1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 */ 448 return (ARMMMUIdxBit_E10_1 | 449 ARMMMUIdxBit_E10_1_PAN | 450 ARMMMUIdxBit_E10_0 | 451 ARMMMUIdxBit_Stage2 | 452 ARMMMUIdxBit_Stage2_S); 453 } 454 455 456 /* IS variants of TLB operations must affect all cores */ 457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 458 uint64_t value) 459 { 460 CPUState *cs = env_cpu(env); 461 462 tlb_flush_all_cpus_synced(cs); 463 } 464 465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 CPUState *cs = env_cpu(env); 469 470 tlb_flush_all_cpus_synced(cs); 471 } 472 473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 CPUState *cs = env_cpu(env); 477 478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 479 } 480 481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 CPUState *cs = env_cpu(env); 485 486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 487 } 488 489 /* 490 * Non-IS variants of TLB operations are upgraded to 491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 492 * force broadcast of these operations. 493 */ 494 static bool tlb_force_broadcast(CPUARMState *env) 495 { 496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 CPUState *cs = env_cpu(env); 504 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_all_cpus_synced(cs); 507 } else { 508 tlb_flush(cs); 509 } 510 } 511 512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 516 CPUState *cs = env_cpu(env); 517 518 value &= TARGET_PAGE_MASK; 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_page_all_cpus_synced(cs, value); 521 } else { 522 tlb_flush_page(cs, value); 523 } 524 } 525 526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate by ASID (TLBIASID) */ 530 CPUState *cs = env_cpu(env); 531 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_all_cpus_synced(cs); 534 } else { 535 tlb_flush(cs); 536 } 537 } 538 539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 543 CPUState *cs = env_cpu(env); 544 545 value &= TARGET_PAGE_MASK; 546 if (tlb_force_broadcast(env)) { 547 tlb_flush_page_all_cpus_synced(cs, value); 548 } else { 549 tlb_flush_page(cs, value); 550 } 551 } 552 553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 CPUState *cs = env_cpu(env); 557 558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 559 } 560 561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = env_cpu(env); 565 566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 567 } 568 569 570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 576 } 577 578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 584 } 585 586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 591 592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 593 } 594 595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 600 601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 602 ARMMMUIdxBit_E2); 603 } 604 605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 610 611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 612 } 613 614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 619 620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* 625 * Define the secure and non-secure FCSE identifier CP registers 626 * separately because there is no secure bank in V8 (no _EL3). This allows 627 * the secure register to be properly reset and migrated. There is also no 628 * v8 EL1 version of the register so the non-secure instance stands alone. 629 */ 630 { .name = "FCSEIDR", 631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 635 { .name = "FCSEIDR_S", 636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 640 /* 641 * Define the secure and non-secure context identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. In the 644 * non-secure case, the 32-bit register will have reset and migration 645 * disabled during registration as it is handled by the 64-bit instance. 646 */ 647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 649 .access = PL1_RW, .accessfn = access_tvm_trvm, 650 .fgt = FGT_CONTEXTIDR_EL1, 651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 652 .secure = ARM_CP_SECSTATE_NS, 653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, 658 .secure = ARM_CP_SECSTATE_S, 659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 661 }; 662 663 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 664 /* 665 * NB: Some of these registers exist in v8 but with more precise 666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 667 */ 668 /* MMU Domain access control / MPU write buffer control */ 669 { .name = "DACR", 670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 672 .writefn = dacr_write, .raw_writefn = raw_write, 673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 674 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 675 /* 676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 677 * For v6 and v5, these mappings are overly broad. 678 */ 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 687 /* Cache maintenance ops; some of this space may be overridden later. */ 688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 691 }; 692 693 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 694 /* 695 * Not all pre-v6 cores implemented this WFI, so this is slightly 696 * over-broad. 697 */ 698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 699 .access = PL1_W, .type = ARM_CP_WFI }, 700 }; 701 702 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 703 /* 704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 705 * is UNPREDICTABLE; we choose to NOP as most implementations do). 706 */ 707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 708 .access = PL1_W, .type = ARM_CP_WFI }, 709 /* 710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 712 * OMAPCP will override this space. 713 */ 714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 716 .resetvalue = 0 }, 717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 719 .resetvalue = 0 }, 720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 723 .resetvalue = 0 }, 724 /* 725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 726 * implementing it as RAZ means the "debug architecture version" bits 727 * will read as a reserved value, which should cause Linux to not try 728 * to use the debug hardware. 729 */ 730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 732 /* 733 * MMU TLB control. Note that the wildcarding means we cover not just 734 * the unified TLB ops but also the dside/iside/inner-shareable variants. 735 */ 736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 738 .type = ARM_CP_NO_RAW }, 739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 752 }; 753 754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 uint32_t mask = 0; 758 759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 760 if (!arm_feature(env, ARM_FEATURE_V8)) { 761 /* 762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 765 */ 766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 767 /* VFP coprocessor: cp10 & cp11 [23:20] */ 768 mask |= R_CPACR_ASEDIS_MASK | 769 R_CPACR_D32DIS_MASK | 770 R_CPACR_CP11_MASK | 771 R_CPACR_CP10_MASK; 772 773 if (!arm_feature(env, ARM_FEATURE_NEON)) { 774 /* ASEDIS [31] bit is RAO/WI */ 775 value |= R_CPACR_ASEDIS_MASK; 776 } 777 778 /* 779 * VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* 822 * Call cpacr_write() so that we reset with the correct RAO bits set 823 * for our CPU features. 824 */ 825 cpacr_write(env, ri, 0); 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && 851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 852 return CP_ACCESS_TRAP_EL3; 853 } 854 855 return CP_ACCESS_OK; 856 } 857 858 static const ARMCPRegInfo v6_cp_reginfo[] = { 859 /* prefetch by MVA in v6, NOP in v7 */ 860 { .name = "MVA_prefetch", 861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 862 .access = PL1_W, .type = ARM_CP_NOP }, 863 /* 864 * We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* 880 * Watchpoint Fault Address Register : should actually only be present 881 * for 1136, 1176, 11MPCore. 882 */ 883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 887 .fgt = FGT_CPACR_EL1, 888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 /* Precise instruction counting */ 953 return icount_enabled() == ICOUNT_PRECISE; 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 assert(icount_enabled() == ICOUNT_PRECISE); 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 assert(icount_enabled() == ICOUNT_PRECISE); 965 return icount_to_ns((int64_t)icount); 966 } 967 #endif 968 969 static bool pmuv3p1_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 973 } 974 975 static bool pmuv3p4_events_supported(CPUARMState *env) 976 { 977 /* For events which are supported in any v8.1 PMU */ 978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 979 } 980 981 static uint64_t zero_event_get_count(CPUARMState *env) 982 { 983 /* For events which on QEMU never fire, so their count is always zero */ 984 return 0; 985 } 986 987 static int64_t zero_event_ns_per(uint64_t cycles) 988 { 989 /* An event which never fires can never overflow */ 990 return -1; 991 } 992 993 static const pm_event pm_events[] = { 994 { .number = 0x000, /* SW_INCR */ 995 .supported = event_always_supported, 996 .get_count = swinc_get_count, 997 .ns_per_count = swinc_ns_per, 998 }, 999 #ifndef CONFIG_USER_ONLY 1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1001 .supported = instructions_supported, 1002 .get_count = instructions_get_count, 1003 .ns_per_count = instructions_ns_per, 1004 }, 1005 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1006 .supported = event_always_supported, 1007 .get_count = cycles_get_count, 1008 .ns_per_count = cycles_ns_per, 1009 }, 1010 #endif 1011 { .number = 0x023, /* STALL_FRONTEND */ 1012 .supported = pmuv3p1_events_supported, 1013 .get_count = zero_event_get_count, 1014 .ns_per_count = zero_event_ns_per, 1015 }, 1016 { .number = 0x024, /* STALL_BACKEND */ 1017 .supported = pmuv3p1_events_supported, 1018 .get_count = zero_event_get_count, 1019 .ns_per_count = zero_event_ns_per, 1020 }, 1021 { .number = 0x03c, /* STALL */ 1022 .supported = pmuv3p4_events_supported, 1023 .get_count = zero_event_get_count, 1024 .ns_per_count = zero_event_ns_per, 1025 }, 1026 }; 1027 1028 /* 1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1030 * events (i.e. the statistical profiling extension), this implementation 1031 * should first be updated to something sparse instead of the current 1032 * supported_event_map[] array. 1033 */ 1034 #define MAX_EVENT_ID 0x3c 1035 #define UNSUPPORTED_EVENT UINT16_MAX 1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1037 1038 /* 1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1040 * of ARM event numbers to indices in our pm_events array. 1041 * 1042 * Note: Events in the 0x40XX range are not currently supported. 1043 */ 1044 void pmu_init(ARMCPU *cpu) 1045 { 1046 unsigned int i; 1047 1048 /* 1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1050 * events to them 1051 */ 1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1053 supported_event_map[i] = UNSUPPORTED_EVENT; 1054 } 1055 cpu->pmceid0 = 0; 1056 cpu->pmceid1 = 0; 1057 1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1059 const pm_event *cnt = &pm_events[i]; 1060 assert(cnt->number <= MAX_EVENT_ID); 1061 /* We do not currently support events in the 0x40xx range */ 1062 assert(cnt->number <= 0x3f); 1063 1064 if (cnt->supported(&cpu->env)) { 1065 supported_event_map[cnt->number] = i; 1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1067 if (cnt->number & 0x20) { 1068 cpu->pmceid1 |= event_mask; 1069 } else { 1070 cpu->pmceid0 |= event_mask; 1071 } 1072 } 1073 } 1074 } 1075 1076 /* 1077 * Check at runtime whether a PMU event is supported for the current machine 1078 */ 1079 static bool event_supported(uint16_t number) 1080 { 1081 if (number > MAX_EVENT_ID) { 1082 return false; 1083 } 1084 return supported_event_map[number] != UNSUPPORTED_EVENT; 1085 } 1086 1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1088 bool isread) 1089 { 1090 /* 1091 * Performance monitor registers user accessibility is controlled 1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1093 * trapping to EL2 or EL3 for other accesses. 1094 */ 1095 int el = arm_current_el(env); 1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1097 1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1099 return CP_ACCESS_TRAP; 1100 } 1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL2; 1103 } 1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL3; 1106 } 1107 1108 return CP_ACCESS_OK; 1109 } 1110 1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1112 const ARMCPRegInfo *ri, 1113 bool isread) 1114 { 1115 /* ER: event counter read trap control */ 1116 if (arm_feature(env, ARM_FEATURE_V8) 1117 && arm_current_el(env) == 0 1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1119 && isread) { 1120 return CP_ACCESS_OK; 1121 } 1122 1123 return pmreg_access(env, ri, isread); 1124 } 1125 1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1127 const ARMCPRegInfo *ri, 1128 bool isread) 1129 { 1130 /* SW: software increment write trap control */ 1131 if (arm_feature(env, ARM_FEATURE_V8) 1132 && arm_current_el(env) == 0 1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1134 && !isread) { 1135 return CP_ACCESS_OK; 1136 } 1137 1138 return pmreg_access(env, ri, isread); 1139 } 1140 1141 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1142 const ARMCPRegInfo *ri, 1143 bool isread) 1144 { 1145 /* ER: event counter read trap control */ 1146 if (arm_feature(env, ARM_FEATURE_V8) 1147 && arm_current_el(env) == 0 1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1149 return CP_ACCESS_OK; 1150 } 1151 1152 return pmreg_access(env, ri, isread); 1153 } 1154 1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1156 const ARMCPRegInfo *ri, 1157 bool isread) 1158 { 1159 /* CR: cycle counter read trap control */ 1160 if (arm_feature(env, ARM_FEATURE_V8) 1161 && arm_current_el(env) == 0 1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1163 && isread) { 1164 return CP_ACCESS_OK; 1165 } 1166 1167 return pmreg_access(env, ri, isread); 1168 } 1169 1170 /* 1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1172 * We use these to decide whether we need to wrap a write to MDCR_EL2 1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1174 */ 1175 #define MDCR_EL2_PMU_ENABLE_BITS \ 1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1178 1179 /* 1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1181 * the current EL, security state, and register configuration. 1182 */ 1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1184 { 1185 uint64_t filter; 1186 bool e, p, u, nsk, nsu, nsh, m; 1187 bool enabled, prohibited = false, filtered; 1188 bool secure = arm_is_secure(env); 1189 int el = arm_current_el(env); 1190 uint64_t mdcr_el2; 1191 uint8_t hpmn; 1192 1193 /* 1194 * We might be called for M-profile cores where MDCR_EL2 doesn't 1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1196 * must be before we read that value. 1197 */ 1198 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1199 return false; 1200 } 1201 1202 mdcr_el2 = arm_mdcr_el2_eff(env); 1203 hpmn = mdcr_el2 & MDCR_HPMN; 1204 1205 if (!arm_feature(env, ARM_FEATURE_EL2) || 1206 (counter < hpmn || counter == 31)) { 1207 e = env->cp15.c9_pmcr & PMCRE; 1208 } else { 1209 e = mdcr_el2 & MDCR_HPME; 1210 } 1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1212 1213 /* Is event counting prohibited? */ 1214 if (el == 2 && (counter < hpmn || counter == 31)) { 1215 prohibited = mdcr_el2 & MDCR_HPMD; 1216 } 1217 if (secure) { 1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1219 } 1220 1221 if (counter == 31) { 1222 /* 1223 * The cycle counter defaults to running. PMCR.DP says "disable 1224 * the cycle counter when event counting is prohibited". 1225 * Some MDCR bits disable the cycle counter specifically. 1226 */ 1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1229 if (secure) { 1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1231 } 1232 if (el == 2) { 1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1234 } 1235 } 1236 } 1237 1238 if (counter == 31) { 1239 filter = env->cp15.pmccfiltr_el0; 1240 } else { 1241 filter = env->cp15.c14_pmevtyper[counter]; 1242 } 1243 1244 p = filter & PMXEVTYPER_P; 1245 u = filter & PMXEVTYPER_U; 1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1249 m = arm_el_is_aa64(env, 1) && 1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1251 1252 if (el == 0) { 1253 filtered = secure ? u : u != nsu; 1254 } else if (el == 1) { 1255 filtered = secure ? p : p != nsk; 1256 } else if (el == 2) { 1257 filtered = !nsh; 1258 } else { /* EL3 */ 1259 filtered = m != p; 1260 } 1261 1262 if (counter != 31) { 1263 /* 1264 * If not checking PMCCNTR, ensure the counter is setup to an event we 1265 * support 1266 */ 1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1268 if (!event_supported(event)) { 1269 return false; 1270 } 1271 } 1272 1273 return enabled && !prohibited && !filtered; 1274 } 1275 1276 static void pmu_update_irq(CPUARMState *env) 1277 { 1278 ARMCPU *cpu = env_archcpu(env); 1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1281 } 1282 1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1284 { 1285 /* 1286 * Return true if the clock divider is enabled and the cycle counter 1287 * is supposed to tick only once every 64 clock cycles. This is 1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1289 * (64-bit) cycle counter PMCR.D has no effect. 1290 */ 1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1292 } 1293 1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1295 { 1296 /* Return true if the specified event counter is configured to be 64 bit */ 1297 1298 /* This isn't intended to be used with the cycle counter */ 1299 assert(counter < 31); 1300 1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1302 return false; 1303 } 1304 1305 if (arm_feature(env, ARM_FEATURE_EL2)) { 1306 /* 1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1308 * current security state, so we don't use arm_mdcr_el2_eff() here. 1309 */ 1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1312 1313 if (counter >= hpmn) { 1314 return hlp; 1315 } 1316 } 1317 return env->cp15.c9_pmcr & PMCRLP; 1318 } 1319 1320 /* 1321 * Ensure c15_ccnt is the guest-visible count so that operations such as 1322 * enabling/disabling the counter or filtering, modifying the count itself, 1323 * etc. can be done logically. This is essentially a no-op if the counter is 1324 * not enabled at the time of the call. 1325 */ 1326 static void pmccntr_op_start(CPUARMState *env) 1327 { 1328 uint64_t cycles = cycles_get_count(env); 1329 1330 if (pmu_counter_enabled(env, 31)) { 1331 uint64_t eff_cycles = cycles; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 eff_cycles /= 64; 1334 } 1335 1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1337 1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1339 1ull << 63 : 1ull << 31; 1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1341 env->cp15.c9_pmovsr |= (1ULL << 31); 1342 pmu_update_irq(env); 1343 } 1344 1345 env->cp15.c15_ccnt = new_pmccntr; 1346 } 1347 env->cp15.c15_ccnt_delta = cycles; 1348 } 1349 1350 /* 1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1353 * pmccntr_op_start. 1354 */ 1355 static void pmccntr_op_finish(CPUARMState *env) 1356 { 1357 if (pmu_counter_enabled(env, 31)) { 1358 #ifndef CONFIG_USER_ONLY 1359 /* Calculate when the counter will next overflow */ 1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1361 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1362 remaining_cycles = (uint32_t)remaining_cycles; 1363 } 1364 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1365 1366 if (overflow_in > 0) { 1367 int64_t overflow_at; 1368 1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1370 overflow_in, &overflow_at)) { 1371 ARMCPU *cpu = env_archcpu(env); 1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1373 } 1374 } 1375 #endif 1376 1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1378 if (pmccntr_clockdiv_enabled(env)) { 1379 prev_cycles /= 64; 1380 } 1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1382 } 1383 } 1384 1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1386 { 1387 1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1389 uint64_t count = 0; 1390 if (event_supported(event)) { 1391 uint16_t event_idx = supported_event_map[event]; 1392 count = pm_events[event_idx].get_count(env); 1393 } 1394 1395 if (pmu_counter_enabled(env, counter)) { 1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1398 1ULL << 63 : 1ULL << 31; 1399 1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1401 env->cp15.c9_pmovsr |= (1 << counter); 1402 pmu_update_irq(env); 1403 } 1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1405 } 1406 env->cp15.c14_pmevcntr_delta[counter] = count; 1407 } 1408 1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1410 { 1411 if (pmu_counter_enabled(env, counter)) { 1412 #ifndef CONFIG_USER_ONLY 1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1414 uint16_t event_idx = supported_event_map[event]; 1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1416 int64_t overflow_in; 1417 1418 if (!pmevcntr_is_64_bit(env, counter)) { 1419 delta = (uint32_t)delta; 1420 } 1421 overflow_in = pm_events[event_idx].ns_per_count(delta); 1422 1423 if (overflow_in > 0) { 1424 int64_t overflow_at; 1425 1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1427 overflow_in, &overflow_at)) { 1428 ARMCPU *cpu = env_archcpu(env); 1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1430 } 1431 } 1432 #endif 1433 1434 env->cp15.c14_pmevcntr_delta[counter] -= 1435 env->cp15.c14_pmevcntr[counter]; 1436 } 1437 } 1438 1439 void pmu_op_start(CPUARMState *env) 1440 { 1441 unsigned int i; 1442 pmccntr_op_start(env); 1443 for (i = 0; i < pmu_num_counters(env); i++) { 1444 pmevcntr_op_start(env, i); 1445 } 1446 } 1447 1448 void pmu_op_finish(CPUARMState *env) 1449 { 1450 unsigned int i; 1451 pmccntr_op_finish(env); 1452 for (i = 0; i < pmu_num_counters(env); i++) { 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1458 { 1459 pmu_op_start(&cpu->env); 1460 } 1461 1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1463 { 1464 pmu_op_finish(&cpu->env); 1465 } 1466 1467 void arm_pmu_timer_cb(void *opaque) 1468 { 1469 ARMCPU *cpu = opaque; 1470 1471 /* 1472 * Update all the counter values based on the current underlying counts, 1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1475 * counter may expire. 1476 */ 1477 pmu_op_start(&cpu->env); 1478 pmu_op_finish(&cpu->env); 1479 } 1480 1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 pmu_op_start(env); 1485 1486 if (value & PMCRC) { 1487 /* The counter has been reset */ 1488 env->cp15.c15_ccnt = 0; 1489 } 1490 1491 if (value & PMCRP) { 1492 unsigned int i; 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 env->cp15.c14_pmevcntr[i] = 0; 1495 } 1496 } 1497 1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1500 1501 pmu_op_finish(env); 1502 } 1503 1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1505 { 1506 uint64_t pmcr = env->cp15.c9_pmcr; 1507 1508 /* 1509 * If EL2 is implemented and enabled for the current security state, reads 1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1511 */ 1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1513 pmcr &= ~PMCRN_MASK; 1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1515 } 1516 1517 return pmcr; 1518 } 1519 1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 unsigned int i; 1524 uint64_t overflow_mask, new_pmswinc; 1525 1526 for (i = 0; i < pmu_num_counters(env); i++) { 1527 /* Increment a counter's count iff: */ 1528 if ((value & (1 << i)) && /* counter's bit is set */ 1529 /* counter is enabled and not filtered */ 1530 pmu_counter_enabled(env, i) && 1531 /* counter is SW_INCR */ 1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1533 pmevcntr_op_start(env, i); 1534 1535 /* 1536 * Detect if this write causes an overflow since we can't predict 1537 * PMSWINC overflows like we can for other events 1538 */ 1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1540 1541 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1542 1ULL << 63 : 1ULL << 31; 1543 1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1545 env->cp15.c9_pmovsr |= (1 << i); 1546 pmu_update_irq(env); 1547 } 1548 1549 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1550 1551 pmevcntr_op_finish(env, i); 1552 } 1553 } 1554 } 1555 1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1557 { 1558 uint64_t ret; 1559 pmccntr_op_start(env); 1560 ret = env->cp15.c15_ccnt; 1561 pmccntr_op_finish(env); 1562 return ret; 1563 } 1564 1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 /* 1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1572 * accessed. 