xref: /openbmc/qemu/target/arm/helper.c (revision 44b1ff31)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 static bool get_phys_addr(CPUARMState *env, target_ulong address,
23                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
24                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25                           target_ulong *page_size, uint32_t *fsr,
26                           ARMMMUFaultInfo *fi);
27 
28 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
29                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
31                                target_ulong *page_size_ptr, uint32_t *fsr,
32                                ARMMMUFaultInfo *fi);
33 
34 /* Definitions for the PMCCNTR and PMCR registers */
35 #define PMCRD   0x8
36 #define PMCRC   0x4
37 #define PMCRE   0x1
38 #endif
39 
40 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 {
42     int nregs;
43 
44     /* VFP data registers are always little-endian.  */
45     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
46     if (reg < nregs) {
47         stfq_le_p(buf, env->vfp.regs[reg]);
48         return 8;
49     }
50     if (arm_feature(env, ARM_FEATURE_NEON)) {
51         /* Aliases for Q regs.  */
52         nregs += 16;
53         if (reg < nregs) {
54             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
55             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
56             return 16;
57         }
58     }
59     switch (reg - nregs) {
60     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
61     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
62     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63     }
64     return 0;
65 }
66 
67 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 {
69     int nregs;
70 
71     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
72     if (reg < nregs) {
73         env->vfp.regs[reg] = ldfq_le_p(buf);
74         return 8;
75     }
76     if (arm_feature(env, ARM_FEATURE_NEON)) {
77         nregs += 16;
78         if (reg < nregs) {
79             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
80             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
81             return 16;
82         }
83     }
84     switch (reg - nregs) {
85     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
86     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88     }
89     return 0;
90 }
91 
92 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 {
94     switch (reg) {
95     case 0 ... 31:
96         /* 128 bit FP register */
97         stfq_le_p(buf, env->vfp.regs[reg * 2]);
98         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
99         return 16;
100     case 32:
101         /* FPSR */
102         stl_p(buf, vfp_get_fpsr(env));
103         return 4;
104     case 33:
105         /* FPCR */
106         stl_p(buf, vfp_get_fpcr(env));
107         return 4;
108     default:
109         return 0;
110     }
111 }
112 
113 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115     switch (reg) {
116     case 0 ... 31:
117         /* 128 bit FP register */
118         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
119         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
120         return 16;
121     case 32:
122         /* FPSR */
123         vfp_set_fpsr(env, ldl_p(buf));
124         return 4;
125     case 33:
126         /* FPCR */
127         vfp_set_fpcr(env, ldl_p(buf));
128         return 4;
129     default:
130         return 0;
131     }
132 }
133 
134 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 {
136     assert(ri->fieldoffset);
137     if (cpreg_field_is_64bit(ri)) {
138         return CPREG_FIELD64(env, ri);
139     } else {
140         return CPREG_FIELD32(env, ri);
141     }
142 }
143 
144 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
145                       uint64_t value)
146 {
147     assert(ri->fieldoffset);
148     if (cpreg_field_is_64bit(ri)) {
149         CPREG_FIELD64(env, ri) = value;
150     } else {
151         CPREG_FIELD32(env, ri) = value;
152     }
153 }
154 
155 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 {
157     return (char *)env + ri->fieldoffset;
158 }
159 
160 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 {
162     /* Raw read of a coprocessor register (as needed for migration, etc). */
163     if (ri->type & ARM_CP_CONST) {
164         return ri->resetvalue;
165     } else if (ri->raw_readfn) {
166         return ri->raw_readfn(env, ri);
167     } else if (ri->readfn) {
168         return ri->readfn(env, ri);
169     } else {
170         return raw_read(env, ri);
171     }
172 }
173 
174 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175                              uint64_t v)
176 {
177     /* Raw write of a coprocessor register (as needed for migration, etc).
178      * Note that constant registers are treated as write-ignored; the
179      * caller should check for success by whether a readback gives the
180      * value written.
181      */
182     if (ri->type & ARM_CP_CONST) {
183         return;
184     } else if (ri->raw_writefn) {
185         ri->raw_writefn(env, ri, v);
186     } else if (ri->writefn) {
187         ri->writefn(env, ri, v);
188     } else {
189         raw_write(env, ri, v);
190     }
191 }
192 
193 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 {
195    /* Return true if the regdef would cause an assertion if you called
196     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
197     * program bug for it not to have the NO_RAW flag).
198     * NB that returning false here doesn't necessarily mean that calling
199     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
200     * read/write access functions which are safe for raw use" from "has
201     * read/write access functions which have side effects but has forgotten
202     * to provide raw access functions".
203     * The tests here line up with the conditions in read/write_raw_cp_reg()
204     * and assertions in raw_read()/raw_write().
205     */
206     if ((ri->type & ARM_CP_CONST) ||
207         ri->fieldoffset ||
208         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
209         return false;
210     }
211     return true;
212 }
213 
214 bool write_cpustate_to_list(ARMCPU *cpu)
215 {
216     /* Write the coprocessor state from cpu->env to the (index,value) list. */
217     int i;
218     bool ok = true;
219 
220     for (i = 0; i < cpu->cpreg_array_len; i++) {
221         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
222         const ARMCPRegInfo *ri;
223 
224         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225         if (!ri) {
226             ok = false;
227             continue;
228         }
229         if (ri->type & ARM_CP_NO_RAW) {
230             continue;
231         }
232         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233     }
234     return ok;
235 }
236 
237 bool write_list_to_cpustate(ARMCPU *cpu)
238 {
239     int i;
240     bool ok = true;
241 
242     for (i = 0; i < cpu->cpreg_array_len; i++) {
243         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
244         uint64_t v = cpu->cpreg_values[i];
245         const ARMCPRegInfo *ri;
246 
247         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248         if (!ri) {
249             ok = false;
250             continue;
251         }
252         if (ri->type & ARM_CP_NO_RAW) {
253             continue;
254         }
255         /* Write value and confirm it reads back as written
256          * (to catch read-only registers and partially read-only
257          * registers where the incoming migration value doesn't match)
258          */
259         write_raw_cp_reg(&cpu->env, ri, v);
260         if (read_raw_cp_reg(&cpu->env, ri) != v) {
261             ok = false;
262         }
263     }
264     return ok;
265 }
266 
267 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 {
269     ARMCPU *cpu = opaque;
270     uint64_t regidx;
271     const ARMCPRegInfo *ri;
272 
273     regidx = *(uint32_t *)key;
274     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 
276     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
278         /* The value array need not be initialized at this point */
279         cpu->cpreg_array_len++;
280     }
281 }
282 
283 static void count_cpreg(gpointer key, gpointer opaque)
284 {
285     ARMCPU *cpu = opaque;
286     uint64_t regidx;
287     const ARMCPRegInfo *ri;
288 
289     regidx = *(uint32_t *)key;
290     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291 
292     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293         cpu->cpreg_array_len++;
294     }
295 }
296 
297 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 {
299     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
300     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301 
302     if (aidx > bidx) {
303         return 1;
304     }
305     if (aidx < bidx) {
306         return -1;
307     }
308     return 0;
309 }
310 
311 void init_cpreg_list(ARMCPU *cpu)
312 {
313     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
314      * Note that we require cpreg_tuples[] to be sorted by key ID.
315      */
316     GList *keys;
317     int arraylen;
318 
319     keys = g_hash_table_get_keys(cpu->cp_regs);
320     keys = g_list_sort(keys, cpreg_key_compare);
321 
322     cpu->cpreg_array_len = 0;
323 
324     g_list_foreach(keys, count_cpreg, cpu);
325 
326     arraylen = cpu->cpreg_array_len;
327     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
328     cpu->cpreg_values = g_new(uint64_t, arraylen);
329     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
330     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
331     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
332     cpu->cpreg_array_len = 0;
333 
334     g_list_foreach(keys, add_cpreg_to_list, cpu);
335 
336     assert(cpu->cpreg_array_len == arraylen);
337 
338     g_list_free(keys);
339 }
340 
341 /*
342  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
343  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344  *
345  * access_el3_aa32ns: Used to check AArch32 register views.
346  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347  */
348 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349                                         const ARMCPRegInfo *ri,
350                                         bool isread)
351 {
352     bool secure = arm_is_secure_below_el3(env);
353 
354     assert(!arm_el_is_aa64(env, 3));
355     if (secure) {
356         return CP_ACCESS_TRAP_UNCATEGORIZED;
357     }
358     return CP_ACCESS_OK;
359 }
360 
361 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362                                                 const ARMCPRegInfo *ri,
363                                                 bool isread)
364 {
365     if (!arm_el_is_aa64(env, 3)) {
366         return access_el3_aa32ns(env, ri, isread);
367     }
368     return CP_ACCESS_OK;
369 }
370 
371 /* Some secure-only AArch32 registers trap to EL3 if used from
372  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
373  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
374  * We assume that the .access field is set to PL1_RW.
375  */
376 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377                                             const ARMCPRegInfo *ri,
378                                             bool isread)
379 {
380     if (arm_current_el(env) == 3) {
381         return CP_ACCESS_OK;
382     }
383     if (arm_is_secure_below_el3(env)) {
384         return CP_ACCESS_TRAP_EL3;
385     }
386     /* This will be EL1 NS and EL2 NS, which just UNDEF */
387     return CP_ACCESS_TRAP_UNCATEGORIZED;
388 }
389 
390 /* Check for traps to "powerdown debug" registers, which are controlled
391  * by MDCR.TDOSA
392  */
393 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
394                                    bool isread)
395 {
396     int el = arm_current_el(env);
397 
398     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
399         && !arm_is_secure_below_el3(env)) {
400         return CP_ACCESS_TRAP_EL2;
401     }
402     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
403         return CP_ACCESS_TRAP_EL3;
404     }
405     return CP_ACCESS_OK;
406 }
407 
408 /* Check for traps to "debug ROM" registers, which are controlled
409  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410  */
411 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
412                                   bool isread)
413 {
414     int el = arm_current_el(env);
415 
416     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
417         && !arm_is_secure_below_el3(env)) {
418         return CP_ACCESS_TRAP_EL2;
419     }
420     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
421         return CP_ACCESS_TRAP_EL3;
422     }
423     return CP_ACCESS_OK;
424 }
425 
426 /* Check for traps to general debug registers, which are controlled
427  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428  */
429 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
430                                   bool isread)
431 {
432     int el = arm_current_el(env);
433 
434     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
435         && !arm_is_secure_below_el3(env)) {
436         return CP_ACCESS_TRAP_EL2;
437     }
438     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
439         return CP_ACCESS_TRAP_EL3;
440     }
441     return CP_ACCESS_OK;
442 }
443 
444 /* Check for traps to performance monitor registers, which are controlled
445  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446  */
447 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
448                                  bool isread)
449 {
450     int el = arm_current_el(env);
451 
452     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
453         && !arm_is_secure_below_el3(env)) {
454         return CP_ACCESS_TRAP_EL2;
455     }
456     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
457         return CP_ACCESS_TRAP_EL3;
458     }
459     return CP_ACCESS_OK;
460 }
461 
462 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 {
464     ARMCPU *cpu = arm_env_get_cpu(env);
465 
466     raw_write(env, ri, value);
467     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 }
469 
470 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 {
472     ARMCPU *cpu = arm_env_get_cpu(env);
473 
474     if (raw_read(env, ri) != value) {
475         /* Unlike real hardware the qemu TLB uses virtual addresses,
476          * not modified virtual addresses, so this causes a TLB flush.
477          */
478         tlb_flush(CPU(cpu));
479         raw_write(env, ri, value);
480     }
481 }
482 
483 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484                              uint64_t value)
485 {
486     ARMCPU *cpu = arm_env_get_cpu(env);
487 
488     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
489         && !extended_addresses_enabled(env)) {
490         /* For VMSA (when not using the LPAE long descriptor page table
491          * format) this register includes the ASID, so do a TLB flush.
492          * For PMSA it is purely a process ID and no action is needed.
493          */
494         tlb_flush(CPU(cpu));
495     }
496     raw_write(env, ri, value);
497 }
498 
499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate all (TLBIALL) */
503     ARMCPU *cpu = arm_env_get_cpu(env);
504 
505     tlb_flush(CPU(cpu));
506 }
507 
508 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
509                           uint64_t value)
510 {
511     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512     ARMCPU *cpu = arm_env_get_cpu(env);
513 
514     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 }
516 
517 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
518                            uint64_t value)
519 {
520     /* Invalidate by ASID (TLBIASID) */
521     ARMCPU *cpu = arm_env_get_cpu(env);
522 
523     tlb_flush(CPU(cpu));
524 }
525 
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     ARMCPU *cpu = arm_env_get_cpu(env);
531 
532     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 }
534 
535 /* IS variants of TLB operations must affect all cores */
536 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
537                              uint64_t value)
538 {
539     CPUState *cs = ENV_GET_CPU(env);
540 
541     tlb_flush_all_cpus_synced(cs);
542 }
543 
544 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                              uint64_t value)
546 {
547     CPUState *cs = ENV_GET_CPU(env);
548 
549     tlb_flush_all_cpus_synced(cs);
550 }
551 
552 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
553                              uint64_t value)
554 {
555     CPUState *cs = ENV_GET_CPU(env);
556 
557     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
558 }
559 
560 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
561                              uint64_t value)
562 {
563     CPUState *cs = ENV_GET_CPU(env);
564 
565     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
566 }
567 
568 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
569                                uint64_t value)
570 {
571     CPUState *cs = ENV_GET_CPU(env);
572 
573     tlb_flush_by_mmuidx(cs,
574                         ARMMMUIdxBit_S12NSE1 |
575                         ARMMMUIdxBit_S12NSE0 |
576                         ARMMMUIdxBit_S2NS);
577 }
578 
579 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
580                                   uint64_t value)
581 {
582     CPUState *cs = ENV_GET_CPU(env);
583 
584     tlb_flush_by_mmuidx_all_cpus_synced(cs,
585                                         ARMMMUIdxBit_S12NSE1 |
586                                         ARMMMUIdxBit_S12NSE0 |
587                                         ARMMMUIdxBit_S2NS);
588 }
589 
590 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
591                             uint64_t value)
592 {
593     /* Invalidate by IPA. This has to invalidate any structures that
594      * contain only stage 2 translation information, but does not need
595      * to apply to structures that contain combined stage 1 and stage 2
596      * translation information.
597      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
598      */
599     CPUState *cs = ENV_GET_CPU(env);
600     uint64_t pageaddr;
601 
602     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
603         return;
604     }
605 
606     pageaddr = sextract64(value << 12, 0, 40);
607 
608     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
609 }
610 
611 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
612                                uint64_t value)
613 {
614     CPUState *cs = ENV_GET_CPU(env);
615     uint64_t pageaddr;
616 
617     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
618         return;
619     }
620 
621     pageaddr = sextract64(value << 12, 0, 40);
622 
623     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
624                                              ARMMMUIdxBit_S2NS);
625 }
626 
627 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
628                               uint64_t value)
629 {
630     CPUState *cs = ENV_GET_CPU(env);
631 
632     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
633 }
634 
635 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636                                  uint64_t value)
637 {
638     CPUState *cs = ENV_GET_CPU(env);
639 
640     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
641 }
642 
643 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
644                               uint64_t value)
645 {
646     CPUState *cs = ENV_GET_CPU(env);
647     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
648 
649     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
650 }
651 
652 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
653                                  uint64_t value)
654 {
655     CPUState *cs = ENV_GET_CPU(env);
656     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657 
658     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
659                                              ARMMMUIdxBit_S1E2);
660 }
661 
662 static const ARMCPRegInfo cp_reginfo[] = {
663     /* Define the secure and non-secure FCSE identifier CP registers
664      * separately because there is no secure bank in V8 (no _EL3).  This allows
665      * the secure register to be properly reset and migrated. There is also no
666      * v8 EL1 version of the register so the non-secure instance stands alone.
667      */
668     { .name = "FCSEIDR(NS)",
669       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
670       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
671       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
672       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
673     { .name = "FCSEIDR(S)",
674       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
675       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
676       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678     /* Define the secure and non-secure context identifier CP registers
679      * separately because there is no secure bank in V8 (no _EL3).  This allows
680      * the secure register to be properly reset and migrated.  In the
681      * non-secure case, the 32-bit register will have reset and migration
682      * disabled during registration as it is handled by the 64-bit instance.
683      */
684     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
687       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
688       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
689     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
690       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
691       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
692       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694     REGINFO_SENTINEL
695 };
696 
697 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
698     /* NB: Some of these registers exist in v8 but with more precise
699      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
700      */
701     /* MMU Domain access control / MPU write buffer control */
702     { .name = "DACR",
703       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
704       .access = PL1_RW, .resetvalue = 0,
705       .writefn = dacr_write, .raw_writefn = raw_write,
706       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
707                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
709      * For v6 and v5, these mappings are overly broad.
710      */
711     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
712       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
713     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
714       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
715     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
716       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
717     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719     /* Cache maintenance ops; some of this space may be overridden later. */
720     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
721       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
722       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723     REGINFO_SENTINEL
724 };
725 
726 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
727     /* Not all pre-v6 cores implemented this WFI, so this is slightly
728      * over-broad.
729      */
730     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
731       .access = PL1_W, .type = ARM_CP_WFI },
732     REGINFO_SENTINEL
733 };
734 
735 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
736     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
737      * is UNPREDICTABLE; we choose to NOP as most implementations do).
738      */
739     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
740       .access = PL1_W, .type = ARM_CP_WFI },
741     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
742      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
743      * OMAPCP will override this space.
744      */
745     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
746       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
747       .resetvalue = 0 },
748     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
749       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
750       .resetvalue = 0 },
751     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
752     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754       .resetvalue = 0 },
755     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
756      * implementing it as RAZ means the "debug architecture version" bits
757      * will read as a reserved value, which should cause Linux to not try
758      * to use the debug hardware.
759      */
760     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
761       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762     /* MMU TLB control. Note that the wildcarding means we cover not just
763      * the unified TLB ops but also the dside/iside/inner-shareable variants.
764      */
765     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
766       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767       .type = ARM_CP_NO_RAW },
768     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
769       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770       .type = ARM_CP_NO_RAW },
771     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
772       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773       .type = ARM_CP_NO_RAW },
774     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
775       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776       .type = ARM_CP_NO_RAW },
777     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
778       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
779     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
780       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781     REGINFO_SENTINEL
782 };
783 
784 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
785                         uint64_t value)
786 {
787     uint32_t mask = 0;
788 
789     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
790     if (!arm_feature(env, ARM_FEATURE_V8)) {
791         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
792          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
793          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
794          */
795         if (arm_feature(env, ARM_FEATURE_VFP)) {
796             /* VFP coprocessor: cp10 & cp11 [23:20] */
797             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
798 
799             if (!arm_feature(env, ARM_FEATURE_NEON)) {
800                 /* ASEDIS [31] bit is RAO/WI */
801                 value |= (1 << 31);
802             }
803 
804             /* VFPv3 and upwards with NEON implement 32 double precision
805              * registers (D0-D31).
806              */
807             if (!arm_feature(env, ARM_FEATURE_NEON) ||
808                     !arm_feature(env, ARM_FEATURE_VFP3)) {
809                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
810                 value |= (1 << 30);
811             }
812         }
813         value &= mask;
814     }
815     env->cp15.cpacr_el1 = value;
816 }
817 
818 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
819                                    bool isread)
820 {
821     if (arm_feature(env, ARM_FEATURE_V8)) {
822         /* Check if CPACR accesses are to be trapped to EL2 */
823         if (arm_current_el(env) == 1 &&
824             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
825             return CP_ACCESS_TRAP_EL2;
826         /* Check if CPACR accesses are to be trapped to EL3 */
827         } else if (arm_current_el(env) < 3 &&
828                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
829             return CP_ACCESS_TRAP_EL3;
830         }
831     }
832 
833     return CP_ACCESS_OK;
834 }
835 
836 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
837                                   bool isread)
838 {
839     /* Check if CPTR accesses are set to trap to EL3 */
840     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
841         return CP_ACCESS_TRAP_EL3;
842     }
843 
844     return CP_ACCESS_OK;
845 }
846 
847 static const ARMCPRegInfo v6_cp_reginfo[] = {
848     /* prefetch by MVA in v6, NOP in v7 */
849     { .name = "MVA_prefetch",
850       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
851       .access = PL1_W, .type = ARM_CP_NOP },
852     /* We need to break the TB after ISB to execute self-modifying code
853      * correctly and also to take any pending interrupts immediately.
854      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
855      */
856     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861       .access = PL0_W, .type = ARM_CP_NOP },
862     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863       .access = PL1_RW,
864       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
865                              offsetof(CPUARMState, cp15.ifar_ns) },
866       .resetvalue = 0, },
867     /* Watchpoint Fault Address Register : should actually only be present
868      * for 1136, 1176, 11MPCore.
869      */
870     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
871       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetvalue = 0, .writefn = cpacr_write },
876     REGINFO_SENTINEL
877 };
878 
879 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
880                                    bool isread)
881 {
882     /* Performance monitor registers user accessibility is controlled
883      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
884      * trapping to EL2 or EL3 for other accesses.
885      */
886     int el = arm_current_el(env);
887 
888     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889         return CP_ACCESS_TRAP;
890     }
891     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
892         && !arm_is_secure_below_el3(env)) {
893         return CP_ACCESS_TRAP_EL2;
894     }
895     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
896         return CP_ACCESS_TRAP_EL3;
897     }
898 
899     return CP_ACCESS_OK;
900 }
901 
902 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
903                                            const ARMCPRegInfo *ri,
904                                            bool isread)
905 {
906     /* ER: event counter read trap control */
907     if (arm_feature(env, ARM_FEATURE_V8)
908         && arm_current_el(env) == 0
909         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
910         && isread) {
911         return CP_ACCESS_OK;
912     }
913 
914     return pmreg_access(env, ri, isread);
915 }
916 
917 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
918                                          const ARMCPRegInfo *ri,
919                                          bool isread)
920 {
921     /* SW: software increment write trap control */
922     if (arm_feature(env, ARM_FEATURE_V8)
923         && arm_current_el(env) == 0
924         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
925         && !isread) {
926         return CP_ACCESS_OK;
927     }
928 
929     return pmreg_access(env, ri, isread);
930 }
931 
932 #ifndef CONFIG_USER_ONLY
933 
934 static CPAccessResult pmreg_access_selr(CPUARMState *env,
935                                         const ARMCPRegInfo *ri,
936                                         bool isread)
937 {
938     /* ER: event counter read trap control */
939     if (arm_feature(env, ARM_FEATURE_V8)
940         && arm_current_el(env) == 0
941         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
942         return CP_ACCESS_OK;
943     }
944 
945     return pmreg_access(env, ri, isread);
946 }
947 
948 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
949                                          const ARMCPRegInfo *ri,
950                                          bool isread)
951 {
952     /* CR: cycle counter read trap control */
953     if (arm_feature(env, ARM_FEATURE_V8)
954         && arm_current_el(env) == 0
955         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
956         && isread) {
957         return CP_ACCESS_OK;
958     }
959 
960     return pmreg_access(env, ri, isread);
961 }
962 
963 static inline bool arm_ccnt_enabled(CPUARMState *env)
964 {
965     /* This does not support checking PMCCFILTR_EL0 register */
966 
967     if (!(env->cp15.c9_pmcr & PMCRE)) {
968         return false;
969     }
970 
971     return true;
972 }
973 
974 void pmccntr_sync(CPUARMState *env)
975 {
976     uint64_t temp_ticks;
977 
978     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
979                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
980 
981     if (env->cp15.c9_pmcr & PMCRD) {
982         /* Increment once every 64 processor clock cycles */
983         temp_ticks /= 64;
984     }
985 
986     if (arm_ccnt_enabled(env)) {
987         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
988     }
989 }
990 
991 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
992                        uint64_t value)
993 {
994     pmccntr_sync(env);
995 
996     if (value & PMCRC) {
997         /* The counter has been reset */
998         env->cp15.c15_ccnt = 0;
999     }
1000 
1001     /* only the DP, X, D and E bits are writable */
1002     env->cp15.c9_pmcr &= ~0x39;
1003     env->cp15.c9_pmcr |= (value & 0x39);
1004 
1005     pmccntr_sync(env);
1006 }
1007 
1008 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1009 {
1010     uint64_t total_ticks;
1011 
1012     if (!arm_ccnt_enabled(env)) {
1013         /* Counter is disabled, do not change value */
1014         return env->cp15.c15_ccnt;
1015     }
1016 
1017     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1018                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1019 
1020     if (env->cp15.c9_pmcr & PMCRD) {
1021         /* Increment once every 64 processor clock cycles */
1022         total_ticks /= 64;
1023     }
1024     return total_ticks - env->cp15.c15_ccnt;
1025 }
1026 
1027 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1028                          uint64_t value)
1029 {
1030     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1031      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1032      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1033      * accessed.
1034      */
1035     env->cp15.c9_pmselr = value & 0x1f;
1036 }
1037 
1038 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1039                         uint64_t value)
1040 {
1041     uint64_t total_ticks;
1042 
1043     if (!arm_ccnt_enabled(env)) {
1044         /* Counter is disabled, set the absolute value */
1045         env->cp15.c15_ccnt = value;
1046         return;
1047     }
1048 
1049     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1050                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1051 
1052     if (env->cp15.c9_pmcr & PMCRD) {
1053         /* Increment once every 64 processor clock cycles */
1054         total_ticks /= 64;
1055     }
1056     env->cp15.c15_ccnt = total_ticks - value;
1057 }
1058 
1059 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1060                             uint64_t value)
1061 {
1062     uint64_t cur_val = pmccntr_read(env, NULL);
1063 
1064     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1065 }
1066 
1067 #else /* CONFIG_USER_ONLY */
1068 
1069 void pmccntr_sync(CPUARMState *env)
1070 {
1071 }
1072 
1073 #endif
1074 
1075 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1076                             uint64_t value)
1077 {
1078     pmccntr_sync(env);
1079     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1080     pmccntr_sync(env);
1081 }
1082 
1083 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084                             uint64_t value)
1085 {
1086     value &= (1 << 31);
1087     env->cp15.c9_pmcnten |= value;
1088 }
1089 
1090 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1091                              uint64_t value)
1092 {
1093     value &= (1 << 31);
1094     env->cp15.c9_pmcnten &= ~value;
1095 }
1096 
1097 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1098                          uint64_t value)
1099 {
1100     env->cp15.c9_pmovsr &= ~value;
1101 }
1102 
1103 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                              uint64_t value)
1105 {
1106     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1107      * PMSELR value is equal to or greater than the number of implemented
1108      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1109      */
1110     if (env->cp15.c9_pmselr == 0x1f) {
1111         pmccfiltr_write(env, ri, value);
1112     }
1113 }
1114 
1115 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1116 {
1117     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1118      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1119      */
1120     if (env->cp15.c9_pmselr == 0x1f) {
1121         return env->cp15.pmccfiltr_el0;
1122     } else {
1123         return 0;
1124     }
1125 }
1126 
1127 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128                             uint64_t value)
1129 {
1130     if (arm_feature(env, ARM_FEATURE_V8)) {
1131         env->cp15.c9_pmuserenr = value & 0xf;
1132     } else {
1133         env->cp15.c9_pmuserenr = value & 1;
1134     }
1135 }
1136 
1137 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1138                              uint64_t value)
1139 {
1140     /* We have no event counters so only the C bit can be changed */
1141     value &= (1 << 31);
1142     env->cp15.c9_pminten |= value;
1143 }
1144 
1145 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1146                              uint64_t value)
1147 {
1148     value &= (1 << 31);
1149     env->cp15.c9_pminten &= ~value;
1150 }
1151 
1152 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1153                        uint64_t value)
1154 {
1155     /* Note that even though the AArch64 view of this register has bits
1156      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1157      * architectural requirements for bits which are RES0 only in some
1158      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1159      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1160      */
1161     raw_write(env, ri, value & ~0x1FULL);
1162 }
1163 
1164 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1165 {
1166     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1167      * For bits that vary between AArch32/64, code needs to check the
1168      * current execution mode before directly using the feature bit.
1169      */
1170     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1171 
1172     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1173         valid_mask &= ~SCR_HCE;
1174 
1175         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1176          * supported if EL2 exists. The bit is UNK/SBZP when
1177          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1178          * when EL2 is unavailable.
1179          * On ARMv8, this bit is always available.
1180          */
1181         if (arm_feature(env, ARM_FEATURE_V7) &&
1182             !arm_feature(env, ARM_FEATURE_V8)) {
1183             valid_mask &= ~SCR_SMD;
1184         }
1185     }
1186 
1187     /* Clear all-context RES0 bits.  */
1188     value &= valid_mask;
1189     raw_write(env, ri, value);
1190 }
1191 
1192 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1193 {
1194     ARMCPU *cpu = arm_env_get_cpu(env);
1195 
1196     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1197      * bank
1198      */
1199     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1200                                         ri->secure & ARM_CP_SECSTATE_S);
1201 
1202     return cpu->ccsidr[index];
1203 }
1204 
1205 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206                          uint64_t value)
1207 {
1208     raw_write(env, ri, value & 0xf);
1209 }
1210 
1211 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1212 {
1213     CPUState *cs = ENV_GET_CPU(env);
1214     uint64_t ret = 0;
1215 
1216     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1217         ret |= CPSR_I;
1218     }
1219     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1220         ret |= CPSR_F;
1221     }
1222     /* External aborts are not possible in QEMU so A bit is always clear */
1223     return ret;
1224 }
1225 
1226 static const ARMCPRegInfo v7_cp_reginfo[] = {
1227     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1228     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1229       .access = PL1_W, .type = ARM_CP_NOP },
1230     /* Performance monitors are implementation defined in v7,
1231      * but with an ARM recommended set of registers, which we
1232      * follow (although we don't actually implement any counters)
1233      *
1234      * Performance registers fall into three categories:
1235      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1236      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1237      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1238      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1239      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1240      */
1241     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242       .access = PL0_RW, .type = ARM_CP_ALIAS,
1243       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244       .writefn = pmcntenset_write,
1245       .accessfn = pmreg_access,
1246       .raw_writefn = raw_write },
1247     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1248       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1249       .access = PL0_RW, .accessfn = pmreg_access,
1250       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1251       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253       .access = PL0_RW,
1254       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255       .accessfn = pmreg_access,
1256       .writefn = pmcntenclr_write,
1257       .type = ARM_CP_ALIAS },
1258     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1259       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1260       .access = PL0_RW, .accessfn = pmreg_access,
1261       .type = ARM_CP_ALIAS,
1262       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1263       .writefn = pmcntenclr_write },
1264     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1265       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266       .accessfn = pmreg_access,
1267       .writefn = pmovsr_write,
1268       .raw_writefn = raw_write },
1269     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1270       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1271       .access = PL0_RW, .accessfn = pmreg_access,
1272       .type = ARM_CP_ALIAS,
1273       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1274       .writefn = pmovsr_write,
1275       .raw_writefn = raw_write },
1276     /* Unimplemented so WI. */
1277     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279 #ifndef CONFIG_USER_ONLY
1280     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1281       .access = PL0_RW, .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284       .raw_writefn = raw_write},
1285     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1286       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287       .access = PL0_RW, .accessfn = pmreg_access_selr,
1288       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1289       .writefn = pmselr_write, .raw_writefn = raw_write, },
1290     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293       .accessfn = pmreg_access_ccntr },
1294     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1295       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297       .type = ARM_CP_IO,
1298       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299 #endif
1300     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1301       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302       .writefn = pmccfiltr_write,
1303       .access = PL0_RW, .accessfn = pmreg_access,
1304       .type = ARM_CP_IO,
1305       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1306       .resetvalue = 0, },
1307     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1309       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1310     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1311       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1312       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1313       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314     /* Unimplemented, RAZ/WI. */
1315     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317       .accessfn = pmreg_access_xevcntr },
1318     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1321       .resetvalue = 0,
1322       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1324       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1327       .resetvalue = 0,
1328       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330       .access = PL1_RW, .accessfn = access_tpm,
1331       .type = ARM_CP_ALIAS,
1332       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333       .resetvalue = 0,
1334       .writefn = pmintenset_write, .raw_writefn = raw_write },
1335     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1336       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1337       .access = PL1_RW, .accessfn = access_tpm,
1338       .type = ARM_CP_IO,
1339       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1340       .writefn = pmintenset_write, .raw_writefn = raw_write,
1341       .resetvalue = 0x0 },
1342     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345       .writefn = pmintenclr_write, },
1346     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1347       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1350       .writefn = pmintenclr_write },
1351     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1352       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1355       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1356       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1357       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1358                              offsetof(CPUARMState, cp15.csselr_ns) } },
1359     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1360      * just RAZ for all cores:
1361      */
1362     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1363       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365     /* Auxiliary fault status registers: these also are IMPDEF, and we
1366      * choose to RAZ/WI for all cores.
1367      */
1368     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1369       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1370       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1371     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1373       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374     /* MAIR can just read-as-written because we don't implement caches
1375      * and so don't need to care about memory attributes.
1376      */
1377     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1379       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380       .resetvalue = 0 },
1381     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1382       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1383       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1384       .resetvalue = 0 },
1385     /* For non-long-descriptor page tables these are PRRR and NMRR;
1386      * regardless they still act as reads-as-written for QEMU.
1387      */
1388      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1389       * allows them to assign the correct fieldoffset based on the endianness
1390       * handled in the field definitions.
1391       */
1392     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1394       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1395                              offsetof(CPUARMState, cp15.mair0_ns) },
1396       .resetfn = arm_cp_reset_ignore },
1397     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1399       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1400                              offsetof(CPUARMState, cp15.mair1_ns) },
1401       .resetfn = arm_cp_reset_ignore },
1402     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1403       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405     /* 32 bit ITLB invalidates */
1406     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412     /* 32 bit DTLB invalidates */
1413     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419     /* 32 bit TLB invalidates */
1420     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428     REGINFO_SENTINEL
1429 };
1430 
1431 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1432     /* 32 bit TLB invalidates, Inner Shareable */
1433     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W,
1439       .writefn = tlbiasid_is_write },
1440     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W,
1442       .writefn = tlbimvaa_is_write },
1443     REGINFO_SENTINEL
1444 };
1445 
1446 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1447                         uint64_t value)
1448 {
1449     value &= 1;
1450     env->teecr = value;
1451 }
1452 
1453 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1454                                     bool isread)
1455 {
1456     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457         return CP_ACCESS_TRAP;
1458     }
1459     return CP_ACCESS_OK;
1460 }
1461 
1462 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1463     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1464       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1465       .resetvalue = 0,
1466       .writefn = teecr_write },
1467     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1468       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469       .accessfn = teehbr_access, .resetvalue = 0 },
1470     REGINFO_SENTINEL
1471 };
1472 
1473 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1475       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1476       .access = PL0_RW,
1477       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1479       .access = PL0_RW,
1480       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1481                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482       .resetfn = arm_cp_reset_ignore },
1483     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1484       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1485       .access = PL0_R|PL1_W,
1486       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1487       .resetvalue = 0},
1488     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1489       .access = PL0_R|PL1_W,
1490       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1491                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492       .resetfn = arm_cp_reset_ignore },
1493     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495       .access = PL1_RW,
1496       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1497     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1498       .access = PL1_RW,
1499       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1500                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1501       .resetvalue = 0 },
1502     REGINFO_SENTINEL
1503 };
1504 
1505 #ifndef CONFIG_USER_ONLY
1506 
1507 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1508                                        bool isread)
1509 {
1510     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1511      * Writable only at the highest implemented exception level.
1512      */
1513     int el = arm_current_el(env);
1514 
1515     switch (el) {
1516     case 0:
1517         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1518             return CP_ACCESS_TRAP;
1519         }
1520         break;
1521     case 1:
1522         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1523             arm_is_secure_below_el3(env)) {
1524             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1525             return CP_ACCESS_TRAP_UNCATEGORIZED;
1526         }
1527         break;
1528     case 2:
1529     case 3:
1530         break;
1531     }
1532 
1533     if (!isread && el < arm_highest_el(env)) {
1534         return CP_ACCESS_TRAP_UNCATEGORIZED;
1535     }
1536 
1537     return CP_ACCESS_OK;
1538 }
1539 
1540 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1541                                         bool isread)
1542 {
1543     unsigned int cur_el = arm_current_el(env);
1544     bool secure = arm_is_secure(env);
1545 
1546     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1547     if (cur_el == 0 &&
1548         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1549         return CP_ACCESS_TRAP;
1550     }
1551 
1552     if (arm_feature(env, ARM_FEATURE_EL2) &&
1553         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1554         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1555         return CP_ACCESS_TRAP_EL2;
1556     }
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1561                                       bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1567      * EL0[PV]TEN is zero.
