xref: /openbmc/qemu/target/arm/helper.c (revision 438c78da)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
21 
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
23 
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27     unsigned int attrs:8; /* as in the MAIR register encoding */
28     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
30 
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
33                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34                           target_ulong *page_size,
35                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
36 
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
39                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40                                target_ulong *page_size_ptr,
41                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
42 
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46     bool ns;
47     bool nsc;
48     uint8_t sregion;
49     bool srvalid;
50     uint8_t iregion;
51     bool irvalid;
52 } V8M_SAttributes;
53 
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56                                 V8M_SAttributes *sattrs);
57 #endif
58 
59 static void switch_mode(CPUARMState *env, int mode);
60 
61 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
62 {
63     int nregs;
64 
65     /* VFP data registers are always little-endian.  */
66     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
67     if (reg < nregs) {
68         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
69         return 8;
70     }
71     if (arm_feature(env, ARM_FEATURE_NEON)) {
72         /* Aliases for Q regs.  */
73         nregs += 16;
74         if (reg < nregs) {
75             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
76             stq_le_p(buf, q[0]);
77             stq_le_p(buf + 8, q[1]);
78             return 16;
79         }
80     }
81     switch (reg - nregs) {
82     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
83     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
84     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
85     }
86     return 0;
87 }
88 
89 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
90 {
91     int nregs;
92 
93     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
94     if (reg < nregs) {
95         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
96         return 8;
97     }
98     if (arm_feature(env, ARM_FEATURE_NEON)) {
99         nregs += 16;
100         if (reg < nregs) {
101             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
102             q[0] = ldq_le_p(buf);
103             q[1] = ldq_le_p(buf + 8);
104             return 16;
105         }
106     }
107     switch (reg - nregs) {
108     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
109     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
110     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
111     }
112     return 0;
113 }
114 
115 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
116 {
117     switch (reg) {
118     case 0 ... 31:
119         /* 128 bit FP register */
120         {
121             uint64_t *q = aa64_vfp_qreg(env, reg);
122             stq_le_p(buf, q[0]);
123             stq_le_p(buf + 8, q[1]);
124             return 16;
125         }
126     case 32:
127         /* FPSR */
128         stl_p(buf, vfp_get_fpsr(env));
129         return 4;
130     case 33:
131         /* FPCR */
132         stl_p(buf, vfp_get_fpcr(env));
133         return 4;
134     default:
135         return 0;
136     }
137 }
138 
139 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
140 {
141     switch (reg) {
142     case 0 ... 31:
143         /* 128 bit FP register */
144         {
145             uint64_t *q = aa64_vfp_qreg(env, reg);
146             q[0] = ldq_le_p(buf);
147             q[1] = ldq_le_p(buf + 8);
148             return 16;
149         }
150     case 32:
151         /* FPSR */
152         vfp_set_fpsr(env, ldl_p(buf));
153         return 4;
154     case 33:
155         /* FPCR */
156         vfp_set_fpcr(env, ldl_p(buf));
157         return 4;
158     default:
159         return 0;
160     }
161 }
162 
163 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
164 {
165     assert(ri->fieldoffset);
166     if (cpreg_field_is_64bit(ri)) {
167         return CPREG_FIELD64(env, ri);
168     } else {
169         return CPREG_FIELD32(env, ri);
170     }
171 }
172 
173 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
174                       uint64_t value)
175 {
176     assert(ri->fieldoffset);
177     if (cpreg_field_is_64bit(ri)) {
178         CPREG_FIELD64(env, ri) = value;
179     } else {
180         CPREG_FIELD32(env, ri) = value;
181     }
182 }
183 
184 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
185 {
186     return (char *)env + ri->fieldoffset;
187 }
188 
189 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
190 {
191     /* Raw read of a coprocessor register (as needed for migration, etc). */
192     if (ri->type & ARM_CP_CONST) {
193         return ri->resetvalue;
194     } else if (ri->raw_readfn) {
195         return ri->raw_readfn(env, ri);
196     } else if (ri->readfn) {
197         return ri->readfn(env, ri);
198     } else {
199         return raw_read(env, ri);
200     }
201 }
202 
203 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
204                              uint64_t v)
205 {
206     /* Raw write of a coprocessor register (as needed for migration, etc).
207      * Note that constant registers are treated as write-ignored; the
208      * caller should check for success by whether a readback gives the
209      * value written.
210      */
211     if (ri->type & ARM_CP_CONST) {
212         return;
213     } else if (ri->raw_writefn) {
214         ri->raw_writefn(env, ri, v);
215     } else if (ri->writefn) {
216         ri->writefn(env, ri, v);
217     } else {
218         raw_write(env, ri, v);
219     }
220 }
221 
222 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
223 {
224     ARMCPU *cpu = arm_env_get_cpu(env);
225     const ARMCPRegInfo *ri;
226     uint32_t key;
227 
228     key = cpu->dyn_xml.cpregs_keys[reg];
229     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
230     if (ri) {
231         if (cpreg_field_is_64bit(ri)) {
232             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
233         } else {
234             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
235         }
236     }
237     return 0;
238 }
239 
240 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
241 {
242     return 0;
243 }
244 
245 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
246 {
247    /* Return true if the regdef would cause an assertion if you called
248     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
249     * program bug for it not to have the NO_RAW flag).
250     * NB that returning false here doesn't necessarily mean that calling
251     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
252     * read/write access functions which are safe for raw use" from "has
253     * read/write access functions which have side effects but has forgotten
254     * to provide raw access functions".
255     * The tests here line up with the conditions in read/write_raw_cp_reg()
256     * and assertions in raw_read()/raw_write().
257     */
258     if ((ri->type & ARM_CP_CONST) ||
259         ri->fieldoffset ||
260         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
261         return false;
262     }
263     return true;
264 }
265 
266 bool write_cpustate_to_list(ARMCPU *cpu)
267 {
268     /* Write the coprocessor state from cpu->env to the (index,value) list. */
269     int i;
270     bool ok = true;
271 
272     for (i = 0; i < cpu->cpreg_array_len; i++) {
273         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
274         const ARMCPRegInfo *ri;
275 
276         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
277         if (!ri) {
278             ok = false;
279             continue;
280         }
281         if (ri->type & ARM_CP_NO_RAW) {
282             continue;
283         }
284         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
285     }
286     return ok;
287 }
288 
289 bool write_list_to_cpustate(ARMCPU *cpu)
290 {
291     int i;
292     bool ok = true;
293 
294     for (i = 0; i < cpu->cpreg_array_len; i++) {
295         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
296         uint64_t v = cpu->cpreg_values[i];
297         const ARMCPRegInfo *ri;
298 
299         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
300         if (!ri) {
301             ok = false;
302             continue;
303         }
304         if (ri->type & ARM_CP_NO_RAW) {
305             continue;
306         }
307         /* Write value and confirm it reads back as written
308          * (to catch read-only registers and partially read-only
309          * registers where the incoming migration value doesn't match)
310          */
311         write_raw_cp_reg(&cpu->env, ri, v);
312         if (read_raw_cp_reg(&cpu->env, ri) != v) {
313             ok = false;
314         }
315     }
316     return ok;
317 }
318 
319 static void add_cpreg_to_list(gpointer key, gpointer opaque)
320 {
321     ARMCPU *cpu = opaque;
322     uint64_t regidx;
323     const ARMCPRegInfo *ri;
324 
325     regidx = *(uint32_t *)key;
326     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
327 
328     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
329         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
330         /* The value array need not be initialized at this point */
331         cpu->cpreg_array_len++;
332     }
333 }
334 
335 static void count_cpreg(gpointer key, gpointer opaque)
336 {
337     ARMCPU *cpu = opaque;
338     uint64_t regidx;
339     const ARMCPRegInfo *ri;
340 
341     regidx = *(uint32_t *)key;
342     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
343 
344     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
345         cpu->cpreg_array_len++;
346     }
347 }
348 
349 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
350 {
351     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
352     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
353 
354     if (aidx > bidx) {
355         return 1;
356     }
357     if (aidx < bidx) {
358         return -1;
359     }
360     return 0;
361 }
362 
363 void init_cpreg_list(ARMCPU *cpu)
364 {
365     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
366      * Note that we require cpreg_tuples[] to be sorted by key ID.
367      */
368     GList *keys;
369     int arraylen;
370 
371     keys = g_hash_table_get_keys(cpu->cp_regs);
372     keys = g_list_sort(keys, cpreg_key_compare);
373 
374     cpu->cpreg_array_len = 0;
375 
376     g_list_foreach(keys, count_cpreg, cpu);
377 
378     arraylen = cpu->cpreg_array_len;
379     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
380     cpu->cpreg_values = g_new(uint64_t, arraylen);
381     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
382     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
383     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
384     cpu->cpreg_array_len = 0;
385 
386     g_list_foreach(keys, add_cpreg_to_list, cpu);
387 
388     assert(cpu->cpreg_array_len == arraylen);
389 
390     g_list_free(keys);
391 }
392 
393 /*
394  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
395  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
396  *
397  * access_el3_aa32ns: Used to check AArch32 register views.
398  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
399  */
400 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
401                                         const ARMCPRegInfo *ri,
402                                         bool isread)
403 {
404     bool secure = arm_is_secure_below_el3(env);
405 
406     assert(!arm_el_is_aa64(env, 3));
407     if (secure) {
408         return CP_ACCESS_TRAP_UNCATEGORIZED;
409     }
410     return CP_ACCESS_OK;
411 }
412 
413 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
414                                                 const ARMCPRegInfo *ri,
415                                                 bool isread)
416 {
417     if (!arm_el_is_aa64(env, 3)) {
418         return access_el3_aa32ns(env, ri, isread);
419     }
420     return CP_ACCESS_OK;
421 }
422 
423 /* Some secure-only AArch32 registers trap to EL3 if used from
424  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
425  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
426  * We assume that the .access field is set to PL1_RW.
427  */
428 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
429                                             const ARMCPRegInfo *ri,
430                                             bool isread)
431 {
432     if (arm_current_el(env) == 3) {
433         return CP_ACCESS_OK;
434     }
435     if (arm_is_secure_below_el3(env)) {
436         return CP_ACCESS_TRAP_EL3;
437     }
438     /* This will be EL1 NS and EL2 NS, which just UNDEF */
439     return CP_ACCESS_TRAP_UNCATEGORIZED;
440 }
441 
442 /* Check for traps to "powerdown debug" registers, which are controlled
443  * by MDCR.TDOSA
444  */
445 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
446                                    bool isread)
447 {
448     int el = arm_current_el(env);
449     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
450         (env->cp15.mdcr_el2 & MDCR_TDE) ||
451         (env->cp15.hcr_el2 & HCR_TGE);
452 
453     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
454         return CP_ACCESS_TRAP_EL2;
455     }
456     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
457         return CP_ACCESS_TRAP_EL3;
458     }
459     return CP_ACCESS_OK;
460 }
461 
462 /* Check for traps to "debug ROM" registers, which are controlled
463  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
464  */
465 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
466                                   bool isread)
467 {
468     int el = arm_current_el(env);
469     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
470         (env->cp15.mdcr_el2 & MDCR_TDE) ||
471         (env->cp15.hcr_el2 & HCR_TGE);
472 
473     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
474         return CP_ACCESS_TRAP_EL2;
475     }
476     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
477         return CP_ACCESS_TRAP_EL3;
478     }
479     return CP_ACCESS_OK;
480 }
481 
482 /* Check for traps to general debug registers, which are controlled
483  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
484  */
485 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
486                                   bool isread)
487 {
488     int el = arm_current_el(env);
489     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
490         (env->cp15.mdcr_el2 & MDCR_TDE) ||
491         (env->cp15.hcr_el2 & HCR_TGE);
492 
493     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
494         return CP_ACCESS_TRAP_EL2;
495     }
496     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
497         return CP_ACCESS_TRAP_EL3;
498     }
499     return CP_ACCESS_OK;
500 }
501 
502 /* Check for traps to performance monitor registers, which are controlled
503  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
504  */
505 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
506                                  bool isread)
507 {
508     int el = arm_current_el(env);
509 
510     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
511         && !arm_is_secure_below_el3(env)) {
512         return CP_ACCESS_TRAP_EL2;
513     }
514     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
515         return CP_ACCESS_TRAP_EL3;
516     }
517     return CP_ACCESS_OK;
518 }
519 
520 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
521 {
522     ARMCPU *cpu = arm_env_get_cpu(env);
523 
524     raw_write(env, ri, value);
525     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
526 }
527 
528 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
529 {
530     ARMCPU *cpu = arm_env_get_cpu(env);
531 
532     if (raw_read(env, ri) != value) {
533         /* Unlike real hardware the qemu TLB uses virtual addresses,
534          * not modified virtual addresses, so this causes a TLB flush.
535          */
536         tlb_flush(CPU(cpu));
537         raw_write(env, ri, value);
538     }
539 }
540 
541 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
542                              uint64_t value)
543 {
544     ARMCPU *cpu = arm_env_get_cpu(env);
545 
546     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
547         && !extended_addresses_enabled(env)) {
548         /* For VMSA (when not using the LPAE long descriptor page table
549          * format) this register includes the ASID, so do a TLB flush.
550          * For PMSA it is purely a process ID and no action is needed.
551          */
552         tlb_flush(CPU(cpu));
553     }
554     raw_write(env, ri, value);
555 }
556 
557 /* IS variants of TLB operations must affect all cores */
558 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
559                              uint64_t value)
560 {
561     CPUState *cs = ENV_GET_CPU(env);
562 
563     tlb_flush_all_cpus_synced(cs);
564 }
565 
566 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
567                              uint64_t value)
568 {
569     CPUState *cs = ENV_GET_CPU(env);
570 
571     tlb_flush_all_cpus_synced(cs);
572 }
573 
574 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
575                              uint64_t value)
576 {
577     CPUState *cs = ENV_GET_CPU(env);
578 
579     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
580 }
581 
582 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                              uint64_t value)
584 {
585     CPUState *cs = ENV_GET_CPU(env);
586 
587     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
588 }
589 
590 /*
591  * Non-IS variants of TLB operations are upgraded to
592  * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
593  * force broadcast of these operations.
594  */
595 static bool tlb_force_broadcast(CPUARMState *env)
596 {
597     return (env->cp15.hcr_el2 & HCR_FB) &&
598         arm_current_el(env) == 1 && arm_is_secure_below_el3(env);
599 }
600 
601 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
602                           uint64_t value)
603 {
604     /* Invalidate all (TLBIALL) */
605     ARMCPU *cpu = arm_env_get_cpu(env);
606 
607     if (tlb_force_broadcast(env)) {
608         tlbiall_is_write(env, NULL, value);
609         return;
610     }
611 
612     tlb_flush(CPU(cpu));
613 }
614 
615 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
616                           uint64_t value)
617 {
618     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
619     ARMCPU *cpu = arm_env_get_cpu(env);
620 
621     if (tlb_force_broadcast(env)) {
622         tlbimva_is_write(env, NULL, value);
623         return;
624     }
625 
626     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
627 }
628 
629 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
630                            uint64_t value)
631 {
632     /* Invalidate by ASID (TLBIASID) */
633     ARMCPU *cpu = arm_env_get_cpu(env);
634 
635     if (tlb_force_broadcast(env)) {
636         tlbiasid_is_write(env, NULL, value);
637         return;
638     }
639 
640     tlb_flush(CPU(cpu));
641 }
642 
643 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
644                            uint64_t value)
645 {
646     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
647     ARMCPU *cpu = arm_env_get_cpu(env);
648 
649     if (tlb_force_broadcast(env)) {
650         tlbimvaa_is_write(env, NULL, value);
651         return;
652     }
653 
654     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
655 }
656 
657 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
658                                uint64_t value)
659 {
660     CPUState *cs = ENV_GET_CPU(env);
661 
662     tlb_flush_by_mmuidx(cs,
663                         ARMMMUIdxBit_S12NSE1 |
664                         ARMMMUIdxBit_S12NSE0 |
665                         ARMMMUIdxBit_S2NS);
666 }
667 
668 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
669                                   uint64_t value)
670 {
671     CPUState *cs = ENV_GET_CPU(env);
672 
673     tlb_flush_by_mmuidx_all_cpus_synced(cs,
674                                         ARMMMUIdxBit_S12NSE1 |
675                                         ARMMMUIdxBit_S12NSE0 |
676                                         ARMMMUIdxBit_S2NS);
677 }
678 
679 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
680                             uint64_t value)
681 {
682     /* Invalidate by IPA. This has to invalidate any structures that
683      * contain only stage 2 translation information, but does not need
684      * to apply to structures that contain combined stage 1 and stage 2
685      * translation information.
686      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
687      */
688     CPUState *cs = ENV_GET_CPU(env);
689     uint64_t pageaddr;
690 
691     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
692         return;
693     }
694 
695     pageaddr = sextract64(value << 12, 0, 40);
696 
697     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
698 }
699 
700 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701                                uint64_t value)
702 {
703     CPUState *cs = ENV_GET_CPU(env);
704     uint64_t pageaddr;
705 
706     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
707         return;
708     }
709 
710     pageaddr = sextract64(value << 12, 0, 40);
711 
712     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
713                                              ARMMMUIdxBit_S2NS);
714 }
715 
716 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
717                               uint64_t value)
718 {
719     CPUState *cs = ENV_GET_CPU(env);
720 
721     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
722 }
723 
724 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
725                                  uint64_t value)
726 {
727     CPUState *cs = ENV_GET_CPU(env);
728 
729     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
730 }
731 
732 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
733                               uint64_t value)
734 {
735     CPUState *cs = ENV_GET_CPU(env);
736     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
737 
738     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
739 }
740 
741 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
742                                  uint64_t value)
743 {
744     CPUState *cs = ENV_GET_CPU(env);
745     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
746 
747     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
748                                              ARMMMUIdxBit_S1E2);
749 }
750 
751 static const ARMCPRegInfo cp_reginfo[] = {
752     /* Define the secure and non-secure FCSE identifier CP registers
753      * separately because there is no secure bank in V8 (no _EL3).  This allows
754      * the secure register to be properly reset and migrated. There is also no
755      * v8 EL1 version of the register so the non-secure instance stands alone.
756      */
757     { .name = "FCSEIDR",
758       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
759       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
760       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
761       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
762     { .name = "FCSEIDR_S",
763       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
764       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
765       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
766       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
767     /* Define the secure and non-secure context identifier CP registers
768      * separately because there is no secure bank in V8 (no _EL3).  This allows
769      * the secure register to be properly reset and migrated.  In the
770      * non-secure case, the 32-bit register will have reset and migration
771      * disabled during registration as it is handled by the 64-bit instance.
772      */
773     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
774       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
775       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
776       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
777       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
778     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
779       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
780       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
781       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
782       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
783     REGINFO_SENTINEL
784 };
785 
786 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
787     /* NB: Some of these registers exist in v8 but with more precise
788      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
789      */
790     /* MMU Domain access control / MPU write buffer control */
791     { .name = "DACR",
792       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
793       .access = PL1_RW, .resetvalue = 0,
794       .writefn = dacr_write, .raw_writefn = raw_write,
795       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
796                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
797     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
798      * For v6 and v5, these mappings are overly broad.
799      */
800     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
801       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
802     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
803       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
804     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
805       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
806     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
807       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
808     /* Cache maintenance ops; some of this space may be overridden later. */
809     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
810       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
811       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
812     REGINFO_SENTINEL
813 };
814 
815 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
816     /* Not all pre-v6 cores implemented this WFI, so this is slightly
817      * over-broad.
818      */
819     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
820       .access = PL1_W, .type = ARM_CP_WFI },
821     REGINFO_SENTINEL
822 };
823 
824 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
825     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
826      * is UNPREDICTABLE; we choose to NOP as most implementations do).
827      */
828     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
829       .access = PL1_W, .type = ARM_CP_WFI },
830     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
831      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
832      * OMAPCP will override this space.
833      */
834     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
835       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
836       .resetvalue = 0 },
837     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
838       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
839       .resetvalue = 0 },
840     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
841     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
842       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
843       .resetvalue = 0 },
844     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
845      * implementing it as RAZ means the "debug architecture version" bits
846      * will read as a reserved value, which should cause Linux to not try
847      * to use the debug hardware.
848      */
849     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
850       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
851     /* MMU TLB control. Note that the wildcarding means we cover not just
852      * the unified TLB ops but also the dside/iside/inner-shareable variants.
853      */
854     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
855       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
856       .type = ARM_CP_NO_RAW },
857     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
858       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
859       .type = ARM_CP_NO_RAW },
860     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
861       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
862       .type = ARM_CP_NO_RAW },
863     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
864       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
865       .type = ARM_CP_NO_RAW },
866     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
867       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
868     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
869       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
870     REGINFO_SENTINEL
871 };
872 
873 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
874                         uint64_t value)
875 {
876     uint32_t mask = 0;
877 
878     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
879     if (!arm_feature(env, ARM_FEATURE_V8)) {
880         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
881          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
882          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
883          */
884         if (arm_feature(env, ARM_FEATURE_VFP)) {
885             /* VFP coprocessor: cp10 & cp11 [23:20] */
886             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
887 
888             if (!arm_feature(env, ARM_FEATURE_NEON)) {
889                 /* ASEDIS [31] bit is RAO/WI */
890                 value |= (1 << 31);
891             }
892 
893             /* VFPv3 and upwards with NEON implement 32 double precision
894              * registers (D0-D31).
895              */
896             if (!arm_feature(env, ARM_FEATURE_NEON) ||
897                     !arm_feature(env, ARM_FEATURE_VFP3)) {
898                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
899                 value |= (1 << 30);
900             }
901         }
902         value &= mask;
903     }
904     env->cp15.cpacr_el1 = value;
905 }
906 
907 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
908 {
909     /* Call cpacr_write() so that we reset with the correct RAO bits set
910      * for our CPU features.
911      */
912     cpacr_write(env, ri, 0);
913 }
914 
915 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
916                                    bool isread)
917 {
918     if (arm_feature(env, ARM_FEATURE_V8)) {
919         /* Check if CPACR accesses are to be trapped to EL2 */
920         if (arm_current_el(env) == 1 &&
921             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
922             return CP_ACCESS_TRAP_EL2;
923         /* Check if CPACR accesses are to be trapped to EL3 */
924         } else if (arm_current_el(env) < 3 &&
925                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
926             return CP_ACCESS_TRAP_EL3;
927         }
928     }
929 
930     return CP_ACCESS_OK;
931 }
932 
933 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
934                                   bool isread)
935 {
936     /* Check if CPTR accesses are set to trap to EL3 */
937     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
938         return CP_ACCESS_TRAP_EL3;
939     }
940 
941     return CP_ACCESS_OK;
942 }
943 
944 static const ARMCPRegInfo v6_cp_reginfo[] = {
945     /* prefetch by MVA in v6, NOP in v7 */
946     { .name = "MVA_prefetch",
947       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
948       .access = PL1_W, .type = ARM_CP_NOP },
949     /* We need to break the TB after ISB to execute self-modifying code
950      * correctly and also to take any pending interrupts immediately.
951      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
952      */
953     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
954       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
955     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
956       .access = PL0_W, .type = ARM_CP_NOP },
957     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
958       .access = PL0_W, .type = ARM_CP_NOP },
959     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
960       .access = PL1_RW,
961       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
962                              offsetof(CPUARMState, cp15.ifar_ns) },
963       .resetvalue = 0, },
964     /* Watchpoint Fault Address Register : should actually only be present
965      * for 1136, 1176, 11MPCore.
966      */
967     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
968       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
969     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
970       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
971       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
972       .resetfn = cpacr_reset, .writefn = cpacr_write },
973     REGINFO_SENTINEL
974 };
975 
976 /* Definitions for the PMU registers */
977 #define PMCRN_MASK  0xf800
978 #define PMCRN_SHIFT 11
979 #define PMCRD   0x8
980 #define PMCRC   0x4
981 #define PMCRE   0x1
982 
983 static inline uint32_t pmu_num_counters(CPUARMState *env)
984 {
985   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
986 }
987 
988 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
989 static inline uint64_t pmu_counter_mask(CPUARMState *env)
990 {
991   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
992 }
993 
994 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
995                                    bool isread)
996 {
997     /* Performance monitor registers user accessibility is controlled
998      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
999      * trapping to EL2 or EL3 for other accesses.
1000      */
1001     int el = arm_current_el(env);
1002 
1003     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1004         return CP_ACCESS_TRAP;
1005     }
1006     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1007         && !arm_is_secure_below_el3(env)) {
1008         return CP_ACCESS_TRAP_EL2;
1009     }
1010     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1011         return CP_ACCESS_TRAP_EL3;
1012     }
1013 
1014     return CP_ACCESS_OK;
1015 }
1016 
1017 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1018                                            const ARMCPRegInfo *ri,
1019                                            bool isread)
1020 {
1021     /* ER: event counter read trap control */
1022     if (arm_feature(env, ARM_FEATURE_V8)
1023         && arm_current_el(env) == 0
1024         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1025         && isread) {
1026         return CP_ACCESS_OK;
1027     }
1028 
1029     return pmreg_access(env, ri, isread);
1030 }
1031 
1032 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1033                                          const ARMCPRegInfo *ri,
1034                                          bool isread)
1035 {
1036     /* SW: software increment write trap control */
1037     if (arm_feature(env, ARM_FEATURE_V8)
1038         && arm_current_el(env) == 0
1039         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1040         && !isread) {
1041         return CP_ACCESS_OK;
1042     }
1043 
1044     return pmreg_access(env, ri, isread);
1045 }
1046 
1047 #ifndef CONFIG_USER_ONLY
1048 
1049 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1050                                         const ARMCPRegInfo *ri,
1051                                         bool isread)
1052 {
1053     /* ER: event counter read trap control */
1054     if (arm_feature(env, ARM_FEATURE_V8)
1055         && arm_current_el(env) == 0
1056         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1057         return CP_ACCESS_OK;
1058     }
1059 
1060     return pmreg_access(env, ri, isread);
1061 }
1062 
1063 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1064                                          const ARMCPRegInfo *ri,
1065                                          bool isread)
1066 {
1067     /* CR: cycle counter read trap control */
1068     if (arm_feature(env, ARM_FEATURE_V8)
1069         && arm_current_el(env) == 0
1070         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1071         && isread) {
1072         return CP_ACCESS_OK;
1073     }
1074 
1075     return pmreg_access(env, ri, isread);
1076 }
1077 
1078 static inline bool arm_ccnt_enabled(CPUARMState *env)
1079 {
1080     /* This does not support checking PMCCFILTR_EL0 register */
1081 
1082     if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1083         return false;
1084     }
1085 
1086     return true;
1087 }
1088 
1089 void pmccntr_sync(CPUARMState *env)
1090 {
1091     uint64_t temp_ticks;
1092 
1093     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1094                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1095 
1096     if (env->cp15.c9_pmcr & PMCRD) {
1097         /* Increment once every 64 processor clock cycles */
1098         temp_ticks /= 64;
1099     }
1100 
1101     if (arm_ccnt_enabled(env)) {
1102         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1103     }
1104 }
1105 
1106 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1107                        uint64_t value)
1108 {
1109     pmccntr_sync(env);
1110 
1111     if (value & PMCRC) {
1112         /* The counter has been reset */
1113         env->cp15.c15_ccnt = 0;
1114     }
1115 
1116     /* only the DP, X, D and E bits are writable */
1117     env->cp15.c9_pmcr &= ~0x39;
1118     env->cp15.c9_pmcr |= (value & 0x39);
1119 
1120     pmccntr_sync(env);
1121 }
1122 
1123 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1124 {
1125     uint64_t total_ticks;
1126 
1127     if (!arm_ccnt_enabled(env)) {
1128         /* Counter is disabled, do not change value */
1129         return env->cp15.c15_ccnt;
1130     }
1131 
1132     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1133                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1134 
1135     if (env->cp15.c9_pmcr & PMCRD) {
1136         /* Increment once every 64 processor clock cycles */
1137         total_ticks /= 64;
1138     }
1139     return total_ticks - env->cp15.c15_ccnt;
1140 }
1141 
1142 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1143                          uint64_t value)
1144 {
1145     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1146      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1147      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1148      * accessed.
1149      */
1150     env->cp15.c9_pmselr = value & 0x1f;
1151 }
1152 
1153 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1154                         uint64_t value)
1155 {
1156     uint64_t total_ticks;
1157 
1158     if (!arm_ccnt_enabled(env)) {
1159         /* Counter is disabled, set the absolute value */
1160         env->cp15.c15_ccnt = value;
1161         return;
1162     }
1163 
1164     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1165                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1166 
1167     if (env->cp15.c9_pmcr & PMCRD) {
1168         /* Increment once every 64 processor clock cycles */
1169         total_ticks /= 64;
1170     }
1171     env->cp15.c15_ccnt = total_ticks - value;
1172 }
1173 
1174 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1175                             uint64_t value)
1176 {
1177     uint64_t cur_val = pmccntr_read(env, NULL);
1178 
1179     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1180 }
1181 
1182 #else /* CONFIG_USER_ONLY */
1183 
1184 void pmccntr_sync(CPUARMState *env)
1185 {
1186 }
1187 
1188 #endif
1189 
1190 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1191                             uint64_t value)
1192 {
1193     pmccntr_sync(env);
1194     env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1195     pmccntr_sync(env);
1196 }
1197 
1198 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1199                             uint64_t value)
1200 {
1201     value &= pmu_counter_mask(env);
1202     env->cp15.c9_pmcnten |= value;
1203 }
1204 
1205 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1206                              uint64_t value)
1207 {
1208     value &= pmu_counter_mask(env);
1209     env->cp15.c9_pmcnten &= ~value;
1210 }
1211 
1212 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1213                          uint64_t value)
1214 {
1215     value &= pmu_counter_mask(env);
1216     env->cp15.c9_pmovsr &= ~value;
1217 }
1218 
1219 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220                              uint64_t value)
1221 {
1222     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1223      * PMSELR value is equal to or greater than the number of implemented
1224      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1225      */
1226     if (env->cp15.c9_pmselr == 0x1f) {
1227         pmccfiltr_write(env, ri, value);
1228     }
1229 }
1230 
1231 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232 {
1233     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1234      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1235      */
1236     if (env->cp15.c9_pmselr == 0x1f) {
1237         return env->cp15.pmccfiltr_el0;
1238     } else {
1239         return 0;
1240     }
1241 }
1242 
1243 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1244                             uint64_t value)
1245 {
1246     if (arm_feature(env, ARM_FEATURE_V8)) {
1247         env->cp15.c9_pmuserenr = value & 0xf;
1248     } else {
1249         env->cp15.c9_pmuserenr = value & 1;
1250     }
1251 }
1252 
1253 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1254                              uint64_t value)
1255 {
1256     /* We have no event counters so only the C bit can be changed */
1257     value &= pmu_counter_mask(env);
1258     env->cp15.c9_pminten |= value;
1259 }
1260 
1261 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1262                              uint64_t value)
1263 {
1264     value &= pmu_counter_mask(env);
1265     env->cp15.c9_pminten &= ~value;
1266 }
1267 
1268 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1269                        uint64_t value)
1270 {
1271     /* Note that even though the AArch64 view of this register has bits
1272      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1273      * architectural requirements for bits which are RES0 only in some
1274      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1275      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1276      */
1277     raw_write(env, ri, value & ~0x1FULL);
1278 }
1279 
1280 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1281 {
1282     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1283      * For bits that vary between AArch32/64, code needs to check the
1284      * current execution mode before directly using the feature bit.
1285      */
1286     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1287 
1288     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1289         valid_mask &= ~SCR_HCE;
1290 
1291         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1292          * supported if EL2 exists. The bit is UNK/SBZP when
1293          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1294          * when EL2 is unavailable.
1295          * On ARMv8, this bit is always available.
1296          */
1297         if (arm_feature(env, ARM_FEATURE_V7) &&
1298             !arm_feature(env, ARM_FEATURE_V8)) {
1299             valid_mask &= ~SCR_SMD;
1300         }
1301     }
1302 
1303     /* Clear all-context RES0 bits.  */
1304     value &= valid_mask;
1305     raw_write(env, ri, value);
1306 }
1307 
1308 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1309 {
1310     ARMCPU *cpu = arm_env_get_cpu(env);
1311 
1312     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1313      * bank
1314      */
1315     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1316                                         ri->secure & ARM_CP_SECSTATE_S);
1317 
1318     return cpu->ccsidr[index];
1319 }
1320 
1321 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1322                          uint64_t value)
1323 {
1324     raw_write(env, ri, value & 0xf);
1325 }
1326 
1327 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1328 {
1329     CPUState *cs = ENV_GET_CPU(env);
1330     uint64_t ret = 0;
1331 
1332     if (arm_hcr_el2_imo(env)) {
1333         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1334             ret |= CPSR_I;
1335         }
1336     } else {
1337         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1338             ret |= CPSR_I;
1339         }
1340     }
1341 
1342     if (arm_hcr_el2_fmo(env)) {
1343         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1344             ret |= CPSR_F;
1345         }
1346     } else {
1347         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1348             ret |= CPSR_F;
1349         }
1350     }
1351 
1352     /* External aborts are not possible in QEMU so A bit is always clear */
1353     return ret;
1354 }
1355 
1356 static const ARMCPRegInfo v7_cp_reginfo[] = {
1357     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1358     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1359       .access = PL1_W, .type = ARM_CP_NOP },
1360     /* Performance monitors are implementation defined in v7,
1361      * but with an ARM recommended set of registers, which we
1362      * follow (although we don't actually implement any counters)
1363      *
1364      * Performance registers fall into three categories:
1365      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1366      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1367      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1368      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1369      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1370      */
1371     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1372       .access = PL0_RW, .type = ARM_CP_ALIAS,
1373       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1374       .writefn = pmcntenset_write,
1375       .accessfn = pmreg_access,
1376       .raw_writefn = raw_write },
1377     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1379       .access = PL0_RW, .accessfn = pmreg_access,
1380       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1381       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1382     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1383       .access = PL0_RW,
1384       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1385       .accessfn = pmreg_access,
1386       .writefn = pmcntenclr_write,
1387       .type = ARM_CP_ALIAS },
1388     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1389       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1390       .access = PL0_RW, .accessfn = pmreg_access,
1391       .type = ARM_CP_ALIAS,
1392       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1393       .writefn = pmcntenclr_write },
1394     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1395       .access = PL0_RW,
1396       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1397       .accessfn = pmreg_access,
1398       .writefn = pmovsr_write,
1399       .raw_writefn = raw_write },
1400     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1401       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1402       .access = PL0_RW, .accessfn = pmreg_access,
1403       .type = ARM_CP_ALIAS,
1404       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1405       .writefn = pmovsr_write,
1406       .raw_writefn = raw_write },
1407     /* Unimplemented so WI. */
1408     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1409       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1410 #ifndef CONFIG_USER_ONLY
1411     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1412       .access = PL0_RW, .type = ARM_CP_ALIAS,
1413       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1414       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1415       .raw_writefn = raw_write},
1416     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1417       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1418       .access = PL0_RW, .accessfn = pmreg_access_selr,
1419       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1420       .writefn = pmselr_write, .raw_writefn = raw_write, },
1421     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1422       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1423       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1424       .accessfn = pmreg_access_ccntr },
1425     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1426       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1427       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1428       .type = ARM_CP_IO,
1429       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1430 #endif
1431     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1432       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1433       .writefn = pmccfiltr_write,
1434       .access = PL0_RW, .accessfn = pmreg_access,
1435       .type = ARM_CP_IO,
1436       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1437       .resetvalue = 0, },
1438     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1439       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1440       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1441     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1442       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1443       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1444       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1445     /* Unimplemented, RAZ/WI. */
1446     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1447       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1448       .accessfn = pmreg_access_xevcntr },
1449     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1450       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1451       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1452       .resetvalue = 0,
1453       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1454     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1455       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1456       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1457       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1458       .resetvalue = 0,
1459       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1460     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1461       .access = PL1_RW, .accessfn = access_tpm,
1462       .type = ARM_CP_ALIAS | ARM_CP_IO,
1463       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1464       .resetvalue = 0,
1465       .writefn = pmintenset_write, .raw_writefn = raw_write },
1466     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1467       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1468       .access = PL1_RW, .accessfn = access_tpm,
1469       .type = ARM_CP_IO,
1470       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1471       .writefn = pmintenset_write, .raw_writefn = raw_write,
1472       .resetvalue = 0x0 },
1473     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1474       .access = PL1_RW, .accessfn = access_tpm,
1475       .type = ARM_CP_ALIAS | ARM_CP_IO,
1476       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1477       .writefn = pmintenclr_write, },
1478     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1479       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1480       .access = PL1_RW, .accessfn = access_tpm,
1481       .type = ARM_CP_ALIAS | ARM_CP_IO,
1482       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1483       .writefn = pmintenclr_write },
1484     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1485       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1486       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1487     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1488       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1489       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1490       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1491                              offsetof(CPUARMState, cp15.csselr_ns) } },
1492     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1493      * just RAZ for all cores:
1494      */
1495     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1496       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1497       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1498     /* Auxiliary fault status registers: these also are IMPDEF, and we
1499      * choose to RAZ/WI for all cores.
1500      */
1501     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1502       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1503       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1504     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1505       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1506       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1507     /* MAIR can just read-as-written because we don't implement caches
1508      * and so don't need to care about memory attributes.
1509      */
1510     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1511       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1512       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1513       .resetvalue = 0 },
1514     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1515       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1516       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1517       .resetvalue = 0 },
1518     /* For non-long-descriptor page tables these are PRRR and NMRR;
1519      * regardless they still act as reads-as-written for QEMU.
1520      */
1521      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1522       * allows them to assign the correct fieldoffset based on the endianness
1523       * handled in the field definitions.
1524       */
1525     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1526       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1527       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1528                              offsetof(CPUARMState, cp15.mair0_ns) },
1529       .resetfn = arm_cp_reset_ignore },
1530     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1531       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1532       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1533                              offsetof(CPUARMState, cp15.mair1_ns) },
1534       .resetfn = arm_cp_reset_ignore },
1535     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1536       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1537       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1538     /* 32 bit ITLB invalidates */
1539     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1540       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1541     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1542       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1543     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1544       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1545     /* 32 bit DTLB invalidates */
1546     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1547       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1548     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1549       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1550     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1551       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1552     /* 32 bit TLB invalidates */
1553     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1554       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1555     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1556       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1557     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1558       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1559     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1560       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1561     REGINFO_SENTINEL
1562 };
1563 
1564 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1565     /* 32 bit TLB invalidates, Inner Shareable */
1566     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1567       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1568     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1569       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1570     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1571       .type = ARM_CP_NO_RAW, .access = PL1_W,
1572       .writefn = tlbiasid_is_write },
1573     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1574       .type = ARM_CP_NO_RAW, .access = PL1_W,
1575       .writefn = tlbimvaa_is_write },
1576     REGINFO_SENTINEL
1577 };
1578 
1579 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1580                         uint64_t value)
1581 {
1582     value &= 1;
1583     env->teecr = value;
1584 }
1585 
1586 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1587                                     bool isread)
1588 {
1589     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1590         return CP_ACCESS_TRAP;
1591     }
1592     return CP_ACCESS_OK;
1593 }
1594 
1595 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1596     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1597       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1598       .resetvalue = 0,
1599       .writefn = teecr_write },
1600     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1601       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1602       .accessfn = teehbr_access, .resetvalue = 0 },
1603     REGINFO_SENTINEL
1604 };
1605 
1606 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1607     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1608       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1609       .access = PL0_RW,
1610       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1611     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1612       .access = PL0_RW,
1613       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1614                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1615       .resetfn = arm_cp_reset_ignore },
1616     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1617       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1618       .access = PL0_R|PL1_W,
1619       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1620       .resetvalue = 0},
1621     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1622       .access = PL0_R|PL1_W,
1623       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1624                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1625       .resetfn = arm_cp_reset_ignore },
1626     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1627       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1628       .access = PL1_RW,
1629       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1630     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1631       .access = PL1_RW,
1632       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1633                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1634       .resetvalue = 0 },
1635     REGINFO_SENTINEL
1636 };
1637 
1638 #ifndef CONFIG_USER_ONLY
1639 
1640 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1641                                        bool isread)
1642 {
1643     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1644      * Writable only at the highest implemented exception level.
1645      */
1646     int el = arm_current_el(env);
1647 
1648     switch (el) {
1649     case 0:
1650         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1651             return CP_ACCESS_TRAP;
1652         }
1653         break;
1654     case 1:
1655         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1656             arm_is_secure_below_el3(env)) {
1657             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1658             return CP_ACCESS_TRAP_UNCATEGORIZED;
1659         }
1660         break;
1661     case 2:
1662     case 3:
1663         break;
1664     }
1665 
1666     if (!isread && el < arm_highest_el(env)) {
1667         return CP_ACCESS_TRAP_UNCATEGORIZED;
1668     }
1669 
1670     return CP_ACCESS_OK;
1671 }
1672 
1673 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1674                                         bool isread)
1675 {
1676     unsigned int cur_el = arm_current_el(env);
1677     bool secure = arm_is_secure(env);
1678 
1679     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1680     if (cur_el == 0 &&
1681         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1682         return CP_ACCESS_TRAP;
1683     }
1684 
1685     if (arm_feature(env, ARM_FEATURE_EL2) &&
1686         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1687         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1688         return CP_ACCESS_TRAP_EL2;
1689     }
1690     return CP_ACCESS_OK;
1691 }
1692 
1693 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1694                                       bool isread)
1695 {
1696     unsigned int cur_el = arm_current_el(env);
1697     bool secure = arm_is_secure(env);
1698 
1699     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1700      * EL0[PV]TEN is zero.
1701      */
1702     if (cur_el == 0 &&
1703         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1704         return CP_ACCESS_TRAP;
1705     }
1706 
1707     if (arm_feature(env, ARM_FEATURE_EL2) &&
1708         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1709         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1710         return CP_ACCESS_TRAP_EL2;
1711     }
1712     return CP_ACCESS_OK;
1713 }
1714 
1715 static CPAccessResult gt_pct_access(CPUARMState *env,
1716                                     const ARMCPRegInfo *ri,
1717                                     bool isread)
1718 {
1719     return gt_counter_access(env, GTIMER_PHYS, isread);
1720 }
1721 
1722 static CPAccessResult gt_vct_access(CPUARMState *env,
1723                                     const ARMCPRegInfo *ri,
1724                                     bool isread)
1725 {
1726     return gt_counter_access(env, GTIMER_VIRT, isread);
1727 }
1728 
1729 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1730                                        bool isread)
1731 {
1732     return gt_timer_access(env, GTIMER_PHYS, isread);
1733 }
1734 
1735 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1736                                        bool isread)
1737 {
1738     return gt_timer_access(env, GTIMER_VIRT, isread);
1739 }
1740 
1741 static CPAccessResult gt_stimer_access(CPUARMState *env,
1742                                        const ARMCPRegInfo *ri,
1743                                        bool isread)
1744 {
1745     /* The AArch64 register view of the secure physical timer is
1746      * always accessible from EL3, and configurably accessible from
1747      * Secure EL1.
1748      */
1749     switch (arm_current_el(env)) {
1750     case 1:
1751         if (!arm_is_secure(env)) {
1752             return CP_ACCESS_TRAP;
1753         }
1754         if (!(env->cp15.scr_el3 & SCR_ST)) {
1755             return CP_ACCESS_TRAP_EL3;
1756         }
1757         return CP_ACCESS_OK;
1758     case 0:
1759     case 2:
1760         return CP_ACCESS_TRAP;
1761     case 3:
1762         return CP_ACCESS_OK;
1763     default:
1764         g_assert_not_reached();
1765     }
1766 }
1767 
1768 static uint64_t gt_get_countervalue(CPUARMState *env)
1769 {
1770     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1771 }
1772 
1773 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1774 {
1775     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1776 
1777     if (gt->ctl & 1) {
1778         /* Timer enabled: calculate and set current ISTATUS, irq, and
1779          * reset timer to when ISTATUS next has to change
1780          */
1781         uint64_t offset = timeridx == GTIMER_VIRT ?
1782                                       cpu->env.cp15.cntvoff_el2 : 0;
1783         uint64_t count = gt_get_countervalue(&cpu->env);
1784         /* Note that this must be unsigned 64 bit arithmetic: */
1785         int istatus = count - offset >= gt->cval;
1786         uint64_t nexttick;
1787         int irqstate;
1788 
1789         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1790 
1791         irqstate = (istatus && !(gt->ctl & 2));
1792         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1793 
1794         if (istatus) {
1795             /* Next transition is when count rolls back over to zero */
1796             nexttick = UINT64_MAX;
1797         } else {
1798             /* Next transition is when we hit cval */
1799             nexttick = gt->cval + offset;
1800         }
1801         /* Note that the desired next expiry time might be beyond the
1802          * signed-64-bit range of a QEMUTimer -- in this case we just
1803          * set the timer for as far in the future as possible. When the
1804          * timer expires we will reset the timer for any remaining period.