1573 */ 1574 env->cp15.c9_pmselr = value & 0x1f; 1575 } 1576 1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 pmccntr_op_start(env); 1581 env->cp15.c15_ccnt = value; 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 uint64_t cur_val = pmccntr_read(env, NULL); 1589 1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1591 } 1592 1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 pmccntr_op_start(env); 1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1598 pmccntr_op_finish(env); 1599 } 1600 1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 pmccntr_op_start(env); 1605 /* M is not accessible from AArch32 */ 1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1607 (value & PMCCFILTR); 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 /* M is not visible in AArch32 */ 1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1615 } 1616 1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 pmu_op_start(env); 1621 value &= pmu_counter_mask(env); 1622 env->cp15.c9_pmcnten |= value; 1623 pmu_op_finish(env); 1624 } 1625 1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten &= ~value; 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pmovsr &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmovsr |= value; 1648 pmu_update_irq(env); 1649 } 1650 1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value, const uint8_t counter) 1653 { 1654 if (counter == 31) { 1655 pmccfiltr_write(env, ri, value); 1656 } else if (counter < pmu_num_counters(env)) { 1657 pmevcntr_op_start(env, counter); 1658 1659 /* 1660 * If this counter's event type is changing, store the current 1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1662 * pmevcntr_op_finish has the correct baseline when it converts back to 1663 * a delta. 1664 */ 1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1666 PMXEVTYPER_EVTCOUNT; 1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1668 if (old_event != new_event) { 1669 uint64_t count = 0; 1670 if (event_supported(new_event)) { 1671 uint16_t event_idx = supported_event_map[new_event]; 1672 count = pm_events[event_idx].get_count(env); 1673 } 1674 env->cp15.c14_pmevcntr_delta[counter] = count; 1675 } 1676 1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1678 pmevcntr_op_finish(env, counter); 1679 } 1680 /* 1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1682 * PMSELR value is equal to or greater than the number of implemented 1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1684 */ 1685 } 1686 1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1688 const uint8_t counter) 1689 { 1690 if (counter == 31) { 1691 return env->cp15.pmccfiltr_el0; 1692 } else if (counter < pmu_num_counters(env)) { 1693 return env->cp15.c14_pmevtyper[counter]; 1694 } else { 1695 /* 1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1698 */ 1699 return 0; 1700 } 1701 } 1702 1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1707 pmevtyper_write(env, ri, value, counter); 1708 } 1709 1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 env->cp15.c14_pmevtyper[counter] = value; 1715 1716 /* 1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1718 * pmu_op_finish calls when loading saved state for a migration. Because 1719 * we're potentially updating the type of event here, the value written to 1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1721 * different counter type. Therefore, we need to set this value to the 1722 * current count for the counter type we're writing so that pmu_op_finish 1723 * has the correct count for its calculation. 1724 */ 1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1726 if (event_supported(event)) { 1727 uint16_t event_idx = supported_event_map[event]; 1728 env->cp15.c14_pmevcntr_delta[counter] = 1729 pm_events[event_idx].get_count(env); 1730 } 1731 } 1732 1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1736 return pmevtyper_read(env, ri, counter); 1737 } 1738 1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1743 } 1744 1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value, uint8_t counter) 1752 { 1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1755 value &= MAKE_64BIT_MASK(0, 32); 1756 } 1757 if (counter < pmu_num_counters(env)) { 1758 pmevcntr_op_start(env, counter); 1759 env->cp15.c14_pmevcntr[counter] = value; 1760 pmevcntr_op_finish(env, counter); 1761 } 1762 /* 1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1764 * are CONSTRAINED UNPREDICTABLE. 1765 */ 1766 } 1767 1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint8_t counter) 1770 { 1771 if (counter < pmu_num_counters(env)) { 1772 uint64_t ret; 1773 pmevcntr_op_start(env, counter); 1774 ret = env->cp15.c14_pmevcntr[counter]; 1775 pmevcntr_op_finish(env, counter); 1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1778 ret &= MAKE_64BIT_MASK(0, 32); 1779 } 1780 return ret; 1781 } else { 1782 /* 1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1784 * are CONSTRAINED UNPREDICTABLE. 1785 */ 1786 return 0; 1787 } 1788 } 1789 1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1794 pmevcntr_write(env, ri, value, counter); 1795 } 1796 1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1800 return pmevcntr_read(env, ri, counter); 1801 } 1802 1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1807 assert(counter < pmu_num_counters(env)); 1808 env->cp15.c14_pmevcntr[counter] = value; 1809 pmevcntr_write(env, ri, value, counter); 1810 } 1811 1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1815 assert(counter < pmu_num_counters(env)); 1816 return env->cp15.c14_pmevcntr[counter]; 1817 } 1818 1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 if (arm_feature(env, ARM_FEATURE_V8)) { 1834 env->cp15.c9_pmuserenr = value & 0xf; 1835 } else { 1836 env->cp15.c9_pmuserenr = value & 1; 1837 } 1838 } 1839 1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 /* We have no event counters so only the C bit can be changed */ 1844 value &= pmu_counter_mask(env); 1845 env->cp15.c9_pminten |= value; 1846 pmu_update_irq(env); 1847 } 1848 1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 value &= pmu_counter_mask(env); 1853 env->cp15.c9_pminten &= ~value; 1854 pmu_update_irq(env); 1855 } 1856 1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 /* 1861 * Note that even though the AArch64 view of this register has bits 1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1863 * architectural requirements for bits which are RES0 only in some 1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1866 */ 1867 raw_write(env, ri, value & ~0x1FULL); 1868 } 1869 1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1871 { 1872 /* Begin with base v8.0 state. */ 1873 uint64_t valid_mask = 0x3fff; 1874 ARMCPU *cpu = env_archcpu(env); 1875 uint64_t changed; 1876 1877 /* 1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1880 * Instead, choose the format based on the mode of EL3. 1881 */ 1882 if (arm_el_is_aa64(env, 3)) { 1883 value |= SCR_FW | SCR_AW; /* RES1 */ 1884 valid_mask &= ~SCR_NET; /* RES0 */ 1885 1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1888 value |= SCR_RW; /* RAO/WI */ 1889 } 1890 if (cpu_isar_feature(aa64_ras, cpu)) { 1891 valid_mask |= SCR_TERR; 1892 } 1893 if (cpu_isar_feature(aa64_lor, cpu)) { 1894 valid_mask |= SCR_TLOR; 1895 } 1896 if (cpu_isar_feature(aa64_pauth, cpu)) { 1897 valid_mask |= SCR_API | SCR_APK; 1898 } 1899 if (cpu_isar_feature(aa64_sel2, cpu)) { 1900 valid_mask |= SCR_EEL2; 1901 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1903 value |= SCR_NS; 1904 } 1905 if (cpu_isar_feature(aa64_mte, cpu)) { 1906 valid_mask |= SCR_ATA; 1907 } 1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1909 valid_mask |= SCR_ENSCXT; 1910 } 1911 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1912 valid_mask |= SCR_EASE | SCR_NMEA; 1913 } 1914 if (cpu_isar_feature(aa64_sme, cpu)) { 1915 valid_mask |= SCR_ENTP2; 1916 } 1917 if (cpu_isar_feature(aa64_hcx, cpu)) { 1918 valid_mask |= SCR_HXEN; 1919 } 1920 if (cpu_isar_feature(aa64_fgt, cpu)) { 1921 valid_mask |= SCR_FGTEN; 1922 } 1923 if (cpu_isar_feature(aa64_rme, cpu)) { 1924 valid_mask |= SCR_NSE | SCR_GPF; 1925 } 1926 if (cpu_isar_feature(aa64_ecv, cpu)) { 1927 valid_mask |= SCR_ECVEN; 1928 } 1929 } else { 1930 valid_mask &= ~(SCR_RW | SCR_ST); 1931 if (cpu_isar_feature(aa32_ras, cpu)) { 1932 valid_mask |= SCR_TERR; 1933 } 1934 } 1935 1936 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1937 valid_mask &= ~SCR_HCE; 1938 1939 /* 1940 * On ARMv7, SMD (or SCD as it is called in v7) is only 1941 * supported if EL2 exists. The bit is UNK/SBZP when 1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1943 * when EL2 is unavailable. 1944 * On ARMv8, this bit is always available. 1945 */ 1946 if (arm_feature(env, ARM_FEATURE_V7) && 1947 !arm_feature(env, ARM_FEATURE_V8)) { 1948 valid_mask &= ~SCR_SMD; 1949 } 1950 } 1951 1952 /* Clear all-context RES0 bits. */ 1953 value &= valid_mask; 1954 changed = env->cp15.scr_el3 ^ value; 1955 env->cp15.scr_el3 = value; 1956 1957 /* 1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1959 * we must invalidate all TLBs below EL3. 1960 */ 1961 if (changed & (SCR_NS | SCR_NSE)) { 1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1963 ARMMMUIdxBit_E20_0 | 1964 ARMMMUIdxBit_E10_1 | 1965 ARMMMUIdxBit_E20_2 | 1966 ARMMMUIdxBit_E10_1_PAN | 1967 ARMMMUIdxBit_E20_2_PAN | 1968 ARMMMUIdxBit_E2)); 1969 } 1970 } 1971 1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1973 { 1974 /* 1975 * scr_write will set the RES1 bits on an AArch64-only CPU. 1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1977 */ 1978 scr_write(env, ri, 0); 1979 } 1980 1981 static CPAccessResult access_tid4(CPUARMState *env, 1982 const ARMCPRegInfo *ri, 1983 bool isread) 1984 { 1985 if (arm_current_el(env) == 1 && 1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1987 return CP_ACCESS_TRAP_EL2; 1988 } 1989 1990 return CP_ACCESS_OK; 1991 } 1992 1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1994 { 1995 ARMCPU *cpu = env_archcpu(env); 1996 1997 /* 1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1999 * bank 2000 */ 2001 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2002 ri->secure & ARM_CP_SECSTATE_S); 2003 2004 return cpu->ccsidr[index]; 2005 } 2006 2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2008 uint64_t value) 2009 { 2010 raw_write(env, ri, value & 0xf); 2011 } 2012 2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2014 { 2015 CPUState *cs = env_cpu(env); 2016 bool el1 = arm_current_el(env) == 1; 2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2018 uint64_t ret = 0; 2019 2020 if (hcr_el2 & HCR_IMO) { 2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2022 ret |= CPSR_I; 2023 } 2024 } else { 2025 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2026 ret |= CPSR_I; 2027 } 2028 } 2029 2030 if (hcr_el2 & HCR_FMO) { 2031 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2032 ret |= CPSR_F; 2033 } 2034 } else { 2035 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2036 ret |= CPSR_F; 2037 } 2038 } 2039 2040 if (hcr_el2 & HCR_AMO) { 2041 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2042 ret |= CPSR_A; 2043 } 2044 } 2045 2046 return ret; 2047 } 2048 2049 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2050 bool isread) 2051 { 2052 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2053 return CP_ACCESS_TRAP_EL2; 2054 } 2055 2056 return CP_ACCESS_OK; 2057 } 2058 2059 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2060 bool isread) 2061 { 2062 if (arm_feature(env, ARM_FEATURE_V8)) { 2063 return access_aa64_tid1(env, ri, isread); 2064 } 2065 2066 return CP_ACCESS_OK; 2067 } 2068 2069 static const ARMCPRegInfo v7_cp_reginfo[] = { 2070 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2071 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2072 .access = PL1_W, .type = ARM_CP_NOP }, 2073 /* 2074 * Performance monitors are implementation defined in v7, 2075 * but with an ARM recommended set of registers, which we 2076 * follow. 2077 * 2078 * Performance registers fall into three categories: 2079 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2080 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2081 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2082 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2083 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2084 */ 2085 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2086 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2087 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2088 .writefn = pmcntenset_write, 2089 .accessfn = pmreg_access, 2090 .fgt = FGT_PMCNTEN, 2091 .raw_writefn = raw_write }, 2092 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2093 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2094 .access = PL0_RW, .accessfn = pmreg_access, 2095 .fgt = FGT_PMCNTEN, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2097 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2098 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2099 .access = PL0_RW, 2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2101 .accessfn = pmreg_access, 2102 .fgt = FGT_PMCNTEN, 2103 .writefn = pmcntenclr_write, 2104 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2105 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2107 .access = PL0_RW, .accessfn = pmreg_access, 2108 .fgt = FGT_PMCNTEN, 2109 .type = ARM_CP_ALIAS | ARM_CP_IO, 2110 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2111 .writefn = pmcntenclr_write }, 2112 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2113 .access = PL0_RW, .type = ARM_CP_IO, 2114 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2115 .accessfn = pmreg_access, 2116 .fgt = FGT_PMOVS, 2117 .writefn = pmovsr_write, 2118 .raw_writefn = raw_write }, 2119 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2120 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2121 .access = PL0_RW, .accessfn = pmreg_access, 2122 .fgt = FGT_PMOVS, 2123 .type = ARM_CP_ALIAS | ARM_CP_IO, 2124 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2125 .writefn = pmovsr_write, 2126 .raw_writefn = raw_write }, 2127 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2128 .access = PL0_W, .accessfn = pmreg_access_swinc, 2129 .fgt = FGT_PMSWINC_EL0, 2130 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2131 .writefn = pmswinc_write }, 2132 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2134 .access = PL0_W, .accessfn = pmreg_access_swinc, 2135 .fgt = FGT_PMSWINC_EL0, 2136 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2137 .writefn = pmswinc_write }, 2138 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2139 .access = PL0_RW, .type = ARM_CP_ALIAS, 2140 .fgt = FGT_PMSELR_EL0, 2141 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2142 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2143 .raw_writefn = raw_write}, 2144 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2145 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2146 .access = PL0_RW, .accessfn = pmreg_access_selr, 2147 .fgt = FGT_PMSELR_EL0, 2148 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2149 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2150 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2151 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2152 .fgt = FGT_PMCCNTR_EL0, 2153 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2154 .accessfn = pmreg_access_ccntr }, 2155 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2156 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2157 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2158 .fgt = FGT_PMCCNTR_EL0, 2159 .type = ARM_CP_IO, 2160 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2161 .readfn = pmccntr_read, .writefn = pmccntr_write, 2162 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2163 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2164 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2165 .access = PL0_RW, .accessfn = pmreg_access, 2166 .fgt = FGT_PMCCFILTR_EL0, 2167 .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .resetvalue = 0, }, 2169 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2170 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2171 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2172 .access = PL0_RW, .accessfn = pmreg_access, 2173 .fgt = FGT_PMCCFILTR_EL0, 2174 .type = ARM_CP_IO, 2175 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2176 .resetvalue = 0, }, 2177 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2178 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2179 .accessfn = pmreg_access, 2180 .fgt = FGT_PMEVTYPERN_EL0, 2181 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2182 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2184 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2185 .accessfn = pmreg_access, 2186 .fgt = FGT_PMEVTYPERN_EL0, 2187 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2188 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2189 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2190 .accessfn = pmreg_access_xevcntr, 2191 .fgt = FGT_PMEVCNTRN_EL0, 2192 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2193 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2194 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2195 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2196 .accessfn = pmreg_access_xevcntr, 2197 .fgt = FGT_PMEVCNTRN_EL0, 2198 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2199 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2200 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2201 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2202 .resetvalue = 0, 2203 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2204 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2205 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2206 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2207 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2208 .resetvalue = 0, 2209 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2210 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2211 .access = PL1_RW, .accessfn = access_tpm, 2212 .fgt = FGT_PMINTEN, 2213 .type = ARM_CP_ALIAS | ARM_CP_IO, 2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2215 .resetvalue = 0, 2216 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2217 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2219 .access = PL1_RW, .accessfn = access_tpm, 2220 .fgt = FGT_PMINTEN, 2221 .type = ARM_CP_IO, 2222 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2223 .writefn = pmintenset_write, .raw_writefn = raw_write, 2224 .resetvalue = 0x0 }, 2225 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2226 .access = PL1_RW, .accessfn = access_tpm, 2227 .fgt = FGT_PMINTEN, 2228 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2229 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2230 .writefn = pmintenclr_write, }, 2231 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2232 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2233 .access = PL1_RW, .accessfn = access_tpm, 2234 .fgt = FGT_PMINTEN, 2235 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2236 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2237 .writefn = pmintenclr_write }, 2238 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2239 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2240 .access = PL1_R, 2241 .accessfn = access_tid4, 2242 .fgt = FGT_CCSIDR_EL1, 2243 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2244 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2245 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2246 .access = PL1_RW, 2247 .accessfn = access_tid4, 2248 .fgt = FGT_CSSELR_EL1, 2249 .writefn = csselr_write, .resetvalue = 0, 2250 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2251 offsetof(CPUARMState, cp15.csselr_ns) } }, 2252 /* 2253 * Auxiliary ID register: this actually has an IMPDEF value but for now 2254 * just RAZ for all cores: 2255 */ 2256 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2257 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2258 .access = PL1_R, .type = ARM_CP_CONST, 2259 .accessfn = access_aa64_tid1, 2260 .fgt = FGT_AIDR_EL1, 2261 .resetvalue = 0 }, 2262 /* 2263 * Auxiliary fault status registers: these also are IMPDEF, and we 2264 * choose to RAZ/WI for all cores. 2265 */ 2266 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2267 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2268 .access = PL1_RW, .accessfn = access_tvm_trvm, 2269 .fgt = FGT_AFSR0_EL1, 2270 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2271 .type = ARM_CP_CONST, .resetvalue = 0 }, 2272 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2274 .access = PL1_RW, .accessfn = access_tvm_trvm, 2275 .fgt = FGT_AFSR1_EL1, 2276 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2277 .type = ARM_CP_CONST, .resetvalue = 0 }, 2278 /* 2279 * MAIR can just read-as-written because we don't implement caches 2280 * and so don't need to care about memory attributes. 2281 */ 2282 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2283 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2284 .access = PL1_RW, .accessfn = access_tvm_trvm, 2285 .fgt = FGT_MAIR_EL1, 2286 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2287 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2288 .resetvalue = 0 }, 2289 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2291 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2292 .resetvalue = 0 }, 2293 /* 2294 * For non-long-descriptor page tables these are PRRR and NMRR; 2295 * regardless they still act as reads-as-written for QEMU. 2296 */ 2297 /* 2298 * MAIR0/1 are defined separately from their 64-bit counterpart which 2299 * allows them to assign the correct fieldoffset based on the endianness 2300 * handled in the field definitions. 2301 */ 2302 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2303 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2304 .access = PL1_RW, .accessfn = access_tvm_trvm, 2305 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2306 offsetof(CPUARMState, cp15.mair0_ns) }, 2307 .resetfn = arm_cp_reset_ignore }, 2308 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2309 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2310 .access = PL1_RW, .accessfn = access_tvm_trvm, 2311 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2312 offsetof(CPUARMState, cp15.mair1_ns) }, 2313 .resetfn = arm_cp_reset_ignore }, 2314 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2315 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2316 .fgt = FGT_ISR_EL1, 2317 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2318 /* 32 bit ITLB invalidates */ 2319 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2320 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2321 .writefn = tlbiall_write }, 2322 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2323 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2324 .writefn = tlbimva_write }, 2325 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2326 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2327 .writefn = tlbiasid_write }, 2328 /* 32 bit DTLB invalidates */ 2329 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2330 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2331 .writefn = tlbiall_write }, 2332 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2334 .writefn = tlbimva_write }, 2335 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2337 .writefn = tlbiasid_write }, 2338 /* 32 bit TLB invalidates */ 2339 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2340 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2341 .writefn = tlbiall_write }, 2342 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbimva_write }, 2345 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbiasid_write }, 2348 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbimvaa_write }, 2351 }; 2352 2353 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2354 /* 32 bit TLB invalidates, Inner Shareable */ 2355 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2357 .writefn = tlbiall_is_write }, 2358 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2360 .writefn = tlbimva_is_write }, 2361 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2363 .writefn = tlbiasid_is_write }, 2364 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2366 .writefn = tlbimvaa_is_write }, 2367 }; 2368 2369 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2370 /* PMOVSSET is not implemented in v7 before v7ve */ 2371 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2372 .access = PL0_RW, .accessfn = pmreg_access, 2373 .fgt = FGT_PMOVS, 2374 .type = ARM_CP_ALIAS | ARM_CP_IO, 2375 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2376 .writefn = pmovsset_write, 2377 .raw_writefn = raw_write }, 2378 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2379 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2380 .access = PL0_RW, .accessfn = pmreg_access, 2381 .fgt = FGT_PMOVS, 2382 .type = ARM_CP_ALIAS | ARM_CP_IO, 2383 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2384 .writefn = pmovsset_write, 2385 .raw_writefn = raw_write }, 2386 }; 2387 2388 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2389 uint64_t value) 2390 { 2391 value &= 1; 2392 env->teecr = value; 2393 } 2394 2395 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2396 bool isread) 2397 { 2398 /* 2399 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2400 * at all, so we don't need to check whether we're v8A. 2401 */ 2402 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2403 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2404 return CP_ACCESS_TRAP_EL2; 2405 } 2406 return CP_ACCESS_OK; 2407 } 2408 2409 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2410 bool isread) 2411 { 2412 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2413 return CP_ACCESS_TRAP; 2414 } 2415 return teecr_access(env, ri, isread); 2416 } 2417 2418 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2419 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2420 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2421 .resetvalue = 0, 2422 .writefn = teecr_write, .accessfn = teecr_access }, 2423 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2424 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2425 .accessfn = teehbr_access, .resetvalue = 0 }, 2426 }; 2427 2428 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2429 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2430 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2431 .access = PL0_RW, 2432 .fgt = FGT_TPIDR_EL0, 2433 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2434 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2435 .access = PL0_RW, 2436 .fgt = FGT_TPIDR_EL0, 2437 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2438 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2439 .resetfn = arm_cp_reset_ignore }, 2440 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2441 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2442 .access = PL0_R | PL1_W, 2443 .fgt = FGT_TPIDRRO_EL0, 2444 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2445 .resetvalue = 0}, 2446 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2447 .access = PL0_R | PL1_W, 2448 .fgt = FGT_TPIDRRO_EL0, 2449 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2450 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2451 .resetfn = arm_cp_reset_ignore }, 2452 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2453 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2454 .access = PL1_RW, 2455 .fgt = FGT_TPIDR_EL1, 2456 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2457 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2458 .access = PL1_RW, 2459 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2460 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2461 .resetvalue = 0 }, 2462 }; 2463 2464 #ifndef CONFIG_USER_ONLY 2465 2466 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2467 bool isread) 2468 { 2469 /* 2470 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2471 * Writable only at the highest implemented exception level. 