1568      */
1569     if (cur_el == 0 &&
1570         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1571         return CP_ACCESS_TRAP;
1572     }
1573 
1574     if (arm_feature(env, ARM_FEATURE_EL2) &&
1575         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1576         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1577         return CP_ACCESS_TRAP_EL2;
1578     }
1579     return CP_ACCESS_OK;
1580 }
1581 
1582 static CPAccessResult gt_pct_access(CPUARMState *env,
1583                                     const ARMCPRegInfo *ri,
1584                                     bool isread)
1585 {
1586     return gt_counter_access(env, GTIMER_PHYS, isread);
1587 }
1588 
1589 static CPAccessResult gt_vct_access(CPUARMState *env,
1590                                     const ARMCPRegInfo *ri,
1591                                     bool isread)
1592 {
1593     return gt_counter_access(env, GTIMER_VIRT, isread);
1594 }
1595 
1596 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1597                                        bool isread)
1598 {
1599     return gt_timer_access(env, GTIMER_PHYS, isread);
1600 }
1601 
1602 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1603                                        bool isread)
1604 {
1605     return gt_timer_access(env, GTIMER_VIRT, isread);
1606 }
1607 
1608 static CPAccessResult gt_stimer_access(CPUARMState *env,
1609                                        const ARMCPRegInfo *ri,
1610                                        bool isread)
1611 {
1612     /* The AArch64 register view of the secure physical timer is
1613      * always accessible from EL3, and configurably accessible from
1614      * Secure EL1.
1615      */
1616     switch (arm_current_el(env)) {
1617     case 1:
1618         if (!arm_is_secure(env)) {
1619             return CP_ACCESS_TRAP;
1620         }
1621         if (!(env->cp15.scr_el3 & SCR_ST)) {
1622             return CP_ACCESS_TRAP_EL3;
1623         }
1624         return CP_ACCESS_OK;
1625     case 0:
1626     case 2:
1627         return CP_ACCESS_TRAP;
1628     case 3:
1629         return CP_ACCESS_OK;
1630     default:
1631         g_assert_not_reached();
1632     }
1633 }
1634 
1635 static uint64_t gt_get_countervalue(CPUARMState *env)
1636 {
1637     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1638 }
1639 
1640 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1641 {
1642     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1643 
1644     if (gt->ctl & 1) {
1645         /* Timer enabled: calculate and set current ISTATUS, irq, and
1646          * reset timer to when ISTATUS next has to change
1647          */
1648         uint64_t offset = timeridx == GTIMER_VIRT ?
1649                                       cpu->env.cp15.cntvoff_el2 : 0;
1650         uint64_t count = gt_get_countervalue(&cpu->env);
1651         /* Note that this must be unsigned 64 bit arithmetic: */
1652         int istatus = count - offset >= gt->cval;
1653         uint64_t nexttick;
1654         int irqstate;
1655 
1656         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1657 
1658         irqstate = (istatus && !(gt->ctl & 2));
1659         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1660 
1661         if (istatus) {
1662             /* Next transition is when count rolls back over to zero */
1663             nexttick = UINT64_MAX;
1664         } else {
1665             /* Next transition is when we hit cval */
1666             nexttick = gt->cval + offset;
1667         }
1668         /* Note that the desired next expiry time might be beyond the
1669          * signed-64-bit range of a QEMUTimer -- in this case we just
1670          * set the timer for as far in the future as possible. When the
1671          * timer expires we will reset the timer for any remaining period.
1672          */
1673         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1674             nexttick = INT64_MAX / GTIMER_SCALE;
1675         }
1676         timer_mod(cpu->gt_timer[timeridx], nexttick);
1677         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678     } else {
1679         /* Timer disabled: ISTATUS and timer output always clear */
1680         gt->ctl &= ~4;
1681         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682         timer_del(cpu->gt_timer[timeridx]);
1683         trace_arm_gt_recalc_disabled(timeridx);
1684     }
1685 }
1686 
1687 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1688                            int timeridx)
1689 {
1690     ARMCPU *cpu = arm_env_get_cpu(env);
1691 
1692     timer_del(cpu->gt_timer[timeridx]);
1693 }
1694 
1695 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1696 {
1697     return gt_get_countervalue(env);
1698 }
1699 
1700 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1701 {
1702     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1703 }
1704 
1705 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706                           int timeridx,
1707                           uint64_t value)
1708 {
1709     trace_arm_gt_cval_write(timeridx, value);
1710     env->cp15.c14_timer[timeridx].cval = value;
1711     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1712 }
1713 
1714 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1715                              int timeridx)
1716 {
1717     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1718 
1719     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1720                       (gt_get_countervalue(env) - offset));
1721 }
1722 
1723 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724                           int timeridx,
1725                           uint64_t value)
1726 {
1727     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1728 
1729     trace_arm_gt_tval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731                                          sextract64(value, 0, 32);
1732     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1733 }
1734 
1735 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736                          int timeridx,
1737                          uint64_t value)
1738 {
1739     ARMCPU *cpu = arm_env_get_cpu(env);
1740     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1741 
1742     trace_arm_gt_ctl_write(timeridx, value);
1743     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744     if ((oldval ^ value) & 1) {
1745         /* Enable toggled */
1746         gt_recalc_timer(cpu, timeridx);
1747     } else if ((oldval ^ value) & 2) {
1748         /* IMASK toggled: don't need to recalculate,
1749          * just set the interrupt line based on ISTATUS
1750          */
1751         int irqstate = (oldval & 4) && !(value & 2);
1752 
1753         trace_arm_gt_imask_toggle(timeridx, irqstate);
1754         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1755     }
1756 }
1757 
1758 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1759 {
1760     gt_timer_reset(env, ri, GTIMER_PHYS);
1761 }
1762 
1763 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1764                                uint64_t value)
1765 {
1766     gt_cval_write(env, ri, GTIMER_PHYS, value);
1767 }
1768 
1769 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1770 {
1771     return gt_tval_read(env, ri, GTIMER_PHYS);
1772 }
1773 
1774 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1775                                uint64_t value)
1776 {
1777     gt_tval_write(env, ri, GTIMER_PHYS, value);
1778 }
1779 
1780 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781                               uint64_t value)
1782 {
1783     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1784 }
1785 
1786 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1787 {
1788     gt_timer_reset(env, ri, GTIMER_VIRT);
1789 }
1790 
1791 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                                uint64_t value)
1793 {
1794     gt_cval_write(env, ri, GTIMER_VIRT, value);
1795 }
1796 
1797 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1798 {
1799     return gt_tval_read(env, ri, GTIMER_VIRT);
1800 }
1801 
1802 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1803                                uint64_t value)
1804 {
1805     gt_tval_write(env, ri, GTIMER_VIRT, value);
1806 }
1807 
1808 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1809                               uint64_t value)
1810 {
1811     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1812 }
1813 
1814 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1815                               uint64_t value)
1816 {
1817     ARMCPU *cpu = arm_env_get_cpu(env);
1818 
1819     trace_arm_gt_cntvoff_write(value);
1820     raw_write(env, ri, value);
1821     gt_recalc_timer(cpu, GTIMER_VIRT);
1822 }
1823 
1824 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1825 {
1826     gt_timer_reset(env, ri, GTIMER_HYP);
1827 }
1828 
1829 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1830                               uint64_t value)
1831 {
1832     gt_cval_write(env, ri, GTIMER_HYP, value);
1833 }
1834 
1835 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1836 {
1837     return gt_tval_read(env, ri, GTIMER_HYP);
1838 }
1839 
1840 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841                               uint64_t value)
1842 {
1843     gt_tval_write(env, ri, GTIMER_HYP, value);
1844 }
1845 
1846 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                               uint64_t value)
1848 {
1849     gt_ctl_write(env, ri, GTIMER_HYP, value);
1850 }
1851 
1852 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     gt_timer_reset(env, ri, GTIMER_SEC);
1855 }
1856 
1857 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                               uint64_t value)
1859 {
1860     gt_cval_write(env, ri, GTIMER_SEC, value);
1861 }
1862 
1863 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1864 {
1865     return gt_tval_read(env, ri, GTIMER_SEC);
1866 }
1867 
1868 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                               uint64_t value)
1870 {
1871     gt_tval_write(env, ri, GTIMER_SEC, value);
1872 }
1873 
1874 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                               uint64_t value)
1876 {
1877     gt_ctl_write(env, ri, GTIMER_SEC, value);
1878 }
1879 
1880 void arm_gt_ptimer_cb(void *opaque)
1881 {
1882     ARMCPU *cpu = opaque;
1883 
1884     gt_recalc_timer(cpu, GTIMER_PHYS);
1885 }
1886 
1887 void arm_gt_vtimer_cb(void *opaque)
1888 {
1889     ARMCPU *cpu = opaque;
1890 
1891     gt_recalc_timer(cpu, GTIMER_VIRT);
1892 }
1893 
1894 void arm_gt_htimer_cb(void *opaque)
1895 {
1896     ARMCPU *cpu = opaque;
1897 
1898     gt_recalc_timer(cpu, GTIMER_HYP);
1899 }
1900 
1901 void arm_gt_stimer_cb(void *opaque)
1902 {
1903     ARMCPU *cpu = opaque;
1904 
1905     gt_recalc_timer(cpu, GTIMER_SEC);
1906 }
1907 
1908 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1909     /* Note that CNTFRQ is purely reads-as-written for the benefit
1910      * of software; writing it doesn't actually change the timer frequency.
1911      * Our reset value matches the fixed frequency we implement the timer at.
1912      */
1913     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914       .type = ARM_CP_ALIAS,
1915       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1916       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1917     },
1918     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1919       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1920       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1922       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1923     },
1924     /* overall control: mostly access permissions */
1925     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1926       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927       .access = PL1_RW,
1928       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1929       .resetvalue = 0,
1930     },
1931     /* per-timer control */
1932     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933       .secure = ARM_CP_SECSTATE_NS,
1934       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935       .accessfn = gt_ptimer_access,
1936       .fieldoffset = offsetoflow32(CPUARMState,
1937                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1938       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1939     },
1940     { .name = "CNTP_CTL(S)",
1941       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1942       .secure = ARM_CP_SECSTATE_S,
1943       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1944       .accessfn = gt_ptimer_access,
1945       .fieldoffset = offsetoflow32(CPUARMState,
1946                                    cp15.c14_timer[GTIMER_SEC].ctl),
1947       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1948     },
1949     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1950       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952       .accessfn = gt_ptimer_access,
1953       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1954       .resetvalue = 0,
1955       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1956     },
1957     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959       .accessfn = gt_vtimer_access,
1960       .fieldoffset = offsetoflow32(CPUARMState,
1961                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1962       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1963     },
1964     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1965       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967       .accessfn = gt_vtimer_access,
1968       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1969       .resetvalue = 0,
1970       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1971     },
1972     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1973     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974       .secure = ARM_CP_SECSTATE_NS,
1975       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976       .accessfn = gt_ptimer_access,
1977       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1978     },
1979     { .name = "CNTP_TVAL(S)",
1980       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1981       .secure = ARM_CP_SECSTATE_S,
1982       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1983       .accessfn = gt_ptimer_access,
1984       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1985     },
1986     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1987       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1990       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1991     },
1992     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994       .accessfn = gt_vtimer_access,
1995       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1996     },
1997     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1998       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2001       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2002     },
2003     /* The counter itself */
2004     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006       .accessfn = gt_pct_access,
2007       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2008     },
2009     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2010       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2013     },
2014     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016       .accessfn = gt_vct_access,
2017       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2018     },
2019     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2020       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2023     },
2024     /* Comparison value, indicating when the timer goes off */
2025     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026       .secure = ARM_CP_SECSTATE_NS,
2027       .access = PL1_RW | PL0_R,
2028       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030       .accessfn = gt_ptimer_access,
2031       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2032     },
2033     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2034       .secure = ARM_CP_SECSTATE_S,
2035       .access = PL1_RW | PL0_R,
2036       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2037       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2038       .accessfn = gt_ptimer_access,
2039       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2040     },
2041     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2042       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2043       .access = PL1_RW | PL0_R,
2044       .type = ARM_CP_IO,
2045       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046       .resetvalue = 0, .accessfn = gt_ptimer_access,
2047       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2048     },
2049     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2050       .access = PL1_RW | PL0_R,
2051       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053       .accessfn = gt_vtimer_access,
2054       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2055     },
2056     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2057       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2058       .access = PL1_RW | PL0_R,
2059       .type = ARM_CP_IO,
2060       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2061       .resetvalue = 0, .accessfn = gt_vtimer_access,
2062       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2063     },
2064     /* Secure timer -- this is actually restricted to only EL3
2065      * and configurably Secure-EL1 via the accessfn.
2066      */
2067     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2068       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2069       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2070       .accessfn = gt_stimer_access,
2071       .readfn = gt_sec_tval_read,
2072       .writefn = gt_sec_tval_write,
2073       .resetfn = gt_sec_timer_reset,
2074     },
2075     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2076       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2077       .type = ARM_CP_IO, .access = PL1_RW,
2078       .accessfn = gt_stimer_access,
2079       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2080       .resetvalue = 0,
2081       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2082     },
2083     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2084       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2085       .type = ARM_CP_IO, .access = PL1_RW,
2086       .accessfn = gt_stimer_access,
2087       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2088       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2089     },
2090     REGINFO_SENTINEL
2091 };
2092 
2093 #else
2094 /* In user-mode none of the generic timer registers are accessible,
2095  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096  * so instead just don't register any of them.
2097  */
2098 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2099     REGINFO_SENTINEL
2100 };
2101 
2102 #endif
2103 
2104 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2105 {
2106     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107         raw_write(env, ri, value);
2108     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109         raw_write(env, ri, value & 0xfffff6ff);
2110     } else {
2111         raw_write(env, ri, value & 0xfffff1ff);
2112     }
2113 }
2114 
2115 #ifndef CONFIG_USER_ONLY
2116 /* get_phys_addr() isn't present for user-mode-only targets */
2117 
2118 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2119                                  bool isread)
2120 {
2121     if (ri->opc2 & 4) {
2122         /* The ATS12NSO* operations must trap to EL3 if executed in
2123          * Secure EL1 (which can only happen if EL3 is AArch64).
2124          * They are simply UNDEF if executed from NS EL1.
2125          * They function normally from EL2 or EL3.
2126          */
2127         if (arm_current_el(env) == 1) {
2128             if (arm_is_secure_below_el3(env)) {
2129                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2130             }
2131             return CP_ACCESS_TRAP_UNCATEGORIZED;
2132         }
2133     }
2134     return CP_ACCESS_OK;
2135 }
2136 
2137 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2139 {
2140     hwaddr phys_addr;
2141     target_ulong page_size;
2142     int prot;
2143     uint32_t fsr;
2144     bool ret;
2145     uint64_t par64;
2146     MemTxAttrs attrs = {};
2147     ARMMMUFaultInfo fi = {};
2148 
2149     ret = get_phys_addr(env, value, access_type, mmu_idx,
2150                         &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151     if (extended_addresses_enabled(env)) {
2152         /* fsr is a DFSR/IFSR value for the long descriptor
2153          * translation table format, but with WnR always clear.
2154          * Convert it to a 64-bit PAR.
2155          */
2156         par64 = (1 << 11); /* LPAE bit always set */
2157         if (!ret) {
2158             par64 |= phys_addr & ~0xfffULL;
2159             if (!attrs.secure) {
2160                 par64 |= (1 << 9); /* NS */
2161             }
2162             /* We don't set the ATTR or SH fields in the PAR. */
2163         } else {
2164             par64 |= 1; /* F */
2165             par64 |= (fsr & 0x3f) << 1; /* FS */
2166             /* Note that S2WLK and FSTAGE are always zero, because we don't
2167              * implement virtualization and therefore there can't be a stage 2
2168              * fault.
2169              */
2170         }
2171     } else {
2172         /* fsr is a DFSR/IFSR value for the short descriptor
2173          * translation table format (with WnR always clear).
2174          * Convert it to a 32-bit PAR.
2175          */
2176         if (!ret) {
2177             /* We do not set any attribute bits in the PAR */
2178             if (page_size == (1 << 24)
2179                 && arm_feature(env, ARM_FEATURE_V7)) {
2180                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2181             } else {
2182                 par64 = phys_addr & 0xfffff000;
2183             }
2184             if (!attrs.secure) {
2185                 par64 |= (1 << 9); /* NS */
2186             }
2187         } else {
2188             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2189                     ((fsr & 0xf) << 1) | 1;
2190         }
2191     }
2192     return par64;
2193 }
2194 
2195 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2196 {
2197     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2198     uint64_t par64;
2199     ARMMMUIdx mmu_idx;
2200     int el = arm_current_el(env);
2201     bool secure = arm_is_secure_below_el3(env);
2202 
2203     switch (ri->opc2 & 6) {
2204     case 0:
2205         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2206         switch (el) {
2207         case 3:
2208             mmu_idx = ARMMMUIdx_S1E3;
2209             break;
2210         case 2:
2211             mmu_idx = ARMMMUIdx_S1NSE1;
2212             break;
2213         case 1:
2214             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2215             break;
2216         default:
2217             g_assert_not_reached();
2218         }
2219         break;
2220     case 2:
2221         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2222         switch (el) {
2223         case 3:
2224             mmu_idx = ARMMMUIdx_S1SE0;
2225             break;
2226         case 2:
2227             mmu_idx = ARMMMUIdx_S1NSE0;
2228             break;
2229         case 1:
2230             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2231             break;
2232         default:
2233             g_assert_not_reached();
2234         }
2235         break;
2236     case 4:
2237         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2238         mmu_idx = ARMMMUIdx_S12NSE1;
2239         break;
2240     case 6:
2241         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2242         mmu_idx = ARMMMUIdx_S12NSE0;
2243         break;
2244     default:
2245         g_assert_not_reached();
2246     }
2247 
2248     par64 = do_ats_write(env, value, access_type, mmu_idx);
2249 
2250     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2251 }
2252 
2253 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2254                         uint64_t value)
2255 {
2256     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2257     uint64_t par64;
2258 
2259     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2260 
2261     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2262 }
2263 
2264 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2265                                      bool isread)
2266 {
2267     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2268         return CP_ACCESS_TRAP;
2269     }
2270     return CP_ACCESS_OK;
2271 }
2272 
2273 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2274                         uint64_t value)
2275 {
2276     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2277     ARMMMUIdx mmu_idx;
2278     int secure = arm_is_secure_below_el3(env);
2279 
2280     switch (ri->opc2 & 6) {
2281     case 0:
2282         switch (ri->opc1) {
2283         case 0: /* AT S1E1R, AT S1E1W */
2284             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2285             break;
2286         case 4: /* AT S1E2R, AT S1E2W */
2287             mmu_idx = ARMMMUIdx_S1E2;
2288             break;
2289         case 6: /* AT S1E3R, AT S1E3W */
2290             mmu_idx = ARMMMUIdx_S1E3;
2291             break;
2292         default:
2293             g_assert_not_reached();
2294         }
2295         break;
2296     case 2: /* AT S1E0R, AT S1E0W */
2297         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2298         break;
2299     case 4: /* AT S12E1R, AT S12E1W */
2300         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301         break;
2302     case 6: /* AT S12E0R, AT S12E0W */
2303         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304         break;
2305     default:
2306         g_assert_not_reached();
2307     }
2308 
2309     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2310 }
2311 #endif
2312 
2313 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2314     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2315       .access = PL1_RW, .resetvalue = 0,
2316       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2317                              offsetoflow32(CPUARMState, cp15.par_ns) },
2318       .writefn = par_write },
2319 #ifndef CONFIG_USER_ONLY
2320     /* This underdecoding is safe because the reginfo is NO_RAW. */
2321     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322       .access = PL1_W, .accessfn = ats_access,
2323       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 #endif
2325     REGINFO_SENTINEL
2326 };
2327 
2328 /* Return basic MPU access permission bits.  */
2329 static uint32_t simple_mpu_ap_bits(uint32_t val)
2330 {
2331     uint32_t ret;
2332     uint32_t mask;
2333     int i;
2334     ret = 0;
2335     mask = 3;
2336     for (i = 0; i < 16; i += 2) {
2337         ret |= (val >> i) & mask;
2338         mask <<= 2;
2339     }
2340     return ret;
2341 }
2342 
2343 /* Pad basic MPU access permission bits to extended format.  */
2344 static uint32_t extended_mpu_ap_bits(uint32_t val)
2345 {
2346     uint32_t ret;
2347     uint32_t mask;
2348     int i;
2349     ret = 0;
2350     mask = 3;
2351     for (i = 0; i < 16; i += 2) {
2352         ret |= (val & mask) << i;
2353         mask <<= 2;
2354     }
2355     return ret;
2356 }
2357 
2358 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2359                                  uint64_t value)
2360 {
2361     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2362 }
2363 
2364 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2365 {
2366     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2367 }
2368 
2369 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2370                                  uint64_t value)
2371 {
2372     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2373 }
2374 
2375 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376 {
2377     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2378 }
2379 
2380 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2381 {
2382     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2383 
2384     if (!u32p) {
2385         return 0;
2386     }
2387 
2388     u32p += env->pmsav7.rnr[M_REG_NS];
2389     return *u32p;
2390 }
2391 
2392 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2393                          uint64_t value)
2394 {
2395     ARMCPU *cpu = arm_env_get_cpu(env);
2396     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2397 
2398     if (!u32p) {
2399         return;
2400     }
2401 
2402     u32p += env->pmsav7.rnr[M_REG_NS];
2403     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404     *u32p = value;
2405 }
2406 
2407 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2408                               uint64_t value)
2409 {
2410     ARMCPU *cpu = arm_env_get_cpu(env);
2411     uint32_t nrgs = cpu->pmsav7_dregion;
2412 
2413     if (value >= nrgs) {
2414         qemu_log_mask(LOG_GUEST_ERROR,
2415                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2416                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2417         return;
2418     }
2419 
2420     raw_write(env, ri, value);
2421 }
2422 
2423 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2424     /* Reset for all these registers is handled in arm_cpu_reset(),
2425      * because the PMSAv7 is also used by M-profile CPUs, which do
2426      * not register cpregs but still need the state to be reset.
2427      */
2428     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2429       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2430       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2431       .readfn = pmsav7_read, .writefn = pmsav7_write,
2432       .resetfn = arm_cp_reset_ignore },
2433     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2434       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2435       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2436       .readfn = pmsav7_read, .writefn = pmsav7_write,
2437       .resetfn = arm_cp_reset_ignore },
2438     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2439       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2440       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2441       .readfn = pmsav7_read, .writefn = pmsav7_write,
2442       .resetfn = arm_cp_reset_ignore },
2443     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2444       .access = PL1_RW,
2445       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2446       .writefn = pmsav7_rgnr_write,
2447       .resetfn = arm_cp_reset_ignore },
2448     REGINFO_SENTINEL
2449 };
2450 
2451 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2452     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2453       .access = PL1_RW, .type = ARM_CP_ALIAS,
2454       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2455       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2456     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2457       .access = PL1_RW, .type = ARM_CP_ALIAS,
2458       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2459       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2460     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2461       .access = PL1_RW,
2462       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2463       .resetvalue = 0, },
2464     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2465       .access = PL1_RW,
2466       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2467       .resetvalue = 0, },
2468     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2469       .access = PL1_RW,
2470       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2471     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2472       .access = PL1_RW,
2473       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2474     /* Protection region base and size registers */
2475     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2476       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2477       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2478     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2479       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2480       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2481     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2482       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2483       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2484     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2485       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2486       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2487     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2488       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2489       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2490     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2491       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2492       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2493     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2494       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2495       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2496     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2497       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2498       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2499     REGINFO_SENTINEL
2500 };
2501 
2502 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2503                                  uint64_t value)
2504 {
2505     TCR *tcr = raw_ptr(env, ri);
2506     int maskshift = extract32(value, 0, 3);
2507 
2508     if (!arm_feature(env, ARM_FEATURE_V8)) {
2509         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2510             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2511              * using Long-desciptor translation table format */
2512             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2513         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2514             /* In an implementation that includes the Security Extensions
2515              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2516              * Short-descriptor translation table format.
2517              */
2518             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2519         } else {
2520             value &= TTBCR_N;
2521         }
2522     }
2523 
2524     /* Update the masks corresponding to the TCR bank being written
2525      * Note that we always calculate mask and base_mask, but
2526      * they are only used for short-descriptor tables (ie if EAE is 0);
2527      * for long-descriptor tables the TCR fields are used differently
2528      * and the mask and base_mask values are meaningless.
2529      */
2530     tcr->raw_tcr = value;
2531     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2532     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2533 }
2534 
2535 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2536                              uint64_t value)
2537 {
2538     ARMCPU *cpu = arm_env_get_cpu(env);
2539 
2540     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2541         /* With LPAE the TTBCR could result in a change of ASID
2542          * via the TTBCR.A1 bit, so do a TLB flush.
2543          */
2544         tlb_flush(CPU(cpu));
2545     }
2546     vmsa_ttbcr_raw_write(env, ri, value);
2547 }
2548 
2549 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2550 {
2551     TCR *tcr = raw_ptr(env, ri);
2552 
2553     /* Reset both the TCR as well as the masks corresponding to the bank of
2554      * the TCR being reset.
2555      */
2556     tcr->raw_tcr = 0;
2557     tcr->mask = 0;
2558     tcr->base_mask = 0xffffc000u;
2559 }
2560 
2561 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2562                                uint64_t value)
2563 {
2564     ARMCPU *cpu = arm_env_get_cpu(env);
2565     TCR *tcr = raw_ptr(env, ri);
2566 
2567     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2568     tlb_flush(CPU(cpu));
2569     tcr->raw_tcr = value;
2570 }
2571 
2572 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573                             uint64_t value)
2574 {
2575     /* 64 bit accesses to the TTBRs can change the ASID and so we
2576      * must flush the TLB.
2577      */
2578     if (cpreg_field_is_64bit(ri)) {
2579         ARMCPU *cpu = arm_env_get_cpu(env);
2580 
2581         tlb_flush(CPU(cpu));
2582     }
2583     raw_write(env, ri, value);
2584 }
2585 
2586 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2587                         uint64_t value)
2588 {
2589     ARMCPU *cpu = arm_env_get_cpu(env);
2590     CPUState *cs = CPU(cpu);
2591 
2592     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2593     if (raw_read(env, ri) != value) {
2594         tlb_flush_by_mmuidx(cs,
2595                             ARMMMUIdxBit_S12NSE1 |
2596                             ARMMMUIdxBit_S12NSE0 |
2597                             ARMMMUIdxBit_S2NS);
2598         raw_write(env, ri, value);
2599     }
2600 }
2601 
2602 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2603     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2604       .access = PL1_RW, .type = ARM_CP_ALIAS,
2605       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2606                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2607     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2608       .access = PL1_RW, .resetvalue = 0,
2609       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2610                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2611     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2612       .access = PL1_RW, .resetvalue = 0,
2613       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2614                              offsetof(CPUARMState, cp15.dfar_ns) } },
2615     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2616       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2617       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2618       .resetvalue = 0, },
2619     REGINFO_SENTINEL
2620 };
2621 
2622 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2623     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2624       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2625       .access = PL1_RW,
2626       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2627     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2628       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2629       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2630       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2631                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2632     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2633       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2634       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2635       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2636                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2637     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2638       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2639       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2640       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2641       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2642     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2643       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2644       .raw_writefn = vmsa_ttbcr_raw_write,
2645       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2646                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2647     REGINFO_SENTINEL
2648 };
2649 
2650 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2651                                 uint64_t value)
2652 {
2653     env->cp15.c15_ticonfig = value & 0xe7;
2654     /* The OS_TYPE bit in this register changes the reported CPUID! */
2655     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2656         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2657 }
2658 
2659 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2660                                 uint64_t value)
2661 {
2662     env->cp15.c15_threadid = value & 0xffff;
2663 }
2664 
2665 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2666                            uint64_t value)
2667 {
2668     /* Wait-for-interrupt (deprecated) */
2669     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2670 }
2671 
2672 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673                                   uint64_t value)
2674 {
2675     /* On OMAP there are registers indicating the max/min index of dcache lines
2676      * containing a dirty line; cache flush operations have to reset these.
2677      */
2678     env->cp15.c15_i_max = 0x000;
2679     env->cp15.c15_i_min = 0xff0;
2680 }
2681 
2682 static const ARMCPRegInfo omap_cp_reginfo[] = {
2683     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2684       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2685       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2686       .resetvalue = 0, },
2687     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2688       .access = PL1_RW, .type = ARM_CP_NOP },
2689     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2690       .access = PL1_RW,
2691       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2692       .writefn = omap_ticonfig_write },
2693     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2694       .access = PL1_RW,
2695       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2696     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2697       .access = PL1_RW, .resetvalue = 0xff0,
2698       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2699     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2700       .access = PL1_RW,
2701       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2702       .writefn = omap_threadid_write },
2703     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2704       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2705       .type = ARM_CP_NO_RAW,
2706       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2707     /* TODO: Peripheral port remap register:
2708      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2709      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2710      * when MMU is off.
2711      */
2712     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2713       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2714       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2715       .writefn = omap_cachemaint_write },
2716     { .name = "C9", .cp = 15, .crn = 9,
2717       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2718       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2719     REGINFO_SENTINEL
2720 };
2721 
2722 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2723                               uint64_t value)
2724 {
2725     env->cp15.c15_cpar = value & 0x3fff;
2726 }
2727 
2728 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2729     { .name = "XSCALE_CPAR",
2730       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2731       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2732       .writefn = xscale_cpar_write, },
2733     { .name = "XSCALE_AUXCR",
2734       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2735       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2736       .resetvalue = 0, },
2737     /* XScale specific cache-lockdown: since we have no cache we NOP these
2738      * and hope the guest does not really rely on cache behaviour.
2739      */
2740     { .name = "XSCALE_LOCK_ICACHE_LINE",
2741       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2742       .access = PL1_W, .type = ARM_CP_NOP },
2743     { .name = "XSCALE_UNLOCK_ICACHE",
2744       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2745       .access = PL1_W, .type = ARM_CP_NOP },
2746     { .name = "XSCALE_DCACHE_LOCK",
2747       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2748       .access = PL1_RW, .type = ARM_CP_NOP },
2749     { .name = "XSCALE_UNLOCK_DCACHE",
2750       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2751       .access = PL1_W, .type = ARM_CP_NOP },
2752     REGINFO_SENTINEL
2753 };
2754 
2755 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2756     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2757      * implementation of this implementation-defined space.
2758      * Ideally this should eventually disappear in favour of actually
2759      * implementing the correct behaviour for all cores.
2760      */
2761     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2762       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2763       .access = PL1_RW,
2764       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2765       .resetvalue = 0 },
2766     REGINFO_SENTINEL
2767 };
2768 
2769 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2770     /* Cache status: RAZ because we have no cache so it's always clean */
2771     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2772       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2773       .resetvalue = 0 },
2774     REGINFO_SENTINEL
2775 };
2776 
2777 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2778     /* We never have a a block transfer operation in progress */
2779     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2780       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2781       .resetvalue = 0 },
2782     /* The cache ops themselves: these all NOP for QEMU */
2783     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2784       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2785     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2786       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2787     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2788       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2789     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2790       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2791     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2792       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2793     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2794       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2795     REGINFO_SENTINEL
2796 };
2797 
2798 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2799     /* The cache test-and-clean instructions always return (1 << 30)
2800      * to indicate that there are no dirty cache lines.
2801      */
2802     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2803       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2804       .resetvalue = (1 << 30) },
2805     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2806       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2807       .resetvalue = (1 << 30) },
2808     REGINFO_SENTINEL
2809 };
2810 
2811 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2812     /* Ignore ReadBuffer accesses */
2813     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2814       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2815       .access = PL1_RW, .resetvalue = 0,
2816       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2817     REGINFO_SENTINEL
2818 };
2819 
2820 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2821 {
2822     ARMCPU *cpu = arm_env_get_cpu(env);
2823     unsigned int cur_el = arm_current_el(env);
2824     bool secure = arm_is_secure(env);
2825 
2826     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2827         return env->cp15.vpidr_el2;
2828     }
2829     return raw_read(env, ri);
2830 }
2831 
2832 static uint64_t mpidr_read_val(CPUARMState *env)
2833 {
2834     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2835     uint64_t mpidr = cpu->mp_affinity;
2836 
2837     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2838         mpidr |= (1U << 31);
2839         /* Cores which are uniprocessor (non-coherent)
2840          * but still implement the MP extensions set
2841          * bit 30. (For instance, Cortex-R5).
2842          */
2843         if (cpu->mp_is_up) {
2844             mpidr |= (1u << 30);
2845         }
2846     }
2847     return mpidr;
2848 }
2849 
2850 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2851 {
2852     unsigned int cur_el = arm_current_el(env);
2853     bool secure = arm_is_secure(env);
2854 
2855     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2856         return env->cp15.vmpidr_el2;
2857     }
2858     return mpidr_read_val(env);
2859 }
2860 
2861 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2862     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2863       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2864       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2865     REGINFO_SENTINEL
2866 };
2867 
2868 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2869     /* NOP AMAIR0/1 */
2870     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2871       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2872       .access = PL1_RW, .type = ARM_CP_CONST,
2873       .resetvalue = 0 },
2874     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2875     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2876       .access = PL1_RW, .type = ARM_CP_CONST,
2877       .resetvalue = 0 },
2878     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2879       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2880       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2881                              offsetof(CPUARMState, cp15.par_ns)} },
2882     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2883       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2885                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2886       .writefn = vmsa_ttbr_write, },
2887     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2888       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2889       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2890                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2891       .writefn = vmsa_ttbr_write, },
2892     REGINFO_SENTINEL
2893 };
2894 
2895 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2896 {
2897     return vfp_get_fpcr(env);
2898 }
2899 
2900 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901                             uint64_t value)
2902 {
2903     vfp_set_fpcr(env, value);
2904 }
2905 
2906 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2907 {
2908     return vfp_get_fpsr(env);
2909 }
2910 
2911 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2912                             uint64_t value)
2913 {
2914     vfp_set_fpsr(env, value);
2915 }
2916 
2917 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2918                                        bool isread)
2919 {
2920     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2921         return CP_ACCESS_TRAP;
2922     }
2923     return CP_ACCESS_OK;
2924 }
2925 
2926 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2927                             uint64_t value)
2928 {
2929     env->daif = value & PSTATE_DAIF;
2930 }
2931 
2932 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2933                                           const ARMCPRegInfo *ri,
2934                                           bool isread)
2935 {
2936     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2937      * SCTLR_EL1.UCI is set.
2938      */
2939     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2940         return CP_ACCESS_TRAP;
2941     }
2942     return CP_ACCESS_OK;
2943 }
2944 
2945 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2946  * Page D4-1736 (DDI0487A.b)
2947  */
2948 
2949 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2950                                     uint64_t value)
2951 {
2952     CPUState *cs = ENV_GET_CPU(env);
2953 
2954     if (arm_is_secure_below_el3(env)) {
2955         tlb_flush_by_mmuidx(cs,
2956                             ARMMMUIdxBit_S1SE1 |
2957                             ARMMMUIdxBit_S1SE0);
2958     } else {
2959         tlb_flush_by_mmuidx(cs,
2960                             ARMMMUIdxBit_S12NSE1 |
2961                             ARMMMUIdxBit_S12NSE0);
2962     }
2963 }
2964 
2965 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2966                                       uint64_t value)
2967 {
2968     CPUState *cs = ENV_GET_CPU(env);
2969     bool sec = arm_is_secure_below_el3(env);
2970 
2971     if (sec) {
2972         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2973                                             ARMMMUIdxBit_S1SE1 |
2974                                             ARMMMUIdxBit_S1SE0);
2975     } else {
2976         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2977                                             ARMMMUIdxBit_S12NSE1 |
2978                                             ARMMMUIdxBit_S12NSE0);
2979     }
2980 }
2981 
2982 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983                                   uint64_t value)
2984 {
2985     /* Note that the 'ALL' scope must invalidate both stage 1 and
2986      * stage 2 translations, whereas most other scopes only invalidate
2987      * stage 1 translations.
2988      */
2989     ARMCPU *cpu = arm_env_get_cpu(env);
2990     CPUState *cs = CPU(cpu);
2991 
2992     if (arm_is_secure_below_el3(env)) {
2993         tlb_flush_by_mmuidx(cs,
2994                             ARMMMUIdxBit_S1SE1 |
2995                             ARMMMUIdxBit_S1SE0);
2996     } else {
2997         if (arm_feature(env, ARM_FEATURE_EL2)) {
2998             tlb_flush_by_mmuidx(cs,
2999                                 ARMMMUIdxBit_S12NSE1 |
3000                                 ARMMMUIdxBit_S12NSE0 |
3001                                 ARMMMUIdxBit_S2NS);
3002         } else {
3003             tlb_flush_by_mmuidx(cs,
3004                                 ARMMMUIdxBit_S12NSE1 |
3005                                 ARMMMUIdxBit_S12NSE0);
3006         }
3007     }
3008 }
3009 
3010 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3011                                   uint64_t value)
3012 {
3013     ARMCPU *cpu = arm_env_get_cpu(env);
3014     CPUState *cs = CPU(cpu);
3015 
3016     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3017 }
3018 
3019 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020                                   uint64_t value)
3021 {
3022     ARMCPU *cpu = arm_env_get_cpu(env);
3023     CPUState *cs = CPU(cpu);
3024 
3025     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3026 }
3027 
3028 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3029                                     uint64_t value)
3030 {
3031     /* Note that the 'ALL' scope must invalidate both stage 1 and
3032      * stage 2 translations, whereas most other scopes only invalidate
3033      * stage 1 translations.