1805          */
1806         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1807             nexttick = INT64_MAX / GTIMER_SCALE;
1808         }
1809         timer_mod(cpu->gt_timer[timeridx], nexttick);
1810         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1811     } else {
1812         /* Timer disabled: ISTATUS and timer output always clear */
1813         gt->ctl &= ~4;
1814         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1815         timer_del(cpu->gt_timer[timeridx]);
1816         trace_arm_gt_recalc_disabled(timeridx);
1817     }
1818 }
1819 
1820 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1821                            int timeridx)
1822 {
1823     ARMCPU *cpu = arm_env_get_cpu(env);
1824 
1825     timer_del(cpu->gt_timer[timeridx]);
1826 }
1827 
1828 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1829 {
1830     return gt_get_countervalue(env);
1831 }
1832 
1833 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1834 {
1835     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1836 }
1837 
1838 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1839                           int timeridx,
1840                           uint64_t value)
1841 {
1842     trace_arm_gt_cval_write(timeridx, value);
1843     env->cp15.c14_timer[timeridx].cval = value;
1844     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1845 }
1846 
1847 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1848                              int timeridx)
1849 {
1850     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1851 
1852     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1853                       (gt_get_countervalue(env) - offset));
1854 }
1855 
1856 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1857                           int timeridx,
1858                           uint64_t value)
1859 {
1860     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1861 
1862     trace_arm_gt_tval_write(timeridx, value);
1863     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1864                                          sextract64(value, 0, 32);
1865     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1866 }
1867 
1868 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1869                          int timeridx,
1870                          uint64_t value)
1871 {
1872     ARMCPU *cpu = arm_env_get_cpu(env);
1873     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1874 
1875     trace_arm_gt_ctl_write(timeridx, value);
1876     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1877     if ((oldval ^ value) & 1) {
1878         /* Enable toggled */
1879         gt_recalc_timer(cpu, timeridx);
1880     } else if ((oldval ^ value) & 2) {
1881         /* IMASK toggled: don't need to recalculate,
1882          * just set the interrupt line based on ISTATUS
1883          */
1884         int irqstate = (oldval & 4) && !(value & 2);
1885 
1886         trace_arm_gt_imask_toggle(timeridx, irqstate);
1887         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1888     }
1889 }
1890 
1891 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1892 {
1893     gt_timer_reset(env, ri, GTIMER_PHYS);
1894 }
1895 
1896 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1897                                uint64_t value)
1898 {
1899     gt_cval_write(env, ri, GTIMER_PHYS, value);
1900 }
1901 
1902 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1903 {
1904     return gt_tval_read(env, ri, GTIMER_PHYS);
1905 }
1906 
1907 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1908                                uint64_t value)
1909 {
1910     gt_tval_write(env, ri, GTIMER_PHYS, value);
1911 }
1912 
1913 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1914                               uint64_t value)
1915 {
1916     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1917 }
1918 
1919 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1920 {
1921     gt_timer_reset(env, ri, GTIMER_VIRT);
1922 }
1923 
1924 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1925                                uint64_t value)
1926 {
1927     gt_cval_write(env, ri, GTIMER_VIRT, value);
1928 }
1929 
1930 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1931 {
1932     return gt_tval_read(env, ri, GTIMER_VIRT);
1933 }
1934 
1935 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1936                                uint64_t value)
1937 {
1938     gt_tval_write(env, ri, GTIMER_VIRT, value);
1939 }
1940 
1941 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1942                               uint64_t value)
1943 {
1944     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1945 }
1946 
1947 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1948                               uint64_t value)
1949 {
1950     ARMCPU *cpu = arm_env_get_cpu(env);
1951 
1952     trace_arm_gt_cntvoff_write(value);
1953     raw_write(env, ri, value);
1954     gt_recalc_timer(cpu, GTIMER_VIRT);
1955 }
1956 
1957 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1958 {
1959     gt_timer_reset(env, ri, GTIMER_HYP);
1960 }
1961 
1962 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963                               uint64_t value)
1964 {
1965     gt_cval_write(env, ri, GTIMER_HYP, value);
1966 }
1967 
1968 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 {
1970     return gt_tval_read(env, ri, GTIMER_HYP);
1971 }
1972 
1973 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1974                               uint64_t value)
1975 {
1976     gt_tval_write(env, ri, GTIMER_HYP, value);
1977 }
1978 
1979 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1980                               uint64_t value)
1981 {
1982     gt_ctl_write(env, ri, GTIMER_HYP, value);
1983 }
1984 
1985 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1986 {
1987     gt_timer_reset(env, ri, GTIMER_SEC);
1988 }
1989 
1990 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991                               uint64_t value)
1992 {
1993     gt_cval_write(env, ri, GTIMER_SEC, value);
1994 }
1995 
1996 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1997 {
1998     return gt_tval_read(env, ri, GTIMER_SEC);
1999 }
2000 
2001 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2002                               uint64_t value)
2003 {
2004     gt_tval_write(env, ri, GTIMER_SEC, value);
2005 }
2006 
2007 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2008                               uint64_t value)
2009 {
2010     gt_ctl_write(env, ri, GTIMER_SEC, value);
2011 }
2012 
2013 void arm_gt_ptimer_cb(void *opaque)
2014 {
2015     ARMCPU *cpu = opaque;
2016 
2017     gt_recalc_timer(cpu, GTIMER_PHYS);
2018 }
2019 
2020 void arm_gt_vtimer_cb(void *opaque)
2021 {
2022     ARMCPU *cpu = opaque;
2023 
2024     gt_recalc_timer(cpu, GTIMER_VIRT);
2025 }
2026 
2027 void arm_gt_htimer_cb(void *opaque)
2028 {
2029     ARMCPU *cpu = opaque;
2030 
2031     gt_recalc_timer(cpu, GTIMER_HYP);
2032 }
2033 
2034 void arm_gt_stimer_cb(void *opaque)
2035 {
2036     ARMCPU *cpu = opaque;
2037 
2038     gt_recalc_timer(cpu, GTIMER_SEC);
2039 }
2040 
2041 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2042     /* Note that CNTFRQ is purely reads-as-written for the benefit
2043      * of software; writing it doesn't actually change the timer frequency.
2044      * Our reset value matches the fixed frequency we implement the timer at.
2045      */
2046     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
2047       .type = ARM_CP_ALIAS,
2048       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2049       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2050     },
2051     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2052       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2053       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2054       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2055       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2056     },
2057     /* overall control: mostly access permissions */
2058     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2059       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2060       .access = PL1_RW,
2061       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2062       .resetvalue = 0,
2063     },
2064     /* per-timer control */
2065     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2066       .secure = ARM_CP_SECSTATE_NS,
2067       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2068       .accessfn = gt_ptimer_access,
2069       .fieldoffset = offsetoflow32(CPUARMState,
2070                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2071       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2072     },
2073     { .name = "CNTP_CTL_S",
2074       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2075       .secure = ARM_CP_SECSTATE_S,
2076       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2077       .accessfn = gt_ptimer_access,
2078       .fieldoffset = offsetoflow32(CPUARMState,
2079                                    cp15.c14_timer[GTIMER_SEC].ctl),
2080       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2081     },
2082     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2083       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2084       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2085       .accessfn = gt_ptimer_access,
2086       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2087       .resetvalue = 0,
2088       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2089     },
2090     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2091       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2092       .accessfn = gt_vtimer_access,
2093       .fieldoffset = offsetoflow32(CPUARMState,
2094                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2095       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2096     },
2097     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2098       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2099       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2100       .accessfn = gt_vtimer_access,
2101       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2102       .resetvalue = 0,
2103       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2104     },
2105     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2106     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2107       .secure = ARM_CP_SECSTATE_NS,
2108       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2109       .accessfn = gt_ptimer_access,
2110       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2111     },
2112     { .name = "CNTP_TVAL_S",
2113       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2114       .secure = ARM_CP_SECSTATE_S,
2115       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2116       .accessfn = gt_ptimer_access,
2117       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2118     },
2119     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2120       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2121       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2122       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2123       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2124     },
2125     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2126       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2127       .accessfn = gt_vtimer_access,
2128       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2129     },
2130     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2131       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2132       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2133       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2134       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2135     },
2136     /* The counter itself */
2137     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2138       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2139       .accessfn = gt_pct_access,
2140       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2141     },
2142     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2143       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2144       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2146     },
2147     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2148       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2149       .accessfn = gt_vct_access,
2150       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2151     },
2152     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2153       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2154       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2155       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2156     },
2157     /* Comparison value, indicating when the timer goes off */
2158     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2159       .secure = ARM_CP_SECSTATE_NS,
2160       .access = PL1_RW | PL0_R,
2161       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2163       .accessfn = gt_ptimer_access,
2164       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2165     },
2166     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2167       .secure = ARM_CP_SECSTATE_S,
2168       .access = PL1_RW | PL0_R,
2169       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171       .accessfn = gt_ptimer_access,
2172       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2173     },
2174     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2175       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2176       .access = PL1_RW | PL0_R,
2177       .type = ARM_CP_IO,
2178       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2179       .resetvalue = 0, .accessfn = gt_ptimer_access,
2180       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2181     },
2182     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2183       .access = PL1_RW | PL0_R,
2184       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2185       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2186       .accessfn = gt_vtimer_access,
2187       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2188     },
2189     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2190       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2191       .access = PL1_RW | PL0_R,
2192       .type = ARM_CP_IO,
2193       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2194       .resetvalue = 0, .accessfn = gt_vtimer_access,
2195       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2196     },
2197     /* Secure timer -- this is actually restricted to only EL3
2198      * and configurably Secure-EL1 via the accessfn.
2199      */
2200     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2201       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2202       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2203       .accessfn = gt_stimer_access,
2204       .readfn = gt_sec_tval_read,
2205       .writefn = gt_sec_tval_write,
2206       .resetfn = gt_sec_timer_reset,
2207     },
2208     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2209       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2210       .type = ARM_CP_IO, .access = PL1_RW,
2211       .accessfn = gt_stimer_access,
2212       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2213       .resetvalue = 0,
2214       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2215     },
2216     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2217       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2218       .type = ARM_CP_IO, .access = PL1_RW,
2219       .accessfn = gt_stimer_access,
2220       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2221       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2222     },
2223     REGINFO_SENTINEL
2224 };
2225 
2226 #else
2227 
2228 /* In user-mode most of the generic timer registers are inaccessible
2229  * however modern kernels (4.12+) allow access to cntvct_el0
2230  */
2231 
2232 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2233 {
2234     /* Currently we have no support for QEMUTimer in linux-user so we
2235      * can't call gt_get_countervalue(env), instead we directly
2236      * call the lower level functions.
2237      */
2238     return cpu_get_clock() / GTIMER_SCALE;
2239 }
2240 
2241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2242     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2243       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2244       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2245       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2246       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2247     },
2248     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2249       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2250       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2251       .readfn = gt_virt_cnt_read,
2252     },
2253     REGINFO_SENTINEL
2254 };
2255 
2256 #endif
2257 
2258 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2259 {
2260     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2261         raw_write(env, ri, value);
2262     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2263         raw_write(env, ri, value & 0xfffff6ff);
2264     } else {
2265         raw_write(env, ri, value & 0xfffff1ff);
2266     }
2267 }
2268 
2269 #ifndef CONFIG_USER_ONLY
2270 /* get_phys_addr() isn't present for user-mode-only targets */
2271 
2272 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2273                                  bool isread)
2274 {
2275     if (ri->opc2 & 4) {
2276         /* The ATS12NSO* operations must trap to EL3 if executed in
2277          * Secure EL1 (which can only happen if EL3 is AArch64).
2278          * They are simply UNDEF if executed from NS EL1.
2279          * They function normally from EL2 or EL3.
2280          */
2281         if (arm_current_el(env) == 1) {
2282             if (arm_is_secure_below_el3(env)) {
2283                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2284             }
2285             return CP_ACCESS_TRAP_UNCATEGORIZED;
2286         }
2287     }
2288     return CP_ACCESS_OK;
2289 }
2290 
2291 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2292                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2293 {
2294     hwaddr phys_addr;
2295     target_ulong page_size;
2296     int prot;
2297     bool ret;
2298     uint64_t par64;
2299     bool format64 = false;
2300     MemTxAttrs attrs = {};
2301     ARMMMUFaultInfo fi = {};
2302     ARMCacheAttrs cacheattrs = {};
2303 
2304     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2305                         &prot, &page_size, &fi, &cacheattrs);
2306 
2307     if (is_a64(env)) {
2308         format64 = true;
2309     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2310         /*
2311          * ATS1Cxx:
2312          * * TTBCR.EAE determines whether the result is returned using the
2313          *   32-bit or the 64-bit PAR format
2314          * * Instructions executed in Hyp mode always use the 64bit format
2315          *
2316          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2317          * * The Non-secure TTBCR.EAE bit is set to 1
2318          * * The implementation includes EL2, and the value of HCR.VM is 1
2319          *
2320          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2321          *
2322          * ATS1Hx always uses the 64bit format (not supported yet).
2323          */
2324         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2325 
2326         if (arm_feature(env, ARM_FEATURE_EL2)) {
2327             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2328                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
2329             } else {
2330                 format64 |= arm_current_el(env) == 2;
2331             }
2332         }
2333     }
2334 
2335     if (format64) {
2336         /* Create a 64-bit PAR */
2337         par64 = (1 << 11); /* LPAE bit always set */
2338         if (!ret) {
2339             par64 |= phys_addr & ~0xfffULL;
2340             if (!attrs.secure) {
2341                 par64 |= (1 << 9); /* NS */
2342             }
2343             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2344             par64 |= cacheattrs.shareability << 7; /* SH */
2345         } else {
2346             uint32_t fsr = arm_fi_to_lfsc(&fi);
2347 
2348             par64 |= 1; /* F */
2349             par64 |= (fsr & 0x3f) << 1; /* FS */
2350             /* Note that S2WLK and FSTAGE are always zero, because we don't
2351              * implement virtualization and therefore there can't be a stage 2
2352              * fault.
2353              */
2354         }
2355     } else {
2356         /* fsr is a DFSR/IFSR value for the short descriptor
2357          * translation table format (with WnR always clear).
2358          * Convert it to a 32-bit PAR.
2359          */
2360         if (!ret) {
2361             /* We do not set any attribute bits in the PAR */
2362             if (page_size == (1 << 24)
2363                 && arm_feature(env, ARM_FEATURE_V7)) {
2364                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2365             } else {
2366                 par64 = phys_addr & 0xfffff000;
2367             }
2368             if (!attrs.secure) {
2369                 par64 |= (1 << 9); /* NS */
2370             }
2371         } else {
2372             uint32_t fsr = arm_fi_to_sfsc(&fi);
2373 
2374             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2375                     ((fsr & 0xf) << 1) | 1;
2376         }
2377     }
2378     return par64;
2379 }
2380 
2381 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2382 {
2383     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2384     uint64_t par64;
2385     ARMMMUIdx mmu_idx;
2386     int el = arm_current_el(env);
2387     bool secure = arm_is_secure_below_el3(env);
2388 
2389     switch (ri->opc2 & 6) {
2390     case 0:
2391         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2392         switch (el) {
2393         case 3:
2394             mmu_idx = ARMMMUIdx_S1E3;
2395             break;
2396         case 2:
2397             mmu_idx = ARMMMUIdx_S1NSE1;
2398             break;
2399         case 1:
2400             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2401             break;
2402         default:
2403             g_assert_not_reached();
2404         }
2405         break;
2406     case 2:
2407         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2408         switch (el) {
2409         case 3:
2410             mmu_idx = ARMMMUIdx_S1SE0;
2411             break;
2412         case 2:
2413             mmu_idx = ARMMMUIdx_S1NSE0;
2414             break;
2415         case 1:
2416             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2417             break;
2418         default:
2419             g_assert_not_reached();
2420         }
2421         break;
2422     case 4:
2423         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2424         mmu_idx = ARMMMUIdx_S12NSE1;
2425         break;
2426     case 6:
2427         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2428         mmu_idx = ARMMMUIdx_S12NSE0;
2429         break;
2430     default:
2431         g_assert_not_reached();
2432     }
2433 
2434     par64 = do_ats_write(env, value, access_type, mmu_idx);
2435 
2436     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2437 }
2438 
2439 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2440                         uint64_t value)
2441 {
2442     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2443     uint64_t par64;
2444 
2445     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2446 
2447     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2448 }
2449 
2450 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2451                                      bool isread)
2452 {
2453     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2454         return CP_ACCESS_TRAP;
2455     }
2456     return CP_ACCESS_OK;
2457 }
2458 
2459 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2460                         uint64_t value)
2461 {
2462     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2463     ARMMMUIdx mmu_idx;
2464     int secure = arm_is_secure_below_el3(env);
2465 
2466     switch (ri->opc2 & 6) {
2467     case 0:
2468         switch (ri->opc1) {
2469         case 0: /* AT S1E1R, AT S1E1W */
2470             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2471             break;
2472         case 4: /* AT S1E2R, AT S1E2W */
2473             mmu_idx = ARMMMUIdx_S1E2;
2474             break;
2475         case 6: /* AT S1E3R, AT S1E3W */
2476             mmu_idx = ARMMMUIdx_S1E3;
2477             break;
2478         default:
2479             g_assert_not_reached();
2480         }
2481         break;
2482     case 2: /* AT S1E0R, AT S1E0W */
2483         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2484         break;
2485     case 4: /* AT S12E1R, AT S12E1W */
2486         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2487         break;
2488     case 6: /* AT S12E0R, AT S12E0W */
2489         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2490         break;
2491     default:
2492         g_assert_not_reached();
2493     }
2494 
2495     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2496 }
2497 #endif
2498 
2499 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2500     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2501       .access = PL1_RW, .resetvalue = 0,
2502       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2503                              offsetoflow32(CPUARMState, cp15.par_ns) },
2504       .writefn = par_write },
2505 #ifndef CONFIG_USER_ONLY
2506     /* This underdecoding is safe because the reginfo is NO_RAW. */
2507     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2508       .access = PL1_W, .accessfn = ats_access,
2509       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2510 #endif
2511     REGINFO_SENTINEL
2512 };
2513 
2514 /* Return basic MPU access permission bits.  */
2515 static uint32_t simple_mpu_ap_bits(uint32_t val)
2516 {
2517     uint32_t ret;
2518     uint32_t mask;
2519     int i;
2520     ret = 0;
2521     mask = 3;
2522     for (i = 0; i < 16; i += 2) {
2523         ret |= (val >> i) & mask;
2524         mask <<= 2;
2525     }
2526     return ret;
2527 }
2528 
2529 /* Pad basic MPU access permission bits to extended format.  */
2530 static uint32_t extended_mpu_ap_bits(uint32_t val)
2531 {
2532     uint32_t ret;
2533     uint32_t mask;
2534     int i;
2535     ret = 0;
2536     mask = 3;
2537     for (i = 0; i < 16; i += 2) {
2538         ret |= (val & mask) << i;
2539         mask <<= 2;
2540     }
2541     return ret;
2542 }
2543 
2544 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2545                                  uint64_t value)
2546 {
2547     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2548 }
2549 
2550 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2551 {
2552     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2553 }
2554 
2555 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2556                                  uint64_t value)
2557 {
2558     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2559 }
2560 
2561 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2562 {
2563     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2564 }
2565 
2566 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2567 {
2568     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2569 
2570     if (!u32p) {
2571         return 0;
2572     }
2573 
2574     u32p += env->pmsav7.rnr[M_REG_NS];
2575     return *u32p;
2576 }
2577 
2578 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2579                          uint64_t value)
2580 {
2581     ARMCPU *cpu = arm_env_get_cpu(env);
2582     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2583 
2584     if (!u32p) {
2585         return;
2586     }
2587 
2588     u32p += env->pmsav7.rnr[M_REG_NS];
2589     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2590     *u32p = value;
2591 }
2592 
2593 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2594                               uint64_t value)
2595 {
2596     ARMCPU *cpu = arm_env_get_cpu(env);
2597     uint32_t nrgs = cpu->pmsav7_dregion;
2598 
2599     if (value >= nrgs) {
2600         qemu_log_mask(LOG_GUEST_ERROR,
2601                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2602                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2603         return;
2604     }
2605 
2606     raw_write(env, ri, value);
2607 }
2608 
2609 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2610     /* Reset for all these registers is handled in arm_cpu_reset(),
2611      * because the PMSAv7 is also used by M-profile CPUs, which do
2612      * not register cpregs but still need the state to be reset.
2613      */
2614     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2615       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2616       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2617       .readfn = pmsav7_read, .writefn = pmsav7_write,
2618       .resetfn = arm_cp_reset_ignore },
2619     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2620       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2621       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2622       .readfn = pmsav7_read, .writefn = pmsav7_write,
2623       .resetfn = arm_cp_reset_ignore },
2624     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2625       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2626       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2627       .readfn = pmsav7_read, .writefn = pmsav7_write,
2628       .resetfn = arm_cp_reset_ignore },
2629     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2630       .access = PL1_RW,
2631       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2632       .writefn = pmsav7_rgnr_write,
2633       .resetfn = arm_cp_reset_ignore },
2634     REGINFO_SENTINEL
2635 };
2636 
2637 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2638     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2639       .access = PL1_RW, .type = ARM_CP_ALIAS,
2640       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2641       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2642     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2643       .access = PL1_RW, .type = ARM_CP_ALIAS,
2644       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2645       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2646     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2647       .access = PL1_RW,
2648       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2649       .resetvalue = 0, },
2650     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2651       .access = PL1_RW,
2652       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2653       .resetvalue = 0, },
2654     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2655       .access = PL1_RW,
2656       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2657     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2658       .access = PL1_RW,
2659       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2660     /* Protection region base and size registers */
2661     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2662       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2663       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2664     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2665       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2666       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2667     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2668       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2669       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2670     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2671       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2672       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2673     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2674       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2675       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2676     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2677       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2678       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2679     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2680       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2681       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2682     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2683       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2684       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2685     REGINFO_SENTINEL
2686 };
2687 
2688 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2689                                  uint64_t value)
2690 {
2691     TCR *tcr = raw_ptr(env, ri);
2692     int maskshift = extract32(value, 0, 3);
2693 
2694     if (!arm_feature(env, ARM_FEATURE_V8)) {
2695         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2696             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2697              * using Long-desciptor translation table format */
2698             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2699         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2700             /* In an implementation that includes the Security Extensions
2701              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2702              * Short-descriptor translation table format.
2703              */
2704             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2705         } else {
2706             value &= TTBCR_N;
2707         }
2708     }
2709 
2710     /* Update the masks corresponding to the TCR bank being written
2711      * Note that we always calculate mask and base_mask, but
2712      * they are only used for short-descriptor tables (ie if EAE is 0);
2713      * for long-descriptor tables the TCR fields are used differently
2714      * and the mask and base_mask values are meaningless.
2715      */
2716     tcr->raw_tcr = value;
2717     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2718     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2719 }
2720 
2721 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2722                              uint64_t value)
2723 {
2724     ARMCPU *cpu = arm_env_get_cpu(env);
2725 
2726     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2727         /* With LPAE the TTBCR could result in a change of ASID
2728          * via the TTBCR.A1 bit, so do a TLB flush.
2729          */
2730         tlb_flush(CPU(cpu));
2731     }
2732     vmsa_ttbcr_raw_write(env, ri, value);
2733 }
2734 
2735 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2736 {
2737     TCR *tcr = raw_ptr(env, ri);
2738 
2739     /* Reset both the TCR as well as the masks corresponding to the bank of
2740      * the TCR being reset.
2741      */
2742     tcr->raw_tcr = 0;
2743     tcr->mask = 0;
2744     tcr->base_mask = 0xffffc000u;
2745 }
2746 
2747 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2748                                uint64_t value)
2749 {
2750     ARMCPU *cpu = arm_env_get_cpu(env);
2751     TCR *tcr = raw_ptr(env, ri);
2752 
2753     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2754     tlb_flush(CPU(cpu));
2755     tcr->raw_tcr = value;
2756 }
2757 
2758 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2759                             uint64_t value)
2760 {
2761     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
2762     if (cpreg_field_is_64bit(ri) &&
2763         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
2764         ARMCPU *cpu = arm_env_get_cpu(env);
2765         tlb_flush(CPU(cpu));
2766     }
2767     raw_write(env, ri, value);
2768 }
2769 
2770 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2771                         uint64_t value)
2772 {
2773     ARMCPU *cpu = arm_env_get_cpu(env);
2774     CPUState *cs = CPU(cpu);
2775 
2776     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2777     if (raw_read(env, ri) != value) {
2778         tlb_flush_by_mmuidx(cs,
2779                             ARMMMUIdxBit_S12NSE1 |
2780                             ARMMMUIdxBit_S12NSE0 |
2781                             ARMMMUIdxBit_S2NS);
2782         raw_write(env, ri, value);
2783     }
2784 }
2785 
2786 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2787     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2788       .access = PL1_RW, .type = ARM_CP_ALIAS,
2789       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2790                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2791     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2792       .access = PL1_RW, .resetvalue = 0,
2793       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2794                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2795     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2796       .access = PL1_RW, .resetvalue = 0,
2797       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2798                              offsetof(CPUARMState, cp15.dfar_ns) } },
2799     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2800       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2801       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2802       .resetvalue = 0, },
2803     REGINFO_SENTINEL
2804 };
2805 
2806 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2807     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2808       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2809       .access = PL1_RW,
2810       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2811     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2812       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2813       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2814       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2815                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2816     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2817       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2818       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2819       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2820                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2821     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2822       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2823       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2824       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2825       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2826     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2827       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2828       .raw_writefn = vmsa_ttbcr_raw_write,
2829       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2830                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2831     REGINFO_SENTINEL
2832 };
2833 
2834 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2835                                 uint64_t value)
2836 {
2837     env->cp15.c15_ticonfig = value & 0xe7;
2838     /* The OS_TYPE bit in this register changes the reported CPUID! */
2839     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2840         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2841 }
2842 
2843 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2844                                 uint64_t value)
2845 {
2846     env->cp15.c15_threadid = value & 0xffff;
2847 }
2848 
2849 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850                            uint64_t value)
2851 {
2852     /* Wait-for-interrupt (deprecated) */
2853     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2854 }
2855 
2856 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                                   uint64_t value)
2858 {
2859     /* On OMAP there are registers indicating the max/min index of dcache lines
2860      * containing a dirty line; cache flush operations have to reset these.
2861      */
2862     env->cp15.c15_i_max = 0x000;
2863     env->cp15.c15_i_min = 0xff0;
2864 }
2865 
2866 static const ARMCPRegInfo omap_cp_reginfo[] = {
2867     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2868       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2869       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2870       .resetvalue = 0, },
2871     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2872       .access = PL1_RW, .type = ARM_CP_NOP },
2873     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2874       .access = PL1_RW,
2875       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2876       .writefn = omap_ticonfig_write },
2877     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2878       .access = PL1_RW,
2879       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2880     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2881       .access = PL1_RW, .resetvalue = 0xff0,
2882       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2883     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2884       .access = PL1_RW,
2885       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2886       .writefn = omap_threadid_write },
2887     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2888       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2889       .type = ARM_CP_NO_RAW,
2890       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2891     /* TODO: Peripheral port remap register:
2892      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2893      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2894      * when MMU is off.
2895      */
2896     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2897       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2898       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2899       .writefn = omap_cachemaint_write },
2900     { .name = "C9", .cp = 15, .crn = 9,
2901       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2902       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2903     REGINFO_SENTINEL
2904 };
2905 
2906 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907                               uint64_t value)
2908 {
2909     env->cp15.c15_cpar = value & 0x3fff;
2910 }
2911 
2912 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2913     { .name = "XSCALE_CPAR",
2914       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2915       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2916       .writefn = xscale_cpar_write, },
2917     { .name = "XSCALE_AUXCR",
2918       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2919       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2920       .resetvalue = 0, },
2921     /* XScale specific cache-lockdown: since we have no cache we NOP these
2922      * and hope the guest does not really rely on cache behaviour.
2923      */
2924     { .name = "XSCALE_LOCK_ICACHE_LINE",
2925       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2926       .access = PL1_W, .type = ARM_CP_NOP },
2927     { .name = "XSCALE_UNLOCK_ICACHE",
2928       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2929       .access = PL1_W, .type = ARM_CP_NOP },
2930     { .name = "XSCALE_DCACHE_LOCK",
2931       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2932       .access = PL1_RW, .type = ARM_CP_NOP },
2933     { .name = "XSCALE_UNLOCK_DCACHE",
2934       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2935       .access = PL1_W, .type = ARM_CP_NOP },
2936     REGINFO_SENTINEL
2937 };
2938 
2939 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2940     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2941      * implementation of this implementation-defined space.
2942      * Ideally this should eventually disappear in favour of actually
2943      * implementing the correct behaviour for all cores.
2944      */
2945     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2946       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2947       .access = PL1_RW,
2948       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2949       .resetvalue = 0 },
2950     REGINFO_SENTINEL
2951 };
2952 
2953 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2954     /* Cache status: RAZ because we have no cache so it's always clean */
2955     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2956       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2957       .resetvalue = 0 },
2958     REGINFO_SENTINEL
2959 };
2960 
2961 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2962     /* We never have a a block transfer operation in progress */
2963     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2964       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2965       .resetvalue = 0 },
2966     /* The cache ops themselves: these all NOP for QEMU */
2967     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2968       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2969     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2970       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2971     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2972       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2973     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2974       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2975     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2976       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2977     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2978       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2979     REGINFO_SENTINEL
2980 };
2981 
2982 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2983     /* The cache test-and-clean instructions always return (1 << 30)
2984      * to indicate that there are no dirty cache lines.
2985      */
2986     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2987       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2988       .resetvalue = (1 << 30) },
2989     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2990       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2991       .resetvalue = (1 << 30) },
2992     REGINFO_SENTINEL
2993 };
2994 
2995 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2996     /* Ignore ReadBuffer accesses */
2997     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2998       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2999       .access = PL1_RW, .resetvalue = 0,
3000       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
3001     REGINFO_SENTINEL
3002 };
3003 
3004 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3005 {
3006     ARMCPU *cpu = arm_env_get_cpu(env);
3007     unsigned int cur_el = arm_current_el(env);
3008     bool secure = arm_is_secure(env);
3009 
3010     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3011         return env->cp15.vpidr_el2;
3012     }
3013     return raw_read(env, ri);
3014 }
3015 
3016 static uint64_t mpidr_read_val(CPUARMState *env)
3017 {
3018     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
3019     uint64_t mpidr = cpu->mp_affinity;
3020 
3021     if (arm_feature(env, ARM_FEATURE_V7MP)) {
3022         mpidr |= (1U << 31);
3023         /* Cores which are uniprocessor (non-coherent)
3024          * but still implement the MP extensions set
3025          * bit 30. (For instance, Cortex-R5).
3026          */
3027         if (cpu->mp_is_up) {
3028             mpidr |= (1u << 30);
3029         }
3030     }
3031     return mpidr;
3032 }
3033 
3034 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3035 {
3036     unsigned int cur_el = arm_current_el(env);
3037     bool secure = arm_is_secure(env);
3038 
3039     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
3040         return env->cp15.vmpidr_el2;
3041     }
3042     return mpidr_read_val(env);
3043 }
3044 
3045 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
3046     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
3047       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
3048       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
3049     REGINFO_SENTINEL
3050 };
3051 
3052 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3053     /* NOP AMAIR0/1 */
3054     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3055       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3056       .access = PL1_RW, .type = ARM_CP_CONST,
3057       .resetvalue = 0 },
3058     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3059     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3060       .access = PL1_RW, .type = ARM_CP_CONST,
3061       .resetvalue = 0 },
3062     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3063       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3064       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3065                              offsetof(CPUARMState, cp15.par_ns)} },
3066     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3067       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3068       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3069                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3070       .writefn = vmsa_ttbr_write, },
3071     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3072       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3073       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3074                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3075       .writefn = vmsa_ttbr_write, },
3076     REGINFO_SENTINEL
3077 };
3078 
3079 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3080 {
3081     return vfp_get_fpcr(env);
3082 }
3083 
3084 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3085                             uint64_t value)
3086 {
3087     vfp_set_fpcr(env, value);
3088 }
3089 
3090 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3091 {
3092     return vfp_get_fpsr(env);
3093 }
3094 
3095 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3096                             uint64_t value)
3097 {
3098     vfp_set_fpsr(env, value);
3099 }
3100 
3101 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3102                                        bool isread)
3103 {
3104     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3105         return CP_ACCESS_TRAP;
3106     }
3107     return CP_ACCESS_OK;
3108 }
3109 
3110 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3111                             uint64_t value)
3112 {
3113     env->daif = value & PSTATE_DAIF;
3114 }
3115 
3116 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3117                                           const ARMCPRegInfo *ri,
3118                                           bool isread)
3119 {
3120     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3121      * SCTLR_EL1.UCI is set.
3122      */
3123     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3124         return CP_ACCESS_TRAP;
3125     }
3126     return CP_ACCESS_OK;
3127 }
3128 
3129 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3130  * Page D4-1736 (DDI0487A.b)
3131  */
3132 
3133 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3134                                       uint64_t value)
3135 {
3136     CPUState *cs = ENV_GET_CPU(env);
3137     bool sec = arm_is_secure_below_el3(env);
3138 
3139     if (sec) {
3140         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3141                                             ARMMMUIdxBit_S1SE1 |
3142                                             ARMMMUIdxBit_S1SE0);
3143     } else {
3144         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3145                                             ARMMMUIdxBit_S12NSE1 |
3146                                             ARMMMUIdxBit_S12NSE0);
3147     }
3148 }
3149 
3150 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3151                                     uint64_t value)
3152 {
3153     CPUState *cs = ENV_GET_CPU(env);
3154 
3155     if (tlb_force_broadcast(env)) {
3156         tlbi_aa64_vmalle1_write(env, NULL, value);
3157         return;
3158     }
3159 
3160     if (arm_is_secure_below_el3(env)) {
3161         tlb_flush_by_mmuidx(cs,
3162                             ARMMMUIdxBit_S1SE1 |
3163                             ARMMMUIdxBit_S1SE0);
3164     } else {
3165         tlb_flush_by_mmuidx(cs,
3166                             ARMMMUIdxBit_S12NSE1 |
3167                             ARMMMUIdxBit_S12NSE0);
3168     }
3169 }
3170 
3171 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3172                                   uint64_t value)
3173 {
3174     /* Note that the 'ALL' scope must invalidate both stage 1 and
3175      * stage 2 translations, whereas most other scopes only invalidate
3176      * stage 1 translations.
3177      */
3178     ARMCPU *cpu = arm_env_get_cpu(env);
3179     CPUState *cs = CPU(cpu);
3180 
3181     if (arm_is_secure_below_el3(env)) {
3182         tlb_flush_by_mmuidx(cs,
3183                             ARMMMUIdxBit_S1SE1 |
3184                             ARMMMUIdxBit_S1SE0);
3185     } else {
3186         if (arm_feature(env, ARM_FEATURE_EL2)) {
3187             tlb_flush_by_mmuidx(cs,
3188                                 ARMMMUIdxBit_S12NSE1 |
3189                                 ARMMMUIdxBit_S12NSE0 |
3190                                 ARMMMUIdxBit_S2NS);
3191         } else {
3192             tlb_flush_by_mmuidx(cs,
3193                                 ARMMMUIdxBit_S12NSE1 |
3194                                 ARMMMUIdxBit_S12NSE0);
3195         }
3196     }
3197 }
3198 
3199 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3200                                   uint64_t value)
3201 {
3202     ARMCPU *cpu = arm_env_get_cpu(env);
3203     CPUState *cs = CPU(cpu);
3204 
3205     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3206 }
3207 
3208 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3209                                   uint64_t value)
3210 {
3211     ARMCPU *cpu = arm_env_get_cpu(env);
3212     CPUState *cs = CPU(cpu);
3213 
3214     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3215 }
3216 
3217 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3218                                     uint64_t value)
3219 {
3220     /* Note that the 'ALL' scope must invalidate both stage 1 and
3221      * stage 2 translations, whereas most other scopes only invalidate
3222      * stage 1 translations.
3223      */
3224     CPUState *cs = ENV_GET_CPU(env);
3225     bool sec = arm_is_secure_below_el3(env);
3226     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3227 
3228     if (sec) {
3229         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3230                                             ARMMMUIdxBit_S1SE1 |
3231                                             ARMMMUIdxBit_S1SE0);
3232     } else if (has_el2) {
3233         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3234                                             ARMMMUIdxBit_S12NSE1 |
3235                                             ARMMMUIdxBit_S12NSE0 |
3236                                             ARMMMUIdxBit_S2NS);
3237     } else {
3238           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3239                                               ARMMMUIdxBit_S12NSE1 |
3240                                               ARMMMUIdxBit_S12NSE0);
3241     }
3242 }
3243 
3244 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3245                                     uint64_t value)
3246 {
3247     CPUState *cs = ENV_GET_CPU(env);
3248 
3249     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3250 }
3251 
3252 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3253                                     uint64_t value)
3254 {
3255     CPUState *cs = ENV_GET_CPU(env);
3256 
3257     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3258 }
3259 
3260 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3261                                  uint64_t value)
3262 {
3263     /* Invalidate by VA, EL2
3264      * Currently handles both VAE2 and VALE2, since we don't support
3265      * flush-last-level-only.
3266      */
3267     ARMCPU *cpu = arm_env_get_cpu(env);
3268     CPUState *cs = CPU(cpu);
3269     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3270 
3271     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3272 }
3273 
3274 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3275                                  uint64_t value)
3276 {
3277     /* Invalidate by VA, EL3
3278      * Currently handles both VAE3 and VALE3, since we don't support
3279      * flush-last-level-only.
3280      */
3281     ARMCPU *cpu = arm_env_get_cpu(env);
3282     CPUState *cs = CPU(cpu);
3283     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3284 
3285     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3286 }
3287 
3288 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3289                                    uint64_t value)
3290 {
3291     ARMCPU *cpu = arm_env_get_cpu(env);
3292     CPUState *cs = CPU(cpu);
3293     bool sec = arm_is_secure_below_el3(env);
3294     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3295 
3296     if (sec) {
3297         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3298                                                  ARMMMUIdxBit_S1SE1 |
3299                                                  ARMMMUIdxBit_S1SE0);
3300     } else {
3301         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3302                                                  ARMMMUIdxBit_S12NSE1 |
3303                                                  ARMMMUIdxBit_S12NSE0);
3304     }
3305 }
3306 
3307 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3308                                  uint64_t value)
3309 {
3310     /* Invalidate by VA, EL1&0 (AArch64 version).
3311      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3312      * since we don't support flush-for-specific-ASID-only or
3313      * flush-last-level-only.
3314      */
3315     ARMCPU *cpu = arm_env_get_cpu(env);
3316     CPUState *cs = CPU(cpu);
3317     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3318 
3319     if (tlb_force_broadcast(env)) {
3320         tlbi_aa64_vae1is_write(env, NULL, value);
3321         return;
3322     }
3323 
3324     if (arm_is_secure_below_el3(env)) {
3325         tlb_flush_page_by_mmuidx(cs, pageaddr,
3326                                  ARMMMUIdxBit_S1SE1 |
3327                                  ARMMMUIdxBit_S1SE0);
3328     } else {
3329         tlb_flush_page_by_mmuidx(cs, pageaddr,
3330                                  ARMMMUIdxBit_S12NSE1 |
3331                                  ARMMMUIdxBit_S12NSE0);
3332     }
3333 }
3334 
3335 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3336                                    uint64_t value)
3337 {
3338     CPUState *cs = ENV_GET_CPU(env);
3339     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3340 
3341     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3342                                              ARMMMUIdxBit_S1E2);
3343 }
3344 
3345 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3346                                    uint64_t value)
3347 {
3348     CPUState *cs = ENV_GET_CPU(env);
3349     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3350 
3351     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3352                                              ARMMMUIdxBit_S1E3);
3353 }
3354 
3355 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3356                                     uint64_t value)
3357 {
3358     /* Invalidate by IPA. This has to invalidate any structures that
3359      * contain only stage 2 translation information, but does not need
3360      * to apply to structures that contain combined stage 1 and stage 2
3361      * translation information.
3362      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3363      */
3364     ARMCPU *cpu = arm_env_get_cpu(env);
3365     CPUState *cs = CPU(cpu);
3366     uint64_t pageaddr;
3367 
3368     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3369         return;
3370     }
3371 
3372     pageaddr = sextract64(value << 12, 0, 48);
3373 
3374     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3375 }
3376 
3377 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3378                                       uint64_t value)
3379 {
3380     CPUState *cs = ENV_GET_CPU(env);
3381     uint64_t pageaddr;
3382 
3383     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3384         return;
3385     }
3386 
3387     pageaddr = sextract64(value << 12, 0, 48);
3388 
3389     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3390                                              ARMMMUIdxBit_S2NS);
3391 }
3392 
3393 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3394                                       bool isread)
3395 {
3396     /* We don't implement EL2, so the only control on DC ZVA is the
3397      * bit in the SCTLR which can prohibit access for EL0.
3398      */
3399     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3400         return CP_ACCESS_TRAP;
3401     }
3402     return CP_ACCESS_OK;
3403 }
3404 
3405 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3406 {
3407     ARMCPU *cpu = arm_env_get_cpu(env);
3408     int dzp_bit = 1 << 4;
3409 
3410     /* DZP indicates whether DC ZVA access is allowed */
3411     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3412         dzp_bit = 0;
3413     }
3414     return cpu->dcz_blocksize | dzp_bit;
3415 }
3416 
3417 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3418                                     bool isread)
3419 {
3420     if (!(env->pstate & PSTATE_SP)) {
3421         /* Access to SP_EL0 is undefined if it's being used as
3422          * the stack pointer.
3423          */
3424         return CP_ACCESS_TRAP_UNCATEGORIZED;
3425     }
3426     return CP_ACCESS_OK;
3427 }
3428 
3429 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3430 {
3431     return env->pstate & PSTATE_SP;
3432 }
3433 
3434 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3435 {
3436     update_spsel(env, val);
3437 }
3438 
3439 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3440                         uint64_t value)
3441 {
3442     ARMCPU *cpu = arm_env_get_cpu(env);
3443 
3444     if (raw_read(env, ri) == value) {
3445         /* Skip the TLB flush if nothing actually changed; Linux likes
3446          * to do a lot of pointless SCTLR writes.
3447          */
3448         return;
3449     }
3450 
3451     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3452         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3453         value &= ~SCTLR_M;
3454     }
3455 
3456     raw_write(env, ri, value);
3457     /* ??? Lots of these bits are not implemented.  */
3458     /* This may enable/disable the MMU, so do a TLB flush.  */
3459     tlb_flush(CPU(cpu));
3460 }
3461 
3462 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3463                                      bool isread)
3464 {
3465     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3466         return CP_ACCESS_TRAP_FP_EL2;
3467     }
3468     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3469         return CP_ACCESS_TRAP_FP_EL3;
3470     }
3471     return CP_ACCESS_OK;
3472 }
3473 
3474 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3475                        uint64_t value)
3476 {
3477     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3478 }
3479 
3480 static const ARMCPRegInfo v8_cp_reginfo[] = {
3481     /* Minimal set of EL0-visible registers. This will need to be expanded
3482      * significantly for system emulation of AArch64 CPUs.
3483      */
3484     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3485       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3486       .access = PL0_RW, .type = ARM_CP_NZCV },
3487     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3488       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3489       .type = ARM_CP_NO_RAW,
3490       .access = PL0_RW, .accessfn = aa64_daif_access,
3491       .fieldoffset = offsetof(CPUARMState, daif),
3492       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3493     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3494       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3495       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3496       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3497     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3498       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3499       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3500       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3501     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3502       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3503       .access = PL0_R, .type = ARM_CP_NO_RAW,
3504       .readfn = aa64_dczid_read },
3505     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3506       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3507       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3508 #ifndef CONFIG_USER_ONLY
3509       /* Avoid overhead of an access check that always passes in user-mode */
3510       .accessfn = aa64_zva_access,
3511 #endif
3512     },
3513     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3514       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3515       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3516     /* Cache ops: all NOPs since we don't emulate caches */
3517     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3518       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3519       .access = PL1_W, .type = ARM_CP_NOP },
3520     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3521       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3522       .access = PL1_W, .type = ARM_CP_NOP },
3523     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3524       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3525       .access = PL0_W, .type = ARM_CP_NOP,
3526       .accessfn = aa64_cacheop_access },
3527     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3528       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3529       .access = PL1_W, .type = ARM_CP_NOP },
3530     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3531       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3532       .access = PL1_W, .type = ARM_CP_NOP },
3533     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3534       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3535       .access = PL0_W, .type = ARM_CP_NOP,
3536       .accessfn = aa64_cacheop_access },
3537     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3538       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3539       .access = PL1_W, .type = ARM_CP_NOP },
3540     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3541       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3542       .access = PL0_W, .type = ARM_CP_NOP,
3543       .accessfn = aa64_cacheop_access },
3544     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3545       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3546       .access = PL0_W, .type = ARM_CP_NOP,
3547       .accessfn = aa64_cacheop_access },
3548     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3549       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3550       .access = PL1_W, .type = ARM_CP_NOP },
3551     /* TLBI operations */
3552     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3553       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3554       .access = PL1_W, .type = ARM_CP_NO_RAW,
3555       .writefn = tlbi_aa64_vmalle1is_write },
3556     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3557       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3558       .access = PL1_W, .type = ARM_CP_NO_RAW,
3559       .writefn = tlbi_aa64_vae1is_write },
3560     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3561       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3562       .access = PL1_W, .type = ARM_CP_NO_RAW,
3563       .writefn = tlbi_aa64_vmalle1is_write },
3564     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3565       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3566       .access = PL1_W, .type = ARM_CP_NO_RAW,
3567       .writefn = tlbi_aa64_vae1is_write },
3568     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3569       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3570       .access = PL1_W, .type = ARM_CP_NO_RAW,
3571       .writefn = tlbi_aa64_vae1is_write },
3572     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3573       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3574       .access = PL1_W, .type = ARM_CP_NO_RAW,
3575       .writefn = tlbi_aa64_vae1is_write },
3576     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3577       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3578       .access = PL1_W, .type = ARM_CP_NO_RAW,
3579       .writefn = tlbi_aa64_vmalle1_write },
3580     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3581       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3582       .access = PL1_W, .type = ARM_CP_NO_RAW,
3583       .writefn = tlbi_aa64_vae1_write },
3584     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3585       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3586       .access = PL1_W, .type = ARM_CP_NO_RAW,
3587       .writefn = tlbi_aa64_vmalle1_write },
3588     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3589       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3590       .access = PL1_W, .type = ARM_CP_NO_RAW,
3591       .writefn = tlbi_aa64_vae1_write },
3592     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3593       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3594       .access = PL1_W, .type = ARM_CP_NO_RAW,
3595       .writefn = tlbi_aa64_vae1_write },
3596     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3597       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3598       .access = PL1_W, .type = ARM_CP_NO_RAW,
3599       .writefn = tlbi_aa64_vae1_write },
3600     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3601       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3602       .access = PL2_W, .type = ARM_CP_NO_RAW,
3603       .writefn = tlbi_aa64_ipas2e1is_write },
3604     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3605       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3606       .access = PL2_W, .type = ARM_CP_NO_RAW,
3607       .writefn = tlbi_aa64_ipas2e1is_write },
3608     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3609       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3610       .access = PL2_W, .type = ARM_CP_NO_RAW,
3611       .writefn = tlbi_aa64_alle1is_write },
3612     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3613       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3614       .access = PL2_W, .type = ARM_CP_NO_RAW,
3615       .writefn = tlbi_aa64_alle1is_write },
3616     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3617       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3618       .access = PL2_W, .type = ARM_CP_NO_RAW,
3619       .writefn = tlbi_aa64_ipas2e1_write },
3620     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3621       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3622       .access = PL2_W, .type = ARM_CP_NO_RAW,
3623       .writefn = tlbi_aa64_ipas2e1_write },
3624     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3625       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3626       .access = PL2_W, .type = ARM_CP_NO_RAW,
3627       .writefn = tlbi_aa64_alle1_write },
3628     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3629       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3630       .access = PL2_W, .type = ARM_CP_NO_RAW,
3631       .writefn = tlbi_aa64_alle1is_write },
3632 #ifndef CONFIG_USER_ONLY
3633     /* 64 bit address translation operations */
3634     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3635       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3636       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3637     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3638       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3639       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3640     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3641       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3642       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3643     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3644       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3645       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3646     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3647       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3648       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3649     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3650       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3651       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3652     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3653       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3654       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3655     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3656       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3657       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3658     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3659     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3660       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3661       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3662     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3663       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3664       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3665     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3666       .type = ARM_CP_ALIAS,
3667       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3668       .access = PL1_RW, .resetvalue = 0,
3669       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3670       .writefn = par_write },
3671 #endif
3672     /* TLB invalidate last level of translation table walk */
3673     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3674       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3675     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3676       .type = ARM_CP_NO_RAW, .access = PL1_W,
3677       .writefn = tlbimvaa_is_write },
3678     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3679       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3680     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3681       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3682     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3683       .type = ARM_CP_NO_RAW, .access = PL2_W,
3684       .writefn = tlbimva_hyp_write },
3685     { .name = "TLBIMVALHIS",
3686       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3687       .type = ARM_CP_NO_RAW, .access = PL2_W,
3688       .writefn = tlbimva_hyp_is_write },
3689     { .name = "TLBIIPAS2",
3690       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3691       .type = ARM_CP_NO_RAW, .access = PL2_W,
3692       .writefn = tlbiipas2_write },
3693     { .name = "TLBIIPAS2IS",
3694       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3695       .type = ARM_CP_NO_RAW, .access = PL2_W,
3696       .writefn = tlbiipas2_is_write },
3697     { .name = "TLBIIPAS2L",
3698       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3699       .type = ARM_CP_NO_RAW, .access = PL2_W,
3700       .writefn = tlbiipas2_write },
3701     { .name = "TLBIIPAS2LIS",
3702       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3703       .type = ARM_CP_NO_RAW, .access = PL2_W,
3704       .writefn = tlbiipas2_is_write },
3705     /* 32 bit cache operations */
3706     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3707       .type = ARM_CP_NOP, .access = PL1_W },
3708     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3709       .type = ARM_CP_NOP, .access = PL1_W },
3710     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3711       .type = ARM_CP_NOP, .access = PL1_W },
3712     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3713       .type = ARM_CP_NOP, .access = PL1_W },
3714     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3715       .type = ARM_CP_NOP, .access = PL1_W },
3716     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3717       .type = ARM_CP_NOP, .access = PL1_W },
3718     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3719       .type = ARM_CP_NOP, .access = PL1_W },
3720     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3721       .type = ARM_CP_NOP, .access = PL1_W },
3722     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3723       .type = ARM_CP_NOP, .access = PL1_W },
3724     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3725       .type = ARM_CP_NOP, .access = PL1_W },
3726     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3727       .type = ARM_CP_NOP, .access = PL1_W },
3728     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3729       .type = ARM_CP_NOP, .access = PL1_W },
3730     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3731       .type = ARM_CP_NOP, .access = PL1_W },
3732     /* MMU Domain access control / MPU write buffer control */
3733     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3734       .access = PL1_RW, .resetvalue = 0,
3735       .writefn = dacr_write, .raw_writefn = raw_write,
3736       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3737                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3738     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3739       .type = ARM_CP_ALIAS,
3740       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3741       .access = PL1_RW,
3742       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3743     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3744       .type = ARM_CP_ALIAS,
3745       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3746       .access = PL1_RW,
3747       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3748     /* We rely on the access checks not allowing the guest to write to the
3749      * state field when SPSel indicates that it's being used as the stack
3750      * pointer.
