 * for our purposes beyond that we don't want to claim to be 11447 * an insn fetch, so we arbitrarily call this a read. 11448 */ 11449 11450 /* MPU region info only available for privileged or if 11451 * inspecting the other MPU state. 11452 */ 11453 if (arm_current_el(env) != 0 || alt) { 11454 /* We can ignore the return value as prot is always set */ 11455 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 11456 &phys_addr, &attrs, &prot, &is_subpage, 11457 &fi, &mregion); 11458 if (mregion == -1) { 11459 mrvalid = false; 11460 mregion = 0; 11461 } else { 11462 mrvalid = true; 11463 } 11464 r = prot & PAGE_READ; 11465 rw = prot & PAGE_WRITE; 11466 } else { 11467 r = false; 11468 rw = false; 11469 mrvalid = false; 11470 mregion = 0; 11471 } 11472 11473 if (env->v7m.secure) { 11474 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 11475 nsr = sattrs.ns && r; 11476 nsrw = sattrs.ns && rw; 11477 } else { 11478 sattrs.ns = true; 11479 nsr = false; 11480 nsrw = false; 11481 } 11482 11483 tt_resp = (sattrs.iregion << 24) | 11484 (sattrs.irvalid << 23) | 11485 ((!sattrs.ns) << 22) | 11486 (nsrw << 21) | 11487 (nsr << 20) | 11488 (rw << 19) | 11489 (r << 18) | 11490 (sattrs.srvalid << 17) | 11491 (mrvalid << 16) | 11492 (sattrs.sregion << 8) | 11493 mregion; 11494 11495 return tt_resp; 11496 } 11497 11498 #endif 11499 11500 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 11501 { 11502 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 11503 * Note that we do not implement the (architecturally mandated) 11504 * alignment fault for attempts to use this on Device memory 11505 * (which matches the usual QEMU behaviour of not implementing either 11506 * alignment faults or any memory attribute handling). 11507 */ 11508 11509 ARMCPU *cpu = arm_env_get_cpu(env); 11510 uint64_t blocklen = 4 << cpu->dcz_blocksize; 11511 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 11512 11513 #ifndef CONFIG_USER_ONLY 11514 { 11515 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 11516 * the block size so we might have to do more than one TLB lookup. 11517 * We know that in fact for any v8 CPU the page size is at least 4K 11518 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 11519 * 1K as an artefact of legacy v5 subpage support being present in the 11520 * same QEMU executable. 11521 */ 11522 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 11523 void *hostaddr[maxidx]; 11524 int try, i; 11525 unsigned mmu_idx = cpu_mmu_index(env, false); 11526 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 11527 11528 for (try = 0; try < 2; try++) { 11529 11530 for (i = 0; i < maxidx; i++) { 11531 hostaddr[i] = tlb_vaddr_to_host(env, 11532 vaddr + TARGET_PAGE_SIZE * i, 11533 1, mmu_idx); 11534 if (!hostaddr[i]) { 11535 break; 11536 } 11537 } 11538 if (i == maxidx) { 11539 /* If it's all in the TLB it's fair game for just writing to; 11540 * we know we don't need to update dirty status, etc. 11541 */ 11542 for (i = 0; i < maxidx - 1; i++) { 11543 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 11544 } 11545 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 11546 return; 11547 } 11548 /* OK, try a store and see if we can populate the tlb. This 11549 * might cause an exception if the memory isn't writable, 11550 * in which case we will longjmp out of here. We must for 11551 * this purpose use the actual register value passed to us 11552 * so that we get the fault address right. 11553 */ 11554 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 11555 /* Now we can populate the other TLB entries, if any */ 11556 for (i = 0; i < maxidx; i++) { 11557 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 11558 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 11559 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 11560 } 11561 } 11562 } 11563 11564 /* Slow path (probably attempt to do this to an I/O device or 11565 * similar, or clearing of a block of code we have translations 11566 * cached for). Just do a series of byte writes as the architecture 11567 * demands. It's not worth trying to use a cpu_physical_memory_map(), 11568 * memset(), unmap() sequence here because: 11569 * + we'd need to account for the blocksize being larger than a page 11570 * + the direct-RAM access case is almost always going to be dealt 11571 * with in the fastpath code above, so there's no speed benefit 11572 * + we would have to deal with the map returning NULL because the 11573 * bounce buffer was in use 11574 */ 11575 for (i = 0; i < blocklen; i++) { 11576 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 11577 } 11578 } 11579 #else 11580 memset(g2h(vaddr), 0, blocklen); 11581 #endif 11582 } 11583 11584 /* Note that signed overflow is undefined in C. The following routines are 11585 careful to use unsigned types where modulo arithmetic is required. 11586 Failure to do so _will_ break on newer gcc. */ 11587 11588 /* Signed saturating arithmetic. */ 11589 11590 /* Perform 16-bit signed saturating addition. */ 11591 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11592 { 11593 uint16_t res; 11594 11595 res = a + b; 11596 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11597 if (a & 0x8000) 11598 res = 0x8000; 11599 else 11600 res = 0x7fff; 11601 } 11602 return res; 11603 } 11604 11605 /* Perform 8-bit signed saturating addition. */ 11606 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11607 { 11608 uint8_t res; 11609 11610 res = a + b; 11611 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11612 if (a & 0x80) 11613 res = 0x80; 11614 else 11615 res = 0x7f; 11616 } 11617 return res; 11618 } 11619 11620 /* Perform 16-bit signed saturating subtraction. */ 11621 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11622 { 11623 uint16_t res; 11624 11625 res = a - b; 11626 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11627 if (a & 0x8000) 11628 res = 0x8000; 11629 else 11630 res = 0x7fff; 11631 } 11632 return res; 11633 } 11634 11635 /* Perform 8-bit signed saturating subtraction. */ 11636 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11637 { 11638 uint8_t res; 11639 11640 res = a - b; 11641 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11642 if (a & 0x80) 11643 res = 0x80; 11644 else 11645 res = 0x7f; 11646 } 11647 return res; 11648 } 11649 11650 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11651 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11652 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11653 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11654 #define PFX q 11655 11656 #include "op_addsub.h" 11657 11658 /* Unsigned saturating arithmetic. */ 11659 