3034      */
3035     CPUState *cs = ENV_GET_CPU(env);
3036     bool sec = arm_is_secure_below_el3(env);
3037     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3038 
3039     if (sec) {
3040         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3041                                             ARMMMUIdxBit_S1SE1 |
3042                                             ARMMMUIdxBit_S1SE0);
3043     } else if (has_el2) {
3044         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3045                                             ARMMMUIdxBit_S12NSE1 |
3046                                             ARMMMUIdxBit_S12NSE0 |
3047                                             ARMMMUIdxBit_S2NS);
3048     } else {
3049           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3050                                               ARMMMUIdxBit_S12NSE1 |
3051                                               ARMMMUIdxBit_S12NSE0);
3052     }
3053 }
3054 
3055 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3056                                     uint64_t value)
3057 {
3058     CPUState *cs = ENV_GET_CPU(env);
3059 
3060     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3061 }
3062 
3063 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3064                                     uint64_t value)
3065 {
3066     CPUState *cs = ENV_GET_CPU(env);
3067 
3068     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3069 }
3070 
3071 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3072                                  uint64_t value)
3073 {
3074     /* Invalidate by VA, EL1&0 (AArch64 version).
3075      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3076      * since we don't support flush-for-specific-ASID-only or
3077      * flush-last-level-only.
3078      */
3079     ARMCPU *cpu = arm_env_get_cpu(env);
3080     CPUState *cs = CPU(cpu);
3081     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3082 
3083     if (arm_is_secure_below_el3(env)) {
3084         tlb_flush_page_by_mmuidx(cs, pageaddr,
3085                                  ARMMMUIdxBit_S1SE1 |
3086                                  ARMMMUIdxBit_S1SE0);
3087     } else {
3088         tlb_flush_page_by_mmuidx(cs, pageaddr,
3089                                  ARMMMUIdxBit_S12NSE1 |
3090                                  ARMMMUIdxBit_S12NSE0);
3091     }
3092 }
3093 
3094 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3095                                  uint64_t value)
3096 {
3097     /* Invalidate by VA, EL2
3098      * Currently handles both VAE2 and VALE2, since we don't support
3099      * flush-last-level-only.
3100      */
3101     ARMCPU *cpu = arm_env_get_cpu(env);
3102     CPUState *cs = CPU(cpu);
3103     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104 
3105     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3106 }
3107 
3108 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3109                                  uint64_t value)
3110 {
3111     /* Invalidate by VA, EL3
3112      * Currently handles both VAE3 and VALE3, since we don't support
3113      * flush-last-level-only.
3114      */
3115     ARMCPU *cpu = arm_env_get_cpu(env);
3116     CPUState *cs = CPU(cpu);
3117     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3118 
3119     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3120 }
3121 
3122 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3123                                    uint64_t value)
3124 {
3125     ARMCPU *cpu = arm_env_get_cpu(env);
3126     CPUState *cs = CPU(cpu);
3127     bool sec = arm_is_secure_below_el3(env);
3128     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3129 
3130     if (sec) {
3131         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3132                                                  ARMMMUIdxBit_S1SE1 |
3133                                                  ARMMMUIdxBit_S1SE0);
3134     } else {
3135         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3136                                                  ARMMMUIdxBit_S12NSE1 |
3137                                                  ARMMMUIdxBit_S12NSE0);
3138     }
3139 }
3140 
3141 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3142                                    uint64_t value)
3143 {
3144     CPUState *cs = ENV_GET_CPU(env);
3145     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3146 
3147     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3148                                              ARMMMUIdxBit_S1E2);
3149 }
3150 
3151 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3152                                    uint64_t value)
3153 {
3154     CPUState *cs = ENV_GET_CPU(env);
3155     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3156 
3157     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158                                              ARMMMUIdxBit_S1E3);
3159 }
3160 
3161 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3162                                     uint64_t value)
3163 {
3164     /* Invalidate by IPA. This has to invalidate any structures that
3165      * contain only stage 2 translation information, but does not need
3166      * to apply to structures that contain combined stage 1 and stage 2
3167      * translation information.
3168      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3169      */
3170     ARMCPU *cpu = arm_env_get_cpu(env);
3171     CPUState *cs = CPU(cpu);
3172     uint64_t pageaddr;
3173 
3174     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3175         return;
3176     }
3177 
3178     pageaddr = sextract64(value << 12, 0, 48);
3179 
3180     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3181 }
3182 
3183 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184                                       uint64_t value)
3185 {
3186     CPUState *cs = ENV_GET_CPU(env);
3187     uint64_t pageaddr;
3188 
3189     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3190         return;
3191     }
3192 
3193     pageaddr = sextract64(value << 12, 0, 48);
3194 
3195     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3196                                              ARMMMUIdxBit_S2NS);
3197 }
3198 
3199 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3200                                       bool isread)
3201 {
3202     /* We don't implement EL2, so the only control on DC ZVA is the
3203      * bit in the SCTLR which can prohibit access for EL0.
3204      */
3205     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3206         return CP_ACCESS_TRAP;
3207     }
3208     return CP_ACCESS_OK;
3209 }
3210 
3211 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3212 {
3213     ARMCPU *cpu = arm_env_get_cpu(env);
3214     int dzp_bit = 1 << 4;
3215 
3216     /* DZP indicates whether DC ZVA access is allowed */
3217     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3218         dzp_bit = 0;
3219     }
3220     return cpu->dcz_blocksize | dzp_bit;
3221 }
3222 
3223 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3224                                     bool isread)
3225 {
3226     if (!(env->pstate & PSTATE_SP)) {
3227         /* Access to SP_EL0 is undefined if it's being used as
3228          * the stack pointer.
3229          */
3230         return CP_ACCESS_TRAP_UNCATEGORIZED;
3231     }
3232     return CP_ACCESS_OK;
3233 }
3234 
3235 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3236 {
3237     return env->pstate & PSTATE_SP;
3238 }
3239 
3240 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3241 {
3242     update_spsel(env, val);
3243 }
3244 
3245 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3246                         uint64_t value)
3247 {
3248     ARMCPU *cpu = arm_env_get_cpu(env);
3249 
3250     if (raw_read(env, ri) == value) {
3251         /* Skip the TLB flush if nothing actually changed; Linux likes
3252          * to do a lot of pointless SCTLR writes.
3253          */
3254         return;
3255     }
3256 
3257     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3258         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3259         value &= ~SCTLR_M;
3260     }
3261 
3262     raw_write(env, ri, value);
3263     /* ??? Lots of these bits are not implemented.  */
3264     /* This may enable/disable the MMU, so do a TLB flush.  */
3265     tlb_flush(CPU(cpu));
3266 }
3267 
3268 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3269                                      bool isread)
3270 {
3271     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3272         return CP_ACCESS_TRAP_FP_EL2;
3273     }
3274     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3275         return CP_ACCESS_TRAP_FP_EL3;
3276     }
3277     return CP_ACCESS_OK;
3278 }
3279 
3280 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3281                        uint64_t value)
3282 {
3283     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3284 }
3285 
3286 static const ARMCPRegInfo v8_cp_reginfo[] = {
3287     /* Minimal set of EL0-visible registers. This will need to be expanded
3288      * significantly for system emulation of AArch64 CPUs.
3289      */
3290     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3291       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3292       .access = PL0_RW, .type = ARM_CP_NZCV },
3293     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3294       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3295       .type = ARM_CP_NO_RAW,
3296       .access = PL0_RW, .accessfn = aa64_daif_access,
3297       .fieldoffset = offsetof(CPUARMState, daif),
3298       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3299     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3300       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3301       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3302     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3303       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3304       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3305     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3306       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3307       .access = PL0_R, .type = ARM_CP_NO_RAW,
3308       .readfn = aa64_dczid_read },
3309     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3310       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3311       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3312 #ifndef CONFIG_USER_ONLY
3313       /* Avoid overhead of an access check that always passes in user-mode */
3314       .accessfn = aa64_zva_access,
3315 #endif
3316     },
3317     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3318       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3319       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3320     /* Cache ops: all NOPs since we don't emulate caches */
3321     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3322       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3323       .access = PL1_W, .type = ARM_CP_NOP },
3324     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3325       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3326       .access = PL1_W, .type = ARM_CP_NOP },
3327     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3328       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3329       .access = PL0_W, .type = ARM_CP_NOP,
3330       .accessfn = aa64_cacheop_access },
3331     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3333       .access = PL1_W, .type = ARM_CP_NOP },
3334     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3335       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3336       .access = PL1_W, .type = ARM_CP_NOP },
3337     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3338       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3339       .access = PL0_W, .type = ARM_CP_NOP,
3340       .accessfn = aa64_cacheop_access },
3341     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3342       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3343       .access = PL1_W, .type = ARM_CP_NOP },
3344     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3345       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3346       .access = PL0_W, .type = ARM_CP_NOP,
3347       .accessfn = aa64_cacheop_access },
3348     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3349       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3350       .access = PL0_W, .type = ARM_CP_NOP,
3351       .accessfn = aa64_cacheop_access },
3352     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3353       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3354       .access = PL1_W, .type = ARM_CP_NOP },
3355     /* TLBI operations */
3356     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3358       .access = PL1_W, .type = ARM_CP_NO_RAW,
3359       .writefn = tlbi_aa64_vmalle1is_write },
3360     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3361       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3362       .access = PL1_W, .type = ARM_CP_NO_RAW,
3363       .writefn = tlbi_aa64_vae1is_write },
3364     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3365       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3366       .access = PL1_W, .type = ARM_CP_NO_RAW,
3367       .writefn = tlbi_aa64_vmalle1is_write },
3368     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3369       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3370       .access = PL1_W, .type = ARM_CP_NO_RAW,
3371       .writefn = tlbi_aa64_vae1is_write },
3372     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3373       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3374       .access = PL1_W, .type = ARM_CP_NO_RAW,
3375       .writefn = tlbi_aa64_vae1is_write },
3376     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3377       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3378       .access = PL1_W, .type = ARM_CP_NO_RAW,
3379       .writefn = tlbi_aa64_vae1is_write },
3380     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3381       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3382       .access = PL1_W, .type = ARM_CP_NO_RAW,
3383       .writefn = tlbi_aa64_vmalle1_write },
3384     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3385       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3386       .access = PL1_W, .type = ARM_CP_NO_RAW,
3387       .writefn = tlbi_aa64_vae1_write },
3388     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3389       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3390       .access = PL1_W, .type = ARM_CP_NO_RAW,
3391       .writefn = tlbi_aa64_vmalle1_write },
3392     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3393       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3394       .access = PL1_W, .type = ARM_CP_NO_RAW,
3395       .writefn = tlbi_aa64_vae1_write },
3396     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3397       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3398       .access = PL1_W, .type = ARM_CP_NO_RAW,
3399       .writefn = tlbi_aa64_vae1_write },
3400     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3401       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3402       .access = PL1_W, .type = ARM_CP_NO_RAW,
3403       .writefn = tlbi_aa64_vae1_write },
3404     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3405       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3406       .access = PL2_W, .type = ARM_CP_NO_RAW,
3407       .writefn = tlbi_aa64_ipas2e1is_write },
3408     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3409       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3410       .access = PL2_W, .type = ARM_CP_NO_RAW,
3411       .writefn = tlbi_aa64_ipas2e1is_write },
3412     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3413       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3414       .access = PL2_W, .type = ARM_CP_NO_RAW,
3415       .writefn = tlbi_aa64_alle1is_write },
3416     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3417       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3418       .access = PL2_W, .type = ARM_CP_NO_RAW,
3419       .writefn = tlbi_aa64_alle1is_write },
3420     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3421       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3422       .access = PL2_W, .type = ARM_CP_NO_RAW,
3423       .writefn = tlbi_aa64_ipas2e1_write },
3424     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3426       .access = PL2_W, .type = ARM_CP_NO_RAW,
3427       .writefn = tlbi_aa64_ipas2e1_write },
3428     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3429       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3430       .access = PL2_W, .type = ARM_CP_NO_RAW,
3431       .writefn = tlbi_aa64_alle1_write },
3432     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3433       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3434       .access = PL2_W, .type = ARM_CP_NO_RAW,
3435       .writefn = tlbi_aa64_alle1is_write },
3436 #ifndef CONFIG_USER_ONLY
3437     /* 64 bit address translation operations */
3438     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3440       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3441     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3442       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3443       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3444     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3445       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3446       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3447     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3448       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3449       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3450     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3452       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3453     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3454       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3455       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3456     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3457       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3458       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3459     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3460       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3461       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3462     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3463     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3465       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3468       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3470       .type = ARM_CP_ALIAS,
3471       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3472       .access = PL1_RW, .resetvalue = 0,
3473       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3474       .writefn = par_write },
3475 #endif
3476     /* TLB invalidate last level of translation table walk */
3477     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3478       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3479     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3480       .type = ARM_CP_NO_RAW, .access = PL1_W,
3481       .writefn = tlbimvaa_is_write },
3482     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3483       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3484     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3485       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3486     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3487       .type = ARM_CP_NO_RAW, .access = PL2_W,
3488       .writefn = tlbimva_hyp_write },
3489     { .name = "TLBIMVALHIS",
3490       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3491       .type = ARM_CP_NO_RAW, .access = PL2_W,
3492       .writefn = tlbimva_hyp_is_write },
3493     { .name = "TLBIIPAS2",
3494       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3495       .type = ARM_CP_NO_RAW, .access = PL2_W,
3496       .writefn = tlbiipas2_write },
3497     { .name = "TLBIIPAS2IS",
3498       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3499       .type = ARM_CP_NO_RAW, .access = PL2_W,
3500       .writefn = tlbiipas2_is_write },
3501     { .name = "TLBIIPAS2L",
3502       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3503       .type = ARM_CP_NO_RAW, .access = PL2_W,
3504       .writefn = tlbiipas2_write },
3505     { .name = "TLBIIPAS2LIS",
3506       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3507       .type = ARM_CP_NO_RAW, .access = PL2_W,
3508       .writefn = tlbiipas2_is_write },
3509     /* 32 bit cache operations */
3510     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3511       .type = ARM_CP_NOP, .access = PL1_W },
3512     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3513       .type = ARM_CP_NOP, .access = PL1_W },
3514     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3515       .type = ARM_CP_NOP, .access = PL1_W },
3516     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3517       .type = ARM_CP_NOP, .access = PL1_W },
3518     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3519       .type = ARM_CP_NOP, .access = PL1_W },
3520     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3521       .type = ARM_CP_NOP, .access = PL1_W },
3522     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3523       .type = ARM_CP_NOP, .access = PL1_W },
3524     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3525       .type = ARM_CP_NOP, .access = PL1_W },
3526     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3527       .type = ARM_CP_NOP, .access = PL1_W },
3528     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3529       .type = ARM_CP_NOP, .access = PL1_W },
3530     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3531       .type = ARM_CP_NOP, .access = PL1_W },
3532     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     /* MMU Domain access control / MPU write buffer control */
3537     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3538       .access = PL1_RW, .resetvalue = 0,
3539       .writefn = dacr_write, .raw_writefn = raw_write,
3540       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3541                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3542     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3543       .type = ARM_CP_ALIAS,
3544       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3545       .access = PL1_RW,
3546       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3547     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3548       .type = ARM_CP_ALIAS,
3549       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3550       .access = PL1_RW,
3551       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3552     /* We rely on the access checks not allowing the guest to write to the
3553      * state field when SPSel indicates that it's being used as the stack
3554      * pointer.
3555      */
3556     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3557       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3558       .access = PL1_RW, .accessfn = sp_el0_access,
3559       .type = ARM_CP_ALIAS,
3560       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3561     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3562       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3563       .access = PL2_RW, .type = ARM_CP_ALIAS,
3564       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3565     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3567       .type = ARM_CP_NO_RAW,
3568       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3569     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3570       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3571       .type = ARM_CP_ALIAS,
3572       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3573       .access = PL2_RW, .accessfn = fpexc32_access },
3574     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3575       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3576       .access = PL2_RW, .resetvalue = 0,
3577       .writefn = dacr_write, .raw_writefn = raw_write,
3578       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3579     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3580       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3581       .access = PL2_RW, .resetvalue = 0,
3582       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3583     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3584       .type = ARM_CP_ALIAS,
3585       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3586       .access = PL2_RW,
3587       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3588     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3589       .type = ARM_CP_ALIAS,
3590       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3591       .access = PL2_RW,
3592       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3593     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3594       .type = ARM_CP_ALIAS,
3595       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3596       .access = PL2_RW,
3597       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3598     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3599       .type = ARM_CP_ALIAS,
3600       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3601       .access = PL2_RW,
3602       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3603     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3604       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3605       .resetvalue = 0,
3606       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3607     { .name = "SDCR", .type = ARM_CP_ALIAS,
3608       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3609       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3610       .writefn = sdcr_write,
3611       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3612     REGINFO_SENTINEL
3613 };
3614 
3615 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3616 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3617     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3618       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3619       .access = PL2_RW,
3620       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3621     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3622       .type = ARM_CP_NO_RAW,
3623       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3624       .access = PL2_RW,
3625       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3626     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3627       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3628       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3629     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3630       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3631       .access = PL2_RW, .type = ARM_CP_CONST,
3632       .resetvalue = 0 },
3633     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3634       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3635       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3636     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3637       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3638       .access = PL2_RW, .type = ARM_CP_CONST,
3639       .resetvalue = 0 },
3640     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3641       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3642       .access = PL2_RW, .type = ARM_CP_CONST,
3643       .resetvalue = 0 },
3644     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3645       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3646       .access = PL2_RW, .type = ARM_CP_CONST,
3647       .resetvalue = 0 },
3648     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3649       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3650       .access = PL2_RW, .type = ARM_CP_CONST,
3651       .resetvalue = 0 },
3652     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3653       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3654       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3655     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3656       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3657       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3658       .type = ARM_CP_CONST, .resetvalue = 0 },
3659     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3660       .cp = 15, .opc1 = 6, .crm = 2,
3661       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3662       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3663     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3664       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3665       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3666     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3667       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3668       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3669     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3670       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3671       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3672     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3673       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3674       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3675     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3676       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3677       .resetvalue = 0 },
3678     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3679       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3680       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3681     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3682       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3683       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3684     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3685       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3686       .resetvalue = 0 },
3687     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3688       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3689       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3690     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3691       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3692       .resetvalue = 0 },
3693     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3694       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3695       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3696     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3697       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3698       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3699     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3700       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3701       .access = PL2_RW, .accessfn = access_tda,
3702       .type = ARM_CP_CONST, .resetvalue = 0 },
3703     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3704       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3705       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3706       .type = ARM_CP_CONST, .resetvalue = 0 },
3707     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3708       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3709       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3710     REGINFO_SENTINEL
3711 };
3712 
3713 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3714 {
3715     ARMCPU *cpu = arm_env_get_cpu(env);
3716     uint64_t valid_mask = HCR_MASK;
3717 
3718     if (arm_feature(env, ARM_FEATURE_EL3)) {
3719         valid_mask &= ~HCR_HCD;
3720     } else {
3721         valid_mask &= ~HCR_TSC;
3722     }
3723 
3724     /* Clear RES0 bits.  */
3725     value &= valid_mask;
3726 
3727     /* These bits change the MMU setup:
3728      * HCR_VM enables stage 2 translation
3729      * HCR_PTW forbids certain page-table setups
3730      * HCR_DC Disables stage1 and enables stage2 translation
3731      */
3732     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3733         tlb_flush(CPU(cpu));
3734     }
3735     raw_write(env, ri, value);
3736 }
3737 
3738 static const ARMCPRegInfo el2_cp_reginfo[] = {
3739     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3740       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3741       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3742       .writefn = hcr_write },
3743     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3744       .type = ARM_CP_ALIAS,
3745       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3746       .access = PL2_RW,
3747       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3748     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3749       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3750       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3751     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3752       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3753       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3754     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3755       .type = ARM_CP_ALIAS,
3756       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3757       .access = PL2_RW,
3758       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3759     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3760       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3761       .access = PL2_RW, .writefn = vbar_write,
3762       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3763       .resetvalue = 0 },
3764     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3765       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3766       .access = PL3_RW, .type = ARM_CP_ALIAS,
3767       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3768     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3769       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3770       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3771       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3772     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3773       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3774       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3775       .resetvalue = 0 },
3776     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3777       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3778       .access = PL2_RW, .type = ARM_CP_ALIAS,
3779       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3780     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3781       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3782       .access = PL2_RW, .type = ARM_CP_CONST,
3783       .resetvalue = 0 },
3784     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3785     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3786       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3787       .access = PL2_RW, .type = ARM_CP_CONST,
3788       .resetvalue = 0 },
3789     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3790       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3791       .access = PL2_RW, .type = ARM_CP_CONST,
3792       .resetvalue = 0 },
3793     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3794       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3795       .access = PL2_RW, .type = ARM_CP_CONST,
3796       .resetvalue = 0 },
3797     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3798       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3799       .access = PL2_RW,
3800       /* no .writefn needed as this can't cause an ASID change;
3801        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3802        */
3803       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3804     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3805       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3806       .type = ARM_CP_ALIAS,
3807       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3808       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3809     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3810       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3811       .access = PL2_RW,
3812       /* no .writefn needed as this can't cause an ASID change;
3813        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3814        */
3815       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3816     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3817       .cp = 15, .opc1 = 6, .crm = 2,
3818       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3819       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3820       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3821       .writefn = vttbr_write },
3822     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3823       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3824       .access = PL2_RW, .writefn = vttbr_write,
3825       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3826     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3827       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3828       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3829       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3830     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3831       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3832       .access = PL2_RW, .resetvalue = 0,
3833       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3834     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3835       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3836       .access = PL2_RW, .resetvalue = 0,
3837       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3838     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3839       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3840       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3841     { .name = "TLBIALLNSNH",
3842       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3843       .type = ARM_CP_NO_RAW, .access = PL2_W,
3844       .writefn = tlbiall_nsnh_write },
3845     { .name = "TLBIALLNSNHIS",
3846       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3847       .type = ARM_CP_NO_RAW, .access = PL2_W,
3848       .writefn = tlbiall_nsnh_is_write },
3849     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3850       .type = ARM_CP_NO_RAW, .access = PL2_W,
3851       .writefn = tlbiall_hyp_write },
3852     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3853       .type = ARM_CP_NO_RAW, .access = PL2_W,
3854       .writefn = tlbiall_hyp_is_write },
3855     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3856       .type = ARM_CP_NO_RAW, .access = PL2_W,
3857       .writefn = tlbimva_hyp_write },
3858     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3859       .type = ARM_CP_NO_RAW, .access = PL2_W,
3860       .writefn = tlbimva_hyp_is_write },
3861     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3862       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3863       .type = ARM_CP_NO_RAW, .access = PL2_W,
3864       .writefn = tlbi_aa64_alle2_write },
3865     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3866       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3867       .type = ARM_CP_NO_RAW, .access = PL2_W,
3868       .writefn = tlbi_aa64_vae2_write },
3869     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3870       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3871       .access = PL2_W, .type = ARM_CP_NO_RAW,
3872       .writefn = tlbi_aa64_vae2_write },
3873     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3874       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3875       .access = PL2_W, .type = ARM_CP_NO_RAW,
3876       .writefn = tlbi_aa64_alle2is_write },
3877     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3878       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3879       .type = ARM_CP_NO_RAW, .access = PL2_W,
3880       .writefn = tlbi_aa64_vae2is_write },
3881     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3882       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3883       .access = PL2_W, .type = ARM_CP_NO_RAW,
3884       .writefn = tlbi_aa64_vae2is_write },
3885 #ifndef CONFIG_USER_ONLY
3886     /* Unlike the other EL2-related AT operations, these must
3887      * UNDEF from EL3 if EL2 is not implemented, which is why we
3888      * define them here rather than with the rest of the AT ops.
3889      */
3890     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3891       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3892       .access = PL2_W, .accessfn = at_s1e2_access,
3893       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3894     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3895       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3896       .access = PL2_W, .accessfn = at_s1e2_access,
3897       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3898     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3899      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3900      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3901      * to behave as if SCR.NS was 1.
3902      */
3903     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3904       .access = PL2_W,
3905       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3906     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3907       .access = PL2_W,
3908       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3909     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3910       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3911       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3912        * reset values as IMPDEF. We choose to reset to 3 to comply with
3913        * both ARMv7 and ARMv8.
3914        */
3915       .access = PL2_RW, .resetvalue = 3,
3916       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3917     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3918       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3919       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3920       .writefn = gt_cntvoff_write,
3921       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3922     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3923       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3924       .writefn = gt_cntvoff_write,
3925       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3926     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3927       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3928       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3929       .type = ARM_CP_IO, .access = PL2_RW,
3930       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3931     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3932       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3933       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3934       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3935     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3936       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3937       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3938       .resetfn = gt_hyp_timer_reset,
3939       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3940     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3941       .type = ARM_CP_IO,
3942       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3943       .access = PL2_RW,
3944       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3945       .resetvalue = 0,
3946       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3947 #endif
3948     /* The only field of MDCR_EL2 that has a defined architectural reset value
3949      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3950      * don't impelment any PMU event counters, so using zero as a reset
3951      * value for MDCR_EL2 is okay
3952      */
3953     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3954       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3955       .access = PL2_RW, .resetvalue = 0,
3956       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3957     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3958       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3959       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3960       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3961     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3962       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3963       .access = PL2_RW,
3964       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3965     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3966       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3967       .access = PL2_RW,
3968       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3969     REGINFO_SENTINEL
3970 };
3971 
3972 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3973                                    bool isread)
3974 {
3975     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3976      * At Secure EL1 it traps to EL3.
3977      */
3978     if (arm_current_el(env) == 3) {
3979         return CP_ACCESS_OK;
3980     }
3981     if (arm_is_secure_below_el3(env)) {
3982         return CP_ACCESS_TRAP_EL3;
3983     }
3984     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3985     if (isread) {
3986         return CP_ACCESS_OK;
3987     }
3988     return CP_ACCESS_TRAP_UNCATEGORIZED;
3989 }
3990 
3991 static const ARMCPRegInfo el3_cp_reginfo[] = {
3992     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3993       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3994       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3995       .resetvalue = 0, .writefn = scr_write },
3996     { .name = "SCR",  .type = ARM_CP_ALIAS,
3997       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3998       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3999       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4000       .writefn = scr_write },
4001     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4002       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4003       .access = PL3_RW, .resetvalue = 0,
4004       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4005     { .name = "SDER",
4006       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4007       .access = PL3_RW, .resetvalue = 0,
4008       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4009     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4010       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4011       .writefn = vbar_write, .resetvalue = 0,
4012       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4013     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4014       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4015       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4016       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4017     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4018       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4019       .access = PL3_RW,
4020       /* no .writefn needed as this can't cause an ASID change;
4021        * we must provide a .raw_writefn and .resetfn because we handle
4022        * reset and migration for the AArch32 TTBCR(S), which might be
4023        * using mask and base_mask.
4024        */
4025       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4026       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4027     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4028       .type = ARM_CP_ALIAS,
4029       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4030       .access = PL3_RW,
4031       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4032     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4033       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4034       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4035     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4036       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4037       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4038     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4039       .type = ARM_CP_ALIAS,
4040       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4041       .access = PL3_RW,
4042       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4043     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4044       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4045       .access = PL3_RW, .writefn = vbar_write,
4046       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4047       .resetvalue = 0 },
4048     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4049       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4050       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4051       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4052     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4053       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4054       .access = PL3_RW, .resetvalue = 0,
4055       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4056     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4057       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4058       .access = PL3_RW, .type = ARM_CP_CONST,
4059       .resetvalue = 0 },
4060     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4061       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4062       .access = PL3_RW, .type = ARM_CP_CONST,
4063       .resetvalue = 0 },
4064     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4065       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4066       .access = PL3_RW, .type = ARM_CP_CONST,
4067       .resetvalue = 0 },
4068     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4069       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4070       .access = PL3_W, .type = ARM_CP_NO_RAW,
4071       .writefn = tlbi_aa64_alle3is_write },
4072     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4073       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4074       .access = PL3_W, .type = ARM_CP_NO_RAW,
4075       .writefn = tlbi_aa64_vae3is_write },
4076     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4077       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4078       .access = PL3_W, .type = ARM_CP_NO_RAW,
4079       .writefn = tlbi_aa64_vae3is_write },
4080     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4081       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4082       .access = PL3_W, .type = ARM_CP_NO_RAW,
4083       .writefn = tlbi_aa64_alle3_write },
4084     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4085       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4086       .access = PL3_W, .type = ARM_CP_NO_RAW,
4087       .writefn = tlbi_aa64_vae3_write },
4088     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4089       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4090       .access = PL3_W, .type = ARM_CP_NO_RAW,
4091       .writefn = tlbi_aa64_vae3_write },
4092     REGINFO_SENTINEL
4093 };
4094 
4095 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4096                                      bool isread)
4097 {
4098     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4099      * but the AArch32 CTR has its own reginfo struct)
4100      */
4101     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4102         return CP_ACCESS_TRAP;
4103     }
4104     return CP_ACCESS_OK;
4105 }
4106 
4107 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4108                         uint64_t value)
4109 {
4110     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4111      * read via a bit in OSLSR_EL1.
4112      */
4113     int oslock;
4114 
4115     if (ri->state == ARM_CP_STATE_AA32) {
4116         oslock = (value == 0xC5ACCE55);
4117     } else {
4118         oslock = value & 1;
4119     }
4120 
4121     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4122 }
4123 
4124 static const ARMCPRegInfo debug_cp_reginfo[] = {
4125     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4126      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4127      * unlike DBGDRAR it is never accessible from EL0.
4128      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4129      * accessor.
4130      */
4131     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4132       .access = PL0_R, .accessfn = access_tdra,
4133       .type = ARM_CP_CONST, .resetvalue = 0 },
4134     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4135       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4136       .access = PL1_R, .accessfn = access_tdra,
4137       .type = ARM_CP_CONST, .resetvalue = 0 },
4138     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4139       .access = PL0_R, .accessfn = access_tdra,
4140       .type = ARM_CP_CONST, .resetvalue = 0 },
4141     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4142     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4143       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4144       .access = PL1_RW, .accessfn = access_tda,
4145       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4146       .resetvalue = 0 },
4147     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4148      * We don't implement the configurable EL0 access.
4149      */
4150     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4151       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4152       .type = ARM_CP_ALIAS,
4153       .access = PL1_R, .accessfn = access_tda,
4154       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4155     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4156       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4157       .access = PL1_W, .type = ARM_CP_NO_RAW,
4158       .accessfn = access_tdosa,
4159       .writefn = oslar_write },
4160     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4161       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4162       .access = PL1_R, .resetvalue = 10,
4163       .accessfn = access_tdosa,
4164       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4165     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4166     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4167       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4168       .access = PL1_RW, .accessfn = access_tdosa,
4169       .type = ARM_CP_NOP },
4170     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4171      * implement vector catch debug events yet.
4172      */
4173     { .name = "DBGVCR",
4174       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4175       .access = PL1_RW, .accessfn = access_tda,
4176       .type = ARM_CP_NOP },
4177     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4178      * to save and restore a 32-bit guest's DBGVCR)
4179      */
4180     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4181       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4182       .access = PL2_RW, .accessfn = access_tda,
4183       .type = ARM_CP_NOP },
4184     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4185      * Channel but Linux may try to access this register. The 32-bit
4186      * alias is DBGDCCINT.
4187      */
4188     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4189       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4190       .access = PL1_RW, .accessfn = access_tda,
4191       .type = ARM_CP_NOP },
4192     REGINFO_SENTINEL
4193 };
4194 
4195 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4196     /* 64 bit access versions of the (dummy) debug registers */
4197     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4198       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4199     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4200       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4201     REGINFO_SENTINEL
4202 };
4203 
4204 void hw_watchpoint_update(ARMCPU *cpu, int n)
4205 {
4206     CPUARMState *env = &cpu->env;
4207     vaddr len = 0;
4208     vaddr wvr = env->cp15.dbgwvr[n];
4209     uint64_t wcr = env->cp15.dbgwcr[n];
4210     int mask;
4211     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4212 
4213     if (env->cpu_watchpoint[n]) {
4214         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4215         env->cpu_watchpoint[n] = NULL;
4216     }
4217 
4218     if (!extract64(wcr, 0, 1)) {
4219         /* E bit clear : watchpoint disabled */
4220         return;
4221     }
4222 
4223     switch (extract64(wcr, 3, 2)) {
4224     case 0:
4225         /* LSC 00 is reserved and must behave as if the wp is disabled */
4226         return;
4227     case 1:
4228         flags |= BP_MEM_READ;
4229         break;
4230     case 2:
4231         flags |= BP_MEM_WRITE;
4232         break;
4233     case 3:
4234         flags |= BP_MEM_ACCESS;
4235         break;
4236     }
4237 
4238     /* Attempts to use both MASK and BAS fields simultaneously are
4239      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4240      * thus generating a watchpoint for every byte in the masked region.
4241      */
4242     mask = extract64(wcr, 24, 4);
4243     if (mask == 1 || mask == 2) {
4244         /* Reserved values of MASK; we must act as if the mask value was
4245          * some non-reserved value, or as if the watchpoint were disabled.
4246          * We choose the latter.
4247          */
4248         return;
4249     } else if (mask) {
4250         /* Watchpoint covers an aligned area up to 2GB in size */
4251         len = 1ULL << mask;
4252         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4253          * whether the watchpoint fires when the unmasked bits match; we opt
4254          * to generate the exceptions.
4255          */
4256         wvr &= ~(len - 1);
4257     } else {
4258         /* Watchpoint covers bytes defined by the byte address select bits */
4259         int bas = extract64(wcr, 5, 8);
4260         int basstart;
4261 
4262         if (bas == 0) {
4263             /* This must act as if the watchpoint is disabled */
4264             return;
4265         }
4266 
4267         if (extract64(wvr, 2, 1)) {
4268             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4269              * ignored, and BAS[3:0] define which bytes to watch.
4270              */
4271             bas &= 0xf;
4272         }
4273         /* The BAS bits are supposed to be programmed to indicate a contiguous
4274          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4275          * we fire for each byte in the word/doubleword addressed by the WVR.
4276          * We choose to ignore any non-zero bits after the first range of 1s.
4277          */
4278         basstart = ctz32(bas);
4279         len = cto32(bas >> basstart);
4280         wvr += basstart;
4281     }
4282 
4283     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4284                           &env->cpu_watchpoint[n]);
4285 }
4286 
4287 void hw_watchpoint_update_all(ARMCPU *cpu)
4288 {
4289     int i;
4290     CPUARMState *env = &cpu->env;
4291 
4292     /* Completely clear out existing QEMU watchpoints and our array, to
4293      * avoid possible stale entries following migration load.
4294      */
4295     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4296     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4297 
4298     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4299         hw_watchpoint_update(cpu, i);
4300     }
4301 }
4302 
4303 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4304                          uint64_t value)
4305 {
4306     ARMCPU *cpu = arm_env_get_cpu(env);
4307     int i = ri->crm;
4308 
4309     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4310      * register reads and behaves as if values written are sign extended.
4311      * Bits [1:0] are RES0.
4312      */
4313     value = sextract64(value, 0, 49) & ~3ULL;
4314 
4315     raw_write(env, ri, value);
4316     hw_watchpoint_update(cpu, i);
4317 }
4318 
4319 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4320                          uint64_t value)
4321 {
4322     ARMCPU *cpu = arm_env_get_cpu(env);
4323     int i = ri->crm;
4324 
4325     raw_write(env, ri, value);
4326     hw_watchpoint_update(cpu, i);
4327 }
4328 
4329 void hw_breakpoint_update(ARMCPU *cpu, int n)
4330 {
4331     CPUARMState *env = &cpu->env;
4332     uint64_t bvr = env->cp15.dbgbvr[n];
4333     uint64_t bcr = env->cp15.dbgbcr[n];
4334     vaddr addr;
4335     int bt;
4336     int flags = BP_CPU;
4337 
4338     if (env->cpu_breakpoint[n]) {
4339         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4340         env->cpu_breakpoint[n] = NULL;
4341     }
4342 
4343     if (!extract64(bcr, 0, 1)) {
4344         /* E bit clear : watchpoint disabled */
4345         return;
4346     }
4347 
4348     bt = extract64(bcr, 20, 4);
4349 
4350     switch (bt) {
4351     case 4: /* unlinked address mismatch (reserved if AArch64) */
4352     case 5: /* linked address mismatch (reserved if AArch64) */
4353         qemu_log_mask(LOG_UNIMP,
4354                       "arm: address mismatch breakpoint types not implemented");
4355         return;
4356     case 0: /* unlinked address match */
4357     case 1: /* linked address match */
4358     {
4359         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4360          * we behave as if the register was sign extended. Bits [1:0] are
4361          * RES0. The BAS field is used to allow setting breakpoints on 16
4362          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4363          * a bp will fire if the addresses covered by the bp and the addresses
4364          * covered by the insn overlap but the insn doesn't start at the
4365          * start of the bp address range. We choose to require the insn and
4366          * the bp to have the same address. The constraints on writing to
4367          * BAS enforced in dbgbcr_write mean we have only four cases:
4368          *  0b0000  => no breakpoint
4369          *  0b0011  => breakpoint on addr
4370          *  0b1100  => breakpoint on addr + 2
4371          *  0b1111  => breakpoint on addr
4372          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4373          */
4374         int bas = extract64(bcr, 5, 4);
4375         addr = sextract64(bvr, 0, 49) & ~3ULL;
4376         if (bas == 0) {
4377             return;
4378         }
4379         if (bas == 0xc) {
4380             addr += 2;
4381         }
4382         break;
4383     }
4384     case 2: /* unlinked context ID match */
4385     case 8: /* unlinked VMID match (reserved if no EL2) */
4386     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4387         qemu_log_mask(LOG_UNIMP,
4388                       "arm: unlinked context breakpoint types not implemented");
4389         return;
4390     case 9: /* linked VMID match (reserved if no EL2) */
4391     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4392     case 3: /* linked context ID match */
4393     default:
4394         /* We must generate no events for Linked context matches (unless
4395          * they are linked to by some other bp/wp, which is handled in
4396          * updates for the linking bp/wp). We choose to also generate no events
4397          * for reserved values.