3751      */
3752     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3753       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3754       .access = PL1_RW, .accessfn = sp_el0_access,
3755       .type = ARM_CP_ALIAS,
3756       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3757     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3758       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3759       .access = PL2_RW, .type = ARM_CP_ALIAS,
3760       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3761     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3762       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3763       .type = ARM_CP_NO_RAW,
3764       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3765     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3766       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3767       .type = ARM_CP_ALIAS,
3768       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3769       .access = PL2_RW, .accessfn = fpexc32_access },
3770     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3771       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3772       .access = PL2_RW, .resetvalue = 0,
3773       .writefn = dacr_write, .raw_writefn = raw_write,
3774       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3775     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3776       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3777       .access = PL2_RW, .resetvalue = 0,
3778       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3779     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3780       .type = ARM_CP_ALIAS,
3781       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3782       .access = PL2_RW,
3783       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3784     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3785       .type = ARM_CP_ALIAS,
3786       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3787       .access = PL2_RW,
3788       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3789     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3790       .type = ARM_CP_ALIAS,
3791       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3792       .access = PL2_RW,
3793       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3794     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3795       .type = ARM_CP_ALIAS,
3796       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3797       .access = PL2_RW,
3798       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3799     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3800       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3801       .resetvalue = 0,
3802       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3803     { .name = "SDCR", .type = ARM_CP_ALIAS,
3804       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3805       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3806       .writefn = sdcr_write,
3807       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3808     REGINFO_SENTINEL
3809 };
3810 
3811 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3812 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3813     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
3814       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3815       .access = PL2_RW,
3816       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3817     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
3818       .type = ARM_CP_NO_RAW,
3819       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3820       .access = PL2_RW,
3821       .type = ARM_CP_CONST, .resetvalue = 0 },
3822     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
3823       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3824       .access = PL2_RW,
3825       .type = ARM_CP_CONST, .resetvalue = 0 },
3826     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3827       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3828       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3829     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3830       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3831       .access = PL2_RW, .type = ARM_CP_CONST,
3832       .resetvalue = 0 },
3833     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3834       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3835       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3836     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3837       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3838       .access = PL2_RW, .type = ARM_CP_CONST,
3839       .resetvalue = 0 },
3840     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
3841       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3842       .access = PL2_RW, .type = ARM_CP_CONST,
3843       .resetvalue = 0 },
3844     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3845       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3846       .access = PL2_RW, .type = ARM_CP_CONST,
3847       .resetvalue = 0 },
3848     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3849       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3850       .access = PL2_RW, .type = ARM_CP_CONST,
3851       .resetvalue = 0 },
3852     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3853       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3854       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3855     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3856       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3857       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3858       .type = ARM_CP_CONST, .resetvalue = 0 },
3859     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3860       .cp = 15, .opc1 = 6, .crm = 2,
3861       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3862       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3863     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3864       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3865       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3866     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3867       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3868       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3869     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3870       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3871       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3872     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3873       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3874       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3875     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3876       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3877       .resetvalue = 0 },
3878     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3879       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3880       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3881     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3882       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3883       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3884     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3885       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3886       .resetvalue = 0 },
3887     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3888       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3889       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3890     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3891       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3892       .resetvalue = 0 },
3893     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3894       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3895       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3896     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3897       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3898       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3899     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3900       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3901       .access = PL2_RW, .accessfn = access_tda,
3902       .type = ARM_CP_CONST, .resetvalue = 0 },
3903     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3904       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3905       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3906       .type = ARM_CP_CONST, .resetvalue = 0 },
3907     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3908       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3909       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3910     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
3911       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3912       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3913     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
3914       .type = ARM_CP_CONST,
3915       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
3916       .access = PL2_RW, .resetvalue = 0 },
3917     REGINFO_SENTINEL
3918 };
3919 
3920 /* Ditto, but for registers which exist in ARMv8 but not v7 */
3921 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
3922     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
3923       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
3924       .access = PL2_RW,
3925       .type = ARM_CP_CONST, .resetvalue = 0 },
3926     REGINFO_SENTINEL
3927 };
3928 
3929 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3930 {
3931     ARMCPU *cpu = arm_env_get_cpu(env);
3932     CPUState *cs = ENV_GET_CPU(env);
3933     uint64_t valid_mask = HCR_MASK;
3934 
3935     if (arm_feature(env, ARM_FEATURE_EL3)) {
3936         valid_mask &= ~HCR_HCD;
3937     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3938         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3939          * However, if we're using the SMC PSCI conduit then QEMU is
3940          * effectively acting like EL3 firmware and so the guest at
3941          * EL2 should retain the ability to prevent EL1 from being
3942          * able to make SMC calls into the ersatz firmware, so in
3943          * that case HCR.TSC should be read/write.
3944          */
3945         valid_mask &= ~HCR_TSC;
3946     }
3947 
3948     /* Clear RES0 bits.  */
3949     value &= valid_mask;
3950 
3951     /*
3952      * VI and VF are kept in cs->interrupt_request. Modifying that
3953      * requires that we have the iothread lock, which is done by
3954      * marking the reginfo structs as ARM_CP_IO.
3955      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
3956      * possible for it to be taken immediately, because VIRQ and
3957      * VFIQ are masked unless running at EL0 or EL1, and HCR
3958      * can only be written at EL2.
3959      */
3960     g_assert(qemu_mutex_iothread_locked());
3961     if (value & HCR_VI) {
3962         cs->interrupt_request |= CPU_INTERRUPT_VIRQ;
3963     } else {
3964         cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
3965     }
3966     if (value & HCR_VF) {
3967         cs->interrupt_request |= CPU_INTERRUPT_VFIQ;
3968     } else {
3969         cs->interrupt_request &= ~CPU_INTERRUPT_VFIQ;
3970     }
3971     value &= ~(HCR_VI | HCR_VF);
3972 
3973     /* These bits change the MMU setup:
3974      * HCR_VM enables stage 2 translation
3975      * HCR_PTW forbids certain page-table setups
3976      * HCR_DC Disables stage1 and enables stage2 translation
3977      */
3978     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3979         tlb_flush(CPU(cpu));
3980     }
3981     env->cp15.hcr_el2 = value;
3982 }
3983 
3984 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
3985                           uint64_t value)
3986 {
3987     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
3988     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
3989     hcr_write(env, NULL, value);
3990 }
3991 
3992 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
3993                          uint64_t value)
3994 {
3995     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
3996     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
3997     hcr_write(env, NULL, value);
3998 }
3999 
4000 static uint64_t hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4001 {
4002     /* The VI and VF bits live in cs->interrupt_request */
4003     uint64_t ret = env->cp15.hcr_el2 & ~(HCR_VI | HCR_VF);
4004     CPUState *cs = ENV_GET_CPU(env);
4005 
4006     if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
4007         ret |= HCR_VI;
4008     }
4009     if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
4010         ret |= HCR_VF;
4011     }
4012     return ret;
4013 }
4014 
4015 static const ARMCPRegInfo el2_cp_reginfo[] = {
4016     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
4017       .type = ARM_CP_IO,
4018       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4019       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4020       .writefn = hcr_write, .readfn = hcr_read },
4021     { .name = "HCR", .state = ARM_CP_STATE_AA32,
4022       .type = ARM_CP_ALIAS | ARM_CP_IO,
4023       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
4024       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
4025       .writefn = hcr_writelow, .readfn = hcr_read },
4026     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
4027       .type = ARM_CP_ALIAS,
4028       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
4029       .access = PL2_RW,
4030       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
4031     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
4032       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
4033       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
4034     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
4035       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
4036       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
4037     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
4038       .type = ARM_CP_ALIAS,
4039       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
4040       .access = PL2_RW,
4041       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
4042     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
4043       .type = ARM_CP_ALIAS,
4044       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
4045       .access = PL2_RW,
4046       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
4047     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
4048       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
4049       .access = PL2_RW, .writefn = vbar_write,
4050       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
4051       .resetvalue = 0 },
4052     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
4053       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
4054       .access = PL3_RW, .type = ARM_CP_ALIAS,
4055       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
4056     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
4057       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
4058       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
4059       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
4060     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
4061       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
4062       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
4063       .resetvalue = 0 },
4064     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
4065       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
4066       .access = PL2_RW, .type = ARM_CP_ALIAS,
4067       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
4068     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
4069       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
4070       .access = PL2_RW, .type = ARM_CP_CONST,
4071       .resetvalue = 0 },
4072     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4073     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
4074       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
4075       .access = PL2_RW, .type = ARM_CP_CONST,
4076       .resetvalue = 0 },
4077     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
4078       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
4079       .access = PL2_RW, .type = ARM_CP_CONST,
4080       .resetvalue = 0 },
4081     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
4082       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
4083       .access = PL2_RW, .type = ARM_CP_CONST,
4084       .resetvalue = 0 },
4085     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
4086       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
4087       .access = PL2_RW,
4088       /* no .writefn needed as this can't cause an ASID change;
4089        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4090        */
4091       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
4092     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
4093       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4094       .type = ARM_CP_ALIAS,
4095       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4096       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4097     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
4098       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
4099       .access = PL2_RW,
4100       /* no .writefn needed as this can't cause an ASID change;
4101        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4102        */
4103       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
4104     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
4105       .cp = 15, .opc1 = 6, .crm = 2,
4106       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4107       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4108       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
4109       .writefn = vttbr_write },
4110     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
4111       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
4112       .access = PL2_RW, .writefn = vttbr_write,
4113       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
4114     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
4115       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
4116       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
4117       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
4118     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4119       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
4120       .access = PL2_RW, .resetvalue = 0,
4121       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
4122     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
4123       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
4124       .access = PL2_RW, .resetvalue = 0,
4125       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4126     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
4127       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4128       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
4129     { .name = "TLBIALLNSNH",
4130       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4131       .type = ARM_CP_NO_RAW, .access = PL2_W,
4132       .writefn = tlbiall_nsnh_write },
4133     { .name = "TLBIALLNSNHIS",
4134       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4135       .type = ARM_CP_NO_RAW, .access = PL2_W,
4136       .writefn = tlbiall_nsnh_is_write },
4137     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4138       .type = ARM_CP_NO_RAW, .access = PL2_W,
4139       .writefn = tlbiall_hyp_write },
4140     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4141       .type = ARM_CP_NO_RAW, .access = PL2_W,
4142       .writefn = tlbiall_hyp_is_write },
4143     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4144       .type = ARM_CP_NO_RAW, .access = PL2_W,
4145       .writefn = tlbimva_hyp_write },
4146     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4147       .type = ARM_CP_NO_RAW, .access = PL2_W,
4148       .writefn = tlbimva_hyp_is_write },
4149     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4150       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4151       .type = ARM_CP_NO_RAW, .access = PL2_W,
4152       .writefn = tlbi_aa64_alle2_write },
4153     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4154       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4155       .type = ARM_CP_NO_RAW, .access = PL2_W,
4156       .writefn = tlbi_aa64_vae2_write },
4157     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4158       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4159       .access = PL2_W, .type = ARM_CP_NO_RAW,
4160       .writefn = tlbi_aa64_vae2_write },
4161     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4162       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4163       .access = PL2_W, .type = ARM_CP_NO_RAW,
4164       .writefn = tlbi_aa64_alle2is_write },
4165     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4166       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4167       .type = ARM_CP_NO_RAW, .access = PL2_W,
4168       .writefn = tlbi_aa64_vae2is_write },
4169     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4170       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4171       .access = PL2_W, .type = ARM_CP_NO_RAW,
4172       .writefn = tlbi_aa64_vae2is_write },
4173 #ifndef CONFIG_USER_ONLY
4174     /* Unlike the other EL2-related AT operations, these must
4175      * UNDEF from EL3 if EL2 is not implemented, which is why we
4176      * define them here rather than with the rest of the AT ops.
4177      */
4178     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4179       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4180       .access = PL2_W, .accessfn = at_s1e2_access,
4181       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4182     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4183       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4184       .access = PL2_W, .accessfn = at_s1e2_access,
4185       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4186     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4187      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4188      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4189      * to behave as if SCR.NS was 1.
4190      */
4191     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4192       .access = PL2_W,
4193       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4194     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4195       .access = PL2_W,
4196       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4197     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4198       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4199       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4200        * reset values as IMPDEF. We choose to reset to 3 to comply with
4201        * both ARMv7 and ARMv8.
4202        */
4203       .access = PL2_RW, .resetvalue = 3,
4204       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4205     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4206       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4207       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4208       .writefn = gt_cntvoff_write,
4209       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4210     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4211       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4212       .writefn = gt_cntvoff_write,
4213       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4214     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4215       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4216       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4217       .type = ARM_CP_IO, .access = PL2_RW,
4218       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4219     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4220       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4221       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4222       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4223     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4224       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4225       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4226       .resetfn = gt_hyp_timer_reset,
4227       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4228     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4229       .type = ARM_CP_IO,
4230       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4231       .access = PL2_RW,
4232       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4233       .resetvalue = 0,
4234       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4235 #endif
4236     /* The only field of MDCR_EL2 that has a defined architectural reset value
4237      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4238      * don't impelment any PMU event counters, so using zero as a reset
4239      * value for MDCR_EL2 is okay
4240      */
4241     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4242       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4243       .access = PL2_RW, .resetvalue = 0,
4244       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4245     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4246       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4247       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4248       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4249     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4250       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4251       .access = PL2_RW,
4252       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4253     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4254       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4255       .access = PL2_RW,
4256       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4257     REGINFO_SENTINEL
4258 };
4259 
4260 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
4261     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
4262       .type = ARM_CP_ALIAS | ARM_CP_IO,
4263       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
4264       .access = PL2_RW,
4265       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
4266       .writefn = hcr_writehigh },
4267     REGINFO_SENTINEL
4268 };
4269 
4270 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4271                                    bool isread)
4272 {
4273     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4274      * At Secure EL1 it traps to EL3.
4275      */
4276     if (arm_current_el(env) == 3) {
4277         return CP_ACCESS_OK;
4278     }
4279     if (arm_is_secure_below_el3(env)) {
4280         return CP_ACCESS_TRAP_EL3;
4281     }
4282     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4283     if (isread) {
4284         return CP_ACCESS_OK;
4285     }
4286     return CP_ACCESS_TRAP_UNCATEGORIZED;
4287 }
4288 
4289 static const ARMCPRegInfo el3_cp_reginfo[] = {
4290     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4291       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4292       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4293       .resetvalue = 0, .writefn = scr_write },
4294     { .name = "SCR",  .type = ARM_CP_ALIAS,
4295       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4296       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4297       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4298       .writefn = scr_write },
4299     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4300       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4301       .access = PL3_RW, .resetvalue = 0,
4302       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4303     { .name = "SDER",
4304       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4305       .access = PL3_RW, .resetvalue = 0,
4306       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4307     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4308       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4309       .writefn = vbar_write, .resetvalue = 0,
4310       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4311     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4312       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4313       .access = PL3_RW, .resetvalue = 0,
4314       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4315     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4316       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4317       .access = PL3_RW,
4318       /* no .writefn needed as this can't cause an ASID change;
4319        * we must provide a .raw_writefn and .resetfn because we handle
4320        * reset and migration for the AArch32 TTBCR(S), which might be
4321        * using mask and base_mask.
4322        */
4323       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4324       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4325     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4326       .type = ARM_CP_ALIAS,
4327       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4328       .access = PL3_RW,
4329       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4330     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4331       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4332       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4333     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4334       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4335       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4336     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4337       .type = ARM_CP_ALIAS,
4338       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4339       .access = PL3_RW,
4340       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4341     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4342       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4343       .access = PL3_RW, .writefn = vbar_write,
4344       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4345       .resetvalue = 0 },
4346     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4347       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4348       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4349       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4350     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4351       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4352       .access = PL3_RW, .resetvalue = 0,
4353       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4354     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4355       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4356       .access = PL3_RW, .type = ARM_CP_CONST,
4357       .resetvalue = 0 },
4358     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4359       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4360       .access = PL3_RW, .type = ARM_CP_CONST,
4361       .resetvalue = 0 },
4362     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4363       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4364       .access = PL3_RW, .type = ARM_CP_CONST,
4365       .resetvalue = 0 },
4366     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4367       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4368       .access = PL3_W, .type = ARM_CP_NO_RAW,
4369       .writefn = tlbi_aa64_alle3is_write },
4370     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4371       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4372       .access = PL3_W, .type = ARM_CP_NO_RAW,
4373       .writefn = tlbi_aa64_vae3is_write },
4374     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4375       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4376       .access = PL3_W, .type = ARM_CP_NO_RAW,
4377       .writefn = tlbi_aa64_vae3is_write },
4378     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4379       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4380       .access = PL3_W, .type = ARM_CP_NO_RAW,
4381       .writefn = tlbi_aa64_alle3_write },
4382     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4383       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4384       .access = PL3_W, .type = ARM_CP_NO_RAW,
4385       .writefn = tlbi_aa64_vae3_write },
4386     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4387       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4388       .access = PL3_W, .type = ARM_CP_NO_RAW,
4389       .writefn = tlbi_aa64_vae3_write },
4390     REGINFO_SENTINEL
4391 };
4392 
4393 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4394                                      bool isread)
4395 {
4396     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4397      * but the AArch32 CTR has its own reginfo struct)
4398      */
4399     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4400         return CP_ACCESS_TRAP;
4401     }
4402     return CP_ACCESS_OK;
4403 }
4404 
4405 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4406                         uint64_t value)
4407 {
4408     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4409      * read via a bit in OSLSR_EL1.
4410      */
4411     int oslock;
4412 
4413     if (ri->state == ARM_CP_STATE_AA32) {
4414         oslock = (value == 0xC5ACCE55);
4415     } else {
4416         oslock = value & 1;
4417     }
4418 
4419     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4420 }
4421 
4422 static const ARMCPRegInfo debug_cp_reginfo[] = {
4423     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4424      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4425      * unlike DBGDRAR it is never accessible from EL0.
4426      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4427      * accessor.
4428      */
4429     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4430       .access = PL0_R, .accessfn = access_tdra,
4431       .type = ARM_CP_CONST, .resetvalue = 0 },
4432     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4433       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4434       .access = PL1_R, .accessfn = access_tdra,
4435       .type = ARM_CP_CONST, .resetvalue = 0 },
4436     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4437       .access = PL0_R, .accessfn = access_tdra,
4438       .type = ARM_CP_CONST, .resetvalue = 0 },
4439     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4440     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4441       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4442       .access = PL1_RW, .accessfn = access_tda,
4443       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4444       .resetvalue = 0 },
4445     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4446      * We don't implement the configurable EL0 access.
4447      */
4448     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4449       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4450       .type = ARM_CP_ALIAS,
4451       .access = PL1_R, .accessfn = access_tda,
4452       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4453     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4454       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4455       .access = PL1_W, .type = ARM_CP_NO_RAW,
4456       .accessfn = access_tdosa,
4457       .writefn = oslar_write },
4458     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4459       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4460       .access = PL1_R, .resetvalue = 10,
4461       .accessfn = access_tdosa,
4462       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4463     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4464     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4465       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4466       .access = PL1_RW, .accessfn = access_tdosa,
4467       .type = ARM_CP_NOP },
4468     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4469      * implement vector catch debug events yet.
4470      */
4471     { .name = "DBGVCR",
4472       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4473       .access = PL1_RW, .accessfn = access_tda,
4474       .type = ARM_CP_NOP },
4475     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4476      * to save and restore a 32-bit guest's DBGVCR)
4477      */
4478     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4479       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4480       .access = PL2_RW, .accessfn = access_tda,
4481       .type = ARM_CP_NOP },
4482     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4483      * Channel but Linux may try to access this register. The 32-bit
4484      * alias is DBGDCCINT.
4485      */
4486     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4487       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4488       .access = PL1_RW, .accessfn = access_tda,
4489       .type = ARM_CP_NOP },
4490     REGINFO_SENTINEL
4491 };
4492 
4493 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4494     /* 64 bit access versions of the (dummy) debug registers */
4495     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4496       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4497     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4498       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4499     REGINFO_SENTINEL
4500 };
4501 
4502 /* Return the exception level to which exceptions should be taken
4503  * via SVEAccessTrap.  If an exception should be routed through
4504  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
4505  * take care of raising that exception.
4506  * C.f. the ARM pseudocode function CheckSVEEnabled.
4507  */
4508 int sve_exception_el(CPUARMState *env, int el)
4509 {
4510 #ifndef CONFIG_USER_ONLY
4511     if (el <= 1) {
4512         bool disabled = false;
4513 
4514         /* The CPACR.ZEN controls traps to EL1:
4515          * 0, 2 : trap EL0 and EL1 accesses
4516          * 1    : trap only EL0 accesses
4517          * 3    : trap no accesses
4518          */
4519         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
4520             disabled = true;
4521         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
4522             disabled = el == 0;
4523         }
4524         if (disabled) {
4525             /* route_to_el2 */
4526             return (arm_feature(env, ARM_FEATURE_EL2)
4527                     && !arm_is_secure(env)
4528                     && (env->cp15.hcr_el2 & HCR_TGE) ? 2 : 1);
4529         }
4530 
4531         /* Check CPACR.FPEN.  */
4532         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
4533             disabled = true;
4534         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
4535             disabled = el == 0;
4536         }
4537         if (disabled) {
4538             return 0;
4539         }
4540     }
4541 
4542     /* CPTR_EL2.  Since TZ and TFP are positive,
4543      * they will be zero when EL2 is not present.
4544      */
4545     if (el <= 2 && !arm_is_secure_below_el3(env)) {
4546         if (env->cp15.cptr_el[2] & CPTR_TZ) {
4547             return 2;
4548         }
4549         if (env->cp15.cptr_el[2] & CPTR_TFP) {
4550             return 0;
4551         }
4552     }
4553 
4554     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
4555     if (arm_feature(env, ARM_FEATURE_EL3)
4556         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
4557         return 3;
4558     }
4559 #endif
4560     return 0;
4561 }
4562 
4563 /*
4564  * Given that SVE is enabled, return the vector length for EL.
4565  */
4566 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
4567 {
4568     ARMCPU *cpu = arm_env_get_cpu(env);
4569     uint32_t zcr_len = cpu->sve_max_vq - 1;
4570 
4571     if (el <= 1) {
4572         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
4573     }
4574     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
4575         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
4576     }
4577     if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
4578         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
4579     }
4580     return zcr_len;
4581 }
4582 
4583 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4584                       uint64_t value)
4585 {
4586     int cur_el = arm_current_el(env);
4587     int old_len = sve_zcr_len_for_el(env, cur_el);
4588     int new_len;
4589 
4590     /* Bits other than [3:0] are RAZ/WI.  */
4591     raw_write(env, ri, value & 0xf);
4592 
4593     /*
4594      * Because we arrived here, we know both FP and SVE are enabled;
4595      * otherwise we would have trapped access to the ZCR_ELn register.
4596      */
4597     new_len = sve_zcr_len_for_el(env, cur_el);
4598     if (new_len < old_len) {
4599         aarch64_sve_narrow_vq(env, new_len + 1);
4600     }
4601 }
4602 
4603 static const ARMCPRegInfo zcr_el1_reginfo = {
4604     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4605     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4606     .access = PL1_RW, .type = ARM_CP_SVE,
4607     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4608     .writefn = zcr_write, .raw_writefn = raw_write
4609 };
4610 
4611 static const ARMCPRegInfo zcr_el2_reginfo = {
4612     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4613     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4614     .access = PL2_RW, .type = ARM_CP_SVE,
4615     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4616     .writefn = zcr_write, .raw_writefn = raw_write
4617 };
4618 
4619 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4620     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4621     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4622     .access = PL2_RW, .type = ARM_CP_SVE,
4623     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4624 };
4625 
4626 static const ARMCPRegInfo zcr_el3_reginfo = {
4627     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4628     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4629     .access = PL3_RW, .type = ARM_CP_SVE,
4630     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4631     .writefn = zcr_write, .raw_writefn = raw_write
4632 };
4633 
4634 void hw_watchpoint_update(ARMCPU *cpu, int n)
4635 {
4636     CPUARMState *env = &cpu->env;
4637     vaddr len = 0;
4638     vaddr wvr = env->cp15.dbgwvr[n];
4639     uint64_t wcr = env->cp15.dbgwcr[n];
4640     int mask;
4641     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4642 
4643     if (env->cpu_watchpoint[n]) {
4644         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4645         env->cpu_watchpoint[n] = NULL;
4646     }
4647 
4648     if (!extract64(wcr, 0, 1)) {
4649         /* E bit clear : watchpoint disabled */
4650         return;
4651     }
4652 
4653     switch (extract64(wcr, 3, 2)) {
4654     case 0:
4655         /* LSC 00 is reserved and must behave as if the wp is disabled */
4656         return;
4657     case 1:
4658         flags |= BP_MEM_READ;
4659         break;
4660     case 2:
4661         flags |= BP_MEM_WRITE;
4662         break;
4663     case 3:
4664         flags |= BP_MEM_ACCESS;
4665         break;
4666     }
4667 
4668     /* Attempts to use both MASK and BAS fields simultaneously are
4669      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4670      * thus generating a watchpoint for every byte in the masked region.
4671      */
4672     mask = extract64(wcr, 24, 4);
4673     if (mask == 1 || mask == 2) {
4674         /* Reserved values of MASK; we must act as if the mask value was
4675          * some non-reserved value, or as if the watchpoint were disabled.
4676          * We choose the latter.
4677          */
4678         return;
4679     } else if (mask) {
4680         /* Watchpoint covers an aligned area up to 2GB in size */
4681         len = 1ULL << mask;
4682         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4683          * whether the watchpoint fires when the unmasked bits match; we opt
4684          * to generate the exceptions.
4685          */
4686         wvr &= ~(len - 1);
4687     } else {
4688         /* Watchpoint covers bytes defined by the byte address select bits */
4689         int bas = extract64(wcr, 5, 8);
4690         int basstart;
4691 
4692         if (bas == 0) {
4693             /* This must act as if the watchpoint is disabled */
4694             return;
4695         }
4696 
4697         if (extract64(wvr, 2, 1)) {
4698             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4699              * ignored, and BAS[3:0] define which bytes to watch.
4700              */
4701             bas &= 0xf;
4702         }
4703         /* The BAS bits are supposed to be programmed to indicate a contiguous
4704          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4705          * we fire for each byte in the word/doubleword addressed by the WVR.
4706          * We choose to ignore any non-zero bits after the first range of 1s.
4707          */
4708         basstart = ctz32(bas);
4709         len = cto32(bas >> basstart);
4710         wvr += basstart;
4711     }
4712 
4713     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4714                           &env->cpu_watchpoint[n]);
4715 }
4716 
4717 void hw_watchpoint_update_all(ARMCPU *cpu)
4718 {
4719     int i;
4720     CPUARMState *env = &cpu->env;
4721 
4722     /* Completely clear out existing QEMU watchpoints and our array, to
4723      * avoid possible stale entries following migration load.
4724      */
4725     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4726     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4727 
4728     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4729         hw_watchpoint_update(cpu, i);
4730     }
4731 }
4732 
4733 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4734                          uint64_t value)
4735 {
4736     ARMCPU *cpu = arm_env_get_cpu(env);
4737     int i = ri->crm;
4738 
4739     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4740      * register reads and behaves as if values written are sign extended.
4741      * Bits [1:0] are RES0.
4742      */
4743     value = sextract64(value, 0, 49) & ~3ULL;
4744 
4745     raw_write(env, ri, value);
4746     hw_watchpoint_update(cpu, i);
4747 }
4748 
4749 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4750                          uint64_t value)
4751 {
4752     ARMCPU *cpu = arm_env_get_cpu(env);
4753     int i = ri->crm;
4754 
4755     raw_write(env, ri, value);
4756     hw_watchpoint_update(cpu, i);
4757 }
4758 
4759 void hw_breakpoint_update(ARMCPU *cpu, int n)
4760 {
4761     CPUARMState *env = &cpu->env;
4762     uint64_t bvr = env->cp15.dbgbvr[n];
4763     uint64_t bcr = env->cp15.dbgbcr[n];
4764     vaddr addr;
4765     int bt;
4766     int flags = BP_CPU;
4767 
4768     if (env->cpu_breakpoint[n]) {
4769         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4770         env->cpu_breakpoint[n] = NULL;
4771     }
4772 
4773     if (!extract64(bcr, 0, 1)) {
4774         /* E bit clear : watchpoint disabled */
4775         return;
4776     }
4777 
4778     bt = extract64(bcr, 20, 4);
4779 
4780     switch (bt) {
4781     case 4: /* unlinked address mismatch (reserved if AArch64) */
4782     case 5: /* linked address mismatch (reserved if AArch64) */
4783         qemu_log_mask(LOG_UNIMP,
4784                       "arm: address mismatch breakpoint types not implemented\n");
4785         return;
4786     case 0: /* unlinked address match */
4787     case 1: /* linked address match */
4788     {
4789         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4790          * we behave as if the register was sign extended. Bits [1:0] are
4791          * RES0. The BAS field is used to allow setting breakpoints on 16
4792          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4793          * a bp will fire if the addresses covered by the bp and the addresses
4794          * covered by the insn overlap but the insn doesn't start at the
4795          * start of the bp address range. We choose to require the insn and
4796          * the bp to have the same address. The constraints on writing to
4797          * BAS enforced in dbgbcr_write mean we have only four cases:
4798          *  0b0000  => no breakpoint
4799          *  0b0011  => breakpoint on addr
4800          *  0b1100  => breakpoint on addr + 2
4801          *  0b1111  => breakpoint on addr
4802          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4803          */
4804         int bas = extract64(bcr, 5, 4);
4805         addr = sextract64(bvr, 0, 49) & ~3ULL;
4806         if (bas == 0) {
4807             return;
4808         }
4809         if (bas == 0xc) {
4810             addr += 2;
4811         }
4812         break;
4813     }
4814     case 2: /* unlinked context ID match */
4815     case 8: /* unlinked VMID match (reserved if no EL2) */
4816     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4817         qemu_log_mask(LOG_UNIMP,
4818                       "arm: unlinked context breakpoint types not implemented\n");
4819         return;
4820     case 9: /* linked VMID match (reserved if no EL2) */
4821     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4822     case 3: /* linked context ID match */
4823     default:
4824         /* We must generate no events for Linked context matches (unless
4825          * they are linked to by some other bp/wp, which is handled in
4826          * updates for the linking bp/wp). We choose to also generate no events
4827          * for reserved values.
4828          */
4829         return;
4830     }
4831 
4832     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4833 }
4834 
4835 void hw_breakpoint_update_all(ARMCPU *cpu)
4836 {
4837     int i;
4838     CPUARMState *env = &cpu->env;
4839 
4840     /* Completely clear out existing QEMU breakpoints and our array, to
4841      * avoid possible stale entries following migration load.
4842      */
4843     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4844     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4845 
4846     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4847         hw_breakpoint_update(cpu, i);
4848     }
4849 }
4850 
4851 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4852                          uint64_t value)
4853 {
4854     ARMCPU *cpu = arm_env_get_cpu(env);
4855     int i = ri->crm;
4856 
4857     raw_write(env, ri, value);
4858     hw_breakpoint_update(cpu, i);
4859 }
4860 
4861 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4862                          uint64_t value)
4863 {
4864     ARMCPU *cpu = arm_env_get_cpu(env);
4865     int i = ri->crm;
4866 
4867     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4868      * copy of BAS[0].
4869      */
4870     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4871     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4872 
4873     raw_write(env, ri, value);
4874     hw_breakpoint_update(cpu, i);
4875 }
4876 
4877 static void define_debug_regs(ARMCPU *cpu)
4878 {
4879     /* Define v7 and v8 architectural debug registers.
4880      * These are just dummy implementations for now.
4881      */
4882     int i;
4883     int wrps, brps, ctx_cmps;
4884     ARMCPRegInfo dbgdidr = {
4885         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4886         .access = PL0_R, .accessfn = access_tda,
4887         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4888     };
4889 
4890     /* Note that all these register fields hold "number of Xs minus 1". */
4891     brps = extract32(cpu->dbgdidr, 24, 4);
4892     wrps = extract32(cpu->dbgdidr, 28, 4);
4893     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4894 
4895     assert(ctx_cmps <= brps);
4896 
4897     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4898      * of the debug registers such as number of breakpoints;
4899      * check that if they both exist then they agree.
4900      */
4901     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4902         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4903         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4904         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4905     }
4906 
4907     define_one_arm_cp_reg(cpu, &dbgdidr);
4908     define_arm_cp_regs(cpu, debug_cp_reginfo);
4909 
4910     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4911         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4912     }
4913 
4914     for (i = 0; i < brps + 1; i++) {
4915         ARMCPRegInfo dbgregs[] = {
4916             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4917               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4918               .access = PL1_RW, .accessfn = access_tda,
4919               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4920               .writefn = dbgbvr_write, .raw_writefn = raw_write
4921             },
4922             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4923               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4924               .access = PL1_RW, .accessfn = access_tda,
4925               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4926               .writefn = dbgbcr_write, .raw_writefn = raw_write
4927             },
4928             REGINFO_SENTINEL
4929         };
4930         define_arm_cp_regs(cpu, dbgregs);
4931     }
4932 
4933     for (i = 0; i < wrps + 1; i++) {
4934         ARMCPRegInfo dbgregs[] = {
4935             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4936               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4937               .access = PL1_RW, .accessfn = access_tda,
4938               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4939               .writefn = dbgwvr_write, .raw_writefn = raw_write
4940             },
4941             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4942               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4943               .access = PL1_RW, .accessfn = access_tda,
4944               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4945               .writefn = dbgwcr_write, .raw_writefn = raw_write
4946             },
4947             REGINFO_SENTINEL
4948         };
4949         define_arm_cp_regs(cpu, dbgregs);
4950     }
4951 }
4952 
4953 /* We don't know until after realize whether there's a GICv3
4954  * attached, and that is what registers the gicv3 sysregs.
4955  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4956  * at runtime.
4957  */
4958 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4959 {
4960     ARMCPU *cpu = arm_env_get_cpu(env);
4961     uint64_t pfr1 = cpu->id_pfr1;
4962 
4963     if (env->gicv3state) {
4964         pfr1 |= 1 << 28;
4965     }
4966     return pfr1;
4967 }
4968 
4969 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4970 {
4971     ARMCPU *cpu = arm_env_get_cpu(env);
4972     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
4973 
4974     if (env->gicv3state) {
4975         pfr0 |= 1 << 24;
4976     }
4977     return pfr0;
4978 }
4979 
4980 void register_cp_regs_for_features(ARMCPU *cpu)
4981 {
4982     /* Register all the coprocessor registers based on feature bits */
4983     CPUARMState *env = &cpu->env;
4984     if (arm_feature(env, ARM_FEATURE_M)) {
4985         /* M profile has no coprocessor registers */
4986         return;
4987     }
4988 
4989     define_arm_cp_regs(cpu, cp_reginfo);
4990     if (!arm_feature(env, ARM_FEATURE_V8)) {
4991         /* Must go early as it is full of wildcards that may be
4992          * overridden by later definitions.
4993          */
4994         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4995     }
4996 
4997     if (arm_feature(env, ARM_FEATURE_V6)) {
4998         /* The ID registers all have impdef reset values */
4999         ARMCPRegInfo v6_idregs[] = {
5000             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
5001               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
5002               .access = PL1_R, .type = ARM_CP_CONST,
5003               .resetvalue = cpu->id_pfr0 },
5004             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5005              * the value of the GIC field until after we define these regs.
5006              */
5007             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
5008               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
5009               .access = PL1_R, .type = ARM_CP_NO_RAW,
5010               .readfn = id_pfr1_read,
5011               .writefn = arm_cp_write_ignore },
5012             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
5013               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
5014               .access = PL1_R, .type = ARM_CP_CONST,
5015               .resetvalue = cpu->id_dfr0 },
5016             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
5017               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
5018               .access = PL1_R, .type = ARM_CP_CONST,
5019               .resetvalue = cpu->id_afr0 },
5020             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
5021               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
5022               .access = PL1_R, .type = ARM_CP_CONST,
5023               .resetvalue = cpu->id_mmfr0 },
5024             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
5025               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
5026               .access = PL1_R, .type = ARM_CP_CONST,
5027               .resetvalue = cpu->id_mmfr1 },
5028             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
5029               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
5030               .access = PL1_R, .type = ARM_CP_CONST,
5031               .resetvalue = cpu->id_mmfr2 },
5032             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
5033               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
5034               .access = PL1_R, .type = ARM_CP_CONST,
5035               .resetvalue = cpu->id_mmfr3 },
5036             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
5037               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
5038               .access = PL1_R, .type = ARM_CP_CONST,
5039               .resetvalue = cpu->isar.id_isar0 },
5040             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
5041               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
5042               .access = PL1_R, .type = ARM_CP_CONST,
5043               .resetvalue = cpu->isar.id_isar1 },
5044             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
5045               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
5046               .access = PL1_R, .type = ARM_CP_CONST,
5047               .resetvalue = cpu->isar.id_isar2 },
5048             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
5049               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
5050               .access = PL1_R, .type = ARM_CP_CONST,
5051               .resetvalue = cpu->isar.id_isar3 },
5052             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
5053               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
5054               .access = PL1_R, .type = ARM_CP_CONST,
5055               .resetvalue = cpu->isar.id_isar4 },
5056             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
5057               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
5058               .access = PL1_R, .type = ARM_CP_CONST,
5059               .resetvalue = cpu->isar.id_isar5 },
5060             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
5061               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
5062               .access = PL1_R, .type = ARM_CP_CONST,
5063               .resetvalue = cpu->id_mmfr4 },
5064             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
5065               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
5066               .access = PL1_R, .type = ARM_CP_CONST,
5067               .resetvalue = cpu->isar.id_isar6 },
5068             REGINFO_SENTINEL
5069         };
5070         define_arm_cp_regs(cpu, v6_idregs);
5071         define_arm_cp_regs(cpu, v6_cp_reginfo);
5072     } else {
5073         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
5074     }
5075     if (arm_feature(env, ARM_FEATURE_V6K)) {
5076         define_arm_cp_regs(cpu, v6k_cp_reginfo);
5077     }
5078     if (arm_feature(env, ARM_FEATURE_V7MP) &&
5079         !arm_feature(env, ARM_FEATURE_PMSA)) {
5080         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
5081     }
5082     if (arm_feature(env, ARM_FEATURE_V7)) {
5083         /* v7 performance monitor control register: same implementor
5084          * field as main ID register, and we implement only the cycle
5085          * count register.
5086          */
5087 #ifndef CONFIG_USER_ONLY
5088         ARMCPRegInfo pmcr = {
5089             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
5090             .access = PL0_RW,
5091             .type = ARM_CP_IO | ARM_CP_ALIAS,
5092             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
5093             .accessfn = pmreg_access, .writefn = pmcr_write,
5094             .raw_writefn = raw_write,
5095         };
5096         ARMCPRegInfo pmcr64 = {
5097             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
5098             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
5099             .access = PL0_RW, .accessfn = pmreg_access,
5100             .type = ARM_CP_IO,
5101             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
5102             .resetvalue = cpu->midr & 0xff000000,
5103             .writefn = pmcr_write, .raw_writefn = raw_write,
5104         };
5105         define_one_arm_cp_reg(cpu, &pmcr);
5106         define_one_arm_cp_reg(cpu, &pmcr64);
5107 #endif
5108         ARMCPRegInfo clidr = {
5109             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
5110             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
5111             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
5112         };
5113         define_one_arm_cp_reg(cpu, &clidr);
5114         define_arm_cp_regs(cpu, v7_cp_reginfo);
5115         define_debug_regs(cpu);
5116     } else {
5117         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
5118     }
5119     if (arm_feature(env, ARM_FEATURE_V8)) {
5120         /* AArch64 ID registers, which all have impdef reset values.
5121          * Note that within the ID register ranges the unused slots
5122          * must all RAZ, not UNDEF; future architecture versions may
5123          * define new registers here.
5124          */
5125         ARMCPRegInfo v8_idregs[] = {
5126             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5127              * know the right value for the GIC field until after we
5128              * define these regs.
5129              */
5130             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
5131               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
5132               .access = PL1_R, .type = ARM_CP_NO_RAW,
5133               .readfn = id_aa64pfr0_read,
5134               .writefn = arm_cp_write_ignore },
5135             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
5136               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
5137               .access = PL1_R, .type = ARM_CP_CONST,
5138               .resetvalue = cpu->isar.id_aa64pfr1},
5139             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5140               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
5141               .access = PL1_R, .type = ARM_CP_CONST,
5142               .resetvalue = 0 },
5143             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5144               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
5145               .access = PL1_R, .type = ARM_CP_CONST,
5146               .resetvalue = 0 },
5147             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
5148               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
5149               .access = PL1_R, .type = ARM_CP_CONST,
5150               /* At present, only SVEver == 0 is defined anyway.  */
5151               .resetvalue = 0 },
5152             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5153               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
5154               .access = PL1_R, .type = ARM_CP_CONST,
5155               .resetvalue = 0 },
5156             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5157               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
5158               .access = PL1_R, .type = ARM_CP_CONST,
5159               .resetvalue = 0 },
5160             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5161               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
5162               .access = PL1_R, .type = ARM_CP_CONST,
5163               .resetvalue = 0 },
5164             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
5165               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
5166               .access = PL1_R, .type = ARM_CP_CONST,
5167               .resetvalue = cpu->id_aa64dfr0 },
5168             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
5169               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
5170               .access = PL1_R, .type = ARM_CP_CONST,
5171               .resetvalue = cpu->id_aa64dfr1 },
5172             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5173               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
5174               .access = PL1_R, .type = ARM_CP_CONST,
5175               .resetvalue = 0 },
5176             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5177               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
5178               .access = PL1_R, .type = ARM_CP_CONST,
5179               .resetvalue = 0 },
5180             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
5181               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
5182               .access = PL1_R, .type = ARM_CP_CONST,
5183               .resetvalue = cpu->id_aa64afr0 },
5184             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5185               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5186               .access = PL1_R, .type = ARM_CP_CONST,
5187               .resetvalue = cpu->id_aa64afr1 },
5188             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5189               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5190               .access = PL1_R, .type = ARM_CP_CONST,
5191               .resetvalue = 0 },
5192             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5193               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5194               .access = PL1_R, .type = ARM_CP_CONST,
5195               .resetvalue = 0 },
5196             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5197               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5198               .access = PL1_R, .type = ARM_CP_CONST,
5199               .resetvalue = cpu->isar.id_aa64isar0 },
5200             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5201               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5202               .access = PL1_R, .type = ARM_CP_CONST,
5203               .resetvalue = cpu->isar.id_aa64isar1 },
5204             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5205               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5206               .access = PL1_R, .type = ARM_CP_CONST,
5207               .resetvalue = 0 },
5208             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5209               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5210               .access = PL1_R, .type = ARM_CP_CONST,
5211               .resetvalue = 0 },
5212             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5213               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5214               .access = PL1_R, .type = ARM_CP_CONST,
5215               .resetvalue = 0 },
5216             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5217               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5218               .access = PL1_R, .type = ARM_CP_CONST,
5219               .resetvalue = 0 },
5220             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5221               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5222               .access = PL1_R, .type = ARM_CP_CONST,
5223               .resetvalue = 0 },
5224             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5225               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5226               .access = PL1_R, .type = ARM_CP_CONST,
5227               .resetvalue = 0 },
5228             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5229               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5230               .access = PL1_R, .type = ARM_CP_CONST,
5231               .resetvalue = cpu->id_aa64mmfr0 },
5232             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5233               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5234               .access = PL1_R, .type = ARM_CP_CONST,
5235               .resetvalue = cpu->id_aa64mmfr1 },
5236             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5237               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5238               .access = PL1_R, .type = ARM_CP_CONST,
5239               .resetvalue = 0 },
5240             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5241               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5242               .access = PL1_R, .type = ARM_CP_CONST,
5243               .resetvalue = 0 },
5244             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5245               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5246               .access = PL1_R, .type = ARM_CP_CONST,
5247               .resetvalue = 0 },
5248             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5249               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5250               .access = PL1_R, .type = ARM_CP_CONST,
5251               .resetvalue = 0 },
5252             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5253               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5254               .access = PL1_R, .type = ARM_CP_CONST,
5255               .resetvalue = 0 },
5256             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5257               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5258               .access = PL1_R, .type = ARM_CP_CONST,
5259               .resetvalue = 0 },
5260             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5261               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5262               .access = PL1_R, .type = ARM_CP_CONST,
5263               .resetvalue = cpu->isar.mvfr0 },
5264             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5265               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5266               .access = PL1_R, .type = ARM_CP_CONST,
5267               .resetvalue = cpu->isar.mvfr1 },
5268             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5269               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5270               .access = PL1_R, .type = ARM_CP_CONST,
5271               .resetvalue = cpu->isar.mvfr2 },
5272             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5273               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5274               .access = PL1_R, .type = ARM_CP_CONST,
5275               .resetvalue = 0 },
5276             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5277               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5278               .access = PL1_R, .type = ARM_CP_CONST,
5279               .resetvalue = 0 },
5280             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5281               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5282               .access = PL1_R, .type = ARM_CP_CONST,
5283               .resetvalue = 0 },
5284             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5285               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5286               .access = PL1_R, .type = ARM_CP_CONST,
5287               .resetvalue = 0 },
5288             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5289               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5290               .access = PL1_R, .type = ARM_CP_CONST,
5291               .resetvalue = 0 },
5292             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5293               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5294               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5295               .resetvalue = cpu->pmceid0 },
5296             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5297               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5298               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5299               .resetvalue = cpu->pmceid0 },
5300             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5301               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5302               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5303               .resetvalue = cpu->pmceid1 },
5304             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5305               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5306               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5307               .resetvalue = cpu->pmceid1 },
5308             REGINFO_SENTINEL
5309         };
5310         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5311         if (!arm_feature(env, ARM_FEATURE_EL3) &&
5312             !arm_feature(env, ARM_FEATURE_EL2)) {
5313             ARMCPRegInfo rvbar = {
5314                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5315                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5316                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5317             };
5318             define_one_arm_cp_reg(cpu, &rvbar);
5319         }
5320         define_arm_cp_regs(cpu, v8_idregs);
5321         define_arm_cp_regs(cpu, v8_cp_reginfo);
5322     }
5323     if (arm_feature(env, ARM_FEATURE_EL2)) {
5324         uint64_t vmpidr_def = mpidr_read_val(env);
5325         ARMCPRegInfo vpidr_regs[] = {
5326             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5327               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5328               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5329               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5330               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5331             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5332               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5333               .access = PL2_RW, .resetvalue = cpu->midr,
5334               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5335             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5336               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5337               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5338               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5339               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5340             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5341               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5342               .access = PL2_RW,
5343               .resetvalue = vmpidr_def,
5344               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5345             REGINFO_SENTINEL
5346         };
5347         define_arm_cp_regs(cpu, vpidr_regs);
5348         define_arm_cp_regs(cpu, el2_cp_reginfo);
5349         if (arm_feature(env, ARM_FEATURE_V8)) {
5350             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
5351         }
5352         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5353         if (!arm_feature(env, ARM_FEATURE_EL3)) {
5354             ARMCPRegInfo rvbar = {
5355                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5356                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5357                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5358             };
5359             define_one_arm_cp_reg(cpu, &rvbar);
5360         }
5361     } else {
5362         /* If EL2 is missing but higher ELs are enabled, we need to
5363          * register the no_el2 reginfos.