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11660 { 11661 uint16_t res; 11662 res = a + b; 11663 if (res < a) 11664 res = 0xffff; 11665 return res; 11666 } 11667 11668 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11669 { 11670 if (a > b) 11671 return a - b; 11672 else 11673 return 0; 11674 } 11675 11676 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11677 { 11678 uint8_t res; 11679 res = a + b; 11680 if (res < a) 11681 res = 0xff; 11682 return res; 11683 } 11684 11685 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11686 { 11687 if (a > b) 11688 return a - b; 11689 else 11690 return 0; 11691 } 11692 11693 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11694 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11695 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11696 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11697 #define PFX uq 11698 11699 #include "op_addsub.h" 11700 11701 /* Signed modulo arithmetic. */ 11702 #define SARITH16(a, b, n, op) do { \ 11703 int32_t sum; \ 11704 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11705 RESULT(sum, n, 16); \ 11706 if (sum >= 0) \ 11707 ge |= 3 << (n * 2); \ 11708 } while(0) 11709 11710 #define SARITH8(a, b, n, op) do { \ 11711 int32_t sum; \ 11712 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11713 RESULT(sum, n, 8); \ 11714 if (sum >= 0) \ 11715 ge |= 1 << n; \ 11716 } while(0) 11717 11718 11719 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11720 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11721 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11722 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11723 #define PFX s 11724 #define ARITH_GE 11725 11726 #include "op_addsub.h" 11727 11728 /* Unsigned modulo arithmetic. */ 11729 #define ADD16(a, b, n) do { \ 11730 uint32_t sum; \ 11731 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11732 RESULT(sum, n, 16); \ 11733 if ((sum >> 16) == 1) \ 11734 ge |= 3 << (n * 2); \ 11735 } while(0) 11736 11737 #define ADD8(a, b, n) do { \ 11738 uint32_t sum; \ 11739 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11740 RESULT(sum, n, 8); \ 11741 if ((sum >> 8) == 1) \ 11742 ge |= 1 << n; \ 11743 } while(0) 11744 11745 #define SUB16(a, b, n) do { \ 11746 uint32_t sum; \ 11747 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11748 RESULT(sum, n, 16); \ 11749 if ((sum >> 16) == 0) \ 11750 ge |= 3 << (n * 2); \ 11751 } while(0) 11752 11753 #define SUB8(a, b, n) do { \ 11754 uint32_t sum; \ 11755 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11756 RESULT(sum, n, 8); \ 11757 if ((sum >> 8) == 0) \ 11758 ge |= 1 << n; \ 11759 } while(0) 11760 11761 #define PFX u 11762 #define ARITH_GE 11763 11764 #include "op_addsub.h" 11765 11766 /* Halved signed arithmetic. */ 11767 #define ADD16(a, b, n) \ 11768 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11769 #define SUB16(a, b, n) \ 11770 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11771 #define ADD8(a, b, n) \ 11772 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11773 #define SUB8(a, b, n) \ 11774 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11775 #define PFX sh 11776 11777 #include "op_addsub.h" 11778 11779 /* Halved unsigned arithmetic. */ 11780 #define ADD16(a, b, n) \ 11781 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11782 #define SUB16(a, b, n) \ 11783 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11784 #define ADD8(a, b, n) \ 11785 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11786 #define SUB8(a, b, n) \ 11787 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11788 #define PFX uh 11789 11790 #include "op_addsub.h" 11791 11792 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11793 { 11794 if (a > b) 11795 return a - b; 11796 else 11797 return b - a; 11798 } 11799 11800 /* Unsigned sum of absolute byte differences. */ 11801 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11802 { 11803 uint32_t sum; 11804 sum = do_usad(a, b); 11805 sum += do_usad(a >> 8, b >> 8); 11806 sum += do_usad(a >> 16, b >>16); 11807 sum += do_usad(a >> 24, b >> 24); 11808 return sum; 11809 } 11810 11811 /* For ARMv6 SEL instruction. */ 11812 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11813 { 11814 uint32_t mask; 11815 11816 mask = 0; 11817 if (flags & 1) 11818 mask |= 0xff; 11819 if (flags & 2) 11820 mask |= 0xff00; 11821 if (flags & 4) 11822 mask |= 0xff0000; 11823 if (flags & 8) 11824 mask |= 0xff000000; 11825 return (a & mask) | (b & ~mask); 11826 } 11827 11828 /* VFP support. We follow the convention used for VFP instructions: 11829 Single precision routines have a "s" suffix, double precision a 11830 "d" suffix. */ 11831 11832 /* Convert host exception flags to vfp form. */ 11833 static inline int vfp_exceptbits_from_host(int host_bits) 11834 { 11835 int target_bits = 0; 11836 11837 if (host_bits & float_flag_invalid) 11838 target_bits |= 1; 11839 if (host_bits & float_flag_divbyzero) 11840 target_bits |= 2; 11841 if (host_bits & float_flag_overflow) 11842 target_bits |= 4; 11843 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11844 target_bits |= 8; 11845 if (host_bits & float_flag_inexact) 11846 target_bits |= 0x10; 11847 if (host_bits & float_flag_input_denormal) 11848 target_bits |= 0x80; 11849 return target_bits; 11850 } 11851 11852 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11853 { 11854 int i; 11855 uint32_t fpscr; 11856 11857 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11858 | (env->vfp.vec_len << 16) 11859 | (env->vfp.vec_stride << 20); 11860 11861 i = get_float_exception_flags(&env->vfp.fp_status); 11862 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11863 /* FZ16 does not generate an input denormal exception. */ 11864 i |= (get_float_exception_flags(&env->vfp.fp_status_f16) 11865 & ~float_flag_input_denormal); 11866 11867 fpscr |= vfp_exceptbits_from_host(i); 11868 return fpscr; 11869 } 11870 11871 uint32_t vfp_get_fpscr(CPUARMState *env) 11872 { 11873 return HELPER(vfp_get_fpscr)(env); 11874 } 11875 11876 /* Convert vfp exception flags to target form. */ 11877 static inline int vfp_exceptbits_to_host(int target_bits) 11878 { 11879 int host_bits = 0; 11880 11881 if (target_bits & 1) 11882 host_bits |= float_flag_invalid; 11883 if (target_bits & 2) 11884 host_bits |= float_flag_divbyzero; 11885 if (target_bits & 4) 11886 host_bits |= float_flag_overflow; 11887 if (target_bits & 8) 11888 host_bits |= float_flag_underflow; 11889 if (target_bits & 0x10) 11890 host_bits |= float_flag_inexact; 11891 if (target_bits & 0x80) 11892 host_bits |= float_flag_input_denormal; 11893 return host_bits; 11894 } 11895 11896 