4398          */
4399         return;
4400     }
4401 
4402     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4403 }
4404 
4405 void hw_breakpoint_update_all(ARMCPU *cpu)
4406 {
4407     int i;
4408     CPUARMState *env = &cpu->env;
4409 
4410     /* Completely clear out existing QEMU breakpoints and our array, to
4411      * avoid possible stale entries following migration load.
4412      */
4413     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4414     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4415 
4416     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4417         hw_breakpoint_update(cpu, i);
4418     }
4419 }
4420 
4421 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4422                          uint64_t value)
4423 {
4424     ARMCPU *cpu = arm_env_get_cpu(env);
4425     int i = ri->crm;
4426 
4427     raw_write(env, ri, value);
4428     hw_breakpoint_update(cpu, i);
4429 }
4430 
4431 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4432                          uint64_t value)
4433 {
4434     ARMCPU *cpu = arm_env_get_cpu(env);
4435     int i = ri->crm;
4436 
4437     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4438      * copy of BAS[0].
4439      */
4440     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4441     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4442 
4443     raw_write(env, ri, value);
4444     hw_breakpoint_update(cpu, i);
4445 }
4446 
4447 static void define_debug_regs(ARMCPU *cpu)
4448 {
4449     /* Define v7 and v8 architectural debug registers.
4450      * These are just dummy implementations for now.
4451      */
4452     int i;
4453     int wrps, brps, ctx_cmps;
4454     ARMCPRegInfo dbgdidr = {
4455         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4456         .access = PL0_R, .accessfn = access_tda,
4457         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4458     };
4459 
4460     /* Note that all these register fields hold "number of Xs minus 1". */
4461     brps = extract32(cpu->dbgdidr, 24, 4);
4462     wrps = extract32(cpu->dbgdidr, 28, 4);
4463     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4464 
4465     assert(ctx_cmps <= brps);
4466 
4467     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4468      * of the debug registers such as number of breakpoints;
4469      * check that if they both exist then they agree.
4470      */
4471     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4472         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4473         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4474         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4475     }
4476 
4477     define_one_arm_cp_reg(cpu, &dbgdidr);
4478     define_arm_cp_regs(cpu, debug_cp_reginfo);
4479 
4480     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4481         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4482     }
4483 
4484     for (i = 0; i < brps + 1; i++) {
4485         ARMCPRegInfo dbgregs[] = {
4486             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4487               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4488               .access = PL1_RW, .accessfn = access_tda,
4489               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4490               .writefn = dbgbvr_write, .raw_writefn = raw_write
4491             },
4492             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4493               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4494               .access = PL1_RW, .accessfn = access_tda,
4495               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4496               .writefn = dbgbcr_write, .raw_writefn = raw_write
4497             },
4498             REGINFO_SENTINEL
4499         };
4500         define_arm_cp_regs(cpu, dbgregs);
4501     }
4502 
4503     for (i = 0; i < wrps + 1; i++) {
4504         ARMCPRegInfo dbgregs[] = {
4505             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4506               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4507               .access = PL1_RW, .accessfn = access_tda,
4508               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4509               .writefn = dbgwvr_write, .raw_writefn = raw_write
4510             },
4511             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4512               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4513               .access = PL1_RW, .accessfn = access_tda,
4514               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4515               .writefn = dbgwcr_write, .raw_writefn = raw_write
4516             },
4517             REGINFO_SENTINEL
4518         };
4519         define_arm_cp_regs(cpu, dbgregs);
4520     }
4521 }
4522 
4523 void register_cp_regs_for_features(ARMCPU *cpu)
4524 {
4525     /* Register all the coprocessor registers based on feature bits */
4526     CPUARMState *env = &cpu->env;
4527     if (arm_feature(env, ARM_FEATURE_M)) {
4528         /* M profile has no coprocessor registers */
4529         return;
4530     }
4531 
4532     define_arm_cp_regs(cpu, cp_reginfo);
4533     if (!arm_feature(env, ARM_FEATURE_V8)) {
4534         /* Must go early as it is full of wildcards that may be
4535          * overridden by later definitions.
4536          */
4537         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4538     }
4539 
4540     if (arm_feature(env, ARM_FEATURE_V6)) {
4541         /* The ID registers all have impdef reset values */
4542         ARMCPRegInfo v6_idregs[] = {
4543             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4544               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4545               .access = PL1_R, .type = ARM_CP_CONST,
4546               .resetvalue = cpu->id_pfr0 },
4547             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4548               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4549               .access = PL1_R, .type = ARM_CP_CONST,
4550               .resetvalue = cpu->id_pfr1 },
4551             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4552               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4553               .access = PL1_R, .type = ARM_CP_CONST,
4554               .resetvalue = cpu->id_dfr0 },
4555             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4556               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4557               .access = PL1_R, .type = ARM_CP_CONST,
4558               .resetvalue = cpu->id_afr0 },
4559             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4560               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4561               .access = PL1_R, .type = ARM_CP_CONST,
4562               .resetvalue = cpu->id_mmfr0 },
4563             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4564               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4565               .access = PL1_R, .type = ARM_CP_CONST,
4566               .resetvalue = cpu->id_mmfr1 },
4567             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4568               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4569               .access = PL1_R, .type = ARM_CP_CONST,
4570               .resetvalue = cpu->id_mmfr2 },
4571             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4572               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4573               .access = PL1_R, .type = ARM_CP_CONST,
4574               .resetvalue = cpu->id_mmfr3 },
4575             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4576               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4577               .access = PL1_R, .type = ARM_CP_CONST,
4578               .resetvalue = cpu->id_isar0 },
4579             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4580               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4581               .access = PL1_R, .type = ARM_CP_CONST,
4582               .resetvalue = cpu->id_isar1 },
4583             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4584               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4585               .access = PL1_R, .type = ARM_CP_CONST,
4586               .resetvalue = cpu->id_isar2 },
4587             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4588               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4589               .access = PL1_R, .type = ARM_CP_CONST,
4590               .resetvalue = cpu->id_isar3 },
4591             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4592               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4593               .access = PL1_R, .type = ARM_CP_CONST,
4594               .resetvalue = cpu->id_isar4 },
4595             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4596               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4597               .access = PL1_R, .type = ARM_CP_CONST,
4598               .resetvalue = cpu->id_isar5 },
4599             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4600               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4601               .access = PL1_R, .type = ARM_CP_CONST,
4602               .resetvalue = cpu->id_mmfr4 },
4603             /* 7 is as yet unallocated and must RAZ */
4604             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4605               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4606               .access = PL1_R, .type = ARM_CP_CONST,
4607               .resetvalue = 0 },
4608             REGINFO_SENTINEL
4609         };
4610         define_arm_cp_regs(cpu, v6_idregs);
4611         define_arm_cp_regs(cpu, v6_cp_reginfo);
4612     } else {
4613         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4614     }
4615     if (arm_feature(env, ARM_FEATURE_V6K)) {
4616         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4617     }
4618     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4619         !arm_feature(env, ARM_FEATURE_PMSA)) {
4620         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4621     }
4622     if (arm_feature(env, ARM_FEATURE_V7)) {
4623         /* v7 performance monitor control register: same implementor
4624          * field as main ID register, and we implement only the cycle
4625          * count register.
4626          */
4627 #ifndef CONFIG_USER_ONLY
4628         ARMCPRegInfo pmcr = {
4629             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4630             .access = PL0_RW,
4631             .type = ARM_CP_IO | ARM_CP_ALIAS,
4632             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4633             .accessfn = pmreg_access, .writefn = pmcr_write,
4634             .raw_writefn = raw_write,
4635         };
4636         ARMCPRegInfo pmcr64 = {
4637             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4638             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4639             .access = PL0_RW, .accessfn = pmreg_access,
4640             .type = ARM_CP_IO,
4641             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4642             .resetvalue = cpu->midr & 0xff000000,
4643             .writefn = pmcr_write, .raw_writefn = raw_write,
4644         };
4645         define_one_arm_cp_reg(cpu, &pmcr);
4646         define_one_arm_cp_reg(cpu, &pmcr64);
4647 #endif
4648         ARMCPRegInfo clidr = {
4649             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4650             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4651             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4652         };
4653         define_one_arm_cp_reg(cpu, &clidr);
4654         define_arm_cp_regs(cpu, v7_cp_reginfo);
4655         define_debug_regs(cpu);
4656     } else {
4657         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4658     }
4659     if (arm_feature(env, ARM_FEATURE_V8)) {
4660         /* AArch64 ID registers, which all have impdef reset values.
4661          * Note that within the ID register ranges the unused slots
4662          * must all RAZ, not UNDEF; future architecture versions may
4663          * define new registers here.
4664          */
4665         ARMCPRegInfo v8_idregs[] = {
4666             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4667               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4668               .access = PL1_R, .type = ARM_CP_CONST,
4669               .resetvalue = cpu->id_aa64pfr0 },
4670             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4671               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4672               .access = PL1_R, .type = ARM_CP_CONST,
4673               .resetvalue = cpu->id_aa64pfr1},
4674             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4675               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4676               .access = PL1_R, .type = ARM_CP_CONST,
4677               .resetvalue = 0 },
4678             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4679               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4680               .access = PL1_R, .type = ARM_CP_CONST,
4681               .resetvalue = 0 },
4682             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4684               .access = PL1_R, .type = ARM_CP_CONST,
4685               .resetvalue = 0 },
4686             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4688               .access = PL1_R, .type = ARM_CP_CONST,
4689               .resetvalue = 0 },
4690             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4692               .access = PL1_R, .type = ARM_CP_CONST,
4693               .resetvalue = 0 },
4694             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4696               .access = PL1_R, .type = ARM_CP_CONST,
4697               .resetvalue = 0 },
4698             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4699               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4700               .access = PL1_R, .type = ARM_CP_CONST,
4701               .resetvalue = cpu->id_aa64dfr0 },
4702             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4703               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4704               .access = PL1_R, .type = ARM_CP_CONST,
4705               .resetvalue = cpu->id_aa64dfr1 },
4706             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4707               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4708               .access = PL1_R, .type = ARM_CP_CONST,
4709               .resetvalue = 0 },
4710             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4711               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4712               .access = PL1_R, .type = ARM_CP_CONST,
4713               .resetvalue = 0 },
4714             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4715               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4716               .access = PL1_R, .type = ARM_CP_CONST,
4717               .resetvalue = cpu->id_aa64afr0 },
4718             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4719               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4720               .access = PL1_R, .type = ARM_CP_CONST,
4721               .resetvalue = cpu->id_aa64afr1 },
4722             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4723               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4724               .access = PL1_R, .type = ARM_CP_CONST,
4725               .resetvalue = 0 },
4726             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4727               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4728               .access = PL1_R, .type = ARM_CP_CONST,
4729               .resetvalue = 0 },
4730             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4732               .access = PL1_R, .type = ARM_CP_CONST,
4733               .resetvalue = cpu->id_aa64isar0 },
4734             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4735               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4736               .access = PL1_R, .type = ARM_CP_CONST,
4737               .resetvalue = cpu->id_aa64isar1 },
4738             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4739               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4740               .access = PL1_R, .type = ARM_CP_CONST,
4741               .resetvalue = 0 },
4742             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4743               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4744               .access = PL1_R, .type = ARM_CP_CONST,
4745               .resetvalue = 0 },
4746             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4747               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4748               .access = PL1_R, .type = ARM_CP_CONST,
4749               .resetvalue = 0 },
4750             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4751               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4752               .access = PL1_R, .type = ARM_CP_CONST,
4753               .resetvalue = 0 },
4754             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4755               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4756               .access = PL1_R, .type = ARM_CP_CONST,
4757               .resetvalue = 0 },
4758             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4759               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4760               .access = PL1_R, .type = ARM_CP_CONST,
4761               .resetvalue = 0 },
4762             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4763               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4764               .access = PL1_R, .type = ARM_CP_CONST,
4765               .resetvalue = cpu->id_aa64mmfr0 },
4766             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4767               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4768               .access = PL1_R, .type = ARM_CP_CONST,
4769               .resetvalue = cpu->id_aa64mmfr1 },
4770             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4771               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4772               .access = PL1_R, .type = ARM_CP_CONST,
4773               .resetvalue = 0 },
4774             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4775               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4776               .access = PL1_R, .type = ARM_CP_CONST,
4777               .resetvalue = 0 },
4778             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4779               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4780               .access = PL1_R, .type = ARM_CP_CONST,
4781               .resetvalue = 0 },
4782             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4783               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4784               .access = PL1_R, .type = ARM_CP_CONST,
4785               .resetvalue = 0 },
4786             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4787               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4788               .access = PL1_R, .type = ARM_CP_CONST,
4789               .resetvalue = 0 },
4790             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4791               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4792               .access = PL1_R, .type = ARM_CP_CONST,
4793               .resetvalue = 0 },
4794             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4795               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4796               .access = PL1_R, .type = ARM_CP_CONST,
4797               .resetvalue = cpu->mvfr0 },
4798             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4799               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4800               .access = PL1_R, .type = ARM_CP_CONST,
4801               .resetvalue = cpu->mvfr1 },
4802             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4803               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4804               .access = PL1_R, .type = ARM_CP_CONST,
4805               .resetvalue = cpu->mvfr2 },
4806             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4807               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4808               .access = PL1_R, .type = ARM_CP_CONST,
4809               .resetvalue = 0 },
4810             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4811               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4812               .access = PL1_R, .type = ARM_CP_CONST,
4813               .resetvalue = 0 },
4814             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4815               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4816               .access = PL1_R, .type = ARM_CP_CONST,
4817               .resetvalue = 0 },
4818             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4819               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4820               .access = PL1_R, .type = ARM_CP_CONST,
4821               .resetvalue = 0 },
4822             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4823               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4824               .access = PL1_R, .type = ARM_CP_CONST,
4825               .resetvalue = 0 },
4826             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4827               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4828               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4829               .resetvalue = cpu->pmceid0 },
4830             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4831               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4832               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4833               .resetvalue = cpu->pmceid0 },
4834             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4835               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4836               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4837               .resetvalue = cpu->pmceid1 },
4838             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4839               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4840               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4841               .resetvalue = cpu->pmceid1 },
4842             REGINFO_SENTINEL
4843         };
4844         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4845         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4846             !arm_feature(env, ARM_FEATURE_EL2)) {
4847             ARMCPRegInfo rvbar = {
4848                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4849                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4850                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4851             };
4852             define_one_arm_cp_reg(cpu, &rvbar);
4853         }
4854         define_arm_cp_regs(cpu, v8_idregs);
4855         define_arm_cp_regs(cpu, v8_cp_reginfo);
4856     }
4857     if (arm_feature(env, ARM_FEATURE_EL2)) {
4858         uint64_t vmpidr_def = mpidr_read_val(env);
4859         ARMCPRegInfo vpidr_regs[] = {
4860             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4861               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4862               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4863               .resetvalue = cpu->midr,
4864               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4865             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4866               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4867               .access = PL2_RW, .resetvalue = cpu->midr,
4868               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4869             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4870               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4871               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4872               .resetvalue = vmpidr_def,
4873               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4874             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4875               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4876               .access = PL2_RW,
4877               .resetvalue = vmpidr_def,
4878               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4879             REGINFO_SENTINEL
4880         };
4881         define_arm_cp_regs(cpu, vpidr_regs);
4882         define_arm_cp_regs(cpu, el2_cp_reginfo);
4883         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4884         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4885             ARMCPRegInfo rvbar = {
4886                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4887                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4888                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4889             };
4890             define_one_arm_cp_reg(cpu, &rvbar);
4891         }
4892     } else {
4893         /* If EL2 is missing but higher ELs are enabled, we need to
4894          * register the no_el2 reginfos.
4895          */
4896         if (arm_feature(env, ARM_FEATURE_EL3)) {
4897             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4898              * of MIDR_EL1 and MPIDR_EL1.
4899              */
4900             ARMCPRegInfo vpidr_regs[] = {
4901                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4902                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4903                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4904                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4905                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4906                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4907                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4908                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4909                   .type = ARM_CP_NO_RAW,
4910                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4911                 REGINFO_SENTINEL
4912             };
4913             define_arm_cp_regs(cpu, vpidr_regs);
4914             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4915         }
4916     }
4917     if (arm_feature(env, ARM_FEATURE_EL3)) {
4918         define_arm_cp_regs(cpu, el3_cp_reginfo);
4919         ARMCPRegInfo el3_regs[] = {
4920             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4921               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4922               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4923             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4924               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4925               .access = PL3_RW,
4926               .raw_writefn = raw_write, .writefn = sctlr_write,
4927               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4928               .resetvalue = cpu->reset_sctlr },
4929             REGINFO_SENTINEL
4930         };
4931 
4932         define_arm_cp_regs(cpu, el3_regs);
4933     }
4934     /* The behaviour of NSACR is sufficiently various that we don't
4935      * try to describe it in a single reginfo:
4936      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
4937      *     reads as constant 0xc00 from NS EL1 and NS EL2
4938      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4939      *  if v7 without EL3, register doesn't exist
4940      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4941      */
4942     if (arm_feature(env, ARM_FEATURE_EL3)) {
4943         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4944             ARMCPRegInfo nsacr = {
4945                 .name = "NSACR", .type = ARM_CP_CONST,
4946                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4947                 .access = PL1_RW, .accessfn = nsacr_access,
4948                 .resetvalue = 0xc00
4949             };
4950             define_one_arm_cp_reg(cpu, &nsacr);
4951         } else {
4952             ARMCPRegInfo nsacr = {
4953                 .name = "NSACR",
4954                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4955                 .access = PL3_RW | PL1_R,
4956                 .resetvalue = 0,
4957                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4958             };
4959             define_one_arm_cp_reg(cpu, &nsacr);
4960         }
4961     } else {
4962         if (arm_feature(env, ARM_FEATURE_V8)) {
4963             ARMCPRegInfo nsacr = {
4964                 .name = "NSACR", .type = ARM_CP_CONST,
4965                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4966                 .access = PL1_R,
4967                 .resetvalue = 0xc00
4968             };
4969             define_one_arm_cp_reg(cpu, &nsacr);
4970         }
4971     }
4972 
4973     if (arm_feature(env, ARM_FEATURE_PMSA)) {
4974         if (arm_feature(env, ARM_FEATURE_V6)) {
4975             /* PMSAv6 not implemented */
4976             assert(arm_feature(env, ARM_FEATURE_V7));
4977             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4978             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4979         } else {
4980             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4981         }
4982     } else {
4983         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4984         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4985     }
4986     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4987         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4988     }
4989     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4990         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4991     }
4992     if (arm_feature(env, ARM_FEATURE_VAPA)) {
4993         define_arm_cp_regs(cpu, vapa_cp_reginfo);
4994     }
4995     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4996         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4997     }
4998     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4999         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5000     }
5001     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5002         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5003     }
5004     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5005         define_arm_cp_regs(cpu, omap_cp_reginfo);
5006     }
5007     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5008         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5009     }
5010     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5011         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5012     }
5013     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5014         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5015     }
5016     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5017         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5018     }
5019     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5020      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5021      * be read-only (ie write causes UNDEF exception).
5022      */
5023     {
5024         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5025             /* Pre-v8 MIDR space.
5026              * Note that the MIDR isn't a simple constant register because
5027              * of the TI925 behaviour where writes to another register can
5028              * cause the MIDR value to change.
5029              *
5030              * Unimplemented registers in the c15 0 0 0 space default to
5031              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5032              * and friends override accordingly.
5033              */
5034             { .name = "MIDR",
5035               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5036               .access = PL1_R, .resetvalue = cpu->midr,
5037               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5038               .readfn = midr_read,
5039               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5040               .type = ARM_CP_OVERRIDE },
5041             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5042             { .name = "DUMMY",
5043               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5044               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5045             { .name = "DUMMY",
5046               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5047               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5048             { .name = "DUMMY",
5049               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5050               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5051             { .name = "DUMMY",
5052               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5053               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5054             { .name = "DUMMY",
5055               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5056               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5057             REGINFO_SENTINEL
5058         };
5059         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5060             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5061               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5062               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5063               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5064               .readfn = midr_read },
5065             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5066             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5067               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5068               .access = PL1_R, .resetvalue = cpu->midr },
5069             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5070               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5071               .access = PL1_R, .resetvalue = cpu->midr },
5072             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5073               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5074               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5075             REGINFO_SENTINEL
5076         };
5077         ARMCPRegInfo id_cp_reginfo[] = {
5078             /* These are common to v8 and pre-v8 */
5079             { .name = "CTR",
5080               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5081               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5082             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5083               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5084               .access = PL0_R, .accessfn = ctr_el0_access,
5085               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5086             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5087             { .name = "TCMTR",
5088               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5089               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5090             REGINFO_SENTINEL
5091         };
5092         /* TLBTR is specific to VMSA */
5093         ARMCPRegInfo id_tlbtr_reginfo = {
5094               .name = "TLBTR",
5095               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5096               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5097         };
5098         /* MPUIR is specific to PMSA V6+ */
5099         ARMCPRegInfo id_mpuir_reginfo = {
5100               .name = "MPUIR",
5101               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5102               .access = PL1_R, .type = ARM_CP_CONST,
5103               .resetvalue = cpu->pmsav7_dregion << 8
5104         };
5105         ARMCPRegInfo crn0_wi_reginfo = {
5106             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5107             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5108             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5109         };
5110         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5111             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5112             ARMCPRegInfo *r;
5113             /* Register the blanket "writes ignored" value first to cover the
5114              * whole space. Then update the specific ID registers to allow write
5115              * access, so that they ignore writes rather than causing them to
5116              * UNDEF.
5117              */
5118             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5119             for (r = id_pre_v8_midr_cp_reginfo;
5120                  r->type != ARM_CP_SENTINEL; r++) {
5121                 r->access = PL1_RW;
5122             }
5123             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5124                 r->access = PL1_RW;
5125             }
5126             id_tlbtr_reginfo.access = PL1_RW;
5127             id_tlbtr_reginfo.access = PL1_RW;
5128         }
5129         if (arm_feature(env, ARM_FEATURE_V8)) {
5130             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5131         } else {
5132             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5133         }
5134         define_arm_cp_regs(cpu, id_cp_reginfo);
5135         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5136             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5137         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5138             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5139         }
5140     }
5141 
5142     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5143         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5144     }
5145 
5146     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5147         ARMCPRegInfo auxcr_reginfo[] = {
5148             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5149               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5150               .access = PL1_RW, .type = ARM_CP_CONST,
5151               .resetvalue = cpu->reset_auxcr },
5152             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5153               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5154               .access = PL2_RW, .type = ARM_CP_CONST,
5155               .resetvalue = 0 },
5156             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5157               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5158               .access = PL3_RW, .type = ARM_CP_CONST,
5159               .resetvalue = 0 },
5160             REGINFO_SENTINEL
5161         };
5162         define_arm_cp_regs(cpu, auxcr_reginfo);
5163     }
5164 
5165     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5166         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5167             /* 32 bit view is [31:18] 0...0 [43:32]. */
5168             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5169                 | extract64(cpu->reset_cbar, 32, 12);
5170             ARMCPRegInfo cbar_reginfo[] = {
5171                 { .name = "CBAR",
5172                   .type = ARM_CP_CONST,
5173                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5174                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5175                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5176                   .type = ARM_CP_CONST,
5177                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5178                   .access = PL1_R, .resetvalue = cbar32 },
5179                 REGINFO_SENTINEL
5180             };
5181             /* We don't implement a r/w 64 bit CBAR currently */
5182             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5183             define_arm_cp_regs(cpu, cbar_reginfo);
5184         } else {
5185             ARMCPRegInfo cbar = {
5186                 .name = "CBAR",
5187                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5188                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5189                 .fieldoffset = offsetof(CPUARMState,
5190                                         cp15.c15_config_base_address)
5191             };
5192             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5193                 cbar.access = PL1_R;
5194                 cbar.fieldoffset = 0;
5195                 cbar.type = ARM_CP_CONST;
5196             }
5197             define_one_arm_cp_reg(cpu, &cbar);
5198         }
5199     }
5200 
5201     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5202         ARMCPRegInfo vbar_cp_reginfo[] = {
5203             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5204               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5205               .access = PL1_RW, .writefn = vbar_write,
5206               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5207                                      offsetof(CPUARMState, cp15.vbar_ns) },
5208               .resetvalue = 0 },
5209             REGINFO_SENTINEL
5210         };
5211         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5212     }
5213 
5214     /* Generic registers whose values depend on the implementation */
5215     {
5216         ARMCPRegInfo sctlr = {
5217             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5218             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5219             .access = PL1_RW,
5220             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5221                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5222             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5223             .raw_writefn = raw_write,
5224         };
5225         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5226             /* Normally we would always end the TB on an SCTLR write, but Linux
5227              * arch/arm/mach-pxa/sleep.S expects two instructions following
5228              * an MMU enable to execute from cache.  Imitate this behaviour.
5229              */
5230             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5231         }
5232         define_one_arm_cp_reg(cpu, &sctlr);
5233     }
5234 }
5235 
5236 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5237 {
5238     CPUState *cs = CPU(cpu);
5239     CPUARMState *env = &cpu->env;
5240 
5241     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5242         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5243                                  aarch64_fpu_gdb_set_reg,
5244                                  34, "aarch64-fpu.xml", 0);
5245     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5246         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5247                                  51, "arm-neon.xml", 0);
5248     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5249         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5250                                  35, "arm-vfp3.xml", 0);
5251     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5252         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5253                                  19, "arm-vfp.xml", 0);
5254     }
5255 }
5256 
5257 /* Sort alphabetically by type name, except for "any". */
5258 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5259 {
5260     ObjectClass *class_a = (ObjectClass *)a;
5261     ObjectClass *class_b = (ObjectClass *)b;
5262     const char *name_a, *name_b;
5263 
5264     name_a = object_class_get_name(class_a);
5265     name_b = object_class_get_name(class_b);
5266     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5267         return 1;
5268     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5269         return -1;
5270     } else {
5271         return strcmp(name_a, name_b);
5272     }
5273 }
5274 
5275 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5276 {
5277     ObjectClass *oc = data;
5278     CPUListState *s = user_data;
5279     const char *typename;
5280     char *name;
5281 
5282     typename = object_class_get_name(oc);
5283     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5284     (*s->cpu_fprintf)(s->file, "  %s\n",
5285                       name);
5286     g_free(name);
5287 }
5288 
5289 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5290 {
5291     CPUListState s = {
5292         .file = f,
5293         .cpu_fprintf = cpu_fprintf,
5294     };
5295     GSList *list;
5296 
5297     list = object_class_get_list(TYPE_ARM_CPU, false);
5298     list = g_slist_sort(list, arm_cpu_list_compare);
5299     (*cpu_fprintf)(f, "Available CPUs:\n");
5300     g_slist_foreach(list, arm_cpu_list_entry, &s);
5301     g_slist_free(list);
5302 #ifdef CONFIG_KVM
5303     /* The 'host' CPU type is dynamically registered only if KVM is
5304      * enabled, so we have to special-case it here:
5305      */
5306     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5307 #endif
5308 }
5309 
5310 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5311 {
5312     ObjectClass *oc = data;
5313     CpuDefinitionInfoList **cpu_list = user_data;
5314     CpuDefinitionInfoList *entry;
5315     CpuDefinitionInfo *info;
5316     const char *typename;
5317 
5318     typename = object_class_get_name(oc);
5319     info = g_malloc0(sizeof(*info));
5320     info->name = g_strndup(typename,
5321                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5322     info->q_typename = g_strdup(typename);
5323 
5324     entry = g_malloc0(sizeof(*entry));
5325     entry->value = info;
5326     entry->next = *cpu_list;
5327     *cpu_list = entry;
5328 }
5329 
5330 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5331 {
5332     CpuDefinitionInfoList *cpu_list = NULL;
5333     GSList *list;
5334 
5335     list = object_class_get_list(TYPE_ARM_CPU, false);
5336     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5337     g_slist_free(list);
5338 
5339     return cpu_list;
5340 }
5341 
5342 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5343                                    void *opaque, int state, int secstate,
5344                                    int crm, int opc1, int opc2)
5345 {
5346     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5347      * add a single reginfo struct to the hash table.
5348      */
5349     uint32_t *key = g_new(uint32_t, 1);
5350     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5351     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5352     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5353 
5354     /* Reset the secure state to the specific incoming state.  This is
5355      * necessary as the register may have been defined with both states.
5356      */
5357     r2->secure = secstate;
5358 
5359     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5360         /* Register is banked (using both entries in array).
5361          * Overwriting fieldoffset as the array is only used to define
5362          * banked registers but later only fieldoffset is used.
5363          */
5364         r2->fieldoffset = r->bank_fieldoffsets[ns];
5365     }
5366 
5367     if (state == ARM_CP_STATE_AA32) {
5368         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5369             /* If the register is banked then we don't need to migrate or
5370              * reset the 32-bit instance in certain cases:
5371              *
5372              * 1) If the register has both 32-bit and 64-bit instances then we
5373              *    can count on the 64-bit instance taking care of the
5374              *    non-secure bank.
5375              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5376              *    taking care of the secure bank.  This requires that separate
5377              *    32 and 64-bit definitions are provided.
5378              */
5379             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5380                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5381                 r2->type |= ARM_CP_ALIAS;
5382             }
5383         } else if ((secstate != r->secure) && !ns) {
5384             /* The register is not banked so we only want to allow migration of
5385              * the non-secure instance.
5386              */
5387             r2->type |= ARM_CP_ALIAS;
5388         }
5389 
5390         if (r->state == ARM_CP_STATE_BOTH) {
5391             /* We assume it is a cp15 register if the .cp field is left unset.
5392              */
5393             if (r2->cp == 0) {
5394                 r2->cp = 15;
5395             }
5396 
5397 #ifdef HOST_WORDS_BIGENDIAN
5398             if (r2->fieldoffset) {
5399                 r2->fieldoffset += sizeof(uint32_t);
5400             }
5401 #endif
5402         }
5403     }
5404     if (state == ARM_CP_STATE_AA64) {
5405         /* To allow abbreviation of ARMCPRegInfo
5406          * definitions, we treat cp == 0 as equivalent to
5407          * the value for "standard guest-visible sysreg".
5408          * STATE_BOTH definitions are also always "standard
5409          * sysreg" in their AArch64 view (the .cp value may
5410          * be non-zero for the benefit of the AArch32 view).
5411          */
5412         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5413             r2->cp = CP_REG_ARM64_SYSREG_CP;
5414         }
5415         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5416                                   r2->opc0, opc1, opc2);
5417     } else {
5418         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5419     }
5420     if (opaque) {
5421         r2->opaque = opaque;
5422     }
5423     /* reginfo passed to helpers is correct for the actual access,
5424      * and is never ARM_CP_STATE_BOTH:
5425      */
5426     r2->state = state;
5427     /* Make sure reginfo passed to helpers for wildcarded regs
5428      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5429      */
5430     r2->crm = crm;
5431     r2->opc1 = opc1;
5432     r2->opc2 = opc2;
5433     /* By convention, for wildcarded registers only the first
5434      * entry is used for migration; the others are marked as
5435      * ALIAS so we don't try to transfer the register
5436      * multiple times. Special registers (ie NOP/WFI) are
5437      * never migratable and not even raw-accessible.
5438      */
5439     if ((r->type & ARM_CP_SPECIAL)) {
5440         r2->type |= ARM_CP_NO_RAW;
5441     }
5442     if (((r->crm == CP_ANY) && crm != 0) ||
5443         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5444         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5445         r2->type |= ARM_CP_ALIAS;
5446     }
5447 
5448     /* Check that raw accesses are either forbidden or handled. Note that
5449      * we can't assert this earlier because the setup of fieldoffset for
5450      * banked registers has to be done first.
5451      */
5452     if (!(r2->type & ARM_CP_NO_RAW)) {
5453         assert(!raw_accessors_invalid(r2));
5454     }
5455 
5456     /* Overriding of an existing definition must be explicitly
5457      * requested.
5458      */
5459     if (!(r->type & ARM_CP_OVERRIDE)) {
5460         ARMCPRegInfo *oldreg;
5461         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5462         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5463             fprintf(stderr, "Register redefined: cp=%d %d bit "
5464                     "crn=%d crm=%d opc1=%d opc2=%d, "
5465                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5466                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5467                     oldreg->name, r2->name);
5468             g_assert_not_reached();
5469         }
5470     }
5471     g_hash_table_insert(cpu->cp_regs, key, r2);
5472 }
5473 
5474 
5475 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5476                                        const ARMCPRegInfo *r, void *opaque)
5477 {
5478     /* Define implementations of coprocessor registers.
5479      * We store these in a hashtable because typically
5480      * there are less than 150 registers in a space which
5481      * is 16*16*16*8*8 = 262144 in size.
5482      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5483      * If a register is defined twice then the second definition is
5484      * used, so this can be used to define some generic registers and
5485      * then override them with implementation specific variations.
5486      * At least one of the original and the second definition should
5487      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5488      * against accidental use.
5489      *
5490      * The state field defines whether the register is to be
5491      * visible in the AArch32 or AArch64 execution state. If the
5492      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5493      * reginfo structure for the AArch32 view, which sees the lower
5494      * 32 bits of the 64 bit register.
5495      *
5496      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5497      * be wildcarded. AArch64 registers are always considered to be 64
5498      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5499      * the register, if any.
5500      */
5501     int crm, opc1, opc2, state;
5502     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5503     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5504     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5505     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5506     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5507     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5508     /* 64 bit registers have only CRm and Opc1 fields */
5509     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5510     /* op0 only exists in the AArch64 encodings */
5511     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5512     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5513     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5514     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5515      * encodes a minimum access level for the register. We roll this
5516      * runtime check into our general permission check code, so check
5517      * here that the reginfo's specified permissions are strict enough
5518      * to encompass the generic architectural permission check.
5519      */
5520     if (r->state != ARM_CP_STATE_AA32) {
5521         int mask = 0;
5522         switch (r->opc1) {
5523         case 0: case 1: case 2:
5524             /* min_EL EL1 */
5525             mask = PL1_RW;
5526             break;
5527         case 3:
5528             /* min_EL EL0 */
5529             mask = PL0_RW;
5530             break;
5531         case 4:
5532             /* min_EL EL2 */
5533             mask = PL2_RW;
5534             break;
5535         case 5:
5536             /* unallocated encoding, so not possible */
5537             assert(false);
5538             break;
5539         case 6:
5540             /* min_EL EL3 */
5541             mask = PL3_RW;
5542             break;
5543         case 7:
5544             /* min_EL EL1, secure mode only (we don't check the latter) */
5545             mask = PL1_RW;
5546             break;
5547         default:
5548             /* broken reginfo with out-of-range opc1 */
5549             assert(false);
5550             break;
5551         }
5552         /* assert our permissions are not too lax (stricter is fine) */
5553         assert((r->access & ~mask) == 0);
5554     }
5555 
5556     /* Check that the register definition has enough info to handle
5557      * reads and writes if they are permitted.
5558      */
5559     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5560         if (r->access & PL3_R) {
5561             assert((r->fieldoffset ||
5562                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5563                    r->readfn);
5564         }
5565         if (r->access & PL3_W) {
5566             assert((r->fieldoffset ||
5567                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5568                    r->writefn);
5569         }
5570     }
5571     /* Bad type field probably means missing sentinel at end of reg list */
5572     assert(cptype_valid(r->type));
5573     for (crm = crmmin; crm <= crmmax; crm++) {
5574         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5575             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5576                 for (state = ARM_CP_STATE_AA32;
5577                      state <= ARM_CP_STATE_AA64; state++) {
5578                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5579                         continue;
5580                     }
5581                     if (state == ARM_CP_STATE_AA32) {
5582                         /* Under AArch32 CP registers can be common
5583                          * (same for secure and non-secure world) or banked.
5584                          */
5585                         switch (r->secure) {
5586                         case ARM_CP_SECSTATE_S:
5587                         case ARM_CP_SECSTATE_NS:
5588                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5589                                                    r->secure, crm, opc1, opc2);
5590                             break;
5591                         default:
5592                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5593                                                    ARM_CP_SECSTATE_S,
5594                                                    crm, opc1, opc2);
5595                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5596                                                    ARM_CP_SECSTATE_NS,
5597                                                    crm, opc1, opc2);
5598                             break;
5599                         }
5600                     } else {
5601                         /* AArch64 registers get mapped to non-secure instance
5602                          * of AArch32 */
5603                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5604                                                ARM_CP_SECSTATE_NS,
5605                                                crm, opc1, opc2);
5606                     }
5607                 }
5608             }
5609         }
5610     }
5611 }
5612 
5613 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5614                                     const ARMCPRegInfo *regs, void *opaque)
5615 {
5616     /* Define a whole list of registers */
5617     const ARMCPRegInfo *r;
5618     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5619         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5620     }
5621 }
5622 
5623 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5624 {
5625     return g_hash_table_lookup(cpregs, &encoded_cp);
5626 }
5627 
5628 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5629                          uint64_t value)
5630 {
5631     /* Helper coprocessor write function for write-ignore registers */
5632 }
5633 
5634 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5635 {
5636     /* Helper coprocessor write function for read-as-zero registers */
5637     return 0;
5638 }
5639 
5640 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5641 {
5642     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5643 }
5644 
5645 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5646 {
5647     /* Return true if it is not valid for us to switch to
5648      * this CPU mode (ie all the UNPREDICTABLE cases in
5649      * the ARM ARM CPSRWriteByInstr pseudocode).