5364          */
5365         if (arm_feature(env, ARM_FEATURE_EL3)) {
5366             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5367              * of MIDR_EL1 and MPIDR_EL1.
5368              */
5369             ARMCPRegInfo vpidr_regs[] = {
5370                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5371                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5372                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5373                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5374                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5375                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5376                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5377                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5378                   .type = ARM_CP_NO_RAW,
5379                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5380                 REGINFO_SENTINEL
5381             };
5382             define_arm_cp_regs(cpu, vpidr_regs);
5383             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5384             if (arm_feature(env, ARM_FEATURE_V8)) {
5385                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
5386             }
5387         }
5388     }
5389     if (arm_feature(env, ARM_FEATURE_EL3)) {
5390         define_arm_cp_regs(cpu, el3_cp_reginfo);
5391         ARMCPRegInfo el3_regs[] = {
5392             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5393               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5394               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5395             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5396               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5397               .access = PL3_RW,
5398               .raw_writefn = raw_write, .writefn = sctlr_write,
5399               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5400               .resetvalue = cpu->reset_sctlr },
5401             REGINFO_SENTINEL
5402         };
5403 
5404         define_arm_cp_regs(cpu, el3_regs);
5405     }
5406     /* The behaviour of NSACR is sufficiently various that we don't
5407      * try to describe it in a single reginfo:
5408      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5409      *     reads as constant 0xc00 from NS EL1 and NS EL2
5410      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5411      *  if v7 without EL3, register doesn't exist
5412      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5413      */
5414     if (arm_feature(env, ARM_FEATURE_EL3)) {
5415         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5416             ARMCPRegInfo nsacr = {
5417                 .name = "NSACR", .type = ARM_CP_CONST,
5418                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5419                 .access = PL1_RW, .accessfn = nsacr_access,
5420                 .resetvalue = 0xc00
5421             };
5422             define_one_arm_cp_reg(cpu, &nsacr);
5423         } else {
5424             ARMCPRegInfo nsacr = {
5425                 .name = "NSACR",
5426                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5427                 .access = PL3_RW | PL1_R,
5428                 .resetvalue = 0,
5429                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5430             };
5431             define_one_arm_cp_reg(cpu, &nsacr);
5432         }
5433     } else {
5434         if (arm_feature(env, ARM_FEATURE_V8)) {
5435             ARMCPRegInfo nsacr = {
5436                 .name = "NSACR", .type = ARM_CP_CONST,
5437                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5438                 .access = PL1_R,
5439                 .resetvalue = 0xc00
5440             };
5441             define_one_arm_cp_reg(cpu, &nsacr);
5442         }
5443     }
5444 
5445     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5446         if (arm_feature(env, ARM_FEATURE_V6)) {
5447             /* PMSAv6 not implemented */
5448             assert(arm_feature(env, ARM_FEATURE_V7));
5449             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5450             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5451         } else {
5452             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5453         }
5454     } else {
5455         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5456         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5457     }
5458     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5459         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5460     }
5461     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5462         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5463     }
5464     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5465         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5466     }
5467     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5468         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5469     }
5470     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5471         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5472     }
5473     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5474         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5475     }
5476     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5477         define_arm_cp_regs(cpu, omap_cp_reginfo);
5478     }
5479     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5480         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5481     }
5482     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5483         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5484     }
5485     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5486         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5487     }
5488     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5489         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5490     }
5491     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5492      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5493      * be read-only (ie write causes UNDEF exception).
5494      */
5495     {
5496         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5497             /* Pre-v8 MIDR space.
5498              * Note that the MIDR isn't a simple constant register because
5499              * of the TI925 behaviour where writes to another register can
5500              * cause the MIDR value to change.
5501              *
5502              * Unimplemented registers in the c15 0 0 0 space default to
5503              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5504              * and friends override accordingly.
5505              */
5506             { .name = "MIDR",
5507               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5508               .access = PL1_R, .resetvalue = cpu->midr,
5509               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5510               .readfn = midr_read,
5511               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5512               .type = ARM_CP_OVERRIDE },
5513             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5514             { .name = "DUMMY",
5515               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5516               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5517             { .name = "DUMMY",
5518               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5519               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5520             { .name = "DUMMY",
5521               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5522               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5523             { .name = "DUMMY",
5524               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5525               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5526             { .name = "DUMMY",
5527               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5528               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5529             REGINFO_SENTINEL
5530         };
5531         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5532             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5533               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5534               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5535               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5536               .readfn = midr_read },
5537             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5538             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5539               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5540               .access = PL1_R, .resetvalue = cpu->midr },
5541             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5542               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5543               .access = PL1_R, .resetvalue = cpu->midr },
5544             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5545               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5546               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5547             REGINFO_SENTINEL
5548         };
5549         ARMCPRegInfo id_cp_reginfo[] = {
5550             /* These are common to v8 and pre-v8 */
5551             { .name = "CTR",
5552               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5553               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5554             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5555               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5556               .access = PL0_R, .accessfn = ctr_el0_access,
5557               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5558             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5559             { .name = "TCMTR",
5560               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5561               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5562             REGINFO_SENTINEL
5563         };
5564         /* TLBTR is specific to VMSA */
5565         ARMCPRegInfo id_tlbtr_reginfo = {
5566               .name = "TLBTR",
5567               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5568               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5569         };
5570         /* MPUIR is specific to PMSA V6+ */
5571         ARMCPRegInfo id_mpuir_reginfo = {
5572               .name = "MPUIR",
5573               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5574               .access = PL1_R, .type = ARM_CP_CONST,
5575               .resetvalue = cpu->pmsav7_dregion << 8
5576         };
5577         ARMCPRegInfo crn0_wi_reginfo = {
5578             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5579             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5580             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5581         };
5582         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5583             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5584             ARMCPRegInfo *r;
5585             /* Register the blanket "writes ignored" value first to cover the
5586              * whole space. Then update the specific ID registers to allow write
5587              * access, so that they ignore writes rather than causing them to
5588              * UNDEF.
5589              */
5590             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5591             for (r = id_pre_v8_midr_cp_reginfo;
5592                  r->type != ARM_CP_SENTINEL; r++) {
5593                 r->access = PL1_RW;
5594             }
5595             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5596                 r->access = PL1_RW;
5597             }
5598             id_mpuir_reginfo.access = PL1_RW;
5599             id_tlbtr_reginfo.access = PL1_RW;
5600         }
5601         if (arm_feature(env, ARM_FEATURE_V8)) {
5602             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5603         } else {
5604             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5605         }
5606         define_arm_cp_regs(cpu, id_cp_reginfo);
5607         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5608             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5609         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5610             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5611         }
5612     }
5613 
5614     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5615         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5616     }
5617 
5618     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5619         ARMCPRegInfo auxcr_reginfo[] = {
5620             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5621               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5622               .access = PL1_RW, .type = ARM_CP_CONST,
5623               .resetvalue = cpu->reset_auxcr },
5624             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5625               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5626               .access = PL2_RW, .type = ARM_CP_CONST,
5627               .resetvalue = 0 },
5628             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5629               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5630               .access = PL3_RW, .type = ARM_CP_CONST,
5631               .resetvalue = 0 },
5632             REGINFO_SENTINEL
5633         };
5634         define_arm_cp_regs(cpu, auxcr_reginfo);
5635         if (arm_feature(env, ARM_FEATURE_V8)) {
5636             /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
5637             ARMCPRegInfo hactlr2_reginfo = {
5638                 .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
5639                 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
5640                 .access = PL2_RW, .type = ARM_CP_CONST,
5641                 .resetvalue = 0
5642             };
5643             define_one_arm_cp_reg(cpu, &hactlr2_reginfo);
5644         }
5645     }
5646 
5647     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5648         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5649             /* 32 bit view is [31:18] 0...0 [43:32]. */
5650             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5651                 | extract64(cpu->reset_cbar, 32, 12);
5652             ARMCPRegInfo cbar_reginfo[] = {
5653                 { .name = "CBAR",
5654                   .type = ARM_CP_CONST,
5655                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5656                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5657                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5658                   .type = ARM_CP_CONST,
5659                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5660                   .access = PL1_R, .resetvalue = cbar32 },
5661                 REGINFO_SENTINEL
5662             };
5663             /* We don't implement a r/w 64 bit CBAR currently */
5664             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5665             define_arm_cp_regs(cpu, cbar_reginfo);
5666         } else {
5667             ARMCPRegInfo cbar = {
5668                 .name = "CBAR",
5669                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5670                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5671                 .fieldoffset = offsetof(CPUARMState,
5672                                         cp15.c15_config_base_address)
5673             };
5674             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5675                 cbar.access = PL1_R;
5676                 cbar.fieldoffset = 0;
5677                 cbar.type = ARM_CP_CONST;
5678             }
5679             define_one_arm_cp_reg(cpu, &cbar);
5680         }
5681     }
5682 
5683     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5684         ARMCPRegInfo vbar_cp_reginfo[] = {
5685             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5686               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5687               .access = PL1_RW, .writefn = vbar_write,
5688               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5689                                      offsetof(CPUARMState, cp15.vbar_ns) },
5690               .resetvalue = 0 },
5691             REGINFO_SENTINEL
5692         };
5693         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5694     }
5695 
5696     /* Generic registers whose values depend on the implementation */
5697     {
5698         ARMCPRegInfo sctlr = {
5699             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5700             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5701             .access = PL1_RW,
5702             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5703                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5704             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5705             .raw_writefn = raw_write,
5706         };
5707         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5708             /* Normally we would always end the TB on an SCTLR write, but Linux
5709              * arch/arm/mach-pxa/sleep.S expects two instructions following
5710              * an MMU enable to execute from cache.  Imitate this behaviour.
5711              */
5712             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5713         }
5714         define_one_arm_cp_reg(cpu, &sctlr);
5715     }
5716 
5717     if (cpu_isar_feature(aa64_sve, cpu)) {
5718         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5719         if (arm_feature(env, ARM_FEATURE_EL2)) {
5720             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5721         } else {
5722             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5723         }
5724         if (arm_feature(env, ARM_FEATURE_EL3)) {
5725             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5726         }
5727     }
5728 }
5729 
5730 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5731 {
5732     CPUState *cs = CPU(cpu);
5733     CPUARMState *env = &cpu->env;
5734 
5735     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5736         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5737                                  aarch64_fpu_gdb_set_reg,
5738                                  34, "aarch64-fpu.xml", 0);
5739     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5740         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5741                                  51, "arm-neon.xml", 0);
5742     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5743         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5744                                  35, "arm-vfp3.xml", 0);
5745     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5746         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5747                                  19, "arm-vfp.xml", 0);
5748     }
5749     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5750                              arm_gen_dynamic_xml(cs),
5751                              "system-registers.xml", 0);
5752 }
5753 
5754 /* Sort alphabetically by type name, except for "any". */
5755 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5756 {
5757     ObjectClass *class_a = (ObjectClass *)a;
5758     ObjectClass *class_b = (ObjectClass *)b;
5759     const char *name_a, *name_b;
5760 
5761     name_a = object_class_get_name(class_a);
5762     name_b = object_class_get_name(class_b);
5763     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5764         return 1;
5765     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5766         return -1;
5767     } else {
5768         return strcmp(name_a, name_b);
5769     }
5770 }
5771 
5772 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5773 {
5774     ObjectClass *oc = data;
5775     CPUListState *s = user_data;
5776     const char *typename;
5777     char *name;
5778 
5779     typename = object_class_get_name(oc);
5780     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5781     (*s->cpu_fprintf)(s->file, "  %s\n",
5782                       name);
5783     g_free(name);
5784 }
5785 
5786 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5787 {
5788     CPUListState s = {
5789         .file = f,
5790         .cpu_fprintf = cpu_fprintf,
5791     };
5792     GSList *list;
5793 
5794     list = object_class_get_list(TYPE_ARM_CPU, false);
5795     list = g_slist_sort(list, arm_cpu_list_compare);
5796     (*cpu_fprintf)(f, "Available CPUs:\n");
5797     g_slist_foreach(list, arm_cpu_list_entry, &s);
5798     g_slist_free(list);
5799 }
5800 
5801 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5802 {
5803     ObjectClass *oc = data;
5804     CpuDefinitionInfoList **cpu_list = user_data;
5805     CpuDefinitionInfoList *entry;
5806     CpuDefinitionInfo *info;
5807     const char *typename;
5808 
5809     typename = object_class_get_name(oc);
5810     info = g_malloc0(sizeof(*info));
5811     info->name = g_strndup(typename,
5812                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5813     info->q_typename = g_strdup(typename);
5814 
5815     entry = g_malloc0(sizeof(*entry));
5816     entry->value = info;
5817     entry->next = *cpu_list;
5818     *cpu_list = entry;
5819 }
5820 
5821 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5822 {
5823     CpuDefinitionInfoList *cpu_list = NULL;
5824     GSList *list;
5825 
5826     list = object_class_get_list(TYPE_ARM_CPU, false);
5827     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5828     g_slist_free(list);
5829 
5830     return cpu_list;
5831 }
5832 
5833 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5834                                    void *opaque, int state, int secstate,
5835                                    int crm, int opc1, int opc2,
5836                                    const char *name)
5837 {
5838     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5839      * add a single reginfo struct to the hash table.
5840      */
5841     uint32_t *key = g_new(uint32_t, 1);
5842     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5843     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5844     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5845 
5846     r2->name = g_strdup(name);
5847     /* Reset the secure state to the specific incoming state.  This is
5848      * necessary as the register may have been defined with both states.
5849      */
5850     r2->secure = secstate;
5851 
5852     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5853         /* Register is banked (using both entries in array).
5854          * Overwriting fieldoffset as the array is only used to define
5855          * banked registers but later only fieldoffset is used.
5856          */
5857         r2->fieldoffset = r->bank_fieldoffsets[ns];
5858     }
5859 
5860     if (state == ARM_CP_STATE_AA32) {
5861         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5862             /* If the register is banked then we don't need to migrate or
5863              * reset the 32-bit instance in certain cases:
5864              *
5865              * 1) If the register has both 32-bit and 64-bit instances then we
5866              *    can count on the 64-bit instance taking care of the
5867              *    non-secure bank.
5868              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5869              *    taking care of the secure bank.  This requires that separate
5870              *    32 and 64-bit definitions are provided.
5871              */
5872             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5873                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5874                 r2->type |= ARM_CP_ALIAS;
5875             }
5876         } else if ((secstate != r->secure) && !ns) {
5877             /* The register is not banked so we only want to allow migration of
5878              * the non-secure instance.
5879              */
5880             r2->type |= ARM_CP_ALIAS;
5881         }
5882 
5883         if (r->state == ARM_CP_STATE_BOTH) {
5884             /* We assume it is a cp15 register if the .cp field is left unset.
5885              */
5886             if (r2->cp == 0) {
5887                 r2->cp = 15;
5888             }
5889 
5890 #ifdef HOST_WORDS_BIGENDIAN
5891             if (r2->fieldoffset) {
5892                 r2->fieldoffset += sizeof(uint32_t);
5893             }
5894 #endif
5895         }
5896     }
5897     if (state == ARM_CP_STATE_AA64) {
5898         /* To allow abbreviation of ARMCPRegInfo
5899          * definitions, we treat cp == 0 as equivalent to
5900          * the value for "standard guest-visible sysreg".
5901          * STATE_BOTH definitions are also always "standard
5902          * sysreg" in their AArch64 view (the .cp value may
5903          * be non-zero for the benefit of the AArch32 view).
5904          */
5905         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5906             r2->cp = CP_REG_ARM64_SYSREG_CP;
5907         }
5908         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5909                                   r2->opc0, opc1, opc2);
5910     } else {
5911         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5912     }
5913     if (opaque) {
5914         r2->opaque = opaque;
5915     }
5916     /* reginfo passed to helpers is correct for the actual access,
5917      * and is never ARM_CP_STATE_BOTH:
5918      */
5919     r2->state = state;
5920     /* Make sure reginfo passed to helpers for wildcarded regs
5921      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5922      */
5923     r2->crm = crm;
5924     r2->opc1 = opc1;
5925     r2->opc2 = opc2;
5926     /* By convention, for wildcarded registers only the first
5927      * entry is used for migration; the others are marked as
5928      * ALIAS so we don't try to transfer the register
5929      * multiple times. Special registers (ie NOP/WFI) are
5930      * never migratable and not even raw-accessible.
5931      */
5932     if ((r->type & ARM_CP_SPECIAL)) {
5933         r2->type |= ARM_CP_NO_RAW;
5934     }
5935     if (((r->crm == CP_ANY) && crm != 0) ||
5936         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5937         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5938         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5939     }
5940 
5941     /* Check that raw accesses are either forbidden or handled. Note that
5942      * we can't assert this earlier because the setup of fieldoffset for
5943      * banked registers has to be done first.
5944      */
5945     if (!(r2->type & ARM_CP_NO_RAW)) {
5946         assert(!raw_accessors_invalid(r2));
5947     }
5948 
5949     /* Overriding of an existing definition must be explicitly
5950      * requested.
5951      */
5952     if (!(r->type & ARM_CP_OVERRIDE)) {
5953         ARMCPRegInfo *oldreg;
5954         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5955         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5956             fprintf(stderr, "Register redefined: cp=%d %d bit "
5957                     "crn=%d crm=%d opc1=%d opc2=%d, "
5958                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5959                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5960                     oldreg->name, r2->name);
5961             g_assert_not_reached();
5962         }
5963     }
5964     g_hash_table_insert(cpu->cp_regs, key, r2);
5965 }
5966 
5967 
5968 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5969                                        const ARMCPRegInfo *r, void *opaque)
5970 {
5971     /* Define implementations of coprocessor registers.
5972      * We store these in a hashtable because typically
5973      * there are less than 150 registers in a space which
5974      * is 16*16*16*8*8 = 262144 in size.
5975      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5976      * If a register is defined twice then the second definition is
5977      * used, so this can be used to define some generic registers and
5978      * then override them with implementation specific variations.
5979      * At least one of the original and the second definition should
5980      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5981      * against accidental use.
5982      *
5983      * The state field defines whether the register is to be
5984      * visible in the AArch32 or AArch64 execution state. If the
5985      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5986      * reginfo structure for the AArch32 view, which sees the lower
5987      * 32 bits of the 64 bit register.
5988      *
5989      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5990      * be wildcarded. AArch64 registers are always considered to be 64
5991      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5992      * the register, if any.
5993      */
5994     int crm, opc1, opc2, state;
5995     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5996     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5997     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5998     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5999     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
6000     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
6001     /* 64 bit registers have only CRm and Opc1 fields */
6002     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
6003     /* op0 only exists in the AArch64 encodings */
6004     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
6005     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6006     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
6007     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6008      * encodes a minimum access level for the register. We roll this
6009      * runtime check into our general permission check code, so check
6010      * here that the reginfo's specified permissions are strict enough
6011      * to encompass the generic architectural permission check.
6012      */
6013     if (r->state != ARM_CP_STATE_AA32) {
6014         int mask = 0;
6015         switch (r->opc1) {
6016         case 0: case 1: case 2:
6017             /* min_EL EL1 */
6018             mask = PL1_RW;
6019             break;
6020         case 3:
6021             /* min_EL EL0 */
6022             mask = PL0_RW;
6023             break;
6024         case 4:
6025             /* min_EL EL2 */
6026             mask = PL2_RW;
6027             break;
6028         case 5:
6029             /* unallocated encoding, so not possible */
6030             assert(false);
6031             break;
6032         case 6:
6033             /* min_EL EL3 */
6034             mask = PL3_RW;
6035             break;
6036         case 7:
6037             /* min_EL EL1, secure mode only (we don't check the latter) */
6038             mask = PL1_RW;
6039             break;
6040         default:
6041             /* broken reginfo with out-of-range opc1 */
6042             assert(false);
6043             break;
6044         }
6045         /* assert our permissions are not too lax (stricter is fine) */
6046         assert((r->access & ~mask) == 0);
6047     }
6048 
6049     /* Check that the register definition has enough info to handle
6050      * reads and writes if they are permitted.
6051      */
6052     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
6053         if (r->access & PL3_R) {
6054             assert((r->fieldoffset ||
6055                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6056                    r->readfn);
6057         }
6058         if (r->access & PL3_W) {
6059             assert((r->fieldoffset ||
6060                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
6061                    r->writefn);
6062         }
6063     }
6064     /* Bad type field probably means missing sentinel at end of reg list */
6065     assert(cptype_valid(r->type));
6066     for (crm = crmmin; crm <= crmmax; crm++) {
6067         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
6068             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
6069                 for (state = ARM_CP_STATE_AA32;
6070                      state <= ARM_CP_STATE_AA64; state++) {
6071                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
6072                         continue;
6073                     }
6074                     if (state == ARM_CP_STATE_AA32) {
6075                         /* Under AArch32 CP registers can be common
6076                          * (same for secure and non-secure world) or banked.
6077                          */
6078                         char *name;
6079 
6080                         switch (r->secure) {
6081                         case ARM_CP_SECSTATE_S:
6082                         case ARM_CP_SECSTATE_NS:
6083                             add_cpreg_to_hashtable(cpu, r, opaque, state,
6084                                                    r->secure, crm, opc1, opc2,
6085                                                    r->name);
6086                             break;
6087                         default:
6088                             name = g_strdup_printf("%s_S", r->name);
6089                             add_cpreg_to_hashtable(cpu, r, opaque, state,
6090                                                    ARM_CP_SECSTATE_S,
6091                                                    crm, opc1, opc2, name);
6092                             g_free(name);
6093                             add_cpreg_to_hashtable(cpu, r, opaque, state,
6094                                                    ARM_CP_SECSTATE_NS,
6095                                                    crm, opc1, opc2, r->name);
6096                             break;
6097                         }
6098                     } else {
6099                         /* AArch64 registers get mapped to non-secure instance
6100                          * of AArch32 */
6101                         add_cpreg_to_hashtable(cpu, r, opaque, state,
6102                                                ARM_CP_SECSTATE_NS,
6103                                                crm, opc1, opc2, r->name);
6104                     }
6105                 }
6106             }
6107         }
6108     }
6109 }
6110 
6111 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
6112                                     const ARMCPRegInfo *regs, void *opaque)
6113 {
6114     /* Define a whole list of registers */
6115     const ARMCPRegInfo *r;
6116     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
6117         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
6118     }
6119 }
6120 
6121 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
6122 {
6123     return g_hash_table_lookup(cpregs, &encoded_cp);
6124 }
6125 
6126 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
6127                          uint64_t value)
6128 {
6129     /* Helper coprocessor write function for write-ignore registers */
6130 }
6131 
6132 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
6133 {
6134     /* Helper coprocessor write function for read-as-zero registers */
6135     return 0;
6136 }
6137 
6138 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
6139 {
6140     /* Helper coprocessor reset function for do-nothing-on-reset registers */
6141 }
6142 
6143 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
6144 {
6145     /* Return true if it is not valid for us to switch to
6146      * this CPU mode (ie all the UNPREDICTABLE cases in
6147      * the ARM ARM CPSRWriteByInstr pseudocode).
6148      */
6149 
6150     /* Changes to or from Hyp via MSR and CPS are illegal. */
6151     if (write_type == CPSRWriteByInstr &&
6152         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
6153          mode == ARM_CPU_MODE_HYP)) {
6154         return 1;
6155     }
6156 
6157     switch (mode) {
6158     case ARM_CPU_MODE_USR:
6159         return 0;
6160     case ARM_CPU_MODE_SYS:
6161     case ARM_CPU_MODE_SVC:
6162     case ARM_CPU_MODE_ABT:
6163     case ARM_CPU_MODE_UND:
6164     case ARM_CPU_MODE_IRQ:
6165     case ARM_CPU_MODE_FIQ:
6166         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
6167          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
6168          */
6169         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
6170          * and CPS are treated as illegal mode changes.
6171          */
6172         if (write_type == CPSRWriteByInstr &&
6173             (env->cp15.hcr_el2 & HCR_TGE) &&
6174             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
6175             !arm_is_secure_below_el3(env)) {
6176             return 1;
6177         }
6178         return 0;
6179     case ARM_CPU_MODE_HYP:
6180         return !arm_feature(env, ARM_FEATURE_EL2)
6181             || arm_current_el(env) < 2 || arm_is_secure(env);
6182     case ARM_CPU_MODE_MON:
6183         return arm_current_el(env) < 3;
6184     default:
6185         return 1;
6186     }
6187 }
6188 
6189 uint32_t cpsr_read(CPUARMState *env)
6190 {
6191     int ZF;
6192     ZF = (env->ZF == 0);
6193     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
6194         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
6195         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
6196         | ((env->condexec_bits & 0xfc) << 8)
6197         | (env->GE << 16) | (env->daif & CPSR_AIF);
6198 }
6199 
6200 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6201                 CPSRWriteType write_type)
6202 {
6203     uint32_t changed_daif;
6204 
6205     if (mask & CPSR_NZCV) {
6206         env->ZF = (~val) & CPSR_Z;
6207         env->NF = val;
6208         env->CF = (val >> 29) & 1;
6209         env->VF = (val << 3) & 0x80000000;
6210     }
6211     if (mask & CPSR_Q)
6212         env->QF = ((val & CPSR_Q) != 0);
6213     if (mask & CPSR_T)
6214         env->thumb = ((val & CPSR_T) != 0);
6215     if (mask & CPSR_IT_0_1) {
6216         env->condexec_bits &= ~3;
6217         env->condexec_bits |= (val >> 25) & 3;
6218     }
6219     if (mask & CPSR_IT_2_7) {
6220         env->condexec_bits &= 3;
6221         env->condexec_bits |= (val >> 8) & 0xfc;
6222     }
6223     if (mask & CPSR_GE) {
6224         env->GE = (val >> 16) & 0xf;
6225     }
6226 
6227     /* In a V7 implementation that includes the security extensions but does
6228      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6229      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6230      * bits respectively.
6231      *
6232      * In a V8 implementation, it is permitted for privileged software to
6233      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6234      */
6235     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6236         arm_feature(env, ARM_FEATURE_EL3) &&
6237         !arm_feature(env, ARM_FEATURE_EL2) &&
6238         !arm_is_secure(env)) {
6239 
6240         changed_daif = (env->daif ^ val) & mask;
6241 
6242         if (changed_daif & CPSR_A) {
6243             /* Check to see if we are allowed to change the masking of async
6244              * abort exceptions from a non-secure state.
6245              */
6246             if (!(env->cp15.scr_el3 & SCR_AW)) {
6247                 qemu_log_mask(LOG_GUEST_ERROR,
6248                               "Ignoring attempt to switch CPSR_A flag from "
6249                               "non-secure world with SCR.AW bit clear\n");
6250                 mask &= ~CPSR_A;
6251             }
6252         }
6253 
6254         if (changed_daif & CPSR_F) {
6255             /* Check to see if we are allowed to change the masking of FIQ
6256              * exceptions from a non-secure state.
6257              */
6258             if (!(env->cp15.scr_el3 & SCR_FW)) {
6259                 qemu_log_mask(LOG_GUEST_ERROR,
6260                               "Ignoring attempt to switch CPSR_F flag from "
6261                               "non-secure world with SCR.FW bit clear\n");
6262                 mask &= ~CPSR_F;
6263             }
6264 
6265             /* Check whether non-maskable FIQ (NMFI) support is enabled.
6266              * If this bit is set software is not allowed to mask
6267              * FIQs, but is allowed to set CPSR_F to 0.
6268              */
6269             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6270                 (val & CPSR_F)) {
6271                 qemu_log_mask(LOG_GUEST_ERROR,
6272                               "Ignoring attempt to enable CPSR_F flag "
6273                               "(non-maskable FIQ [NMFI] support enabled)\n");
6274                 mask &= ~CPSR_F;
6275             }
6276         }
6277     }
6278 
6279     env->daif &= ~(CPSR_AIF & mask);
6280     env->daif |= val & CPSR_AIF & mask;
6281 
6282     if (write_type != CPSRWriteRaw &&
6283         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6284         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6285             /* Note that we can only get here in USR mode if this is a
6286              * gdb stub write; for this case we follow the architectural
6287              * behaviour for guest writes in USR mode of ignoring an attempt
6288              * to switch mode. (Those are caught by translate.c for writes
6289              * triggered by guest instructions.)
6290              */
6291             mask &= ~CPSR_M;
6292         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6293             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6294              * v7, and has defined behaviour in v8:
6295              *  + leave CPSR.M untouched
6296              *  + allow changes to the other CPSR fields
6297              *  + set PSTATE.IL
6298              * For user changes via the GDB stub, we don't set PSTATE.IL,
6299              * as this would be unnecessarily harsh for a user error.
6300              */
6301             mask &= ~CPSR_M;
6302             if (write_type != CPSRWriteByGDBStub &&
6303                 arm_feature(env, ARM_FEATURE_V8)) {
6304                 mask |= CPSR_IL;
6305                 val |= CPSR_IL;
6306             }
6307             qemu_log_mask(LOG_GUEST_ERROR,
6308                           "Illegal AArch32 mode switch attempt from %s to %s\n",
6309                           aarch32_mode_name(env->uncached_cpsr),
6310                           aarch32_mode_name(val));
6311         } else {
6312             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
6313                           write_type == CPSRWriteExceptionReturn ?
6314                           "Exception return from AArch32" :
6315                           "AArch32 mode switch from",
6316                           aarch32_mode_name(env->uncached_cpsr),
6317                           aarch32_mode_name(val), env->regs[15]);
6318             switch_mode(env, val & CPSR_M);
6319         }
6320     }
6321     mask &= ~CACHED_CPSR_BITS;
6322     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6323 }
6324 
6325 /* Sign/zero extend */
6326 uint32_t HELPER(sxtb16)(uint32_t x)
6327 {
6328     uint32_t res;
6329     res = (uint16_t)(int8_t)x;
6330     res |= (uint32_t)(int8_t)(x >> 16) << 16;
6331     return res;
6332 }
6333 
6334 uint32_t HELPER(uxtb16)(uint32_t x)
6335 {
6336     uint32_t res;
6337     res = (uint16_t)(uint8_t)x;
6338     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6339     return res;
6340 }
6341 
6342 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6343 {
6344     if (den == 0)
6345       return 0;
6346     if (num == INT_MIN && den == -1)
6347       return INT_MIN;
6348     return num / den;
6349 }
6350 
6351 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6352 {
6353     if (den == 0)
6354       return 0;
6355     return num / den;
6356 }
6357 
6358 uint32_t HELPER(rbit)(uint32_t x)
6359 {
6360     return revbit32(x);
6361 }
6362 
6363 #if defined(CONFIG_USER_ONLY)
6364 
6365 /* These should probably raise undefined insn exceptions.  */
6366 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6367 {
6368     ARMCPU *cpu = arm_env_get_cpu(env);
6369 
6370     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6371 }
6372 
6373 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6374 {
6375     ARMCPU *cpu = arm_env_get_cpu(env);
6376 
6377     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6378     return 0;
6379 }
6380 
6381 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6382 {
6383     /* translate.c should never generate calls here in user-only mode */
6384     g_assert_not_reached();
6385 }
6386 
6387 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6388 {
6389     /* translate.c should never generate calls here in user-only mode */
6390     g_assert_not_reached();
6391 }
6392 
6393 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6394 {
6395     /* The TT instructions can be used by unprivileged code, but in
6396      * user-only emulation we don't have the MPU.
6397      * Luckily since we know we are NonSecure unprivileged (and that in
6398      * turn means that the A flag wasn't specified), all the bits in the
6399      * register must be zero:
6400      *  IREGION: 0 because IRVALID is 0
6401      *  IRVALID: 0 because NS
6402      *  S: 0 because NS
6403      *  NSRW: 0 because NS
6404      *  NSR: 0 because NS
6405      *  RW: 0 because unpriv and A flag not set
6406      *  R: 0 because unpriv and A flag not set
6407      *  SRVALID: 0 because NS
6408      *  MRVALID: 0 because unpriv and A flag not set
6409      *  SREGION: 0 becaus SRVALID is 0
6410      *  MREGION: 0 because MRVALID is 0
6411      */
6412     return 0;
6413 }
6414 
6415 static void switch_mode(CPUARMState *env, int mode)
6416 {
6417     ARMCPU *cpu = arm_env_get_cpu(env);
6418 
6419     if (mode != ARM_CPU_MODE_USR) {
6420         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6421     }
6422 }
6423 
6424 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6425                                  uint32_t cur_el, bool secure)
6426 {
6427     return 1;
6428 }
6429 
6430 void aarch64_sync_64_to_32(CPUARMState *env)
6431 {
6432     g_assert_not_reached();
6433 }
6434 
6435 #else
6436 
6437 static void switch_mode(CPUARMState *env, int mode)
6438 {
6439     int old_mode;
6440     int i;
6441 
6442     old_mode = env->uncached_cpsr & CPSR_M;
6443     if (mode == old_mode)
6444         return;
6445 
6446     if (old_mode == ARM_CPU_MODE_FIQ) {
6447         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6448         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6449     } else if (mode == ARM_CPU_MODE_FIQ) {
6450         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6451         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6452     }
6453 
6454     i = bank_number(old_mode);
6455     env->banked_r13[i] = env->regs[13];
6456     env->banked_r14[i] = env->regs[14];
6457     env->banked_spsr[i] = env->spsr;
6458 
6459     i = bank_number(mode);
6460     env->regs[13] = env->banked_r13[i];
6461     env->regs[14] = env->banked_r14[i];
6462     env->spsr = env->banked_spsr[i];
6463 }
6464 
6465 /* Physical Interrupt Target EL Lookup Table
6466  *
6467  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6468  *
6469  * The below multi-dimensional table is used for looking up the target
6470  * exception level given numerous condition criteria.  Specifically, the
6471  * target EL is based on SCR and HCR routing controls as well as the
6472  * currently executing EL and secure state.
6473  *
6474  *    Dimensions:
6475  *    target_el_table[2][2][2][2][2][4]
6476  *                    |  |  |  |  |  +--- Current EL
6477  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6478  *                    |  |  |  +--------- HCR mask override
6479  *                    |  |  +------------ SCR exec state control
6480  *                    |  +--------------- SCR mask override
6481  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6482  *
6483  *    The table values are as such:
6484  *    0-3 = EL0-EL3
6485  *     -1 = Cannot occur
6486  *
6487  * The ARM ARM target EL table includes entries indicating that an "exception
6488  * is not taken".  The two cases where this is applicable are:
6489  *    1) An exception is taken from EL3 but the SCR does not have the exception
6490  *    routed to EL3.
6491  *    2) An exception is taken from EL2 but the HCR does not have the exception
6492  *    routed to EL2.
6493  * In these two cases, the below table contain a target of EL1.  This value is
6494  * returned as it is expected that the consumer of the table data will check
6495  * for "target EL >= current EL" to ensure the exception is not taken.
6496  *
6497  *            SCR     HCR
6498  *         64  EA     AMO                 From
6499  *        BIT IRQ     IMO      Non-secure         Secure
6500  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6501  */
6502 static const int8_t target_el_table[2][2][2][2][2][4] = {
6503     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6504        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6505       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6506        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6507      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6508        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6509       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6510        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6511     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6512        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6513       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6514        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6515      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6516        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6517       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6518        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6519 };
6520 
6521 /*
6522  * Determine the target EL for physical exceptions
6523  */
6524 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6525                                  uint32_t cur_el, bool secure)
6526 {
6527     CPUARMState *env = cs->env_ptr;
6528     int rw;
6529     int scr;
6530     int hcr;
6531     int target_el;
6532     /* Is the highest EL AArch64? */
6533     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6534 
6535     if (arm_feature(env, ARM_FEATURE_EL3)) {
6536         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6537     } else {
6538         /* Either EL2 is the highest EL (and so the EL2 register width
6539          * is given by is64); or there is no EL2 or EL3, in which case
6540          * the value of 'rw' does not affect the table lookup anyway.
6541          */
6542         rw = is64;
6543     }
6544 
6545     switch (excp_idx) {
6546     case EXCP_IRQ:
6547         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6548         hcr = arm_hcr_el2_imo(env);
6549         break;
6550     case EXCP_FIQ:
6551         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6552         hcr = arm_hcr_el2_fmo(env);
6553         break;
6554     default:
6555         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6556         hcr = arm_hcr_el2_amo(env);
6557         break;
6558     };
6559 
6560     /* If HCR.TGE is set then HCR is treated as being 1 */
6561     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6562 
6563     /* Perform a table-lookup for the target EL given the current state */
6564     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6565 
6566     assert(target_el > 0);
6567 
6568     return target_el;
6569 }
6570 
6571 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6572                             ARMMMUIdx mmu_idx, bool ignfault)
6573 {
6574     CPUState *cs = CPU(cpu);
6575     CPUARMState *env = &cpu->env;
6576     MemTxAttrs attrs = {};
6577     MemTxResult txres;
6578     target_ulong page_size;
6579     hwaddr physaddr;
6580     int prot;
6581     ARMMMUFaultInfo fi = {};
6582     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6583     int exc;
6584     bool exc_secure;
6585 
6586     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6587                       &attrs, &prot, &page_size, &fi, NULL)) {
6588         /* MPU/SAU lookup failed */
6589         if (fi.type == ARMFault_QEMU_SFault) {
6590             qemu_log_mask(CPU_LOG_INT,
6591                           "...SecureFault with SFSR.AUVIOL during stacking\n");
6592             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6593             env->v7m.sfar = addr;
6594             exc = ARMV7M_EXCP_SECURE;
6595             exc_secure = false;
6596         } else {
6597             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6598             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6599             exc = ARMV7M_EXCP_MEM;
6600             exc_secure = secure;
6601         }
6602         goto pend_fault;
6603     }
6604     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6605                          attrs, &txres);
6606     if (txres != MEMTX_OK) {
6607         /* BusFault trying to write the data */
6608         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6609         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6610         exc = ARMV7M_EXCP_BUS;
6611         exc_secure = false;
6612         goto pend_fault;
6613     }
6614     return true;
6615 
6616 pend_fault:
6617     /* By pending the exception at this point we are making
6618      * the IMPDEF choice "overridden exceptions pended" (see the
6619      * MergeExcInfo() pseudocode). The other choice would be to not
6620      * pend them now and then make a choice about which to throw away
6621      * later if we have two derived exceptions.
6622      * The only case when we must not pend the exception but instead
6623      * throw it away is if we are doing the push of the callee registers
6624      * and we've already generated a derived exception. Even in this
6625      * case we will still update the fault status registers.
6626      */
6627     if (!ignfault) {
6628         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6629     }
6630     return false;
6631 }
6632 
6633 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6634                            ARMMMUIdx mmu_idx)
6635 {
6636     CPUState *cs = CPU(cpu);
6637     CPUARMState *env = &cpu->env;
6638     MemTxAttrs attrs = {};
6639     MemTxResult txres;
6640     target_ulong page_size;
6641     hwaddr physaddr;
6642     int prot;
6643     ARMMMUFaultInfo fi = {};
6644     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6645     int exc;
6646     bool exc_secure;
6647     uint32_t value;
6648 
6649     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6650                       &attrs, &prot, &page_size, &fi, NULL)) {
6651         /* MPU/SAU lookup failed */
6652         if (fi.type == ARMFault_QEMU_SFault) {
6653             qemu_log_mask(CPU_LOG_INT,
6654                           "...SecureFault with SFSR.AUVIOL during unstack\n");
6655             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6656             env->v7m.sfar = addr;
6657             exc = ARMV7M_EXCP_SECURE;
6658             exc_secure = false;
6659         } else {
6660             qemu_log_mask(CPU_LOG_INT,
6661                           "...MemManageFault with CFSR.MUNSTKERR\n");
6662             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6663             exc = ARMV7M_EXCP_MEM;
6664             exc_secure = secure;
6665         }
6666         goto pend_fault;
6667     }
6668 
6669     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6670                               attrs, &txres);
6671     if (txres != MEMTX_OK) {
6672         /* BusFault trying to read the data */
6673         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6674         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6675         exc = ARMV7M_EXCP_BUS;
6676         exc_secure = false;
6677         goto pend_fault;
6678     }
6679 
6680     *dest = value;
6681     return true;
6682 
6683 pend_fault:
6684     /* By pending the exception at this point we are making
6685      * the IMPDEF choice "overridden exceptions pended" (see the
6686      * MergeExcInfo() pseudocode). The other choice would be to not
6687      * pend them now and then make a choice about which to throw away
6688      * later if we have two derived exceptions.
6689      */
6690     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6691     return false;
6692 }
6693 
6694 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6695  * This may change the current stack pointer between Main and Process
6696  * stack pointers if it is done for the CONTROL register for the current
6697  * security state.
6698  */
6699 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6700                                                  bool new_spsel,
6701                                                  bool secstate)
6702 {
6703     bool old_is_psp = v7m_using_psp(env);
6704 
6705     env->v7m.control[secstate] =
6706         deposit32(env->v7m.control[secstate],
6707                   R_V7M_CONTROL_SPSEL_SHIFT,
6708                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6709 
6710     if (secstate == env->v7m.secure) {
6711         bool new_is_psp = v7m_using_psp(env);
6712         uint32_t tmp;
6713 
6714         if (old_is_psp != new_is_psp) {
6715             tmp = env->v7m.other_sp;
6716             env->v7m.other_sp = env->regs[13];
6717             env->regs[13] = tmp;
6718         }
6719     }
6720 }
6721 
6722 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6723  * stack pointer between Main and Process stack pointers.
6724  */
6725 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6726 {
6727     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6728 }
6729 
6730 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6731 {
6732     /* Write a new value to v7m.exception, thus transitioning into or out
6733      * of Handler mode; this may result in a change of active stack pointer.
6734      */
6735     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6736     uint32_t tmp;
6737 
6738     env->v7m.exception = new_exc;
6739 
6740     new_is_psp = v7m_using_psp(env);
6741 
6742     if (old_is_psp != new_is_psp) {
6743         tmp = env->v7m.other_sp;
6744         env->v7m.other_sp = env->regs[13];
6745         env->regs[13] = tmp;
6746     }
6747 }
6748 
6749 /* Switch M profile security state between NS and S */
6750 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6751 {
6752     uint32_t new_ss_msp, new_ss_psp;
6753 
6754     if (env->v7m.secure == new_secstate) {
6755         return;
6756     }
6757 
6758     /* All the banked state is accessed by looking at env->v7m.secure
6759      * except for the stack pointer; rearrange the SP appropriately.
6760      */
6761     new_ss_msp = env->v7m.other_ss_msp;
6762     new_ss_psp = env->v7m.other_ss_psp;
6763 
6764     if (v7m_using_psp(env)) {
6765         env->v7m.other_ss_psp = env->regs[13];
6766         env->v7m.other_ss_msp = env->v7m.other_sp;
6767     } else {
6768         env->v7m.other_ss_msp = env->regs[13];
6769         env->v7m.other_ss_psp = env->v7m.other_sp;
6770     }
6771 
6772     env->v7m.secure = new_secstate;
6773 
6774     if (v7m_using_psp(env)) {
6775         env->regs[13] = new_ss_psp;
6776         env->v7m.other_sp = new_ss_msp;
6777     } else {
6778         env->regs[13] = new_ss_msp;
6779         env->v7m.other_sp = new_ss_psp;
6780     }
6781 }
6782 
6783 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6784 {
6785     /* Handle v7M BXNS:
6786      *  - if the return value is a magic value, do exception return (like BX)
6787      *  - otherwise bit 0 of the return value is the target security state
6788      */
6789     uint32_t min_magic;
6790 
6791     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6792         /* Covers FNC_RETURN and EXC_RETURN magic */
6793         min_magic = FNC_RETURN_MIN_MAGIC;
6794     } else {
6795         /* EXC_RETURN magic only */
6796         min_magic = EXC_RETURN_MIN_MAGIC;
6797     }
6798 
6799     if (dest >= min_magic) {
6800         /* This is an exception return magic value; put it where
6801          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6802          * Note that if we ever add gen_ss_advance() singlestep support to
6803          * M profile this should count as an "instruction execution complete"
6804          * event (compare gen_bx_excret_final_code()).
6805          */
6806         env->regs[15] = dest & ~1;
6807         env->thumb = dest & 1;
6808         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6809         /* notreached */
6810     }
6811 
6812     /* translate.c should have made BXNS UNDEF unless we're secure */
6813     assert(env->v7m.secure);
6814 
6815     switch_v7m_security_state(env, dest & 1);
6816     env->thumb = 1;
6817     env->regs[15] = dest & ~1;
6818 }
6819 
6820 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6821 {
6822     /* Handle v7M BLXNS:
6823      *  - bit 0 of the destination address is the target security state
6824      */
6825 
6826     /* At this point regs[15] is the address just after the BLXNS */
6827     uint32_t nextinst = env->regs[15] | 1;
6828     uint32_t sp = env->regs[13] - 8;
6829     uint32_t saved_psr;
6830 
6831     /* translate.c will have made BLXNS UNDEF unless we're secure */
6832     assert(env->v7m.secure);
6833 
6834     if (dest & 1) {
6835         /* target is Secure, so this is just a normal BLX,
6836          * except that the low bit doesn't indicate Thumb/not.
6837          */
6838         env->regs[14] = nextinst;
6839         env->thumb = 1;
6840         env->regs[15] = dest & ~1;
6841         return;
6842     }
6843 
6844     /* Target is non-secure: first push a stack frame */
6845     if (!QEMU_IS_ALIGNED(sp, 8)) {
6846         qemu_log_mask(LOG_GUEST_ERROR,
6847                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6848     }
6849 
6850     if (sp < v7m_sp_limit(env)) {
6851         raise_exception(env, EXCP_STKOF, 0, 1);
6852     }
6853 
6854     saved_psr = env->v7m.exception;
6855     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6856         saved_psr |= XPSR_SFPA;
6857     }
6858 
6859     /* Note that these stores can throw exceptions on MPU faults */
6860     cpu_stl_data(env, sp, nextinst);
6861     cpu_stl_data(env, sp + 4, saved_psr);
6862 
6863     env->regs[13] = sp;
6864     env->regs[14] = 0xfeffffff;
6865     if (arm_v7m_is_handler_mode(env)) {
6866         /* Write a dummy value to IPSR, to avoid leaking the current secure
6867          * exception number to non-secure code. This is guaranteed not
6868          * to cause write_v7m_exception() to actually change stacks.
6869          */
6870         write_v7m_exception(env, 1);
6871     }
6872     switch_v7m_security_state(env, 0);
6873     env->thumb = 1;
6874     env->regs[15] = dest;
6875 }
6876 
6877 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6878                                 bool spsel)
6879 {
6880     /* Return a pointer to the location where we currently store the
6881      * stack pointer for the requested security state and thread mode.