2472 */ 2473 int el = arm_current_el(env); 2474 uint64_t hcr; 2475 uint32_t cntkctl; 2476 2477 switch (el) { 2478 case 0: 2479 hcr = arm_hcr_el2_eff(env); 2480 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2481 cntkctl = env->cp15.cnthctl_el2; 2482 } else { 2483 cntkctl = env->cp15.c14_cntkctl; 2484 } 2485 if (!extract32(cntkctl, 0, 2)) { 2486 return CP_ACCESS_TRAP; 2487 } 2488 break; 2489 case 1: 2490 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2491 arm_is_secure_below_el3(env)) { 2492 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2493 return CP_ACCESS_TRAP_UNCATEGORIZED; 2494 } 2495 break; 2496 case 2: 2497 case 3: 2498 break; 2499 } 2500 2501 if (!isread && el < arm_highest_el(env)) { 2502 return CP_ACCESS_TRAP_UNCATEGORIZED; 2503 } 2504 2505 return CP_ACCESS_OK; 2506 } 2507 2508 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2509 bool isread) 2510 { 2511 unsigned int cur_el = arm_current_el(env); 2512 bool has_el2 = arm_is_el2_enabled(env); 2513 uint64_t hcr = arm_hcr_el2_eff(env); 2514 2515 switch (cur_el) { 2516 case 0: 2517 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2518 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2519 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2520 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2521 } 2522 2523 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2524 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2525 return CP_ACCESS_TRAP; 2526 } 2527 /* fall through */ 2528 case 1: 2529 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2530 if (has_el2 && timeridx == GTIMER_PHYS && 2531 (hcr & HCR_E2H 2532 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2533 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2534 return CP_ACCESS_TRAP_EL2; 2535 } 2536 if (has_el2 && timeridx == GTIMER_VIRT) { 2537 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2538 return CP_ACCESS_TRAP_EL2; 2539 } 2540 } 2541 break; 2542 } 2543 return CP_ACCESS_OK; 2544 } 2545 2546 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2547 bool isread) 2548 { 2549 unsigned int cur_el = arm_current_el(env); 2550 bool has_el2 = arm_is_el2_enabled(env); 2551 uint64_t hcr = arm_hcr_el2_eff(env); 2552 2553 switch (cur_el) { 2554 case 0: 2555 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2556 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2557 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2558 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2559 } 2560 2561 /* 2562 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2563 * EL0 if EL0[PV]TEN is zero. 2564 */ 2565 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2566 return CP_ACCESS_TRAP; 2567 } 2568 /* fall through */ 2569 2570 case 1: 2571 if (has_el2 && timeridx == GTIMER_PHYS) { 2572 if (hcr & HCR_E2H) { 2573 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2574 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2575 return CP_ACCESS_TRAP_EL2; 2576 } 2577 } else { 2578 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2579 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2580 return CP_ACCESS_TRAP_EL2; 2581 } 2582 } 2583 } 2584 if (has_el2 && timeridx == GTIMER_VIRT) { 2585 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2586 return CP_ACCESS_TRAP_EL2; 2587 } 2588 } 2589 break; 2590 } 2591 return CP_ACCESS_OK; 2592 } 2593 2594 static CPAccessResult gt_pct_access(CPUARMState *env, 2595 const ARMCPRegInfo *ri, 2596 bool isread) 2597 { 2598 return gt_counter_access(env, GTIMER_PHYS, isread); 2599 } 2600 2601 static CPAccessResult gt_vct_access(CPUARMState *env, 2602 const ARMCPRegInfo *ri, 2603 bool isread) 2604 { 2605 return gt_counter_access(env, GTIMER_VIRT, isread); 2606 } 2607 2608 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2609 bool isread) 2610 { 2611 return gt_timer_access(env, GTIMER_PHYS, isread); 2612 } 2613 2614 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2615 bool isread) 2616 { 2617 return gt_timer_access(env, GTIMER_VIRT, isread); 2618 } 2619 2620 static CPAccessResult gt_stimer_access(CPUARMState *env, 2621 const ARMCPRegInfo *ri, 2622 bool isread) 2623 { 2624 /* 2625 * The AArch64 register view of the secure physical timer is 2626 * always accessible from EL3, and configurably accessible from 2627 * Secure EL1. 2628 */ 2629 switch (arm_current_el(env)) { 2630 case 1: 2631 if (!arm_is_secure(env)) { 2632 return CP_ACCESS_TRAP; 2633 } 2634 if (!(env->cp15.scr_el3 & SCR_ST)) { 2635 return CP_ACCESS_TRAP_EL3; 2636 } 2637 return CP_ACCESS_OK; 2638 case 0: 2639 case 2: 2640 return CP_ACCESS_TRAP; 2641 case 3: 2642 return CP_ACCESS_OK; 2643 default: 2644 g_assert_not_reached(); 2645 } 2646 } 2647 2648 static uint64_t gt_get_countervalue(CPUARMState *env) 2649 { 2650 ARMCPU *cpu = env_archcpu(env); 2651 2652 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2653 } 2654 2655 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2656 { 2657 CPUARMState *env = &cpu->env; 2658 uint64_t cnthctl = env->cp15.cnthctl_el2; 2659 ARMSecuritySpace ss = arm_security_space(env); 2660 /* ISTATUS && !IMASK */ 2661 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2662 2663 /* 2664 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2665 * It is RES0 in Secure and NonSecure state. 2666 */ 2667 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2668 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2669 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2670 irqstate = 0; 2671 } 2672 2673 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2674 trace_arm_gt_update_irq(timeridx, irqstate); 2675 } 2676 2677 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2678 { 2679 /* 2680 * Changing security state between Root and Secure/NonSecure, which may 2681 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2682 * mask bits. Update the IRQ state accordingly. 2683 */ 2684 gt_update_irq(cpu, GTIMER_VIRT); 2685 gt_update_irq(cpu, GTIMER_PHYS); 2686 } 2687 2688 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2689 { 2690 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2691 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2692 arm_is_el2_enabled(env) && 2693 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2694 return env->cp15.cntpoff_el2; 2695 } 2696 return 0; 2697 } 2698 2699 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2700 { 2701 if (arm_current_el(env) >= 2) { 2702 return 0; 2703 } 2704 return gt_phys_raw_cnt_offset(env); 2705 } 2706 2707 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2708 { 2709 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2710 2711 if (gt->ctl & 1) { 2712 /* 2713 * Timer enabled: calculate and set current ISTATUS, irq, and 2714 * reset timer to when ISTATUS next has to change 2715 */ 2716 uint64_t offset = timeridx == GTIMER_VIRT ? 2717 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2718 uint64_t count = gt_get_countervalue(&cpu->env); 2719 /* Note that this must be unsigned 64 bit arithmetic: */ 2720 int istatus = count - offset >= gt->cval; 2721 uint64_t nexttick; 2722 2723 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2724 2725 if (istatus) { 2726 /* 2727 * Next transition is when (count - offset) rolls back over to 0. 2728 * If offset > count then this is when count == offset; 2729 * if offset <= count then this is when count == offset + 2^64 2730 * For the latter case we set nexttick to an "as far in future 2731 * as possible" value and let the code below handle it. 2732 */ 2733 if (offset > count) { 2734 nexttick = offset; 2735 } else { 2736 nexttick = UINT64_MAX; 2737 } 2738 } else { 2739 /* 2740 * Next transition is when (count - offset) == cval, i.e. 2741 * when count == (cval + offset). 2742 * If that would overflow, then again we set up the next interrupt 2743 * for "as far in the future as possible" for the code below. 2744 */ 2745 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2746 nexttick = UINT64_MAX; 2747 } 2748 } 2749 /* 2750 * Note that the desired next expiry time might be beyond the 2751 * signed-64-bit range of a QEMUTimer -- in this case we just 2752 * set the timer for as far in the future as possible. When the 2753 * timer expires we will reset the timer for any remaining period. 2754 */ 2755 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2756 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2757 } else { 2758 timer_mod(cpu->gt_timer[timeridx], nexttick); 2759 } 2760 trace_arm_gt_recalc(timeridx, nexttick); 2761 } else { 2762 /* Timer disabled: ISTATUS and timer output always clear */ 2763 gt->ctl &= ~4; 2764 timer_del(cpu->gt_timer[timeridx]); 2765 trace_arm_gt_recalc_disabled(timeridx); 2766 } 2767 gt_update_irq(cpu, timeridx); 2768 } 2769 2770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2771 int timeridx) 2772 { 2773 ARMCPU *cpu = env_archcpu(env); 2774 2775 timer_del(cpu->gt_timer[timeridx]); 2776 } 2777 2778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2781 } 2782 2783 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2784 { 2785 uint64_t hcr; 2786 2787 switch (arm_current_el(env)) { 2788 case 2: 2789 hcr = arm_hcr_el2_eff(env); 2790 if (hcr & HCR_E2H) { 2791 return 0; 2792 } 2793 break; 2794 case 0: 2795 hcr = arm_hcr_el2_eff(env); 2796 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2797 return 0; 2798 } 2799 break; 2800 } 2801 2802 return env->cp15.cntvoff_el2; 2803 } 2804 2805 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2806 { 2807 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2808 } 2809 2810 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2811 int timeridx, 2812 uint64_t value) 2813 { 2814 trace_arm_gt_cval_write(timeridx, value); 2815 env->cp15.c14_timer[timeridx].cval = value; 2816 gt_recalc_timer(env_archcpu(env), timeridx); 2817 } 2818 2819 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2820 int timeridx) 2821 { 2822 uint64_t offset = 0; 2823 2824 switch (timeridx) { 2825 case GTIMER_VIRT: 2826 case GTIMER_HYPVIRT: 2827 offset = gt_virt_cnt_offset(env); 2828 break; 2829 case GTIMER_PHYS: 2830 offset = gt_phys_cnt_offset(env); 2831 break; 2832 } 2833 2834 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2835 (gt_get_countervalue(env) - offset)); 2836 } 2837 2838 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 int timeridx, 2840 uint64_t value) 2841 { 2842 uint64_t offset = 0; 2843 2844 switch (timeridx) { 2845 case GTIMER_VIRT: 2846 case GTIMER_HYPVIRT: 2847 offset = gt_virt_cnt_offset(env); 2848 break; 2849 case GTIMER_PHYS: 2850 offset = gt_phys_cnt_offset(env); 2851 break; 2852 } 2853 2854 trace_arm_gt_tval_write(timeridx, value); 2855 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2856 sextract64(value, 0, 32); 2857 gt_recalc_timer(env_archcpu(env), timeridx); 2858 } 2859 2860 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2861 int timeridx, 2862 uint64_t value) 2863 { 2864 ARMCPU *cpu = env_archcpu(env); 2865 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2866 2867 trace_arm_gt_ctl_write(timeridx, value); 2868 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2869 if ((oldval ^ value) & 1) { 2870 /* Enable toggled */ 2871 gt_recalc_timer(cpu, timeridx); 2872 } else if ((oldval ^ value) & 2) { 2873 /* 2874 * IMASK toggled: don't need to recalculate, 2875 * just set the interrupt line based on ISTATUS 2876 */ 2877 trace_arm_gt_imask_toggle(timeridx); 2878 gt_update_irq(cpu, timeridx); 2879 } 2880 } 2881 2882 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2883 { 2884 gt_timer_reset(env, ri, GTIMER_PHYS); 2885 } 2886 2887 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2888 uint64_t value) 2889 { 2890 gt_cval_write(env, ri, GTIMER_PHYS, value); 2891 } 2892 2893 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2894 { 2895 return gt_tval_read(env, ri, GTIMER_PHYS); 2896 } 2897 2898 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2899 uint64_t value) 2900 { 2901 gt_tval_write(env, ri, GTIMER_PHYS, value); 2902 } 2903 2904 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2905 uint64_t value) 2906 { 2907 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2908 } 2909 2910 static int gt_phys_redir_timeridx(CPUARMState *env) 2911 { 2912 switch (arm_mmu_idx(env)) { 2913 case ARMMMUIdx_E20_0: 2914 case ARMMMUIdx_E20_2: 2915 case ARMMMUIdx_E20_2_PAN: 2916 return GTIMER_HYP; 2917 default: 2918 return GTIMER_PHYS; 2919 } 2920 } 2921 2922 static int gt_virt_redir_timeridx(CPUARMState *env) 2923 { 2924 switch (arm_mmu_idx(env)) { 2925 case ARMMMUIdx_E20_0: 2926 case ARMMMUIdx_E20_2: 2927 case ARMMMUIdx_E20_2_PAN: 2928 return GTIMER_HYPVIRT; 2929 default: 2930 return GTIMER_VIRT; 2931 } 2932 } 2933 2934 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2935 const ARMCPRegInfo *ri) 2936 { 2937 int timeridx = gt_phys_redir_timeridx(env); 2938 return env->cp15.c14_timer[timeridx].cval; 2939 } 2940 2941 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2942 uint64_t value) 2943 { 2944 int timeridx = gt_phys_redir_timeridx(env); 2945 gt_cval_write(env, ri, timeridx, value); 2946 } 2947 2948 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2949 const ARMCPRegInfo *ri) 2950 { 2951 int timeridx = gt_phys_redir_timeridx(env); 2952 return gt_tval_read(env, ri, timeridx); 2953 } 2954 2955 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2956 uint64_t value) 2957 { 2958 int timeridx = gt_phys_redir_timeridx(env); 2959 gt_tval_write(env, ri, timeridx, value); 2960 } 2961 2962 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2963 const ARMCPRegInfo *ri) 2964 { 2965 int timeridx = gt_phys_redir_timeridx(env); 2966 return env->cp15.c14_timer[timeridx].ctl; 2967 } 2968 2969 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2970 uint64_t value) 2971 { 2972 int timeridx = gt_phys_redir_timeridx(env); 2973 gt_ctl_write(env, ri, timeridx, value); 2974 } 2975 2976 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2977 { 2978 gt_timer_reset(env, ri, GTIMER_VIRT); 2979 } 2980 2981 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2982 uint64_t value) 2983 { 2984 gt_cval_write(env, ri, GTIMER_VIRT, value); 2985 } 2986 2987 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2988 { 2989 return gt_tval_read(env, ri, GTIMER_VIRT); 2990 } 2991 2992 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2993 uint64_t value) 2994 { 2995 gt_tval_write(env, ri, GTIMER_VIRT, value); 2996 } 2997 2998 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2999 uint64_t value) 3000 { 3001 gt_ctl_write(env, ri, GTIMER_VIRT, value); 3002 } 3003 3004 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 ARMCPU *cpu = env_archcpu(env); 3008 uint32_t oldval = env->cp15.cnthctl_el2; 3009 uint32_t valid_mask = 3010 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 3011 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 3012 R_CNTHCTL_EVNTEN_MASK | 3013 R_CNTHCTL_EVNTDIR_MASK | 3014 R_CNTHCTL_EVNTI_MASK | 3015 R_CNTHCTL_EL0VTEN_MASK | 3016 R_CNTHCTL_EL0PTEN_MASK | 3017 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 3018 R_CNTHCTL_EL1PTEN_MASK; 3019 3020 if (cpu_isar_feature(aa64_rme, cpu)) { 3021 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 3022 } 3023 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 3024 valid_mask |= 3025 R_CNTHCTL_EL1TVT_MASK | 3026 R_CNTHCTL_EL1TVCT_MASK | 3027 R_CNTHCTL_EL1NVPCT_MASK | 3028 R_CNTHCTL_EL1NVVCT_MASK | 3029 R_CNTHCTL_EVNTIS_MASK; 3030 } 3031 if (cpu_isar_feature(aa64_ecv, cpu)) { 3032 valid_mask |= R_CNTHCTL_ECV_MASK; 3033 } 3034 3035 /* Clear RES0 bits */ 3036 value &= valid_mask; 3037 3038 raw_write(env, ri, value); 3039 3040 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 3041 gt_update_irq(cpu, GTIMER_VIRT); 3042 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 3043 gt_update_irq(cpu, GTIMER_PHYS); 3044 } 3045 } 3046 3047 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3048 uint64_t value) 3049 { 3050 ARMCPU *cpu = env_archcpu(env); 3051 3052 trace_arm_gt_cntvoff_write(value); 3053 raw_write(env, ri, value); 3054 gt_recalc_timer(cpu, GTIMER_VIRT); 3055 } 3056 3057 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3058 const ARMCPRegInfo *ri) 3059 { 3060 int timeridx = gt_virt_redir_timeridx(env); 3061 return env->cp15.c14_timer[timeridx].cval; 3062 } 3063 3064 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3065 uint64_t value) 3066 { 3067 int timeridx = gt_virt_redir_timeridx(env); 3068 gt_cval_write(env, ri, timeridx, value); 3069 } 3070 3071 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3072 const ARMCPRegInfo *ri) 3073 { 3074 int timeridx = gt_virt_redir_timeridx(env); 3075 return gt_tval_read(env, ri, timeridx); 3076 } 3077 3078 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3079 uint64_t value) 3080 { 3081 int timeridx = gt_virt_redir_timeridx(env); 3082 gt_tval_write(env, ri, timeridx, value); 3083 } 3084 3085 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3086 const ARMCPRegInfo *ri) 3087 { 3088 int timeridx = gt_virt_redir_timeridx(env); 3089 return env->cp15.c14_timer[timeridx].ctl; 3090 } 3091 3092 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3093 uint64_t value) 3094 { 3095 int timeridx = gt_virt_redir_timeridx(env); 3096 gt_ctl_write(env, ri, timeridx, value); 3097 } 3098 3099 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3100 { 3101 gt_timer_reset(env, ri, GTIMER_HYP); 3102 } 3103 3104 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3105 uint64_t value) 3106 { 3107 gt_cval_write(env, ri, GTIMER_HYP, value); 3108 } 3109 3110 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3111 { 3112 return gt_tval_read(env, ri, GTIMER_HYP); 3113 } 3114 3115 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3116 uint64_t value) 3117 { 3118 gt_tval_write(env, ri, GTIMER_HYP, value); 3119 } 3120 3121 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3122 uint64_t value) 3123 { 3124 gt_ctl_write(env, ri, GTIMER_HYP, value); 3125 } 3126 3127 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3128 { 3129 gt_timer_reset(env, ri, GTIMER_SEC); 3130 } 3131 3132 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3133 uint64_t value) 3134 { 3135 gt_cval_write(env, ri, GTIMER_SEC, value); 3136 } 3137 3138 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3139 { 3140 return gt_tval_read(env, ri, GTIMER_SEC); 3141 } 3142 3143 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3144 uint64_t value) 3145 { 3146 gt_tval_write(env, ri, GTIMER_SEC, value); 3147 } 3148 3149 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3150 uint64_t value) 3151 { 3152 gt_ctl_write(env, ri, GTIMER_SEC, value); 3153 } 3154 3155 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3156 { 3157 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3158 } 3159 3160 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3161 uint64_t value) 3162 { 3163 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3164 } 3165 3166 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3167 { 3168 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3169 } 3170 3171 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3172 uint64_t value) 3173 { 3174 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3175 } 3176 3177 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3178 uint64_t value) 3179 { 3180 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3181 } 3182 3183 void arm_gt_ptimer_cb(void *opaque) 3184 { 3185 ARMCPU *cpu = opaque; 3186 3187 gt_recalc_timer(cpu, GTIMER_PHYS); 3188 } 3189 3190 void arm_gt_vtimer_cb(void *opaque) 3191 { 3192 ARMCPU *cpu = opaque; 3193 3194 gt_recalc_timer(cpu, GTIMER_VIRT); 3195 } 3196 3197 void arm_gt_htimer_cb(void *opaque) 3198 { 3199 ARMCPU *cpu = opaque; 3200 3201 gt_recalc_timer(cpu, GTIMER_HYP); 3202 } 3203 3204 void arm_gt_stimer_cb(void *opaque) 3205 { 3206 ARMCPU *cpu = opaque; 3207 3208 gt_recalc_timer(cpu, GTIMER_SEC); 3209 } 3210 3211 void arm_gt_hvtimer_cb(void *opaque) 3212 { 3213 ARMCPU *cpu = opaque; 3214 3215 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3216 } 3217 3218 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3219 { 3220 ARMCPU *cpu = env_archcpu(env); 3221 3222 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3223 } 3224 3225 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3226 /* 3227 * Note that CNTFRQ is purely reads-as-written for the benefit 3228 * of software; writing it doesn't actually change the timer frequency. 