5650      */
5651 
5652     /* Changes to or from Hyp via MSR and CPS are illegal. */
5653     if (write_type == CPSRWriteByInstr &&
5654         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5655          mode == ARM_CPU_MODE_HYP)) {
5656         return 1;
5657     }
5658 
5659     switch (mode) {
5660     case ARM_CPU_MODE_USR:
5661         return 0;
5662     case ARM_CPU_MODE_SYS:
5663     case ARM_CPU_MODE_SVC:
5664     case ARM_CPU_MODE_ABT:
5665     case ARM_CPU_MODE_UND:
5666     case ARM_CPU_MODE_IRQ:
5667     case ARM_CPU_MODE_FIQ:
5668         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5669          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5670          */
5671         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5672          * and CPS are treated as illegal mode changes.
5673          */
5674         if (write_type == CPSRWriteByInstr &&
5675             (env->cp15.hcr_el2 & HCR_TGE) &&
5676             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5677             !arm_is_secure_below_el3(env)) {
5678             return 1;
5679         }
5680         return 0;
5681     case ARM_CPU_MODE_HYP:
5682         return !arm_feature(env, ARM_FEATURE_EL2)
5683             || arm_current_el(env) < 2 || arm_is_secure(env);
5684     case ARM_CPU_MODE_MON:
5685         return arm_current_el(env) < 3;
5686     default:
5687         return 1;
5688     }
5689 }
5690 
5691 uint32_t cpsr_read(CPUARMState *env)
5692 {
5693     int ZF;
5694     ZF = (env->ZF == 0);
5695     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5696         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5697         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5698         | ((env->condexec_bits & 0xfc) << 8)
5699         | (env->GE << 16) | (env->daif & CPSR_AIF);
5700 }
5701 
5702 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5703                 CPSRWriteType write_type)
5704 {
5705     uint32_t changed_daif;
5706 
5707     if (mask & CPSR_NZCV) {
5708         env->ZF = (~val) & CPSR_Z;
5709         env->NF = val;
5710         env->CF = (val >> 29) & 1;
5711         env->VF = (val << 3) & 0x80000000;
5712     }
5713     if (mask & CPSR_Q)
5714         env->QF = ((val & CPSR_Q) != 0);
5715     if (mask & CPSR_T)
5716         env->thumb = ((val & CPSR_T) != 0);
5717     if (mask & CPSR_IT_0_1) {
5718         env->condexec_bits &= ~3;
5719         env->condexec_bits |= (val >> 25) & 3;
5720     }
5721     if (mask & CPSR_IT_2_7) {
5722         env->condexec_bits &= 3;
5723         env->condexec_bits |= (val >> 8) & 0xfc;
5724     }
5725     if (mask & CPSR_GE) {
5726         env->GE = (val >> 16) & 0xf;
5727     }
5728 
5729     /* In a V7 implementation that includes the security extensions but does
5730      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5731      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5732      * bits respectively.
5733      *
5734      * In a V8 implementation, it is permitted for privileged software to
5735      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5736      */
5737     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5738         arm_feature(env, ARM_FEATURE_EL3) &&
5739         !arm_feature(env, ARM_FEATURE_EL2) &&
5740         !arm_is_secure(env)) {
5741 
5742         changed_daif = (env->daif ^ val) & mask;
5743 
5744         if (changed_daif & CPSR_A) {
5745             /* Check to see if we are allowed to change the masking of async
5746              * abort exceptions from a non-secure state.
5747              */
5748             if (!(env->cp15.scr_el3 & SCR_AW)) {
5749                 qemu_log_mask(LOG_GUEST_ERROR,
5750                               "Ignoring attempt to switch CPSR_A flag from "
5751                               "non-secure world with SCR.AW bit clear\n");
5752                 mask &= ~CPSR_A;
5753             }
5754         }
5755 
5756         if (changed_daif & CPSR_F) {
5757             /* Check to see if we are allowed to change the masking of FIQ
5758              * exceptions from a non-secure state.
5759              */
5760             if (!(env->cp15.scr_el3 & SCR_FW)) {
5761                 qemu_log_mask(LOG_GUEST_ERROR,
5762                               "Ignoring attempt to switch CPSR_F flag from "
5763                               "non-secure world with SCR.FW bit clear\n");
5764                 mask &= ~CPSR_F;
5765             }
5766 
5767             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5768              * If this bit is set software is not allowed to mask
5769              * FIQs, but is allowed to set CPSR_F to 0.
5770              */
5771             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5772                 (val & CPSR_F)) {
5773                 qemu_log_mask(LOG_GUEST_ERROR,
5774                               "Ignoring attempt to enable CPSR_F flag "
5775                               "(non-maskable FIQ [NMFI] support enabled)\n");
5776                 mask &= ~CPSR_F;
5777             }
5778         }
5779     }
5780 
5781     env->daif &= ~(CPSR_AIF & mask);
5782     env->daif |= val & CPSR_AIF & mask;
5783 
5784     if (write_type != CPSRWriteRaw &&
5785         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5786         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5787             /* Note that we can only get here in USR mode if this is a
5788              * gdb stub write; for this case we follow the architectural
5789              * behaviour for guest writes in USR mode of ignoring an attempt
5790              * to switch mode. (Those are caught by translate.c for writes
5791              * triggered by guest instructions.)
5792              */
5793             mask &= ~CPSR_M;
5794         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5795             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5796              * v7, and has defined behaviour in v8:
5797              *  + leave CPSR.M untouched
5798              *  + allow changes to the other CPSR fields
5799              *  + set PSTATE.IL
5800              * For user changes via the GDB stub, we don't set PSTATE.IL,
5801              * as this would be unnecessarily harsh for a user error.
5802              */
5803             mask &= ~CPSR_M;
5804             if (write_type != CPSRWriteByGDBStub &&
5805                 arm_feature(env, ARM_FEATURE_V8)) {
5806                 mask |= CPSR_IL;
5807                 val |= CPSR_IL;
5808             }
5809         } else {
5810             switch_mode(env, val & CPSR_M);
5811         }
5812     }
5813     mask &= ~CACHED_CPSR_BITS;
5814     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5815 }
5816 
5817 /* Sign/zero extend */
5818 uint32_t HELPER(sxtb16)(uint32_t x)
5819 {
5820     uint32_t res;
5821     res = (uint16_t)(int8_t)x;
5822     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5823     return res;
5824 }
5825 
5826 uint32_t HELPER(uxtb16)(uint32_t x)
5827 {
5828     uint32_t res;
5829     res = (uint16_t)(uint8_t)x;
5830     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5831     return res;
5832 }
5833 
5834 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5835 {
5836     if (den == 0)
5837       return 0;
5838     if (num == INT_MIN && den == -1)
5839       return INT_MIN;
5840     return num / den;
5841 }
5842 
5843 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5844 {
5845     if (den == 0)
5846       return 0;
5847     return num / den;
5848 }
5849 
5850 uint32_t HELPER(rbit)(uint32_t x)
5851 {
5852     return revbit32(x);
5853 }
5854 
5855 #if defined(CONFIG_USER_ONLY)
5856 
5857 /* These should probably raise undefined insn exceptions.  */
5858 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5859 {
5860     ARMCPU *cpu = arm_env_get_cpu(env);
5861 
5862     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5863 }
5864 
5865 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5866 {
5867     ARMCPU *cpu = arm_env_get_cpu(env);
5868 
5869     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5870     return 0;
5871 }
5872 
5873 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5874 {
5875     /* translate.c should never generate calls here in user-only mode */
5876     g_assert_not_reached();
5877 }
5878 
5879 void switch_mode(CPUARMState *env, int mode)
5880 {
5881     ARMCPU *cpu = arm_env_get_cpu(env);
5882 
5883     if (mode != ARM_CPU_MODE_USR) {
5884         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5885     }
5886 }
5887 
5888 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5889                                  uint32_t cur_el, bool secure)
5890 {
5891     return 1;
5892 }
5893 
5894 void aarch64_sync_64_to_32(CPUARMState *env)
5895 {
5896     g_assert_not_reached();
5897 }
5898 
5899 #else
5900 
5901 void switch_mode(CPUARMState *env, int mode)
5902 {
5903     int old_mode;
5904     int i;
5905 
5906     old_mode = env->uncached_cpsr & CPSR_M;
5907     if (mode == old_mode)
5908         return;
5909 
5910     if (old_mode == ARM_CPU_MODE_FIQ) {
5911         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5912         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5913     } else if (mode == ARM_CPU_MODE_FIQ) {
5914         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5915         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5916     }
5917 
5918     i = bank_number(old_mode);
5919     env->banked_r13[i] = env->regs[13];
5920     env->banked_r14[i] = env->regs[14];
5921     env->banked_spsr[i] = env->spsr;
5922 
5923     i = bank_number(mode);
5924     env->regs[13] = env->banked_r13[i];
5925     env->regs[14] = env->banked_r14[i];
5926     env->spsr = env->banked_spsr[i];
5927 }
5928 
5929 /* Physical Interrupt Target EL Lookup Table
5930  *
5931  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5932  *
5933  * The below multi-dimensional table is used for looking up the target
5934  * exception level given numerous condition criteria.  Specifically, the
5935  * target EL is based on SCR and HCR routing controls as well as the
5936  * currently executing EL and secure state.
5937  *
5938  *    Dimensions:
5939  *    target_el_table[2][2][2][2][2][4]
5940  *                    |  |  |  |  |  +--- Current EL
5941  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
5942  *                    |  |  |  +--------- HCR mask override
5943  *                    |  |  +------------ SCR exec state control
5944  *                    |  +--------------- SCR mask override
5945  *                    +------------------ 32-bit(0)/64-bit(1) EL3
5946  *
5947  *    The table values are as such:
5948  *    0-3 = EL0-EL3
5949  *     -1 = Cannot occur
5950  *
5951  * The ARM ARM target EL table includes entries indicating that an "exception
5952  * is not taken".  The two cases where this is applicable are:
5953  *    1) An exception is taken from EL3 but the SCR does not have the exception
5954  *    routed to EL3.
5955  *    2) An exception is taken from EL2 but the HCR does not have the exception
5956  *    routed to EL2.
5957  * In these two cases, the below table contain a target of EL1.  This value is
5958  * returned as it is expected that the consumer of the table data will check
5959  * for "target EL >= current EL" to ensure the exception is not taken.
5960  *
5961  *            SCR     HCR
5962  *         64  EA     AMO                 From
5963  *        BIT IRQ     IMO      Non-secure         Secure
5964  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
5965  */
5966 static const int8_t target_el_table[2][2][2][2][2][4] = {
5967     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5968        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
5969       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
5970        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
5971      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5972        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
5973       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
5974        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
5975     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
5976        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
5977       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
5978        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
5979      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5980        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
5981       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
5982        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
5983 };
5984 
5985 /*
5986  * Determine the target EL for physical exceptions
5987  */
5988 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5989                                  uint32_t cur_el, bool secure)
5990 {
5991     CPUARMState *env = cs->env_ptr;
5992     int rw;
5993     int scr;
5994     int hcr;
5995     int target_el;
5996     /* Is the highest EL AArch64? */
5997     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5998 
5999     if (arm_feature(env, ARM_FEATURE_EL3)) {
6000         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6001     } else {
6002         /* Either EL2 is the highest EL (and so the EL2 register width
6003          * is given by is64); or there is no EL2 or EL3, in which case
6004          * the value of 'rw' does not affect the table lookup anyway.
6005          */
6006         rw = is64;
6007     }
6008 
6009     switch (excp_idx) {
6010     case EXCP_IRQ:
6011         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6012         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6013         break;
6014     case EXCP_FIQ:
6015         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6016         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6017         break;
6018     default:
6019         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6020         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6021         break;
6022     };
6023 
6024     /* If HCR.TGE is set then HCR is treated as being 1 */
6025     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6026 
6027     /* Perform a table-lookup for the target EL given the current state */
6028     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6029 
6030     assert(target_el > 0);
6031 
6032     return target_el;
6033 }
6034 
6035 static void v7m_push(CPUARMState *env, uint32_t val)
6036 {
6037     CPUState *cs = CPU(arm_env_get_cpu(env));
6038 
6039     env->regs[13] -= 4;
6040     stl_phys(cs->as, env->regs[13], val);
6041 }
6042 
6043 static uint32_t v7m_pop(CPUARMState *env)
6044 {
6045     CPUState *cs = CPU(arm_env_get_cpu(env));
6046     uint32_t val;
6047 
6048     val = ldl_phys(cs->as, env->regs[13]);
6049     env->regs[13] += 4;
6050     return val;
6051 }
6052 
6053 /* Return true if we're using the process stack pointer (not the MSP) */
6054 static bool v7m_using_psp(CPUARMState *env)
6055 {
6056     /* Handler mode always uses the main stack; for thread mode
6057      * the CONTROL.SPSEL bit determines the answer.
6058      * Note that in v7M it is not possible to be in Handler mode with
6059      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6060      */
6061     return !arm_v7m_is_handler_mode(env) &&
6062         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6063 }
6064 
6065 /* Switch to V7M main or process stack pointer.  */
6066 static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
6067 {
6068     uint32_t tmp;
6069     uint32_t old_control = env->v7m.control[env->v7m.secure];
6070     bool old_spsel = old_control & R_V7M_CONTROL_SPSEL_MASK;
6071 
6072     if (old_spsel != new_spsel) {
6073         tmp = env->v7m.other_sp;
6074         env->v7m.other_sp = env->regs[13];
6075         env->regs[13] = tmp;
6076 
6077         env->v7m.control[env->v7m.secure] = deposit32(old_control,
6078                                      R_V7M_CONTROL_SPSEL_SHIFT,
6079                                      R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6080     }
6081 }
6082 
6083 /* Switch M profile security state between NS and S */
6084 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6085 {
6086     uint32_t new_ss_msp, new_ss_psp;
6087 
6088     if (env->v7m.secure == new_secstate) {
6089         return;
6090     }
6091 
6092     /* All the banked state is accessed by looking at env->v7m.secure
6093      * except for the stack pointer; rearrange the SP appropriately.
6094      */
6095     new_ss_msp = env->v7m.other_ss_msp;
6096     new_ss_psp = env->v7m.other_ss_psp;
6097 
6098     if (v7m_using_psp(env)) {
6099         env->v7m.other_ss_psp = env->regs[13];
6100         env->v7m.other_ss_msp = env->v7m.other_sp;
6101     } else {
6102         env->v7m.other_ss_msp = env->regs[13];
6103         env->v7m.other_ss_psp = env->v7m.other_sp;
6104     }
6105 
6106     env->v7m.secure = new_secstate;
6107 
6108     if (v7m_using_psp(env)) {
6109         env->regs[13] = new_ss_psp;
6110         env->v7m.other_sp = new_ss_msp;
6111     } else {
6112         env->regs[13] = new_ss_msp;
6113         env->v7m.other_sp = new_ss_psp;
6114     }
6115 }
6116 
6117 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6118 {
6119     /* Handle v7M BXNS:
6120      *  - if the return value is a magic value, do exception return (like BX)
6121      *  - otherwise bit 0 of the return value is the target security state
6122      */
6123     if (dest >= 0xff000000) {
6124         /* This is an exception return magic value; put it where
6125          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6126          * Note that if we ever add gen_ss_advance() singlestep support to
6127          * M profile this should count as an "instruction execution complete"
6128          * event (compare gen_bx_excret_final_code()).
6129          */
6130         env->regs[15] = dest & ~1;
6131         env->thumb = dest & 1;
6132         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6133         /* notreached */
6134     }
6135 
6136     /* translate.c should have made BXNS UNDEF unless we're secure */
6137     assert(env->v7m.secure);
6138 
6139     switch_v7m_security_state(env, dest & 1);
6140     env->thumb = 1;
6141     env->regs[15] = dest & ~1;
6142 }
6143 
6144 static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
6145 {
6146     CPUState *cs = CPU(cpu);
6147     CPUARMState *env = &cpu->env;
6148     MemTxResult result;
6149     hwaddr vec = env->v7m.vecbase[env->v7m.secure] + env->v7m.exception * 4;
6150     uint32_t addr;
6151 
6152     addr = address_space_ldl(cs->as, vec,
6153                              MEMTXATTRS_UNSPECIFIED, &result);
6154     if (result != MEMTX_OK) {
6155         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6156          * which would then be immediately followed by our failing to load
6157          * the entry vector for that HardFault, which is a Lockup case.
6158          * Since we don't model Lockup, we just report this guest error
6159          * via cpu_abort().
6160          */
6161         cpu_abort(cs, "Failed to read from exception vector table "
6162                   "entry %08x\n", (unsigned)vec);
6163     }
6164     return addr;
6165 }
6166 
6167 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
6168 {
6169     /* Do the "take the exception" parts of exception entry,
6170      * but not the pushing of state to the stack. This is
6171      * similar to the pseudocode ExceptionTaken() function.
6172      */
6173     CPUARMState *env = &cpu->env;
6174     uint32_t addr;
6175 
6176     armv7m_nvic_acknowledge_irq(env->nvic);
6177     switch_v7m_sp(env, 0);
6178     arm_clear_exclusive(env);
6179     /* Clear IT bits */
6180     env->condexec_bits = 0;
6181     env->regs[14] = lr;
6182     addr = arm_v7m_load_vector(cpu);
6183     env->regs[15] = addr & 0xfffffffe;
6184     env->thumb = addr & 1;
6185 }
6186 
6187 static void v7m_push_stack(ARMCPU *cpu)
6188 {
6189     /* Do the "set up stack frame" part of exception entry,
6190      * similar to pseudocode PushStack().
6191      */
6192     CPUARMState *env = &cpu->env;
6193     uint32_t xpsr = xpsr_read(env);
6194 
6195     /* Align stack pointer if the guest wants that */
6196     if ((env->regs[13] & 4) &&
6197         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6198         env->regs[13] -= 4;
6199         xpsr |= XPSR_SPREALIGN;
6200     }
6201     /* Switch to the handler mode.  */
6202     v7m_push(env, xpsr);
6203     v7m_push(env, env->regs[15]);
6204     v7m_push(env, env->regs[14]);
6205     v7m_push(env, env->regs[12]);
6206     v7m_push(env, env->regs[3]);
6207     v7m_push(env, env->regs[2]);
6208     v7m_push(env, env->regs[1]);
6209     v7m_push(env, env->regs[0]);
6210 }
6211 
6212 static void do_v7m_exception_exit(ARMCPU *cpu)
6213 {
6214     CPUARMState *env = &cpu->env;
6215     uint32_t excret;
6216     uint32_t xpsr;
6217     bool ufault = false;
6218     bool return_to_sp_process = false;
6219     bool return_to_handler = false;
6220     bool rettobase = false;
6221     bool exc_secure = false;
6222 
6223     /* We can only get here from an EXCP_EXCEPTION_EXIT, and
6224      * gen_bx_excret() enforces the architectural rule
6225      * that jumps to magic addresses don't have magic behaviour unless
6226      * we're in Handler mode (compare pseudocode BXWritePC()).
6227      */
6228     assert(arm_v7m_is_handler_mode(env));
6229 
6230     /* In the spec pseudocode ExceptionReturn() is called directly
6231      * from BXWritePC() and gets the full target PC value including
6232      * bit zero. In QEMU's implementation we treat it as a normal
6233      * jump-to-register (which is then caught later on), and so split
6234      * the target value up between env->regs[15] and env->thumb in
6235      * gen_bx(). Reconstitute it.
6236      */
6237     excret = env->regs[15];
6238     if (env->thumb) {
6239         excret |= 1;
6240     }
6241 
6242     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6243                   " previous exception %d\n",
6244                   excret, env->v7m.exception);
6245 
6246     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6247         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6248                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6249                       excret);
6250     }
6251 
6252     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6253         /* Auto-clear FAULTMASK on return from other than NMI.
6254          * If the security extension is implemented then this only
6255          * happens if the raw execution priority is >= 0; the
6256          * value of the ES bit in the exception return value indicates
6257          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6258          */
6259         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6260             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6261             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6262                 env->v7m.faultmask[exc_secure] = 0;
6263             }
6264         } else {
6265             env->v7m.faultmask[M_REG_NS] = 0;
6266         }
6267     }
6268 
6269     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6270                                      exc_secure)) {
6271     case -1:
6272         /* attempt to exit an exception that isn't active */
6273         ufault = true;
6274         break;
6275     case 0:
6276         /* still an irq active now */
6277         break;
6278     case 1:
6279         /* we returned to base exception level, no nesting.
6280          * (In the pseudocode this is written using "NestedActivation != 1"
6281          * where we have 'rettobase == false'.)
6282          */
6283         rettobase = true;
6284         break;
6285     default:
6286         g_assert_not_reached();
6287     }
6288 
6289     switch (excret & 0xf) {
6290     case 1: /* Return to Handler */
6291         return_to_handler = true;
6292         break;
6293     case 13: /* Return to Thread using Process stack */
6294         return_to_sp_process = true;
6295         /* fall through */
6296     case 9: /* Return to Thread using Main stack */
6297         if (!rettobase &&
6298             !(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) {
6299             ufault = true;
6300         }
6301         break;
6302     default:
6303         ufault = true;
6304     }
6305 
6306     if (ufault) {
6307         /* Bad exception return: instead of popping the exception
6308          * stack, directly take a usage fault on the current stack.
6309          */
6310         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6311         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6312         v7m_exception_taken(cpu, excret);
6313         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6314                       "stackframe: failed exception return integrity check\n");
6315         return;
6316     }
6317 
6318     /* Switch to the target stack.  */
6319     switch_v7m_sp(env, return_to_sp_process);
6320     /* Pop registers.  */
6321     env->regs[0] = v7m_pop(env);
6322     env->regs[1] = v7m_pop(env);
6323     env->regs[2] = v7m_pop(env);
6324     env->regs[3] = v7m_pop(env);
6325     env->regs[12] = v7m_pop(env);
6326     env->regs[14] = v7m_pop(env);
6327     env->regs[15] = v7m_pop(env);
6328     if (env->regs[15] & 1) {
6329         qemu_log_mask(LOG_GUEST_ERROR,
6330                       "M profile return from interrupt with misaligned "
6331                       "PC is UNPREDICTABLE\n");
6332         /* Actual hardware seems to ignore the lsbit, and there are several
6333          * RTOSes out there which incorrectly assume the r15 in the stack
6334          * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
6335          */
6336         env->regs[15] &= ~1U;
6337     }
6338     xpsr = v7m_pop(env);
6339     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6340     /* Undo stack alignment.  */
6341     if (xpsr & XPSR_SPREALIGN) {
6342         env->regs[13] |= 4;
6343     }
6344 
6345     /* The restored xPSR exception field will be zero if we're
6346      * resuming in Thread mode. If that doesn't match what the
6347      * exception return excret specified then this is a UsageFault.
6348      */
6349     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6350         /* Take an INVPC UsageFault by pushing the stack again.
6351          * TODO: the v8M version of this code should target the
6352          * background state for this exception.
6353          */
6354         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6355         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6356         v7m_push_stack(cpu);
6357         v7m_exception_taken(cpu, excret);
6358         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6359                       "failed exception return integrity check\n");
6360         return;
6361     }
6362 
6363     /* Otherwise, we have a successful exception exit. */
6364     arm_clear_exclusive(env);
6365     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6366 }
6367 
6368 static void arm_log_exception(int idx)
6369 {
6370     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6371         const char *exc = NULL;
6372         static const char * const excnames[] = {
6373             [EXCP_UDEF] = "Undefined Instruction",
6374             [EXCP_SWI] = "SVC",
6375             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6376             [EXCP_DATA_ABORT] = "Data Abort",
6377             [EXCP_IRQ] = "IRQ",
6378             [EXCP_FIQ] = "FIQ",
6379             [EXCP_BKPT] = "Breakpoint",
6380             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6381             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6382             [EXCP_HVC] = "Hypervisor Call",
6383             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6384             [EXCP_SMC] = "Secure Monitor Call",
6385             [EXCP_VIRQ] = "Virtual IRQ",
6386             [EXCP_VFIQ] = "Virtual FIQ",
6387             [EXCP_SEMIHOST] = "Semihosting call",
6388             [EXCP_NOCP] = "v7M NOCP UsageFault",
6389             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6390         };
6391 
6392         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6393             exc = excnames[idx];
6394         }
6395         if (!exc) {
6396             exc = "unknown";
6397         }
6398         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6399     }
6400 }
6401 
6402 void arm_v7m_cpu_do_interrupt(CPUState *cs)
6403 {
6404     ARMCPU *cpu = ARM_CPU(cs);
6405     CPUARMState *env = &cpu->env;
6406     uint32_t lr;
6407 
6408     arm_log_exception(cs->exception_index);
6409 
6410     /* For exceptions we just mark as pending on the NVIC, and let that
6411        handle it.  */
6412     switch (cs->exception_index) {
6413     case EXCP_UDEF:
6414         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6415         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
6416         break;
6417     case EXCP_NOCP:
6418         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6419         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
6420         break;
6421     case EXCP_INVSTATE:
6422         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6423         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
6424         break;
6425     case EXCP_SWI:
6426         /* The PC already points to the next instruction.  */
6427         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
6428         break;
6429     case EXCP_PREFETCH_ABORT:
6430     case EXCP_DATA_ABORT:
6431         /* Note that for M profile we don't have a guest facing FSR, but
6432          * the env->exception.fsr will be populated by the code that
6433          * raises the fault, in the A profile short-descriptor format.
6434          */
6435         switch (env->exception.fsr & 0xf) {
6436         case 0x8: /* External Abort */
6437             switch (cs->exception_index) {
6438             case EXCP_PREFETCH_ABORT:
6439                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6440                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
6441                 break;
6442             case EXCP_DATA_ABORT:
6443                 env->v7m.cfsr[M_REG_NS] |=
6444                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
6445                 env->v7m.bfar = env->exception.vaddress;
6446                 qemu_log_mask(CPU_LOG_INT,
6447                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
6448                               env->v7m.bfar);
6449                 break;
6450             }
6451             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6452             break;
6453         default:
6454             /* All other FSR values are either MPU faults or "can't happen
6455              * for M profile" cases.
6456              */
6457             switch (cs->exception_index) {
6458             case EXCP_PREFETCH_ABORT:
6459                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6460                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
6461                 break;
6462             case EXCP_DATA_ABORT:
6463                 env->v7m.cfsr[env->v7m.secure] |=
6464                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
6465                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
6466                 qemu_log_mask(CPU_LOG_INT,
6467                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
6468                               env->v7m.mmfar[env->v7m.secure]);
6469                 break;
6470             }
6471             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
6472                                     env->v7m.secure);
6473             break;
6474         }
6475         break;
6476     case EXCP_BKPT:
6477         if (semihosting_enabled()) {
6478             int nr;
6479             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6480             if (nr == 0xab) {
6481                 env->regs[15] += 2;
6482                 qemu_log_mask(CPU_LOG_INT,
6483                               "...handling as semihosting call 0x%x\n",
6484                               env->regs[0]);
6485                 env->regs[0] = do_arm_semihosting(env);
6486                 return;
6487             }
6488         }
6489         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
6490         break;
6491     case EXCP_IRQ:
6492         break;
6493     case EXCP_EXCEPTION_EXIT:
6494         do_v7m_exception_exit(cpu);
6495         return;
6496     default:
6497         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6498         return; /* Never happens.  Keep compiler happy.  */
6499     }
6500 
6501     lr = R_V7M_EXCRET_RES1_MASK |
6502         R_V7M_EXCRET_S_MASK |
6503         R_V7M_EXCRET_DCRS_MASK |
6504         R_V7M_EXCRET_FTYPE_MASK |
6505         R_V7M_EXCRET_ES_MASK;
6506     if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
6507         lr |= R_V7M_EXCRET_SPSEL_MASK;
6508     }
6509     if (!arm_v7m_is_handler_mode(env)) {
6510         lr |= R_V7M_EXCRET_MODE_MASK;
6511     }
6512 
6513     v7m_push_stack(cpu);
6514     v7m_exception_taken(cpu, lr);
6515     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
6516 }
6517 
6518 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6519  * register set.  This is necessary when switching between AArch32 and AArch64
6520  * execution state.
6521  */
6522 void aarch64_sync_32_to_64(CPUARMState *env)
6523 {
6524     int i;
6525     uint32_t mode = env->uncached_cpsr & CPSR_M;
6526 
6527     /* We can blanket copy R[0:7] to X[0:7] */
6528     for (i = 0; i < 8; i++) {
6529         env->xregs[i] = env->regs[i];
6530     }
6531 
6532     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6533      * Otherwise, they come from the banked user regs.
6534      */
6535     if (mode == ARM_CPU_MODE_FIQ) {
6536         for (i = 8; i < 13; i++) {
6537             env->xregs[i] = env->usr_regs[i - 8];
6538         }
6539     } else {
6540         for (i = 8; i < 13; i++) {
6541             env->xregs[i] = env->regs[i];
6542         }
6543     }
6544 
6545     /* Registers x13-x23 are the various mode SP and FP registers. Registers
6546      * r13 and r14 are only copied if we are in that mode, otherwise we copy
6547      * from the mode banked register.
6548      */
6549     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6550         env->xregs[13] = env->regs[13];
6551         env->xregs[14] = env->regs[14];
6552     } else {
6553         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6554         /* HYP is an exception in that it is copied from r14 */
6555         if (mode == ARM_CPU_MODE_HYP) {
6556             env->xregs[14] = env->regs[14];
6557         } else {
6558             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6559         }
6560     }
6561 
6562     if (mode == ARM_CPU_MODE_HYP) {
6563         env->xregs[15] = env->regs[13];
6564     } else {
6565         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6566     }
6567 
6568     if (mode == ARM_CPU_MODE_IRQ) {
6569         env->xregs[16] = env->regs[14];
6570         env->xregs[17] = env->regs[13];
6571     } else {
6572         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6573         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6574     }
6575 
6576     if (mode == ARM_CPU_MODE_SVC) {
6577         env->xregs[18] = env->regs[14];
6578         env->xregs[19] = env->regs[13];
6579     } else {
6580         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6581         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6582     }
6583 
6584     if (mode == ARM_CPU_MODE_ABT) {
6585         env->xregs[20] = env->regs[14];
6586         env->xregs[21] = env->regs[13];
6587     } else {
6588         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6589         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6590     }
6591 
6592     if (mode == ARM_CPU_MODE_UND) {
6593         env->xregs[22] = env->regs[14];
6594         env->xregs[23] = env->regs[13];
6595     } else {
6596         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6597         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6598     }
6599 
6600     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6601      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
6602      * FIQ bank for r8-r14.
6603      */
6604     if (mode == ARM_CPU_MODE_FIQ) {
6605         for (i = 24; i < 31; i++) {
6606             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
6607         }
6608     } else {
6609         for (i = 24; i < 29; i++) {
6610             env->xregs[i] = env->fiq_regs[i - 24];
6611         }
6612         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6613         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6614     }
6615 
6616     env->pc = env->regs[15];
6617 }
6618 
6619 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6620  * register set.  This is necessary when switching between AArch32 and AArch64
6621  * execution state.
6622  */
6623 void aarch64_sync_64_to_32(CPUARMState *env)
6624 {
6625     int i;
6626     uint32_t mode = env->uncached_cpsr & CPSR_M;
6627 
6628     /* We can blanket copy X[0:7] to R[0:7] */
6629     for (i = 0; i < 8; i++) {
6630         env->regs[i] = env->xregs[i];
6631     }
6632 
6633     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6634      * Otherwise, we copy x8-x12 into the banked user regs.
6635      */
6636     if (mode == ARM_CPU_MODE_FIQ) {
6637         for (i = 8; i < 13; i++) {
6638             env->usr_regs[i - 8] = env->xregs[i];
6639         }
6640     } else {
6641         for (i = 8; i < 13; i++) {
6642             env->regs[i] = env->xregs[i];
6643         }
6644     }
6645 
6646     /* Registers r13 & r14 depend on the current mode.
6647      * If we are in a given mode, we copy the corresponding x registers to r13
6648      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
6649      * for the mode.
6650      */
6651     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6652         env->regs[13] = env->xregs[13];
6653         env->regs[14] = env->xregs[14];
6654     } else {
6655         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6656 
6657         /* HYP is an exception in that it does not have its own banked r14 but
6658          * shares the USR r14
6659          */
6660         if (mode == ARM_CPU_MODE_HYP) {
6661             env->regs[14] = env->xregs[14];
6662         } else {
6663             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6664         }
6665     }
6666 
6667     if (mode == ARM_CPU_MODE_HYP) {
6668         env->regs[13] = env->xregs[15];
6669     } else {
6670         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6671     }
6672 
6673     if (mode == ARM_CPU_MODE_IRQ) {
6674         env->regs[14] = env->xregs[16];
6675         env->regs[13] = env->xregs[17];
6676     } else {
6677         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6678         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6679     }
6680 
6681     if (mode == ARM_CPU_MODE_SVC) {
6682         env->regs[14] = env->xregs[18];
6683         env->regs[13] = env->xregs[19];
6684     } else {
6685         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6686         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6687     }
6688 
6689     if (mode == ARM_CPU_MODE_ABT) {
6690         env->regs[14] = env->xregs[20];
6691         env->regs[13] = env->xregs[21];
6692     } else {
6693         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6694         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6695     }
6696 
6697     if (mode == ARM_CPU_MODE_UND) {
6698         env->regs[14] = env->xregs[22];
6699         env->regs[13] = env->xregs[23];
6700     } else {
6701         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6702         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6703     }
6704 
6705     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
6706      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
6707      * FIQ bank for r8-r14.
6708      */
6709     if (mode == ARM_CPU_MODE_FIQ) {
6710         for (i = 24; i < 31; i++) {
6711             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
6712         }
6713     } else {
6714         for (i = 24; i < 29; i++) {
6715             env->fiq_regs[i - 24] = env->xregs[i];
6716         }
6717         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6718         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6719     }
6720 
6721     env->regs[15] = env->pc;
6722 }
6723 
6724 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6725 {
6726     ARMCPU *cpu = ARM_CPU(cs);
6727     CPUARMState *env = &cpu->env;
6728     uint32_t addr;
6729     uint32_t mask;
6730     int new_mode;
6731     uint32_t offset;
6732     uint32_t moe;
6733 
6734     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6735     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6736     case EC_BREAKPOINT:
6737     case EC_BREAKPOINT_SAME_EL:
6738         moe = 1;
6739         break;
6740     case EC_WATCHPOINT:
6741     case EC_WATCHPOINT_SAME_EL:
6742         moe = 10;
6743         break;
6744     case EC_AA32_BKPT:
6745         moe = 3;
6746         break;
6747     case EC_VECTORCATCH:
6748         moe = 5;
6749         break;
6750     default:
6751         moe = 0;
6752         break;
6753     }
6754 
6755     if (moe) {
6756         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6757     }
6758 
6759     /* TODO: Vectored interrupt controller.  */
6760     switch (cs->exception_index) {
6761     case EXCP_UDEF:
6762         new_mode = ARM_CPU_MODE_UND;
6763         addr = 0x04;
6764         mask = CPSR_I;
6765         if (env->thumb)
6766             offset = 2;
6767         else
6768             offset = 4;
6769         break;
6770     case EXCP_SWI:
6771         new_mode = ARM_CPU_MODE_SVC;
6772         addr = 0x08;
6773         mask = CPSR_I;
6774         /* The PC already points to the next instruction.  */
6775         offset = 0;
6776         break;
6777     case EXCP_BKPT:
6778         env->exception.fsr = 2;
6779         /* Fall through to prefetch abort.  */
6780     case EXCP_PREFETCH_ABORT:
6781         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6782         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6783         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6784                       env->exception.fsr, (uint32_t)env->exception.vaddress);
6785         new_mode = ARM_CPU_MODE_ABT;
6786         addr = 0x0c;
6787         mask = CPSR_A | CPSR_I;
6788         offset = 4;
6789         break;
6790     case EXCP_DATA_ABORT:
6791         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6792         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6793         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6794                       env->exception.fsr,
6795                       (uint32_t)env->exception.vaddress);
6796         new_mode = ARM_CPU_MODE_ABT;
6797         addr = 0x10;
6798         mask = CPSR_A | CPSR_I;
6799         offset = 8;
6800         break;
6801     case EXCP_IRQ:
6802         new_mode = ARM_CPU_MODE_IRQ;
6803         addr = 0x18;
6804         /* Disable IRQ and imprecise data aborts.  */
6805         mask = CPSR_A | CPSR_I;
6806         offset = 4;
6807         if (env->cp15.scr_el3 & SCR_IRQ) {
6808             /* IRQ routed to monitor mode */
6809             new_mode = ARM_CPU_MODE_MON;
6810             mask |= CPSR_F;
6811         }
6812         break;
6813     case EXCP_FIQ:
6814         new_mode = ARM_CPU_MODE_FIQ;
6815         addr = 0x1c;
6816         /* Disable FIQ, IRQ and imprecise data aborts.  */
6817         mask = CPSR_A | CPSR_I | CPSR_F;
6818         if (env->cp15.scr_el3 & SCR_FIQ) {
6819             /* FIQ routed to monitor mode */
6820             new_mode = ARM_CPU_MODE_MON;
6821         }
6822         offset = 4;
6823         break;
6824     case EXCP_VIRQ:
6825         new_mode = ARM_CPU_MODE_IRQ;
6826         addr = 0x18;
6827         /* Disable IRQ and imprecise data aborts.  */
6828         mask = CPSR_A | CPSR_I;
6829         offset = 4;
6830         break;
6831     case EXCP_VFIQ:
6832         new_mode = ARM_CPU_MODE_FIQ;
6833         addr = 0x1c;
6834         /* Disable FIQ, IRQ and imprecise data aborts.  */
6835         mask = CPSR_A | CPSR_I | CPSR_F;
6836         offset = 4;
6837         break;
6838     case EXCP_SMC:
6839         new_mode = ARM_CPU_MODE_MON;
6840         addr = 0x08;
6841         mask = CPSR_A | CPSR_I | CPSR_F;
6842         offset = 0;
6843         break;
6844     default:
6845         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6846         return; /* Never happens.  Keep compiler happy.  */
6847     }
6848 
6849     if (new_mode == ARM_CPU_MODE_MON) {
6850         addr += env->cp15.mvbar;
6851     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6852         /* High vectors. When enabled, base address cannot be remapped. */
6853         addr += 0xffff0000;
6854     } else {
6855         /* ARM v7 architectures provide a vector base address register to remap
6856          * the interrupt vector table.