6882      * This pointer will become invalid if the CPU state is updated
6883      * such that the stack pointers are switched around (eg changing
6884      * the SPSEL control bit).
6885      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6886      * Unlike that pseudocode, we require the caller to pass us in the
6887      * SPSEL control bit value; this is because we also use this
6888      * function in handling of pushing of the callee-saves registers
6889      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6890      * and in the tailchain codepath the SPSEL bit comes from the exception
6891      * return magic LR value from the previous exception. The pseudocode
6892      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6893      * to make this utility function generic enough to do the job.
6894      */
6895     bool want_psp = threadmode && spsel;
6896 
6897     if (secure == env->v7m.secure) {
6898         if (want_psp == v7m_using_psp(env)) {
6899             return &env->regs[13];
6900         } else {
6901             return &env->v7m.other_sp;
6902         }
6903     } else {
6904         if (want_psp) {
6905             return &env->v7m.other_ss_psp;
6906         } else {
6907             return &env->v7m.other_ss_msp;
6908         }
6909     }
6910 }
6911 
6912 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6913                                 uint32_t *pvec)
6914 {
6915     CPUState *cs = CPU(cpu);
6916     CPUARMState *env = &cpu->env;
6917     MemTxResult result;
6918     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6919     uint32_t vector_entry;
6920     MemTxAttrs attrs = {};
6921     ARMMMUIdx mmu_idx;
6922     bool exc_secure;
6923 
6924     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6925 
6926     /* We don't do a get_phys_addr() here because the rules for vector
6927      * loads are special: they always use the default memory map, and
6928      * the default memory map permits reads from all addresses.
6929      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6930      * that we want this special case which would always say "yes",
6931      * we just do the SAU lookup here followed by a direct physical load.
6932      */
6933     attrs.secure = targets_secure;
6934     attrs.user = false;
6935 
6936     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6937         V8M_SAttributes sattrs = {};
6938 
6939         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6940         if (sattrs.ns) {
6941             attrs.secure = false;
6942         } else if (!targets_secure) {
6943             /* NS access to S memory */
6944             goto load_fail;
6945         }
6946     }
6947 
6948     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6949                                      attrs, &result);
6950     if (result != MEMTX_OK) {
6951         goto load_fail;
6952     }
6953     *pvec = vector_entry;
6954     return true;
6955 
6956 load_fail:
6957     /* All vector table fetch fails are reported as HardFault, with
6958      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6959      * technically the underlying exception is a MemManage or BusFault
6960      * that is escalated to HardFault.) This is a terminal exception,
6961      * so we will either take the HardFault immediately or else enter
6962      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6963      */
6964     exc_secure = targets_secure ||
6965         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6966     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6967     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6968     return false;
6969 }
6970 
6971 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6972                                   bool ignore_faults)
6973 {
6974     /* For v8M, push the callee-saves register part of the stack frame.
6975      * Compare the v8M pseudocode PushCalleeStack().
6976      * In the tailchaining case this may not be the current stack.
6977      */
6978     CPUARMState *env = &cpu->env;
6979     uint32_t *frame_sp_p;
6980     uint32_t frameptr;
6981     ARMMMUIdx mmu_idx;
6982     bool stacked_ok;
6983     uint32_t limit;
6984     bool want_psp;
6985 
6986     if (dotailchain) {
6987         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6988         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6989             !mode;
6990 
6991         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6992         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6993                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6994         want_psp = mode && (lr & R_V7M_EXCRET_SPSEL_MASK);
6995         if (want_psp) {
6996             limit = env->v7m.psplim[M_REG_S];
6997         } else {
6998             limit = env->v7m.msplim[M_REG_S];
6999         }
7000     } else {
7001         mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
7002         frame_sp_p = &env->regs[13];
7003         limit = v7m_sp_limit(env);
7004     }
7005 
7006     frameptr = *frame_sp_p - 0x28;
7007     if (frameptr < limit) {
7008         /*
7009          * Stack limit failure: set SP to the limit value, and generate
7010          * STKOF UsageFault. Stack pushes below the limit must not be
7011          * performed. It is IMPDEF whether pushes above the limit are
7012          * performed; we choose not to.
7013          */
7014         qemu_log_mask(CPU_LOG_INT,
7015                       "...STKOF during callee-saves register stacking\n");
7016         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7017         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7018                                 env->v7m.secure);
7019         *frame_sp_p = limit;
7020         return true;
7021     }
7022 
7023     /* Write as much of the stack frame as we can. A write failure may
7024      * cause us to pend a derived exception.
7025      */
7026     stacked_ok =
7027         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
7028         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
7029                         ignore_faults) &&
7030         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
7031                         ignore_faults) &&
7032         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
7033                         ignore_faults) &&
7034         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
7035                         ignore_faults) &&
7036         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
7037                         ignore_faults) &&
7038         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
7039                         ignore_faults) &&
7040         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
7041                         ignore_faults) &&
7042         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
7043                         ignore_faults);
7044 
7045     /* Update SP regardless of whether any of the stack accesses failed. */
7046     *frame_sp_p = frameptr;
7047 
7048     return !stacked_ok;
7049 }
7050 
7051 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
7052                                 bool ignore_stackfaults)
7053 {
7054     /* Do the "take the exception" parts of exception entry,
7055      * but not the pushing of state to the stack. This is
7056      * similar to the pseudocode ExceptionTaken() function.
7057      */
7058     CPUARMState *env = &cpu->env;
7059     uint32_t addr;
7060     bool targets_secure;
7061     int exc;
7062     bool push_failed = false;
7063 
7064     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
7065     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
7066                   targets_secure ? "secure" : "nonsecure", exc);
7067 
7068     if (arm_feature(env, ARM_FEATURE_V8)) {
7069         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7070             (lr & R_V7M_EXCRET_S_MASK)) {
7071             /* The background code (the owner of the registers in the
7072              * exception frame) is Secure. This means it may either already
7073              * have or now needs to push callee-saves registers.
7074              */
7075             if (targets_secure) {
7076                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
7077                     /* We took an exception from Secure to NonSecure
7078                      * (which means the callee-saved registers got stacked)
7079                      * and are now tailchaining to a Secure exception.
7080                      * Clear DCRS so eventual return from this Secure
7081                      * exception unstacks the callee-saved registers.
7082                      */
7083                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
7084                 }
7085             } else {
7086                 /* We're going to a non-secure exception; push the
7087                  * callee-saves registers to the stack now, if they're
7088                  * not already saved.
7089                  */
7090                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
7091                     !(dotailchain && !(lr & R_V7M_EXCRET_ES_MASK))) {
7092                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
7093                                                         ignore_stackfaults);
7094                 }
7095                 lr |= R_V7M_EXCRET_DCRS_MASK;
7096             }
7097         }
7098 
7099         lr &= ~R_V7M_EXCRET_ES_MASK;
7100         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7101             lr |= R_V7M_EXCRET_ES_MASK;
7102         }
7103         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
7104         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
7105             lr |= R_V7M_EXCRET_SPSEL_MASK;
7106         }
7107 
7108         /* Clear registers if necessary to prevent non-secure exception
7109          * code being able to see register values from secure code.
7110          * Where register values become architecturally UNKNOWN we leave
7111          * them with their previous values.
7112          */
7113         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7114             if (!targets_secure) {
7115                 /* Always clear the caller-saved registers (they have been
7116                  * pushed to the stack earlier in v7m_push_stack()).
7117                  * Clear callee-saved registers if the background code is
7118                  * Secure (in which case these regs were saved in
7119                  * v7m_push_callee_stack()).
7120                  */
7121                 int i;
7122 
7123                 for (i = 0; i < 13; i++) {
7124                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7125                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
7126                         env->regs[i] = 0;
7127                     }
7128                 }
7129                 /* Clear EAPSR */
7130                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
7131             }
7132         }
7133     }
7134 
7135     if (push_failed && !ignore_stackfaults) {
7136         /* Derived exception on callee-saves register stacking:
7137          * we might now want to take a different exception which
7138          * targets a different security state, so try again from the top.
7139          */
7140         qemu_log_mask(CPU_LOG_INT,
7141                       "...derived exception on callee-saves register stacking");
7142         v7m_exception_taken(cpu, lr, true, true);
7143         return;
7144     }
7145 
7146     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
7147         /* Vector load failed: derived exception */
7148         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
7149         v7m_exception_taken(cpu, lr, true, true);
7150         return;
7151     }
7152 
7153     /* Now we've done everything that might cause a derived exception
7154      * we can go ahead and activate whichever exception we're going to
7155      * take (which might now be the derived exception).
7156      */
7157     armv7m_nvic_acknowledge_irq(env->nvic);
7158 
7159     /* Switch to target security state -- must do this before writing SPSEL */
7160     switch_v7m_security_state(env, targets_secure);
7161     write_v7m_control_spsel(env, 0);
7162     arm_clear_exclusive(env);
7163     /* Clear IT bits */
7164     env->condexec_bits = 0;
7165     env->regs[14] = lr;
7166     env->regs[15] = addr & 0xfffffffe;
7167     env->thumb = addr & 1;
7168 }
7169 
7170 static bool v7m_push_stack(ARMCPU *cpu)
7171 {
7172     /* Do the "set up stack frame" part of exception entry,
7173      * similar to pseudocode PushStack().
7174      * Return true if we generate a derived exception (and so
7175      * should ignore further stack faults trying to process
7176      * that derived exception.)
7177      */
7178     bool stacked_ok;
7179     CPUARMState *env = &cpu->env;
7180     uint32_t xpsr = xpsr_read(env);
7181     uint32_t frameptr = env->regs[13];
7182     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
7183 
7184     /* Align stack pointer if the guest wants that */
7185     if ((frameptr & 4) &&
7186         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
7187         frameptr -= 4;
7188         xpsr |= XPSR_SPREALIGN;
7189     }
7190 
7191     frameptr -= 0x20;
7192 
7193     if (arm_feature(env, ARM_FEATURE_V8)) {
7194         uint32_t limit = v7m_sp_limit(env);
7195 
7196         if (frameptr < limit) {
7197             /*
7198              * Stack limit failure: set SP to the limit value, and generate
7199              * STKOF UsageFault. Stack pushes below the limit must not be
7200              * performed. It is IMPDEF whether pushes above the limit are
7201              * performed; we choose not to.
7202              */
7203             qemu_log_mask(CPU_LOG_INT,
7204                           "...STKOF during stacking\n");
7205             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7206             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7207                                     env->v7m.secure);
7208             env->regs[13] = limit;
7209             return true;
7210         }
7211     }
7212 
7213     /* Write as much of the stack frame as we can. If we fail a stack
7214      * write this will result in a derived exception being pended
7215      * (which may be taken in preference to the one we started with
7216      * if it has higher priority).
7217      */
7218     stacked_ok =
7219         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
7220         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
7221         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
7222         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
7223         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
7224         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
7225         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
7226         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
7227 
7228     /* Update SP regardless of whether any of the stack accesses failed. */
7229     env->regs[13] = frameptr;
7230 
7231     return !stacked_ok;
7232 }
7233 
7234 static void do_v7m_exception_exit(ARMCPU *cpu)
7235 {
7236     CPUARMState *env = &cpu->env;
7237     uint32_t excret;
7238     uint32_t xpsr;
7239     bool ufault = false;
7240     bool sfault = false;
7241     bool return_to_sp_process;
7242     bool return_to_handler;
7243     bool rettobase = false;
7244     bool exc_secure = false;
7245     bool return_to_secure;
7246 
7247     /* If we're not in Handler mode then jumps to magic exception-exit
7248      * addresses don't have magic behaviour. However for the v8M
7249      * security extensions the magic secure-function-return has to
7250      * work in thread mode too, so to avoid doing an extra check in
7251      * the generated code we allow exception-exit magic to also cause the
7252      * internal exception and bring us here in thread mode. Correct code
7253      * will never try to do this (the following insn fetch will always
7254      * fault) so we the overhead of having taken an unnecessary exception
7255      * doesn't matter.
7256      */
7257     if (!arm_v7m_is_handler_mode(env)) {
7258         return;
7259     }
7260 
7261     /* In the spec pseudocode ExceptionReturn() is called directly
7262      * from BXWritePC() and gets the full target PC value including
7263      * bit zero. In QEMU's implementation we treat it as a normal
7264      * jump-to-register (which is then caught later on), and so split
7265      * the target value up between env->regs[15] and env->thumb in
7266      * gen_bx(). Reconstitute it.
7267      */
7268     excret = env->regs[15];
7269     if (env->thumb) {
7270         excret |= 1;
7271     }
7272 
7273     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7274                   " previous exception %d\n",
7275                   excret, env->v7m.exception);
7276 
7277     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7278         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7279                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7280                       excret);
7281     }
7282 
7283     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7284         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7285          * we pick which FAULTMASK to clear.
7286          */
7287         if (!env->v7m.secure &&
7288             ((excret & R_V7M_EXCRET_ES_MASK) ||
7289              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7290             sfault = 1;
7291             /* For all other purposes, treat ES as 0 (R_HXSR) */
7292             excret &= ~R_V7M_EXCRET_ES_MASK;
7293         }
7294         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7295     }
7296 
7297     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7298         /* Auto-clear FAULTMASK on return from other than NMI.
7299          * If the security extension is implemented then this only
7300          * happens if the raw execution priority is >= 0; the
7301          * value of the ES bit in the exception return value indicates
7302          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7303          */
7304         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7305             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7306                 env->v7m.faultmask[exc_secure] = 0;
7307             }
7308         } else {
7309             env->v7m.faultmask[M_REG_NS] = 0;
7310         }
7311     }
7312 
7313     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7314                                      exc_secure)) {
7315     case -1:
7316         /* attempt to exit an exception that isn't active */
7317         ufault = true;
7318         break;
7319     case 0:
7320         /* still an irq active now */
7321         break;
7322     case 1:
7323         /* we returned to base exception level, no nesting.
7324          * (In the pseudocode this is written using "NestedActivation != 1"
7325          * where we have 'rettobase == false'.)
7326          */
7327         rettobase = true;
7328         break;
7329     default:
7330         g_assert_not_reached();
7331     }
7332 
7333     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7334     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7335     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7336         (excret & R_V7M_EXCRET_S_MASK);
7337 
7338     if (arm_feature(env, ARM_FEATURE_V8)) {
7339         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7340             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7341              * we choose to take the UsageFault.
7342              */
7343             if ((excret & R_V7M_EXCRET_S_MASK) ||
7344                 (excret & R_V7M_EXCRET_ES_MASK) ||
7345                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7346                 ufault = true;
7347             }
7348         }
7349         if (excret & R_V7M_EXCRET_RES0_MASK) {
7350             ufault = true;
7351         }
7352     } else {
7353         /* For v7M we only recognize certain combinations of the low bits */
7354         switch (excret & 0xf) {
7355         case 1: /* Return to Handler */
7356             break;
7357         case 13: /* Return to Thread using Process stack */
7358         case 9: /* Return to Thread using Main stack */
7359             /* We only need to check NONBASETHRDENA for v7M, because in
7360              * v8M this bit does not exist (it is RES1).
7361              */
7362             if (!rettobase &&
7363                 !(env->v7m.ccr[env->v7m.secure] &
7364                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
7365                 ufault = true;
7366             }
7367             break;
7368         default:
7369             ufault = true;
7370         }
7371     }
7372 
7373     /*
7374      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7375      * Handler mode (and will be until we write the new XPSR.Interrupt
7376      * field) this does not switch around the current stack pointer.
7377      * We must do this before we do any kind of tailchaining, including
7378      * for the derived exceptions on integrity check failures, or we will
7379      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7380      */
7381     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7382 
7383     if (sfault) {
7384         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7385         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7386         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7387                       "stackframe: failed EXC_RETURN.ES validity check\n");
7388         v7m_exception_taken(cpu, excret, true, false);
7389         return;
7390     }
7391 
7392     if (ufault) {
7393         /* Bad exception return: instead of popping the exception
7394          * stack, directly take a usage fault on the current stack.
7395          */
7396         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7397         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7398         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7399                       "stackframe: failed exception return integrity check\n");
7400         v7m_exception_taken(cpu, excret, true, false);
7401         return;
7402     }
7403 
7404     /*
7405      * Tailchaining: if there is currently a pending exception that
7406      * is high enough priority to preempt execution at the level we're
7407      * about to return to, then just directly take that exception now,
7408      * avoiding an unstack-and-then-stack. Note that now we have
7409      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7410      * our current execution priority is already the execution priority we are
7411      * returning to -- none of the state we would unstack or set based on
7412      * the EXCRET value affects it.
7413      */
7414     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7415         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7416         v7m_exception_taken(cpu, excret, true, false);
7417         return;
7418     }
7419 
7420     switch_v7m_security_state(env, return_to_secure);
7421 
7422     {
7423         /* The stack pointer we should be reading the exception frame from
7424          * depends on bits in the magic exception return type value (and
7425          * for v8M isn't necessarily the stack pointer we will eventually
7426          * end up resuming execution with). Get a pointer to the location
7427          * in the CPU state struct where the SP we need is currently being
7428          * stored; we will use and modify it in place.
7429          * We use this limited C variable scope so we don't accidentally
7430          * use 'frame_sp_p' after we do something that makes it invalid.
7431          */
7432         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7433                                               return_to_secure,
7434                                               !return_to_handler,
7435                                               return_to_sp_process);
7436         uint32_t frameptr = *frame_sp_p;
7437         bool pop_ok = true;
7438         ARMMMUIdx mmu_idx;
7439         bool return_to_priv = return_to_handler ||
7440             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7441 
7442         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7443                                                         return_to_priv);
7444 
7445         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7446             arm_feature(env, ARM_FEATURE_V8)) {
7447             qemu_log_mask(LOG_GUEST_ERROR,
7448                           "M profile exception return with non-8-aligned SP "
7449                           "for destination state is UNPREDICTABLE\n");
7450         }
7451 
7452         /* Do we need to pop callee-saved registers? */
7453         if (return_to_secure &&
7454             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7455              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7456             uint32_t expected_sig = 0xfefa125b;
7457             uint32_t actual_sig;
7458 
7459             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7460 
7461             if (pop_ok && expected_sig != actual_sig) {
7462                 /* Take a SecureFault on the current stack */
7463                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7464                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7465                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7466                               "stackframe: failed exception return integrity "
7467                               "signature check\n");
7468                 v7m_exception_taken(cpu, excret, true, false);
7469                 return;
7470             }
7471 
7472             pop_ok = pop_ok &&
7473                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7474                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7475                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7476                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7477                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7478                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7479                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7480                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7481 
7482             frameptr += 0x28;
7483         }
7484 
7485         /* Pop registers */
7486         pop_ok = pop_ok &&
7487             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7488             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7489             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7490             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7491             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7492             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7493             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7494             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7495 
7496         if (!pop_ok) {
7497             /* v7m_stack_read() pended a fault, so take it (as a tail
7498              * chained exception on the same stack frame)
7499              */
7500             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7501             v7m_exception_taken(cpu, excret, true, false);
7502             return;
7503         }
7504 
7505         /* Returning from an exception with a PC with bit 0 set is defined
7506          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7507          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7508          * the lsbit, and there are several RTOSes out there which incorrectly
7509          * assume the r15 in the stack frame should be a Thumb-style "lsbit
7510          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7511          * complain about the badly behaved guest.
7512          */
7513         if (env->regs[15] & 1) {
7514             env->regs[15] &= ~1U;
7515             if (!arm_feature(env, ARM_FEATURE_V8)) {
7516                 qemu_log_mask(LOG_GUEST_ERROR,
7517                               "M profile return from interrupt with misaligned "
7518                               "PC is UNPREDICTABLE on v7M\n");
7519             }
7520         }
7521 
7522         if (arm_feature(env, ARM_FEATURE_V8)) {
7523             /* For v8M we have to check whether the xPSR exception field
7524              * matches the EXCRET value for return to handler/thread
7525              * before we commit to changing the SP and xPSR.
7526              */
7527             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7528             if (return_to_handler != will_be_handler) {
7529                 /* Take an INVPC UsageFault on the current stack.
7530                  * By this point we will have switched to the security state
7531                  * for the background state, so this UsageFault will target
7532                  * that state.
7533                  */
7534                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7535                                         env->v7m.secure);
7536                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7537                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7538                               "stackframe: failed exception return integrity "
7539                               "check\n");
7540                 v7m_exception_taken(cpu, excret, true, false);
7541                 return;
7542             }
7543         }
7544 
7545         /* Commit to consuming the stack frame */
7546         frameptr += 0x20;
7547         /* Undo stack alignment (the SPREALIGN bit indicates that the original
7548          * pre-exception SP was not 8-aligned and we added a padding word to
7549          * align it, so we undo this by ORing in the bit that increases it
7550          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7551          * would work too but a logical OR is how the pseudocode specifies it.)
7552          */
7553         if (xpsr & XPSR_SPREALIGN) {
7554             frameptr |= 4;
7555         }
7556         *frame_sp_p = frameptr;
7557     }
7558     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7559     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7560 
7561     /* The restored xPSR exception field will be zero if we're
7562      * resuming in Thread mode. If that doesn't match what the
7563      * exception return excret specified then this is a UsageFault.
7564      * v7M requires we make this check here; v8M did it earlier.
7565      */
7566     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7567         /* Take an INVPC UsageFault by pushing the stack again;
7568          * we know we're v7M so this is never a Secure UsageFault.
7569          */
7570         bool ignore_stackfaults;
7571 
7572         assert(!arm_feature(env, ARM_FEATURE_V8));
7573         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7574         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7575         ignore_stackfaults = v7m_push_stack(cpu);
7576         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7577                       "failed exception return integrity check\n");
7578         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7579         return;
7580     }
7581 
7582     /* Otherwise, we have a successful exception exit. */
7583     arm_clear_exclusive(env);
7584     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7585 }
7586 
7587 static bool do_v7m_function_return(ARMCPU *cpu)
7588 {
7589     /* v8M security extensions magic function return.
7590      * We may either:
7591      *  (1) throw an exception (longjump)
7592      *  (2) return true if we successfully handled the function return
7593      *  (3) return false if we failed a consistency check and have
7594      *      pended a UsageFault that needs to be taken now
7595      *
7596      * At this point the magic return value is split between env->regs[15]
7597      * and env->thumb. We don't bother to reconstitute it because we don't
7598      * need it (all values are handled the same way).
7599      */
7600     CPUARMState *env = &cpu->env;
7601     uint32_t newpc, newpsr, newpsr_exc;
7602 
7603     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7604 
7605     {
7606         bool threadmode, spsel;
7607         TCGMemOpIdx oi;
7608         ARMMMUIdx mmu_idx;
7609         uint32_t *frame_sp_p;
7610         uint32_t frameptr;
7611 
7612         /* Pull the return address and IPSR from the Secure stack */
7613         threadmode = !arm_v7m_is_handler_mode(env);
7614         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7615 
7616         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7617         frameptr = *frame_sp_p;
7618 
7619         /* These loads may throw an exception (for MPU faults). We want to
7620          * do them as secure, so work out what MMU index that is.
7621          */
7622         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7623         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7624         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7625         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7626 
7627         /* Consistency checks on new IPSR */
7628         newpsr_exc = newpsr & XPSR_EXCP;
7629         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7630               (env->v7m.exception == 1 && newpsr_exc != 0))) {
7631             /* Pend the fault and tell our caller to take it */
7632             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7633             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7634                                     env->v7m.secure);
7635             qemu_log_mask(CPU_LOG_INT,
7636                           "...taking INVPC UsageFault: "
7637                           "IPSR consistency check failed\n");
7638             return false;
7639         }
7640 
7641         *frame_sp_p = frameptr + 8;
7642     }
7643 
7644     /* This invalidates frame_sp_p */
7645     switch_v7m_security_state(env, true);
7646     env->v7m.exception = newpsr_exc;
7647     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7648     if (newpsr & XPSR_SFPA) {
7649         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7650     }
7651     xpsr_write(env, 0, XPSR_IT);
7652     env->thumb = newpc & 1;
7653     env->regs[15] = newpc & ~1;
7654 
7655     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7656     return true;
7657 }
7658 
7659 static void arm_log_exception(int idx)
7660 {
7661     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7662         const char *exc = NULL;
7663         static const char * const excnames[] = {
7664             [EXCP_UDEF] = "Undefined Instruction",
7665             [EXCP_SWI] = "SVC",
7666             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7667             [EXCP_DATA_ABORT] = "Data Abort",
7668             [EXCP_IRQ] = "IRQ",
7669             [EXCP_FIQ] = "FIQ",
7670             [EXCP_BKPT] = "Breakpoint",
7671             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7672             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7673             [EXCP_HVC] = "Hypervisor Call",
7674             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7675             [EXCP_SMC] = "Secure Monitor Call",
7676             [EXCP_VIRQ] = "Virtual IRQ",
7677             [EXCP_VFIQ] = "Virtual FIQ",
7678             [EXCP_SEMIHOST] = "Semihosting call",
7679             [EXCP_NOCP] = "v7M NOCP UsageFault",
7680             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7681             [EXCP_STKOF] = "v8M STKOF UsageFault",
7682         };
7683 
7684         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7685             exc = excnames[idx];
7686         }
7687         if (!exc) {
7688             exc = "unknown";
7689         }
7690         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7691     }
7692 }
7693 
7694 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7695                                uint32_t addr, uint16_t *insn)
7696 {
7697     /* Load a 16-bit portion of a v7M instruction, returning true on success,
7698      * or false on failure (in which case we will have pended the appropriate
7699      * exception).
7700      * We need to do the instruction fetch's MPU and SAU checks
7701      * like this because there is no MMU index that would allow
7702      * doing the load with a single function call. Instead we must
7703      * first check that the security attributes permit the load
7704      * and that they don't mismatch on the two halves of the instruction,
7705      * and then we do the load as a secure load (ie using the security
7706      * attributes of the address, not the CPU, as architecturally required).
7707      */
7708     CPUState *cs = CPU(cpu);
7709     CPUARMState *env = &cpu->env;
7710     V8M_SAttributes sattrs = {};
7711     MemTxAttrs attrs = {};
7712     ARMMMUFaultInfo fi = {};
7713     MemTxResult txres;
7714     target_ulong page_size;
7715     hwaddr physaddr;
7716     int prot;
7717 
7718     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7719     if (!sattrs.nsc || sattrs.ns) {
7720         /* This must be the second half of the insn, and it straddles a
7721          * region boundary with the second half not being S&NSC.
7722          */
7723         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7724         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7725         qemu_log_mask(CPU_LOG_INT,
7726                       "...really SecureFault with SFSR.INVEP\n");
7727         return false;
7728     }
7729     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7730                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7731         /* the MPU lookup failed */
7732         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7733         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7734         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7735         return false;
7736     }
7737     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7738                                  attrs, &txres);
7739     if (txres != MEMTX_OK) {
7740         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7741         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7742         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7743         return false;
7744     }
7745     return true;
7746 }
7747 
7748 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7749 {
7750     /* Check whether this attempt to execute code in a Secure & NS-Callable
7751      * memory region is for an SG instruction; if so, then emulate the
7752      * effect of the SG instruction and return true. Otherwise pend
7753      * the correct kind of exception and return false.
7754      */
7755     CPUARMState *env = &cpu->env;
7756     ARMMMUIdx mmu_idx;
7757     uint16_t insn;
7758 
7759     /* We should never get here unless get_phys_addr_pmsav8() caused
7760      * an exception for NS executing in S&NSC memory.
7761      */
7762     assert(!env->v7m.secure);
7763     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7764 
7765     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7766     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7767 
7768     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7769         return false;
7770     }
7771 
7772     if (!env->thumb) {
7773         goto gen_invep;
7774     }
7775 
7776     if (insn != 0xe97f) {
7777         /* Not an SG instruction first half (we choose the IMPDEF
7778          * early-SG-check option).
7779          */
7780         goto gen_invep;
7781     }
7782 
7783     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7784         return false;
7785     }
7786 
7787     if (insn != 0xe97f) {
7788         /* Not an SG instruction second half (yes, both halves of the SG
7789          * insn have the same hex value)
7790          */
7791         goto gen_invep;
7792     }
7793 
7794     /* OK, we have confirmed that we really have an SG instruction.
7795      * We know we're NS in S memory so don't need to repeat those checks.
7796      */
7797     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7798                   ", executing it\n", env->regs[15]);
7799     env->regs[14] &= ~1;
7800     switch_v7m_security_state(env, true);
7801     xpsr_write(env, 0, XPSR_IT);
7802     env->regs[15] += 4;
7803     return true;
7804 
7805 gen_invep:
7806     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7807     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7808     qemu_log_mask(CPU_LOG_INT,
7809                   "...really SecureFault with SFSR.INVEP\n");
7810     return false;
7811 }
7812 
7813 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7814 {
7815     ARMCPU *cpu = ARM_CPU(cs);
7816     CPUARMState *env = &cpu->env;
7817     uint32_t lr;
7818     bool ignore_stackfaults;
7819 
7820     arm_log_exception(cs->exception_index);
7821 
7822     /* For exceptions we just mark as pending on the NVIC, and let that
7823        handle it.  */
7824     switch (cs->exception_index) {
7825     case EXCP_UDEF:
7826         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7827         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7828         break;
7829     case EXCP_NOCP:
7830         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7831         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7832         break;
7833     case EXCP_INVSTATE:
7834         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7835         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7836         break;
7837     case EXCP_STKOF:
7838         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7839         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_STKOF_MASK;
7840         break;
7841     case EXCP_SWI:
7842         /* The PC already points to the next instruction.  */
7843         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7844         break;
7845     case EXCP_PREFETCH_ABORT:
7846     case EXCP_DATA_ABORT:
7847         /* Note that for M profile we don't have a guest facing FSR, but
7848          * the env->exception.fsr will be populated by the code that
7849          * raises the fault, in the A profile short-descriptor format.
7850          */
7851         switch (env->exception.fsr & 0xf) {
7852         case M_FAKE_FSR_NSC_EXEC:
7853             /* Exception generated when we try to execute code at an address
7854              * which is marked as Secure & Non-Secure Callable and the CPU
7855              * is in the Non-Secure state. The only instruction which can
7856              * be executed like this is SG (and that only if both halves of
7857              * the SG instruction have the same security attributes.)
7858              * Everything else must generate an INVEP SecureFault, so we
7859              * emulate the SG instruction here.
7860              */
7861             if (v7m_handle_execute_nsc(cpu)) {
7862                 return;
7863             }
7864             break;
7865         case M_FAKE_FSR_SFAULT:
7866             /* Various flavours of SecureFault for attempts to execute or
7867              * access data in the wrong security state.
7868              */
7869             switch (cs->exception_index) {
7870             case EXCP_PREFETCH_ABORT:
7871                 if (env->v7m.secure) {
7872                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7873                     qemu_log_mask(CPU_LOG_INT,
7874                                   "...really SecureFault with SFSR.INVTRAN\n");
7875                 } else {
7876                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7877                     qemu_log_mask(CPU_LOG_INT,
7878                                   "...really SecureFault with SFSR.INVEP\n");
7879                 }
7880                 break;
7881             case EXCP_DATA_ABORT:
7882                 /* This must be an NS access to S memory */
7883                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7884                 qemu_log_mask(CPU_LOG_INT,
7885                               "...really SecureFault with SFSR.AUVIOL\n");
7886                 break;
7887             }
7888             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7889             break;
7890         case 0x8: /* External Abort */
7891             switch (cs->exception_index) {
7892             case EXCP_PREFETCH_ABORT:
7893                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7894                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7895                 break;
7896             case EXCP_DATA_ABORT:
7897                 env->v7m.cfsr[M_REG_NS] |=
7898                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7899                 env->v7m.bfar = env->exception.vaddress;
7900                 qemu_log_mask(CPU_LOG_INT,
7901                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7902                               env->v7m.bfar);
7903                 break;
7904             }
7905             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7906             break;
7907         default:
7908             /* All other FSR values are either MPU faults or "can't happen
7909              * for M profile" cases.
7910              */
7911             switch (cs->exception_index) {
7912             case EXCP_PREFETCH_ABORT:
7913                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7914                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7915                 break;
7916             case EXCP_DATA_ABORT:
7917                 env->v7m.cfsr[env->v7m.secure] |=
7918                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7919                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7920                 qemu_log_mask(CPU_LOG_INT,
7921                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7922                               env->v7m.mmfar[env->v7m.secure]);
7923                 break;
7924             }
7925             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7926                                     env->v7m.secure);
7927             break;
7928         }
7929         break;
7930     case EXCP_BKPT:
7931         if (semihosting_enabled()) {
7932             int nr;
7933             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7934             if (nr == 0xab) {
7935                 env->regs[15] += 2;
7936                 qemu_log_mask(CPU_LOG_INT,
7937                               "...handling as semihosting call 0x%x\n",
7938                               env->regs[0]);
7939                 env->regs[0] = do_arm_semihosting(env);
7940                 return;
7941             }
7942         }
7943         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7944         break;
7945     case EXCP_IRQ:
7946         break;
7947     case EXCP_EXCEPTION_EXIT:
7948         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7949             /* Must be v8M security extension function return */
7950             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7951             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7952             if (do_v7m_function_return(cpu)) {
7953                 return;
7954             }
7955         } else {
7956             do_v7m_exception_exit(cpu);
7957             return;
7958         }
7959         break;
7960     default:
7961         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7962         return; /* Never happens.  Keep compiler happy.  */
7963     }
7964 
7965     if (arm_feature(env, ARM_FEATURE_V8)) {
7966         lr = R_V7M_EXCRET_RES1_MASK |
7967             R_V7M_EXCRET_DCRS_MASK |
7968             R_V7M_EXCRET_FTYPE_MASK;
7969         /* The S bit indicates whether we should return to Secure
7970          * or NonSecure (ie our current state).
7971          * The ES bit indicates whether we're taking this exception
7972          * to Secure or NonSecure (ie our target state). We set it
7973          * later, in v7m_exception_taken().
7974          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7975          * This corresponds to the ARM ARM pseudocode for v8M setting
7976          * some LR bits in PushStack() and some in ExceptionTaken();
7977          * the distinction matters for the tailchain cases where we
7978          * can take an exception without pushing the stack.
7979          */
7980         if (env->v7m.secure) {
7981             lr |= R_V7M_EXCRET_S_MASK;
7982         }
7983     } else {
7984         lr = R_V7M_EXCRET_RES1_MASK |
7985             R_V7M_EXCRET_S_MASK |
7986             R_V7M_EXCRET_DCRS_MASK |
7987             R_V7M_EXCRET_FTYPE_MASK |
7988             R_V7M_EXCRET_ES_MASK;
7989         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7990             lr |= R_V7M_EXCRET_SPSEL_MASK;
7991         }
7992     }
7993     if (!arm_v7m_is_handler_mode(env)) {
7994         lr |= R_V7M_EXCRET_MODE_MASK;
7995     }
7996 
7997     ignore_stackfaults = v7m_push_stack(cpu);
7998     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7999 }
8000 
8001 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8002  * register set.  This is necessary when switching between AArch32 and AArch64
8003  * execution state.
8004  */
8005 void aarch64_sync_32_to_64(CPUARMState *env)
8006 {
8007     int i;
8008     uint32_t mode = env->uncached_cpsr & CPSR_M;
8009 
8010     /* We can blanket copy R[0:7] to X[0:7] */
8011     for (i = 0; i < 8; i++) {
8012         env->xregs[i] = env->regs[i];
8013     }
8014 
8015     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8016      * Otherwise, they come from the banked user regs.
8017      */
8018     if (mode == ARM_CPU_MODE_FIQ) {
8019         for (i = 8; i < 13; i++) {
8020             env->xregs[i] = env->usr_regs[i - 8];
8021         }
8022     } else {
8023         for (i = 8; i < 13; i++) {
8024             env->xregs[i] = env->regs[i];
8025         }
8026     }
8027 
8028     /* Registers x13-x23 are the various mode SP and FP registers. Registers
8029      * r13 and r14 are only copied if we are in that mode, otherwise we copy
8030      * from the mode banked register.
8031      */
8032     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8033         env->xregs[13] = env->regs[13];
8034         env->xregs[14] = env->regs[14];
8035     } else {
8036         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
8037         /* HYP is an exception in that it is copied from r14 */
8038         if (mode == ARM_CPU_MODE_HYP) {
8039             env->xregs[14] = env->regs[14];
8040         } else {
8041             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
8042         }
8043     }
8044 
8045     if (mode == ARM_CPU_MODE_HYP) {
8046         env->xregs[15] = env->regs[13];
8047     } else {
8048         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
8049     }
8050 
8051     if (mode == ARM_CPU_MODE_IRQ) {
8052         env->xregs[16] = env->regs[14];
8053         env->xregs[17] = env->regs[13];
8054     } else {
8055         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
8056         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
8057     }
8058 
8059     if (mode == ARM_CPU_MODE_SVC) {
8060         env->xregs[18] = env->regs[14];
8061         env->xregs[19] = env->regs[13];
8062     } else {
8063         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
8064         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
8065     }
8066 
8067     if (mode == ARM_CPU_MODE_ABT) {
8068         env->xregs[20] = env->regs[14];
8069         env->xregs[21] = env->regs[13];
8070     } else {
8071         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
8072         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
8073     }
8074 
8075     if (mode == ARM_CPU_MODE_UND) {
8076         env->xregs[22] = env->regs[14];
8077         env->xregs[23] = env->regs[13];
8078     } else {
8079         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
8080         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
8081     }
8082 
8083     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8084      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
8085      * FIQ bank for r8-r14.
8086      */
8087     if (mode == ARM_CPU_MODE_FIQ) {
8088         for (i = 24; i < 31; i++) {
8089             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
8090         }
8091     } else {
8092         for (i = 24; i < 29; i++) {
8093             env->xregs[i] = env->fiq_regs[i - 24];
8094         }
8095         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
8096         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
8097     }
8098 
8099     env->pc = env->regs[15];
8100 }
8101 
8102 /* Function used to synchronize QEMU's AArch32 register set with AArch64
8103  * register set.  This is necessary when switching between AArch32 and AArch64
8104  * execution state.
8105  */
8106 void aarch64_sync_64_to_32(CPUARMState *env)
8107 {
8108     int i;
8109     uint32_t mode = env->uncached_cpsr & CPSR_M;
8110 
8111     /* We can blanket copy X[0:7] to R[0:7] */
8112     for (i = 0; i < 8; i++) {
8113         env->regs[i] = env->xregs[i];
8114     }
8115 
8116     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8117      * Otherwise, we copy x8-x12 into the banked user regs.
8118      */
8119     if (mode == ARM_CPU_MODE_FIQ) {
8120         for (i = 8; i < 13; i++) {
8121             env->usr_regs[i - 8] = env->xregs[i];
8122         }
8123     } else {
8124         for (i = 8; i < 13; i++) {
8125             env->regs[i] = env->xregs[i];
8126         }
8127     }
8128 
8129     /* Registers r13 & r14 depend on the current mode.
8130      * If we are in a given mode, we copy the corresponding x registers to r13
8131      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
8132      * for the mode.
8133      */
8134     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
8135         env->regs[13] = env->xregs[13];
8136         env->regs[14] = env->xregs[14];
8137     } else {
8138         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
8139 
8140         /* HYP is an exception in that it does not have its own banked r14 but
8141          * shares the USR r14
8142          */
8143         if (mode == ARM_CPU_MODE_HYP) {
8144             env->regs[14] = env->xregs[14];
8145         } else {
8146             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
8147         }
8148     }
8149 
8150     if (mode == ARM_CPU_MODE_HYP) {
8151         env->regs[13] = env->xregs[15];
8152     } else {
8153         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
8154     }
8155 
8156     if (mode == ARM_CPU_MODE_IRQ) {
8157         env->regs[14] = env->xregs[16];
8158         env->regs[13] = env->xregs[17];
8159     } else {
8160         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
8161         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
8162     }
8163 
8164     if (mode == ARM_CPU_MODE_SVC) {
8165         env->regs[14] = env->xregs[18];
8166         env->regs[13] = env->xregs[19];
8167     } else {
8168         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
8169         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
8170     }
8171 
8172     if (mode == ARM_CPU_MODE_ABT) {
8173         env->regs[14] = env->xregs[20];
8174         env->regs[13] = env->xregs[21];
8175     } else {
8176         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
8177         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
8178     }
8179 
8180     if (mode == ARM_CPU_MODE_UND) {
8181         env->regs[14] = env->xregs[22];
8182         env->regs[13] = env->xregs[23];
8183     } else {
8184         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
8185         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
8186     }
8187 
8188     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
8189      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
8190      * FIQ bank for r8-r14.
8191      */
8192     if (mode == ARM_CPU_MODE_FIQ) {
8193         for (i = 24; i < 31; i++) {
8194             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
8195         }
8196     } else {
8197         for (i = 24; i < 29; i++) {
8198             env->fiq_regs[i - 24] = env->xregs[i];
8199         }
8200         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
8201         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
8202     }
8203 
8204     env->regs[15] = env->pc;
8205 }
8206 
8207 static void take_aarch32_exception(CPUARMState *env, int new_mode,
8208                                    uint32_t mask, uint32_t offset,
8209                                    uint32_t newpc)
8210 {
8211     /* Change the CPU state so as to actually take the exception. */
8212     switch_mode(env, new_mode);
8213     /*
8214      * For exceptions taken to AArch32 we must clear the SS bit in both
8215      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8216      */
8217     env->uncached_cpsr &= ~PSTATE_SS;
8218     env->spsr = cpsr_read(env);
8219     /* Clear IT bits.  */
8220     env->condexec_bits = 0;
8221     /* Switch to the new mode, and to the correct instruction set.  */
8222     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8223     /* Set new mode endianness */
8224     env->uncached_cpsr &= ~CPSR_E;
8225     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8226         env->uncached_cpsr |= CPSR_E;
8227     }
8228     /* J and IL must always be cleared for exception entry */
8229     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
8230     env->daif |= mask;
8231 
8232     if (new_mode == ARM_CPU_MODE_HYP) {
8233         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
8234         env->elr_el[2] = env->regs[15];
8235     } else {
8236         /*
8237          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8238          * and we should just guard the thumb mode on V4
8239          */
8240         if (arm_feature(env, ARM_FEATURE_V4T)) {
8241             env->thumb =
8242                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8243         }
8244         env->regs[14] = env->regs[15] + offset;
8245     }
8246     env->regs[15] = newpc;
8247 }
8248 
8249 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
8250 {
8251     /*
8252      * Handle exception entry to Hyp mode; this is sufficiently
8253      * different to entry to other AArch32 modes that we handle it
8254      * separately here.
8255      *
8256      * The vector table entry used is always the 0x14 Hyp mode entry point,
8257      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8258      * The offset applied to the preferred return address is always zero
8259      * (see DDI0487C.a section G1.12.3).
8260      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8261      */
8262     uint32_t addr, mask;
8263     ARMCPU *cpu = ARM_CPU(cs);
8264     CPUARMState *env = &cpu->env;
8265 
8266     switch (cs->exception_index) {
8267     case EXCP_UDEF:
8268         addr = 0x04;
8269         break;
8270     case EXCP_SWI:
8271         addr = 0x14;
8272         break;
8273     case EXCP_BKPT:
8274         /* Fall through to prefetch abort.  */
8275     case EXCP_PREFETCH_ABORT:
8276         env->cp15.ifar_s = env->exception.vaddress;
8277         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
8278                       (uint32_t)env->exception.vaddress);
8279         addr = 0x0c;
8280         break;
8281     case EXCP_DATA_ABORT:
8282         env->cp15.dfar_s = env->exception.vaddress;
8283         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
8284                       (uint32_t)env->exception.vaddress);
8285         addr = 0x10;
8286         break;
8287     case EXCP_IRQ:
8288         addr = 0x18;
8289         break;
8290     case EXCP_FIQ:
8291         addr = 0x1c;
8292         break;
8293     case EXCP_HVC:
8294         addr = 0x08;
8295         break;
8296     case EXCP_HYP_TRAP:
8297         addr = 0x14;
8298     default:
8299         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8300     }
8301 
8302     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
8303         if (!arm_feature(env, ARM_FEATURE_V8)) {
8304             /*
8305              * QEMU syndrome values are v8-style. v7 has the IL bit
8306              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8307              * If this is a v7 CPU, squash the IL bit in those cases.
8308              */
8309             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
8310                 (cs->exception_index == EXCP_DATA_ABORT &&
8311                  !(env->exception.syndrome & ARM_EL_ISV)) ||
8312                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
8313                 env->exception.syndrome &= ~ARM_EL_IL;
8314             }
8315         }
8316         env->cp15.esr_el[2] = env->exception.syndrome;
8317     }
8318 
8319     if (arm_current_el(env) != 2 && addr < 0x14) {
8320         addr = 0x14;
8321     }
8322 
8323     mask = 0;
8324     if (!(env->cp15.scr_el3 & SCR_EA)) {
8325         mask |= CPSR_A;
8326     }
8327     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
8328         mask |= CPSR_I;
8329     }
8330     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
8331         mask |= CPSR_F;
8332     }
8333 
8334     addr += env->cp15.hvbar;
8335 
8336     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
8337 }
8338 
8339 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
8340 {
8341     ARMCPU *cpu = ARM_CPU(cs);
8342     CPUARMState *env = &cpu->env;
8343     uint32_t addr;
8344     uint32_t mask;
8345     int new_mode;
8346     uint32_t offset;
8347     uint32_t moe;
8348 
8349     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8350     switch (syn_get_ec(env->exception.syndrome)) {
8351     case EC_BREAKPOINT:
8352     case EC_BREAKPOINT_SAME_EL:
8353         moe = 1;
8354         break;
8355     case EC_WATCHPOINT:
8356     case EC_WATCHPOINT_SAME_EL:
8357         moe = 10;
8358         break;
8359     case EC_AA32_BKPT:
8360         moe = 3;
8361         break;
8362     case EC_VECTORCATCH:
8363         moe = 5;
8364         break;
8365     default:
8366         moe = 0;
8367         break;
8368     }
8369 
8370     if (moe) {
8371         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
8372     }
8373 
8374     if (env->exception.target_el == 2) {
8375         arm_cpu_do_interrupt_aarch32_hyp(cs);
8376         return;
8377     }
8378 
8379     /* TODO: Vectored interrupt controller.  */
8380     switch (cs->exception_index) {
8381     case EXCP_UDEF:
8382         new_mode = ARM_CPU_MODE_UND;
8383         addr = 0x04;
8384         mask = CPSR_I;
8385         if (env->thumb)
8386             offset = 2;
8387         else
8388             offset = 4;
8389         break;
8390     case EXCP_SWI:
8391         new_mode = ARM_CPU_MODE_SVC;
8392         addr = 0x08;
8393         mask = CPSR_I;
8394         /* The PC already points to the next instruction.  */
8395         offset = 0;
8396         break;
8397     case EXCP_BKPT:
8398         /* Fall through to prefetch abort.  */
8399     case EXCP_PREFETCH_ABORT:
8400         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8401         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8402         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8403                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8404         new_mode = ARM_CPU_MODE_ABT;
8405         addr = 0x0c;
8406         mask = CPSR_A | CPSR_I;
8407         offset = 4;
8408         break;
8409     case EXCP_DATA_ABORT:
8410         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8411         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8412         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8413                       env->exception.fsr,
8414                       (uint32_t)env->exception.vaddress);
8415         new_mode = ARM_CPU_MODE_ABT;
8416         addr = 0x10;
8417         mask = CPSR_A | CPSR_I;
8418         offset = 8;
8419         break;
8420     case EXCP_IRQ:
8421         new_mode = ARM_CPU_MODE_IRQ;
8422         addr = 0x18;
8423         /* Disable IRQ and imprecise data aborts.  */
8424         mask = CPSR_A | CPSR_I;
8425         offset = 4;
8426         if (env->cp15.scr_el3 & SCR_IRQ) {
8427             /* IRQ routed to monitor mode */
8428             new_mode = ARM_CPU_MODE_MON;
8429             mask |= CPSR_F;
8430         }
8431         break;
8432     case EXCP_FIQ:
8433         new_mode = ARM_CPU_MODE_FIQ;
8434         addr = 0x1c;
8435         /* Disable FIQ, IRQ and imprecise data aborts.  */
8436         mask = CPSR_A | CPSR_I | CPSR_F;
8437         if (env->cp15.scr_el3 & SCR_FIQ) {
8438             /* FIQ routed to monitor mode */
8439             new_mode = ARM_CPU_MODE_MON;
8440         }
8441         offset = 4;
8442         break;
8443     case EXCP_VIRQ:
8444         new_mode = ARM_CPU_MODE_IRQ;
8445         addr = 0x18;
8446         /* Disable IRQ and imprecise data aborts.  */
8447         mask = CPSR_A | CPSR_I;
8448         offset = 4;
8449         break;
8450     case EXCP_VFIQ:
8451         new_mode = ARM_CPU_MODE_FIQ;
8452         addr = 0x1c;
8453         /* Disable FIQ, IRQ and imprecise data aborts.  */
8454         mask = CPSR_A | CPSR_I | CPSR_F;
8455         offset = 4;
8456         break;
8457     case EXCP_SMC:
8458         new_mode = ARM_CPU_MODE_MON;
8459         addr = 0x08;
8460         mask = CPSR_A | CPSR_I | CPSR_F;
8461         offset = 0;
8462         break;
8463     default:
8464         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8465         return; /* Never happens.  Keep compiler happy.  */
8466     }
8467 
8468     if (new_mode == ARM_CPU_MODE_MON) {
8469         addr += env->cp15.mvbar;
8470     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8471         /* High vectors. When enabled, base address cannot be remapped. */
8472         addr += 0xffff0000;
8473     } else {
8474         /* ARM v7 architectures provide a vector base address register to remap
8475          * the interrupt vector table.