3229 * Our reset value matches the fixed frequency we implement the timer at. 3230 */ 3231 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3232 .type = ARM_CP_ALIAS, 3233 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3234 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3235 }, 3236 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3237 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3238 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3239 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3240 .resetfn = arm_gt_cntfrq_reset, 3241 }, 3242 /* overall control: mostly access permissions */ 3243 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3244 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3245 .access = PL1_RW, 3246 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3247 .resetvalue = 0, 3248 }, 3249 /* per-timer control */ 3250 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3251 .secure = ARM_CP_SECSTATE_NS, 3252 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3253 .accessfn = gt_ptimer_access, 3254 .fieldoffset = offsetoflow32(CPUARMState, 3255 cp15.c14_timer[GTIMER_PHYS].ctl), 3256 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3257 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3258 }, 3259 { .name = "CNTP_CTL_S", 3260 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3261 .secure = ARM_CP_SECSTATE_S, 3262 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3263 .accessfn = gt_ptimer_access, 3264 .fieldoffset = offsetoflow32(CPUARMState, 3265 cp15.c14_timer[GTIMER_SEC].ctl), 3266 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3267 }, 3268 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3269 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3270 .type = ARM_CP_IO, .access = PL0_RW, 3271 .accessfn = gt_ptimer_access, 3272 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3273 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3274 .resetvalue = 0, 3275 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3276 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3277 }, 3278 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3279 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3280 .accessfn = gt_vtimer_access, 3281 .fieldoffset = offsetoflow32(CPUARMState, 3282 cp15.c14_timer[GTIMER_VIRT].ctl), 3283 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3284 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3285 }, 3286 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3287 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3288 .type = ARM_CP_IO, .access = PL0_RW, 3289 .accessfn = gt_vtimer_access, 3290 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3291 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3292 .resetvalue = 0, 3293 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3294 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3295 }, 3296 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3297 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3298 .secure = ARM_CP_SECSTATE_NS, 3299 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3300 .accessfn = gt_ptimer_access, 3301 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3302 }, 3303 { .name = "CNTP_TVAL_S", 3304 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3305 .secure = ARM_CP_SECSTATE_S, 3306 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3307 .accessfn = gt_ptimer_access, 3308 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3309 }, 3310 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3311 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3313 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3315 }, 3316 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3317 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3318 .accessfn = gt_vtimer_access, 3319 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3320 }, 3321 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3322 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3323 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3324 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3325 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3326 }, 3327 /* The counter itself */ 3328 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3329 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3330 .accessfn = gt_pct_access, 3331 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3332 }, 3333 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3334 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3335 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3336 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3337 }, 3338 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3339 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3340 .accessfn = gt_vct_access, 3341 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3342 }, 3343 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3345 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3346 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3347 }, 3348 /* Comparison value, indicating when the timer goes off */ 3349 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3350 .secure = ARM_CP_SECSTATE_NS, 3351 .access = PL0_RW, 3352 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3353 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3354 .accessfn = gt_ptimer_access, 3355 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3356 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3357 }, 3358 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3359 .secure = ARM_CP_SECSTATE_S, 3360 .access = PL0_RW, 3361 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3362 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3363 .accessfn = gt_ptimer_access, 3364 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3365 }, 3366 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3368 .access = PL0_RW, 3369 .type = ARM_CP_IO, 3370 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3371 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3372 .resetvalue = 0, .accessfn = gt_ptimer_access, 3373 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3374 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3375 }, 3376 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3377 .access = PL0_RW, 3378 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3379 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3380 .accessfn = gt_vtimer_access, 3381 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3382 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3383 }, 3384 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3385 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3386 .access = PL0_RW, 3387 .type = ARM_CP_IO, 3388 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3389 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3390 .resetvalue = 0, .accessfn = gt_vtimer_access, 3391 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3392 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3393 }, 3394 /* 3395 * Secure timer -- this is actually restricted to only EL3 3396 * and configurably Secure-EL1 via the accessfn. 3397 */ 3398 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3400 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3401 .accessfn = gt_stimer_access, 3402 .readfn = gt_sec_tval_read, 3403 .writefn = gt_sec_tval_write, 3404 .resetfn = gt_sec_timer_reset, 3405 }, 3406 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3408 .type = ARM_CP_IO, .access = PL1_RW, 3409 .accessfn = gt_stimer_access, 3410 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3411 .resetvalue = 0, 3412 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3413 }, 3414 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3416 .type = ARM_CP_IO, .access = PL1_RW, 3417 .accessfn = gt_stimer_access, 3418 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3419 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3420 }, 3421 }; 3422 3423 /* 3424 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3425 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3426 * so our implementations here are identical to the normal registers. 3427 */ 3428 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3429 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3430 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3431 .accessfn = gt_vct_access, 3432 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3433 }, 3434 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3436 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3437 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3438 }, 3439 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3440 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3441 .accessfn = gt_pct_access, 3442 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3443 }, 3444 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3445 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3446 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3447 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3448 }, 3449 }; 3450 3451 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3452 const ARMCPRegInfo *ri, 3453 bool isread) 3454 { 3455 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3456 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3457 return CP_ACCESS_TRAP_EL3; 3458 } 3459 return CP_ACCESS_OK; 3460 } 3461 3462 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3463 uint64_t value) 3464 { 3465 ARMCPU *cpu = env_archcpu(env); 3466 3467 trace_arm_gt_cntpoff_write(value); 3468 raw_write(env, ri, value); 3469 gt_recalc_timer(cpu, GTIMER_PHYS); 3470 } 3471 3472 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3473 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3474 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3475 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3476 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3477 .nv2_redirect_offset = 0x1a8, 3478 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3479 }; 3480 #else 3481 3482 /* 3483 * In user-mode most of the generic timer registers are inaccessible 3484 * however modern kernels (4.12+) allow access to cntvct_el0 3485 */ 3486 3487 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3488 { 3489 ARMCPU *cpu = env_archcpu(env); 3490 3491 /* 3492 * Currently we have no support for QEMUTimer in linux-user so we 3493 * can't call gt_get_countervalue(env), instead we directly 3494 * call the lower level functions. 3495 */ 3496 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3497 } 3498 3499 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3500 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3502 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3503 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3504 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3505 }, 3506 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3507 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3508 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3509 .readfn = gt_virt_cnt_read, 3510 }, 3511 }; 3512 3513 /* 3514 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3515 * is exposed to userspace by Linux. 3516 */ 3517 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3518 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3519 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3520 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3521 .readfn = gt_virt_cnt_read, 3522 }, 3523 }; 3524 3525 #endif 3526 3527 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3528 { 3529 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3530 raw_write(env, ri, value); 3531 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3532 raw_write(env, ri, value & 0xfffff6ff); 3533 } else { 3534 raw_write(env, ri, value & 0xfffff1ff); 3535 } 3536 } 3537 3538 #ifndef CONFIG_USER_ONLY 3539 /* get_phys_addr() isn't present for user-mode-only targets */ 3540 3541 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3542 bool isread) 3543 { 3544 if (ri->opc2 & 4) { 3545 /* 3546 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3547 * Secure EL1 (which can only happen if EL3 is AArch64). 3548 * They are simply UNDEF if executed from NS EL1. 3549 * They function normally from EL2 or EL3. 3550 */ 3551 if (arm_current_el(env) == 1) { 3552 if (arm_is_secure_below_el3(env)) { 3553 if (env->cp15.scr_el3 & SCR_EEL2) { 3554 return CP_ACCESS_TRAP_EL2; 3555 } 3556 return CP_ACCESS_TRAP_EL3; 3557 } 3558 return CP_ACCESS_TRAP_UNCATEGORIZED; 3559 } 3560 } 3561 return CP_ACCESS_OK; 3562 } 3563 3564 #ifdef CONFIG_TCG 3565 static int par_el1_shareability(GetPhysAddrResult *res) 3566 { 3567 /* 3568 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3569 * memory -- see pseudocode PAREncodeShareability(). 3570 */ 3571 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3572 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3573 return 2; 3574 } 3575 return res->cacheattrs.shareability; 3576 } 3577 3578 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3579 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3580 ARMSecuritySpace ss) 3581 { 3582 bool ret; 3583 uint64_t par64; 3584 bool format64 = false; 3585 ARMMMUFaultInfo fi = {}; 3586 GetPhysAddrResult res = {}; 3587 3588 /* 3589 * I_MXTJT: Granule protection checks are not performed on the final address 3590 * of a successful translation. 3591 */ 3592 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3593 &res, &fi); 3594 3595 /* 3596 * ATS operations only do S1 or S1+S2 translations, so we never 3597 * have to deal with the ARMCacheAttrs format for S2 only. 3598 */ 3599 assert(!res.cacheattrs.is_s2_format); 3600 3601 if (ret) { 3602 /* 3603 * Some kinds of translation fault must cause exceptions rather 3604 * than being reported in the PAR. 3605 */ 3606 int current_el = arm_current_el(env); 3607 int target_el; 3608 uint32_t syn, fsr, fsc; 3609 bool take_exc = false; 3610 3611 if (fi.s1ptw && current_el == 1 3612 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3613 /* 3614 * Synchronous stage 2 fault on an access made as part of the 3615 * translation table walk for AT S1E0* or AT S1E1* insn 3616 * executed from NS EL1. If this is a synchronous external abort 3617 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3618 * to EL3. Otherwise the fault is taken as an exception to EL2, 3619 * and HPFAR_EL2 holds the faulting IPA. 3620 */ 3621 if (fi.type == ARMFault_SyncExternalOnWalk && 3622 (env->cp15.scr_el3 & SCR_EA)) { 3623 target_el = 3; 3624 } else { 3625 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3626 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3627 env->cp15.hpfar_el2 |= HPFAR_NS; 3628 } 3629 target_el = 2; 3630 } 3631 take_exc = true; 3632 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3633 /* 3634 * Synchronous external aborts during a translation table walk 3635 * are taken as Data Abort exceptions. 3636 */ 3637 if (fi.stage2) { 3638 if (current_el == 3) { 3639 target_el = 3; 3640 } else { 3641 target_el = 2; 3642 } 3643 } else { 3644 target_el = exception_target_el(env); 3645 } 3646 take_exc = true; 3647 } 3648 3649 if (take_exc) { 3650 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3651 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3652 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3653 fsr = arm_fi_to_lfsc(&fi); 3654 fsc = extract32(fsr, 0, 6); 3655 } else { 3656 fsr = arm_fi_to_sfsc(&fi); 3657 fsc = 0x3f; 3658 } 3659 /* 3660 * Report exception with ESR indicating a fault due to a 3661 * translation table walk for a cache maintenance instruction. 3662 */ 3663 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3664 fi.ea, 1, fi.s1ptw, 1, fsc); 3665 env->exception.vaddress = value; 3666 env->exception.fsr = fsr; 3667 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3668 } 3669 } 3670 3671 if (is_a64(env)) { 3672 format64 = true; 3673 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3674 /* 3675 * ATS1Cxx: 3676 * * TTBCR.EAE determines whether the result is returned using the 3677 * 32-bit or the 64-bit PAR format 3678 * * Instructions executed in Hyp mode always use the 64bit format 3679 * 3680 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3681 * * The Non-secure TTBCR.EAE bit is set to 1 3682 * * The implementation includes EL2, and the value of HCR.VM is 1 3683 * 3684 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3685 * 3686 * ATS1Hx always uses the 64bit format. 3687 */ 3688 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3689 3690 if (arm_feature(env, ARM_FEATURE_EL2)) { 3691 if (mmu_idx == ARMMMUIdx_E10_0 || 3692 mmu_idx == ARMMMUIdx_E10_1 || 3693 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3694 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3695 } else { 3696 format64 |= arm_current_el(env) == 2; 3697 } 3698 } 3699 } 3700 3701 if (format64) { 3702 /* Create a 64-bit PAR */ 3703 par64 = (1 << 11); /* LPAE bit always set */ 3704 if (!ret) { 3705 par64 |= res.f.phys_addr & ~0xfffULL; 3706 if (!res.f.attrs.secure) { 3707 par64 |= (1 << 9); /* NS */ 3708 } 3709 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3710 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3711 } else { 3712 uint32_t fsr = arm_fi_to_lfsc(&fi); 3713 3714 par64 |= 1; /* F */ 3715 par64 |= (fsr & 0x3f) << 1; /* FS */ 3716 if (fi.stage2) { 3717 par64 |= (1 << 9); /* S */ 3718 } 3719 if (fi.s1ptw) { 3720 par64 |= (1 << 8); /* PTW */ 3721 } 3722 } 3723 } else { 3724 /* 3725 * fsr is a DFSR/IFSR value for the short descriptor 3726 * translation table format (with WnR always clear). 3727 * Convert it to a 32-bit PAR. 3728 */ 3729 if (!ret) { 3730 /* We do not set any attribute bits in the PAR */ 3731 if (res.f.lg_page_size == 24 3732 && arm_feature(env, ARM_FEATURE_V7)) { 3733 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3734 } else { 3735 par64 = res.f.phys_addr & 0xfffff000; 3736 } 3737 if (!res.f.attrs.secure) { 3738 par64 |= (1 << 9); /* NS */ 3739 } 3740 } else { 3741 uint32_t fsr = arm_fi_to_sfsc(&fi); 3742 3743 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3744 ((fsr & 0xf) << 1) | 1; 3745 } 3746 } 3747 return par64; 3748 } 3749 #endif /* CONFIG_TCG */ 3750 3751 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3752 { 3753 #ifdef CONFIG_TCG 3754 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3755 uint64_t par64; 3756 ARMMMUIdx mmu_idx; 3757 int el = arm_current_el(env); 3758 ARMSecuritySpace ss = arm_security_space(env); 3759 3760 switch (ri->opc2 & 6) { 3761 case 0: 3762 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3763 switch (el) { 3764 case 3: 3765 mmu_idx = ARMMMUIdx_E3; 3766 break; 3767 case 2: 3768 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3769 /* fall through */ 3770 case 1: 3771 if (ri->crm == 9 && arm_pan_enabled(env)) { 3772 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3773 } else { 3774 mmu_idx = ARMMMUIdx_Stage1_E1; 3775 } 3776 break; 3777 default: 3778 g_assert_not_reached(); 3779 } 3780 break; 3781 case 2: 3782 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3783 switch (el) { 3784 case 3: 3785 mmu_idx = ARMMMUIdx_E10_0; 3786 break; 3787 case 2: 3788 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3789 mmu_idx = ARMMMUIdx_Stage1_E0; 3790 break; 3791 case 1: 3792 mmu_idx = ARMMMUIdx_Stage1_E0; 3793 break; 3794 default: 3795 g_assert_not_reached(); 3796 } 3797 break; 3798 case 4: 3799 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3800 mmu_idx = ARMMMUIdx_E10_1; 3801 ss = ARMSS_NonSecure; 3802 break; 3803 case 6: 3804 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3805 mmu_idx = ARMMMUIdx_E10_0; 3806 ss = ARMSS_NonSecure; 3807 break; 3808 default: 3809 g_assert_not_reached(); 3810 } 3811 3812 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3813 3814 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3815 #else 3816 /* Handled by hardware accelerator. */ 3817 g_assert_not_reached(); 3818 #endif /* CONFIG_TCG */ 3819 } 3820 3821 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3822 uint64_t value) 3823 { 3824 #ifdef CONFIG_TCG 3825 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3826 uint64_t par64; 3827 3828 /* There is no SecureEL2 for AArch32. */ 3829 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3830 ARMSS_NonSecure); 3831 3832 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3833 #else 3834 /* Handled by hardware accelerator. */ 3835 g_assert_not_reached(); 3836 #endif /* CONFIG_TCG */ 3837 } 3838 3839 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3840 bool isread) 3841 { 3842 /* 3843 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3844 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3845 * only happen when executing at EL3 because that combination also causes an 3846 * illegal exception return. We don't need to check FEAT_RME either, because 3847 * scr_write() ensures that the NSE bit is not set otherwise. 3848 */ 3849 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3850 return CP_ACCESS_TRAP; 3851 } 3852 return CP_ACCESS_OK; 3853 } 3854 3855 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3856 bool isread) 3857 { 3858 if (arm_current_el(env) == 3 && 3859 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3860 return CP_ACCESS_TRAP; 3861 } 3862 return at_e012_access(env, ri, isread); 3863 } 3864 3865 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3866 bool isread) 3867 { 3868 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3869 return CP_ACCESS_TRAP_EL2; 3870 } 3871 return at_e012_access(env, ri, isread); 3872 } 3873 3874 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3875 uint64_t value) 3876 { 3877 #ifdef CONFIG_TCG 3878 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3879 ARMMMUIdx mmu_idx; 3880 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3881 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3882 bool for_el3 = false; 3883 ARMSecuritySpace ss; 3884 3885 switch (ri->opc2 & 6) { 3886 case 0: 3887 switch (ri->opc1) { 3888 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3889 if (ri->crm == 9 && arm_pan_enabled(env)) { 3890 mmu_idx = regime_e20 ? 3891 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3892 } else { 3893 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3894 } 3895 break; 3896 case 4: /* AT S1E2R, AT S1E2W */ 3897 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3898 break; 3899 case 6: /* AT S1E3R, AT S1E3W */ 3900 mmu_idx = ARMMMUIdx_E3; 3901 for_el3 = true; 3902 break; 3903 default: 3904 g_assert_not_reached(); 3905 } 3906 break; 3907 case 2: /* AT S1E0R, AT S1E0W */ 3908 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3909 break; 3910 case 4: /* AT S12E1R, AT S12E1W */ 3911 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3912 break; 3913 case 6: /* AT S12E0R, AT S12E0W */ 3914 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3915 break; 3916 default: 3917 g_assert_not_reached(); 3918 } 3919 3920 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3921 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3922 #else 3923 /* Handled by hardware accelerator. */ 3924 g_assert_not_reached(); 3925 #endif /* CONFIG_TCG */ 3926 } 3927 #endif 3928 3929 /* Return basic MPU access permission bits. */ 3930 static uint32_t simple_mpu_ap_bits(uint32_t val) 3931 { 3932 uint32_t ret; 3933 uint32_t mask; 3934 int i; 3935 ret = 0; 3936 mask = 3; 3937 for (i = 0; i < 16; i += 2) { 3938 ret |= (val >> i) & mask; 3939 mask <<= 2; 3940 } 3941 return ret; 3942 } 3943 3944 /* Pad basic MPU access permission bits to extended format. */ 3945 static uint32_t extended_mpu_ap_bits(uint32_t val) 3946 { 3947 uint32_t ret; 3948 uint32_t mask; 3949 int i; 3950 ret = 0; 3951 mask = 3; 3952 for (i = 0; i < 16; i += 2) { 3953 ret |= (val & mask) << i; 3954 mask <<= 2; 3955 } 3956 return ret; 3957 } 3958 3959 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3960 uint64_t value) 3961 { 3962 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3963 } 3964 3965 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3966 { 3967 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3968 } 3969 3970 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3971 uint64_t value) 3972 { 3973 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3974 } 3975 3976 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3977 { 3978 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3979 } 3980 3981 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3982 { 3983 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3984 3985 if (!u32p) { 3986 return 0; 3987 } 3988 3989 u32p += env->pmsav7.rnr[M_REG_NS]; 3990 return *u32p; 3991 } 3992 3993 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3994 uint64_t value) 3995 { 3996 ARMCPU *cpu = env_archcpu(env); 3997 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3998 3999 if (!u32p) { 4000 return; 4001 } 4002 4003 u32p += env->pmsav7.rnr[M_REG_NS]; 4004 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4005 *u32p = value; 4006 } 4007 4008 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4009 uint64_t value) 4010 { 4011 ARMCPU *cpu = env_archcpu(env); 4012 uint32_t nrgs = cpu->pmsav7_dregion; 4013 4014 if (value >= nrgs) { 4015 qemu_log_mask(LOG_GUEST_ERROR, 4016 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 4017 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 4018 return; 4019 } 4020 4021 raw_write(env, ri, value); 4022 } 4023 4024 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4025 uint64_t value) 4026 { 4027 ARMCPU *cpu = env_archcpu(env); 4028 4029 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4030 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4031 } 4032 4033 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4034 { 4035 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4036 } 4037 4038 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4039 uint64_t value) 4040 { 4041 ARMCPU *cpu = env_archcpu(env); 4042 4043 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4044 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4045 } 4046 4047 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4048 { 4049 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4050 } 4051 4052 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4053 uint64_t value) 4054 { 4055 ARMCPU *cpu = env_archcpu(env); 4056 4057 /* 4058 * Ignore writes that would select not implemented region. 4059 * This is architecturally UNPREDICTABLE. 4060 */ 4061 if (value >= cpu->pmsav7_dregion) { 4062 return; 4063 } 4064 4065 env->pmsav7.rnr[M_REG_NS] = value; 4066 } 4067 4068 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4069 uint64_t value) 4070 { 4071 ARMCPU *cpu = env_archcpu(env); 4072 4073 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4074 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 4075 } 4076 4077 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4078 { 4079 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 4080 } 4081 4082 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4083 uint64_t value) 4084 { 4085 ARMCPU *cpu = env_archcpu(env); 4086 4087 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4088 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4089 } 4090 4091 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4092 { 4093 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4094 } 4095 4096 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4097 uint64_t value) 4098 { 4099 uint32_t n; 4100 uint32_t bit; 4101 ARMCPU *cpu = env_archcpu(env); 4102 4103 /* Ignore writes to unimplemented regions */ 4104 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4105 value &= MAKE_64BIT_MASK(0, rmax); 4106 4107 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4108 4109 /* Register alias is only valid for first 32 indexes */ 4110 for (n = 0; n < rmax; ++n) { 4111 bit = extract32(value, n, 1); 4112 env->pmsav8.hprlar[n] = deposit32( 4113 env->pmsav8.hprlar[n], 0, 1, bit); 4114 } 4115 } 4116 4117 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4118 { 4119 uint32_t n; 4120 uint32_t result = 0x0; 4121 ARMCPU *cpu = env_archcpu(env); 4122 4123 /* Register alias is only valid for first 32 indexes */ 4124 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4125 if (env->pmsav8.hprlar[n] & 0x1) { 4126 result |= (0x1 << n); 4127 } 4128 } 4129 return result; 4130 } 4131 4132 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4133 uint64_t value) 4134 { 4135 ARMCPU *cpu = env_archcpu(env); 4136 4137 /* 4138 * Ignore writes that would select not implemented region. 