6857          * This register is only followed in non-monitor mode, and is banked.
6858          * Note: only bits 31:5 are valid.
6859          */
6860         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6861     }
6862 
6863     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6864         env->cp15.scr_el3 &= ~SCR_NS;
6865     }
6866 
6867     switch_mode (env, new_mode);
6868     /* For exceptions taken to AArch32 we must clear the SS bit in both
6869      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6870      */
6871     env->uncached_cpsr &= ~PSTATE_SS;
6872     env->spsr = cpsr_read(env);
6873     /* Clear IT bits.  */
6874     env->condexec_bits = 0;
6875     /* Switch to the new mode, and to the correct instruction set.  */
6876     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6877     /* Set new mode endianness */
6878     env->uncached_cpsr &= ~CPSR_E;
6879     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6880         env->uncached_cpsr |= CPSR_E;
6881     }
6882     env->daif |= mask;
6883     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6884      * and we should just guard the thumb mode on V4 */
6885     if (arm_feature(env, ARM_FEATURE_V4T)) {
6886         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6887     }
6888     env->regs[14] = env->regs[15] + offset;
6889     env->regs[15] = addr;
6890 }
6891 
6892 /* Handle exception entry to a target EL which is using AArch64 */
6893 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6894 {
6895     ARMCPU *cpu = ARM_CPU(cs);
6896     CPUARMState *env = &cpu->env;
6897     unsigned int new_el = env->exception.target_el;
6898     target_ulong addr = env->cp15.vbar_el[new_el];
6899     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6900 
6901     if (arm_current_el(env) < new_el) {
6902         /* Entry vector offset depends on whether the implemented EL
6903          * immediately lower than the target level is using AArch32 or AArch64
6904          */
6905         bool is_aa64;
6906 
6907         switch (new_el) {
6908         case 3:
6909             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6910             break;
6911         case 2:
6912             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6913             break;
6914         case 1:
6915             is_aa64 = is_a64(env);
6916             break;
6917         default:
6918             g_assert_not_reached();
6919         }
6920 
6921         if (is_aa64) {
6922             addr += 0x400;
6923         } else {
6924             addr += 0x600;
6925         }
6926     } else if (pstate_read(env) & PSTATE_SP) {
6927         addr += 0x200;
6928     }
6929 
6930     switch (cs->exception_index) {
6931     case EXCP_PREFETCH_ABORT:
6932     case EXCP_DATA_ABORT:
6933         env->cp15.far_el[new_el] = env->exception.vaddress;
6934         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6935                       env->cp15.far_el[new_el]);
6936         /* fall through */
6937     case EXCP_BKPT:
6938     case EXCP_UDEF:
6939     case EXCP_SWI:
6940     case EXCP_HVC:
6941     case EXCP_HYP_TRAP:
6942     case EXCP_SMC:
6943         env->cp15.esr_el[new_el] = env->exception.syndrome;
6944         break;
6945     case EXCP_IRQ:
6946     case EXCP_VIRQ:
6947         addr += 0x80;
6948         break;
6949     case EXCP_FIQ:
6950     case EXCP_VFIQ:
6951         addr += 0x100;
6952         break;
6953     case EXCP_SEMIHOST:
6954         qemu_log_mask(CPU_LOG_INT,
6955                       "...handling as semihosting call 0x%" PRIx64 "\n",
6956                       env->xregs[0]);
6957         env->xregs[0] = do_arm_semihosting(env);
6958         return;
6959     default:
6960         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6961     }
6962 
6963     if (is_a64(env)) {
6964         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6965         aarch64_save_sp(env, arm_current_el(env));
6966         env->elr_el[new_el] = env->pc;
6967     } else {
6968         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6969         env->elr_el[new_el] = env->regs[15];
6970 
6971         aarch64_sync_32_to_64(env);
6972 
6973         env->condexec_bits = 0;
6974     }
6975     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6976                   env->elr_el[new_el]);
6977 
6978     pstate_write(env, PSTATE_DAIF | new_mode);
6979     env->aarch64 = 1;
6980     aarch64_restore_sp(env, new_el);
6981 
6982     env->pc = addr;
6983 
6984     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6985                   new_el, env->pc, pstate_read(env));
6986 }
6987 
6988 static inline bool check_for_semihosting(CPUState *cs)
6989 {
6990     /* Check whether this exception is a semihosting call; if so
6991      * then handle it and return true; otherwise return false.
6992      */
6993     ARMCPU *cpu = ARM_CPU(cs);
6994     CPUARMState *env = &cpu->env;
6995 
6996     if (is_a64(env)) {
6997         if (cs->exception_index == EXCP_SEMIHOST) {
6998             /* This is always the 64-bit semihosting exception.
6999              * The "is this usermode" and "is semihosting enabled"
7000              * checks have been done at translate time.
7001              */
7002             qemu_log_mask(CPU_LOG_INT,
7003                           "...handling as semihosting call 0x%" PRIx64 "\n",
7004                           env->xregs[0]);
7005             env->xregs[0] = do_arm_semihosting(env);
7006             return true;
7007         }
7008         return false;
7009     } else {
7010         uint32_t imm;
7011 
7012         /* Only intercept calls from privileged modes, to provide some
7013          * semblance of security.
7014          */
7015         if (cs->exception_index != EXCP_SEMIHOST &&
7016             (!semihosting_enabled() ||
7017              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7018             return false;
7019         }
7020 
7021         switch (cs->exception_index) {
7022         case EXCP_SEMIHOST:
7023             /* This is always a semihosting call; the "is this usermode"
7024              * and "is semihosting enabled" checks have been done at
7025              * translate time.
7026              */
7027             break;
7028         case EXCP_SWI:
7029             /* Check for semihosting interrupt.  */
7030             if (env->thumb) {
7031                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7032                     & 0xff;
7033                 if (imm == 0xab) {
7034                     break;
7035                 }
7036             } else {
7037                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7038                     & 0xffffff;
7039                 if (imm == 0x123456) {
7040                     break;
7041                 }
7042             }
7043             return false;
7044         case EXCP_BKPT:
7045             /* See if this is a semihosting syscall.  */
7046             if (env->thumb) {
7047                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7048                     & 0xff;
7049                 if (imm == 0xab) {
7050                     env->regs[15] += 2;
7051                     break;
7052                 }
7053             }
7054             return false;
7055         default:
7056             return false;
7057         }
7058 
7059         qemu_log_mask(CPU_LOG_INT,
7060                       "...handling as semihosting call 0x%x\n",
7061                       env->regs[0]);
7062         env->regs[0] = do_arm_semihosting(env);
7063         return true;
7064     }
7065 }
7066 
7067 /* Handle a CPU exception for A and R profile CPUs.
7068  * Do any appropriate logging, handle PSCI calls, and then hand off
7069  * to the AArch64-entry or AArch32-entry function depending on the
7070  * target exception level's register width.
7071  */
7072 void arm_cpu_do_interrupt(CPUState *cs)
7073 {
7074     ARMCPU *cpu = ARM_CPU(cs);
7075     CPUARMState *env = &cpu->env;
7076     unsigned int new_el = env->exception.target_el;
7077 
7078     assert(!arm_feature(env, ARM_FEATURE_M));
7079 
7080     arm_log_exception(cs->exception_index);
7081     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7082                   new_el);
7083     if (qemu_loglevel_mask(CPU_LOG_INT)
7084         && !excp_is_internal(cs->exception_index)) {
7085         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7086                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7087                       env->exception.syndrome);
7088     }
7089 
7090     if (arm_is_psci_call(cpu, cs->exception_index)) {
7091         arm_handle_psci_call(cpu);
7092         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7093         return;
7094     }
7095 
7096     /* Semihosting semantics depend on the register width of the
7097      * code that caused the exception, not the target exception level,
7098      * so must be handled here.
7099      */
7100     if (check_for_semihosting(cs)) {
7101         return;
7102     }
7103 
7104     assert(!excp_is_internal(cs->exception_index));
7105     if (arm_el_is_aa64(env, new_el)) {
7106         arm_cpu_do_interrupt_aarch64(cs);
7107     } else {
7108         arm_cpu_do_interrupt_aarch32(cs);
7109     }
7110 
7111     /* Hooks may change global state so BQL should be held, also the
7112      * BQL needs to be held for any modification of
7113      * cs->interrupt_request.
7114      */
7115     g_assert(qemu_mutex_iothread_locked());
7116 
7117     arm_call_el_change_hook(cpu);
7118 
7119     if (!kvm_enabled()) {
7120         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7121     }
7122 }
7123 
7124 /* Return the exception level which controls this address translation regime */
7125 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7126 {
7127     switch (mmu_idx) {
7128     case ARMMMUIdx_S2NS:
7129     case ARMMMUIdx_S1E2:
7130         return 2;
7131     case ARMMMUIdx_S1E3:
7132         return 3;
7133     case ARMMMUIdx_S1SE0:
7134         return arm_el_is_aa64(env, 3) ? 1 : 3;
7135     case ARMMMUIdx_S1SE1:
7136     case ARMMMUIdx_S1NSE0:
7137     case ARMMMUIdx_S1NSE1:
7138     case ARMMMUIdx_MPriv:
7139     case ARMMMUIdx_MNegPri:
7140     case ARMMMUIdx_MUser:
7141     case ARMMMUIdx_MSPriv:
7142     case ARMMMUIdx_MSNegPri:
7143     case ARMMMUIdx_MSUser:
7144         return 1;
7145     default:
7146         g_assert_not_reached();
7147     }
7148 }
7149 
7150 /* Return the SCTLR value which controls this address translation regime */
7151 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7152 {
7153     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7154 }
7155 
7156 /* Return true if the specified stage of address translation is disabled */
7157 static inline bool regime_translation_disabled(CPUARMState *env,
7158                                                ARMMMUIdx mmu_idx)
7159 {
7160     if (arm_feature(env, ARM_FEATURE_M)) {
7161         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7162                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7163         case R_V7M_MPU_CTRL_ENABLE_MASK:
7164             /* Enabled, but not for HardFault and NMI */
7165             return mmu_idx == ARMMMUIdx_MNegPri ||
7166                 mmu_idx == ARMMMUIdx_MSNegPri;
7167         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7168             /* Enabled for all cases */
7169             return false;
7170         case 0:
7171         default:
7172             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7173              * we warned about that in armv7m_nvic.c when the guest set it.
7174              */
7175             return true;
7176         }
7177     }
7178 
7179     if (mmu_idx == ARMMMUIdx_S2NS) {
7180         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7181     }
7182     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7183 }
7184 
7185 static inline bool regime_translation_big_endian(CPUARMState *env,
7186                                                  ARMMMUIdx mmu_idx)
7187 {
7188     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7189 }
7190 
7191 /* Return the TCR controlling this translation regime */
7192 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7193 {
7194     if (mmu_idx == ARMMMUIdx_S2NS) {
7195         return &env->cp15.vtcr_el2;
7196     }
7197     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7198 }
7199 
7200 /* Convert a possible stage1+2 MMU index into the appropriate
7201  * stage 1 MMU index
7202  */
7203 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7204 {
7205     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7206         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7207     }
7208     return mmu_idx;
7209 }
7210 
7211 /* Returns TBI0 value for current regime el */
7212 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7213 {
7214     TCR *tcr;
7215     uint32_t el;
7216 
7217     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7218      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7219      */
7220     mmu_idx = stage_1_mmu_idx(mmu_idx);
7221 
7222     tcr = regime_tcr(env, mmu_idx);
7223     el = regime_el(env, mmu_idx);
7224 
7225     if (el > 1) {
7226         return extract64(tcr->raw_tcr, 20, 1);
7227     } else {
7228         return extract64(tcr->raw_tcr, 37, 1);
7229     }
7230 }
7231 
7232 /* Returns TBI1 value for current regime el */
7233 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7234 {
7235     TCR *tcr;
7236     uint32_t el;
7237 
7238     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7239      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7240      */
7241     mmu_idx = stage_1_mmu_idx(mmu_idx);
7242 
7243     tcr = regime_tcr(env, mmu_idx);
7244     el = regime_el(env, mmu_idx);
7245 
7246     if (el > 1) {
7247         return 0;
7248     } else {
7249         return extract64(tcr->raw_tcr, 38, 1);
7250     }
7251 }
7252 
7253 /* Return the TTBR associated with this translation regime */
7254 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7255                                    int ttbrn)
7256 {
7257     if (mmu_idx == ARMMMUIdx_S2NS) {
7258         return env->cp15.vttbr_el2;
7259     }
7260     if (ttbrn == 0) {
7261         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7262     } else {
7263         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7264     }
7265 }
7266 
7267 /* Return true if the translation regime is using LPAE format page tables */
7268 static inline bool regime_using_lpae_format(CPUARMState *env,
7269                                             ARMMMUIdx mmu_idx)
7270 {
7271     int el = regime_el(env, mmu_idx);
7272     if (el == 2 || arm_el_is_aa64(env, el)) {
7273         return true;
7274     }
7275     if (arm_feature(env, ARM_FEATURE_LPAE)
7276         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7277         return true;
7278     }
7279     return false;
7280 }
7281 
7282 /* Returns true if the stage 1 translation regime is using LPAE format page
7283  * tables. Used when raising alignment exceptions, whose FSR changes depending
7284  * on whether the long or short descriptor format is in use. */
7285 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7286 {
7287     mmu_idx = stage_1_mmu_idx(mmu_idx);
7288 
7289     return regime_using_lpae_format(env, mmu_idx);
7290 }
7291 
7292 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
7293 {
7294     switch (mmu_idx) {
7295     case ARMMMUIdx_S1SE0:
7296     case ARMMMUIdx_S1NSE0:
7297     case ARMMMUIdx_MUser:
7298         return true;
7299     default:
7300         return false;
7301     case ARMMMUIdx_S12NSE0:
7302     case ARMMMUIdx_S12NSE1:
7303         g_assert_not_reached();
7304     }
7305 }
7306 
7307 /* Translate section/page access permissions to page
7308  * R/W protection flags
7309  *
7310  * @env:         CPUARMState
7311  * @mmu_idx:     MMU index indicating required translation regime
7312  * @ap:          The 3-bit access permissions (AP[2:0])
7313  * @domain_prot: The 2-bit domain access permissions
7314  */
7315 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
7316                                 int ap, int domain_prot)
7317 {
7318     bool is_user = regime_is_user(env, mmu_idx);
7319 
7320     if (domain_prot == 3) {
7321         return PAGE_READ | PAGE_WRITE;
7322     }
7323 
7324     switch (ap) {
7325     case 0:
7326         if (arm_feature(env, ARM_FEATURE_V7)) {
7327             return 0;
7328         }
7329         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
7330         case SCTLR_S:
7331             return is_user ? 0 : PAGE_READ;
7332         case SCTLR_R:
7333             return PAGE_READ;
7334         default:
7335             return 0;
7336         }
7337     case 1:
7338         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7339     case 2:
7340         if (is_user) {
7341             return PAGE_READ;
7342         } else {
7343             return PAGE_READ | PAGE_WRITE;
7344         }
7345     case 3:
7346         return PAGE_READ | PAGE_WRITE;
7347     case 4: /* Reserved.  */
7348         return 0;
7349     case 5:
7350         return is_user ? 0 : PAGE_READ;
7351     case 6:
7352         return PAGE_READ;
7353     case 7:
7354         if (!arm_feature(env, ARM_FEATURE_V6K)) {
7355             return 0;
7356         }
7357         return PAGE_READ;
7358     default:
7359         g_assert_not_reached();
7360     }
7361 }
7362 
7363 /* Translate section/page access permissions to page
7364  * R/W protection flags.
7365  *
7366  * @ap:      The 2-bit simple AP (AP[2:1])
7367  * @is_user: TRUE if accessing from PL0
7368  */
7369 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7370 {
7371     switch (ap) {
7372     case 0:
7373         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
7374     case 1:
7375         return PAGE_READ | PAGE_WRITE;
7376     case 2:
7377         return is_user ? 0 : PAGE_READ;
7378     case 3:
7379         return PAGE_READ;
7380     default:
7381         g_assert_not_reached();
7382     }
7383 }
7384 
7385 static inline int
7386 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
7387 {
7388     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
7389 }
7390 
7391 /* Translate S2 section/page access permissions to protection flags
7392  *
7393  * @env:     CPUARMState
7394  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
7395  * @xn:      XN (execute-never) bit
7396  */
7397 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
7398 {
7399     int prot = 0;
7400 
7401     if (s2ap & 1) {
7402         prot |= PAGE_READ;
7403     }
7404     if (s2ap & 2) {
7405         prot |= PAGE_WRITE;
7406     }
7407     if (!xn) {
7408         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
7409             prot |= PAGE_EXEC;
7410         }
7411     }
7412     return prot;
7413 }
7414 
7415 /* Translate section/page access permissions to protection flags
7416  *
7417  * @env:     CPUARMState
7418  * @mmu_idx: MMU index indicating required translation regime
7419  * @is_aa64: TRUE if AArch64
7420  * @ap:      The 2-bit simple AP (AP[2:1])
7421  * @ns:      NS (non-secure) bit
7422  * @xn:      XN (execute-never) bit
7423  * @pxn:     PXN (privileged execute-never) bit
7424  */
7425 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
7426                       int ap, int ns, int xn, int pxn)
7427 {
7428     bool is_user = regime_is_user(env, mmu_idx);
7429     int prot_rw, user_rw;
7430     bool have_wxn;
7431     int wxn = 0;
7432 
7433     assert(mmu_idx != ARMMMUIdx_S2NS);
7434 
7435     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
7436     if (is_user) {
7437         prot_rw = user_rw;
7438     } else {
7439         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
7440     }
7441 
7442     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
7443         return prot_rw;
7444     }
7445 
7446     /* TODO have_wxn should be replaced with
7447      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
7448      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
7449      * compatible processors have EL2, which is required for [U]WXN.
7450      */
7451     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
7452 
7453     if (have_wxn) {
7454         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
7455     }
7456 
7457     if (is_aa64) {
7458         switch (regime_el(env, mmu_idx)) {
7459         case 1:
7460             if (!is_user) {
7461                 xn = pxn || (user_rw & PAGE_WRITE);
7462             }
7463             break;
7464         case 2:
7465         case 3:
7466             break;
7467         }
7468     } else if (arm_feature(env, ARM_FEATURE_V7)) {
7469         switch (regime_el(env, mmu_idx)) {
7470         case 1:
7471         case 3:
7472             if (is_user) {
7473                 xn = xn || !(user_rw & PAGE_READ);
7474             } else {
7475                 int uwxn = 0;
7476                 if (have_wxn) {
7477                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
7478                 }
7479                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
7480                      (uwxn && (user_rw & PAGE_WRITE));
7481             }
7482             break;
7483         case 2:
7484             break;
7485         }
7486     } else {
7487         xn = wxn = 0;
7488     }
7489 
7490     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
7491         return prot_rw;
7492     }
7493     return prot_rw | PAGE_EXEC;
7494 }
7495 
7496 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
7497                                      uint32_t *table, uint32_t address)
7498 {
7499     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
7500     TCR *tcr = regime_tcr(env, mmu_idx);
7501 
7502     if (address & tcr->mask) {
7503         if (tcr->raw_tcr & TTBCR_PD1) {
7504             /* Translation table walk disabled for TTBR1 */
7505             return false;
7506         }
7507         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7508     } else {
7509         if (tcr->raw_tcr & TTBCR_PD0) {
7510             /* Translation table walk disabled for TTBR0 */
7511             return false;
7512         }
7513         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7514     }
7515     *table |= (address >> 18) & 0x3ffc;
7516     return true;
7517 }
7518 
7519 /* Translate a S1 pagetable walk through S2 if needed.  */
7520 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
7521                                hwaddr addr, MemTxAttrs txattrs,
7522                                uint32_t *fsr,
7523                                ARMMMUFaultInfo *fi)
7524 {
7525     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
7526         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
7527         target_ulong s2size;
7528         hwaddr s2pa;
7529         int s2prot;
7530         int ret;
7531 
7532         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7533                                  &txattrs, &s2prot, &s2size, fsr, fi);
7534         if (ret) {
7535             fi->s2addr = addr;
7536             fi->stage2 = true;
7537             fi->s1ptw = true;
7538             return ~0;
7539         }
7540         addr = s2pa;
7541     }
7542     return addr;
7543 }
7544 
7545 /* All loads done in the course of a page table walk go through here.
7546  * TODO: rather than ignoring errors from physical memory reads (which
7547  * are external aborts in ARM terminology) we should propagate this
7548  * error out so that we can turn it into a Data Abort if this walk
7549  * was being done for a CPU load/store or an address translation instruction
7550  * (but not if it was for a debug access).
7551  */
7552 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7553                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7554                             ARMMMUFaultInfo *fi)
7555 {
7556     ARMCPU *cpu = ARM_CPU(cs);
7557     CPUARMState *env = &cpu->env;
7558     MemTxAttrs attrs = {};
7559     AddressSpace *as;
7560 
7561     attrs.secure = is_secure;
7562     as = arm_addressspace(cs, attrs);
7563     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7564     if (fi->s1ptw) {
7565         return 0;
7566     }
7567     if (regime_translation_big_endian(env, mmu_idx)) {
7568         return address_space_ldl_be(as, addr, attrs, NULL);
7569     } else {
7570         return address_space_ldl_le(as, addr, attrs, NULL);
7571     }
7572 }
7573 
7574 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7575                             ARMMMUIdx mmu_idx, uint32_t *fsr,
7576                             ARMMMUFaultInfo *fi)
7577 {
7578     ARMCPU *cpu = ARM_CPU(cs);
7579     CPUARMState *env = &cpu->env;
7580     MemTxAttrs attrs = {};
7581     AddressSpace *as;
7582 
7583     attrs.secure = is_secure;
7584     as = arm_addressspace(cs, attrs);
7585     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7586     if (fi->s1ptw) {
7587         return 0;
7588     }
7589     if (regime_translation_big_endian(env, mmu_idx)) {
7590         return address_space_ldq_be(as, addr, attrs, NULL);
7591     } else {
7592         return address_space_ldq_le(as, addr, attrs, NULL);
7593     }
7594 }
7595 
7596 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7597                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
7598                              hwaddr *phys_ptr, int *prot,
7599                              target_ulong *page_size, uint32_t *fsr,
7600                              ARMMMUFaultInfo *fi)
7601 {
7602     CPUState *cs = CPU(arm_env_get_cpu(env));
7603     int code;
7604     uint32_t table;
7605     uint32_t desc;
7606     int type;
7607     int ap;
7608     int domain = 0;
7609     int domain_prot;
7610     hwaddr phys_addr;
7611     uint32_t dacr;
7612 
7613     /* Pagetable walk.  */
7614     /* Lookup l1 descriptor.  */
7615     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7616         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7617         code = 5;
7618         goto do_fault;
7619     }
7620     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7621                        mmu_idx, fsr, fi);
7622     type = (desc & 3);
7623     domain = (desc >> 5) & 0x0f;
7624     if (regime_el(env, mmu_idx) == 1) {
7625         dacr = env->cp15.dacr_ns;
7626     } else {
7627         dacr = env->cp15.dacr_s;
7628     }
7629     domain_prot = (dacr >> (domain * 2)) & 3;
7630     if (type == 0) {
7631         /* Section translation fault.  */
7632         code = 5;
7633         goto do_fault;
7634     }
7635     if (domain_prot == 0 || domain_prot == 2) {
7636         if (type == 2)
7637             code = 9; /* Section domain fault.  */
7638         else
7639             code = 11; /* Page domain fault.  */
7640         goto do_fault;
7641     }
7642     if (type == 2) {
7643         /* 1Mb section.  */
7644         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7645         ap = (desc >> 10) & 3;
7646         code = 13;
7647         *page_size = 1024 * 1024;
7648     } else {
7649         /* Lookup l2 entry.  */
7650         if (type == 1) {
7651             /* Coarse pagetable.  */
7652             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7653         } else {
7654             /* Fine pagetable.  */
7655             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7656         }
7657         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7658                            mmu_idx, fsr, fi);
7659         switch (desc & 3) {
7660         case 0: /* Page translation fault.  */
7661             code = 7;
7662             goto do_fault;
7663         case 1: /* 64k page.  */
7664             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7665             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7666             *page_size = 0x10000;
7667             break;
7668         case 2: /* 4k page.  */
7669             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7670             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7671             *page_size = 0x1000;
7672             break;
7673         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7674             if (type == 1) {
7675                 /* ARMv6/XScale extended small page format */
7676                 if (arm_feature(env, ARM_FEATURE_XSCALE)
7677                     || arm_feature(env, ARM_FEATURE_V6)) {
7678                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7679                     *page_size = 0x1000;
7680                 } else {
7681                     /* UNPREDICTABLE in ARMv5; we choose to take a
7682                      * page translation fault.
7683                      */
7684                     code = 7;
7685                     goto do_fault;
7686                 }
7687             } else {
7688                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7689                 *page_size = 0x400;
7690             }
7691             ap = (desc >> 4) & 3;
7692             break;
7693         default:
7694             /* Never happens, but compiler isn't smart enough to tell.  */
7695             abort();
7696         }
7697         code = 15;
7698     }
7699     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7700     *prot |= *prot ? PAGE_EXEC : 0;
7701     if (!(*prot & (1 << access_type))) {
7702         /* Access permission fault.  */
7703         goto do_fault;
7704     }
7705     *phys_ptr = phys_addr;
7706     return false;
7707 do_fault:
7708     *fsr = code | (domain << 4);
7709     return true;
7710 }
7711 
7712 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7713                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
7714                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7715                              target_ulong *page_size, uint32_t *fsr,
7716                              ARMMMUFaultInfo *fi)
7717 {
7718     CPUState *cs = CPU(arm_env_get_cpu(env));
7719     int code;
7720     uint32_t table;
7721     uint32_t desc;
7722     uint32_t xn;
7723     uint32_t pxn = 0;
7724     int type;
7725     int ap;
7726     int domain = 0;
7727     int domain_prot;
7728     hwaddr phys_addr;
7729     uint32_t dacr;
7730     bool ns;
7731 
7732     /* Pagetable walk.  */
7733     /* Lookup l1 descriptor.  */
7734     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7735         /* Section translation fault if page walk is disabled by PD0 or PD1 */
7736         code = 5;
7737         goto do_fault;
7738     }
7739     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7740                        mmu_idx, fsr, fi);
7741     type = (desc & 3);
7742     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7743         /* Section translation fault, or attempt to use the encoding
7744          * which is Reserved on implementations without PXN.
7745          */
7746         code = 5;
7747         goto do_fault;
7748     }
7749     if ((type == 1) || !(desc & (1 << 18))) {
7750         /* Page or Section.  */
7751         domain = (desc >> 5) & 0x0f;
7752     }
7753     if (regime_el(env, mmu_idx) == 1) {
7754         dacr = env->cp15.dacr_ns;
7755     } else {
7756         dacr = env->cp15.dacr_s;
7757     }
7758     domain_prot = (dacr >> (domain * 2)) & 3;
7759     if (domain_prot == 0 || domain_prot == 2) {
7760         if (type != 1) {
7761             code = 9; /* Section domain fault.  */
7762         } else {
7763             code = 11; /* Page domain fault.  */
7764         }
7765         goto do_fault;
7766     }
7767     if (type != 1) {
7768         if (desc & (1 << 18)) {
7769             /* Supersection.  */
7770             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7771             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7772             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7773             *page_size = 0x1000000;
7774         } else {
7775             /* Section.  */
7776             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7777             *page_size = 0x100000;
7778         }
7779         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7780         xn = desc & (1 << 4);
7781         pxn = desc & 1;
7782         code = 13;
7783         ns = extract32(desc, 19, 1);
7784     } else {
7785         if (arm_feature(env, ARM_FEATURE_PXN)) {
7786             pxn = (desc >> 2) & 1;
7787         }
7788         ns = extract32(desc, 3, 1);
7789         /* Lookup l2 entry.  */
7790         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7791         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7792                            mmu_idx, fsr, fi);
7793         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7794         switch (desc & 3) {
7795         case 0: /* Page translation fault.  */
7796             code = 7;
7797             goto do_fault;
7798         case 1: /* 64k page.  */
7799             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7800             xn = desc & (1 << 15);
7801             *page_size = 0x10000;
7802             break;
7803         case 2: case 3: /* 4k page.  */
7804             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7805             xn = desc & 1;
7806             *page_size = 0x1000;
7807             break;
7808         default:
7809             /* Never happens, but compiler isn't smart enough to tell.  */
7810             abort();
7811         }
7812         code = 15;
7813     }
7814     if (domain_prot == 3) {
7815         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7816     } else {
7817         if (pxn && !regime_is_user(env, mmu_idx)) {
7818             xn = 1;
7819         }
7820         if (xn && access_type == MMU_INST_FETCH)
7821             goto do_fault;
7822 
7823         if (arm_feature(env, ARM_FEATURE_V6K) &&
7824                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7825             /* The simplified model uses AP[0] as an access control bit.  */
7826             if ((ap & 1) == 0) {
7827                 /* Access flag fault.  */
7828                 code = (code == 15) ? 6 : 3;
7829                 goto do_fault;
7830             }
7831             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7832         } else {
7833             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7834         }
7835         if (*prot && !xn) {
7836             *prot |= PAGE_EXEC;
7837         }
7838         if (!(*prot & (1 << access_type))) {
7839             /* Access permission fault.  */
7840             goto do_fault;
7841         }
7842     }
7843     if (ns) {
7844         /* The NS bit will (as required by the architecture) have no effect if
7845          * the CPU doesn't support TZ or this is a non-secure translation
7846          * regime, because the attribute will already be non-secure.
7847          */
7848         attrs->secure = false;
7849     }
7850     *phys_ptr = phys_addr;
7851     return false;
7852 do_fault:
7853     *fsr = code | (domain << 4);
7854     return true;
7855 }
7856 
7857 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7858  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7859  */
7860 typedef enum {
7861     translation_fault = 1,
7862     access_fault = 2,
7863     permission_fault = 3,
7864 } MMUFaultType;
7865 
7866 /*
7867  * check_s2_mmu_setup
7868  * @cpu:        ARMCPU
7869  * @is_aa64:    True if the translation regime is in AArch64 state
7870  * @startlevel: Suggested starting level
7871  * @inputsize:  Bitsize of IPAs
7872  * @stride:     Page-table stride (See the ARM ARM)
7873  *
7874  * Returns true if the suggested S2 translation parameters are OK and
7875  * false otherwise.
7876  */
7877 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7878                                int inputsize, int stride)
7879 {
7880     const int grainsize = stride + 3;
7881     int startsizecheck;
7882 
7883     /* Negative levels are never allowed.  */
7884     if (level < 0) {
7885         return false;
7886     }
7887 
7888     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7889     if (startsizecheck < 1 || startsizecheck > stride + 4) {
7890         return false;
7891     }
7892 
7893     if (is_aa64) {
7894         CPUARMState *env = &cpu->env;
7895         unsigned int pamax = arm_pamax(cpu);
7896 
7897         switch (stride) {
7898         case 13: /* 64KB Pages.  */
7899             if (level == 0 || (level == 1 && pamax <= 42)) {
7900                 return false;
7901             }
7902             break;
7903         case 11: /* 16KB Pages.  */
7904             if (level == 0 || (level == 1 && pamax <= 40)) {
7905                 return false;
7906             }
7907             break;
7908         case 9: /* 4KB Pages.  */
7909             if (level == 0 && pamax <= 42) {
7910                 return false;
7911             }
7912             break;
7913         default:
7914             g_assert_not_reached();
7915         }
7916 
7917         /* Inputsize checks.  */
7918         if (inputsize > pamax &&
7919             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7920             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
7921             return false;
7922         }
7923     } else {
7924         /* AArch32 only supports 4KB pages. Assert on that.  */
7925         assert(stride == 9);
7926 
7927         if (level == 0) {
7928             return false;
7929         }
7930     }
7931     return true;
7932 }
7933 
7934 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7935                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
7936                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7937                                target_ulong *page_size_ptr, uint32_t *fsr,
7938                                ARMMMUFaultInfo *fi)
7939 {
7940     ARMCPU *cpu = arm_env_get_cpu(env);
7941     CPUState *cs = CPU(cpu);
7942     /* Read an LPAE long-descriptor translation table. */
7943     MMUFaultType fault_type = translation_fault;
7944     uint32_t level;
7945     uint32_t epd = 0;
7946     int32_t t0sz, t1sz;
7947     uint32_t tg;
7948     uint64_t ttbr;
7949     int ttbr_select;
7950     hwaddr descaddr, indexmask, indexmask_grainsize;
7951     uint32_t tableattrs;
7952     target_ulong page_size;
7953     uint32_t attrs;
7954     int32_t stride = 9;
7955     int32_t addrsize;
7956     int inputsize;
7957     int32_t tbi = 0;
7958     TCR *tcr = regime_tcr(env, mmu_idx);
7959     int ap, ns, xn, pxn;
7960     uint32_t el = regime_el(env, mmu_idx);
7961     bool ttbr1_valid = true;
7962     uint64_t descaddrmask;
7963     bool aarch64 = arm_el_is_aa64(env, el);
7964 
7965     /* TODO:
7966      * This code does not handle the different format TCR for VTCR_EL2.
7967      * This code also does not support shareability levels.
7968      * Attribute and permission bit handling should also be checked when adding
7969      * support for those page table walks.
7970      */
7971     if (aarch64) {
7972         level = 0;
7973         addrsize = 64;
7974         if (el > 1) {
7975             if (mmu_idx != ARMMMUIdx_S2NS) {
7976                 tbi = extract64(tcr->raw_tcr, 20, 1);
7977             }
7978         } else {
7979             if (extract64(address, 55, 1)) {
7980                 tbi = extract64(tcr->raw_tcr, 38, 1);
7981             } else {
7982                 tbi = extract64(tcr->raw_tcr, 37, 1);
7983             }
7984         }
7985         tbi *= 8;
7986 
7987         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7988          * invalid.
7989          */
7990         if (el > 1) {
7991             ttbr1_valid = false;
7992         }
7993     } else {
7994         level = 1;
7995         addrsize = 32;
7996         /* There is no TTBR1 for EL2 */
7997         if (el == 2) {
7998             ttbr1_valid = false;
7999         }
8000     }
8001 
8002     /* Determine whether this address is in the region controlled by
8003      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8004      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8005      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8006      */
8007     if (aarch64) {
8008         /* AArch64 translation.  */
8009         t0sz = extract32(tcr->raw_tcr, 0, 6);
8010         t0sz = MIN(t0sz, 39);
8011         t0sz = MAX(t0sz, 16);
8012     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8013         /* AArch32 stage 1 translation.  */
8014         t0sz = extract32(tcr->raw_tcr, 0, 3);
8015     } else {
8016         /* AArch32 stage 2 translation.  */
8017         bool sext = extract32(tcr->raw_tcr, 4, 1);
8018         bool sign = extract32(tcr->raw_tcr, 3, 1);
8019         /* Address size is 40-bit for a stage 2 translation,
8020          * and t0sz can be negative (from -8 to 7),
8021          * so we need to adjust it to use the TTBR selecting logic below.