8476          * This register is only followed in non-monitor mode, and is banked.
8477          * Note: only bits 31:5 are valid.
8478          */
8479         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8480     }
8481 
8482     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8483         env->cp15.scr_el3 &= ~SCR_NS;
8484     }
8485 
8486     take_aarch32_exception(env, new_mode, mask, offset, addr);
8487 }
8488 
8489 /* Handle exception entry to a target EL which is using AArch64 */
8490 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8491 {
8492     ARMCPU *cpu = ARM_CPU(cs);
8493     CPUARMState *env = &cpu->env;
8494     unsigned int new_el = env->exception.target_el;
8495     target_ulong addr = env->cp15.vbar_el[new_el];
8496     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8497     unsigned int cur_el = arm_current_el(env);
8498 
8499     /*
8500      * Note that new_el can never be 0.  If cur_el is 0, then
8501      * el0_a64 is is_a64(), else el0_a64 is ignored.
8502      */
8503     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
8504 
8505     if (cur_el < new_el) {
8506         /* Entry vector offset depends on whether the implemented EL
8507          * immediately lower than the target level is using AArch32 or AArch64
8508          */
8509         bool is_aa64;
8510 
8511         switch (new_el) {
8512         case 3:
8513             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8514             break;
8515         case 2:
8516             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8517             break;
8518         case 1:
8519             is_aa64 = is_a64(env);
8520             break;
8521         default:
8522             g_assert_not_reached();
8523         }
8524 
8525         if (is_aa64) {
8526             addr += 0x400;
8527         } else {
8528             addr += 0x600;
8529         }
8530     } else if (pstate_read(env) & PSTATE_SP) {
8531         addr += 0x200;
8532     }
8533 
8534     switch (cs->exception_index) {
8535     case EXCP_PREFETCH_ABORT:
8536     case EXCP_DATA_ABORT:
8537         env->cp15.far_el[new_el] = env->exception.vaddress;
8538         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8539                       env->cp15.far_el[new_el]);
8540         /* fall through */
8541     case EXCP_BKPT:
8542     case EXCP_UDEF:
8543     case EXCP_SWI:
8544     case EXCP_HVC:
8545     case EXCP_HYP_TRAP:
8546     case EXCP_SMC:
8547         if (syn_get_ec(env->exception.syndrome) == EC_ADVSIMDFPACCESSTRAP) {
8548             /*
8549              * QEMU internal FP/SIMD syndromes from AArch32 include the
8550              * TA and coproc fields which are only exposed if the exception
8551              * is taken to AArch32 Hyp mode. Mask them out to get a valid
8552              * AArch64 format syndrome.
8553              */
8554             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
8555         }
8556         env->cp15.esr_el[new_el] = env->exception.syndrome;
8557         break;
8558     case EXCP_IRQ:
8559     case EXCP_VIRQ:
8560         addr += 0x80;
8561         break;
8562     case EXCP_FIQ:
8563     case EXCP_VFIQ:
8564         addr += 0x100;
8565         break;
8566     case EXCP_SEMIHOST:
8567         qemu_log_mask(CPU_LOG_INT,
8568                       "...handling as semihosting call 0x%" PRIx64 "\n",
8569                       env->xregs[0]);
8570         env->xregs[0] = do_arm_semihosting(env);
8571         return;
8572     default:
8573         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8574     }
8575 
8576     if (is_a64(env)) {
8577         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8578         aarch64_save_sp(env, arm_current_el(env));
8579         env->elr_el[new_el] = env->pc;
8580     } else {
8581         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8582         env->elr_el[new_el] = env->regs[15];
8583 
8584         aarch64_sync_32_to_64(env);
8585 
8586         env->condexec_bits = 0;
8587     }
8588     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8589                   env->elr_el[new_el]);
8590 
8591     pstate_write(env, PSTATE_DAIF | new_mode);
8592     env->aarch64 = 1;
8593     aarch64_restore_sp(env, new_el);
8594 
8595     env->pc = addr;
8596 
8597     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8598                   new_el, env->pc, pstate_read(env));
8599 }
8600 
8601 static inline bool check_for_semihosting(CPUState *cs)
8602 {
8603     /* Check whether this exception is a semihosting call; if so
8604      * then handle it and return true; otherwise return false.
8605      */
8606     ARMCPU *cpu = ARM_CPU(cs);
8607     CPUARMState *env = &cpu->env;
8608 
8609     if (is_a64(env)) {
8610         if (cs->exception_index == EXCP_SEMIHOST) {
8611             /* This is always the 64-bit semihosting exception.
8612              * The "is this usermode" and "is semihosting enabled"
8613              * checks have been done at translate time.
8614              */
8615             qemu_log_mask(CPU_LOG_INT,
8616                           "...handling as semihosting call 0x%" PRIx64 "\n",
8617                           env->xregs[0]);
8618             env->xregs[0] = do_arm_semihosting(env);
8619             return true;
8620         }
8621         return false;
8622     } else {
8623         uint32_t imm;
8624 
8625         /* Only intercept calls from privileged modes, to provide some
8626          * semblance of security.
8627          */
8628         if (cs->exception_index != EXCP_SEMIHOST &&
8629             (!semihosting_enabled() ||
8630              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8631             return false;
8632         }
8633 
8634         switch (cs->exception_index) {
8635         case EXCP_SEMIHOST:
8636             /* This is always a semihosting call; the "is this usermode"
8637              * and "is semihosting enabled" checks have been done at
8638              * translate time.
8639              */
8640             break;
8641         case EXCP_SWI:
8642             /* Check for semihosting interrupt.  */
8643             if (env->thumb) {
8644                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8645                     & 0xff;
8646                 if (imm == 0xab) {
8647                     break;
8648                 }
8649             } else {
8650                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8651                     & 0xffffff;
8652                 if (imm == 0x123456) {
8653                     break;
8654                 }
8655             }
8656             return false;
8657         case EXCP_BKPT:
8658             /* See if this is a semihosting syscall.  */
8659             if (env->thumb) {
8660                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8661                     & 0xff;
8662                 if (imm == 0xab) {
8663                     env->regs[15] += 2;
8664                     break;
8665                 }
8666             }
8667             return false;
8668         default:
8669             return false;
8670         }
8671 
8672         qemu_log_mask(CPU_LOG_INT,
8673                       "...handling as semihosting call 0x%x\n",
8674                       env->regs[0]);
8675         env->regs[0] = do_arm_semihosting(env);
8676         return true;
8677     }
8678 }
8679 
8680 /* Handle a CPU exception for A and R profile CPUs.
8681  * Do any appropriate logging, handle PSCI calls, and then hand off
8682  * to the AArch64-entry or AArch32-entry function depending on the
8683  * target exception level's register width.
8684  */
8685 void arm_cpu_do_interrupt(CPUState *cs)
8686 {
8687     ARMCPU *cpu = ARM_CPU(cs);
8688     CPUARMState *env = &cpu->env;
8689     unsigned int new_el = env->exception.target_el;
8690 
8691     assert(!arm_feature(env, ARM_FEATURE_M));
8692 
8693     arm_log_exception(cs->exception_index);
8694     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8695                   new_el);
8696     if (qemu_loglevel_mask(CPU_LOG_INT)
8697         && !excp_is_internal(cs->exception_index)) {
8698         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8699                       syn_get_ec(env->exception.syndrome),
8700                       env->exception.syndrome);
8701     }
8702 
8703     if (arm_is_psci_call(cpu, cs->exception_index)) {
8704         arm_handle_psci_call(cpu);
8705         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8706         return;
8707     }
8708 
8709     /* Semihosting semantics depend on the register width of the
8710      * code that caused the exception, not the target exception level,
8711      * so must be handled here.
8712      */
8713     if (check_for_semihosting(cs)) {
8714         return;
8715     }
8716 
8717     /* Hooks may change global state so BQL should be held, also the
8718      * BQL needs to be held for any modification of
8719      * cs->interrupt_request.
8720      */
8721     g_assert(qemu_mutex_iothread_locked());
8722 
8723     arm_call_pre_el_change_hook(cpu);
8724 
8725     assert(!excp_is_internal(cs->exception_index));
8726     if (arm_el_is_aa64(env, new_el)) {
8727         arm_cpu_do_interrupt_aarch64(cs);
8728     } else {
8729         arm_cpu_do_interrupt_aarch32(cs);
8730     }
8731 
8732     arm_call_el_change_hook(cpu);
8733 
8734     if (!kvm_enabled()) {
8735         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8736     }
8737 }
8738 
8739 /* Return the exception level which controls this address translation regime */
8740 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8741 {
8742     switch (mmu_idx) {
8743     case ARMMMUIdx_S2NS:
8744     case ARMMMUIdx_S1E2:
8745         return 2;
8746     case ARMMMUIdx_S1E3:
8747         return 3;
8748     case ARMMMUIdx_S1SE0:
8749         return arm_el_is_aa64(env, 3) ? 1 : 3;
8750     case ARMMMUIdx_S1SE1:
8751     case ARMMMUIdx_S1NSE0:
8752     case ARMMMUIdx_S1NSE1:
8753     case ARMMMUIdx_MPrivNegPri:
8754     case ARMMMUIdx_MUserNegPri:
8755     case ARMMMUIdx_MPriv:
8756     case ARMMMUIdx_MUser:
8757     case ARMMMUIdx_MSPrivNegPri:
8758     case ARMMMUIdx_MSUserNegPri:
8759     case ARMMMUIdx_MSPriv:
8760     case ARMMMUIdx_MSUser:
8761         return 1;
8762     default:
8763         g_assert_not_reached();
8764     }
8765 }
8766 
8767 /* Return the SCTLR value which controls this address translation regime */
8768 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8769 {
8770     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8771 }
8772 
8773 /* Return true if the specified stage of address translation is disabled */
8774 static inline bool regime_translation_disabled(CPUARMState *env,
8775                                                ARMMMUIdx mmu_idx)
8776 {
8777     if (arm_feature(env, ARM_FEATURE_M)) {
8778         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8779                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8780         case R_V7M_MPU_CTRL_ENABLE_MASK:
8781             /* Enabled, but not for HardFault and NMI */
8782             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8783         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8784             /* Enabled for all cases */
8785             return false;
8786         case 0:
8787         default:
8788             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8789              * we warned about that in armv7m_nvic.c when the guest set it.
8790              */
8791             return true;
8792         }
8793     }
8794 
8795     if (mmu_idx == ARMMMUIdx_S2NS) {
8796         /* HCR.DC means HCR.VM behaves as 1 */
8797         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
8798     }
8799 
8800     if (env->cp15.hcr_el2 & HCR_TGE) {
8801         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8802         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8803             return true;
8804         }
8805     }
8806 
8807     if ((env->cp15.hcr_el2 & HCR_DC) &&
8808         (mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1)) {
8809         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8810         return true;
8811     }
8812 
8813     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8814 }
8815 
8816 static inline bool regime_translation_big_endian(CPUARMState *env,
8817                                                  ARMMMUIdx mmu_idx)
8818 {
8819     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8820 }
8821 
8822 /* Return the TCR controlling this translation regime */
8823 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8824 {
8825     if (mmu_idx == ARMMMUIdx_S2NS) {
8826         return &env->cp15.vtcr_el2;
8827     }
8828     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8829 }
8830 
8831 /* Convert a possible stage1+2 MMU index into the appropriate
8832  * stage 1 MMU index
8833  */
8834 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8835 {
8836     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8837         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8838     }
8839     return mmu_idx;
8840 }
8841 
8842 /* Returns TBI0 value for current regime el */
8843 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8844 {
8845     TCR *tcr;
8846     uint32_t el;
8847 
8848     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8849      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8850      */
8851     mmu_idx = stage_1_mmu_idx(mmu_idx);
8852 
8853     tcr = regime_tcr(env, mmu_idx);
8854     el = regime_el(env, mmu_idx);
8855 
8856     if (el > 1) {
8857         return extract64(tcr->raw_tcr, 20, 1);
8858     } else {
8859         return extract64(tcr->raw_tcr, 37, 1);
8860     }
8861 }
8862 
8863 /* Returns TBI1 value for current regime el */
8864 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8865 {
8866     TCR *tcr;
8867     uint32_t el;
8868 
8869     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8870      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8871      */
8872     mmu_idx = stage_1_mmu_idx(mmu_idx);
8873 
8874     tcr = regime_tcr(env, mmu_idx);
8875     el = regime_el(env, mmu_idx);
8876 
8877     if (el > 1) {
8878         return 0;
8879     } else {
8880         return extract64(tcr->raw_tcr, 38, 1);
8881     }
8882 }
8883 
8884 /* Return the TTBR associated with this translation regime */
8885 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8886                                    int ttbrn)
8887 {
8888     if (mmu_idx == ARMMMUIdx_S2NS) {
8889         return env->cp15.vttbr_el2;
8890     }
8891     if (ttbrn == 0) {
8892         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8893     } else {
8894         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8895     }
8896 }
8897 
8898 /* Return true if the translation regime is using LPAE format page tables */
8899 static inline bool regime_using_lpae_format(CPUARMState *env,
8900                                             ARMMMUIdx mmu_idx)
8901 {
8902     int el = regime_el(env, mmu_idx);
8903     if (el == 2 || arm_el_is_aa64(env, el)) {
8904         return true;
8905     }
8906     if (arm_feature(env, ARM_FEATURE_LPAE)
8907         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8908         return true;
8909     }
8910     return false;
8911 }
8912 
8913 /* Returns true if the stage 1 translation regime is using LPAE format page
8914  * tables. Used when raising alignment exceptions, whose FSR changes depending
8915  * on whether the long or short descriptor format is in use. */
8916 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8917 {
8918     mmu_idx = stage_1_mmu_idx(mmu_idx);
8919 
8920     return regime_using_lpae_format(env, mmu_idx);
8921 }
8922 
8923 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8924 {
8925     switch (mmu_idx) {
8926     case ARMMMUIdx_S1SE0:
8927     case ARMMMUIdx_S1NSE0:
8928     case ARMMMUIdx_MUser:
8929     case ARMMMUIdx_MSUser:
8930     case ARMMMUIdx_MUserNegPri:
8931     case ARMMMUIdx_MSUserNegPri:
8932         return true;
8933     default:
8934         return false;
8935     case ARMMMUIdx_S12NSE0:
8936     case ARMMMUIdx_S12NSE1:
8937         g_assert_not_reached();
8938     }
8939 }
8940 
8941 /* Translate section/page access permissions to page
8942  * R/W protection flags
8943  *
8944  * @env:         CPUARMState
8945  * @mmu_idx:     MMU index indicating required translation regime
8946  * @ap:          The 3-bit access permissions (AP[2:0])
8947  * @domain_prot: The 2-bit domain access permissions
8948  */
8949 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8950                                 int ap, int domain_prot)
8951 {
8952     bool is_user = regime_is_user(env, mmu_idx);
8953 
8954     if (domain_prot == 3) {
8955         return PAGE_READ | PAGE_WRITE;
8956     }
8957 
8958     switch (ap) {
8959     case 0:
8960         if (arm_feature(env, ARM_FEATURE_V7)) {
8961             return 0;
8962         }
8963         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8964         case SCTLR_S:
8965             return is_user ? 0 : PAGE_READ;
8966         case SCTLR_R:
8967             return PAGE_READ;
8968         default:
8969             return 0;
8970         }
8971     case 1:
8972         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8973     case 2:
8974         if (is_user) {
8975             return PAGE_READ;
8976         } else {
8977             return PAGE_READ | PAGE_WRITE;
8978         }
8979     case 3:
8980         return PAGE_READ | PAGE_WRITE;
8981     case 4: /* Reserved.  */
8982         return 0;
8983     case 5:
8984         return is_user ? 0 : PAGE_READ;
8985     case 6:
8986         return PAGE_READ;
8987     case 7:
8988         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8989             return 0;
8990         }
8991         return PAGE_READ;
8992     default:
8993         g_assert_not_reached();
8994     }
8995 }
8996 
8997 /* Translate section/page access permissions to page
8998  * R/W protection flags.
8999  *
9000  * @ap:      The 2-bit simple AP (AP[2:1])
9001  * @is_user: TRUE if accessing from PL0
9002  */
9003 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
9004 {
9005     switch (ap) {
9006     case 0:
9007         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
9008     case 1:
9009         return PAGE_READ | PAGE_WRITE;
9010     case 2:
9011         return is_user ? 0 : PAGE_READ;
9012     case 3:
9013         return PAGE_READ;
9014     default:
9015         g_assert_not_reached();
9016     }
9017 }
9018 
9019 static inline int
9020 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
9021 {
9022     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
9023 }
9024 
9025 /* Translate S2 section/page access permissions to protection flags
9026  *
9027  * @env:     CPUARMState
9028  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
9029  * @xn:      XN (execute-never) bit
9030  */
9031 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
9032 {
9033     int prot = 0;
9034 
9035     if (s2ap & 1) {
9036         prot |= PAGE_READ;
9037     }
9038     if (s2ap & 2) {
9039         prot |= PAGE_WRITE;
9040     }
9041     if (!xn) {
9042         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
9043             prot |= PAGE_EXEC;
9044         }
9045     }
9046     return prot;
9047 }
9048 
9049 /* Translate section/page access permissions to protection flags
9050  *
9051  * @env:     CPUARMState
9052  * @mmu_idx: MMU index indicating required translation regime
9053  * @is_aa64: TRUE if AArch64
9054  * @ap:      The 2-bit simple AP (AP[2:1])
9055  * @ns:      NS (non-secure) bit
9056  * @xn:      XN (execute-never) bit
9057  * @pxn:     PXN (privileged execute-never) bit
9058  */
9059 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
9060                       int ap, int ns, int xn, int pxn)
9061 {
9062     bool is_user = regime_is_user(env, mmu_idx);
9063     int prot_rw, user_rw;
9064     bool have_wxn;
9065     int wxn = 0;
9066 
9067     assert(mmu_idx != ARMMMUIdx_S2NS);
9068 
9069     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
9070     if (is_user) {
9071         prot_rw = user_rw;
9072     } else {
9073         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
9074     }
9075 
9076     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
9077         return prot_rw;
9078     }
9079 
9080     /* TODO have_wxn should be replaced with
9081      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9082      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9083      * compatible processors have EL2, which is required for [U]WXN.
9084      */
9085     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
9086 
9087     if (have_wxn) {
9088         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
9089     }
9090 
9091     if (is_aa64) {
9092         switch (regime_el(env, mmu_idx)) {
9093         case 1:
9094             if (!is_user) {
9095                 xn = pxn || (user_rw & PAGE_WRITE);
9096             }
9097             break;
9098         case 2:
9099         case 3:
9100             break;
9101         }
9102     } else if (arm_feature(env, ARM_FEATURE_V7)) {
9103         switch (regime_el(env, mmu_idx)) {
9104         case 1:
9105         case 3:
9106             if (is_user) {
9107                 xn = xn || !(user_rw & PAGE_READ);
9108             } else {
9109                 int uwxn = 0;
9110                 if (have_wxn) {
9111                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
9112                 }
9113                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
9114                      (uwxn && (user_rw & PAGE_WRITE));
9115             }
9116             break;
9117         case 2:
9118             break;
9119         }
9120     } else {
9121         xn = wxn = 0;
9122     }
9123 
9124     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
9125         return prot_rw;
9126     }
9127     return prot_rw | PAGE_EXEC;
9128 }
9129 
9130 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
9131                                      uint32_t *table, uint32_t address)
9132 {
9133     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9134     TCR *tcr = regime_tcr(env, mmu_idx);
9135 
9136     if (address & tcr->mask) {
9137         if (tcr->raw_tcr & TTBCR_PD1) {
9138             /* Translation table walk disabled for TTBR1 */
9139             return false;
9140         }
9141         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
9142     } else {
9143         if (tcr->raw_tcr & TTBCR_PD0) {
9144             /* Translation table walk disabled for TTBR0 */
9145             return false;
9146         }
9147         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
9148     }
9149     *table |= (address >> 18) & 0x3ffc;
9150     return true;
9151 }
9152 
9153 /* Translate a S1 pagetable walk through S2 if needed.  */
9154 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
9155                                hwaddr addr, MemTxAttrs txattrs,
9156                                ARMMMUFaultInfo *fi)
9157 {
9158     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
9159         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9160         target_ulong s2size;
9161         hwaddr s2pa;
9162         int s2prot;
9163         int ret;
9164         ARMCacheAttrs cacheattrs = {};
9165         ARMCacheAttrs *pcacheattrs = NULL;
9166 
9167         if (env->cp15.hcr_el2 & HCR_PTW) {
9168             /*
9169              * PTW means we must fault if this S1 walk touches S2 Device
9170              * memory; otherwise we don't care about the attributes and can
9171              * save the S2 translation the effort of computing them.
9172              */
9173             pcacheattrs = &cacheattrs;
9174         }
9175 
9176         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
9177                                  &txattrs, &s2prot, &s2size, fi, pcacheattrs);
9178         if (ret) {
9179             assert(fi->type != ARMFault_None);
9180             fi->s2addr = addr;
9181             fi->stage2 = true;
9182             fi->s1ptw = true;
9183             return ~0;
9184         }
9185         if (pcacheattrs && (pcacheattrs->attrs & 0xf0) == 0) {
9186             /* Access was to Device memory: generate Permission fault */
9187             fi->type = ARMFault_Permission;
9188             fi->s2addr = addr;
9189             fi->stage2 = true;
9190             fi->s1ptw = true;
9191             return ~0;
9192         }
9193         addr = s2pa;
9194     }
9195     return addr;
9196 }
9197 
9198 /* All loads done in the course of a page table walk go through here. */
9199 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9200                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9201 {
9202     ARMCPU *cpu = ARM_CPU(cs);
9203     CPUARMState *env = &cpu->env;
9204     MemTxAttrs attrs = {};
9205     MemTxResult result = MEMTX_OK;
9206     AddressSpace *as;
9207     uint32_t data;
9208 
9209     attrs.secure = is_secure;
9210     as = arm_addressspace(cs, attrs);
9211     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9212     if (fi->s1ptw) {
9213         return 0;
9214     }
9215     if (regime_translation_big_endian(env, mmu_idx)) {
9216         data = address_space_ldl_be(as, addr, attrs, &result);
9217     } else {
9218         data = address_space_ldl_le(as, addr, attrs, &result);
9219     }
9220     if (result == MEMTX_OK) {
9221         return data;
9222     }
9223     fi->type = ARMFault_SyncExternalOnWalk;
9224     fi->ea = arm_extabort_type(result);
9225     return 0;
9226 }
9227 
9228 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
9229                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
9230 {
9231     ARMCPU *cpu = ARM_CPU(cs);
9232     CPUARMState *env = &cpu->env;
9233     MemTxAttrs attrs = {};
9234     MemTxResult result = MEMTX_OK;
9235     AddressSpace *as;
9236     uint64_t data;
9237 
9238     attrs.secure = is_secure;
9239     as = arm_addressspace(cs, attrs);
9240     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
9241     if (fi->s1ptw) {
9242         return 0;
9243     }
9244     if (regime_translation_big_endian(env, mmu_idx)) {
9245         data = address_space_ldq_be(as, addr, attrs, &result);
9246     } else {
9247         data = address_space_ldq_le(as, addr, attrs, &result);
9248     }
9249     if (result == MEMTX_OK) {
9250         return data;
9251     }
9252     fi->type = ARMFault_SyncExternalOnWalk;
9253     fi->ea = arm_extabort_type(result);
9254     return 0;
9255 }
9256 
9257 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
9258                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9259                              hwaddr *phys_ptr, int *prot,
9260                              target_ulong *page_size,
9261                              ARMMMUFaultInfo *fi)
9262 {
9263     CPUState *cs = CPU(arm_env_get_cpu(env));
9264     int level = 1;
9265     uint32_t table;
9266     uint32_t desc;
9267     int type;
9268     int ap;
9269     int domain = 0;
9270     int domain_prot;
9271     hwaddr phys_addr;
9272     uint32_t dacr;
9273 
9274     /* Pagetable walk.  */
9275     /* Lookup l1 descriptor.  */
9276     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9277         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9278         fi->type = ARMFault_Translation;
9279         goto do_fault;
9280     }
9281     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9282                        mmu_idx, fi);
9283     if (fi->type != ARMFault_None) {
9284         goto do_fault;
9285     }
9286     type = (desc & 3);
9287     domain = (desc >> 5) & 0x0f;
9288     if (regime_el(env, mmu_idx) == 1) {
9289         dacr = env->cp15.dacr_ns;
9290     } else {
9291         dacr = env->cp15.dacr_s;
9292     }
9293     domain_prot = (dacr >> (domain * 2)) & 3;
9294     if (type == 0) {
9295         /* Section translation fault.  */
9296         fi->type = ARMFault_Translation;
9297         goto do_fault;
9298     }
9299     if (type != 2) {
9300         level = 2;
9301     }
9302     if (domain_prot == 0 || domain_prot == 2) {
9303         fi->type = ARMFault_Domain;
9304         goto do_fault;
9305     }
9306     if (type == 2) {
9307         /* 1Mb section.  */
9308         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9309         ap = (desc >> 10) & 3;
9310         *page_size = 1024 * 1024;
9311     } else {
9312         /* Lookup l2 entry.  */
9313         if (type == 1) {
9314             /* Coarse pagetable.  */
9315             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9316         } else {
9317             /* Fine pagetable.  */
9318             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
9319         }
9320         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9321                            mmu_idx, fi);
9322         if (fi->type != ARMFault_None) {
9323             goto do_fault;
9324         }
9325         switch (desc & 3) {
9326         case 0: /* Page translation fault.  */
9327             fi->type = ARMFault_Translation;
9328             goto do_fault;
9329         case 1: /* 64k page.  */
9330             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9331             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
9332             *page_size = 0x10000;
9333             break;
9334         case 2: /* 4k page.  */
9335             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9336             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
9337             *page_size = 0x1000;
9338             break;
9339         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9340             if (type == 1) {
9341                 /* ARMv6/XScale extended small page format */
9342                 if (arm_feature(env, ARM_FEATURE_XSCALE)
9343                     || arm_feature(env, ARM_FEATURE_V6)) {
9344                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9345                     *page_size = 0x1000;
9346                 } else {
9347                     /* UNPREDICTABLE in ARMv5; we choose to take a
9348                      * page translation fault.
9349                      */
9350                     fi->type = ARMFault_Translation;
9351                     goto do_fault;
9352                 }
9353             } else {
9354                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
9355                 *page_size = 0x400;
9356             }
9357             ap = (desc >> 4) & 3;
9358             break;
9359         default:
9360             /* Never happens, but compiler isn't smart enough to tell.  */
9361             abort();
9362         }
9363     }
9364     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9365     *prot |= *prot ? PAGE_EXEC : 0;
9366     if (!(*prot & (1 << access_type))) {
9367         /* Access permission fault.  */
9368         fi->type = ARMFault_Permission;
9369         goto do_fault;
9370     }
9371     *phys_ptr = phys_addr;
9372     return false;
9373 do_fault:
9374     fi->domain = domain;
9375     fi->level = level;
9376     return true;
9377 }
9378 
9379 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
9380                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
9381                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9382                              target_ulong *page_size, ARMMMUFaultInfo *fi)
9383 {
9384     CPUState *cs = CPU(arm_env_get_cpu(env));
9385     int level = 1;
9386     uint32_t table;
9387     uint32_t desc;
9388     uint32_t xn;
9389     uint32_t pxn = 0;
9390     int type;
9391     int ap;
9392     int domain = 0;
9393     int domain_prot;
9394     hwaddr phys_addr;
9395     uint32_t dacr;
9396     bool ns;
9397 
9398     /* Pagetable walk.  */
9399     /* Lookup l1 descriptor.  */
9400     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9401         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9402         fi->type = ARMFault_Translation;
9403         goto do_fault;
9404     }
9405     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9406                        mmu_idx, fi);
9407     if (fi->type != ARMFault_None) {
9408         goto do_fault;
9409     }
9410     type = (desc & 3);
9411     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9412         /* Section translation fault, or attempt to use the encoding
9413          * which is Reserved on implementations without PXN.
9414          */
9415         fi->type = ARMFault_Translation;
9416         goto do_fault;
9417     }
9418     if ((type == 1) || !(desc & (1 << 18))) {
9419         /* Page or Section.  */
9420         domain = (desc >> 5) & 0x0f;
9421     }
9422     if (regime_el(env, mmu_idx) == 1) {
9423         dacr = env->cp15.dacr_ns;
9424     } else {
9425         dacr = env->cp15.dacr_s;
9426     }
9427     if (type == 1) {
9428         level = 2;
9429     }
9430     domain_prot = (dacr >> (domain * 2)) & 3;
9431     if (domain_prot == 0 || domain_prot == 2) {
9432         /* Section or Page domain fault */
9433         fi->type = ARMFault_Domain;
9434         goto do_fault;
9435     }
9436     if (type != 1) {
9437         if (desc & (1 << 18)) {
9438             /* Supersection.  */
9439             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9440             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9441             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9442             *page_size = 0x1000000;
9443         } else {
9444             /* Section.  */
9445             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9446             *page_size = 0x100000;
9447         }
9448         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9449         xn = desc & (1 << 4);
9450         pxn = desc & 1;
9451         ns = extract32(desc, 19, 1);
9452     } else {
9453         if (arm_feature(env, ARM_FEATURE_PXN)) {
9454             pxn = (desc >> 2) & 1;
9455         }
9456         ns = extract32(desc, 3, 1);
9457         /* Lookup l2 entry.  */
9458         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9459         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9460                            mmu_idx, fi);
9461         if (fi->type != ARMFault_None) {
9462             goto do_fault;
9463         }
9464         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9465         switch (desc & 3) {
9466         case 0: /* Page translation fault.  */
9467             fi->type = ARMFault_Translation;
9468             goto do_fault;
9469         case 1: /* 64k page.  */
9470             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9471             xn = desc & (1 << 15);
9472             *page_size = 0x10000;
9473             break;
9474         case 2: case 3: /* 4k page.  */
9475             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9476             xn = desc & 1;
9477             *page_size = 0x1000;
9478             break;
9479         default:
9480             /* Never happens, but compiler isn't smart enough to tell.  */
9481             abort();
9482         }
9483     }
9484     if (domain_prot == 3) {
9485         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9486     } else {
9487         if (pxn && !regime_is_user(env, mmu_idx)) {
9488             xn = 1;
9489         }
9490         if (xn && access_type == MMU_INST_FETCH) {
9491             fi->type = ARMFault_Permission;
9492             goto do_fault;
9493         }
9494 
9495         if (arm_feature(env, ARM_FEATURE_V6K) &&
9496                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9497             /* The simplified model uses AP[0] as an access control bit.  */
9498             if ((ap & 1) == 0) {
9499                 /* Access flag fault.  */
9500                 fi->type = ARMFault_AccessFlag;
9501                 goto do_fault;
9502             }
9503             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9504         } else {
9505             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9506         }
9507         if (*prot && !xn) {
9508             *prot |= PAGE_EXEC;
9509         }
9510         if (!(*prot & (1 << access_type))) {
9511             /* Access permission fault.  */
9512             fi->type = ARMFault_Permission;
9513             goto do_fault;
9514         }
9515     }
9516     if (ns) {
9517         /* The NS bit will (as required by the architecture) have no effect if
9518          * the CPU doesn't support TZ or this is a non-secure translation
9519          * regime, because the attribute will already be non-secure.
9520          */
9521         attrs->secure = false;
9522     }
9523     *phys_ptr = phys_addr;
9524     return false;
9525 do_fault:
9526     fi->domain = domain;
9527     fi->level = level;
9528     return true;
9529 }
9530 
9531 /*
9532  * check_s2_mmu_setup
9533  * @cpu:        ARMCPU
9534  * @is_aa64:    True if the translation regime is in AArch64 state
9535  * @startlevel: Suggested starting level
9536  * @inputsize:  Bitsize of IPAs
9537  * @stride:     Page-table stride (See the ARM ARM)
9538  *
9539  * Returns true if the suggested S2 translation parameters are OK and
9540  * false otherwise.
9541  */
9542 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9543                                int inputsize, int stride)
9544 {
9545     const int grainsize = stride + 3;
9546     int startsizecheck;
9547 
9548     /* Negative levels are never allowed.  */
9549     if (level < 0) {
9550         return false;
9551     }
9552 
9553     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9554     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9555         return false;
9556     }
9557 
9558     if (is_aa64) {
9559         CPUARMState *env = &cpu->env;
9560         unsigned int pamax = arm_pamax(cpu);
9561 
9562         switch (stride) {
9563         case 13: /* 64KB Pages.  */
9564             if (level == 0 || (level == 1 && pamax <= 42)) {
9565                 return false;
9566             }
9567             break;
9568         case 11: /* 16KB Pages.  */
9569             if (level == 0 || (level == 1 && pamax <= 40)) {
9570                 return false;
9571             }
9572             break;
9573         case 9: /* 4KB Pages.  */
9574             if (level == 0 && pamax <= 42) {
9575                 return false;
9576             }
9577             break;
9578         default:
9579             g_assert_not_reached();
9580         }
9581 
9582         /* Inputsize checks.  */
9583         if (inputsize > pamax &&
9584             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9585             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9586             return false;
9587         }
9588     } else {
9589         /* AArch32 only supports 4KB pages. Assert on that.  */
9590         assert(stride == 9);
9591 
9592         if (level == 0) {
9593             return false;
9594         }
9595     }
9596     return true;
9597 }
9598 
9599 /* Translate from the 4-bit stage 2 representation of
9600  * memory attributes (without cache-allocation hints) to
9601  * the 8-bit representation of the stage 1 MAIR registers
9602  * (which includes allocation hints).
9603  *
9604  * ref: shared/translation/attrs/S2AttrDecode()
9605  *      .../S2ConvertAttrsHints()
9606  */
9607 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9608 {
9609     uint8_t hiattr = extract32(s2attrs, 2, 2);
9610     uint8_t loattr = extract32(s2attrs, 0, 2);
9611     uint8_t hihint = 0, lohint = 0;
9612 
9613     if (hiattr != 0) { /* normal memory */
9614         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9615             hiattr = loattr = 1; /* non-cacheable */
9616         } else {
9617             if (hiattr != 1) { /* Write-through or write-back */
9618                 hihint = 3; /* RW allocate */
9619             }
9620             if (loattr != 1) { /* Write-through or write-back */
9621                 lohint = 3; /* RW allocate */
9622             }
9623         }
9624     }
9625 
9626     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9627 }
9628 
9629 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9630                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9631                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9632                                target_ulong *page_size_ptr,
9633                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9634 {
9635     ARMCPU *cpu = arm_env_get_cpu(env);
9636     CPUState *cs = CPU(cpu);
9637     /* Read an LPAE long-descriptor translation table. */
9638     ARMFaultType fault_type = ARMFault_Translation;
9639     uint32_t level;
9640     uint32_t epd = 0;
9641     int32_t t0sz, t1sz;
9642     uint32_t tg;
9643     uint64_t ttbr;
9644     int ttbr_select;
9645     hwaddr descaddr, indexmask, indexmask_grainsize;
9646     uint32_t tableattrs;
9647     target_ulong page_size;
9648     uint32_t attrs;
9649     int32_t stride = 9;
9650     int32_t addrsize;
9651     int inputsize;
9652     int32_t tbi = 0;
9653     TCR *tcr = regime_tcr(env, mmu_idx);
9654     int ap, ns, xn, pxn;
9655     uint32_t el = regime_el(env, mmu_idx);
9656     bool ttbr1_valid = true;
9657     uint64_t descaddrmask;
9658     bool aarch64 = arm_el_is_aa64(env, el);
9659 
9660     /* TODO:
9661      * This code does not handle the different format TCR for VTCR_EL2.
9662      * This code also does not support shareability levels.
9663      * Attribute and permission bit handling should also be checked when adding
9664      * support for those page table walks.
9665      */
9666     if (aarch64) {
9667         level = 0;
9668         addrsize = 64;
9669         if (el > 1) {
9670             if (mmu_idx != ARMMMUIdx_S2NS) {
9671                 tbi = extract64(tcr->raw_tcr, 20, 1);
9672             }
9673         } else {
9674             if (extract64(address, 55, 1)) {
9675                 tbi = extract64(tcr->raw_tcr, 38, 1);
9676             } else {
9677                 tbi = extract64(tcr->raw_tcr, 37, 1);
9678             }
9679         }
9680         tbi *= 8;
9681 
9682         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9683          * invalid.
9684          */
9685         if (el > 1) {
9686             ttbr1_valid = false;
9687         }
9688     } else {
9689         level = 1;
9690         addrsize = 32;
9691         /* There is no TTBR1 for EL2 */
9692         if (el == 2) {
9693             ttbr1_valid = false;
9694         }
9695     }
9696 
9697     /* Determine whether this address is in the region controlled by
9698      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9699      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9700      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9701      */
9702     if (aarch64) {
9703         /* AArch64 translation.  */
9704         t0sz = extract32(tcr->raw_tcr, 0, 6);
9705         t0sz = MIN(t0sz, 39);
9706         t0sz = MAX(t0sz, 16);
9707     } else if (mmu_idx != ARMMMUIdx_S2NS) {
9708         /* AArch32 stage 1 translation.  */
9709         t0sz = extract32(tcr->raw_tcr, 0, 3);
9710     } else {
9711         /* AArch32 stage 2 translation.  */
9712         bool sext = extract32(tcr->raw_tcr, 4, 1);
9713         bool sign = extract32(tcr->raw_tcr, 3, 1);
9714         /* Address size is 40-bit for a stage 2 translation,
9715          * and t0sz can be negative (from -8 to 7),
9716          * so we need to adjust it to use the TTBR selecting logic below.
9717          */
9718         addrsize = 40;
9719         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9720 
9721         /* If the sign-extend bit is not the same as t0sz[3], the result
9722          * is unpredictable. Flag this as a guest error.  */
9723         if (sign != sext) {
9724             qemu_log_mask(LOG_GUEST_ERROR,
9725                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9726         }
9727     }
9728     t1sz = extract32(tcr->raw_tcr, 16, 6);
9729     if (aarch64) {
9730         t1sz = MIN(t1sz, 39);
9731         t1sz = MAX(t1sz, 16);
9732     }
9733     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9734         /* there is a ttbr0 region and we are in it (high bits all zero) */
9735         ttbr_select = 0;
9736     } else if (ttbr1_valid && t1sz &&
9737                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9738         /* there is a ttbr1 region and we are in it (high bits all one) */
9739         ttbr_select = 1;
9740     } else if (!t0sz) {
9741         /* ttbr0 region is "everything not in the ttbr1 region" */
9742         ttbr_select = 0;
9743     } else if (!t1sz && ttbr1_valid) {
9744         /* ttbr1 region is "everything not in the ttbr0 region" */
9745         ttbr_select = 1;
9746     } else {
9747         /* in the gap between the two regions, this is a Translation fault */
9748         fault_type = ARMFault_Translation;
9749         goto do_fault;
9750     }
9751 
9752     /* Note that QEMU ignores shareability and cacheability attributes,
9753      * so we don't need to do anything with the SH, ORGN, IRGN fields
9754      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9755      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9756      * implement any ASID-like capability so we can ignore it (instead
9757      * we will always flush the TLB any time the ASID is changed).
9758      */
9759     if (ttbr_select == 0) {
9760         ttbr = regime_ttbr(env, mmu_idx, 0);
9761         if (el < 2) {
9762             epd = extract32(tcr->raw_tcr, 7, 1);
9763         }
9764         inputsize = addrsize - t0sz;
9765 
9766         tg = extract32(tcr->raw_tcr, 14, 2);
9767         if (tg == 1) { /* 64KB pages */
9768             stride = 13;
9769         }
9770         if (tg == 2) { /* 16KB pages */
9771             stride = 11;
9772         }
9773     } else {
9774         /* We should only be here if TTBR1 is valid */
9775         assert(ttbr1_valid);
9776 
9777         ttbr = regime_ttbr(env, mmu_idx, 1);
9778         epd = extract32(tcr->raw_tcr, 23, 1);
9779         inputsize = addrsize - t1sz;
9780 
9781         tg = extract32(tcr->raw_tcr, 30, 2);
9782         if (tg == 3)  { /* 64KB pages */
9783             stride = 13;
9784         }
9785         if (tg == 1) { /* 16KB pages */
9786             stride = 11;
9787         }
9788     }
9789 
9790     /* Here we should have set up all the parameters for the translation:
9791      * inputsize, ttbr, epd, stride, tbi
9792      */
9793 
9794     if (epd) {
9795         /* Translation table walk disabled => Translation fault on TLB miss
9796          * Note: This is always 0 on 64-bit EL2 and EL3.
9797          */
9798         goto do_fault;
9799     }
9800 
9801     if (mmu_idx != ARMMMUIdx_S2NS) {
9802         /* The starting level depends on the virtual address size (which can
9803          * be up to 48 bits) and the translation granule size. It indicates
9804          * the number of strides (stride bits at a time) needed to
9805          * consume the bits of the input address. In the pseudocode this is:
9806          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9807          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9808          * our 'stride + 3' and 'stride' is our 'stride'.
9809          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9810          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9811          * = 4 - (inputsize - 4) / stride;
9812          */
9813         level = 4 - (inputsize - 4) / stride;
9814     } else {
9815         /* For stage 2 translations the starting level is specified by the
9816          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9817          */
9818         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9819         uint32_t startlevel;
9820         bool ok;
9821 
9822         if (!aarch64 || stride == 9) {
9823             /* AArch32 or 4KB pages */
9824             startlevel = 2 - sl0;
9825         } else {
9826             /* 16KB or 64KB pages */
9827             startlevel = 3 - sl0;
9828         }
9829 
9830         /* Check that the starting level is valid. */
9831         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9832                                 inputsize, stride);
9833         if (!ok) {
9834             fault_type = ARMFault_Translation;
9835             goto do_fault;
9836         }
9837         level = startlevel;
9838     }
9839 
9840     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9841     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9842 
9843     /* Now we can extract the actual base address from the TTBR */
9844     descaddr = extract64(ttbr, 0, 48);
9845     descaddr &= ~indexmask;
9846 
9847     /* The address field in the descriptor goes up to bit 39 for ARMv7
9848      * but up to bit 47 for ARMv8, but we use the descaddrmask
9849      * up to bit 39 for AArch32, because we don't need other bits in that case
9850      * to construct next descriptor address (anyway they should be all zeroes).
9851      */
9852     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9853                    ~indexmask_grainsize;
9854 
9855     /* Secure accesses start with the page table in secure memory and
9856      * can be downgraded to non-secure at any step. Non-secure accesses
9857      * remain non-secure. We implement this by just ORing in the NSTable/NS
9858      * bits at each step.
9859      */
9860     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9861     for (;;) {
9862         uint64_t descriptor;
9863         bool nstable;
9864 
9865         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9866         descaddr &= ~7ULL;
9867         nstable = extract32(tableattrs, 4, 1);
9868         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9869         if (fi->type != ARMFault_None) {
9870             goto do_fault;
9871         }
9872 
9873         if (!(descriptor & 1) ||
9874             (!(descriptor & 2) && (level == 3))) {
9875             /* Invalid, or the Reserved level 3 encoding */
9876             goto do_fault;
9877         }
9878         descaddr = descriptor & descaddrmask;
9879 
9880         if ((descriptor & 2) && (level < 3)) {
9881             /* Table entry. The top five bits are attributes which  may
9882              * propagate down through lower levels of the table (and
9883              * which are all arranged so that 0 means "no effect", so
9884              * we can gather them up by ORing in the bits at each level).
9885              */
9886             tableattrs |= extract64(descriptor, 59, 5);
9887             level++;
9888             indexmask = indexmask_grainsize;
9889             continue;
9890         }
9891         /* Block entry at level 1 or 2, or page entry at level 3.
9892          * These are basically the same thing, although the number
9893          * of bits we pull in from the vaddr varies.
9894          */
9895         page_size = (1ULL << ((stride * (4 - level)) + 3));
9896         descaddr |= (address & (page_size - 1));
9897         /* Extract attributes from the descriptor */
9898         attrs = extract64(descriptor, 2, 10)
9899             | (extract64(descriptor, 52, 12) << 10);
9900 
9901         if (mmu_idx == ARMMMUIdx_S2NS) {
9902             /* Stage 2 table descriptors do not include any attribute fields */
9903             break;
9904         }
9905         /* Merge in attributes from table descriptors */
9906         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9907         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9908         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9909          * means "force PL1 access only", which means forcing AP[1] to 0.
9910          */
9911         if (extract32(tableattrs, 2, 1)) {
9912             attrs &= ~(1 << 4);
9913         }
9914         attrs |= nstable << 3; /* NS */
9915         break;
9916     }
9917     /* Here descaddr is the final physical address, and attributes
9918      * are all in attrs.
9919      */
9920     fault_type = ARMFault_AccessFlag;
9921     if ((attrs & (1 << 8)) == 0) {
9922         /* Access flag */
9923         goto do_fault;
9924     }
9925 
9926     ap = extract32(attrs, 4, 2);
9927     xn = extract32(attrs, 12, 1);
9928 
9929     if (mmu_idx == ARMMMUIdx_S2NS) {
9930         ns = true;
9931         *prot = get_S2prot(env, ap, xn);
9932     } else {
9933         ns = extract32(attrs, 3, 1);
9934         pxn = extract32(attrs, 11, 1);
9935         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9936     }
9937 
9938     fault_type = ARMFault_Permission;
9939     if (!(*prot & (1 << access_type))) {
9940         goto do_fault;
9941     }
9942 
9943     if (ns) {
9944         /* The NS bit will (as required by the architecture) have no effect if
9945          * the CPU doesn't support TZ or this is a non-secure translation
9946          * regime, because the attribute will already be non-secure.