4139 * This is architecturally UNPREDICTABLE. 4140 */ 4141 if (value >= cpu->pmsav8r_hdregion) { 4142 return; 4143 } 4144 4145 env->pmsav8.hprselr = value; 4146 } 4147 4148 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4149 uint64_t value) 4150 { 4151 ARMCPU *cpu = env_archcpu(env); 4152 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4153 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4154 4155 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4156 4157 if (ri->opc1 & 4) { 4158 if (index >= cpu->pmsav8r_hdregion) { 4159 return; 4160 } 4161 if (ri->opc2 & 0x1) { 4162 env->pmsav8.hprlar[index] = value; 4163 } else { 4164 env->pmsav8.hprbar[index] = value; 4165 } 4166 } else { 4167 if (index >= cpu->pmsav7_dregion) { 4168 return; 4169 } 4170 if (ri->opc2 & 0x1) { 4171 env->pmsav8.rlar[M_REG_NS][index] = value; 4172 } else { 4173 env->pmsav8.rbar[M_REG_NS][index] = value; 4174 } 4175 } 4176 } 4177 4178 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4179 { 4180 ARMCPU *cpu = env_archcpu(env); 4181 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4182 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4183 4184 if (ri->opc1 & 4) { 4185 if (index >= cpu->pmsav8r_hdregion) { 4186 return 0x0; 4187 } 4188 if (ri->opc2 & 0x1) { 4189 return env->pmsav8.hprlar[index]; 4190 } else { 4191 return env->pmsav8.hprbar[index]; 4192 } 4193 } else { 4194 if (index >= cpu->pmsav7_dregion) { 4195 return 0x0; 4196 } 4197 if (ri->opc2 & 0x1) { 4198 return env->pmsav8.rlar[M_REG_NS][index]; 4199 } else { 4200 return env->pmsav8.rbar[M_REG_NS][index]; 4201 } 4202 } 4203 } 4204 4205 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4206 { .name = "PRBAR", 4207 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4208 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4209 .accessfn = access_tvm_trvm, 4210 .readfn = prbar_read, .writefn = prbar_write }, 4211 { .name = "PRLAR", 4212 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4213 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4214 .accessfn = access_tvm_trvm, 4215 .readfn = prlar_read, .writefn = prlar_write }, 4216 { .name = "PRSELR", .resetvalue = 0, 4217 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4218 .access = PL1_RW, .accessfn = access_tvm_trvm, 4219 .writefn = prselr_write, 4220 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4221 { .name = "HPRBAR", .resetvalue = 0, 4222 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4223 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4224 .readfn = hprbar_read, .writefn = hprbar_write }, 4225 { .name = "HPRLAR", 4226 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4227 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4228 .readfn = hprlar_read, .writefn = hprlar_write }, 4229 { .name = "HPRSELR", .resetvalue = 0, 4230 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4231 .access = PL2_RW, 4232 .writefn = hprselr_write, 4233 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4234 { .name = "HPRENR", 4235 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4236 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4237 .readfn = hprenr_read, .writefn = hprenr_write }, 4238 }; 4239 4240 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4241 /* 4242 * Reset for all these registers is handled in arm_cpu_reset(), 4243 * because the PMSAv7 is also used by M-profile CPUs, which do 4244 * not register cpregs but still need the state to be reset. 4245 */ 4246 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4247 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4248 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4249 .readfn = pmsav7_read, .writefn = pmsav7_write, 4250 .resetfn = arm_cp_reset_ignore }, 4251 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4252 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4253 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4254 .readfn = pmsav7_read, .writefn = pmsav7_write, 4255 .resetfn = arm_cp_reset_ignore }, 4256 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4257 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4258 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4259 .readfn = pmsav7_read, .writefn = pmsav7_write, 4260 .resetfn = arm_cp_reset_ignore }, 4261 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4262 .access = PL1_RW, 4263 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4264 .writefn = pmsav7_rgnr_write, 4265 .resetfn = arm_cp_reset_ignore }, 4266 }; 4267 4268 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4269 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4270 .access = PL1_RW, .type = ARM_CP_ALIAS, 4271 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4272 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4273 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4274 .access = PL1_RW, .type = ARM_CP_ALIAS, 4275 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4276 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4277 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4278 .access = PL1_RW, 4279 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4280 .resetvalue = 0, }, 4281 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4282 .access = PL1_RW, 4283 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4284 .resetvalue = 0, }, 4285 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4286 .access = PL1_RW, 4287 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4288 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4289 .access = PL1_RW, 4290 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4291 /* Protection region base and size registers */ 4292 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4293 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4294 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4295 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4296 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4297 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4298 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4299 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4300 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4301 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4302 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4303 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4304 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4307 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4310 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4313 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4316 }; 4317 4318 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4319 uint64_t value) 4320 { 4321 ARMCPU *cpu = env_archcpu(env); 4322 4323 if (!arm_feature(env, ARM_FEATURE_V8)) { 4324 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4325 /* 4326 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4327 * using Long-descriptor translation table format 4328 */ 4329 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4330 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4331 /* 4332 * In an implementation that includes the Security Extensions 4333 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4334 * Short-descriptor translation table format. 4335 */ 4336 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4337 } else { 4338 value &= TTBCR_N; 4339 } 4340 } 4341 4342 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4343 /* 4344 * With LPAE the TTBCR could result in a change of ASID 4345 * via the TTBCR.A1 bit, so do a TLB flush. 4346 */ 4347 tlb_flush(CPU(cpu)); 4348 } 4349 raw_write(env, ri, value); 4350 } 4351 4352 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4353 uint64_t value) 4354 { 4355 ARMCPU *cpu = env_archcpu(env); 4356 4357 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4358 tlb_flush(CPU(cpu)); 4359 raw_write(env, ri, value); 4360 } 4361 4362 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4363 uint64_t value) 4364 { 4365 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4366 if (cpreg_field_is_64bit(ri) && 4367 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4368 ARMCPU *cpu = env_archcpu(env); 4369 tlb_flush(CPU(cpu)); 4370 } 4371 raw_write(env, ri, value); 4372 } 4373 4374 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4375 uint64_t value) 4376 { 4377 /* 4378 * If we are running with E2&0 regime, then an ASID is active. 4379 * Flush if that might be changing. Note we're not checking 4380 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4381 * holds the active ASID, only checking the field that might. 4382 */ 4383 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4384 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4385 uint16_t mask = ARMMMUIdxBit_E20_2 | 4386 ARMMMUIdxBit_E20_2_PAN | 4387 ARMMMUIdxBit_E20_0; 4388 tlb_flush_by_mmuidx(env_cpu(env), mask); 4389 } 4390 raw_write(env, ri, value); 4391 } 4392 4393 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 ARMCPU *cpu = env_archcpu(env); 4397 CPUState *cs = CPU(cpu); 4398 4399 /* 4400 * A change in VMID to the stage2 page table (Stage2) invalidates 4401 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4402 */ 4403 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4404 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4405 } 4406 raw_write(env, ri, value); 4407 } 4408 4409 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4410 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4411 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4412 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4413 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4414 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4415 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4416 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4417 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4418 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4419 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4420 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4421 offsetof(CPUARMState, cp15.dfar_ns) } }, 4422 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4423 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4424 .access = PL1_RW, .accessfn = access_tvm_trvm, 4425 .fgt = FGT_FAR_EL1, 4426 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4427 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4428 .resetvalue = 0, }, 4429 }; 4430 4431 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4432 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4433 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4434 .access = PL1_RW, .accessfn = access_tvm_trvm, 4435 .fgt = FGT_ESR_EL1, 4436 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4437 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4438 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4439 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4440 .access = PL1_RW, .accessfn = access_tvm_trvm, 4441 .fgt = FGT_TTBR0_EL1, 4442 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4443 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4444 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4445 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4446 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4447 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4448 .access = PL1_RW, .accessfn = access_tvm_trvm, 4449 .fgt = FGT_TTBR1_EL1, 4450 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4451 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4453 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4454 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4455 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4456 .access = PL1_RW, .accessfn = access_tvm_trvm, 4457 .fgt = FGT_TCR_EL1, 4458 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4459 .writefn = vmsa_tcr_el12_write, 4460 .raw_writefn = raw_write, 4461 .resetvalue = 0, 4462 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4463 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4464 .access = PL1_RW, .accessfn = access_tvm_trvm, 4465 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4466 .raw_writefn = raw_write, 4467 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4468 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4469 }; 4470 4471 /* 4472 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4473 * qemu tlbs nor adjusting cached masks. 4474 */ 4475 static const ARMCPRegInfo ttbcr2_reginfo = { 4476 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4477 .access = PL1_RW, .accessfn = access_tvm_trvm, 4478 .type = ARM_CP_ALIAS, 4479 .bank_fieldoffsets = { 4480 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4481 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4482 }, 4483 }; 4484 4485 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4486 uint64_t value) 4487 { 4488 env->cp15.c15_ticonfig = value & 0xe7; 4489 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4490 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4491 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4492 } 4493 4494 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4495 uint64_t value) 4496 { 4497 env->cp15.c15_threadid = value & 0xffff; 4498 } 4499 4500 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4501 uint64_t value) 4502 { 4503 /* Wait-for-interrupt (deprecated) */ 4504 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4505 } 4506 4507 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4508 uint64_t value) 4509 { 4510 /* 4511 * On OMAP there are registers indicating the max/min index of dcache lines 4512 * containing a dirty line; cache flush operations have to reset these. 4513 */ 4514 env->cp15.c15_i_max = 0x000; 4515 env->cp15.c15_i_min = 0xff0; 4516 } 4517 4518 static const ARMCPRegInfo omap_cp_reginfo[] = { 4519 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4520 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4521 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4522 .resetvalue = 0, }, 4523 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4524 .access = PL1_RW, .type = ARM_CP_NOP }, 4525 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4526 .access = PL1_RW, 4527 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4528 .writefn = omap_ticonfig_write }, 4529 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4530 .access = PL1_RW, 4531 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4532 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4533 .access = PL1_RW, .resetvalue = 0xff0, 4534 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4535 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4536 .access = PL1_RW, 4537 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4538 .writefn = omap_threadid_write }, 4539 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4540 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4541 .type = ARM_CP_NO_RAW, 4542 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4543 /* 4544 * TODO: Peripheral port remap register: 4545 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4546 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4547 * when MMU is off. 4548 */ 4549 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4550 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4551 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4552 .writefn = omap_cachemaint_write }, 4553 { .name = "C9", .cp = 15, .crn = 9, 4554 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4555 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4556 }; 4557 4558 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4559 uint64_t value) 4560 { 4561 env->cp15.c15_cpar = value & 0x3fff; 4562 } 4563 4564 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4565 { .name = "XSCALE_CPAR", 4566 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4567 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4568 .writefn = xscale_cpar_write, }, 4569 { .name = "XSCALE_AUXCR", 4570 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4571 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4572 .resetvalue = 0, }, 4573 /* 4574 * XScale specific cache-lockdown: since we have no cache we NOP these 4575 * and hope the guest does not really rely on cache behaviour. 4576 */ 4577 { .name = "XSCALE_LOCK_ICACHE_LINE", 4578 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4579 .access = PL1_W, .type = ARM_CP_NOP }, 4580 { .name = "XSCALE_UNLOCK_ICACHE", 4581 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4582 .access = PL1_W, .type = ARM_CP_NOP }, 4583 { .name = "XSCALE_DCACHE_LOCK", 4584 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4585 .access = PL1_RW, .type = ARM_CP_NOP }, 4586 { .name = "XSCALE_UNLOCK_DCACHE", 4587 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4588 .access = PL1_W, .type = ARM_CP_NOP }, 4589 }; 4590 4591 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4592 /* 4593 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4594 * implementation of this implementation-defined space. 4595 * Ideally this should eventually disappear in favour of actually 4596 * implementing the correct behaviour for all cores. 4597 */ 4598 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4599 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4600 .access = PL1_RW, 4601 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4602 .resetvalue = 0 }, 4603 }; 4604 4605 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4606 /* Cache status: RAZ because we have no cache so it's always clean */ 4607 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4608 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4609 .resetvalue = 0 }, 4610 }; 4611 4612 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4613 /* We never have a block transfer operation in progress */ 4614 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4615 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4616 .resetvalue = 0 }, 4617 /* The cache ops themselves: these all NOP for QEMU */ 4618 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4619 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4620 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4621 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4622 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4623 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4624 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4625 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4626 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4627 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4628 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4629 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4630 }; 4631 4632 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4633 /* 4634 * The cache test-and-clean instructions always return (1 << 30) 4635 * to indicate that there are no dirty cache lines. 4636 */ 4637 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4638 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4639 .resetvalue = (1 << 30) }, 4640 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4641 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4642 .resetvalue = (1 << 30) }, 4643 }; 4644 4645 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4646 /* Ignore ReadBuffer accesses */ 4647 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4648 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4649 .access = PL1_RW, .resetvalue = 0, 4650 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4651 }; 4652 4653 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4654 { 4655 unsigned int cur_el = arm_current_el(env); 4656 4657 if (arm_is_el2_enabled(env) && cur_el == 1) { 4658 return env->cp15.vpidr_el2; 4659 } 4660 return raw_read(env, ri); 4661 } 4662 4663 static uint64_t mpidr_read_val(CPUARMState *env) 4664 { 4665 ARMCPU *cpu = env_archcpu(env); 4666 uint64_t mpidr = cpu->mp_affinity; 4667 4668 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4669 mpidr |= (1U << 31); 4670 /* 4671 * Cores which are uniprocessor (non-coherent) 4672 * but still implement the MP extensions set 4673 * bit 30. (For instance, Cortex-R5). 4674 */ 4675 if (cpu->mp_is_up) { 4676 mpidr |= (1u << 30); 4677 } 4678 } 4679 return mpidr; 4680 } 4681 4682 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4683 { 4684 unsigned int cur_el = arm_current_el(env); 4685 4686 if (arm_is_el2_enabled(env) && cur_el == 1) { 4687 return env->cp15.vmpidr_el2; 4688 } 4689 return mpidr_read_val(env); 4690 } 4691 4692 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4693 /* NOP AMAIR0/1 */ 4694 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4695 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4696 .access = PL1_RW, .accessfn = access_tvm_trvm, 4697 .fgt = FGT_AMAIR_EL1, 4698 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4699 .type = ARM_CP_CONST, .resetvalue = 0 }, 4700 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4701 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4702 .access = PL1_RW, .accessfn = access_tvm_trvm, 4703 .type = ARM_CP_CONST, .resetvalue = 0 }, 4704 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4705 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4706 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4707 offsetof(CPUARMState, cp15.par_ns)} }, 4708 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4709 .access = PL1_RW, .accessfn = access_tvm_trvm, 4710 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4711 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4712 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4713 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4714 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4715 .access = PL1_RW, .accessfn = access_tvm_trvm, 4716 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4717 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4718 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4719 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4720 }; 4721 4722 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4723 { 4724 return vfp_get_fpcr(env); 4725 } 4726 4727 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4728 uint64_t value) 4729 { 4730 vfp_set_fpcr(env, value); 4731 } 4732 4733 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4734 { 4735 return vfp_get_fpsr(env); 4736 } 4737 4738 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4739 uint64_t value) 4740 { 4741 vfp_set_fpsr(env, value); 4742 } 4743 4744 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4745 bool isread) 4746 { 4747 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4748 return CP_ACCESS_TRAP; 4749 } 4750 return CP_ACCESS_OK; 4751 } 4752 4753 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4754 uint64_t value) 4755 { 4756 env->daif = value & PSTATE_DAIF; 4757 } 4758 4759 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4760 { 4761 return env->pstate & PSTATE_PAN; 4762 } 4763 4764 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4765 uint64_t value) 4766 { 4767 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4768 } 4769 4770 static const ARMCPRegInfo pan_reginfo = { 4771 .name = "PAN", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4773 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4774 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4775 }; 4776 4777 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4778 { 4779 return env->pstate & PSTATE_UAO; 4780 } 4781 4782 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4783 uint64_t value) 4784 { 4785 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4786 } 4787 4788 static const ARMCPRegInfo uao_reginfo = { 4789 .name = "UAO", .state = ARM_CP_STATE_AA64, 4790 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4791 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4792 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4793 }; 4794 4795 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4796 { 4797 return env->pstate & PSTATE_DIT; 4798 } 4799 4800 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4801 uint64_t value) 4802 { 4803 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4804 } 4805 4806 static const ARMCPRegInfo dit_reginfo = { 4807 .name = "DIT", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4809 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4810 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4811 }; 4812 4813 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4814 { 4815 return env->pstate & PSTATE_SSBS; 4816 } 4817 4818 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4819 uint64_t value) 4820 { 4821 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4822 } 4823 4824 static const ARMCPRegInfo ssbs_reginfo = { 4825 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4826 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4827 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4828 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4829 }; 4830 4831 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4832 const ARMCPRegInfo *ri, 4833 bool isread) 4834 { 4835 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4836 switch (arm_current_el(env)) { 4837 case 0: 4838 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4839 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4840 return CP_ACCESS_TRAP; 4841 } 4842 /* fall through */ 4843 case 1: 4844 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4845 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4846 return CP_ACCESS_TRAP_EL2; 4847 } 4848 break; 4849 } 4850 return CP_ACCESS_OK; 4851 } 4852 4853 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4854 { 4855 /* Cache invalidate/clean to Point of Unification... */ 4856 switch (arm_current_el(env)) { 4857 case 0: 4858 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4859 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4860 return CP_ACCESS_TRAP; 4861 } 4862 /* fall through */ 4863 case 1: 4864 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4865 if (arm_hcr_el2_eff(env) & hcrflags) { 4866 return CP_ACCESS_TRAP_EL2; 4867 } 4868 break; 4869 } 4870 return CP_ACCESS_OK; 4871 } 4872 4873 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4874 bool isread) 4875 { 4876 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4877 } 4878 4879 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4880 bool isread) 4881 { 4882 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4883 } 4884 4885 /* 4886 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4887 * Page D4-1736 (DDI0487A.b) 4888 */ 4889 4890 static int vae1_tlbmask(CPUARMState *env) 4891 { 4892 uint64_t hcr = arm_hcr_el2_eff(env); 4893 uint16_t mask; 4894 4895 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4896 mask = ARMMMUIdxBit_E20_2 | 4897 ARMMMUIdxBit_E20_2_PAN | 4898 ARMMMUIdxBit_E20_0; 4899 } else { 4900 mask = ARMMMUIdxBit_E10_1 | 4901 ARMMMUIdxBit_E10_1_PAN | 4902 ARMMMUIdxBit_E10_0; 4903 } 4904 return mask; 4905 } 4906 4907 static int vae2_tlbmask(CPUARMState *env) 4908 { 4909 uint64_t hcr = arm_hcr_el2_eff(env); 4910 uint16_t mask; 4911 4912 if (hcr & HCR_E2H) { 4913 mask = ARMMMUIdxBit_E20_2 | 4914 ARMMMUIdxBit_E20_2_PAN | 4915 ARMMMUIdxBit_E20_0; 4916 } else { 4917 mask = ARMMMUIdxBit_E2; 4918 } 4919 return mask; 4920 } 4921 4922 /* Return 56 if TBI is enabled, 64 otherwise. */ 4923 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4924 uint64_t addr) 4925 { 4926 uint64_t tcr = regime_tcr(env, mmu_idx); 4927 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4928 int select = extract64(addr, 55, 1); 4929 4930 return (tbi >> select) & 1 ? 