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11897 { 11898 int i; 11899 uint32_t changed; 11900 11901 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */ 11902 if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) { 11903 val &= ~FPCR_FZ16; 11904 } 11905 11906 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11907 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11908 env->vfp.vec_len = (val >> 16) & 7; 11909 env->vfp.vec_stride = (val >> 20) & 3; 11910 11911 changed ^= val; 11912 if (changed & (3 << 22)) { 11913 i = (val >> 22) & 3; 11914 switch (i) { 11915 case FPROUNDING_TIEEVEN: 11916 i = float_round_nearest_even; 11917 break; 11918 case FPROUNDING_POSINF: 11919 i = float_round_up; 11920 break; 11921 case FPROUNDING_NEGINF: 11922 i = float_round_down; 11923 break; 11924 case FPROUNDING_ZERO: 11925 i = float_round_to_zero; 11926 break; 11927 } 11928 set_float_rounding_mode(i, &env->vfp.fp_status); 11929 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11930 } 11931 if (changed & FPCR_FZ16) { 11932 bool ftz_enabled = val & FPCR_FZ16; 11933 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11934 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11935 } 11936 if (changed & FPCR_FZ) { 11937 bool ftz_enabled = val & FPCR_FZ; 11938 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11939 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11940 } 11941 if (changed & FPCR_DN) { 11942 bool dnan_enabled = val & FPCR_DN; 11943 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11944 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11945 } 11946 11947 /* The exception flags are ORed together when we read fpscr so we 11948 * only need to preserve the current state in one of our 11949 * float_status values. 11950 */ 11951 i = vfp_exceptbits_to_host(val); 11952 set_float_exception_flags(i, &env->vfp.fp_status); 11953 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11954 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11955 } 11956 11957 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11958 { 11959 HELPER(vfp_set_fpscr)(env, val); 11960 } 11961 11962 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11963 11964 #define VFP_BINOP(name) \ 11965 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11966 { \ 11967 float_status *fpst = fpstp; \ 11968 return float32_ ## name(a, b, fpst); \ 11969 } \ 11970 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11971 { \ 11972 float_status *fpst = fpstp; \ 11973 return float64_ ## name(a, b, fpst); \ 11974 } 11975 VFP_BINOP(add) 11976 VFP_BINOP(sub) 11977 VFP_BINOP(mul) 11978 VFP_BINOP(div) 11979 VFP_BINOP(min) 11980 VFP_BINOP(max) 11981 VFP_BINOP(minnum) 11982 VFP_BINOP(maxnum) 11983 #undef VFP_BINOP 11984 11985 float32 VFP_HELPER(neg, s)(float32 a) 11986 { 11987 return float32_chs(a); 11988 } 11989 11990 float64 VFP_HELPER(neg, d)(float64 a) 11991 { 11992 return float64_chs(a); 11993 } 11994 11995 float32 VFP_HELPER(abs, s)(float32 a) 11996 { 11997 return float32_abs(a); 11998 } 11999 12000 float64 VFP_HELPER(abs, d)(float64 a) 12001 { 12002 return float64_abs(a); 12003 } 12004 12005 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 12006 { 12007 return float32_sqrt(a, &env->vfp.fp_status); 12008 } 12009 12010 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 12011 { 12012 return float64_sqrt(a, &env->vfp.fp_status); 12013 } 12014 12015 /* XXX: check quiet/signaling case */ 12016 #define DO_VFP_cmp(p, type) \ 12017 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 12018 { \ 12019 uint32_t flags; \ 12020 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 12021 case 0: flags = 0x6; break; \ 12022 case -1: flags = 0x8; break; \ 12023 case 1: flags = 0x2; break; \ 12024 default: case 2: flags = 0x3; break; \ 12025 } \ 12026 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 12027 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 12028 } \ 12029 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 12030 { \ 12031 uint32_t flags; \ 12032 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 12033 case 0: flags = 0x6; break; \ 12034 case -1: flags = 0x8; break; \ 12035 case 1: flags = 0x2; break; \ 12036 default: case 2: flags = 0x3; break; \ 12037 } \ 12038 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 12039 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 12040 } 12041 DO_VFP_cmp(s, float32) 12042 DO_VFP_cmp(d, float64) 12043 #undef DO_VFP_cmp 12044 12045 /* Integer to float and float to integer conversions */ 12046 12047 #define CONV_ITOF(name, ftype, fsz, sign) \ 12048 ftype HELPER(name)(uint32_t x, void *fpstp) \ 12049 { \ 12050 float_status *fpst = fpstp; \ 12051 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 12052 } 12053 12054 #define CONV_FTOI(name, ftype, fsz, sign, round) \ 12055 sign##int32_t HELPER(name)(ftype x, void *fpstp) \ 12056 { \ 12057 float_status *fpst = fpstp; \ 12058 if (float##fsz##_is_any_nan(x)) { \ 12059 float_raise(float_flag_invalid, fpst); \ 12060 return 0; \ 12061 } \ 12062 return float##fsz##_to_##sign##int32##round(x, fpst); \ 12063 } 12064 12065 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \ 12066 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \ 12067 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \ 12068 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero) 12069 12070 FLOAT_CONVS(si, h, uint32_t, 16, ) 12071 FLOAT_CONVS(si, s, float32, 32, ) 12072 FLOAT_CONVS(si, d, float64, 64, ) 12073 FLOAT_CONVS(ui, h, uint32_t, 16, u) 12074 FLOAT_CONVS(ui, s, float32, 32, u) 12075 FLOAT_CONVS(ui, d, float64, 64, u) 12076 12077 #undef CONV_ITOF 12078 #undef CONV_FTOI 12079 #undef FLOAT_CONVS 12080 12081 /* floating point conversion */ 12082 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 12083 { 12084 return float32_to_float64(x, &env->vfp.fp_status); 12085 } 12086 12087 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 12088 { 12089 return float64_to_float32(x, &env->vfp.fp_status); 12090 } 12091 12092 /* VFP3 fixed point conversion. */ 12093 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 12094 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 12095 void *fpstp) \ 12096 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); } 12097 12098 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \ 12099 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \ 12100 void *fpst) \ 12101 { \ 12102 if (unlikely(float##fsz##_is_any_nan(x))) { \ 12103 float_raise(float_flag_invalid, fpst); \ 12104 return 0; \ 12105 } \ 12106 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \ 12107 } 12108 12109 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 12110 