8022          */
8023         addrsize = 40;
8024         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8025 
8026         /* If the sign-extend bit is not the same as t0sz[3], the result
8027          * is unpredictable. Flag this as a guest error.  */
8028         if (sign != sext) {
8029             qemu_log_mask(LOG_GUEST_ERROR,
8030                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8031         }
8032     }
8033     t1sz = extract32(tcr->raw_tcr, 16, 6);
8034     if (aarch64) {
8035         t1sz = MIN(t1sz, 39);
8036         t1sz = MAX(t1sz, 16);
8037     }
8038     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8039         /* there is a ttbr0 region and we are in it (high bits all zero) */
8040         ttbr_select = 0;
8041     } else if (ttbr1_valid && t1sz &&
8042                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8043         /* there is a ttbr1 region and we are in it (high bits all one) */
8044         ttbr_select = 1;
8045     } else if (!t0sz) {
8046         /* ttbr0 region is "everything not in the ttbr1 region" */
8047         ttbr_select = 0;
8048     } else if (!t1sz && ttbr1_valid) {
8049         /* ttbr1 region is "everything not in the ttbr0 region" */
8050         ttbr_select = 1;
8051     } else {
8052         /* in the gap between the two regions, this is a Translation fault */
8053         fault_type = translation_fault;
8054         goto do_fault;
8055     }
8056 
8057     /* Note that QEMU ignores shareability and cacheability attributes,
8058      * so we don't need to do anything with the SH, ORGN, IRGN fields
8059      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8060      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8061      * implement any ASID-like capability so we can ignore it (instead
8062      * we will always flush the TLB any time the ASID is changed).
8063      */
8064     if (ttbr_select == 0) {
8065         ttbr = regime_ttbr(env, mmu_idx, 0);
8066         if (el < 2) {
8067             epd = extract32(tcr->raw_tcr, 7, 1);
8068         }
8069         inputsize = addrsize - t0sz;
8070 
8071         tg = extract32(tcr->raw_tcr, 14, 2);
8072         if (tg == 1) { /* 64KB pages */
8073             stride = 13;
8074         }
8075         if (tg == 2) { /* 16KB pages */
8076             stride = 11;
8077         }
8078     } else {
8079         /* We should only be here if TTBR1 is valid */
8080         assert(ttbr1_valid);
8081 
8082         ttbr = regime_ttbr(env, mmu_idx, 1);
8083         epd = extract32(tcr->raw_tcr, 23, 1);
8084         inputsize = addrsize - t1sz;
8085 
8086         tg = extract32(tcr->raw_tcr, 30, 2);
8087         if (tg == 3)  { /* 64KB pages */
8088             stride = 13;
8089         }
8090         if (tg == 1) { /* 16KB pages */
8091             stride = 11;
8092         }
8093     }
8094 
8095     /* Here we should have set up all the parameters for the translation:
8096      * inputsize, ttbr, epd, stride, tbi
8097      */
8098 
8099     if (epd) {
8100         /* Translation table walk disabled => Translation fault on TLB miss
8101          * Note: This is always 0 on 64-bit EL2 and EL3.
8102          */
8103         goto do_fault;
8104     }
8105 
8106     if (mmu_idx != ARMMMUIdx_S2NS) {
8107         /* The starting level depends on the virtual address size (which can
8108          * be up to 48 bits) and the translation granule size. It indicates
8109          * the number of strides (stride bits at a time) needed to
8110          * consume the bits of the input address. In the pseudocode this is:
8111          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8112          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8113          * our 'stride + 3' and 'stride' is our 'stride'.
8114          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8115          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8116          * = 4 - (inputsize - 4) / stride;
8117          */
8118         level = 4 - (inputsize - 4) / stride;
8119     } else {
8120         /* For stage 2 translations the starting level is specified by the
8121          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8122          */
8123         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8124         uint32_t startlevel;
8125         bool ok;
8126 
8127         if (!aarch64 || stride == 9) {
8128             /* AArch32 or 4KB pages */
8129             startlevel = 2 - sl0;
8130         } else {
8131             /* 16KB or 64KB pages */
8132             startlevel = 3 - sl0;
8133         }
8134 
8135         /* Check that the starting level is valid. */
8136         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8137                                 inputsize, stride);
8138         if (!ok) {
8139             fault_type = translation_fault;
8140             goto do_fault;
8141         }
8142         level = startlevel;
8143     }
8144 
8145     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8146     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8147 
8148     /* Now we can extract the actual base address from the TTBR */
8149     descaddr = extract64(ttbr, 0, 48);
8150     descaddr &= ~indexmask;
8151 
8152     /* The address field in the descriptor goes up to bit 39 for ARMv7
8153      * but up to bit 47 for ARMv8, but we use the descaddrmask
8154      * up to bit 39 for AArch32, because we don't need other bits in that case
8155      * to construct next descriptor address (anyway they should be all zeroes).
8156      */
8157     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8158                    ~indexmask_grainsize;
8159 
8160     /* Secure accesses start with the page table in secure memory and
8161      * can be downgraded to non-secure at any step. Non-secure accesses
8162      * remain non-secure. We implement this by just ORing in the NSTable/NS
8163      * bits at each step.
8164      */
8165     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8166     for (;;) {
8167         uint64_t descriptor;
8168         bool nstable;
8169 
8170         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8171         descaddr &= ~7ULL;
8172         nstable = extract32(tableattrs, 4, 1);
8173         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8174         if (fi->s1ptw) {
8175             goto do_fault;
8176         }
8177 
8178         if (!(descriptor & 1) ||
8179             (!(descriptor & 2) && (level == 3))) {
8180             /* Invalid, or the Reserved level 3 encoding */
8181             goto do_fault;
8182         }
8183         descaddr = descriptor & descaddrmask;
8184 
8185         if ((descriptor & 2) && (level < 3)) {
8186             /* Table entry. The top five bits are attributes which  may
8187              * propagate down through lower levels of the table (and
8188              * which are all arranged so that 0 means "no effect", so
8189              * we can gather them up by ORing in the bits at each level).
8190              */
8191             tableattrs |= extract64(descriptor, 59, 5);
8192             level++;
8193             indexmask = indexmask_grainsize;
8194             continue;
8195         }
8196         /* Block entry at level 1 or 2, or page entry at level 3.
8197          * These are basically the same thing, although the number
8198          * of bits we pull in from the vaddr varies.
8199          */
8200         page_size = (1ULL << ((stride * (4 - level)) + 3));
8201         descaddr |= (address & (page_size - 1));
8202         /* Extract attributes from the descriptor */
8203         attrs = extract64(descriptor, 2, 10)
8204             | (extract64(descriptor, 52, 12) << 10);
8205 
8206         if (mmu_idx == ARMMMUIdx_S2NS) {
8207             /* Stage 2 table descriptors do not include any attribute fields */
8208             break;
8209         }
8210         /* Merge in attributes from table descriptors */
8211         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8212         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8213         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8214          * means "force PL1 access only", which means forcing AP[1] to 0.
8215          */
8216         if (extract32(tableattrs, 2, 1)) {
8217             attrs &= ~(1 << 4);
8218         }
8219         attrs |= nstable << 3; /* NS */
8220         break;
8221     }
8222     /* Here descaddr is the final physical address, and attributes
8223      * are all in attrs.
8224      */
8225     fault_type = access_fault;
8226     if ((attrs & (1 << 8)) == 0) {
8227         /* Access flag */
8228         goto do_fault;
8229     }
8230 
8231     ap = extract32(attrs, 4, 2);
8232     xn = extract32(attrs, 12, 1);
8233 
8234     if (mmu_idx == ARMMMUIdx_S2NS) {
8235         ns = true;
8236         *prot = get_S2prot(env, ap, xn);
8237     } else {
8238         ns = extract32(attrs, 3, 1);
8239         pxn = extract32(attrs, 11, 1);
8240         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8241     }
8242 
8243     fault_type = permission_fault;
8244     if (!(*prot & (1 << access_type))) {
8245         goto do_fault;
8246     }
8247 
8248     if (ns) {
8249         /* The NS bit will (as required by the architecture) have no effect if
8250          * the CPU doesn't support TZ or this is a non-secure translation
8251          * regime, because the attribute will already be non-secure.
8252          */
8253         txattrs->secure = false;
8254     }
8255     *phys_ptr = descaddr;
8256     *page_size_ptr = page_size;
8257     return false;
8258 
8259 do_fault:
8260     /* Long-descriptor format IFSR/DFSR value */
8261     *fsr = (1 << 9) | (fault_type << 2) | level;
8262     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
8263     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8264     return true;
8265 }
8266 
8267 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
8268                                                 ARMMMUIdx mmu_idx,
8269                                                 int32_t address, int *prot)
8270 {
8271     if (!arm_feature(env, ARM_FEATURE_M)) {
8272         *prot = PAGE_READ | PAGE_WRITE;
8273         switch (address) {
8274         case 0xF0000000 ... 0xFFFFFFFF:
8275             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
8276                 /* hivecs execing is ok */
8277                 *prot |= PAGE_EXEC;
8278             }
8279             break;
8280         case 0x00000000 ... 0x7FFFFFFF:
8281             *prot |= PAGE_EXEC;
8282             break;
8283         }
8284     } else {
8285         /* Default system address map for M profile cores.
8286          * The architecture specifies which regions are execute-never;
8287          * at the MPU level no other checks are defined.
8288          */
8289         switch (address) {
8290         case 0x00000000 ... 0x1fffffff: /* ROM */
8291         case 0x20000000 ... 0x3fffffff: /* SRAM */
8292         case 0x60000000 ... 0x7fffffff: /* RAM */
8293         case 0x80000000 ... 0x9fffffff: /* RAM */
8294             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8295             break;
8296         case 0x40000000 ... 0x5fffffff: /* Peripheral */
8297         case 0xa0000000 ... 0xbfffffff: /* Device */
8298         case 0xc0000000 ... 0xdfffffff: /* Device */
8299         case 0xe0000000 ... 0xffffffff: /* System */
8300             *prot = PAGE_READ | PAGE_WRITE;
8301             break;
8302         default:
8303             g_assert_not_reached();
8304         }
8305     }
8306 }
8307 
8308 static bool pmsav7_use_background_region(ARMCPU *cpu,
8309                                          ARMMMUIdx mmu_idx, bool is_user)
8310 {
8311     /* Return true if we should use the default memory map as a
8312      * "background" region if there are no hits against any MPU regions.
8313      */
8314     CPUARMState *env = &cpu->env;
8315 
8316     if (is_user) {
8317         return false;
8318     }
8319 
8320     if (arm_feature(env, ARM_FEATURE_M)) {
8321         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
8322             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
8323     } else {
8324         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
8325     }
8326 }
8327 
8328 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
8329 {
8330     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
8331     return arm_feature(env, ARM_FEATURE_M) &&
8332         extract32(address, 20, 12) == 0xe00;
8333 }
8334 
8335 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
8336 {
8337     /* True if address is in the M profile system region
8338      * 0xe0000000 - 0xffffffff
8339      */
8340     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
8341 }
8342 
8343 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
8344                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8345                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8346 {
8347     ARMCPU *cpu = arm_env_get_cpu(env);
8348     int n;
8349     bool is_user = regime_is_user(env, mmu_idx);
8350 
8351     *phys_ptr = address;
8352     *prot = 0;
8353 
8354     if (regime_translation_disabled(env, mmu_idx) ||
8355         m_is_ppb_region(env, address)) {
8356         /* MPU disabled or M profile PPB access: use default memory map.
8357          * The other case which uses the default memory map in the
8358          * v7M ARM ARM pseudocode is exception vector reads from the vector
8359          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
8360          * which always does a direct read using address_space_ldl(), rather
8361          * than going via this function, so we don't need to check that here.
8362          */
8363         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8364     } else { /* MPU enabled */
8365         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8366             /* region search */
8367             uint32_t base = env->pmsav7.drbar[n];
8368             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
8369             uint32_t rmask;
8370             bool srdis = false;
8371 
8372             if (!(env->pmsav7.drsr[n] & 0x1)) {
8373                 continue;
8374             }
8375 
8376             if (!rsize) {
8377                 qemu_log_mask(LOG_GUEST_ERROR,
8378                               "DRSR[%d]: Rsize field cannot be 0\n", n);
8379                 continue;
8380             }
8381             rsize++;
8382             rmask = (1ull << rsize) - 1;
8383 
8384             if (base & rmask) {
8385                 qemu_log_mask(LOG_GUEST_ERROR,
8386                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
8387                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
8388                               n, base, rmask);
8389                 continue;
8390             }
8391 
8392             if (address < base || address > base + rmask) {
8393                 continue;
8394             }
8395 
8396             /* Region matched */
8397 
8398             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
8399                 int i, snd;
8400                 uint32_t srdis_mask;
8401 
8402                 rsize -= 3; /* sub region size (power of 2) */
8403                 snd = ((address - base) >> rsize) & 0x7;
8404                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
8405 
8406                 srdis_mask = srdis ? 0x3 : 0x0;
8407                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
8408                     /* This will check in groups of 2, 4 and then 8, whether
8409                      * the subregion bits are consistent. rsize is incremented
8410                      * back up to give the region size, considering consistent
8411                      * adjacent subregions as one region. Stop testing if rsize
8412                      * is already big enough for an entire QEMU page.
8413                      */
8414                     int snd_rounded = snd & ~(i - 1);
8415                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
8416                                                      snd_rounded + 8, i);
8417                     if (srdis_mask ^ srdis_multi) {
8418                         break;
8419                     }
8420                     srdis_mask = (srdis_mask << i) | srdis_mask;
8421                     rsize++;
8422                 }
8423             }
8424             if (rsize < TARGET_PAGE_BITS) {
8425                 qemu_log_mask(LOG_UNIMP,
8426                               "DRSR[%d]: No support for MPU (sub)region "
8427                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
8428                               n, rsize, TARGET_PAGE_BITS);
8429                 continue;
8430             }
8431             if (srdis) {
8432                 continue;
8433             }
8434             break;
8435         }
8436 
8437         if (n == -1) { /* no hits */
8438             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8439                 /* background fault */
8440                 *fsr = 0;
8441                 return true;
8442             }
8443             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8444         } else { /* a MPU hit! */
8445             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
8446             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
8447 
8448             if (m_is_system_region(env, address)) {
8449                 /* System space is always execute never */
8450                 xn = 1;
8451             }
8452 
8453             if (is_user) { /* User mode AP bit decoding */
8454                 switch (ap) {
8455                 case 0:
8456                 case 1:
8457                 case 5:
8458                     break; /* no access */
8459                 case 3:
8460                     *prot |= PAGE_WRITE;
8461                     /* fall through */
8462                 case 2:
8463                 case 6:
8464                     *prot |= PAGE_READ | PAGE_EXEC;
8465                     break;
8466                 default:
8467                     qemu_log_mask(LOG_GUEST_ERROR,
8468                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8469                                   PRIx32 "\n", n, ap);
8470                 }
8471             } else { /* Priv. mode AP bits decoding */
8472                 switch (ap) {
8473                 case 0:
8474                     break; /* no access */
8475                 case 1:
8476                 case 2:
8477                 case 3:
8478                     *prot |= PAGE_WRITE;
8479                     /* fall through */
8480                 case 5:
8481                 case 6:
8482                     *prot |= PAGE_READ | PAGE_EXEC;
8483                     break;
8484                 default:
8485                     qemu_log_mask(LOG_GUEST_ERROR,
8486                                   "DRACR[%d]: Bad value for AP bits: 0x%"
8487                                   PRIx32 "\n", n, ap);
8488                 }
8489             }
8490 
8491             /* execute never */
8492             if (xn) {
8493                 *prot &= ~PAGE_EXEC;
8494             }
8495         }
8496     }
8497 
8498     *fsr = 0x00d; /* Permission fault */
8499     return !(*prot & (1 << access_type));
8500 }
8501 
8502 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
8503                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8504                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8505 {
8506     ARMCPU *cpu = arm_env_get_cpu(env);
8507     bool is_user = regime_is_user(env, mmu_idx);
8508     uint32_t secure = regime_is_secure(env, mmu_idx);
8509     int n;
8510     int matchregion = -1;
8511     bool hit = false;
8512 
8513     *phys_ptr = address;
8514     *prot = 0;
8515 
8516     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
8517      * was an exception vector read from the vector table (which is always
8518      * done using the default system address map), because those accesses
8519      * are done in arm_v7m_load_vector(), which always does a direct
8520      * read using address_space_ldl(), rather than going via this function.
8521      */
8522     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
8523         hit = true;
8524     } else if (m_is_ppb_region(env, address)) {
8525         hit = true;
8526     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
8527         hit = true;
8528     } else {
8529         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
8530             /* region search */
8531             /* Note that the base address is bits [31:5] from the register
8532              * with bits [4:0] all zeroes, but the limit address is bits
8533              * [31:5] from the register with bits [4:0] all ones.
8534              */
8535             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
8536             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
8537 
8538             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
8539                 /* Region disabled */
8540                 continue;
8541             }
8542 
8543             if (address < base || address > limit) {
8544                 continue;
8545             }
8546 
8547             if (hit) {
8548                 /* Multiple regions match -- always a failure (unlike
8549                  * PMSAv7 where highest-numbered-region wins)
8550                  */
8551                 *fsr = 0x00d; /* permission fault */
8552                 return true;
8553             }
8554 
8555             matchregion = n;
8556             hit = true;
8557 
8558             if (base & ~TARGET_PAGE_MASK) {
8559                 qemu_log_mask(LOG_UNIMP,
8560                               "MPU_RBAR[%d]: No support for MPU region base"
8561                               "address of 0x%" PRIx32 ". Minimum alignment is "
8562                               "%d\n",
8563                               n, base, TARGET_PAGE_BITS);
8564                 continue;
8565             }
8566             if ((limit + 1) & ~TARGET_PAGE_MASK) {
8567                 qemu_log_mask(LOG_UNIMP,
8568                               "MPU_RBAR[%d]: No support for MPU region limit"
8569                               "address of 0x%" PRIx32 ". Minimum alignment is "
8570                               "%d\n",
8571                               n, limit, TARGET_PAGE_BITS);
8572                 continue;
8573             }
8574         }
8575     }
8576 
8577     if (!hit) {
8578         /* background fault */
8579         *fsr = 0;
8580         return true;
8581     }
8582 
8583     if (matchregion == -1) {
8584         /* hit using the background region */
8585         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
8586     } else {
8587         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
8588         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
8589 
8590         if (m_is_system_region(env, address)) {
8591             /* System space is always execute never */
8592             xn = 1;
8593         }
8594 
8595         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
8596         if (*prot && !xn) {
8597             *prot |= PAGE_EXEC;
8598         }
8599         /* We don't need to look the attribute up in the MAIR0/MAIR1
8600          * registers because that only tells us about cacheability.
8601          */
8602     }
8603 
8604     *fsr = 0x00d; /* Permission fault */
8605     return !(*prot & (1 << access_type));
8606 }
8607 
8608 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
8609                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
8610                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
8611 {
8612     int n;
8613     uint32_t mask;
8614     uint32_t base;
8615     bool is_user = regime_is_user(env, mmu_idx);
8616 
8617     if (regime_translation_disabled(env, mmu_idx)) {
8618         /* MPU disabled.  */
8619         *phys_ptr = address;
8620         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8621         return false;
8622     }
8623 
8624     *phys_ptr = address;
8625     for (n = 7; n >= 0; n--) {
8626         base = env->cp15.c6_region[n];
8627         if ((base & 1) == 0) {
8628             continue;
8629         }
8630         mask = 1 << ((base >> 1) & 0x1f);
8631         /* Keep this shift separate from the above to avoid an
8632            (undefined) << 32.  */
8633         mask = (mask << 1) - 1;
8634         if (((base ^ address) & ~mask) == 0) {
8635             break;
8636         }
8637     }
8638     if (n < 0) {
8639         *fsr = 2;
8640         return true;
8641     }
8642 
8643     if (access_type == MMU_INST_FETCH) {
8644         mask = env->cp15.pmsav5_insn_ap;
8645     } else {
8646         mask = env->cp15.pmsav5_data_ap;
8647     }
8648     mask = (mask >> (n * 4)) & 0xf;
8649     switch (mask) {
8650     case 0:
8651         *fsr = 1;
8652         return true;
8653     case 1:
8654         if (is_user) {
8655             *fsr = 1;
8656             return true;
8657         }
8658         *prot = PAGE_READ | PAGE_WRITE;
8659         break;
8660     case 2:
8661         *prot = PAGE_READ;
8662         if (!is_user) {
8663             *prot |= PAGE_WRITE;
8664         }
8665         break;
8666     case 3:
8667         *prot = PAGE_READ | PAGE_WRITE;
8668         break;
8669     case 5:
8670         if (is_user) {
8671             *fsr = 1;
8672             return true;
8673         }
8674         *prot = PAGE_READ;
8675         break;
8676     case 6:
8677         *prot = PAGE_READ;
8678         break;
8679     default:
8680         /* Bad permission.  */
8681         *fsr = 1;
8682         return true;
8683     }
8684     *prot |= PAGE_EXEC;
8685     return false;
8686 }
8687 
8688 /* get_phys_addr - get the physical address for this virtual address
8689  *
8690  * Find the physical address corresponding to the given virtual address,
8691  * by doing a translation table walk on MMU based systems or using the
8692  * MPU state on MPU based systems.
8693  *
8694  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
8695  * prot and page_size may not be filled in, and the populated fsr value provides
8696  * information on why the translation aborted, in the format of a
8697  * DFSR/IFSR fault register, with the following caveats:
8698  *  * we honour the short vs long DFSR format differences.
8699  *  * the WnR bit is never set (the caller must do this).
8700  *  * for PSMAv5 based systems we don't bother to return a full FSR format
8701  *    value.
8702  *
8703  * @env: CPUARMState
8704  * @address: virtual address to get physical address for
8705  * @access_type: 0 for read, 1 for write, 2 for execute
8706  * @mmu_idx: MMU index indicating required translation regime
8707  * @phys_ptr: set to the physical address corresponding to the virtual address
8708  * @attrs: set to the memory transaction attributes to use
8709  * @prot: set to the permissions for the page containing phys_ptr
8710  * @page_size: set to the size of the page containing phys_ptr
8711  * @fsr: set to the DFSR/IFSR value on failure
8712  */
8713 static bool get_phys_addr(CPUARMState *env, target_ulong address,
8714                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
8715                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8716                           target_ulong *page_size, uint32_t *fsr,
8717                           ARMMMUFaultInfo *fi)
8718 {
8719     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8720         /* Call ourselves recursively to do the stage 1 and then stage 2
8721          * translations.
8722          */
8723         if (arm_feature(env, ARM_FEATURE_EL2)) {
8724             hwaddr ipa;
8725             int s2_prot;
8726             int ret;
8727 
8728             ret = get_phys_addr(env, address, access_type,
8729                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
8730                                 prot, page_size, fsr, fi);
8731 
8732             /* If S1 fails or S2 is disabled, return early.  */
8733             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8734                 *phys_ptr = ipa;
8735                 return ret;
8736             }
8737 
8738             /* S1 is done. Now do S2 translation.  */
8739             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8740                                      phys_ptr, attrs, &s2_prot,
8741                                      page_size, fsr, fi);
8742             fi->s2addr = ipa;
8743             /* Combine the S1 and S2 perms.  */
8744             *prot &= s2_prot;
8745             return ret;
8746         } else {
8747             /*
8748              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8749              */
8750             mmu_idx = stage_1_mmu_idx(mmu_idx);
8751         }
8752     }
8753 
8754     /* The page table entries may downgrade secure to non-secure, but
8755      * cannot upgrade an non-secure translation regime's attributes
8756      * to secure.
8757      */
8758     attrs->secure = regime_is_secure(env, mmu_idx);
8759     attrs->user = regime_is_user(env, mmu_idx);
8760 
8761     /* Fast Context Switch Extension. This doesn't exist at all in v8.
8762      * In v7 and earlier it affects all stage 1 translations.
8763      */
8764     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8765         && !arm_feature(env, ARM_FEATURE_V8)) {
8766         if (regime_el(env, mmu_idx) == 3) {
8767             address += env->cp15.fcseidr_s;
8768         } else {
8769             address += env->cp15.fcseidr_ns;
8770         }
8771     }
8772 
8773     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8774         bool ret;
8775         *page_size = TARGET_PAGE_SIZE;
8776 
8777         if (arm_feature(env, ARM_FEATURE_V8)) {
8778             /* PMSAv8 */
8779             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
8780                                        phys_ptr, prot, fsr);
8781         } else if (arm_feature(env, ARM_FEATURE_V7)) {
8782             /* PMSAv7 */
8783             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8784                                        phys_ptr, prot, fsr);
8785         } else {
8786             /* Pre-v7 MPU */
8787             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8788                                        phys_ptr, prot, fsr);
8789         }
8790         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
8791                       " mmu_idx %u -> %s (prot %c%c%c)\n",
8792                       access_type == MMU_DATA_LOAD ? "reading" :
8793                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
8794                       (uint32_t)address, mmu_idx,
8795                       ret ? "Miss" : "Hit",
8796                       *prot & PAGE_READ ? 'r' : '-',
8797                       *prot & PAGE_WRITE ? 'w' : '-',
8798                       *prot & PAGE_EXEC ? 'x' : '-');
8799 
8800         return ret;
8801     }
8802 
8803     /* Definitely a real MMU, not an MPU */
8804 
8805     if (regime_translation_disabled(env, mmu_idx)) {
8806         /* MMU disabled. */
8807         *phys_ptr = address;
8808         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8809         *page_size = TARGET_PAGE_SIZE;
8810         return 0;
8811     }
8812 
8813     if (regime_using_lpae_format(env, mmu_idx)) {
8814         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8815                                   attrs, prot, page_size, fsr, fi);
8816     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8817         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8818                                 attrs, prot, page_size, fsr, fi);
8819     } else {
8820         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8821                                 prot, page_size, fsr, fi);
8822     }
8823 }
8824 
8825 /* Walk the page table and (if the mapping exists) add the page
8826  * to the TLB. Return false on success, or true on failure. Populate
8827  * fsr with ARM DFSR/IFSR fault register format value on failure.
8828  */
8829 bool arm_tlb_fill(CPUState *cs, vaddr address,
8830                   MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
8831                   ARMMMUFaultInfo *fi)
8832 {
8833     ARMCPU *cpu = ARM_CPU(cs);
8834     CPUARMState *env = &cpu->env;
8835     hwaddr phys_addr;
8836     target_ulong page_size;
8837     int prot;
8838     int ret;
8839     MemTxAttrs attrs = {};
8840 
8841     ret = get_phys_addr(env, address, access_type,
8842                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
8843                         &attrs, &prot, &page_size, fsr, fi);
8844     if (!ret) {
8845         /* Map a single [sub]page.  */
8846         phys_addr &= TARGET_PAGE_MASK;
8847         address &= TARGET_PAGE_MASK;
8848         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8849                                 prot, mmu_idx, page_size);
8850         return 0;
8851     }
8852 
8853     return ret;
8854 }
8855 
8856 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8857                                          MemTxAttrs *attrs)
8858 {
8859     ARMCPU *cpu = ARM_CPU(cs);
8860     CPUARMState *env = &cpu->env;
8861     hwaddr phys_addr;
8862     target_ulong page_size;
8863     int prot;
8864     bool ret;
8865     uint32_t fsr;
8866     ARMMMUFaultInfo fi = {};
8867     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
8868 
8869     *attrs = (MemTxAttrs) {};
8870 
8871     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
8872                         attrs, &prot, &page_size, &fsr, &fi);
8873 
8874     if (ret) {
8875         return -1;
8876     }
8877     return phys_addr;
8878 }
8879 
8880 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8881 {
8882     uint32_t mask;
8883     unsigned el = arm_current_el(env);
8884 
8885     /* First handle registers which unprivileged can read */
8886 
8887     switch (reg) {
8888     case 0 ... 7: /* xPSR sub-fields */
8889         mask = 0;
8890         if ((reg & 1) && el) {
8891             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
8892         }
8893         if (!(reg & 4)) {
8894             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
8895         }
8896         /* EPSR reads as zero */
8897         return xpsr_read(env) & mask;
8898         break;
8899     case 20: /* CONTROL */
8900         return env->v7m.control[env->v7m.secure];
8901     case 0x94: /* CONTROL_NS */
8902         /* We have to handle this here because unprivileged Secure code
8903          * can read the NS CONTROL register.
8904          */
8905         if (!env->v7m.secure) {
8906             return 0;
8907         }
8908         return env->v7m.control[M_REG_NS];
8909     }
8910 
8911     if (el == 0) {
8912         return 0; /* unprivileged reads others as zero */
8913     }
8914 
8915     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
8916         switch (reg) {
8917         case 0x88: /* MSP_NS */
8918             if (!env->v7m.secure) {
8919                 return 0;
8920             }
8921             return env->v7m.other_ss_msp;
8922         case 0x89: /* PSP_NS */
8923             if (!env->v7m.secure) {
8924                 return 0;
8925             }
8926             return env->v7m.other_ss_psp;
8927         case 0x90: /* PRIMASK_NS */
8928             if (!env->v7m.secure) {
8929                 return 0;
8930             }
8931             return env->v7m.primask[M_REG_NS];
8932         case 0x91: /* BASEPRI_NS */
8933             if (!env->v7m.secure) {
8934                 return 0;
8935             }
8936             return env->v7m.basepri[M_REG_NS];
8937         case 0x93: /* FAULTMASK_NS */
8938             if (!env->v7m.secure) {
8939                 return 0;
8940             }
8941             return env->v7m.faultmask[M_REG_NS];
8942         case 0x98: /* SP_NS */
8943         {
8944             /* This gives the non-secure SP selected based on whether we're
8945              * currently in handler mode or not, using the NS CONTROL.SPSEL.
8946              */
8947             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
8948 
8949             if (!env->v7m.secure) {
8950                 return 0;
8951             }
8952             if (!arm_v7m_is_handler_mode(env) && spsel) {
8953                 return env->v7m.other_ss_psp;
8954             } else {
8955                 return env->v7m.other_ss_msp;
8956             }
8957         }
8958         default:
8959             break;
8960         }
8961     }
8962 
8963     switch (reg) {
8964     case 8: /* MSP */
8965         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
8966             env->v7m.other_sp : env->regs[13];
8967     case 9: /* PSP */
8968         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
8969             env->regs[13] : env->v7m.other_sp;
8970     case 16: /* PRIMASK */
8971         return env->v7m.primask[env->v7m.secure];
8972     case 17: /* BASEPRI */
8973     case 18: /* BASEPRI_MAX */
8974         return env->v7m.basepri[env->v7m.secure];
8975     case 19: /* FAULTMASK */
8976         return env->v7m.faultmask[env->v7m.secure];
8977     default:
8978         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
8979                                        " register %d\n", reg);
8980         return 0;
8981     }
8982 }
8983 
8984 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
8985 {
8986     /* We're passed bits [11..0] of the instruction; extract
8987      * SYSm and the mask bits.
8988      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
8989      * we choose to treat them as if the mask bits were valid.
8990      * NB that the pseudocode 'mask' variable is bits [11..10],
8991      * whereas ours is [11..8].
8992      */
8993     uint32_t mask = extract32(maskreg, 8, 4);
8994     uint32_t reg = extract32(maskreg, 0, 8);
8995 
8996     if (arm_current_el(env) == 0 && reg > 7) {
8997         /* only xPSR sub-fields may be written by unprivileged */
8998         return;
8999     }
9000 
9001     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9002         switch (reg) {
9003         case 0x88: /* MSP_NS */
9004             if (!env->v7m.secure) {
9005                 return;
9006             }
9007             env->v7m.other_ss_msp = val;
9008             return;
9009         case 0x89: /* PSP_NS */
9010             if (!env->v7m.secure) {
9011                 return;
9012             }
9013             env->v7m.other_ss_psp = val;
9014             return;
9015         case 0x90: /* PRIMASK_NS */
9016             if (!env->v7m.secure) {
9017                 return;
9018             }
9019             env->v7m.primask[M_REG_NS] = val & 1;
9020             return;
9021         case 0x91: /* BASEPRI_NS */
9022             if (!env->v7m.secure) {
9023                 return;
9024             }
9025             env->v7m.basepri[M_REG_NS] = val & 0xff;
9026             return;
9027         case 0x93: /* FAULTMASK_NS */
9028             if (!env->v7m.secure) {
9029                 return;
9030             }
9031             env->v7m.faultmask[M_REG_NS] = val & 1;
9032             return;
9033         case 0x98: /* SP_NS */
9034         {
9035             /* This gives the non-secure SP selected based on whether we're
9036              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9037              */
9038             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9039 
9040             if (!env->v7m.secure) {
9041                 return;
9042             }
9043             if (!arm_v7m_is_handler_mode(env) && spsel) {
9044                 env->v7m.other_ss_psp = val;
9045             } else {
9046                 env->v7m.other_ss_msp = val;
9047             }
9048             return;
9049         }
9050         default:
9051             break;
9052         }
9053     }
9054 
9055     switch (reg) {
9056     case 0 ... 7: /* xPSR sub-fields */
9057         /* only APSR is actually writable */
9058         if (!(reg & 4)) {
9059             uint32_t apsrmask = 0;
9060 
9061             if (mask & 8) {
9062                 apsrmask |= XPSR_NZCV | XPSR_Q;
9063             }
9064             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
9065                 apsrmask |= XPSR_GE;
9066             }
9067             xpsr_write(env, val, apsrmask);
9068         }
9069         break;
9070     case 8: /* MSP */
9071         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9072             env->v7m.other_sp = val;
9073         } else {
9074             env->regs[13] = val;
9075         }
9076         break;
9077     case 9: /* PSP */
9078         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
9079             env->regs[13] = val;
9080         } else {
9081             env->v7m.other_sp = val;
9082         }
9083         break;
9084     case 16: /* PRIMASK */
9085         env->v7m.primask[env->v7m.secure] = val & 1;
9086         break;
9087     case 17: /* BASEPRI */
9088         env->v7m.basepri[env->v7m.secure] = val & 0xff;
9089         break;
9090     case 18: /* BASEPRI_MAX */
9091         val &= 0xff;
9092         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
9093                          || env->v7m.basepri[env->v7m.secure] == 0)) {
9094             env->v7m.basepri[env->v7m.secure] = val;
9095         }
9096         break;
9097     case 19: /* FAULTMASK */
9098         env->v7m.faultmask[env->v7m.secure] = val & 1;
9099         break;
9100     case 20: /* CONTROL */
9101         /* Writing to the SPSEL bit only has an effect if we are in
9102          * thread mode; other bits can be updated by any privileged code.
9103          * switch_v7m_sp() deals with updating the SPSEL bit in
9104          * env->v7m.control, so we only need update the others.
9105          */
9106         if (!arm_v7m_is_handler_mode(env)) {
9107             switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
9108         }
9109         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
9110         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
9111         break;
9112     default:
9113         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
9114                                        " register %d\n", reg);
9115         return;
9116     }
9117 }
9118 
9119 #endif
9120 
9121 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
9122 {
9123     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
9124      * Note that we do not implement the (architecturally mandated)
9125      * alignment fault for attempts to use this on Device memory
9126      * (which matches the usual QEMU behaviour of not implementing either
9127      * alignment faults or any memory attribute handling).
9128      */
9129 
9130     ARMCPU *cpu = arm_env_get_cpu(env);
9131     uint64_t blocklen = 4 << cpu->dcz_blocksize;
9132     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
9133 
9134 #ifndef CONFIG_USER_ONLY
9135     {
9136         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
9137          * the block size so we might have to do more than one TLB lookup.
9138          * We know that in fact for any v8 CPU the page size is at least 4K
9139          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
9140          * 1K as an artefact of legacy v5 subpage support being present in the
9141          * same QEMU executable.
9142          */
9143         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
9144         void *hostaddr[maxidx];
9145         int try, i;
9146         unsigned mmu_idx = cpu_mmu_index(env, false);
9147         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
9148 
9149         for (try = 0; try < 2; try++) {
9150 
9151             for (i = 0; i < maxidx; i++) {
9152                 hostaddr[i] = tlb_vaddr_to_host(env,
9153                                                 vaddr + TARGET_PAGE_SIZE * i,
9154                                                 1, mmu_idx);
9155                 if (!hostaddr[i]) {
9156                     break;
9157                 }
9158             }
9159             if (i == maxidx) {
9160                 /* If it's all in the TLB it's fair game for just writing to;
9161                  * we know we don't need to update dirty status, etc.
9162                  */
9163                 for (i = 0; i < maxidx - 1; i++) {
9164                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
9165                 }
9166                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
9167                 return;
9168             }
9169             /* OK, try a store and see if we can populate the tlb. This
9170              * might cause an exception if the memory isn't writable,
9171              * in which case we will longjmp out of here. We must for
9172              * this purpose use the actual register value passed to us
9173              * so that we get the fault address right.
9174              */
9175             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
9176             /* Now we can populate the other TLB entries, if any */
9177             for (i = 0; i < maxidx; i++) {
9178                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
9179                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
9180                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
9181                 }
9182             }
9183         }
9184 
9185         /* Slow path (probably attempt to do this to an I/O device or
9186          * similar, or clearing of a block of code we have translations
9187          * cached for). Just do a series of byte writes as the architecture
9188          * demands. It's not worth trying to use a cpu_physical_memory_map(),
9189          * memset(), unmap() sequence here because:
9190          *  + we'd need to account for the blocksize being larger than a page
9191          *  + the direct-RAM access case is almost always going to be dealt
9192          *    with in the fastpath code above, so there's no speed benefit
9193          *  + we would have to deal with the map returning NULL because the
9194          *    bounce buffer was in use
9195          */
9196         for (i = 0; i < blocklen; i++) {
9197             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
9198         }
9199     }
9200 #else
9201     memset(g2h(vaddr), 0, blocklen);
9202 #endif
9203 }
9204 
9205 /* Note that signed overflow is undefined in C.  The following routines are
9206    careful to use unsigned types where modulo arithmetic is required.