56 : 64; 4931 } 4932 4933 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4934 { 4935 uint64_t hcr = arm_hcr_el2_eff(env); 4936 ARMMMUIdx mmu_idx; 4937 4938 /* Only the regime of the mmu_idx below is significant. */ 4939 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4940 mmu_idx = ARMMMUIdx_E20_0; 4941 } else { 4942 mmu_idx = ARMMMUIdx_E10_0; 4943 } 4944 4945 return tlbbits_for_regime(env, mmu_idx, addr); 4946 } 4947 4948 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4949 { 4950 uint64_t hcr = arm_hcr_el2_eff(env); 4951 ARMMMUIdx mmu_idx; 4952 4953 /* 4954 * Only the regime of the mmu_idx below is significant. 4955 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4956 * only has one. 4957 */ 4958 if (hcr & HCR_E2H) { 4959 mmu_idx = ARMMMUIdx_E20_2; 4960 } else { 4961 mmu_idx = ARMMMUIdx_E2; 4962 } 4963 4964 return tlbbits_for_regime(env, mmu_idx, addr); 4965 } 4966 4967 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4968 uint64_t value) 4969 { 4970 CPUState *cs = env_cpu(env); 4971 int mask = vae1_tlbmask(env); 4972 4973 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4974 } 4975 4976 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4977 uint64_t value) 4978 { 4979 CPUState *cs = env_cpu(env); 4980 int mask = vae1_tlbmask(env); 4981 4982 if (tlb_force_broadcast(env)) { 4983 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4984 } else { 4985 tlb_flush_by_mmuidx(cs, mask); 4986 } 4987 } 4988 4989 static int e2_tlbmask(CPUARMState *env) 4990 { 4991 return (ARMMMUIdxBit_E20_0 | 4992 ARMMMUIdxBit_E20_2 | 4993 ARMMMUIdxBit_E20_2_PAN | 4994 ARMMMUIdxBit_E2); 4995 } 4996 4997 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4998 uint64_t value) 4999 { 5000 CPUState *cs = env_cpu(env); 5001 int mask = alle1_tlbmask(env); 5002 5003 tlb_flush_by_mmuidx(cs, mask); 5004 } 5005 5006 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5007 uint64_t value) 5008 { 5009 CPUState *cs = env_cpu(env); 5010 int mask = e2_tlbmask(env); 5011 5012 tlb_flush_by_mmuidx(cs, mask); 5013 } 5014 5015 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5016 uint64_t value) 5017 { 5018 ARMCPU *cpu = env_archcpu(env); 5019 CPUState *cs = CPU(cpu); 5020 5021 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 5022 } 5023 5024 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5025 uint64_t value) 5026 { 5027 CPUState *cs = env_cpu(env); 5028 int mask = alle1_tlbmask(env); 5029 5030 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5031 } 5032 5033 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5034 uint64_t value) 5035 { 5036 CPUState *cs = env_cpu(env); 5037 int mask = e2_tlbmask(env); 5038 5039 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5040 } 5041 5042 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5043 uint64_t value) 5044 { 5045 CPUState *cs = env_cpu(env); 5046 5047 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 5048 } 5049 5050 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5051 uint64_t value) 5052 { 5053 /* 5054 * Invalidate by VA, EL2 5055 * Currently handles both VAE2 and VALE2, since we don't support 5056 * flush-last-level-only. 5057 */ 5058 CPUState *cs = env_cpu(env); 5059 int mask = vae2_tlbmask(env); 5060 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5061 int bits = vae2_tlbbits(env, pageaddr); 5062 5063 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5064 } 5065 5066 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5067 uint64_t value) 5068 { 5069 /* 5070 * Invalidate by VA, EL3 5071 * Currently handles both VAE3 and VALE3, since we don't support 5072 * flush-last-level-only. 5073 */ 5074 ARMCPU *cpu = env_archcpu(env); 5075 CPUState *cs = CPU(cpu); 5076 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5077 5078 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 5079 } 5080 5081 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5082 uint64_t value) 5083 { 5084 CPUState *cs = env_cpu(env); 5085 int mask = vae1_tlbmask(env); 5086 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5087 int bits = vae1_tlbbits(env, pageaddr); 5088 5089 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5090 } 5091 5092 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5093 uint64_t value) 5094 { 5095 /* 5096 * Invalidate by VA, EL1&0 (AArch64 version). 5097 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 5098 * since we don't support flush-for-specific-ASID-only or 5099 * flush-last-level-only. 5100 */ 5101 CPUState *cs = env_cpu(env); 5102 int mask = vae1_tlbmask(env); 5103 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5104 int bits = vae1_tlbbits(env, pageaddr); 5105 5106 if (tlb_force_broadcast(env)) { 5107 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5108 } else { 5109 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5110 } 5111 } 5112 5113 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5114 uint64_t value) 5115 { 5116 CPUState *cs = env_cpu(env); 5117 int mask = vae2_tlbmask(env); 5118 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5119 int bits = vae2_tlbbits(env, pageaddr); 5120 5121 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5122 } 5123 5124 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5125 uint64_t value) 5126 { 5127 CPUState *cs = env_cpu(env); 5128 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5129 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 5130 5131 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 5132 ARMMMUIdxBit_E3, bits); 5133 } 5134 5135 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5136 { 5137 /* 5138 * The MSB of value is the NS field, which only applies if SEL2 5139 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5140 */ 5141 return (value >= 0 5142 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5143 && arm_is_secure_below_el3(env) 5144 ? ARMMMUIdxBit_Stage2_S 5145 : ARMMMUIdxBit_Stage2); 5146 } 5147 5148 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5149 uint64_t value) 5150 { 5151 CPUState *cs = env_cpu(env); 5152 int mask = ipas2e1_tlbmask(env, value); 5153 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5154 5155 if (tlb_force_broadcast(env)) { 5156 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5157 } else { 5158 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5159 } 5160 } 5161 5162 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5163 uint64_t value) 5164 { 5165 CPUState *cs = env_cpu(env); 5166 int mask = ipas2e1_tlbmask(env, value); 5167 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5168 5169 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5170 } 5171 5172 #ifdef TARGET_AARCH64 5173 typedef struct { 5174 uint64_t base; 5175 uint64_t length; 5176 } TLBIRange; 5177 5178 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5179 { 5180 /* 5181 * Note that the TLBI range TG field encoding differs from both 5182 * TG0 and TG1 encodings. 5183 */ 5184 switch (tg) { 5185 case 1: 5186 return Gran4K; 5187 case 2: 5188 return Gran16K; 5189 case 3: 5190 return Gran64K; 5191 default: 5192 return GranInvalid; 5193 } 5194 } 5195 5196 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5197 uint64_t value) 5198 { 5199 unsigned int page_size_granule, page_shift, num, scale, exponent; 5200 /* Extract one bit to represent the va selector in use. */ 5201 uint64_t select = sextract64(value, 36, 1); 5202 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5203 TLBIRange ret = { }; 5204 ARMGranuleSize gran; 5205 5206 page_size_granule = extract64(value, 46, 2); 5207 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5208 5209 /* The granule encoded in value must match the granule in use. */ 5210 if (gran != param.gran) { 5211 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5212 page_size_granule); 5213 return ret; 5214 } 5215 5216 page_shift = arm_granule_bits(gran); 5217 num = extract64(value, 39, 5); 5218 scale = extract64(value, 44, 2); 5219 exponent = (5 * scale) + 1; 5220 5221 ret.length = (num + 1) << (exponent + page_shift); 5222 5223 if (param.select) { 5224 ret.base = sextract64(value, 0, 37); 5225 } else { 5226 ret.base = extract64(value, 0, 37); 5227 } 5228 if (param.ds) { 5229 /* 5230 * With DS=1, BaseADDR is always shifted 16 so that it is able 5231 * to address all 52 va bits. The input address is perforce 5232 * aligned on a 64k boundary regardless of translation granule. 5233 */ 5234 page_shift = 16; 5235 } 5236 ret.base <<= page_shift; 5237 5238 return ret; 5239 } 5240 5241 static void do_rvae_write(CPUARMState *env, uint64_t value, 5242 int idxmap, bool synced) 5243 { 5244 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5245 TLBIRange range; 5246 int bits; 5247 5248 range = tlbi_aa64_get_range(env, one_idx, value); 5249 bits = tlbbits_for_regime(env, one_idx, range.base); 5250 5251 if (synced) { 5252 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5253 range.base, 5254 range.length, 5255 idxmap, 5256 bits); 5257 } else { 5258 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5259 range.length, idxmap, bits); 5260 } 5261 } 5262 5263 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5264 const ARMCPRegInfo *ri, 5265 uint64_t value) 5266 { 5267 /* 5268 * Invalidate by VA range, EL1&0. 5269 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5270 * since we don't support flush-for-specific-ASID-only or 5271 * flush-last-level-only. 5272 */ 5273 5274 do_rvae_write(env, value, vae1_tlbmask(env), 5275 tlb_force_broadcast(env)); 5276 } 5277 5278 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5279 const ARMCPRegInfo *ri, 5280 uint64_t value) 5281 { 5282 /* 5283 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5284 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5285 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5286 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5287 * shareable specific flushes. 5288 */ 5289 5290 do_rvae_write(env, value, vae1_tlbmask(env), true); 5291 } 5292 5293 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5294 const ARMCPRegInfo *ri, 5295 uint64_t value) 5296 { 5297 /* 5298 * Invalidate by VA range, EL2. 5299 * Currently handles all of RVAE2 and RVALE2, 5300 * since we don't support flush-for-specific-ASID-only or 5301 * flush-last-level-only. 5302 */ 5303 5304 do_rvae_write(env, value, vae2_tlbmask(env), 5305 tlb_force_broadcast(env)); 5306 5307 5308 } 5309 5310 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5311 const ARMCPRegInfo *ri, 5312 uint64_t value) 5313 { 5314 /* 5315 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5316 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5317 * since we don't support flush-for-specific-ASID-only, 5318 * flush-last-level-only or inner/outer shareable specific flushes. 5319 */ 5320 5321 do_rvae_write(env, value, vae2_tlbmask(env), true); 5322 5323 } 5324 5325 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5326 const ARMCPRegInfo *ri, 5327 uint64_t value) 5328 { 5329 /* 5330 * Invalidate by VA range, EL3. 5331 * Currently handles all of RVAE3 and RVALE3, 5332 * since we don't support flush-for-specific-ASID-only or 5333 * flush-last-level-only. 5334 */ 5335 5336 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5337 } 5338 5339 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5340 const ARMCPRegInfo *ri, 5341 uint64_t value) 5342 { 5343 /* 5344 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5345 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5346 * since we don't support flush-for-specific-ASID-only, 5347 * flush-last-level-only or inner/outer specific flushes. 5348 */ 5349 5350 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5351 } 5352 5353 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5354 uint64_t value) 5355 { 5356 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5357 tlb_force_broadcast(env)); 5358 } 5359 5360 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5361 const ARMCPRegInfo *ri, 5362 uint64_t value) 5363 { 5364 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5365 } 5366 #endif 5367 5368 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5369 bool isread) 5370 { 5371 int cur_el = arm_current_el(env); 5372 5373 if (cur_el < 2) { 5374 uint64_t hcr = arm_hcr_el2_eff(env); 5375 5376 if (cur_el == 0) { 5377 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5378 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5379 return CP_ACCESS_TRAP_EL2; 5380 } 5381 } else { 5382 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5383 return CP_ACCESS_TRAP; 5384 } 5385 if (hcr & HCR_TDZ) { 5386 return CP_ACCESS_TRAP_EL2; 5387 } 5388 } 5389 } else if (hcr & HCR_TDZ) { 5390 return CP_ACCESS_TRAP_EL2; 5391 } 5392 } 5393 return CP_ACCESS_OK; 5394 } 5395 5396 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5397 { 5398 ARMCPU *cpu = env_archcpu(env); 5399 int dzp_bit = 1 << 4; 5400 5401 /* DZP indicates whether DC ZVA access is allowed */ 5402 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5403 dzp_bit = 0; 5404 } 5405 return cpu->dcz_blocksize | dzp_bit; 5406 } 5407 5408 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5409 bool isread) 5410 { 5411 if (!(env->pstate & PSTATE_SP)) { 5412 /* 5413 * Access to SP_EL0 is undefined if it's being used as 5414 * the stack pointer. 5415 */ 5416 return CP_ACCESS_TRAP_UNCATEGORIZED; 5417 } 5418 return CP_ACCESS_OK; 5419 } 5420 5421 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5422 { 5423 return env->pstate & PSTATE_SP; 5424 } 5425 5426 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5427 { 5428 update_spsel(env, val); 5429 } 5430 5431 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5432 uint64_t value) 5433 { 5434 ARMCPU *cpu = env_archcpu(env); 5435 5436 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5437 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5438 value &= ~SCTLR_M; 5439 } 5440 5441 /* ??? Lots of these bits are not implemented. */ 5442 5443 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5444 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5445 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5446 } else { 5447 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5448 SCTLR_ATA0 | SCTLR_ATA); 5449 } 5450 } 5451 5452 if (raw_read(env, ri) == value) { 5453 /* 5454 * Skip the TLB flush if nothing actually changed; Linux likes 5455 * to do a lot of pointless SCTLR writes. 5456 */ 5457 return; 5458 } 5459 5460 raw_write(env, ri, value); 5461 5462 /* This may enable/disable the MMU, so do a TLB flush. */ 5463 tlb_flush(CPU(cpu)); 5464 5465 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5466 /* 5467 * Normally we would always end the TB on an SCTLR write; see the 5468 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5469 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5470 * of hflags from the translator, so do it here. 5471 */ 5472 arm_rebuild_hflags(env); 5473 } 5474 } 5475 5476 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5477 uint64_t value) 5478 { 5479 /* 5480 * Some MDCR_EL3 bits affect whether PMU counters are running: 5481 * if we are trying to change any of those then we must 5482 * bracket this update with PMU start/finish calls. 5483 */ 5484 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5485 5486 if (pmu_op) { 5487 pmu_op_start(env); 5488 } 5489 env->cp15.mdcr_el3 = value; 5490 if (pmu_op) { 5491 pmu_op_finish(env); 5492 } 5493 } 5494 5495 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5496 uint64_t value) 5497 { 5498 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5499 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5500 } 5501 5502 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5503 uint64_t value) 5504 { 5505 /* 5506 * Some MDCR_EL2 bits affect whether PMU counters are running: 5507 * if we are trying to change any of those then we must 5508 * bracket this update with PMU start/finish calls. 5509 */ 5510 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5511 5512 if (pmu_op) { 5513 pmu_op_start(env); 5514 } 5515 env->cp15.mdcr_el2 = value; 5516 if (pmu_op) { 5517 pmu_op_finish(env); 5518 } 5519 } 5520 5521 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5522 bool isread) 5523 { 5524 if (arm_current_el(env) == 1) { 5525 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5526 5527 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5528 return CP_ACCESS_TRAP_EL2; 5529 } 5530 } 5531 return CP_ACCESS_OK; 5532 } 5533 5534 #ifdef CONFIG_USER_ONLY 5535 /* 5536 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5537 * code to get around W^X restrictions, where one region is writable and the 5538 * other is executable. 5539 * 5540 * Since the executable region is never written to we cannot detect code 5541 * changes when running in user mode, and rely on the emulated JIT telling us 5542 * that the code has changed by executing this instruction. 5543 */ 5544 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5545 uint64_t value) 5546 { 5547 uint64_t icache_line_mask, start_address, end_address; 5548 const ARMCPU *cpu; 5549 5550 cpu = env_archcpu(env); 5551 5552 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5553 start_address = value & ~icache_line_mask; 5554 end_address = value | icache_line_mask; 5555 5556 mmap_lock(); 5557 5558 tb_invalidate_phys_range(start_address, end_address); 5559 5560 mmap_unlock(); 5561 } 5562 #endif 5563 5564 static const ARMCPRegInfo v8_cp_reginfo[] = { 5565 /* 5566 * Minimal set of EL0-visible registers. This will need to be expanded 5567 * significantly for system emulation of AArch64 CPUs. 5568 */ 5569 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5570 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5571 .access = PL0_RW, .type = ARM_CP_NZCV }, 5572 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5573 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5574 .type = ARM_CP_NO_RAW, 5575 .access = PL0_RW, .accessfn = aa64_daif_access, 5576 .fieldoffset = offsetof(CPUARMState, daif), 5577 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5578 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5579 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5580 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5581 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5582 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5584 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5585 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5586 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5587 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5588 .access = PL0_R, .type = ARM_CP_NO_RAW, 5589 .fgt = FGT_DCZID_EL0, 5590 .readfn = aa64_dczid_read }, 5591 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5592 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5593 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5594 #ifndef CONFIG_USER_ONLY 5595 /* Avoid overhead of an access check that always passes in user-mode */ 5596 .accessfn = aa64_zva_access, 5597 .fgt = FGT_DCZVA, 5598 #endif 5599 }, 5600 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5601 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5602 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5603 /* 5604 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5605 * don't emulate caches. 