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 12111 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 12112 float_round_to_zero, _round_to_zero) \ 12113 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 12114 get_float_rounding_mode(fpst), ) 12115 12116 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 12117 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 12118 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \ 12119 get_float_rounding_mode(fpst), ) 12120 12121 VFP_CONV_FIX(sh, d, 64, 64, int16) 12122 VFP_CONV_FIX(sl, d, 64, 64, int32) 12123 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 12124 VFP_CONV_FIX(uh, d, 64, 64, uint16) 12125 VFP_CONV_FIX(ul, d, 64, 64, uint32) 12126 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 12127 VFP_CONV_FIX(sh, s, 32, 32, int16) 12128 VFP_CONV_FIX(sl, s, 32, 32, int32) 12129 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 12130 VFP_CONV_FIX(uh, s, 32, 32, uint16) 12131 VFP_CONV_FIX(ul, s, 32, 32, uint32) 12132 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 12133 12134 #undef VFP_CONV_FIX 12135 #undef VFP_CONV_FIX_FLOAT 12136 #undef VFP_CONV_FLOAT_FIX_ROUND 12137 #undef VFP_CONV_FIX_A64 12138 12139 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst) 12140 { 12141 return int32_to_float16_scalbn(x, -shift, fpst); 12142 } 12143 12144 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst) 12145 { 12146 return uint32_to_float16_scalbn(x, -shift, fpst); 12147 } 12148 12149 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst) 12150 { 12151 return int64_to_float16_scalbn(x, -shift, fpst); 12152 } 12153 12154 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst) 12155 { 12156 return uint64_to_float16_scalbn(x, -shift, fpst); 12157 } 12158 12159 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst) 12160 { 12161 if (unlikely(float16_is_any_nan(x))) { 12162 float_raise(float_flag_invalid, fpst); 12163 return 0; 12164 } 12165 return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst), 12166 shift, fpst); 12167 } 12168 12169 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst) 12170 { 12171 if (unlikely(float16_is_any_nan(x))) { 12172 float_raise(float_flag_invalid, fpst); 12173 return 0; 12174 } 12175 return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst), 12176 shift, fpst); 12177 } 12178 12179 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst) 12180 { 12181 if (unlikely(float16_is_any_nan(x))) { 12182 float_raise(float_flag_invalid, fpst); 12183 return 0; 12184 } 12185 return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst), 12186 shift, fpst); 12187 } 12188 12189 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst) 12190 { 12191 if (unlikely(float16_is_any_nan(x))) { 12192 float_raise(float_flag_invalid, fpst); 12193 return 0; 12194 } 12195 return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst), 12196 shift, fpst); 12197 } 12198 12199 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst) 12200 { 12201 if (unlikely(float16_is_any_nan(x))) { 12202 float_raise(float_flag_invalid, fpst); 12203 return 0; 12204 } 12205 return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst), 12206 shift, fpst); 12207 } 12208 12209 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst) 12210 { 12211 if (unlikely(float16_is_any_nan(x))) { 12212 float_raise(float_flag_invalid, fpst); 12213 return 0; 12214 } 12215 return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst), 12216 shift, fpst); 12217 } 12218 12219 /* Set the current fp rounding mode and return the old one. 12220 * The argument is a softfloat float_round_ value. 12221 */ 12222 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 12223 { 12224 float_status *fp_status = fpstp; 12225 12226 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 12227 set_float_rounding_mode(rmode, fp_status); 12228 12229 return prev_rmode; 12230 } 12231 12232 /* Set the current fp rounding mode in the standard fp status and return 12233 * the old one. This is for NEON instructions that need to change the 12234 * rounding mode but wish to use the standard FPSCR values for everything 12235 * else. Always set the rounding mode back to the correct value after 12236 * modifying it. 12237 * The argument is a softfloat float_round_ value. 12238 */ 12239 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 12240 { 12241 float_status *fp_status = &env->vfp.standard_fp_status; 12242 12243 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 12244 set_float_rounding_mode(rmode, fp_status); 12245 12246 return prev_rmode; 12247 } 12248 12249 /* Half precision conversions. */ 12250 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode) 12251 { 12252 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12253 * it would affect flushing input denormals. 12254 */ 12255 float_status *fpst = fpstp; 12256 flag save = get_flush_inputs_to_zero(fpst); 12257 set_flush_inputs_to_zero(false, fpst); 12258 float32 r = float16_to_float32(a, !ahp_mode, fpst); 12259 set_flush_inputs_to_zero(save, fpst); 12260 return r; 12261 } 12262 12263 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode) 12264 { 12265 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12266 * it would affect flushing output denormals. 12267 */ 12268 float_status *fpst = fpstp; 12269 flag save = get_flush_to_zero(fpst); 12270 set_flush_to_zero(false, fpst); 12271 float16 r = float32_to_float16(a, !ahp_mode, fpst); 12272 set_flush_to_zero(save, fpst); 12273 return r; 12274 } 12275 12276 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode) 12277 { 12278 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12279 * it would affect flushing input denormals. 12280 */ 12281 float_status *fpst = fpstp; 12282 flag save = get_flush_inputs_to_zero(fpst); 12283 set_flush_inputs_to_zero(false, fpst); 12284 float64 r = float16_to_float64(a, !ahp_mode, fpst); 12285 set_flush_inputs_to_zero(save, fpst); 12286 return r; 12287 } 12288 12289 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode) 12290 { 12291 /* Squash FZ16 to 0 for the duration of conversion. In this case, 12292 * it would affect flushing output denormals. 