9207    Failure to do so _will_ break on newer gcc.  */
9208 
9209 /* Signed saturating arithmetic.  */
9210 
9211 /* Perform 16-bit signed saturating addition.  */
9212 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
9213 {
9214     uint16_t res;
9215 
9216     res = a + b;
9217     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
9218         if (a & 0x8000)
9219             res = 0x8000;
9220         else
9221             res = 0x7fff;
9222     }
9223     return res;
9224 }
9225 
9226 /* Perform 8-bit signed saturating addition.  */
9227 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
9228 {
9229     uint8_t res;
9230 
9231     res = a + b;
9232     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
9233         if (a & 0x80)
9234             res = 0x80;
9235         else
9236             res = 0x7f;
9237     }
9238     return res;
9239 }
9240 
9241 /* Perform 16-bit signed saturating subtraction.  */
9242 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
9243 {
9244     uint16_t res;
9245 
9246     res = a - b;
9247     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
9248         if (a & 0x8000)
9249             res = 0x8000;
9250         else
9251             res = 0x7fff;
9252     }
9253     return res;
9254 }
9255 
9256 /* Perform 8-bit signed saturating subtraction.  */
9257 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
9258 {
9259     uint8_t res;
9260 
9261     res = a - b;
9262     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
9263         if (a & 0x80)
9264             res = 0x80;
9265         else
9266             res = 0x7f;
9267     }
9268     return res;
9269 }
9270 
9271 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
9272 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
9273 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
9274 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
9275 #define PFX q
9276 
9277 #include "op_addsub.h"
9278 
9279 /* Unsigned saturating arithmetic.  */
9280 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
9281 {
9282     uint16_t res;
9283     res = a + b;
9284     if (res < a)
9285         res = 0xffff;
9286     return res;
9287 }
9288 
9289 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
9290 {
9291     if (a > b)
9292         return a - b;
9293     else
9294         return 0;
9295 }
9296 
9297 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
9298 {
9299     uint8_t res;
9300     res = a + b;
9301     if (res < a)
9302         res = 0xff;
9303     return res;
9304 }
9305 
9306 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
9307 {
9308     if (a > b)
9309         return a - b;
9310     else
9311         return 0;
9312 }
9313 
9314 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
9315 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
9316 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
9317 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
9318 #define PFX uq
9319 
9320 #include "op_addsub.h"
9321 
9322 /* Signed modulo arithmetic.  */
9323 #define SARITH16(a, b, n, op) do { \
9324     int32_t sum; \
9325     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
9326     RESULT(sum, n, 16); \
9327     if (sum >= 0) \
9328         ge |= 3 << (n * 2); \
9329     } while(0)
9330 
9331 #define SARITH8(a, b, n, op) do { \
9332     int32_t sum; \
9333     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
9334     RESULT(sum, n, 8); \
9335     if (sum >= 0) \
9336         ge |= 1 << n; \
9337     } while(0)
9338 
9339 
9340 #define ADD16(a, b, n) SARITH16(a, b, n, +)
9341 #define SUB16(a, b, n) SARITH16(a, b, n, -)
9342 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
9343 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
9344 #define PFX s
9345 #define ARITH_GE
9346 
9347 #include "op_addsub.h"
9348 
9349 /* Unsigned modulo arithmetic.  */
9350 #define ADD16(a, b, n) do { \
9351     uint32_t sum; \
9352     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
9353     RESULT(sum, n, 16); \
9354     if ((sum >> 16) == 1) \
9355         ge |= 3 << (n * 2); \
9356     } while(0)
9357 
9358 #define ADD8(a, b, n) do { \
9359     uint32_t sum; \
9360     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
9361     RESULT(sum, n, 8); \
9362     if ((sum >> 8) == 1) \
9363         ge |= 1 << n; \
9364     } while(0)
9365 
9366 #define SUB16(a, b, n) do { \
9367     uint32_t sum; \
9368     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
9369     RESULT(sum, n, 16); \
9370     if ((sum >> 16) == 0) \
9371         ge |= 3 << (n * 2); \
9372     } while(0)
9373 
9374 #define SUB8(a, b, n) do { \
9375     uint32_t sum; \
9376     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
9377     RESULT(sum, n, 8); \
9378     if ((sum >> 8) == 0) \
9379         ge |= 1 << n; \
9380     } while(0)
9381 
9382 #define PFX u
9383 #define ARITH_GE
9384 
9385 #include "op_addsub.h"
9386 
9387 /* Halved signed arithmetic.  */
9388 #define ADD16(a, b, n) \
9389   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
9390 #define SUB16(a, b, n) \
9391   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
9392 #define ADD8(a, b, n) \
9393   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
9394 #define SUB8(a, b, n) \
9395   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
9396 #define PFX sh
9397 
9398 #include "op_addsub.h"
9399 
9400 /* Halved unsigned arithmetic.  */
9401 #define ADD16(a, b, n) \
9402   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9403 #define SUB16(a, b, n) \
9404   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
9405 #define ADD8(a, b, n) \
9406   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9407 #define SUB8(a, b, n) \
9408   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
9409 #define PFX uh
9410 
9411 #include "op_addsub.h"
9412 
9413 static inline uint8_t do_usad(uint8_t a, uint8_t b)
9414 {
9415     if (a > b)
9416         return a - b;
9417     else
9418         return b - a;
9419 }
9420 
9421 /* Unsigned sum of absolute byte differences.  */
9422 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
9423 {
9424     uint32_t sum;
9425     sum = do_usad(a, b);
9426     sum += do_usad(a >> 8, b >> 8);
9427     sum += do_usad(a >> 16, b >>16);
9428     sum += do_usad(a >> 24, b >> 24);
9429     return sum;
9430 }
9431 
9432 /* For ARMv6 SEL instruction.  */
9433 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
9434 {
9435     uint32_t mask;
9436 
9437     mask = 0;
9438     if (flags & 1)
9439         mask |= 0xff;
9440     if (flags & 2)
9441         mask |= 0xff00;
9442     if (flags & 4)
9443         mask |= 0xff0000;
9444     if (flags & 8)
9445         mask |= 0xff000000;
9446     return (a & mask) | (b & ~mask);
9447 }
9448 
9449 /* VFP support.  We follow the convention used for VFP instructions:
9450    Single precision routines have a "s" suffix, double precision a
9451    "d" suffix.  */
9452 
9453 /* Convert host exception flags to vfp form.  */
9454 static inline int vfp_exceptbits_from_host(int host_bits)
9455 {
9456     int target_bits = 0;
9457 
9458     if (host_bits & float_flag_invalid)
9459         target_bits |= 1;
9460     if (host_bits & float_flag_divbyzero)
9461         target_bits |= 2;
9462     if (host_bits & float_flag_overflow)
9463         target_bits |= 4;
9464     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
9465         target_bits |= 8;
9466     if (host_bits & float_flag_inexact)
9467         target_bits |= 0x10;
9468     if (host_bits & float_flag_input_denormal)
9469         target_bits |= 0x80;
9470     return target_bits;
9471 }
9472 
9473 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
9474 {
9475     int i;
9476     uint32_t fpscr;
9477 
9478     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
9479             | (env->vfp.vec_len << 16)
9480             | (env->vfp.vec_stride << 20);
9481     i = get_float_exception_flags(&env->vfp.fp_status);
9482     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
9483     fpscr |= vfp_exceptbits_from_host(i);
9484     return fpscr;
9485 }
9486 
9487 uint32_t vfp_get_fpscr(CPUARMState *env)
9488 {
9489     return HELPER(vfp_get_fpscr)(env);
9490 }
9491 
9492 /* Convert vfp exception flags to target form.  */
9493 static inline int vfp_exceptbits_to_host(int target_bits)
9494 {
9495     int host_bits = 0;
9496 
9497     if (target_bits & 1)
9498         host_bits |= float_flag_invalid;
9499     if (target_bits & 2)
9500         host_bits |= float_flag_divbyzero;
9501     if (target_bits & 4)
9502         host_bits |= float_flag_overflow;
9503     if (target_bits & 8)
9504         host_bits |= float_flag_underflow;
9505     if (target_bits & 0x10)
9506         host_bits |= float_flag_inexact;
9507     if (target_bits & 0x80)
9508         host_bits |= float_flag_input_denormal;
9509     return host_bits;
9510 }
9511 
9512 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
9513 {
9514     int i;
9515     uint32_t changed;
9516 
9517     changed = env->vfp.xregs[ARM_VFP_FPSCR];
9518     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
9519     env->vfp.vec_len = (val >> 16) & 7;
9520     env->vfp.vec_stride = (val >> 20) & 3;
9521 
9522     changed ^= val;
9523     if (changed & (3 << 22)) {
9524         i = (val >> 22) & 3;
9525         switch (i) {
9526         case FPROUNDING_TIEEVEN:
9527             i = float_round_nearest_even;
9528             break;
9529         case FPROUNDING_POSINF:
9530             i = float_round_up;
9531             break;
9532         case FPROUNDING_NEGINF:
9533             i = float_round_down;
9534             break;
9535         case FPROUNDING_ZERO:
9536             i = float_round_to_zero;
9537             break;
9538         }
9539         set_float_rounding_mode(i, &env->vfp.fp_status);
9540     }
9541     if (changed & (1 << 24)) {
9542         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9543         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9544     }
9545     if (changed & (1 << 25))
9546         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
9547 
9548     i = vfp_exceptbits_to_host(val);
9549     set_float_exception_flags(i, &env->vfp.fp_status);
9550     set_float_exception_flags(0, &env->vfp.standard_fp_status);
9551 }
9552 
9553 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9554 {
9555     HELPER(vfp_set_fpscr)(env, val);
9556 }
9557 
9558 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
9559 
9560 #define VFP_BINOP(name) \
9561 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
9562 { \
9563     float_status *fpst = fpstp; \
9564     return float32_ ## name(a, b, fpst); \
9565 } \
9566 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
9567 { \
9568     float_status *fpst = fpstp; \
9569     return float64_ ## name(a, b, fpst); \
9570 }
9571 VFP_BINOP(add)
9572 VFP_BINOP(sub)
9573 VFP_BINOP(mul)
9574 VFP_BINOP(div)
9575 VFP_BINOP(min)
9576 VFP_BINOP(max)
9577 VFP_BINOP(minnum)
9578 VFP_BINOP(maxnum)
9579 #undef VFP_BINOP
9580 
9581 float32 VFP_HELPER(neg, s)(float32 a)
9582 {
9583     return float32_chs(a);
9584 }
9585 
9586 float64 VFP_HELPER(neg, d)(float64 a)
9587 {
9588     return float64_chs(a);
9589 }
9590 
9591 float32 VFP_HELPER(abs, s)(float32 a)
9592 {
9593     return float32_abs(a);
9594 }
9595 
9596 float64 VFP_HELPER(abs, d)(float64 a)
9597 {
9598     return float64_abs(a);
9599 }
9600 
9601 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
9602 {
9603     return float32_sqrt(a, &env->vfp.fp_status);
9604 }
9605 
9606 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
9607 {
9608     return float64_sqrt(a, &env->vfp.fp_status);
9609 }
9610 
9611 /* XXX: check quiet/signaling case */
9612 #define DO_VFP_cmp(p, type) \
9613 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
9614 { \
9615     uint32_t flags; \
9616     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
9617     case 0: flags = 0x6; break; \
9618     case -1: flags = 0x8; break; \
9619     case 1: flags = 0x2; break; \
9620     default: case 2: flags = 0x3; break; \
9621     } \
9622     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9623         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9624 } \
9625 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
9626 { \
9627     uint32_t flags; \
9628     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
9629     case 0: flags = 0x6; break; \
9630     case -1: flags = 0x8; break; \
9631     case 1: flags = 0x2; break; \
9632     default: case 2: flags = 0x3; break; \
9633     } \
9634     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
9635         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
9636 }
9637 DO_VFP_cmp(s, float32)
9638 DO_VFP_cmp(d, float64)
9639 #undef DO_VFP_cmp
9640 
9641 /* Integer to float and float to integer conversions */
9642 
9643 #define CONV_ITOF(name, fsz, sign) \
9644     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
9645 { \
9646     float_status *fpst = fpstp; \
9647     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
9648 }
9649 
9650 #define CONV_FTOI(name, fsz, sign, round) \
9651 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
9652 { \
9653     float_status *fpst = fpstp; \
9654     if (float##fsz##_is_any_nan(x)) { \
9655         float_raise(float_flag_invalid, fpst); \
9656         return 0; \
9657     } \
9658     return float##fsz##_to_##sign##int32##round(x, fpst); \
9659 }
9660 
9661 #define FLOAT_CONVS(name, p, fsz, sign) \
9662 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
9663 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
9664 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
9665 
9666 FLOAT_CONVS(si, s, 32, )
9667 FLOAT_CONVS(si, d, 64, )
9668 FLOAT_CONVS(ui, s, 32, u)
9669 FLOAT_CONVS(ui, d, 64, u)
9670 
9671 #undef CONV_ITOF
9672 #undef CONV_FTOI
9673 #undef FLOAT_CONVS
9674 
9675 /* floating point conversion */
9676 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
9677 {
9678     float64 r = float32_to_float64(x, &env->vfp.fp_status);
9679     /* ARM requires that S<->D conversion of any kind of NaN generates
9680      * a quiet NaN by forcing the most significant frac bit to 1.
9681      */
9682     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9683 }
9684 
9685 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
9686 {
9687     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
9688     /* ARM requires that S<->D conversion of any kind of NaN generates
9689      * a quiet NaN by forcing the most significant frac bit to 1.
9690      */
9691     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
9692 }
9693 
9694 /* VFP3 fixed point conversion.  */
9695 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9696 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
9697                                      void *fpstp) \
9698 { \
9699     float_status *fpst = fpstp; \
9700     float##fsz tmp; \
9701     tmp = itype##_to_##float##fsz(x, fpst); \
9702     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9703 }
9704 
9705 /* Notice that we want only input-denormal exception flags from the
9706  * scalbn operation: the other possible flags (overflow+inexact if
9707  * we overflow to infinity, output-denormal) aren't correct for the
9708  * complete scale-and-convert operation.
9709  */
9710 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
9711 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
9712                                              uint32_t shift, \
9713                                              void *fpstp) \
9714 { \
9715     float_status *fpst = fpstp; \
9716     int old_exc_flags = get_float_exception_flags(fpst); \
9717     float##fsz tmp; \
9718     if (float##fsz##_is_any_nan(x)) { \
9719         float_raise(float_flag_invalid, fpst); \
9720         return 0; \
9721     } \
9722     tmp = float##fsz##_scalbn(x, shift, fpst); \
9723     old_exc_flags |= get_float_exception_flags(fpst) \
9724         & float_flag_input_denormal; \
9725     set_float_exception_flags(old_exc_flags, fpst); \
9726     return float##fsz##_to_##itype##round(tmp, fpst); \
9727 }
9728 
9729 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
9730 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9731 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
9732 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9733 
9734 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
9735 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9736 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9737 
9738 VFP_CONV_FIX(sh, d, 64, 64, int16)
9739 VFP_CONV_FIX(sl, d, 64, 64, int32)
9740 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9741 VFP_CONV_FIX(uh, d, 64, 64, uint16)
9742 VFP_CONV_FIX(ul, d, 64, 64, uint32)
9743 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9744 VFP_CONV_FIX(sh, s, 32, 32, int16)
9745 VFP_CONV_FIX(sl, s, 32, 32, int32)
9746 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9747 VFP_CONV_FIX(uh, s, 32, 32, uint16)
9748 VFP_CONV_FIX(ul, s, 32, 32, uint32)
9749 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
9750 #undef VFP_CONV_FIX
9751 #undef VFP_CONV_FIX_FLOAT
9752 #undef VFP_CONV_FLOAT_FIX_ROUND
9753 
9754 /* Set the current fp rounding mode and return the old one.
9755  * The argument is a softfloat float_round_ value.
9756  */
9757 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
9758 {
9759     float_status *fp_status = &env->vfp.fp_status;
9760 
9761     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9762     set_float_rounding_mode(rmode, fp_status);
9763 
9764     return prev_rmode;
9765 }
9766 
9767 /* Set the current fp rounding mode in the standard fp status and return
9768  * the old one. This is for NEON instructions that need to change the
9769  * rounding mode but wish to use the standard FPSCR values for everything
9770  * else. Always set the rounding mode back to the correct value after
9771  * modifying it.
9772  * The argument is a softfloat float_round_ value.
9773  */
9774 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
9775 {
9776     float_status *fp_status = &env->vfp.standard_fp_status;
9777 
9778     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
9779     set_float_rounding_mode(rmode, fp_status);
9780 
9781     return prev_rmode;
9782 }
9783 
9784 /* Half precision conversions.  */
9785 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
9786 {
9787     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9788     float32 r = float16_to_float32(make_float16(a), ieee, s);
9789     if (ieee) {
9790         return float32_maybe_silence_nan(r, s);
9791     }
9792     return r;
9793 }
9794 
9795 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
9796 {
9797     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9798     float16 r = float32_to_float16(a, ieee, s);
9799     if (ieee) {
9800         r = float16_maybe_silence_nan(r, s);
9801     }
9802     return float16_val(r);
9803 }
9804 
9805 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9806 {
9807     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
9808 }
9809 
9810 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9811 {
9812     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
9813 }
9814 
9815 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9816 {
9817     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
9818 }
9819 
9820 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9821 {
9822     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
9823 }
9824 
9825 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
9826 {
9827     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9828     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
9829     if (ieee) {
9830         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9831     }
9832     return r;
9833 }
9834 
9835 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
9836 {
9837     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9838     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
9839     if (ieee) {
9840         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9841     }
9842     return float16_val(r);
9843 }
9844 
9845 #define float32_two make_float32(0x40000000)
9846 #define float32_three make_float32(0x40400000)
9847 #define float32_one_point_five make_float32(0x3fc00000)
9848 
9849 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
9850 {
9851     float_status *s = &env->vfp.standard_fp_status;
9852     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9853         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9854         if (!(float32_is_zero(a) || float32_is_zero(b))) {
9855             float_raise(float_flag_input_denormal, s);
9856         }
9857         return float32_two;
9858     }
9859     return float32_sub(float32_two, float32_mul(a, b, s), s);
9860 }
9861 
9862 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9863 {
9864     float_status *s = &env->vfp.standard_fp_status;
9865     float32 product;
9866     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9867         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9868         if (!(float32_is_zero(a) || float32_is_zero(b))) {
9869             float_raise(float_flag_input_denormal, s);
9870         }
9871         return float32_one_point_five;
9872     }
9873     product = float32_mul(a, b, s);
9874     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9875 }
9876 
9877 /* NEON helpers.  */
9878 
9879 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9880  * int->float conversions at run-time.  */
9881 #define float64_256 make_float64(0x4070000000000000LL)
9882 #define float64_512 make_float64(0x4080000000000000LL)
9883 #define float32_maxnorm make_float32(0x7f7fffff)
9884 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9885 
9886 /* Reciprocal functions
9887  *
9888  * The algorithm that must be used to calculate the estimate
9889  * is specified by the ARM ARM, see FPRecipEstimate()
9890  */
9891 
9892 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9893 {
9894     /* These calculations mustn't set any fp exception flags,
9895      * so we use a local copy of the fp_status.
9896      */
9897     float_status dummy_status = *real_fp_status;
9898     float_status *s = &dummy_status;
9899     /* q = (int)(a * 512.0) */
9900     float64 q = float64_mul(float64_512, a, s);
9901     int64_t q_int = float64_to_int64_round_to_zero(q, s);
9902 
9903     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9904     q = int64_to_float64(q_int, s);
9905     q = float64_add(q, float64_half, s);
9906     q = float64_div(q, float64_512, s);
9907     q = float64_div(float64_one, q, s);
9908 
9909     /* s = (int)(256.0 * r + 0.5) */
9910     q = float64_mul(q, float64_256, s);
9911     q = float64_add(q, float64_half, s);
9912     q_int = float64_to_int64_round_to_zero(q, s);
9913 
9914     /* return (double)s / 256.0 */
9915     return float64_div(int64_to_float64(q_int, s), float64_256, s);
9916 }
9917 
9918 /* Common wrapper to call recip_estimate */
9919 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9920 {
9921     uint64_t val64 = float64_val(num);
9922     uint64_t frac = extract64(val64, 0, 52);
9923     int64_t exp = extract64(val64, 52, 11);
9924     uint64_t sbit;
9925     float64 scaled, estimate;
9926 
9927     /* Generate the scaled number for the estimate function */
9928     if (exp == 0) {
9929         if (extract64(frac, 51, 1) == 0) {
9930             exp = -1;
9931             frac = extract64(frac, 0, 50) << 2;
9932         } else {
9933             frac = extract64(frac, 0, 51) << 1;
9934         }
9935     }
9936 
9937     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9938     scaled = make_float64((0x3feULL << 52)
9939                           | extract64(frac, 44, 8) << 44);
9940 
9941     estimate = recip_estimate(scaled, fpst);
9942 
9943     /* Build new result */
9944     val64 = float64_val(estimate);
9945     sbit = 0x8000000000000000ULL & val64;
9946     exp = off - exp;
9947     frac = extract64(val64, 0, 52);
9948 
9949     if (exp == 0) {
9950         frac = 1ULL << 51 | extract64(frac, 1, 51);
9951     } else if (exp == -1) {
9952         frac = 1ULL << 50 | extract64(frac, 2, 50);
9953         exp = 0;
9954     }
9955 
9956     return make_float64(sbit | (exp << 52) | frac);
9957 }
9958 
9959 static bool round_to_inf(float_status *fpst, bool sign_bit)
9960 {
9961     switch (fpst->float_rounding_mode) {
9962     case float_round_nearest_even: /* Round to Nearest */
9963         return true;
9964     case float_round_up: /* Round to +Inf */
9965         return !sign_bit;
9966     case float_round_down: /* Round to -Inf */
9967         return sign_bit;
9968     case float_round_to_zero: /* Round to Zero */
9969         return false;
9970     }
9971 
9972     g_assert_not_reached();
9973 }
9974 
9975 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9976 {
9977     float_status *fpst = fpstp;
9978     float32 f32 = float32_squash_input_denormal(input, fpst);
9979     uint32_t f32_val = float32_val(f32);
9980     uint32_t f32_sbit = 0x80000000ULL & f32_val;
9981     int32_t f32_exp = extract32(f32_val, 23, 8);
9982     uint32_t f32_frac = extract32(f32_val, 0, 23);
9983     float64 f64, r64;
9984     uint64_t r64_val;
9985     int64_t r64_exp;
9986     uint64_t r64_frac;
9987 
9988     if (float32_is_any_nan(f32)) {
9989         float32 nan = f32;
9990         if (float32_is_signaling_nan(f32, fpst)) {
9991             float_raise(float_flag_invalid, fpst);
9992             nan = float32_maybe_silence_nan(f32, fpst);
9993         }
9994         if (fpst->default_nan_mode) {
9995             nan =  float32_default_nan(fpst);
9996         }
9997         return nan;
9998     } else if (float32_is_infinity(f32)) {
9999         return float32_set_sign(float32_zero, float32_is_neg(f32));
10000     } else if (float32_is_zero(f32)) {
10001         float_raise(float_flag_divbyzero, fpst);
10002         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10003     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10004         /* Abs(value) < 2.0^-128 */
10005         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10006         if (round_to_inf(fpst, f32_sbit)) {
10007             return float32_set_sign(float32_infinity, float32_is_neg(f32));
10008         } else {
10009             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
10010         }
10011     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
10012         float_raise(float_flag_underflow, fpst);
10013         return float32_set_sign(float32_zero, float32_is_neg(f32));
10014     }
10015 
10016 
10017     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
10018     r64 = call_recip_estimate(f64, 253, fpst);
10019     r64_val = float64_val(r64);
10020     r64_exp = extract64(r64_val, 52, 11);
10021     r64_frac = extract64(r64_val, 0, 52);
10022 
10023     /* result = sign : result_exp<7:0> : fraction<51:29>; */
10024     return make_float32(f32_sbit |
10025                         (r64_exp & 0xff) << 23 |
10026                         extract64(r64_frac, 29, 24));
10027 }
10028 
10029 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
10030 {
10031     float_status *fpst = fpstp;
10032     float64 f64 = float64_squash_input_denormal(input, fpst);
10033     uint64_t f64_val = float64_val(f64);
10034     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
10035     int64_t f64_exp = extract64(f64_val, 52, 11);
10036     float64 r64;
10037     uint64_t r64_val;
10038     int64_t r64_exp;
10039     uint64_t r64_frac;
10040 
10041     /* Deal with any special cases */
10042     if (float64_is_any_nan(f64)) {
10043         float64 nan = f64;
10044         if (float64_is_signaling_nan(f64, fpst)) {
10045             float_raise(float_flag_invalid, fpst);
10046             nan = float64_maybe_silence_nan(f64, fpst);
10047         }
10048         if (fpst->default_nan_mode) {
10049             nan =  float64_default_nan(fpst);
10050         }
10051         return nan;
10052     } else if (float64_is_infinity(f64)) {
10053         return float64_set_sign(float64_zero, float64_is_neg(f64));
10054     } else if (float64_is_zero(f64)) {
10055         float_raise(float_flag_divbyzero, fpst);
10056         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10057     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
10058         /* Abs(value) < 2.0^-1024 */
10059         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10060         if (round_to_inf(fpst, f64_sbit)) {
10061             return float64_set_sign(float64_infinity, float64_is_neg(f64));
10062         } else {
10063             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
10064         }
10065     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
10066         float_raise(float_flag_underflow, fpst);
10067         return float64_set_sign(float64_zero, float64_is_neg(f64));
10068     }
10069 
10070     r64 = call_recip_estimate(f64, 2045, fpst);
10071     r64_val = float64_val(r64);
10072     r64_exp = extract64(r64_val, 52, 11);
10073     r64_frac = extract64(r64_val, 0, 52);
10074 
10075     /* result = sign : result_exp<10:0> : fraction<51:0> */
10076     return make_float64(f64_sbit |
10077                         ((r64_exp & 0x7ff) << 52) |
10078                         r64_frac);
10079 }
10080 
10081 /* The algorithm that must be used to calculate the estimate
10082  * is specified by the ARM ARM.
10083  */
10084 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
10085 {
10086     /* These calculations mustn't set any fp exception flags,
10087      * so we use a local copy of the fp_status.
10088      */
10089     float_status dummy_status = *real_fp_status;
10090     float_status *s = &dummy_status;
10091     float64 q;
10092     int64_t q_int;
10093 
10094     if (float64_lt(a, float64_half, s)) {
10095         /* range 0.25 <= a < 0.5 */
10096 
10097         /* a in units of 1/512 rounded down */
10098         /* q0 = (int)(a * 512.0);  */
10099         q = float64_mul(float64_512, a, s);
10100         q_int = float64_to_int64_round_to_zero(q, s);
10101 
10102         /* reciprocal root r */
10103         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
10104         q = int64_to_float64(q_int, s);
10105         q = float64_add(q, float64_half, s);
10106         q = float64_div(q, float64_512, s);
10107         q = float64_sqrt(q, s);
10108         q = float64_div(float64_one, q, s);
10109     } else {
10110         /* range 0.5 <= a < 1.0 */
10111 
10112         /* a in units of 1/256 rounded down */
10113         /* q1 = (int)(a * 256.0); */
10114         q = float64_mul(float64_256, a, s);
10115         int64_t q_int = float64_to_int64_round_to_zero(q, s);
10116 
10117         /* reciprocal root r */
10118         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
10119         q = int64_to_float64(q_int, s);
10120         q = float64_add(q, float64_half, s);
10121         q = float64_div(q, float64_256, s);
10122         q = float64_sqrt(q, s);
10123         q = float64_div(float64_one, q, s);
10124     }
10125     /* r in units of 1/256 rounded to nearest */
10126     /* s = (int)(256.0 * r + 0.5); */
10127 
10128     q = float64_mul(q, float64_256,s );
10129     q = float64_add(q, float64_half, s);
10130     q_int = float64_to_int64_round_to_zero(q, s);
10131 
10132     /* return (double)s / 256.0;*/
10133     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10134 }
10135 
10136 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
10137 {
10138     float_status *s = fpstp;
10139     float32 f32 = float32_squash_input_denormal(input, s);
10140     uint32_t val = float32_val(f32);
10141     uint32_t f32_sbit = 0x80000000 & val;
10142     int32_t f32_exp = extract32(val, 23, 8);
10143     uint32_t f32_frac = extract32(val, 0, 23);
10144     uint64_t f64_frac;
10145     uint64_t val64;
10146     int result_exp;
10147     float64 f64;
10148 
10149     if (float32_is_any_nan(f32)) {
10150         float32 nan = f32;
10151         if (float32_is_signaling_nan(f32, s)) {
10152             float_raise(float_flag_invalid, s);
10153             nan = float32_maybe_silence_nan(f32, s);
10154         }
10155         if (s->default_nan_mode) {
10156             nan =  float32_default_nan(s);
10157         }
10158         return nan;
10159     } else if (float32_is_zero(f32)) {
10160         float_raise(float_flag_divbyzero, s);
10161         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10162     } else if (float32_is_neg(f32)) {
10163         float_raise(float_flag_invalid, s);
10164         return float32_default_nan(s);
10165     } else if (float32_is_infinity(f32)) {
10166         return float32_zero;
10167     }
10168 
10169     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10170      * preserving the parity of the exponent.  */
10171 
10172     f64_frac = ((uint64_t) f32_frac) << 29;
10173     if (f32_exp == 0) {
10174         while (extract64(f64_frac, 51, 1) == 0) {
10175             f64_frac = f64_frac << 1;
10176             f32_exp = f32_exp-1;
10177         }
10178         f64_frac = extract64(f64_frac, 0, 51) << 1;
10179     }
10180 
10181     if (extract64(f32_exp, 0, 1) == 0) {
10182         f64 = make_float64(((uint64_t) f32_sbit) << 32
10183                            | (0x3feULL << 52)
10184                            | f64_frac);
10185     } else {
10186         f64 = make_float64(((uint64_t) f32_sbit) << 32
10187                            | (0x3fdULL << 52)
10188                            | f64_frac);
10189     }
10190 
10191     result_exp = (380 - f32_exp) / 2;
10192 
10193     f64 = recip_sqrt_estimate(f64, s);
10194 
10195     val64 = float64_val(f64);
10196 
10197     val = ((result_exp & 0xff) << 23)
10198         | ((val64 >> 29)  & 0x7fffff);
10199     return make_float32(val);
10200 }
10201 
10202 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
10203 {
10204     float_status *s = fpstp;
10205     float64 f64 = float64_squash_input_denormal(input, s);
10206     uint64_t val = float64_val(f64);
10207     uint64_t f64_sbit = 0x8000000000000000ULL & val;
10208     int64_t f64_exp = extract64(val, 52, 11);
10209     uint64_t f64_frac = extract64(val, 0, 52);
10210     int64_t result_exp;
10211     uint64_t result_frac;
10212 
10213     if (float64_is_any_nan(f64)) {
10214         float64 nan = f64;
10215         if (float64_is_signaling_nan(f64, s)) {
10216             float_raise(float_flag_invalid, s);
10217             nan = float64_maybe_silence_nan(f64, s);
10218         }
10219         if (s->default_nan_mode) {
10220             nan =  float64_default_nan(s);
10221         }
10222         return nan;
10223     } else if (float64_is_zero(f64)) {
10224         float_raise(float_flag_divbyzero, s);
10225         return float64_set_sign(float64_infinity, float64_is_neg(f64));
10226     } else if (float64_is_neg(f64)) {
10227         float_raise(float_flag_invalid, s);
10228         return float64_default_nan(s);
10229     } else if (float64_is_infinity(f64)) {
10230         return float64_zero;
10231     }
10232 
10233     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
10234      * preserving the parity of the exponent.  */
10235 
10236     if (f64_exp == 0) {
10237         while (extract64(f64_frac, 51, 1) == 0) {
10238             f64_frac = f64_frac << 1;
10239             f64_exp = f64_exp - 1;
10240         }
10241         f64_frac = extract64(f64_frac, 0, 51) << 1;
10242     }
10243 
10244     if (extract64(f64_exp, 0, 1) == 0) {
10245         f64 = make_float64(f64_sbit
10246                            | (0x3feULL << 52)
10247                            | f64_frac);
10248     } else {
10249         f64 = make_float64(f64_sbit
10250                            | (0x3fdULL << 52)
10251                            | f64_frac);
10252     }
10253 
10254     result_exp = (3068 - f64_exp) / 2;
10255 
10256     f64 = recip_sqrt_estimate(f64, s);
10257 
10258     result_frac = extract64(float64_val(f64), 0, 52);
10259 
10260     return make_float64(f64_sbit |
10261                         ((result_exp & 0x7ff) << 52) |
10262                         result_frac);
10263 }
10264 
10265 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
10266 {
10267     float_status *s = fpstp;
10268     float64 f64;
10269 
10270     if ((a & 0x80000000) == 0) {
10271         return 0xffffffff;
10272     }
10273 
10274     f64 = make_float64((0x3feULL << 52)
10275                        | ((int64_t)(a & 0x7fffffff) << 21));
10276 
10277     f64 = recip_estimate(f64, s);
10278 
10279     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10280 }
10281 
10282 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
10283 {
10284     float_status *fpst = fpstp;
10285     float64 f64;
10286 
10287     if ((a & 0xc0000000) == 0) {
10288         return 0xffffffff;
10289     }
10290 
10291     if (a & 0x80000000) {
10292         f64 = make_float64((0x3feULL << 52)
10293                            | ((uint64_t)(a & 0x7fffffff) << 21));
10294     } else { /* bits 31-30 == '01' */
10295         f64 = make_float64((0x3fdULL << 52)
10296                            | ((uint64_t)(a & 0x3fffffff) << 22));
10297     }
10298 
10299     f64 = recip_sqrt_estimate(f64, fpst);
10300 
10301     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
10302 }
10303 
10304 /* VFPv4 fused multiply-accumulate */
10305 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
10306 {
10307     float_status *fpst = fpstp;
10308     return float32_muladd(a, b, c, 0, fpst);
10309 }
10310 
10311 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
10312 {
10313     float_status *fpst = fpstp;
10314     return float64_muladd(a, b, c, 0, fpst);
10315 }
10316 
10317 /* ARMv8 round to integral */
10318 float32 HELPER(rints_exact)(float32 x, void *fp_status)
10319 {
10320     return float32_round_to_int(x, fp_status);
10321 }
10322 
10323 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
10324 {
10325     return float64_round_to_int(x, fp_status);
10326 }
10327 
10328 float32 HELPER(rints)(float32 x, void *fp_status)
10329 {
10330     int old_flags = get_float_exception_flags(fp_status), new_flags;
10331     float32 ret;
10332 
10333     ret = float32_round_to_int(x, fp_status);
10334 
10335     /* Suppress any inexact exceptions the conversion produced */
10336     if (!(old_flags & float_flag_inexact)) {
10337         new_flags = get_float_exception_flags(fp_status);
10338         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10339     }
10340 
10341     return ret;
10342 }
10343 
10344 float64 HELPER(rintd)(float64 x, void *fp_status)
10345 {
10346     int old_flags = get_float_exception_flags(fp_status), new_flags;
10347     float64 ret;
10348 
10349     ret = float64_round_to_int(x, fp_status);
10350 
10351     new_flags = get_float_exception_flags(fp_status);
10352 
10353     /* Suppress any inexact exceptions the conversion produced */
10354     if (!(old_flags & float_flag_inexact)) {
10355         new_flags = get_float_exception_flags(fp_status);
10356         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
10357     }
10358 
10359     return ret;
10360 }
10361 
10362 /* Convert ARM rounding mode to softfloat */
10363 int arm_rmode_to_sf(int rmode)
10364 {
10365     switch (rmode) {
10366     case FPROUNDING_TIEAWAY:
10367         rmode = float_round_ties_away;
10368         break;
10369     case FPROUNDING_ODD:
10370         /* FIXME: add support for TIEAWAY and ODD */
10371         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
10372                       rmode);
10373     case FPROUNDING_TIEEVEN:
10374     default:
10375         rmode = float_round_nearest_even;
10376         break;
10377     case FPROUNDING_POSINF:
10378         rmode = float_round_up;
10379         break;
10380     case FPROUNDING_NEGINF:
10381         rmode = float_round_down;
10382         break;
10383     case FPROUNDING_ZERO:
10384         rmode = float_round_to_zero;
10385         break;
10386     }
10387     return rmode;
10388 }
10389 
10390 /* CRC helpers.
10391  * The upper bytes of val (above the number specified by 'bytes') must have
10392  * been zeroed out by the caller.
10393  */
10394 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
10395 {
10396     uint8_t buf[4];
10397 
10398     stl_le_p(buf, val);
10399 
10400     /* zlib crc32 converts the accumulator and output to one's complement.  */
10401     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
10402 }
10403 
10404 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
10405 {
10406     uint8_t buf[4];
10407 
10408     stl_le_p(buf, val);
10409 
10410     /* Linux crc32c converts the output to one's complement.  */
10411     return crc32c(acc, buf, bytes) ^ 0xffffffff;
10412 }
10413