5606 */ 5607 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5608 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5609 .access = PL1_W, .type = ARM_CP_NOP, 5610 .fgt = FGT_ICIALLUIS, 5611 .accessfn = access_ticab }, 5612 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5613 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5614 .access = PL1_W, .type = ARM_CP_NOP, 5615 .fgt = FGT_ICIALLU, 5616 .accessfn = access_tocu }, 5617 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5618 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5619 .access = PL0_W, 5620 .fgt = FGT_ICIVAU, 5621 .accessfn = access_tocu, 5622 #ifdef CONFIG_USER_ONLY 5623 .type = ARM_CP_NO_RAW, 5624 .writefn = ic_ivau_write 5625 #else 5626 .type = ARM_CP_NOP 5627 #endif 5628 }, 5629 /* Cache ops: all NOPs since we don't emulate caches */ 5630 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5631 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5632 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5633 .fgt = FGT_DCIVAC, 5634 .type = ARM_CP_NOP }, 5635 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5636 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5637 .fgt = FGT_DCISW, 5638 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5639 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5640 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5641 .access = PL0_W, .type = ARM_CP_NOP, 5642 .fgt = FGT_DCCVAC, 5643 .accessfn = aa64_cacheop_poc_access }, 5644 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5645 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5646 .fgt = FGT_DCCSW, 5647 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5648 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5649 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5650 .access = PL0_W, .type = ARM_CP_NOP, 5651 .fgt = FGT_DCCVAU, 5652 .accessfn = access_tocu }, 5653 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5654 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5655 .access = PL0_W, .type = ARM_CP_NOP, 5656 .fgt = FGT_DCCIVAC, 5657 .accessfn = aa64_cacheop_poc_access }, 5658 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5659 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5660 .fgt = FGT_DCCISW, 5661 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5662 /* TLBI operations */ 5663 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5664 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5665 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5666 .fgt = FGT_TLBIVMALLE1IS, 5667 .writefn = tlbi_aa64_vmalle1is_write }, 5668 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5669 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5670 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5671 .fgt = FGT_TLBIVAE1IS, 5672 .writefn = tlbi_aa64_vae1is_write }, 5673 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5675 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5676 .fgt = FGT_TLBIASIDE1IS, 5677 .writefn = tlbi_aa64_vmalle1is_write }, 5678 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5679 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5680 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5681 .fgt = FGT_TLBIVAAE1IS, 5682 .writefn = tlbi_aa64_vae1is_write }, 5683 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5685 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5686 .fgt = FGT_TLBIVALE1IS, 5687 .writefn = tlbi_aa64_vae1is_write }, 5688 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5689 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5690 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5691 .fgt = FGT_TLBIVAALE1IS, 5692 .writefn = tlbi_aa64_vae1is_write }, 5693 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5694 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5695 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5696 .fgt = FGT_TLBIVMALLE1, 5697 .writefn = tlbi_aa64_vmalle1_write }, 5698 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5699 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5700 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5701 .fgt = FGT_TLBIVAE1, 5702 .writefn = tlbi_aa64_vae1_write }, 5703 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5704 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5705 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5706 .fgt = FGT_TLBIASIDE1, 5707 .writefn = tlbi_aa64_vmalle1_write }, 5708 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5710 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5711 .fgt = FGT_TLBIVAAE1, 5712 .writefn = tlbi_aa64_vae1_write }, 5713 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5715 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5716 .fgt = FGT_TLBIVALE1, 5717 .writefn = tlbi_aa64_vae1_write }, 5718 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5720 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5721 .fgt = FGT_TLBIVAALE1, 5722 .writefn = tlbi_aa64_vae1_write }, 5723 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5724 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5725 .access = PL2_W, .type = ARM_CP_NO_RAW, 5726 .writefn = tlbi_aa64_ipas2e1is_write }, 5727 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5728 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5729 .access = PL2_W, .type = ARM_CP_NO_RAW, 5730 .writefn = tlbi_aa64_ipas2e1is_write }, 5731 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5732 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5733 .access = PL2_W, .type = ARM_CP_NO_RAW, 5734 .writefn = tlbi_aa64_alle1is_write }, 5735 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5736 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5737 .access = PL2_W, .type = ARM_CP_NO_RAW, 5738 .writefn = tlbi_aa64_alle1is_write }, 5739 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5741 .access = PL2_W, .type = ARM_CP_NO_RAW, 5742 .writefn = tlbi_aa64_ipas2e1_write }, 5743 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5745 .access = PL2_W, .type = ARM_CP_NO_RAW, 5746 .writefn = tlbi_aa64_ipas2e1_write }, 5747 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5749 .access = PL2_W, .type = ARM_CP_NO_RAW, 5750 .writefn = tlbi_aa64_alle1_write }, 5751 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5753 .access = PL2_W, .type = ARM_CP_NO_RAW, 5754 .writefn = tlbi_aa64_alle1is_write }, 5755 #ifndef CONFIG_USER_ONLY 5756 /* 64 bit address translation operations */ 5757 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5758 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5759 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5760 .fgt = FGT_ATS1E1R, 5761 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5762 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5763 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5764 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5765 .fgt = FGT_ATS1E1W, 5766 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5767 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5768 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5769 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5770 .fgt = FGT_ATS1E0R, 5771 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5772 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5774 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5775 .fgt = FGT_ATS1E0W, 5776 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5777 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5779 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5780 .accessfn = at_e012_access, .writefn = ats_write64 }, 5781 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5782 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5783 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5784 .accessfn = at_e012_access, .writefn = ats_write64 }, 5785 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5786 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5787 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5788 .accessfn = at_e012_access, .writefn = ats_write64 }, 5789 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5791 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5792 .accessfn = at_e012_access, .writefn = ats_write64 }, 5793 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5794 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5795 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5796 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5797 .writefn = ats_write64 }, 5798 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5799 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5800 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5801 .writefn = ats_write64 }, 5802 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5803 .type = ARM_CP_ALIAS, 5804 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5805 .access = PL1_RW, .resetvalue = 0, 5806 .fgt = FGT_PAR_EL1, 5807 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5808 .writefn = par_write }, 5809 #endif 5810 /* TLB invalidate last level of translation table walk */ 5811 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5812 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5813 .writefn = tlbimva_is_write }, 5814 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5815 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5816 .writefn = tlbimvaa_is_write }, 5817 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5818 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5819 .writefn = tlbimva_write }, 5820 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5821 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5822 .writefn = tlbimvaa_write }, 5823 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5824 .type = ARM_CP_NO_RAW, .access = PL2_W, 5825 .writefn = tlbimva_hyp_write }, 5826 { .name = "TLBIMVALHIS", 5827 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5828 .type = ARM_CP_NO_RAW, .access = PL2_W, 5829 .writefn = tlbimva_hyp_is_write }, 5830 { .name = "TLBIIPAS2", 5831 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5832 .type = ARM_CP_NO_RAW, .access = PL2_W, 5833 .writefn = tlbiipas2_hyp_write }, 5834 { .name = "TLBIIPAS2IS", 5835 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5836 .type = ARM_CP_NO_RAW, .access = PL2_W, 5837 .writefn = tlbiipas2is_hyp_write }, 5838 { .name = "TLBIIPAS2L", 5839 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5840 .type = ARM_CP_NO_RAW, .access = PL2_W, 5841 .writefn = tlbiipas2_hyp_write }, 5842 { .name = "TLBIIPAS2LIS", 5843 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5844 .type = ARM_CP_NO_RAW, .access = PL2_W, 5845 .writefn = tlbiipas2is_hyp_write }, 5846 /* 32 bit cache operations */ 5847 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5848 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5849 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5850 .type = ARM_CP_NOP, .access = PL1_W }, 5851 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5852 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5853 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5854 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5855 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5856 .type = ARM_CP_NOP, .access = PL1_W }, 5857 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5858 .type = ARM_CP_NOP, .access = PL1_W }, 5859 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5860 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5861 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5862 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5863 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5864 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5865 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5867 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5868 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5869 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5870 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5871 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5872 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5873 /* MMU Domain access control / MPU write buffer control */ 5874 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5875 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5876 .writefn = dacr_write, .raw_writefn = raw_write, 5877 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5878 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5879 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5880 .type = ARM_CP_ALIAS, 5881 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5882 .access = PL1_RW, .accessfn = access_nv1, 5883 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5884 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5885 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5886 .type = ARM_CP_ALIAS, 5887 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5888 .access = PL1_RW, .accessfn = access_nv1, 5889 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5890 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5891 /* 5892 * We rely on the access checks not allowing the guest to write to the 5893 * state field when SPSel indicates that it's being used as the stack 5894 * pointer. 5895 */ 5896 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5897 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5898 .access = PL1_RW, .accessfn = sp_el0_access, 5899 .type = ARM_CP_ALIAS, 5900 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5901 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5902 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5903 .nv2_redirect_offset = 0x240, 5904 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5905 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5906 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5907 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5908 .type = ARM_CP_NO_RAW, 5909 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5910 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5911 .type = ARM_CP_ALIAS, 5912 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5913 .access = PL2_RW, 5914 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5915 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5916 .type = ARM_CP_ALIAS, 5917 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5918 .access = PL2_RW, 5919 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5920 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5921 .type = ARM_CP_ALIAS, 5922 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5923 .access = PL2_RW, 5924 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5925 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5926 .type = ARM_CP_ALIAS, 5927 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5928 .access = PL2_RW, 5929 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5930 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5931 .type = ARM_CP_IO, 5932 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5933 .resetvalue = 0, 5934 .access = PL3_RW, 5935 .writefn = mdcr_el3_write, 5936 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5937 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5938 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5939 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5940 .writefn = sdcr_write, 5941 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5942 }; 5943 5944 /* These are present only when EL1 supports AArch32 */ 5945 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5946 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5947 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5948 .access = PL2_RW, 5949 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5950 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5951 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5952 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5953 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5954 .writefn = dacr_write, .raw_writefn = raw_write, 5955 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5956 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5957 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5958 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5959 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5960 }; 5961 5962 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5963 { 5964 ARMCPU *cpu = env_archcpu(env); 5965 5966 if (arm_feature(env, ARM_FEATURE_V8)) { 5967 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5968 } else { 5969 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5970 } 5971 5972 if (arm_feature(env, ARM_FEATURE_EL3)) { 5973 valid_mask &= ~HCR_HCD; 5974 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5975 /* 5976 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5977 * However, if we're using the SMC PSCI conduit then QEMU is 5978 * effectively acting like EL3 firmware and so the guest at 5979 * EL2 should retain the ability to prevent EL1 from being 5980 * able to make SMC calls into the ersatz firmware, so in 5981 * that case HCR.TSC should be read/write. 5982 */ 5983 valid_mask &= ~HCR_TSC; 5984 } 5985 5986 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5987 if (cpu_isar_feature(aa64_vh, cpu)) { 5988 valid_mask |= HCR_E2H; 5989 } 5990 if (cpu_isar_feature(aa64_ras, cpu)) { 5991 valid_mask |= HCR_TERR | HCR_TEA; 5992 } 5993 if (cpu_isar_feature(aa64_lor, cpu)) { 5994 valid_mask |= HCR_TLOR; 5995 } 5996 if (cpu_isar_feature(aa64_pauth, cpu)) { 5997 valid_mask |= HCR_API | HCR_APK; 5998 } 5999 if (cpu_isar_feature(aa64_mte, cpu)) { 6000 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 6001 } 6002 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 6003 valid_mask |= HCR_ENSCXT; 6004 } 6005 if (cpu_isar_feature(aa64_fwb, cpu)) { 6006 valid_mask |= HCR_FWB; 6007 } 6008 if (cpu_isar_feature(aa64_rme, cpu)) { 6009 valid_mask |= HCR_GPF; 6010 } 6011 if (cpu_isar_feature(aa64_nv, cpu)) { 6012 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 6013 } 6014 if (cpu_isar_feature(aa64_nv2, cpu)) { 6015 valid_mask |= HCR_NV2; 6016 } 6017 } 6018 6019 if (cpu_isar_feature(any_evt, cpu)) { 6020 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 6021 } else if (cpu_isar_feature(any_half_evt, cpu)) { 6022 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 6023 } 6024 6025 /* Clear RES0 bits. */ 6026 value &= valid_mask; 6027 6028 /* 6029 * These bits change the MMU setup: 6030 * HCR_VM enables stage 2 translation 6031 * HCR_PTW forbids certain page-table setups 6032 * HCR_DC disables stage1 and enables stage2 translation 6033 * HCR_DCT enables tagging on (disabled) stage1 translation 6034 * HCR_FWB changes the interpretation of stage2 descriptor bits 6035 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 6036 */ 6037 if ((env->cp15.hcr_el2 ^ value) & 6038 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 6039 tlb_flush(CPU(cpu)); 6040 } 6041 env->cp15.hcr_el2 = value; 6042 6043 /* 6044 * Updates to VI and VF require us to update the status of 6045 * virtual interrupts, which are the logical OR of these bits 6046 * and the state of the input lines from the GIC. (This requires 6047 * that we have the BQL, which is done by marking the 6048 * reginfo structs as ARM_CP_IO.) 6049 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 6050 * possible for it to be taken immediately, because VIRQ and 6051 * VFIQ are masked unless running at EL0 or EL1, and HCR 6052 * can only be written at EL2. 6053 */ 6054 g_assert(bql_locked()); 6055 arm_cpu_update_virq(cpu); 6056 arm_cpu_update_vfiq(cpu); 6057 arm_cpu_update_vserr(cpu); 6058 } 6059 6060 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 6061 { 6062 do_hcr_write(env, value, 0); 6063 } 6064 6065 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 6066 uint64_t value) 6067 { 6068 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 6069 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 6070 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 6071 } 6072 6073 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 6074 uint64_t value) 6075 { 6076 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 6077 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 6078 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 6079 } 6080 6081 /* 6082 * Return the effective value of HCR_EL2, at the given security state. 6083 * Bits that are not included here: 6084 * RW (read from SCR_EL3.RW as needed) 6085 */ 6086 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 6087 { 6088 uint64_t ret = env->cp15.hcr_el2; 6089 6090 assert(space != ARMSS_Root); 6091 6092 if (!arm_is_el2_enabled_secstate(env, space)) { 6093 /* 6094 * "This register has no effect if EL2 is not enabled in the 6095 * current Security state". This is ARMv8.4-SecEL2 speak for 6096 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 6097 * 6098 * Prior to that, the language was "In an implementation that 6099 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 6100 * as if this field is 0 for all purposes other than a direct 6101 * read or write access of HCR_EL2". With lots of enumeration 6102 * on a per-field basis. In current QEMU, this is condition 6103 * is arm_is_secure_below_el3. 6104 * 6105 * Since the v8.4 language applies to the entire register, and 6106 * appears to be backward compatible, use that. 6107 */ 6108 return 0; 6109 } 6110 6111 /* 6112 * For a cpu that supports both aarch64 and aarch32, we can set bits 6113 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 6114 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 6115 */ 6116 if (!arm_el_is_aa64(env, 2)) { 6117 uint64_t aa32_valid; 6118 6119 /* 6120 * These bits are up-to-date as of ARMv8.6. 6121 * For HCR, it's easiest to list just the 2 bits that are invalid. 6122 * For HCR2, list those that are valid. 6123 */ 6124 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 6125 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 6126 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 6127 ret &= aa32_valid; 6128 } 6129 6130 if (ret & HCR_TGE) { 6131 /* These bits are up-to-date as of ARMv8.6. */ 6132 if (ret & HCR_E2H) { 6133 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 6134 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 6135 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6136 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6137 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6138 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6139 } else { 6140 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6141 } 6142 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6143 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6144 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6145 HCR_TLOR); 6146 } 6147 6148 return ret; 6149 } 6150 6151 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6152 { 6153 if (arm_feature(env, ARM_FEATURE_M)) { 6154 return 0; 6155 } 6156 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6157 } 6158 6159 /* 6160 * Corresponds to ARM pseudocode function ELIsInHost(). 6161 */ 6162 bool el_is_in_host(CPUARMState *env, int el) 6163 { 6164 uint64_t mask; 6165 6166 /* 6167 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6168 * Perform the simplest bit tests first, and validate EL2 afterward. 6169 */ 6170 if (el & 1) { 6171 return false; /* EL1 or EL3 */ 6172 } 6173 6174 /* 6175 * Note that hcr_write() checks isar_feature_aa64_vh(), 6176 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6177 */ 6178 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6179 if ((env->cp15.hcr_el2 & mask) != mask) { 6180 return false; 6181 } 6182 6183 /* TGE and/or E2H set: double check those bits are currently legal. */ 6184 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6185 } 6186 6187 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6188 uint64_t value) 6189 { 6190 uint64_t valid_mask = 0; 6191 6192 /* FEAT_MOPS adds MSCEn and MCE2 */ 6193 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6194 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6195 } 6196 6197 /* Clear RES0 bits. */ 6198 env->cp15.hcrx_el2 = value & valid_mask; 6199 } 6200 6201 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6202 bool isread) 6203 { 6204 if (arm_current_el(env) == 2 6205 && arm_feature(env, ARM_FEATURE_EL3) 6206 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6207 return CP_ACCESS_TRAP_EL3; 6208 } 6209 return CP_ACCESS_OK; 6210 } 6211 6212 static const ARMCPRegInfo hcrx_el2_reginfo = { 6213 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6214 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6215 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6216 .nv2_redirect_offset = 0xa0, 6217 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6218 }; 6219 6220 /* Return the effective value of HCRX_EL2. */ 6221 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6222 { 6223 /* 6224 * The bits in this register behave as 0 for all purposes other than 6225 * direct reads of the register if SCR_EL3.HXEn is 0. 6226 * If EL2 is not enabled in the current security state, then the 6227 * bit may behave as if 0, or as if 1, depending on the bit. 6228 * For the moment, we treat the EL2-disabled case as taking 6229 * priority over the HXEn-disabled case. This is true for the only 6230 * bit for a feature which we implement where the answer is different 6231 * for the two cases (MSCEn for FEAT_MOPS). 