9947          */
9948         txattrs->secure = false;
9949     }
9950 
9951     if (cacheattrs != NULL) {
9952         if (mmu_idx == ARMMMUIdx_S2NS) {
9953             cacheattrs->attrs = convert_stage2_attrs(env,
9954                                                      extract32(attrs, 0, 4));
9955         } else {
9956             /* Index into MAIR registers for cache attributes */
9957             uint8_t attrindx = extract32(attrs, 0, 3);
9958             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9959             assert(attrindx <= 7);
9960             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9961         }
9962         cacheattrs->shareability = extract32(attrs, 6, 2);
9963     }
9964 
9965     *phys_ptr = descaddr;
9966     *page_size_ptr = page_size;
9967     return false;
9968 
9969 do_fault:
9970     fi->type = fault_type;
9971     fi->level = level;
9972     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9973     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9974     return true;
9975 }
9976 
9977 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9978                                                 ARMMMUIdx mmu_idx,
9979                                                 int32_t address, int *prot)
9980 {
9981     if (!arm_feature(env, ARM_FEATURE_M)) {
9982         *prot = PAGE_READ | PAGE_WRITE;
9983         switch (address) {
9984         case 0xF0000000 ... 0xFFFFFFFF:
9985             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9986                 /* hivecs execing is ok */
9987                 *prot |= PAGE_EXEC;
9988             }
9989             break;
9990         case 0x00000000 ... 0x7FFFFFFF:
9991             *prot |= PAGE_EXEC;
9992             break;
9993         }
9994     } else {
9995         /* Default system address map for M profile cores.
9996          * The architecture specifies which regions are execute-never;
9997          * at the MPU level no other checks are defined.
9998          */
9999         switch (address) {
10000         case 0x00000000 ... 0x1fffffff: /* ROM */
10001         case 0x20000000 ... 0x3fffffff: /* SRAM */
10002         case 0x60000000 ... 0x7fffffff: /* RAM */
10003         case 0x80000000 ... 0x9fffffff: /* RAM */
10004             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10005             break;
10006         case 0x40000000 ... 0x5fffffff: /* Peripheral */
10007         case 0xa0000000 ... 0xbfffffff: /* Device */
10008         case 0xc0000000 ... 0xdfffffff: /* Device */
10009         case 0xe0000000 ... 0xffffffff: /* System */
10010             *prot = PAGE_READ | PAGE_WRITE;
10011             break;
10012         default:
10013             g_assert_not_reached();
10014         }
10015     }
10016 }
10017 
10018 static bool pmsav7_use_background_region(ARMCPU *cpu,
10019                                          ARMMMUIdx mmu_idx, bool is_user)
10020 {
10021     /* Return true if we should use the default memory map as a
10022      * "background" region if there are no hits against any MPU regions.
10023      */
10024     CPUARMState *env = &cpu->env;
10025 
10026     if (is_user) {
10027         return false;
10028     }
10029 
10030     if (arm_feature(env, ARM_FEATURE_M)) {
10031         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
10032             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
10033     } else {
10034         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
10035     }
10036 }
10037 
10038 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
10039 {
10040     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10041     return arm_feature(env, ARM_FEATURE_M) &&
10042         extract32(address, 20, 12) == 0xe00;
10043 }
10044 
10045 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
10046 {
10047     /* True if address is in the M profile system region
10048      * 0xe0000000 - 0xffffffff
10049      */
10050     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
10051 }
10052 
10053 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
10054                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10055                                  hwaddr *phys_ptr, int *prot,
10056                                  target_ulong *page_size,
10057                                  ARMMMUFaultInfo *fi)
10058 {
10059     ARMCPU *cpu = arm_env_get_cpu(env);
10060     int n;
10061     bool is_user = regime_is_user(env, mmu_idx);
10062 
10063     *phys_ptr = address;
10064     *page_size = TARGET_PAGE_SIZE;
10065     *prot = 0;
10066 
10067     if (regime_translation_disabled(env, mmu_idx) ||
10068         m_is_ppb_region(env, address)) {
10069         /* MPU disabled or M profile PPB access: use default memory map.
10070          * The other case which uses the default memory map in the
10071          * v7M ARM ARM pseudocode is exception vector reads from the vector
10072          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10073          * which always does a direct read using address_space_ldl(), rather
10074          * than going via this function, so we don't need to check that here.
10075          */
10076         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10077     } else { /* MPU enabled */
10078         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10079             /* region search */
10080             uint32_t base = env->pmsav7.drbar[n];
10081             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
10082             uint32_t rmask;
10083             bool srdis = false;
10084 
10085             if (!(env->pmsav7.drsr[n] & 0x1)) {
10086                 continue;
10087             }
10088 
10089             if (!rsize) {
10090                 qemu_log_mask(LOG_GUEST_ERROR,
10091                               "DRSR[%d]: Rsize field cannot be 0\n", n);
10092                 continue;
10093             }
10094             rsize++;
10095             rmask = (1ull << rsize) - 1;
10096 
10097             if (base & rmask) {
10098                 qemu_log_mask(LOG_GUEST_ERROR,
10099                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
10100                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
10101                               n, base, rmask);
10102                 continue;
10103             }
10104 
10105             if (address < base || address > base + rmask) {
10106                 /*
10107                  * Address not in this region. We must check whether the
10108                  * region covers addresses in the same page as our address.
10109                  * In that case we must not report a size that covers the
10110                  * whole page for a subsequent hit against a different MPU
10111                  * region or the background region, because it would result in
10112                  * incorrect TLB hits for subsequent accesses to addresses that
10113                  * are in this MPU region.
10114                  */
10115                 if (ranges_overlap(base, rmask,
10116                                    address & TARGET_PAGE_MASK,
10117                                    TARGET_PAGE_SIZE)) {
10118                     *page_size = 1;
10119                 }
10120                 continue;
10121             }
10122 
10123             /* Region matched */
10124 
10125             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
10126                 int i, snd;
10127                 uint32_t srdis_mask;
10128 
10129                 rsize -= 3; /* sub region size (power of 2) */
10130                 snd = ((address - base) >> rsize) & 0x7;
10131                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
10132 
10133                 srdis_mask = srdis ? 0x3 : 0x0;
10134                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
10135                     /* This will check in groups of 2, 4 and then 8, whether
10136                      * the subregion bits are consistent. rsize is incremented
10137                      * back up to give the region size, considering consistent
10138                      * adjacent subregions as one region. Stop testing if rsize
10139                      * is already big enough for an entire QEMU page.
10140                      */
10141                     int snd_rounded = snd & ~(i - 1);
10142                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
10143                                                      snd_rounded + 8, i);
10144                     if (srdis_mask ^ srdis_multi) {
10145                         break;
10146                     }
10147                     srdis_mask = (srdis_mask << i) | srdis_mask;
10148                     rsize++;
10149                 }
10150             }
10151             if (srdis) {
10152                 continue;
10153             }
10154             if (rsize < TARGET_PAGE_BITS) {
10155                 *page_size = 1 << rsize;
10156             }
10157             break;
10158         }
10159 
10160         if (n == -1) { /* no hits */
10161             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10162                 /* background fault */
10163                 fi->type = ARMFault_Background;
10164                 return true;
10165             }
10166             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10167         } else { /* a MPU hit! */
10168             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
10169             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
10170 
10171             if (m_is_system_region(env, address)) {
10172                 /* System space is always execute never */
10173                 xn = 1;
10174             }
10175 
10176             if (is_user) { /* User mode AP bit decoding */
10177                 switch (ap) {
10178                 case 0:
10179                 case 1:
10180                 case 5:
10181                     break; /* no access */
10182                 case 3:
10183                     *prot |= PAGE_WRITE;
10184                     /* fall through */
10185                 case 2:
10186                 case 6:
10187                     *prot |= PAGE_READ | PAGE_EXEC;
10188                     break;
10189                 case 7:
10190                     /* for v7M, same as 6; for R profile a reserved value */
10191                     if (arm_feature(env, ARM_FEATURE_M)) {
10192                         *prot |= PAGE_READ | PAGE_EXEC;
10193                         break;
10194                     }
10195                     /* fall through */
10196                 default:
10197                     qemu_log_mask(LOG_GUEST_ERROR,
10198                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10199                                   PRIx32 "\n", n, ap);
10200                 }
10201             } else { /* Priv. mode AP bits decoding */
10202                 switch (ap) {
10203                 case 0:
10204                     break; /* no access */
10205                 case 1:
10206                 case 2:
10207                 case 3:
10208                     *prot |= PAGE_WRITE;
10209                     /* fall through */
10210                 case 5:
10211                 case 6:
10212                     *prot |= PAGE_READ | PAGE_EXEC;
10213                     break;
10214                 case 7:
10215                     /* for v7M, same as 6; for R profile a reserved value */
10216                     if (arm_feature(env, ARM_FEATURE_M)) {
10217                         *prot |= PAGE_READ | PAGE_EXEC;
10218                         break;
10219                     }
10220                     /* fall through */
10221                 default:
10222                     qemu_log_mask(LOG_GUEST_ERROR,
10223                                   "DRACR[%d]: Bad value for AP bits: 0x%"
10224                                   PRIx32 "\n", n, ap);
10225                 }
10226             }
10227 
10228             /* execute never */
10229             if (xn) {
10230                 *prot &= ~PAGE_EXEC;
10231             }
10232         }
10233     }
10234 
10235     fi->type = ARMFault_Permission;
10236     fi->level = 1;
10237     return !(*prot & (1 << access_type));
10238 }
10239 
10240 static bool v8m_is_sau_exempt(CPUARMState *env,
10241                               uint32_t address, MMUAccessType access_type)
10242 {
10243     /* The architecture specifies that certain address ranges are
10244      * exempt from v8M SAU/IDAU checks.
10245      */
10246     return
10247         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
10248         (address >= 0xe0000000 && address <= 0xe0002fff) ||
10249         (address >= 0xe000e000 && address <= 0xe000efff) ||
10250         (address >= 0xe002e000 && address <= 0xe002efff) ||
10251         (address >= 0xe0040000 && address <= 0xe0041fff) ||
10252         (address >= 0xe00ff000 && address <= 0xe00fffff);
10253 }
10254 
10255 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
10256                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10257                                 V8M_SAttributes *sattrs)
10258 {
10259     /* Look up the security attributes for this address. Compare the
10260      * pseudocode SecurityCheck() function.
10261      * We assume the caller has zero-initialized *sattrs.
10262      */
10263     ARMCPU *cpu = arm_env_get_cpu(env);
10264     int r;
10265     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
10266     int idau_region = IREGION_NOTVALID;
10267     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10268     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10269 
10270     if (cpu->idau) {
10271         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
10272         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
10273 
10274         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
10275                    &idau_nsc);
10276     }
10277 
10278     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
10279         /* 0xf0000000..0xffffffff is always S for insn fetches */
10280         return;
10281     }
10282 
10283     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
10284         sattrs->ns = !regime_is_secure(env, mmu_idx);
10285         return;
10286     }
10287 
10288     if (idau_region != IREGION_NOTVALID) {
10289         sattrs->irvalid = true;
10290         sattrs->iregion = idau_region;
10291     }
10292 
10293     switch (env->sau.ctrl & 3) {
10294     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10295         break;
10296     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10297         sattrs->ns = true;
10298         break;
10299     default: /* SAU.ENABLE == 1 */
10300         for (r = 0; r < cpu->sau_sregion; r++) {
10301             if (env->sau.rlar[r] & 1) {
10302                 uint32_t base = env->sau.rbar[r] & ~0x1f;
10303                 uint32_t limit = env->sau.rlar[r] | 0x1f;
10304 
10305                 if (base <= address && limit >= address) {
10306                     if (base > addr_page_base || limit < addr_page_limit) {
10307                         sattrs->subpage = true;
10308                     }
10309                     if (sattrs->srvalid) {
10310                         /* If we hit in more than one region then we must report
10311                          * as Secure, not NS-Callable, with no valid region
10312                          * number info.
10313                          */
10314                         sattrs->ns = false;
10315                         sattrs->nsc = false;
10316                         sattrs->sregion = 0;
10317                         sattrs->srvalid = false;
10318                         break;
10319                     } else {
10320                         if (env->sau.rlar[r] & 2) {
10321                             sattrs->nsc = true;
10322                         } else {
10323                             sattrs->ns = true;
10324                         }
10325                         sattrs->srvalid = true;
10326                         sattrs->sregion = r;
10327                     }
10328                 } else {
10329                     /*
10330                      * Address not in this region. We must check whether the
10331                      * region covers addresses in the same page as our address.
10332                      * In that case we must not report a size that covers the
10333                      * whole page for a subsequent hit against a different MPU
10334                      * region or the background region, because it would result
10335                      * in incorrect TLB hits for subsequent accesses to
10336                      * addresses that are in this MPU region.
10337                      */
10338                     if (limit >= base &&
10339                         ranges_overlap(base, limit - base + 1,
10340                                        addr_page_base,
10341                                        TARGET_PAGE_SIZE)) {
10342                         sattrs->subpage = true;
10343                     }
10344                 }
10345             }
10346         }
10347 
10348         /* The IDAU will override the SAU lookup results if it specifies
10349          * higher security than the SAU does.
10350          */
10351         if (!idau_ns) {
10352             if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
10353                 sattrs->ns = false;
10354                 sattrs->nsc = idau_nsc;
10355             }
10356         }
10357         break;
10358     }
10359 }
10360 
10361 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
10362                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
10363                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
10364                               int *prot, bool *is_subpage,
10365                               ARMMMUFaultInfo *fi, uint32_t *mregion)
10366 {
10367     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10368      * that a full phys-to-virt translation does).
10369      * mregion is (if not NULL) set to the region number which matched,
10370      * or -1 if no region number is returned (MPU off, address did not
10371      * hit a region, address hit in multiple regions).
10372      * We set is_subpage to true if the region hit doesn't cover the
10373      * entire TARGET_PAGE the address is within.
10374      */
10375     ARMCPU *cpu = arm_env_get_cpu(env);
10376     bool is_user = regime_is_user(env, mmu_idx);
10377     uint32_t secure = regime_is_secure(env, mmu_idx);
10378     int n;
10379     int matchregion = -1;
10380     bool hit = false;
10381     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
10382     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
10383 
10384     *is_subpage = false;
10385     *phys_ptr = address;
10386     *prot = 0;
10387     if (mregion) {
10388         *mregion = -1;
10389     }
10390 
10391     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10392      * was an exception vector read from the vector table (which is always
10393      * done using the default system address map), because those accesses
10394      * are done in arm_v7m_load_vector(), which always does a direct
10395      * read using address_space_ldl(), rather than going via this function.
10396      */
10397     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
10398         hit = true;
10399     } else if (m_is_ppb_region(env, address)) {
10400         hit = true;
10401     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10402         hit = true;
10403     } else {
10404         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10405             /* region search */
10406             /* Note that the base address is bits [31:5] from the register
10407              * with bits [4:0] all zeroes, but the limit address is bits
10408              * [31:5] from the register with bits [4:0] all ones.
10409              */
10410             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10411             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10412 
10413             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10414                 /* Region disabled */
10415                 continue;
10416             }
10417 
10418             if (address < base || address > limit) {
10419                 /*
10420                  * Address not in this region. We must check whether the
10421                  * region covers addresses in the same page as our address.
10422                  * In that case we must not report a size that covers the
10423                  * whole page for a subsequent hit against a different MPU
10424                  * region or the background region, because it would result in
10425                  * incorrect TLB hits for subsequent accesses to addresses that
10426                  * are in this MPU region.
10427                  */
10428                 if (limit >= base &&
10429                     ranges_overlap(base, limit - base + 1,
10430                                    addr_page_base,
10431                                    TARGET_PAGE_SIZE)) {
10432                     *is_subpage = true;
10433                 }
10434                 continue;
10435             }
10436 
10437             if (base > addr_page_base || limit < addr_page_limit) {
10438                 *is_subpage = true;
10439             }
10440 
10441             if (hit) {
10442                 /* Multiple regions match -- always a failure (unlike
10443                  * PMSAv7 where highest-numbered-region wins)
10444                  */
10445                 fi->type = ARMFault_Permission;
10446                 fi->level = 1;
10447                 return true;
10448             }
10449 
10450             matchregion = n;
10451             hit = true;
10452         }
10453     }
10454 
10455     if (!hit) {
10456         /* background fault */
10457         fi->type = ARMFault_Background;
10458         return true;
10459     }
10460 
10461     if (matchregion == -1) {
10462         /* hit using the background region */
10463         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10464     } else {
10465         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10466         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10467 
10468         if (m_is_system_region(env, address)) {
10469             /* System space is always execute never */
10470             xn = 1;
10471         }
10472 
10473         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10474         if (*prot && !xn) {
10475             *prot |= PAGE_EXEC;
10476         }
10477         /* We don't need to look the attribute up in the MAIR0/MAIR1
10478          * registers because that only tells us about cacheability.
10479          */
10480         if (mregion) {
10481             *mregion = matchregion;
10482         }
10483     }
10484 
10485     fi->type = ARMFault_Permission;
10486     fi->level = 1;
10487     return !(*prot & (1 << access_type));
10488 }
10489 
10490 
10491 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10492                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10493                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
10494                                  int *prot, target_ulong *page_size,
10495                                  ARMMMUFaultInfo *fi)
10496 {
10497     uint32_t secure = regime_is_secure(env, mmu_idx);
10498     V8M_SAttributes sattrs = {};
10499     bool ret;
10500     bool mpu_is_subpage;
10501 
10502     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10503         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10504         if (access_type == MMU_INST_FETCH) {
10505             /* Instruction fetches always use the MMU bank and the
10506              * transaction attribute determined by the fetch address,
10507              * regardless of CPU state. This is painful for QEMU
10508              * to handle, because it would mean we need to encode
10509              * into the mmu_idx not just the (user, negpri) information
10510              * for the current security state but also that for the
10511              * other security state, which would balloon the number
10512              * of mmu_idx values needed alarmingly.
10513              * Fortunately we can avoid this because it's not actually
10514              * possible to arbitrarily execute code from memory with
10515              * the wrong security attribute: it will always generate
10516              * an exception of some kind or another, apart from the
10517              * special case of an NS CPU executing an SG instruction
10518              * in S&NSC memory. So we always just fail the translation
10519              * here and sort things out in the exception handler
10520              * (including possibly emulating an SG instruction).
10521              */
10522             if (sattrs.ns != !secure) {
10523                 if (sattrs.nsc) {
10524                     fi->type = ARMFault_QEMU_NSCExec;
10525                 } else {
10526                     fi->type = ARMFault_QEMU_SFault;
10527                 }
10528                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10529                 *phys_ptr = address;
10530                 *prot = 0;
10531                 return true;
10532             }
10533         } else {
10534             /* For data accesses we always use the MMU bank indicated
10535              * by the current CPU state, but the security attributes
10536              * might downgrade a secure access to nonsecure.
10537              */
10538             if (sattrs.ns) {
10539                 txattrs->secure = false;
10540             } else if (!secure) {
10541                 /* NS access to S memory must fault.
10542                  * Architecturally we should first check whether the
10543                  * MPU information for this address indicates that we
10544                  * are doing an unaligned access to Device memory, which
10545                  * should generate a UsageFault instead. QEMU does not
10546                  * currently check for that kind of unaligned access though.
10547                  * If we added it we would need to do so as a special case
10548                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10549                  */
10550                 fi->type = ARMFault_QEMU_SFault;
10551                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10552                 *phys_ptr = address;
10553                 *prot = 0;
10554                 return true;
10555             }
10556         }
10557     }
10558 
10559     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10560                             txattrs, prot, &mpu_is_subpage, fi, NULL);
10561     /*
10562      * TODO: this is a temporary hack to ignore the fact that the SAU region
10563      * is smaller than a page if this is an executable region. We never
10564      * supported small MPU regions, but we did (accidentally) allow small
10565      * SAU regions, and if we now made small SAU regions not be executable
10566      * then this would break previously working guest code. We can't
10567      * remove this until/unless we implement support for execution from
10568      * small regions.
10569      */
10570     if (*prot & PAGE_EXEC) {
10571         sattrs.subpage = false;
10572     }
10573     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10574     return ret;
10575 }
10576 
10577 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10578                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10579                                  hwaddr *phys_ptr, int *prot,
10580                                  ARMMMUFaultInfo *fi)
10581 {
10582     int n;
10583     uint32_t mask;
10584     uint32_t base;
10585     bool is_user = regime_is_user(env, mmu_idx);
10586 
10587     if (regime_translation_disabled(env, mmu_idx)) {
10588         /* MPU disabled.  */
10589         *phys_ptr = address;
10590         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10591         return false;
10592     }
10593 
10594     *phys_ptr = address;
10595     for (n = 7; n >= 0; n--) {
10596         base = env->cp15.c6_region[n];
10597         if ((base & 1) == 0) {
10598             continue;
10599         }
10600         mask = 1 << ((base >> 1) & 0x1f);
10601         /* Keep this shift separate from the above to avoid an
10602            (undefined) << 32.  */
10603         mask = (mask << 1) - 1;
10604         if (((base ^ address) & ~mask) == 0) {
10605             break;
10606         }
10607     }
10608     if (n < 0) {
10609         fi->type = ARMFault_Background;
10610         return true;
10611     }
10612 
10613     if (access_type == MMU_INST_FETCH) {
10614         mask = env->cp15.pmsav5_insn_ap;
10615     } else {
10616         mask = env->cp15.pmsav5_data_ap;
10617     }
10618     mask = (mask >> (n * 4)) & 0xf;
10619     switch (mask) {
10620     case 0:
10621         fi->type = ARMFault_Permission;
10622         fi->level = 1;
10623         return true;
10624     case 1:
10625         if (is_user) {
10626             fi->type = ARMFault_Permission;
10627             fi->level = 1;
10628             return true;
10629         }
10630         *prot = PAGE_READ | PAGE_WRITE;
10631         break;
10632     case 2:
10633         *prot = PAGE_READ;
10634         if (!is_user) {
10635             *prot |= PAGE_WRITE;
10636         }
10637         break;
10638     case 3:
10639         *prot = PAGE_READ | PAGE_WRITE;
10640         break;
10641     case 5:
10642         if (is_user) {
10643             fi->type = ARMFault_Permission;
10644             fi->level = 1;
10645             return true;
10646         }
10647         *prot = PAGE_READ;
10648         break;
10649     case 6:
10650         *prot = PAGE_READ;
10651         break;
10652     default:
10653         /* Bad permission.  */
10654         fi->type = ARMFault_Permission;
10655         fi->level = 1;
10656         return true;
10657     }
10658     *prot |= PAGE_EXEC;
10659     return false;
10660 }
10661 
10662 /* Combine either inner or outer cacheability attributes for normal
10663  * memory, according to table D4-42 and pseudocode procedure
10664  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10665  *
10666  * NB: only stage 1 includes allocation hints (RW bits), leading to
10667  * some asymmetry.
10668  */
10669 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10670 {
10671     if (s1 == 4 || s2 == 4) {
10672         /* non-cacheable has precedence */
10673         return 4;
10674     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10675         /* stage 1 write-through takes precedence */
10676         return s1;
10677     } else if (extract32(s2, 2, 2) == 2) {
10678         /* stage 2 write-through takes precedence, but the allocation hint
10679          * is still taken from stage 1
10680          */
10681         return (2 << 2) | extract32(s1, 0, 2);
10682     } else { /* write-back */
10683         return s1;
10684     }
10685 }
10686 
10687 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10688  * and CombineS1S2Desc()
10689  *
10690  * @s1:      Attributes from stage 1 walk
10691  * @s2:      Attributes from stage 2 walk
10692  */
10693 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10694 {
10695     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10696     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10697     ARMCacheAttrs ret;
10698 
10699     /* Combine shareability attributes (table D4-43) */
10700     if (s1.shareability == 2 || s2.shareability == 2) {
10701         /* if either are outer-shareable, the result is outer-shareable */
10702         ret.shareability = 2;
10703     } else if (s1.shareability == 3 || s2.shareability == 3) {
10704         /* if either are inner-shareable, the result is inner-shareable */
10705         ret.shareability = 3;
10706     } else {
10707         /* both non-shareable */
10708         ret.shareability = 0;
10709     }
10710 
10711     /* Combine memory type and cacheability attributes */
10712     if (s1hi == 0 || s2hi == 0) {
10713         /* Device has precedence over normal */
10714         if (s1lo == 0 || s2lo == 0) {
10715             /* nGnRnE has precedence over anything */
10716             ret.attrs = 0;
10717         } else if (s1lo == 4 || s2lo == 4) {
10718             /* non-Reordering has precedence over Reordering */
10719             ret.attrs = 4;  /* nGnRE */
10720         } else if (s1lo == 8 || s2lo == 8) {
10721             /* non-Gathering has precedence over Gathering */
10722             ret.attrs = 8;  /* nGRE */
10723         } else {
10724             ret.attrs = 0xc; /* GRE */
10725         }
10726 
10727         /* Any location for which the resultant memory type is any
10728          * type of Device memory is always treated as Outer Shareable.
10729          */
10730         ret.shareability = 2;
10731     } else { /* Normal memory */
10732         /* Outer/inner cacheability combine independently */
10733         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10734                   | combine_cacheattr_nibble(s1lo, s2lo);
10735 
10736         if (ret.attrs == 0x44) {
10737             /* Any location for which the resultant memory type is Normal
10738              * Inner Non-cacheable, Outer Non-cacheable is always treated
10739              * as Outer Shareable.
10740              */
10741             ret.shareability = 2;
10742         }
10743     }
10744 
10745     return ret;
10746 }
10747 
10748 
10749 /* get_phys_addr - get the physical address for this virtual address
10750  *
10751  * Find the physical address corresponding to the given virtual address,
10752  * by doing a translation table walk on MMU based systems or using the
10753  * MPU state on MPU based systems.
10754  *
10755  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10756  * prot and page_size may not be filled in, and the populated fsr value provides
10757  * information on why the translation aborted, in the format of a
10758  * DFSR/IFSR fault register, with the following caveats:
10759  *  * we honour the short vs long DFSR format differences.
10760  *  * the WnR bit is never set (the caller must do this).
10761  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10762  *    value.
10763  *
10764  * @env: CPUARMState
10765  * @address: virtual address to get physical address for
10766  * @access_type: 0 for read, 1 for write, 2 for execute
10767  * @mmu_idx: MMU index indicating required translation regime
10768  * @phys_ptr: set to the physical address corresponding to the virtual address
10769  * @attrs: set to the memory transaction attributes to use
10770  * @prot: set to the permissions for the page containing phys_ptr
10771  * @page_size: set to the size of the page containing phys_ptr
10772  * @fi: set to fault info if the translation fails
10773  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10774  */
10775 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10776                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
10777                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10778                           target_ulong *page_size,
10779                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10780 {
10781     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10782         /* Call ourselves recursively to do the stage 1 and then stage 2
10783          * translations.
10784          */
10785         if (arm_feature(env, ARM_FEATURE_EL2)) {
10786             hwaddr ipa;
10787             int s2_prot;
10788             int ret;
10789             ARMCacheAttrs cacheattrs2 = {};
10790 
10791             ret = get_phys_addr(env, address, access_type,
10792                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10793                                 prot, page_size, fi, cacheattrs);
10794 
10795             /* If S1 fails or S2 is disabled, return early.  */
10796             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10797                 *phys_ptr = ipa;
10798                 return ret;
10799             }
10800 
10801             /* S1 is done. Now do S2 translation.  */
10802             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10803                                      phys_ptr, attrs, &s2_prot,
10804                                      page_size, fi,
10805                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10806             fi->s2addr = ipa;
10807             /* Combine the S1 and S2 perms.  */
10808             *prot &= s2_prot;
10809 
10810             /* Combine the S1 and S2 cache attributes, if needed */
10811             if (!ret && cacheattrs != NULL) {
10812                 if (env->cp15.hcr_el2 & HCR_DC) {
10813                     /*
10814                      * HCR.DC forces the first stage attributes to
10815                      *  Normal Non-Shareable,
10816                      *  Inner Write-Back Read-Allocate Write-Allocate,
10817                      *  Outer Write-Back Read-Allocate Write-Allocate.
10818                      */
10819                     cacheattrs->attrs = 0xff;
10820                     cacheattrs->shareability = 0;
10821                 }
10822                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10823             }
10824 
10825             return ret;
10826         } else {
10827             /*
10828              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10829              */
10830             mmu_idx = stage_1_mmu_idx(mmu_idx);
10831         }
10832     }
10833 
10834     /* The page table entries may downgrade secure to non-secure, but
10835      * cannot upgrade an non-secure translation regime's attributes
10836      * to secure.
10837      */
10838     attrs->secure = regime_is_secure(env, mmu_idx);
10839     attrs->user = regime_is_user(env, mmu_idx);
10840 
10841     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10842      * In v7 and earlier it affects all stage 1 translations.
10843      */
10844     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10845         && !arm_feature(env, ARM_FEATURE_V8)) {
10846         if (regime_el(env, mmu_idx) == 3) {
10847             address += env->cp15.fcseidr_s;
10848         } else {
10849             address += env->cp15.fcseidr_ns;
10850         }
10851     }
10852 
10853     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10854         bool ret;
10855         *page_size = TARGET_PAGE_SIZE;
10856 
10857         if (arm_feature(env, ARM_FEATURE_V8)) {
10858             /* PMSAv8 */
10859             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10860                                        phys_ptr, attrs, prot, page_size, fi);
10861         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10862             /* PMSAv7 */
10863             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10864                                        phys_ptr, prot, page_size, fi);
10865         } else {
10866             /* Pre-v7 MPU */
10867             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10868                                        phys_ptr, prot, fi);
10869         }
10870         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10871                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10872                       access_type == MMU_DATA_LOAD ? "reading" :
10873                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10874                       (uint32_t)address, mmu_idx,
10875                       ret ? "Miss" : "Hit",
10876                       *prot & PAGE_READ ? 'r' : '-',
10877                       *prot & PAGE_WRITE ? 'w' : '-',
10878                       *prot & PAGE_EXEC ? 'x' : '-');
10879 
10880         return ret;
10881     }
10882 
10883     /* Definitely a real MMU, not an MPU */
10884 
10885     if (regime_translation_disabled(env, mmu_idx)) {
10886         /* MMU disabled. */
10887         *phys_ptr = address;
10888         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10889         *page_size = TARGET_PAGE_SIZE;
10890         return 0;
10891     }
10892 
10893     if (regime_using_lpae_format(env, mmu_idx)) {
10894         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10895                                   phys_ptr, attrs, prot, page_size,
10896                                   fi, cacheattrs);
10897     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10898         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10899                                 phys_ptr, attrs, prot, page_size, fi);
10900     } else {
10901         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10902                                     phys_ptr, prot, page_size, fi);
10903     }
10904 }
10905 
10906 /* Walk the page table and (if the mapping exists) add the page
10907  * to the TLB. Return false on success, or true on failure. Populate
10908  * fsr with ARM DFSR/IFSR fault register format value on failure.
10909  */
10910 bool arm_tlb_fill(CPUState *cs, vaddr address,
10911                   MMUAccessType access_type, int mmu_idx,
10912                   ARMMMUFaultInfo *fi)
10913 {
10914     ARMCPU *cpu = ARM_CPU(cs);
10915     CPUARMState *env = &cpu->env;
10916     hwaddr phys_addr;
10917     target_ulong page_size;
10918     int prot;
10919     int ret;
10920     MemTxAttrs attrs = {};
10921 
10922     ret = get_phys_addr(env, address, access_type,
10923                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10924                         &attrs, &prot, &page_size, fi, NULL);
10925     if (!ret) {
10926         /*
10927          * Map a single [sub]page. Regions smaller than our declared
10928          * target page size are handled specially, so for those we
10929          * pass in the exact addresses.
10930          */
10931         if (page_size >= TARGET_PAGE_SIZE) {
10932             phys_addr &= TARGET_PAGE_MASK;
10933             address &= TARGET_PAGE_MASK;
10934         }
10935         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10936                                 prot, mmu_idx, page_size);
10937         return 0;
10938     }
10939 
10940     return ret;
10941 }
10942 
10943 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10944                                          MemTxAttrs *attrs)
10945 {
10946     ARMCPU *cpu = ARM_CPU(cs);
10947     CPUARMState *env = &cpu->env;
10948     hwaddr phys_addr;
10949     target_ulong page_size;
10950     int prot;
10951     bool ret;
10952     ARMMMUFaultInfo fi = {};
10953     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10954 
10955     *attrs = (MemTxAttrs) {};
10956 
10957     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10958                         attrs, &prot, &page_size, &fi, NULL);
10959 
10960     if (ret) {
10961         return -1;
10962     }
10963     return phys_addr;
10964 }
10965 
10966 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10967 {
10968     uint32_t mask;
10969     unsigned el = arm_current_el(env);
10970 
10971     /* First handle registers which unprivileged can read */
10972 
10973     switch (reg) {
10974     case 0 ... 7: /* xPSR sub-fields */
10975         mask = 0;
10976         if ((reg & 1) && el) {
10977             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10978         }
10979         if (!(reg & 4)) {
10980             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10981         }
10982         /* EPSR reads as zero */
10983         return xpsr_read(env) & mask;
10984         break;
10985     case 20: /* CONTROL */
10986         return env->v7m.control[env->v7m.secure];
10987     case 0x94: /* CONTROL_NS */
10988         /* We have to handle this here because unprivileged Secure code
10989          * can read the NS CONTROL register.
10990          */
10991         if (!env->v7m.secure) {
10992             return 0;
10993         }
10994         return env->v7m.control[M_REG_NS];
10995     }
10996 
10997     if (el == 0) {
10998         return 0; /* unprivileged reads others as zero */
10999     }
11000 
11001     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11002         switch (reg) {
11003         case 0x88: /* MSP_NS */
11004             if (!env->v7m.secure) {
11005                 return 0;
11006             }
11007             return env->v7m.other_ss_msp;
11008         case 0x89: /* PSP_NS */
11009             if (!env->v7m.secure) {
11010                 return 0;
11011             }
11012             return env->v7m.other_ss_psp;
11013         case 0x8a: /* MSPLIM_NS */
11014             if (!env->v7m.secure) {
11015                 return 0;
11016             }
11017             return env->v7m.msplim[M_REG_NS];
11018         case 0x8b: /* PSPLIM_NS */
11019             if (!env->v7m.secure) {
11020                 return 0;
11021             }
11022             return env->v7m.psplim[M_REG_NS];
11023         case 0x90: /* PRIMASK_NS */
11024             if (!env->v7m.secure) {
11025                 return 0;
11026             }
11027             return env->v7m.primask[M_REG_NS];
11028         case 0x91: /* BASEPRI_NS */
11029             if (!env->v7m.secure) {
11030                 return 0;
11031             }
11032             return env->v7m.basepri[M_REG_NS];
11033         case 0x93: /* FAULTMASK_NS */
11034             if (!env->v7m.secure) {
11035                 return 0;
11036             }
11037             return env->v7m.faultmask[M_REG_NS];
11038         case 0x98: /* SP_NS */
11039         {
11040             /* This gives the non-secure SP selected based on whether we're
11041              * currently in handler mode or not, using the NS CONTROL.SPSEL.
11042              */
11043             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11044 
11045             if (!env->v7m.secure) {
11046                 return 0;
11047             }
11048             if (!arm_v7m_is_handler_mode(env) && spsel) {
11049                 return env->v7m.other_ss_psp;
11050             } else {
11051                 return env->v7m.other_ss_msp;
11052             }
11053         }
11054         default:
11055             break;
11056         }
11057     }
11058 
11059     switch (reg) {
11060     case 8: /* MSP */
11061         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
11062     case 9: /* PSP */
11063         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
11064     case 10: /* MSPLIM */
11065         if (!arm_feature(env, ARM_FEATURE_V8)) {
11066             goto bad_reg;
11067         }
11068         return env->v7m.msplim[env->v7m.secure];
11069     case 11: /* PSPLIM */
11070         if (!arm_feature(env, ARM_FEATURE_V8)) {
11071             goto bad_reg;
11072         }
11073         return env->v7m.psplim[env->v7m.secure];
11074     case 16: /* PRIMASK */
11075         return env->v7m.primask[env->v7m.secure];
11076     case 17: /* BASEPRI */
11077     case 18: /* BASEPRI_MAX */
11078         return env->v7m.basepri[env->v7m.secure];
11079     case 19: /* FAULTMASK */
11080         return env->v7m.faultmask[env->v7m.secure];
11081     default:
11082     bad_reg:
11083         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
11084                                        " register %d\n", reg);
11085         return 0;
11086     }
11087 }
11088 
11089 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
11090 {
11091     /* We're passed bits [11..0] of the instruction; extract
11092      * SYSm and the mask bits.
11093      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
11094      * we choose to treat them as if the mask bits were valid.
11095      * NB that the pseudocode 'mask' variable is bits [11..10],
11096      * whereas ours is [11..8].
11097      */
11098     uint32_t mask = extract32(maskreg, 8, 4);
11099     uint32_t reg = extract32(maskreg, 0, 8);
11100 
11101     if (arm_current_el(env) == 0 && reg > 7) {
11102         /* only xPSR sub-fields may be written by unprivileged */
11103         return;
11104     }
11105 
11106     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11107         switch (reg) {
11108         case 0x88: /* MSP_NS */
11109             if (!env->v7m.secure) {
11110                 return;
11111             }
11112             env->v7m.other_ss_msp = val;
11113             return;
11114         case 0x89: /* PSP_NS */
11115             if (!env->v7m.secure) {
11116                 return;
11117             }
11118             env->v7m.other_ss_psp = val;
11119             return;
11120         case 0x8a: /* MSPLIM_NS */
11121             if (!env->v7m.secure) {
11122                 return;
11123             }
11124             env->v7m.msplim[M_REG_NS] = val & ~7;
11125             return;
11126         case 0x8b: /* PSPLIM_NS */
11127             if (!env->v7m.secure) {
11128                 return;
11129             }
11130             env->v7m.psplim[M_REG_NS] = val & ~7;
11131             return;
11132         case 0x90: /* PRIMASK_NS */
11133             if (!env->v7m.secure) {
11134                 return;
11135             }
11136             env->v7m.primask[M_REG_NS] = val & 1;
11137             return;
11138         case 0x91: /* BASEPRI_NS */
11139             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11140                 return;
11141             }
11142             env->v7m.basepri[M_REG_NS] = val & 0xff;
11143             return;
11144         case 0x93: /* FAULTMASK_NS */
11145             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
11146                 return;
11147             }
11148             env->v7m.faultmask[M_REG_NS] = val & 1;
11149             return;
11150         case 0x94: /* CONTROL_NS */
11151             if (!env->v7m.secure) {
11152                 return;
11153             }
11154             write_v7m_control_spsel_for_secstate(env,
11155                                                  val & R_V7M_CONTROL_SPSEL_MASK,
11156                                                  M_REG_NS);
11157             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11158                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
11159                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
11160             }
11161             return;
11162         case 0x98: /* SP_NS */
11163         {
11164             /* This gives the non-secure SP selected based on whether we're
11165              * currently in handler mode or not, using the NS CONTROL.SPSEL.
11166              */
11167             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
11168             bool is_psp = !arm_v7m_is_handler_mode(env) && spsel;
11169             uint32_t limit;
11170 
11171             if (!env->v7m.secure) {
11172                 return;
11173             }
11174 
11175             limit = is_psp ? env->v7m.psplim[false] : env->v7m.msplim[false];
11176 
11177             if (val < limit) {
11178                 CPUState *cs = CPU(arm_env_get_cpu(env));
11179 
11180                 cpu_restore_state(cs, GETPC(), true);
11181                 raise_exception(env, EXCP_STKOF, 0, 1);
11182             }
11183 
11184             if (is_psp) {
11185                 env->v7m.other_ss_psp = val;
11186             } else {
11187                 env->v7m.other_ss_msp = val;
11188             }
11189             return;
11190         }
11191         default:
11192             break;
11193         }
11194     }
11195 
11196     switch (reg) {
11197     case 0 ... 7: /* xPSR sub-fields */
11198         /* only APSR is actually writable */
11199         if (!(reg & 4)) {
11200             uint32_t apsrmask = 0;
11201 
11202             if (mask & 8) {
11203                 apsrmask |= XPSR_NZCV | XPSR_Q;
11204             }
11205             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
11206                 apsrmask |= XPSR_GE;
11207             }
11208             xpsr_write(env, val, apsrmask);
11209         }
11210         break;
11211     case 8: /* MSP */
11212         if (v7m_using_psp(env)) {
11213             env->v7m.other_sp = val;
11214         } else {
11215             env->regs[13] = val;
11216         }
11217         break;
11218     case 9: /* PSP */
11219         if (v7m_using_psp(env)) {
11220             env->regs[13] = val;
11221         } else {
11222             env->v7m.other_sp = val;
11223         }
11224         break;
11225     case 10: /* MSPLIM */
11226         if (!arm_feature(env, ARM_FEATURE_V8)) {
11227             goto bad_reg;
11228         }
11229         env->v7m.msplim[env->v7m.secure] = val & ~7;
11230         break;
11231     case 11: /* PSPLIM */
11232         if (!arm_feature(env, ARM_FEATURE_V8)) {
11233             goto bad_reg;
11234         }
11235         env->v7m.psplim[env->v7m.secure] = val & ~7;
11236         break;
11237     case 16: /* PRIMASK */
11238         env->v7m.primask[env->v7m.secure] = val & 1;
11239         break;
11240     case 17: /* BASEPRI */
11241         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11242             goto bad_reg;
11243         }
11244         env->v7m.basepri[env->v7m.secure] = val & 0xff;
11245         break;
11246     case 18: /* BASEPRI_MAX */
11247         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11248             goto bad_reg;
11249         }
11250         val &= 0xff;
11251         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
11252                          || env->v7m.basepri[env->v7m.secure] == 0)) {
11253             env->v7m.basepri[env->v7m.secure] = val;
11254         }
11255         break;
11256     case 19: /* FAULTMASK */
11257         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
11258             goto bad_reg;
11259         }
11260         env->v7m.faultmask[env->v7m.secure] = val & 1;
11261         break;
11262     case 20: /* CONTROL */
11263         /* Writing to the SPSEL bit only has an effect if we are in
11264          * thread mode; other bits can be updated by any privileged code.
11265          * write_v7m_control_spsel() deals with updating the SPSEL bit in
11266          * env->v7m.control, so we only need update the others.
11267          * For v7M, we must just ignore explicit writes to SPSEL in handler
11268          * mode; for v8M the write is permitted but will have no effect.
11269          */
11270         if (arm_feature(env, ARM_FEATURE_V8) ||
11271             !arm_v7m_is_handler_mode(env)) {
11272             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
11273         }
11274         if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
11275             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
11276             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
11277         }
11278         break;
11279     default:
11280     bad_reg:
11281         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
11282                                        " register %d\n", reg);
11283         return;
11284     }
11285 }
11286 
11287 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
11288 {
11289     /* Implement the TT instruction. op is bits [7:6] of the insn. */
11290     bool forceunpriv = op & 1;
11291     bool alt = op & 2;
11292     V8M_SAttributes sattrs = {};
11293     uint32_t tt_resp;
11294     bool r, rw, nsr, nsrw, mrvalid;
11295     int prot;
11296     ARMMMUFaultInfo fi = {};
11297     MemTxAttrs attrs = {};
11298     hwaddr phys_addr;
11299     ARMMMUIdx mmu_idx;
11300     uint32_t mregion;
11301     bool targetpriv;
11302     bool targetsec = env->v7m.secure;
11303     bool is_subpage;
11304 
11305     /* Work out what the security state and privilege level we're
11306      * interested in is...
11307      */
11308     if (alt) {
11309         targetsec = !targetsec;
11310     }
11311 
11312     if (forceunpriv) {
11313         targetpriv = false;
11314     } else {
11315         targetpriv = arm_v7m_is_handler_mode(env) ||
11316             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
11317     }
11318 
11319     /* ...and then figure out which MMU index this is */
11320     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
11321 
11322     /* We know that the MPU and SAU don't care about the access type
11323      * for our purposes beyond that we don't want to claim to be
11324      * an insn fetch, so we arbitrarily call this a read.
11325      */
11326 
11327     /* MPU region info only available for privileged or if
11328      * inspecting the other MPU state.
11329      */
11330     if (arm_current_el(env) != 0 || alt) {
11331         /* We can ignore the return value as prot is always set */
11332         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
11333                           &phys_addr, &attrs, &prot, &is_subpage,
11334                           &fi, &mregion);
11335         if (mregion == -1) {
11336             mrvalid = false;
11337             mregion = 0;
11338         } else {
11339             mrvalid = true;
11340         }
11341         r = prot & PAGE_READ;
11342         rw = prot & PAGE_WRITE;
11343     } else {
11344         r = false;
11345         rw = false;
11346         mrvalid = false;
11347         mregion = 0;
11348     }
11349 
11350     if (env->v7m.secure) {
11351         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
11352         nsr = sattrs.ns && r;
11353         nsrw = sattrs.ns && rw;
11354     } else {
11355         sattrs.ns = true;
11356         nsr = false;
11357         nsrw = false;
11358     }
11359 
11360     tt_resp = (sattrs.iregion << 24) |
11361         (sattrs.irvalid << 23) |
11362         ((!sattrs.ns) << 22) |
11363         (nsrw << 21) |
11364         (nsr << 20) |
11365         (rw << 19) |
11366         (r << 18) |
11367         (sattrs.srvalid << 17) |
11368         (mrvalid << 16) |
11369         (sattrs.sregion << 8) |
11370         mregion;
11371 
11372     return tt_resp;
11373 }
11374 
11375 #endif
11376 
11377 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
11378 {
11379     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
11380      * Note that we do not implement the (architecturally mandated)
11381      * alignment fault for attempts to use this on Device memory
11382      * (which matches the usual QEMU behaviour of not implementing either
11383      * alignment faults or any memory attribute handling).
11384      */
11385 
11386     ARMCPU *cpu = arm_env_get_cpu(env);
11387     uint64_t blocklen = 4 << cpu->dcz_blocksize;
11388     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
11389 
11390 #ifndef CONFIG_USER_ONLY
11391     {
11392         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
11393          * the block size so we might have to do more than one TLB lookup.
11394          * We know that in fact for any v8 CPU the page size is at least 4K
11395          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
11396          * 1K as an artefact of legacy v5 subpage support being present in the
11397          * same QEMU executable.
11398          */
11399         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
11400         void *hostaddr[maxidx];
11401         int try, i;
11402         unsigned mmu_idx = cpu_mmu_index(env, false);
11403         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
11404 
11405         for (try = 0; try < 2; try++) {
11406 
11407             for (i = 0; i < maxidx; i++) {
11408                 hostaddr[i] = tlb_vaddr_to_host(env,
11409                                                 vaddr + TARGET_PAGE_SIZE * i,
11410                                                 1, mmu_idx);
11411                 if (!hostaddr[i]) {
11412                     break;
11413                 }
11414             }
11415             if (i == maxidx) {
11416                 /* If it's all in the TLB it's fair game for just writing to;
11417                  * we know we don't need to update dirty status, etc.
11418                  */
11419                 for (i = 0; i < maxidx - 1; i++) {
11420                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
11421                 }
11422                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11423                 return;
11424             }
11425             /* OK, try a store and see if we can populate the tlb. This
11426              * might cause an exception if the memory isn't writable,
11427              * in which case we will longjmp out of here. We must for
11428              * this purpose use the actual register value passed to us
11429              * so that we get the fault address right.