12293 */ 12294 float_status *fpst = fpstp; 12295 flag save = get_flush_to_zero(fpst); 12296 set_flush_to_zero(false, fpst); 12297 float16 r = float64_to_float16(a, !ahp_mode, fpst); 12298 set_flush_to_zero(save, fpst); 12299 return r; 12300 } 12301 12302 #define float32_two make_float32(0x40000000) 12303 #define float32_three make_float32(0x40400000) 12304 #define float32_one_point_five make_float32(0x3fc00000) 12305 12306 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 12307 { 12308 float_status *s = &env->vfp.standard_fp_status; 12309 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12310 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12311 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12312 float_raise(float_flag_input_denormal, s); 12313 } 12314 return float32_two; 12315 } 12316 return float32_sub(float32_two, float32_mul(a, b, s), s); 12317 } 12318 12319 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 12320 { 12321 float_status *s = &env->vfp.standard_fp_status; 12322 float32 product; 12323 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 12324 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 12325 if (!(float32_is_zero(a) || float32_is_zero(b))) { 12326 float_raise(float_flag_input_denormal, s); 12327 } 12328 return float32_one_point_five; 12329 } 12330 product = float32_mul(a, b, s); 12331 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 12332 } 12333 12334 /* NEON helpers. */ 12335 12336 /* Constants 256 and 512 are used in some helpers; we avoid relying on 12337 * int->float conversions at run-time. */ 12338 #define float64_256 make_float64(0x4070000000000000LL) 12339 #define float64_512 make_float64(0x4080000000000000LL) 12340 #define float16_maxnorm make_float16(0x7bff) 12341 #define float32_maxnorm make_float32(0x7f7fffff) 12342 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 12343 12344 /* Reciprocal functions 12345 * 12346 * The algorithm that must be used to calculate the estimate 12347 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 12348 */ 12349 12350 /* See RecipEstimate() 12351 * 12352 * input is a 9 bit fixed point number 12353 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 12354 * result range 256 .. 511 for a number from 1.0 to 511/256. 12355 */ 12356 12357 static int recip_estimate(int input) 12358 { 12359 int a, b, r; 12360 assert(256 <= input && input < 512); 12361 a = (input * 2) + 1; 12362 b = (1 << 19) / a; 12363 r = (b + 1) >> 1; 12364 assert(256 <= r && r < 512); 12365 return r; 12366 } 12367 12368 /* 12369 * Common wrapper to call recip_estimate 12370 * 12371 * The parameters are exponent and 64 bit fraction (without implicit 12372 * bit) where the binary point is nominally at bit 52. Returns a 12373 * float64 which can then be rounded to the appropriate size by the 12374 * callee. 12375 */ 12376 12377 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 12378 { 12379 uint32_t scaled, estimate; 12380 uint64_t result_frac; 12381 int result_exp; 12382 12383 /* Handle sub-normals */ 12384 if (*exp == 0) { 12385 if (extract64(frac, 51, 1) == 0) { 12386 *exp = -1; 12387 frac <<= 2; 12388 } else { 12389 frac <<= 1; 12390 } 12391 } 12392 12393 /* scaled = UInt('1':fraction<51:44>) */ 12394 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12395 estimate = recip_estimate(scaled); 12396 12397 result_exp = exp_off - *exp; 12398 result_frac = deposit64(0, 44, 8, estimate); 12399 if (result_exp == 0) { 12400 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 12401 } else if (result_exp == -1) { 12402 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 12403 result_exp = 0; 12404 } 12405 12406 *exp = result_exp; 12407 12408 return result_frac; 12409 } 12410 12411 static bool round_to_inf(float_status *fpst, bool sign_bit) 12412 { 12413 switch (fpst->float_rounding_mode) { 12414 case float_round_nearest_even: /* Round to Nearest */ 12415 return true; 12416 case float_round_up: /* Round to +Inf */ 12417 return !sign_bit; 12418 case float_round_down: /* Round to -Inf */ 12419 return sign_bit; 12420 case float_round_to_zero: /* Round to Zero */ 12421 return false; 12422 } 12423 12424 g_assert_not_reached(); 12425 } 12426 12427 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp) 12428 { 12429 float_status *fpst = fpstp; 12430 float16 f16 = float16_squash_input_denormal(input, fpst); 12431 uint32_t f16_val = float16_val(f16); 12432 uint32_t f16_sign = float16_is_neg(f16); 12433 int f16_exp = extract32(f16_val, 10, 5); 12434 uint32_t f16_frac = extract32(f16_val, 0, 10); 12435 uint64_t f64_frac; 12436 12437 if (float16_is_any_nan(f16)) { 12438 float16 nan = f16; 12439 if (float16_is_signaling_nan(f16, fpst)) { 12440 float_raise(float_flag_invalid, fpst); 12441 nan = float16_silence_nan(f16, fpst); 12442 } 12443 if (fpst->default_nan_mode) { 12444 nan = float16_default_nan(fpst); 12445 } 12446 return nan; 12447 } else if (float16_is_infinity(f16)) { 12448 return float16_set_sign(float16_zero, float16_is_neg(f16)); 12449 } else if (float16_is_zero(f16)) { 12450 float_raise(float_flag_divbyzero, fpst); 12451 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 12452 } else if (float16_abs(f16) < (1 << 8)) { 12453 /* Abs(value) < 2.0^-16 */ 12454 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12455 if (round_to_inf(fpst, f16_sign)) { 12456 return float16_set_sign(float16_infinity, f16_sign); 12457 } else { 12458 return float16_set_sign(float16_maxnorm, f16_sign); 12459 } 12460 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 12461 float_raise(float_flag_underflow, fpst); 12462 return float16_set_sign(float16_zero, float16_is_neg(f16)); 12463 } 12464 12465 f64_frac = call_recip_estimate(&f16_exp, 29, 12466 ((uint64_t) f16_frac) << (52 - 10)); 12467 12468 /* result = sign : result_exp<4:0> : fraction<51:42> */ 12469 f16_val = deposit32(0, 15, 1, f16_sign); 12470 f16_val = deposit32(f16_val, 10, 5, f16_exp); 12471 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 12472 return make_float16(f16_val); 12473 } 12474 12475 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 12476 { 12477 float_status *fpst = fpstp; 12478 float32 f32 = float32_squash_input_denormal(input, fpst); 12479 uint32_t f32_val = float32_val(f32); 12480 bool f32_sign = float32_is_neg(f32); 12481 int f32_exp = extract32(f32_val, 23, 8); 12482 uint32_t f32_frac = extract32(f32_val, 0, 23); 12483 uint64_t f64_frac; 12484 12485 if (float32_is_any_nan(f32)) { 12486 float32 nan = f32; 12487 if (float32_is_signaling_nan(f32, fpst)) { 12488 float_raise(float_flag_invalid, fpst); 12489 nan = float32_silence_nan(f32, fpst); 12490 } 12491 if (fpst->default_nan_mode) { 12492 nan = float32_default_nan(fpst); 12493 } 12494 return nan; 12495 } else if (float32_is_infinity(f32)) { 12496 return float32_set_sign(float32_zero, float32_is_neg(f32)); 12497 } else if (float32_is_zero(f32)) { 12498 float_raise(float_flag_divbyzero, fpst); 12499 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12500 } else if (float32_abs(f32) < (1ULL << 21)) { 12501 /* Abs(value) < 2.0^-128 */ 12502 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12503 if (round_to_inf(fpst, f32_sign)) { 12504 return float32_set_sign(float32_infinity, f32_sign); 12505 } else { 12506 return float32_set_sign(float32_maxnorm, f32_sign); 12507 } 12508 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 12509 float_raise(float_flag_underflow, fpst); 12510 return float32_set_sign(float32_zero, float32_is_neg(f32)); 12511 } 12512 12513 f64_frac = call_recip_estimate(&f32_exp, 253, 12514 ((uint64_t) f32_frac) << (52 - 23)); 12515 12516 /* result = sign : result_exp<7:0> : fraction<51:29> */ 12517 f32_val = deposit32(0, 31, 1, f32_sign); 12518 f32_val = deposit32(f32_val, 23, 8, f32_exp); 12519 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 12520 return make_float32(f32_val); 12521 } 12522 12523 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 12524 { 12525 float_status *fpst = fpstp; 12526 float64 f64 = float64_squash_input_denormal(input, fpst); 12527 uint64_t f64_val = float64_val(f64); 12528 bool f64_sign = float64_is_neg(f64); 12529 int f64_exp = extract64(f64_val, 52, 11); 12530 uint64_t f64_frac = extract64(f64_val, 0, 52); 12531 12532 /* Deal with any special cases */ 12533 if (float64_is_any_nan(f64)) { 12534 float64 nan = f64; 12535 if (float64_is_signaling_nan(f64, fpst)) { 12536 float_raise(float_flag_invalid, fpst); 12537 nan = float64_silence_nan(f64, fpst); 12538 } 12539 if (fpst->default_nan_mode) { 12540 nan = float64_default_nan(fpst); 12541 } 12542 return nan; 12543 } else if (float64_is_infinity(f64)) { 12544 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12545 } else if (float64_is_zero(f64)) { 12546 float_raise(float_flag_divbyzero, fpst); 12547 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12548 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 12549 /* Abs(value) < 2.0^-1024 */ 12550 float_raise(float_flag_overflow | float_flag_inexact, fpst); 12551 if (round_to_inf(fpst, f64_sign)) { 12552 return float64_set_sign(float64_infinity, f64_sign); 12553 } else { 12554 return float64_set_sign(float64_maxnorm, f64_sign); 12555 } 12556 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 12557 float_raise(float_flag_underflow, fpst); 12558 return float64_set_sign(float64_zero, float64_is_neg(f64)); 12559 } 12560 12561 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 12562 12563 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 12564 f64_val = deposit64(0, 63, 1, f64_sign); 12565 f64_val = deposit64(f64_val, 52, 11, f64_exp); 12566 f64_val = deposit64(f64_val, 0, 52, f64_frac); 12567 return make_float64(f64_val); 12568 } 12569 12570 /* The algorithm that must be used to calculate the estimate 12571 * is specified by the ARM ARM. 12572 */ 12573 12574 static int do_recip_sqrt_estimate(int a) 12575 { 12576 int b, estimate; 12577 12578 assert(128 <= a && a < 512); 12579 if (a < 256) { 12580 a = a * 2 + 1; 12581 } else { 12582 a = (a >> 1) << 1; 12583 a = (a + 1) * 2; 12584 } 12585 b = 512; 12586 while (a * (b + 1) * (b + 1) < (1 << 28)) { 12587 b += 1; 12588 } 12589 estimate = (b + 1) / 2; 12590 assert(256 <= estimate && estimate < 512); 12591 12592 return estimate; 12593 } 12594 12595 12596 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 12597 { 12598 int estimate; 12599 uint32_t scaled; 12600 12601 if (*exp == 0) { 12602 while (extract64(frac, 51, 1) == 0) { 12603 frac = frac << 1; 12604 *exp -= 1; 12605 } 12606 frac = extract64(frac, 0, 51) << 1; 12607 } 12608 12609 if (*exp & 1) { 12610 /* scaled = UInt('01':fraction<51:45>) */ 12611 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 12612 } else { 12613 /* scaled = UInt('1':fraction<51:44>) */ 12614 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 12615 } 12616 estimate = do_recip_sqrt_estimate(scaled); 12617 12618 *exp = (exp_off - *exp) / 2; 12619 return extract64(estimate, 0, 8) << 44; 12620 } 12621 12622 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp) 12623 { 12624 float_status *s = fpstp; 12625 float16 f16 = float16_squash_input_denormal(input, s); 12626 uint16_t val = float16_val(f16); 12627 bool f16_sign = float16_is_neg(f16); 12628 int f16_exp = extract32(val, 10, 5); 12629 uint16_t f16_frac = extract32(val, 0, 10); 12630 uint64_t f64_frac; 12631 12632 if (float16_is_any_nan(f16)) { 12633 float16 nan = f16; 12634 if (float16_is_signaling_nan(f16, s)) { 12635 float_raise(float_flag_invalid, s); 12636 nan = float16_silence_nan(f16, s); 12637 } 12638 if (s->default_nan_mode) { 12639 nan = float16_default_nan(s); 12640 } 12641 return nan; 12642 } else if (float16_is_zero(f16)) { 12643 float_raise(float_flag_divbyzero, s); 12644 return float16_set_sign(float16_infinity, f16_sign); 12645 } else if (f16_sign) { 12646 float_raise(float_flag_invalid, s); 12647 return float16_default_nan(s); 12648 } else if (float16_is_infinity(f16)) { 12649 return float16_zero; 12650 } 12651 12652 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12653 * preserving the parity of the exponent. */ 12654 12655 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 12656 12657 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 12658 12659 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 12660 val = deposit32(0, 15, 1, f16_sign); 12661 val = deposit32(val, 10, 5, f16_exp); 12662 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 12663 return make_float16(val); 12664 } 12665 12666 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 12667 { 12668 float_status *s = fpstp; 12669 float32 f32 = float32_squash_input_denormal(input, s); 12670 uint32_t val = float32_val(f32); 12671 uint32_t f32_sign = float32_is_neg(f32); 12672 int f32_exp = extract32(val, 23, 8); 12673 uint32_t f32_frac = extract32(val, 0, 23); 12674 uint64_t f64_frac; 12675 12676 if (float32_is_any_nan(f32)) { 12677 float32 nan = f32; 12678 if (float32_is_signaling_nan(f32, s)) { 12679 float_raise(float_flag_invalid, s); 12680 nan = float32_silence_nan(f32, s); 12681 } 12682 if (s->default_nan_mode) { 12683 nan = float32_default_nan(s); 12684 } 12685 return nan; 12686 } else if (float32_is_zero(f32)) { 12687 float_raise(float_flag_divbyzero, s); 12688 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 12689 } else if (float32_is_neg(f32)) { 12690 float_raise(float_flag_invalid, s); 12691 return float32_default_nan(s); 12692 } else if (float32_is_infinity(f32)) { 12693 return float32_zero; 12694 } 12695 12696 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 12697 * preserving the parity of the exponent. */ 12698 12699 f64_frac = ((uint64_t) f32_frac) << 29; 12700 12701 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 12702 12703 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 12704 val = deposit32(0, 31, 1, f32_sign); 12705 val = deposit32(val, 23, 8, f32_exp); 12706 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 12707 return make_float32(val); 12708 } 12709 12710 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 12711 { 12712 float_status *s = fpstp; 12713 float64 f64 = float64_squash_input_denormal(input, s); 12714 uint64_t val = float64_val(f64); 12715 bool f64_sign = float64_is_neg(f64); 12716 int f64_exp = extract64(val, 52, 11); 12717 uint64_t f64_frac = extract64(val, 0, 52); 12718 12719 if (float64_is_any_nan(f64)) { 12720 float64 nan = f64; 12721 if (float64_is_signaling_nan(f64, s)) { 12722 float_raise(float_flag_invalid, s); 12723 nan = float64_silence_nan(f64, s); 12724 } 12725 if (s->default_nan_mode) { 12726 nan = float64_default_nan(s); 12727 } 12728 return nan; 12729 } else if (float64_is_zero(f64)) { 12730 float_raise(float_flag_divbyzero, s); 12731 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 12732 } else if (float64_is_neg(f64)) { 12733 float_raise(float_flag_invalid, s); 12734 return float64_default_nan(s); 12735 } else if (float64_is_infinity(f64)) { 12736 return float64_zero; 12737 } 12738 12739 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 12740 12741 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 12742 val = deposit64(0, 61, 1, f64_sign); 12743 val = deposit64(val, 52, 11, f64_exp); 12744 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 12745 return make_float64(val); 12746 } 12747 12748 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 12749 { 12750 /* float_status *s = fpstp; */ 12751 int input, estimate; 12752 12753 if ((a & 0x80000000) == 0) { 12754 return 0xffffffff; 12755 } 12756 12757 input = extract32(a, 23, 9); 12758 estimate = recip_estimate(input); 12759 12760 return deposit32(0, (32 - 9), 9, estimate); 12761 } 12762 12763 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 12764 { 12765 int estimate; 12766 12767 if ((a & 0xc0000000) == 0) { 12768 return 0xffffffff; 12769 } 12770 12771 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 12772 12773 return deposit32(0, 23, 9, estimate); 12774 } 12775 12776 /* VFPv4 fused multiply-accumulate */ 12777 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 12778 { 12779 float_status *fpst = fpstp; 12780 return float32_muladd(a, b, c, 0, fpst); 12781 } 12782 12783 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12784 { 12785 float_status *fpst = fpstp; 12786 return float64_muladd(a, b, c, 0, fpst); 12787 } 12788 12789 /* ARMv8 round to integral */ 12790 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12791 { 12792 return float32_round_to_int(x, fp_status); 12793 } 12794 12795 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12796 { 12797 return float64_round_to_int(x, fp_status); 12798 } 12799 12800 float32 HELPER(rints)(float32 x, void *fp_status) 12801 { 12802 int old_flags = get_float_exception_flags(fp_status), new_flags; 12803 float32 ret; 12804 12805 ret = float32_round_to_int(x, fp_status); 12806 12807 /* Suppress any inexact exceptions the conversion produced */ 12808 if (!(old_flags & float_flag_inexact)) { 12809 new_flags = get_float_exception_flags(fp_status); 12810 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12811 } 12812 12813 return ret; 12814 } 12815 12816 float64 HELPER(rintd)(float64 x, void *fp_status) 12817 { 12818 int old_flags = get_float_exception_flags(fp_status), new_flags; 12819 float64 ret; 12820 12821 ret = float64_round_to_int(x, fp_status); 12822 12823 new_flags = get_float_exception_flags(fp_status); 12824 12825 /* Suppress any inexact exceptions the conversion produced */ 12826 if (!(old_flags & float_flag_inexact)) { 12827 new_flags = get_float_exception_flags(fp_status); 12828 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12829 } 12830 12831 return ret; 12832 } 12833 12834 /* Convert ARM rounding mode to softfloat */ 12835 int arm_rmode_to_sf(int rmode) 12836 { 12837 switch (rmode) { 12838 case FPROUNDING_TIEAWAY: 12839 rmode = float_round_ties_away; 12840 break; 12841 case FPROUNDING_ODD: 12842 /* FIXME: add support for TIEAWAY and ODD */ 12843 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12844 rmode); 12845 /* fall through for now */ 12846 case FPROUNDING_TIEEVEN: 12847 default: 12848 rmode = float_round_nearest_even; 12849 break; 12850 case FPROUNDING_POSINF: 12851 rmode = float_round_up; 12852 break; 12853 case FPROUNDING_NEGINF: 12854 rmode = float_round_down; 12855 break; 12856 case FPROUNDING_ZERO: 12857 rmode = float_round_to_zero; 12858 break; 12859 } 12860 return rmode; 12861 } 12862 12863 /* CRC helpers. 12864 * The upper bytes of val (above the number specified by 'bytes') must have 12865 * been zeroed out by the caller. 12866 */ 12867 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12868 { 12869 uint8_t buf[4]; 12870 12871 stl_le_p(buf, val); 12872 12873 /* zlib crc32 converts the accumulator and output to one's complement. */ 12874 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12875 } 12876 12877 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12878 { 12879 uint8_t buf[4]; 12880 12881 stl_le_p(buf, val); 12882 12883 /* Linux crc32c converts the output to one's complement. */ 12884 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12885 } 12886 12887 /* Return the exception level to which FP-disabled exceptions should 12888 * be taken, or 0 if FP is enabled. 12889 */ 12890 int fp_exception_el(CPUARMState *env, int cur_el) 12891 { 12892 #ifndef CONFIG_USER_ONLY 12893 int fpen; 12894 12895 /* CPACR and the CPTR registers don't exist before v6, so FP is 12896 * always accessible 12897 */ 12898 if (!arm_feature(env, ARM_FEATURE_V6)) { 12899 return 0; 12900 } 12901 12902 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12903 * 0, 2 : trap EL0 and EL1/PL1 accesses 12904 * 1 : trap only EL0 accesses 12905 * 3 : trap no accesses 12906 */ 12907 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12908 switch (fpen) { 12909 case 0: 12910 case 2: 12911 if (cur_el == 0 || cur_el == 1) { 12912 /* Trap to PL1, which might be EL1 or EL3 */ 12913 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12914 return 3; 12915 } 12916 return 1; 12917 } 12918 if (cur_el == 3 && !is_a64(env)) { 12919 /* Secure PL1 running at EL3 */ 12920 return 3; 12921 } 12922 break; 12923 case 1: 12924 if (cur_el == 0) { 12925 return 1; 12926 } 12927 break; 12928 case 3: 12929 break; 12930 } 12931 12932 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12933 * check because zero bits in the registers mean "don't trap". 