11430              */
11431             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11432             /* Now we can populate the other TLB entries, if any */
11433             for (i = 0; i < maxidx; i++) {
11434                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11435                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11436                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11437                 }
11438             }
11439         }
11440 
11441         /* Slow path (probably attempt to do this to an I/O device or
11442          * similar, or clearing of a block of code we have translations
11443          * cached for). Just do a series of byte writes as the architecture
11444          * demands. It's not worth trying to use a cpu_physical_memory_map(),
11445          * memset(), unmap() sequence here because:
11446          *  + we'd need to account for the blocksize being larger than a page
11447          *  + the direct-RAM access case is almost always going to be dealt
11448          *    with in the fastpath code above, so there's no speed benefit
11449          *  + we would have to deal with the map returning NULL because the
11450          *    bounce buffer was in use
11451          */
11452         for (i = 0; i < blocklen; i++) {
11453             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11454         }
11455     }
11456 #else
11457     memset(g2h(vaddr), 0, blocklen);
11458 #endif
11459 }
11460 
11461 /* Note that signed overflow is undefined in C.  The following routines are
11462    careful to use unsigned types where modulo arithmetic is required.
11463    Failure to do so _will_ break on newer gcc.  */
11464 
11465 /* Signed saturating arithmetic.  */
11466 
11467 /* Perform 16-bit signed saturating addition.  */
11468 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11469 {
11470     uint16_t res;
11471 
11472     res = a + b;
11473     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11474         if (a & 0x8000)
11475             res = 0x8000;
11476         else
11477             res = 0x7fff;
11478     }
11479     return res;
11480 }
11481 
11482 /* Perform 8-bit signed saturating addition.  */
11483 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11484 {
11485     uint8_t res;
11486 
11487     res = a + b;
11488     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11489         if (a & 0x80)
11490             res = 0x80;
11491         else
11492             res = 0x7f;
11493     }
11494     return res;
11495 }
11496 
11497 /* Perform 16-bit signed saturating subtraction.  */
11498 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11499 {
11500     uint16_t res;
11501 
11502     res = a - b;
11503     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11504         if (a & 0x8000)
11505             res = 0x8000;
11506         else
11507             res = 0x7fff;
11508     }
11509     return res;
11510 }
11511 
11512 /* Perform 8-bit signed saturating subtraction.  */
11513 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11514 {
11515     uint8_t res;
11516 
11517     res = a - b;
11518     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11519         if (a & 0x80)
11520             res = 0x80;
11521         else
11522             res = 0x7f;
11523     }
11524     return res;
11525 }
11526 
11527 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11528 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11529 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11530 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11531 #define PFX q
11532 
11533 #include "op_addsub.h"
11534 
11535 /* Unsigned saturating arithmetic.  */
11536 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11537 {
11538     uint16_t res;
11539     res = a + b;
11540     if (res < a)
11541         res = 0xffff;
11542     return res;
11543 }
11544 
11545 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11546 {
11547     if (a > b)
11548         return a - b;
11549     else
11550         return 0;
11551 }
11552 
11553 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11554 {
11555     uint8_t res;
11556     res = a + b;
11557     if (res < a)
11558         res = 0xff;
11559     return res;
11560 }
11561 
11562 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11563 {
11564     if (a > b)
11565         return a - b;
11566     else
11567         return 0;
11568 }
11569 
11570 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11571 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11572 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11573 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11574 #define PFX uq
11575 
11576 #include "op_addsub.h"
11577 
11578 /* Signed modulo arithmetic.  */
11579 #define SARITH16(a, b, n, op) do { \
11580     int32_t sum; \
11581     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11582     RESULT(sum, n, 16); \
11583     if (sum >= 0) \
11584         ge |= 3 << (n * 2); \
11585     } while(0)
11586 
11587 #define SARITH8(a, b, n, op) do { \
11588     int32_t sum; \
11589     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11590     RESULT(sum, n, 8); \
11591     if (sum >= 0) \
11592         ge |= 1 << n; \
11593     } while(0)
11594 
11595 
11596 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11597 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11598 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11599 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11600 #define PFX s
11601 #define ARITH_GE
11602 
11603 #include "op_addsub.h"
11604 
11605 /* Unsigned modulo arithmetic.  */
11606 #define ADD16(a, b, n) do { \
11607     uint32_t sum; \
11608     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11609     RESULT(sum, n, 16); \
11610     if ((sum >> 16) == 1) \
11611         ge |= 3 << (n * 2); \
11612     } while(0)
11613 
11614 #define ADD8(a, b, n) do { \
11615     uint32_t sum; \
11616     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11617     RESULT(sum, n, 8); \
11618     if ((sum >> 8) == 1) \
11619         ge |= 1 << n; \
11620     } while(0)
11621 
11622 #define SUB16(a, b, n) do { \
11623     uint32_t sum; \
11624     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11625     RESULT(sum, n, 16); \
11626     if ((sum >> 16) == 0) \
11627         ge |= 3 << (n * 2); \
11628     } while(0)
11629 
11630 #define SUB8(a, b, n) do { \
11631     uint32_t sum; \
11632     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11633     RESULT(sum, n, 8); \
11634     if ((sum >> 8) == 0) \
11635         ge |= 1 << n; \
11636     } while(0)
11637 
11638 #define PFX u
11639 #define ARITH_GE
11640 
11641 #include "op_addsub.h"
11642 
11643 /* Halved signed arithmetic.  */
11644 #define ADD16(a, b, n) \
11645   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11646 #define SUB16(a, b, n) \
11647   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11648 #define ADD8(a, b, n) \
11649   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11650 #define SUB8(a, b, n) \
11651   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11652 #define PFX sh
11653 
11654 #include "op_addsub.h"
11655 
11656 /* Halved unsigned arithmetic.  */
11657 #define ADD16(a, b, n) \
11658   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11659 #define SUB16(a, b, n) \
11660   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11661 #define ADD8(a, b, n) \
11662   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11663 #define SUB8(a, b, n) \
11664   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11665 #define PFX uh
11666 
11667 #include "op_addsub.h"
11668 
11669 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11670 {
11671     if (a > b)
11672         return a - b;
11673     else
11674         return b - a;
11675 }
11676 
11677 /* Unsigned sum of absolute byte differences.  */
11678 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11679 {
11680     uint32_t sum;
11681     sum = do_usad(a, b);
11682     sum += do_usad(a >> 8, b >> 8);
11683     sum += do_usad(a >> 16, b >>16);
11684     sum += do_usad(a >> 24, b >> 24);
11685     return sum;
11686 }
11687 
11688 /* For ARMv6 SEL instruction.  */
11689 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11690 {
11691     uint32_t mask;
11692 
11693     mask = 0;
11694     if (flags & 1)
11695         mask |= 0xff;
11696     if (flags & 2)
11697         mask |= 0xff00;
11698     if (flags & 4)
11699         mask |= 0xff0000;
11700     if (flags & 8)
11701         mask |= 0xff000000;
11702     return (a & mask) | (b & ~mask);
11703 }
11704 
11705 /* VFP support.  We follow the convention used for VFP instructions:
11706    Single precision routines have a "s" suffix, double precision a
11707    "d" suffix.  */
11708 
11709 /* Convert host exception flags to vfp form.  */
11710 static inline int vfp_exceptbits_from_host(int host_bits)
11711 {
11712     int target_bits = 0;
11713 
11714     if (host_bits & float_flag_invalid)
11715         target_bits |= 1;
11716     if (host_bits & float_flag_divbyzero)
11717         target_bits |= 2;
11718     if (host_bits & float_flag_overflow)
11719         target_bits |= 4;
11720     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11721         target_bits |= 8;
11722     if (host_bits & float_flag_inexact)
11723         target_bits |= 0x10;
11724     if (host_bits & float_flag_input_denormal)
11725         target_bits |= 0x80;
11726     return target_bits;
11727 }
11728 
11729 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11730 {
11731     int i;
11732     uint32_t fpscr;
11733 
11734     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11735             | (env->vfp.vec_len << 16)
11736             | (env->vfp.vec_stride << 20);
11737 
11738     i = get_float_exception_flags(&env->vfp.fp_status);
11739     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11740     /* FZ16 does not generate an input denormal exception.  */
11741     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11742           & ~float_flag_input_denormal);
11743 
11744     fpscr |= vfp_exceptbits_from_host(i);
11745     return fpscr;
11746 }
11747 
11748 uint32_t vfp_get_fpscr(CPUARMState *env)
11749 {
11750     return HELPER(vfp_get_fpscr)(env);
11751 }
11752 
11753 /* Convert vfp exception flags to target form.  */
11754 static inline int vfp_exceptbits_to_host(int target_bits)
11755 {
11756     int host_bits = 0;
11757 
11758     if (target_bits & 1)
11759         host_bits |= float_flag_invalid;
11760     if (target_bits & 2)
11761         host_bits |= float_flag_divbyzero;
11762     if (target_bits & 4)
11763         host_bits |= float_flag_overflow;
11764     if (target_bits & 8)
11765         host_bits |= float_flag_underflow;
11766     if (target_bits & 0x10)
11767         host_bits |= float_flag_inexact;
11768     if (target_bits & 0x80)
11769         host_bits |= float_flag_input_denormal;
11770     return host_bits;
11771 }
11772 
11773 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11774 {
11775     int i;
11776     uint32_t changed;
11777 
11778     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
11779     if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
11780         val &= ~FPCR_FZ16;
11781     }
11782 
11783     changed = env->vfp.xregs[ARM_VFP_FPSCR];
11784     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11785     env->vfp.vec_len = (val >> 16) & 7;
11786     env->vfp.vec_stride = (val >> 20) & 3;
11787 
11788     changed ^= val;
11789     if (changed & (3 << 22)) {
11790         i = (val >> 22) & 3;
11791         switch (i) {
11792         case FPROUNDING_TIEEVEN:
11793             i = float_round_nearest_even;
11794             break;
11795         case FPROUNDING_POSINF:
11796             i = float_round_up;
11797             break;
11798         case FPROUNDING_NEGINF:
11799             i = float_round_down;
11800             break;
11801         case FPROUNDING_ZERO:
11802             i = float_round_to_zero;
11803             break;
11804         }
11805         set_float_rounding_mode(i, &env->vfp.fp_status);
11806         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11807     }
11808     if (changed & FPCR_FZ16) {
11809         bool ftz_enabled = val & FPCR_FZ16;
11810         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11811         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11812     }
11813     if (changed & FPCR_FZ) {
11814         bool ftz_enabled = val & FPCR_FZ;
11815         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11816         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11817     }
11818     if (changed & FPCR_DN) {
11819         bool dnan_enabled = val & FPCR_DN;
11820         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11821         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11822     }
11823 
11824     /* The exception flags are ORed together when we read fpscr so we
11825      * only need to preserve the current state in one of our
11826      * float_status values.
11827      */
11828     i = vfp_exceptbits_to_host(val);
11829     set_float_exception_flags(i, &env->vfp.fp_status);
11830     set_float_exception_flags(0, &env->vfp.fp_status_f16);
11831     set_float_exception_flags(0, &env->vfp.standard_fp_status);
11832 }
11833 
11834 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11835 {
11836     HELPER(vfp_set_fpscr)(env, val);
11837 }
11838 
11839 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11840 
11841 #define VFP_BINOP(name) \
11842 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11843 { \
11844     float_status *fpst = fpstp; \
11845     return float32_ ## name(a, b, fpst); \
11846 } \
11847 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11848 { \
11849     float_status *fpst = fpstp; \
11850     return float64_ ## name(a, b, fpst); \
11851 }
11852 VFP_BINOP(add)
11853 VFP_BINOP(sub)
11854 VFP_BINOP(mul)
11855 VFP_BINOP(div)
11856 VFP_BINOP(min)
11857 VFP_BINOP(max)
11858 VFP_BINOP(minnum)
11859 VFP_BINOP(maxnum)
11860 #undef VFP_BINOP
11861 
11862 float32 VFP_HELPER(neg, s)(float32 a)
11863 {
11864     return float32_chs(a);
11865 }
11866 
11867 float64 VFP_HELPER(neg, d)(float64 a)
11868 {
11869     return float64_chs(a);
11870 }
11871 
11872 float32 VFP_HELPER(abs, s)(float32 a)
11873 {
11874     return float32_abs(a);
11875 }
11876 
11877 float64 VFP_HELPER(abs, d)(float64 a)
11878 {
11879     return float64_abs(a);
11880 }
11881 
11882 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11883 {
11884     return float32_sqrt(a, &env->vfp.fp_status);
11885 }
11886 
11887 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11888 {
11889     return float64_sqrt(a, &env->vfp.fp_status);
11890 }
11891 
11892 /* XXX: check quiet/signaling case */
11893 #define DO_VFP_cmp(p, type) \
11894 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
11895 { \
11896     uint32_t flags; \
11897     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11898     case 0: flags = 0x6; break; \
11899     case -1: flags = 0x8; break; \
11900     case 1: flags = 0x2; break; \
11901     default: case 2: flags = 0x3; break; \
11902     } \
11903     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11904         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11905 } \
11906 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11907 { \
11908     uint32_t flags; \
11909     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11910     case 0: flags = 0x6; break; \
11911     case -1: flags = 0x8; break; \
11912     case 1: flags = 0x2; break; \
11913     default: case 2: flags = 0x3; break; \
11914     } \
11915     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11916         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11917 }
11918 DO_VFP_cmp(s, float32)
11919 DO_VFP_cmp(d, float64)
11920 #undef DO_VFP_cmp
11921 
11922 /* Integer to float and float to integer conversions */
11923 
11924 #define CONV_ITOF(name, ftype, fsz, sign)                           \
11925 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
11926 {                                                                   \
11927     float_status *fpst = fpstp;                                     \
11928     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
11929 }
11930 
11931 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
11932 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
11933 {                                                               \
11934     float_status *fpst = fpstp;                                 \
11935     if (float##fsz##_is_any_nan(x)) {                           \
11936         float_raise(float_flag_invalid, fpst);                  \
11937         return 0;                                               \
11938     }                                                           \
11939     return float##fsz##_to_##sign##int32##round(x, fpst);       \
11940 }
11941 
11942 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
11943     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
11944     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
11945     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11946 
11947 FLOAT_CONVS(si, h, uint32_t, 16, )
11948 FLOAT_CONVS(si, s, float32, 32, )
11949 FLOAT_CONVS(si, d, float64, 64, )
11950 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11951 FLOAT_CONVS(ui, s, float32, 32, u)
11952 FLOAT_CONVS(ui, d, float64, 64, u)
11953 
11954 #undef CONV_ITOF
11955 #undef CONV_FTOI
11956 #undef FLOAT_CONVS
11957 
11958 /* floating point conversion */
11959 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11960 {
11961     return float32_to_float64(x, &env->vfp.fp_status);
11962 }
11963 
11964 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11965 {
11966     return float64_to_float32(x, &env->vfp.fp_status);
11967 }
11968 
11969 /* VFP3 fixed point conversion.  */
11970 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11971 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
11972                                      void *fpstp) \
11973 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
11974 
11975 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
11976 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
11977                                             void *fpst)                   \
11978 {                                                                         \
11979     if (unlikely(float##fsz##_is_any_nan(x))) {                           \
11980         float_raise(float_flag_invalid, fpst);                            \
11981         return 0;                                                         \
11982     }                                                                     \
11983     return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
11984 }
11985 
11986 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
11987 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11988 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
11989                          float_round_to_zero, _round_to_zero)    \
11990 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
11991                          get_float_rounding_mode(fpst), )
11992 
11993 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
11994 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11995 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
11996                          get_float_rounding_mode(fpst), )
11997 
11998 VFP_CONV_FIX(sh, d, 64, 64, int16)
11999 VFP_CONV_FIX(sl, d, 64, 64, int32)
12000 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
12001 VFP_CONV_FIX(uh, d, 64, 64, uint16)
12002 VFP_CONV_FIX(ul, d, 64, 64, uint32)
12003 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
12004 VFP_CONV_FIX(sh, s, 32, 32, int16)
12005 VFP_CONV_FIX(sl, s, 32, 32, int32)
12006 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
12007 VFP_CONV_FIX(uh, s, 32, 32, uint16)
12008 VFP_CONV_FIX(ul, s, 32, 32, uint32)
12009 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
12010 
12011 #undef VFP_CONV_FIX
12012 #undef VFP_CONV_FIX_FLOAT
12013 #undef VFP_CONV_FLOAT_FIX_ROUND
12014 #undef VFP_CONV_FIX_A64
12015 
12016 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
12017 {
12018     return int32_to_float16_scalbn(x, -shift, fpst);
12019 }
12020 
12021 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
12022 {
12023     return uint32_to_float16_scalbn(x, -shift, fpst);
12024 }
12025 
12026 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
12027 {
12028     return int64_to_float16_scalbn(x, -shift, fpst);
12029 }
12030 
12031 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
12032 {
12033     return uint64_to_float16_scalbn(x, -shift, fpst);
12034 }
12035 
12036 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
12037 {
12038     if (unlikely(float16_is_any_nan(x))) {
12039         float_raise(float_flag_invalid, fpst);
12040         return 0;
12041     }
12042     return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
12043                                    shift, fpst);
12044 }
12045 
12046 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
12047 {
12048     if (unlikely(float16_is_any_nan(x))) {
12049         float_raise(float_flag_invalid, fpst);
12050         return 0;
12051     }
12052     return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
12053                                     shift, fpst);
12054 }
12055 
12056 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
12057 {
12058     if (unlikely(float16_is_any_nan(x))) {
12059         float_raise(float_flag_invalid, fpst);
12060         return 0;
12061     }
12062     return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
12063                                    shift, fpst);
12064 }
12065 
12066 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
12067 {
12068     if (unlikely(float16_is_any_nan(x))) {
12069         float_raise(float_flag_invalid, fpst);
12070         return 0;
12071     }
12072     return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
12073                                     shift, fpst);
12074 }
12075 
12076 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
12077 {
12078     if (unlikely(float16_is_any_nan(x))) {
12079         float_raise(float_flag_invalid, fpst);
12080         return 0;
12081     }
12082     return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
12083                                    shift, fpst);
12084 }
12085 
12086 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
12087 {
12088     if (unlikely(float16_is_any_nan(x))) {
12089         float_raise(float_flag_invalid, fpst);
12090         return 0;
12091     }
12092     return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
12093                                     shift, fpst);
12094 }
12095 
12096 /* Set the current fp rounding mode and return the old one.
12097  * The argument is a softfloat float_round_ value.
12098  */
12099 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
12100 {
12101     float_status *fp_status = fpstp;
12102 
12103     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12104     set_float_rounding_mode(rmode, fp_status);
12105 
12106     return prev_rmode;
12107 }
12108 
12109 /* Set the current fp rounding mode in the standard fp status and return
12110  * the old one. This is for NEON instructions that need to change the
12111  * rounding mode but wish to use the standard FPSCR values for everything
12112  * else. Always set the rounding mode back to the correct value after
12113  * modifying it.
12114  * The argument is a softfloat float_round_ value.
12115  */
12116 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
12117 {
12118     float_status *fp_status = &env->vfp.standard_fp_status;
12119 
12120     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
12121     set_float_rounding_mode(rmode, fp_status);
12122 
12123     return prev_rmode;
12124 }
12125 
12126 /* Half precision conversions.  */
12127 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12128 {
12129     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
12130      * it would affect flushing input denormals.
12131      */
12132     float_status *fpst = fpstp;
12133     flag save = get_flush_inputs_to_zero(fpst);
12134     set_flush_inputs_to_zero(false, fpst);
12135     float32 r = float16_to_float32(a, !ahp_mode, fpst);
12136     set_flush_inputs_to_zero(save, fpst);
12137     return r;
12138 }
12139 
12140 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
12141 {
12142     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
12143      * it would affect flushing output denormals.
12144      */
12145     float_status *fpst = fpstp;
12146     flag save = get_flush_to_zero(fpst);
12147     set_flush_to_zero(false, fpst);
12148     float16 r = float32_to_float16(a, !ahp_mode, fpst);
12149     set_flush_to_zero(save, fpst);
12150     return r;
12151 }
12152 
12153 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
12154 {
12155     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
12156      * it would affect flushing input denormals.
12157      */
12158     float_status *fpst = fpstp;
12159     flag save = get_flush_inputs_to_zero(fpst);
12160     set_flush_inputs_to_zero(false, fpst);
12161     float64 r = float16_to_float64(a, !ahp_mode, fpst);
12162     set_flush_inputs_to_zero(save, fpst);
12163     return r;
12164 }
12165 
12166 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
12167 {
12168     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
12169      * it would affect flushing output denormals.
12170      */
12171     float_status *fpst = fpstp;
12172     flag save = get_flush_to_zero(fpst);
12173     set_flush_to_zero(false, fpst);
12174     float16 r = float64_to_float16(a, !ahp_mode, fpst);
12175     set_flush_to_zero(save, fpst);
12176     return r;
12177 }
12178 
12179 #define float32_two make_float32(0x40000000)
12180 #define float32_three make_float32(0x40400000)
12181 #define float32_one_point_five make_float32(0x3fc00000)
12182 
12183 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
12184 {
12185     float_status *s = &env->vfp.standard_fp_status;
12186     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12187         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12188         if (!(float32_is_zero(a) || float32_is_zero(b))) {
12189             float_raise(float_flag_input_denormal, s);
12190         }
12191         return float32_two;
12192     }
12193     return float32_sub(float32_two, float32_mul(a, b, s), s);
12194 }
12195 
12196 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
12197 {
12198     float_status *s = &env->vfp.standard_fp_status;
12199     float32 product;
12200     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
12201         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
12202         if (!(float32_is_zero(a) || float32_is_zero(b))) {
12203             float_raise(float_flag_input_denormal, s);
12204         }
12205         return float32_one_point_five;
12206     }
12207     product = float32_mul(a, b, s);
12208     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
12209 }
12210 
12211 /* NEON helpers.  */
12212 
12213 /* Constants 256 and 512 are used in some helpers; we avoid relying on
12214  * int->float conversions at run-time.  */
12215 #define float64_256 make_float64(0x4070000000000000LL)
12216 #define float64_512 make_float64(0x4080000000000000LL)
12217 #define float16_maxnorm make_float16(0x7bff)
12218 #define float32_maxnorm make_float32(0x7f7fffff)
12219 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
12220 
12221 /* Reciprocal functions
12222  *
12223  * The algorithm that must be used to calculate the estimate
12224  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
12225  */
12226 
12227 /* See RecipEstimate()
12228  *
12229  * input is a 9 bit fixed point number
12230  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
12231  * result range 256 .. 511 for a number from 1.0 to 511/256.
12232  */
12233 
12234 static int recip_estimate(int input)
12235 {
12236     int a, b, r;
12237     assert(256 <= input && input < 512);
12238     a = (input * 2) + 1;
12239     b = (1 << 19) / a;
12240     r = (b + 1) >> 1;
12241     assert(256 <= r && r < 512);
12242     return r;
12243 }
12244 
12245 /*
12246  * Common wrapper to call recip_estimate
12247  *
12248  * The parameters are exponent and 64 bit fraction (without implicit
12249  * bit) where the binary point is nominally at bit 52. Returns a
12250  * float64 which can then be rounded to the appropriate size by the
12251  * callee.
12252  */
12253 
12254 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
12255 {
12256     uint32_t scaled, estimate;
12257     uint64_t result_frac;
12258     int result_exp;
12259 
12260     /* Handle sub-normals */
12261     if (*exp == 0) {
12262         if (extract64(frac, 51, 1) == 0) {
12263             *exp = -1;
12264             frac <<= 2;
12265         } else {
12266             frac <<= 1;
12267         }
12268     }
12269 
12270     /* scaled = UInt('1':fraction<51:44>) */
12271     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12272     estimate = recip_estimate(scaled);
12273 
12274     result_exp = exp_off - *exp;
12275     result_frac = deposit64(0, 44, 8, estimate);
12276     if (result_exp == 0) {
12277         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
12278     } else if (result_exp == -1) {
12279         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
12280         result_exp = 0;
12281     }
12282 
12283     *exp = result_exp;
12284 
12285     return result_frac;
12286 }
12287 
12288 static bool round_to_inf(float_status *fpst, bool sign_bit)
12289 {
12290     switch (fpst->float_rounding_mode) {
12291     case float_round_nearest_even: /* Round to Nearest */
12292         return true;
12293     case float_round_up: /* Round to +Inf */
12294         return !sign_bit;
12295     case float_round_down: /* Round to -Inf */
12296         return sign_bit;
12297     case float_round_to_zero: /* Round to Zero */
12298         return false;
12299     }
12300 
12301     g_assert_not_reached();
12302 }
12303 
12304 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
12305 {
12306     float_status *fpst = fpstp;
12307     float16 f16 = float16_squash_input_denormal(input, fpst);
12308     uint32_t f16_val = float16_val(f16);
12309     uint32_t f16_sign = float16_is_neg(f16);
12310     int f16_exp = extract32(f16_val, 10, 5);
12311     uint32_t f16_frac = extract32(f16_val, 0, 10);
12312     uint64_t f64_frac;
12313 
12314     if (float16_is_any_nan(f16)) {
12315         float16 nan = f16;
12316         if (float16_is_signaling_nan(f16, fpst)) {
12317             float_raise(float_flag_invalid, fpst);
12318             nan = float16_silence_nan(f16, fpst);
12319         }
12320         if (fpst->default_nan_mode) {
12321             nan =  float16_default_nan(fpst);
12322         }
12323         return nan;
12324     } else if (float16_is_infinity(f16)) {
12325         return float16_set_sign(float16_zero, float16_is_neg(f16));
12326     } else if (float16_is_zero(f16)) {
12327         float_raise(float_flag_divbyzero, fpst);
12328         return float16_set_sign(float16_infinity, float16_is_neg(f16));
12329     } else if (float16_abs(f16) < (1 << 8)) {
12330         /* Abs(value) < 2.0^-16 */
12331         float_raise(float_flag_overflow | float_flag_inexact, fpst);
12332         if (round_to_inf(fpst, f16_sign)) {
12333             return float16_set_sign(float16_infinity, f16_sign);
12334         } else {
12335             return float16_set_sign(float16_maxnorm, f16_sign);
12336         }
12337     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
12338         float_raise(float_flag_underflow, fpst);
12339         return float16_set_sign(float16_zero, float16_is_neg(f16));
12340     }
12341 
12342     f64_frac = call_recip_estimate(&f16_exp, 29,
12343                                    ((uint64_t) f16_frac) << (52 - 10));
12344 
12345     /* result = sign : result_exp<4:0> : fraction<51:42> */
12346     f16_val = deposit32(0, 15, 1, f16_sign);
12347     f16_val = deposit32(f16_val, 10, 5, f16_exp);
12348     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
12349     return make_float16(f16_val);
12350 }
12351 
12352 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
12353 {
12354     float_status *fpst = fpstp;
12355     float32 f32 = float32_squash_input_denormal(input, fpst);
12356     uint32_t f32_val = float32_val(f32);
12357     bool f32_sign = float32_is_neg(f32);
12358     int f32_exp = extract32(f32_val, 23, 8);
12359     uint32_t f32_frac = extract32(f32_val, 0, 23);
12360     uint64_t f64_frac;
12361 
12362     if (float32_is_any_nan(f32)) {
12363         float32 nan = f32;
12364         if (float32_is_signaling_nan(f32, fpst)) {
12365             float_raise(float_flag_invalid, fpst);
12366             nan = float32_silence_nan(f32, fpst);
12367         }
12368         if (fpst->default_nan_mode) {
12369             nan =  float32_default_nan(fpst);
12370         }
12371         return nan;
12372     } else if (float32_is_infinity(f32)) {
12373         return float32_set_sign(float32_zero, float32_is_neg(f32));
12374     } else if (float32_is_zero(f32)) {
12375         float_raise(float_flag_divbyzero, fpst);
12376         return float32_set_sign(float32_infinity, float32_is_neg(f32));
12377     } else if (float32_abs(f32) < (1ULL << 21)) {
12378         /* Abs(value) < 2.0^-128 */
12379         float_raise(float_flag_overflow | float_flag_inexact, fpst);
12380         if (round_to_inf(fpst, f32_sign)) {
12381             return float32_set_sign(float32_infinity, f32_sign);
12382         } else {
12383             return float32_set_sign(float32_maxnorm, f32_sign);
12384         }
12385     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
12386         float_raise(float_flag_underflow, fpst);
12387         return float32_set_sign(float32_zero, float32_is_neg(f32));
12388     }
12389 
12390     f64_frac = call_recip_estimate(&f32_exp, 253,
12391                                    ((uint64_t) f32_frac) << (52 - 23));
12392 
12393     /* result = sign : result_exp<7:0> : fraction<51:29> */
12394     f32_val = deposit32(0, 31, 1, f32_sign);
12395     f32_val = deposit32(f32_val, 23, 8, f32_exp);
12396     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
12397     return make_float32(f32_val);
12398 }
12399 
12400 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
12401 {
12402     float_status *fpst = fpstp;
12403     float64 f64 = float64_squash_input_denormal(input, fpst);
12404     uint64_t f64_val = float64_val(f64);
12405     bool f64_sign = float64_is_neg(f64);
12406     int f64_exp = extract64(f64_val, 52, 11);
12407     uint64_t f64_frac = extract64(f64_val, 0, 52);
12408 
12409     /* Deal with any special cases */
12410     if (float64_is_any_nan(f64)) {
12411         float64 nan = f64;
12412         if (float64_is_signaling_nan(f64, fpst)) {
12413             float_raise(float_flag_invalid, fpst);
12414             nan = float64_silence_nan(f64, fpst);
12415         }
12416         if (fpst->default_nan_mode) {
12417             nan =  float64_default_nan(fpst);
12418         }
12419         return nan;
12420     } else if (float64_is_infinity(f64)) {
12421         return float64_set_sign(float64_zero, float64_is_neg(f64));
12422     } else if (float64_is_zero(f64)) {
12423         float_raise(float_flag_divbyzero, fpst);
12424         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12425     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12426         /* Abs(value) < 2.0^-1024 */
12427         float_raise(float_flag_overflow | float_flag_inexact, fpst);
12428         if (round_to_inf(fpst, f64_sign)) {
12429             return float64_set_sign(float64_infinity, f64_sign);
12430         } else {
12431             return float64_set_sign(float64_maxnorm, f64_sign);
12432         }
12433     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12434         float_raise(float_flag_underflow, fpst);
12435         return float64_set_sign(float64_zero, float64_is_neg(f64));
12436     }
12437 
12438     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12439 
12440     /* result = sign : result_exp<10:0> : fraction<51:0>; */
12441     f64_val = deposit64(0, 63, 1, f64_sign);
12442     f64_val = deposit64(f64_val, 52, 11, f64_exp);
12443     f64_val = deposit64(f64_val, 0, 52, f64_frac);
12444     return make_float64(f64_val);
12445 }
12446 
12447 /* The algorithm that must be used to calculate the estimate
12448  * is specified by the ARM ARM.
12449  */
12450 
12451 static int do_recip_sqrt_estimate(int a)
12452 {
12453     int b, estimate;
12454 
12455     assert(128 <= a && a < 512);
12456     if (a < 256) {
12457         a = a * 2 + 1;
12458     } else {
12459         a = (a >> 1) << 1;
12460         a = (a + 1) * 2;
12461     }
12462     b = 512;
12463     while (a * (b + 1) * (b + 1) < (1 << 28)) {
12464         b += 1;
12465     }
12466     estimate = (b + 1) / 2;
12467     assert(256 <= estimate && estimate < 512);
12468 
12469     return estimate;
12470 }
12471 
12472 
12473 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12474 {
12475     int estimate;
12476     uint32_t scaled;
12477 
12478     if (*exp == 0) {
12479         while (extract64(frac, 51, 1) == 0) {
12480             frac = frac << 1;
12481             *exp -= 1;
12482         }
12483         frac = extract64(frac, 0, 51) << 1;
12484     }
12485 
12486     if (*exp & 1) {
12487         /* scaled = UInt('01':fraction<51:45>) */
12488         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12489     } else {
12490         /* scaled = UInt('1':fraction<51:44>) */
12491         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12492     }
12493     estimate = do_recip_sqrt_estimate(scaled);
12494 
12495     *exp = (exp_off - *exp) / 2;
12496     return extract64(estimate, 0, 8) << 44;
12497 }
12498 
12499 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12500 {
12501     float_status *s = fpstp;
12502     float16 f16 = float16_squash_input_denormal(input, s);
12503     uint16_t val = float16_val(f16);
12504     bool f16_sign = float16_is_neg(f16);
12505     int f16_exp = extract32(val, 10, 5);
12506     uint16_t f16_frac = extract32(val, 0, 10);
12507     uint64_t f64_frac;
12508 
12509     if (float16_is_any_nan(f16)) {
12510         float16 nan = f16;
12511         if (float16_is_signaling_nan(f16, s)) {
12512             float_raise(float_flag_invalid, s);
12513             nan = float16_silence_nan(f16, s);
12514         }
12515         if (s->default_nan_mode) {
12516             nan =  float16_default_nan(s);
12517         }
12518         return nan;
12519     } else if (float16_is_zero(f16)) {
12520         float_raise(float_flag_divbyzero, s);
12521         return float16_set_sign(float16_infinity, f16_sign);
12522     } else if (f16_sign) {
12523         float_raise(float_flag_invalid, s);
12524         return float16_default_nan(s);
12525     } else if (float16_is_infinity(f16)) {
12526         return float16_zero;
12527     }
12528 
12529     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12530      * preserving the parity of the exponent.  */
12531 
12532     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12533 
12534     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12535 
12536     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12537     val = deposit32(0, 15, 1, f16_sign);
12538     val = deposit32(val, 10, 5, f16_exp);
12539     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12540     return make_float16(val);
12541 }
12542 
12543 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12544 {
12545     float_status *s = fpstp;
12546     float32 f32 = float32_squash_input_denormal(input, s);
12547     uint32_t val = float32_val(f32);
12548     uint32_t f32_sign = float32_is_neg(f32);
12549     int f32_exp = extract32(val, 23, 8);
12550     uint32_t f32_frac = extract32(val, 0, 23);
12551     uint64_t f64_frac;
12552 
12553     if (float32_is_any_nan(f32)) {
12554         float32 nan = f32;
12555         if (float32_is_signaling_nan(f32, s)) {
12556             float_raise(float_flag_invalid, s);
12557             nan = float32_silence_nan(f32, s);
12558         }
12559         if (s->default_nan_mode) {
12560             nan =  float32_default_nan(s);
12561         }
12562         return nan;
12563     } else if (float32_is_zero(f32)) {
12564         float_raise(float_flag_divbyzero, s);
12565         return float32_set_sign(float32_infinity, float32_is_neg(f32));
12566     } else if (float32_is_neg(f32)) {
12567         float_raise(float_flag_invalid, s);
12568         return float32_default_nan(s);
12569     } else if (float32_is_infinity(f32)) {
12570         return float32_zero;
12571     }
12572 
12573     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12574      * preserving the parity of the exponent.  */
12575 
12576     f64_frac = ((uint64_t) f32_frac) << 29;
12577 
12578     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12579 
12580     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12581     val = deposit32(0, 31, 1, f32_sign);
12582     val = deposit32(val, 23, 8, f32_exp);
12583     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12584     return make_float32(val);
12585 }
12586 
12587 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12588 {
12589     float_status *s = fpstp;
12590     float64 f64 = float64_squash_input_denormal(input, s);
12591     uint64_t val = float64_val(f64);
12592     bool f64_sign = float64_is_neg(f64);
12593     int f64_exp = extract64(val, 52, 11);
12594     uint64_t f64_frac = extract64(val, 0, 52);
12595 
12596     if (float64_is_any_nan(f64)) {
12597         float64 nan = f64;
12598         if (float64_is_signaling_nan(f64, s)) {
12599             float_raise(float_flag_invalid, s);
12600             nan = float64_silence_nan(f64, s);
12601         }
12602         if (s->default_nan_mode) {
12603             nan =  float64_default_nan(s);
12604         }
12605         return nan;
12606     } else if (float64_is_zero(f64)) {
12607         float_raise(float_flag_divbyzero, s);
12608         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12609     } else if (float64_is_neg(f64)) {
12610         float_raise(float_flag_invalid, s);
12611         return float64_default_nan(s);
12612     } else if (float64_is_infinity(f64)) {
12613         return float64_zero;
12614     }
12615 
12616     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12617 
12618     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12619     val = deposit64(0, 61, 1, f64_sign);
12620     val = deposit64(val, 52, 11, f64_exp);
12621     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12622     return make_float64(val);
12623 }
12624 
12625 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12626 {
12627     /* float_status *s = fpstp; */
12628     int input, estimate;
12629 
12630     if ((a & 0x80000000) == 0) {
12631         return 0xffffffff;
12632     }
12633 
12634     input = extract32(a, 23, 9);
12635     estimate = recip_estimate(input);
12636 
12637     return deposit32(0, (32 - 9), 9, estimate);
12638 }
12639 
12640 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12641 {
12642     int estimate;
12643 
12644     if ((a & 0xc0000000) == 0) {
12645         return 0xffffffff;
12646     }
12647 
12648     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12649 
12650     return deposit32(0, 23, 9, estimate);
12651 }
12652 
12653 /* VFPv4 fused multiply-accumulate */
12654 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12655 {
12656     float_status *fpst = fpstp;
12657     return float32_muladd(a, b, c, 0, fpst);
12658 }
12659 
12660 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12661 {
12662     float_status *fpst = fpstp;
12663     return float64_muladd(a, b, c, 0, fpst);
12664 }
12665 
12666 /* ARMv8 round to integral */
12667 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12668 {
12669     return float32_round_to_int(x, fp_status);
12670 }
12671 
12672 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12673 {
12674     return float64_round_to_int(x, fp_status);
12675 }
12676 
12677 float32 HELPER(rints)(float32 x, void *fp_status)
12678 {
12679     int old_flags = get_float_exception_flags(fp_status), new_flags;
12680     float32 ret;
12681 
12682     ret = float32_round_to_int(x, fp_status);
12683 
12684     /* Suppress any inexact exceptions the conversion produced */
12685     if (!(old_flags & float_flag_inexact)) {
12686         new_flags = get_float_exception_flags(fp_status);
12687         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12688     }
12689 
12690     return ret;
12691 }
12692 
12693 float64 HELPER(rintd)(float64 x, void *fp_status)
12694 {
12695     int old_flags = get_float_exception_flags(fp_status), new_flags;
12696     float64 ret;
12697 
12698     ret = float64_round_to_int(x, fp_status);
12699 
12700     new_flags = get_float_exception_flags(fp_status);
12701 
12702     /* Suppress any inexact exceptions the conversion produced */
12703     if (!(old_flags & float_flag_inexact)) {
12704         new_flags = get_float_exception_flags(fp_status);
12705         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12706     }
12707 
12708     return ret;
12709 }
12710 
12711 /* Convert ARM rounding mode to softfloat */
12712 int arm_rmode_to_sf(int rmode)
12713 {
12714     switch (rmode) {
12715     case FPROUNDING_TIEAWAY:
12716         rmode = float_round_ties_away;
12717         break;
12718     case FPROUNDING_ODD:
12719         /* FIXME: add support for TIEAWAY and ODD */
12720         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12721                       rmode);
12722         /* fall through for now */
12723     case FPROUNDING_TIEEVEN:
12724     default:
12725         rmode = float_round_nearest_even;
12726         break;
12727     case FPROUNDING_POSINF:
12728         rmode = float_round_up;
12729         break;
12730     case FPROUNDING_NEGINF:
12731         rmode = float_round_down;
12732         break;
12733     case FPROUNDING_ZERO:
12734         rmode = float_round_to_zero;
12735         break;
12736     }
12737     return rmode;
12738 }
12739 
12740 /* CRC helpers.
12741  * The upper bytes of val (above the number specified by 'bytes') must have
12742  * been zeroed out by the caller.
12743  */
12744 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12745 {
12746     uint8_t buf[4];
12747 
12748     stl_le_p(buf, val);
12749 
12750     /* zlib crc32 converts the accumulator and output to one's complement.  */
12751     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12752 }
12753 
12754 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12755 {
12756     uint8_t buf[4];
12757 
12758     stl_le_p(buf, val);
12759 
12760     /* Linux crc32c converts the output to one's complement.  */
12761     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12762 }
12763 
12764 /* Return the exception level to which FP-disabled exceptions should
12765  * be taken, or 0 if FP is enabled.
12766  */
12767 int fp_exception_el(CPUARMState *env, int cur_el)
12768 {
12769 #ifndef CONFIG_USER_ONLY
12770     int fpen;
12771 
12772     /* CPACR and the CPTR registers don't exist before v6, so FP is
12773      * always accessible
12774      */
12775     if (!arm_feature(env, ARM_FEATURE_V6)) {
12776         return 0;
12777     }
12778 
12779     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12780      * 0, 2 : trap EL0 and EL1/PL1 accesses
12781      * 1    : trap only EL0 accesses
12782      * 3    : trap no accesses
12783      */
12784     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12785     switch (fpen) {
12786     case 0:
12787     case 2:
12788         if (cur_el == 0 || cur_el == 1) {
12789             /* Trap to PL1, which might be EL1 or EL3 */
12790             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12791                 return 3;
12792             }
12793             return 1;
12794         }
12795         if (cur_el == 3 && !is_a64(env)) {
12796             /* Secure PL1 running at EL3 */
12797             return 3;
12798         }
12799         break;
12800     case 1:
12801         if (cur_el == 0) {
12802             return 1;
12803         }
12804         break;
12805     case 3:
12806         break;
12807     }
12808 
12809     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12810      * check because zero bits in the registers mean "don't trap".
12811      */
12812 
12813     /* CPTR_EL2 : present in v7VE or v8 */
12814     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12815         && !arm_is_secure_below_el3(env)) {
12816         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12817         return 2;
12818     }
12819 
12820     /* CPTR_EL3 : present in v8 */
12821     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12822         /* Trap all FP ops to EL3 */
12823         return 3;
12824     }
12825 #endif
12826     return 0;
12827 }
12828 
12829 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12830                           target_ulong *cs_base, uint32_t *pflags)
12831 {
12832     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12833     int current_el = arm_current_el(env);
12834     int fp_el = fp_exception_el(env, current_el);
12835     uint32_t flags;
12836 
12837     if (is_a64(env)) {
12838         ARMCPU *cpu = arm_env_get_cpu(env);
12839 
12840         *pc = env->pc;
12841         flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12842         /* Get control bits for tagged addresses */
12843         flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12844         flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12845 
12846         if (cpu_isar_feature(aa64_sve, cpu)) {
12847             int sve_el = sve_exception_el(env, current_el);
12848             uint32_t zcr_len;
12849 
12850             /* If SVE is disabled, but FP is enabled,
12851              * then the effective len is 0.
12852              */
12853             if (sve_el != 0 && fp_el == 0) {
12854                 zcr_len = 0;
12855             } else {
12856                 zcr_len = sve_zcr_len_for_el(env, current_el);
12857             }
12858             flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12859             flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12860         }
12861     } else {
12862         *pc = env->regs[15];
12863         flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12864             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12865             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12866             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12867             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12868         if (!(access_secure_reg(env))) {
12869             flags |= ARM_TBFLAG_NS_MASK;
12870         }
12871         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12872             || arm_el_is_aa64(env, 1)) {
12873             flags |= ARM_TBFLAG_VFPEN_MASK;
12874         }
12875         flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12876                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12877     }
12878 
12879     flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12880 
12881     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12882      * states defined in the ARM ARM for software singlestep:
12883      *  SS_ACTIVE   PSTATE.SS   State
12884      *     0            x       Inactive (the TB flag for SS is always 0)
12885      *     1            0       Active-pending
12886      *     1            1       Active-not-pending
12887      */
12888     if (arm_singlestep_active(env)) {
12889         flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12890         if (is_a64(env)) {
12891             if (env->pstate & PSTATE_SS) {
12892                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12893             }
12894         } else {
12895             if (env->uncached_cpsr & PSTATE_SS) {
12896                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12897             }
12898         }
12899     }
12900     if (arm_cpu_data_is_big_endian(env)) {
12901         flags |= ARM_TBFLAG_BE_DATA_MASK;
12902     }
12903     flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12904 
12905     if (arm_v7m_is_handler_mode(env)) {
12906         flags |= ARM_TBFLAG_HANDLER_MASK;
12907     }
12908 
12909     /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
12910      * suppressing them because the requested execution priority is less than 0.
12911      */
12912     if (arm_feature(env, ARM_FEATURE_V8) &&
12913         arm_feature(env, ARM_FEATURE_M) &&
12914         !((mmu_idx  & ARM_MMU_IDX_M_NEGPRI) &&
12915           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12916         flags |= ARM_TBFLAG_STACKCHECK_MASK;
12917     }
12918 
12919     *pflags = flags;
12920     *cs_base = 0;
12921 }
12922 
12923 #ifdef TARGET_AARCH64
12924 /*
12925  * The manual says that when SVE is enabled and VQ is widened the
12926  * implementation is allowed to zero the previously inaccessible
12927  * portion of the registers.  The corollary to that is that when
12928  * SVE is enabled and VQ is narrowed we are also allowed to zero
12929  * the now inaccessible portion of the registers.
12930  *
12931  * The intent of this is that no predicate bit beyond VQ is ever set.
12932  * Which means that some operations on predicate registers themselves
12933  * may operate on full uint64_t or even unrolled across the maximum
12934  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12935  * may well be cheaper than conditionals to restrict the operation
12936  * to the relevant portion of a uint16_t[16].
12937  */
12938 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12939 {
12940     int i, j;
12941     uint64_t pmask;
12942 
12943     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12944     assert(vq <= arm_env_get_cpu(env)->sve_max_vq);
12945 
12946     /* Zap the high bits of the zregs.  */
12947     for (i = 0; i < 32; i++) {
12948         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12949     }
12950 
12951     /* Zap the high bits of the pregs and ffr.  */
12952     pmask = 0;
12953     if (vq & 3) {
12954         pmask = ~(-1ULL << (16 * (vq & 3)));
12955     }
12956     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12957         for (i = 0; i < 17; ++i) {
12958             env->vfp.pregs[i].p[j] &= pmask;
12959         }
12960         pmask = 0;
12961     }
12962 }
12963 
12964 /*
12965  * Notice a change in SVE vector size when changing EL.
12966  */
12967 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12968                            int new_el, bool el0_a64)
12969 {
12970     ARMCPU *cpu = arm_env_get_cpu(env);
12971     int old_len, new_len;
12972     bool old_a64, new_a64;
12973 
12974     /* Nothing to do if no SVE.  */
12975     if (!cpu_isar_feature(aa64_sve, cpu)) {
12976         return;
12977     }
12978 
12979     /* Nothing to do if FP is disabled in either EL.  */
12980     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12981         return;
12982     }
12983 
12984     /*
12985      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12986      * at ELx, or not available because the EL is in AArch32 state, then
12987      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12988      * has an effective value of 0".
12989      *
12990      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12991      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12992      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12993      * we already have the correct register contents when encountering the
12994      * vq0->vq0 transition between EL0->EL1.
12995      */
12996     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12997     old_len = (old_a64 && !sve_exception_el(env, old_el)
12998                ? sve_zcr_len_for_el(env, old_el) : 0);
12999     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13000     new_len = (new_a64 && !sve_exception_el(env, new_el)
13001                ? sve_zcr_len_for_el(env, new_el) : 0);
13002 
13003     /* When changing vector length, clear inaccessible state.  */
13004     if (new_len < old_len) {
13005         aarch64_sve_narrow_vq(env, new_len + 1);
13006     }
13007 }
13008 #endif
13009