12934 */ 12935 12936 /* CPTR_EL2 : present in v7VE or v8 */ 12937 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12938 && !arm_is_secure_below_el3(env)) { 12939 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12940 return 2; 12941 } 12942 12943 /* CPTR_EL3 : present in v8 */ 12944 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12945 /* Trap all FP ops to EL3 */ 12946 return 3; 12947 } 12948 #endif 12949 return 0; 12950 } 12951 12952 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12953 target_ulong *cs_base, uint32_t *pflags) 12954 { 12955 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12956 int current_el = arm_current_el(env); 12957 int fp_el = fp_exception_el(env, current_el); 12958 uint32_t flags; 12959 12960 if (is_a64(env)) { 12961 ARMCPU *cpu = arm_env_get_cpu(env); 12962 12963 *pc = env->pc; 12964 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12965 /* Get control bits for tagged addresses */ 12966 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12967 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12968 12969 if (cpu_isar_feature(aa64_sve, cpu)) { 12970 int sve_el = sve_exception_el(env, current_el); 12971 uint32_t zcr_len; 12972 12973 /* If SVE is disabled, but FP is enabled, 12974 * then the effective len is 0. 12975 */ 12976 if (sve_el != 0 && fp_el == 0) { 12977 zcr_len = 0; 12978 } else { 12979 zcr_len = sve_zcr_len_for_el(env, current_el); 12980 } 12981 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12982 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12983 } 12984 } else { 12985 *pc = env->regs[15]; 12986 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12987 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12988 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12989 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12990 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12991 if (!(access_secure_reg(env))) { 12992 flags |= ARM_TBFLAG_NS_MASK; 12993 } 12994 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12995 || arm_el_is_aa64(env, 1)) { 12996 flags |= ARM_TBFLAG_VFPEN_MASK; 12997 } 12998 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12999 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 13000 } 13001 13002 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 13003 13004 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13005 * states defined in the ARM ARM for software singlestep: 13006 * SS_ACTIVE PSTATE.SS State 13007 * 0 x Inactive (the TB flag for SS is always 0) 13008 * 1 0 Active-pending 13009 * 1 1 Active-not-pending 13010 */ 13011 if (arm_singlestep_active(env)) { 13012 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 13013 if (is_a64(env)) { 13014 if (env->pstate & PSTATE_SS) { 13015 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 13016 } 13017 } else { 13018 if (env->uncached_cpsr & PSTATE_SS) { 13019 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 13020 } 13021 } 13022 } 13023 if (arm_cpu_data_is_big_endian(env)) { 13024 flags |= ARM_TBFLAG_BE_DATA_MASK; 13025 } 13026 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 13027 13028 if (arm_v7m_is_handler_mode(env)) { 13029 flags |= ARM_TBFLAG_HANDLER_MASK; 13030 } 13031 13032 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is 13033 * suppressing them because the requested execution priority is less than 0. 13034 */ 13035 if (arm_feature(env, ARM_FEATURE_V8) && 13036 arm_feature(env, ARM_FEATURE_M) && 13037 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13038 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13039 flags |= ARM_TBFLAG_STACKCHECK_MASK; 13040 } 13041 13042 *pflags = flags; 13043 *cs_base = 0; 13044 } 13045 13046 #ifdef TARGET_AARCH64 13047 /* 13048 * The manual says that when SVE is enabled and VQ is widened the 13049 * implementation is allowed to zero the previously inaccessible 13050 * portion of the registers. The corollary to that is that when 13051 * SVE is enabled and VQ is narrowed we are also allowed to zero 13052 * the now inaccessible portion of the registers. 13053 * 13054 * The intent of this is that no predicate bit beyond VQ is ever set. 13055 * Which means that some operations on predicate registers themselves 13056 * may operate on full uint64_t or even unrolled across the maximum 13057 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13058 * may well be cheaper than conditionals to restrict the operation 13059 * to the relevant portion of a uint16_t[16]. 13060 */ 13061 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13062 { 13063 int i, j; 13064 uint64_t pmask; 13065 13066 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13067 assert(vq <= arm_env_get_cpu(env)->sve_max_vq); 13068 13069 /* Zap the high bits of the zregs. */ 13070 for (i = 0; i < 32; i++) { 13071 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13072 } 13073 13074 /* Zap the high bits of the pregs and ffr. */ 13075 pmask = 0; 13076 if (vq & 3) { 13077 pmask = ~(-1ULL << (16 * (vq & 3))); 13078 } 13079 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13080 for (i = 0; i < 17; ++i) { 13081 env->vfp.pregs[i].p[j] &= pmask; 13082 } 13083 pmask = 0; 13084 } 13085 } 13086 13087 /* 13088 * Notice a change in SVE vector size when changing EL. 13089 */ 13090 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13091 int new_el, bool el0_a64) 13092 { 13093 ARMCPU *cpu = arm_env_get_cpu(env); 13094 int old_len, new_len; 13095 bool old_a64, new_a64; 13096 13097 /* Nothing to do if no SVE. */ 13098 if (!cpu_isar_feature(aa64_sve, cpu)) { 13099 return; 13100 } 13101 13102 /* Nothing to do if FP is disabled in either EL. */ 13103 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13104 return; 13105 } 13106 13107 /* 13108 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13109 * at ELx, or not available because the EL is in AArch32 state, then 13110 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13111 * has an effective value of 0". 13112 * 13113 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13114 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13115 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13116 * we already have the correct register contents when encountering the 13117 * vq0->vq0 transition between EL0->EL1. 13118 */ 13119 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13120 old_len = (old_a64 && !sve_exception_el(env, old_el) 13121 ? sve_zcr_len_for_el(env, old_el) : 0); 13122 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13123 new_len = (new_a64 && !sve_exception_el(env, new_el) 13124 ? sve_zcr_len_for_el(env, new_el) : 0); 13125 13126 /* When changing vector length, clear inaccessible state. */ 13127 if (new_len < old_len) { 13128 aarch64_sve_narrow_vq(env, new_len + 1); 13129 } 13130 } 13131 #endif 13132