6232 * This may need to be revisited for future bits. 6233 */ 6234 if (!arm_is_el2_enabled(env)) { 6235 uint64_t hcrx = 0; 6236 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6237 /* MSCEn behaves as 1 if EL2 is not enabled */ 6238 hcrx |= HCRX_MSCEN; 6239 } 6240 return hcrx; 6241 } 6242 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6243 return 0; 6244 } 6245 return env->cp15.hcrx_el2; 6246 } 6247 6248 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6249 uint64_t value) 6250 { 6251 /* 6252 * For A-profile AArch32 EL3, if NSACR.CP10 6253 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6254 */ 6255 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6256 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6257 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6258 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6259 } 6260 env->cp15.cptr_el[2] = value; 6261 } 6262 6263 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6264 { 6265 /* 6266 * For A-profile AArch32 EL3, if NSACR.CP10 6267 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6268 */ 6269 uint64_t value = env->cp15.cptr_el[2]; 6270 6271 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6272 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6273 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6274 } 6275 return value; 6276 } 6277 6278 static const ARMCPRegInfo el2_cp_reginfo[] = { 6279 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6280 .type = ARM_CP_IO, 6281 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6282 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6283 .nv2_redirect_offset = 0x78, 6284 .writefn = hcr_write, .raw_writefn = raw_write }, 6285 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6286 .type = ARM_CP_ALIAS | ARM_CP_IO, 6287 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6288 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6289 .writefn = hcr_writelow }, 6290 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6291 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6292 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6293 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6294 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6295 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6296 .access = PL2_RW, 6297 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6298 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6299 .type = ARM_CP_NV2_REDIRECT, 6300 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6301 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6302 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6303 .type = ARM_CP_NV2_REDIRECT, 6304 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6305 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6306 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6307 .type = ARM_CP_ALIAS, 6308 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6309 .access = PL2_RW, 6310 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6311 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6312 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6313 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6314 .access = PL2_RW, 6315 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6316 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6317 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6318 .access = PL2_RW, .writefn = vbar_write, 6319 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6320 .resetvalue = 0 }, 6321 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6322 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6323 .access = PL3_RW, .type = ARM_CP_ALIAS, 6324 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6325 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6326 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6327 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6328 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6329 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6330 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6331 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6332 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6333 .resetvalue = 0 }, 6334 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6335 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6336 .access = PL2_RW, .type = ARM_CP_ALIAS, 6337 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6338 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6339 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6340 .access = PL2_RW, .type = ARM_CP_CONST, 6341 .resetvalue = 0 }, 6342 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6343 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6344 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6345 .access = PL2_RW, .type = ARM_CP_CONST, 6346 .resetvalue = 0 }, 6347 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6348 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6349 .access = PL2_RW, .type = ARM_CP_CONST, 6350 .resetvalue = 0 }, 6351 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6352 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6353 .access = PL2_RW, .type = ARM_CP_CONST, 6354 .resetvalue = 0 }, 6355 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6356 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6357 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6358 .raw_writefn = raw_write, 6359 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6360 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6361 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6362 .type = ARM_CP_ALIAS, 6363 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6364 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6365 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6366 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6367 .access = PL2_RW, 6368 .nv2_redirect_offset = 0x40, 6369 /* no .writefn needed as this can't cause an ASID change */ 6370 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6371 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6372 .cp = 15, .opc1 = 6, .crm = 2, 6373 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6374 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6375 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6376 .writefn = vttbr_write, .raw_writefn = raw_write }, 6377 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6378 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6379 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6380 .nv2_redirect_offset = 0x20, 6381 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6382 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6383 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6384 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6385 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6386 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6387 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6388 .access = PL2_RW, .resetvalue = 0, 6389 .nv2_redirect_offset = 0x90, 6390 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6391 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6392 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6393 .access = PL2_RW, .resetvalue = 0, 6394 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6395 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6396 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6397 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6398 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6399 { .name = "TLBIALLNSNH", 6400 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6401 .type = ARM_CP_NO_RAW, .access = PL2_W, 6402 .writefn = tlbiall_nsnh_write }, 6403 { .name = "TLBIALLNSNHIS", 6404 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6405 .type = ARM_CP_NO_RAW, .access = PL2_W, 6406 .writefn = tlbiall_nsnh_is_write }, 6407 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6408 .type = ARM_CP_NO_RAW, .access = PL2_W, 6409 .writefn = tlbiall_hyp_write }, 6410 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6411 .type = ARM_CP_NO_RAW, .access = PL2_W, 6412 .writefn = tlbiall_hyp_is_write }, 6413 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6414 .type = ARM_CP_NO_RAW, .access = PL2_W, 6415 .writefn = tlbimva_hyp_write }, 6416 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6417 .type = ARM_CP_NO_RAW, .access = PL2_W, 6418 .writefn = tlbimva_hyp_is_write }, 6419 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6420 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6421 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6422 .writefn = tlbi_aa64_alle2_write }, 6423 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6424 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6425 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6426 .writefn = tlbi_aa64_vae2_write }, 6427 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6428 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6429 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6430 .writefn = tlbi_aa64_vae2_write }, 6431 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6432 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6433 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6434 .writefn = tlbi_aa64_alle2is_write }, 6435 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6436 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6437 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6438 .writefn = tlbi_aa64_vae2is_write }, 6439 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6440 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6441 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6442 .writefn = tlbi_aa64_vae2is_write }, 6443 #ifndef CONFIG_USER_ONLY 6444 /* 6445 * Unlike the other EL2-related AT operations, these must 6446 * UNDEF from EL3 if EL2 is not implemented, which is why we 6447 * define them here rather than with the rest of the AT ops. 6448 */ 6449 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6450 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6451 .access = PL2_W, .accessfn = at_s1e2_access, 6452 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6453 .writefn = ats_write64 }, 6454 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6455 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6456 .access = PL2_W, .accessfn = at_s1e2_access, 6457 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6458 .writefn = ats_write64 }, 6459 /* 6460 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6461 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6462 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6463 * to behave as if SCR.NS was 1. 6464 */ 6465 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6466 .access = PL2_W, 6467 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6468 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6469 .access = PL2_W, 6470 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6471 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6472 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6473 /* 6474 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6475 * reset values as IMPDEF. We choose to reset to 3 to comply with 6476 * both ARMv7 and ARMv8. 6477 */ 6478 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6479 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6480 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6481 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6482 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6483 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6484 .writefn = gt_cntvoff_write, 6485 .nv2_redirect_offset = 0x60, 6486 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6487 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6488 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6489 .writefn = gt_cntvoff_write, 6490 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6491 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6492 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6493 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6494 .type = ARM_CP_IO, .access = PL2_RW, 6495 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6496 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6497 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6498 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6499 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6500 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6501 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6502 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6503 .resetfn = gt_hyp_timer_reset, 6504 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6505 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6506 .type = ARM_CP_IO, 6507 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6508 .access = PL2_RW, 6509 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6510 .resetvalue = 0, 6511 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6512 #endif 6513 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6514 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6515 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6516 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6517 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6518 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6519 .access = PL2_RW, 6520 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6521 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6522 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6523 .access = PL2_RW, 6524 .nv2_redirect_offset = 0x80, 6525 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6526 }; 6527 6528 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6529 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6530 .type = ARM_CP_ALIAS | ARM_CP_IO, 6531 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6532 .access = PL2_RW, 6533 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6534 .writefn = hcr_writehigh }, 6535 }; 6536 6537 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6538 bool isread) 6539 { 6540 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6541 return CP_ACCESS_OK; 6542 } 6543 return CP_ACCESS_TRAP_UNCATEGORIZED; 6544 } 6545 6546 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6547 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6548 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6549 .access = PL2_RW, .accessfn = sel2_access, 6550 .nv2_redirect_offset = 0x30, 6551 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6552 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6553 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6554 .access = PL2_RW, .accessfn = sel2_access, 6555 .nv2_redirect_offset = 0x48, 6556 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6557 }; 6558 6559 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6560 bool isread) 6561 { 6562 /* 6563 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6564 * At Secure EL1 it traps to EL3 or EL2. 6565 */ 6566 if (arm_current_el(env) == 3) { 6567 return CP_ACCESS_OK; 6568 } 6569 if (arm_is_secure_below_el3(env)) { 6570 if (env->cp15.scr_el3 & SCR_EEL2) { 6571 return CP_ACCESS_TRAP_EL2; 6572 } 6573 return CP_ACCESS_TRAP_EL3; 6574 } 6575 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6576 if (isread) { 6577 return CP_ACCESS_OK; 6578 } 6579 return CP_ACCESS_TRAP_UNCATEGORIZED; 6580 } 6581 6582 static const ARMCPRegInfo el3_cp_reginfo[] = { 6583 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6584 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6585 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6586 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6587 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6588 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6589 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6590 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6591 .writefn = scr_write, .raw_writefn = raw_write }, 6592 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6593 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6594 .access = PL3_RW, .resetvalue = 0, 6595 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6596 { .name = "SDER", 6597 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6598 .access = PL3_RW, .resetvalue = 0, 6599 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6600 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6601 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6602 .writefn = vbar_write, .resetvalue = 0, 6603 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6604 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6605 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6606 .access = PL3_RW, .resetvalue = 0, 6607 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6608 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6609 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6610 .access = PL3_RW, 6611 /* no .writefn needed as this can't cause an ASID change */ 6612 .resetvalue = 0, 6613 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6614 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6615 .type = ARM_CP_ALIAS, 6616 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6617 .access = PL3_RW, 6618 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6619 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6620 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6621 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6622 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6623 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6624 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6625 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6626 .type = ARM_CP_ALIAS, 6627 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6628 .access = PL3_RW, 6629 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6630 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6631 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6632 .access = PL3_RW, .writefn = vbar_write, 6633 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6634 .resetvalue = 0 }, 6635 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6636 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6637 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6638 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6639 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6640 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6641 .access = PL3_RW, .resetvalue = 0, 6642 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6643 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6644 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6645 .access = PL3_RW, .type = ARM_CP_CONST, 6646 .resetvalue = 0 }, 6647 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6648 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6649 .access = PL3_RW, .type = ARM_CP_CONST, 6650 .resetvalue = 0 }, 6651 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6652 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6653 .access = PL3_RW, .type = ARM_CP_CONST, 6654 .resetvalue = 0 }, 6655 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6656 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6657 .access = PL3_W, .type = ARM_CP_NO_RAW, 6658 .writefn = tlbi_aa64_alle3is_write }, 6659 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6660 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6661 .access = PL3_W, .type = ARM_CP_NO_RAW, 6662 .writefn = tlbi_aa64_vae3is_write }, 6663 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6664 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6665 .access = PL3_W, .type = ARM_CP_NO_RAW, 6666 .writefn = tlbi_aa64_vae3is_write }, 6667 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6668 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6669 .access = PL3_W, .type = ARM_CP_NO_RAW, 6670 .writefn = tlbi_aa64_alle3_write }, 6671 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6672 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6673 .access = PL3_W, .type = ARM_CP_NO_RAW, 6674 .writefn = tlbi_aa64_vae3_write }, 6675 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6677 .access = PL3_W, .type = ARM_CP_NO_RAW, 6678 .writefn = tlbi_aa64_vae3_write }, 6679 }; 6680 6681 #ifndef CONFIG_USER_ONLY 6682 6683 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6684 bool isread) 6685 { 6686 if (arm_current_el(env) == 1) { 6687 /* This must be a FEAT_NV access */ 6688 return CP_ACCESS_OK; 6689 } 6690 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6691 return CP_ACCESS_TRAP_UNCATEGORIZED; 6692 } 6693 return CP_ACCESS_OK; 6694 } 6695 6696 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6697 bool isread) 6698 { 6699 if (arm_current_el(env) == 1) { 6700 /* This must be a FEAT_NV access with NVx == 101 */ 6701 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6702 return CP_ACCESS_TRAP_EL2; 6703 } 6704 } 6705 return e2h_access(env, ri, isread); 6706 } 6707 6708 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6709 bool isread) 6710 { 6711 if (arm_current_el(env) == 1) { 6712 /* This must be a FEAT_NV access with NVx == 101 */ 6713 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6714 return CP_ACCESS_TRAP_EL2; 6715 } 6716 } 6717 return e2h_access(env, ri, isread); 6718 } 6719 6720 /* Test if system register redirection is to occur in the current state. */ 6721 static bool redirect_for_e2h(CPUARMState *env) 6722 { 6723 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6724 } 6725 6726 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6727 { 6728 CPReadFn *readfn; 6729 6730 if (redirect_for_e2h(env)) { 6731 /* Switch to the saved EL2 version of the register. */ 6732 ri = ri->opaque; 6733 readfn = ri->readfn; 6734 } else { 6735 readfn = ri->orig_readfn; 6736 } 6737 if (readfn == NULL) { 6738 readfn = raw_read; 6739 } 6740 return readfn(env, ri); 6741 } 6742 6743 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6744 uint64_t value) 6745 { 6746 CPWriteFn *writefn; 6747 6748 if (redirect_for_e2h(env)) { 6749 /* Switch to the saved EL2 version of the register. */ 6750 ri = ri->opaque; 6751 writefn = ri->writefn; 6752 } else { 6753 writefn = ri->orig_writefn; 6754 } 6755 if (writefn == NULL) { 6756 writefn = raw_write; 6757 } 6758 writefn(env, ri, value); 6759 } 6760 6761 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6762 { 6763 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6764 return ri->orig_readfn(env, ri->opaque); 6765 } 6766 6767 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6768 uint64_t value) 6769 { 6770 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6771 return ri->orig_writefn(env, ri->opaque, value); 6772 } 6773 6774 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6775 const ARMCPRegInfo *ri, 6776 bool isread) 6777 { 6778 if (arm_current_el(env) == 1) { 6779 /* 6780 * This must be a FEAT_NV access (will either trap or redirect 6781 * to memory). None of the registers with _EL12 aliases want to 6782 * apply their trap controls for this kind of access, so don't 6783 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6784 */ 6785 return CP_ACCESS_OK; 6786 } 6787 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6788 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6789 return CP_ACCESS_TRAP_UNCATEGORIZED; 6790 } 6791 if (ri->orig_accessfn) { 6792 return ri->orig_accessfn(env, ri->opaque, isread); 6793 } 6794 return CP_ACCESS_OK; 6795 } 6796 6797 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6798 { 6799 struct E2HAlias { 6800 uint32_t src_key, dst_key, new_key; 6801 const char *src_name, *dst_name, *new_name; 6802 bool (*feature)(const ARMISARegisters *id); 6803 }; 6804 6805 #define K(op0, op1, crn, crm, op2) \ 6806 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6807 6808 static const struct E2HAlias aliases[] = { 6809 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6810 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6811 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6812 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6813 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6814 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6815 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6816 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6817 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6818 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6819 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6820 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6821 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6822 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6823 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6824 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6825 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6826 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6827 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6828 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6829 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6830 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6831 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6832 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6833 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6834 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6835 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6836 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6837 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6838 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6839 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6840 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6841 6842 /* 6843 * Note that redirection of ZCR is mentioned in the description 6844 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6845 * not in the summary table. 6846 */ 6847 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6848 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6849 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6850 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6851 6852 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6853 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6854 6855 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6856 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6857 isar_feature_aa64_scxtnum }, 6858 6859 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6860 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6861 }; 6862 #undef K 6863 6864 size_t i; 6865 6866 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6867 const struct E2HAlias *a = &aliases[i]; 6868 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6869 bool ok; 6870 6871 if (a->feature && !a->feature(&cpu->isar)) { 6872 continue; 6873 } 6874 6875 src_reg = g_hash_table_lookup(cpu->cp_regs, 6876 (gpointer)(uintptr_t)a->src_key); 6877 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6878 (gpointer)(uintptr_t)a->dst_key); 6879 g_assert(src_reg != NULL); 6880 g_assert(dst_reg != NULL); 6881 6882 /* Cross-compare names to detect typos in the keys. */ 6883 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6884 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6885 6886 /* None of the core system registers use opaque; we will. */ 6887 g_assert(src_reg->opaque == NULL); 6888 6889 /* Create alias before redirection so we dup the right data. */ 6890 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6891 6892 new_reg->name = a->new_name; 6893 new_reg->type |= ARM_CP_ALIAS; 6894 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6895 new_reg->access &= PL2_RW | PL3_RW; 6896 /* The new_reg op fields are as per new_key, not the target reg */ 6897 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6898 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6899 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6900 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6901 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6902 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6903 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6904 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6905 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6906 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6907 new_reg->opaque = src_reg; 6908 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6909 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6910 new_reg->orig_accessfn = src_reg->accessfn; 6911 if (!new_reg->raw_readfn) { 6912 new_reg->raw_readfn = raw_read; 6913 } 6914 if (!new_reg->raw_writefn) { 6915 new_reg->raw_writefn = raw_write; 6916 } 6917 new_reg->readfn = el2_e2h_e12_read; 6918 new_reg->writefn = el2_e2h_e12_write; 6919 new_reg->accessfn = el2_e2h_e12_access; 6920 6921 /* 6922 * If the _EL1 register is redirected to memory by FEAT_NV2, 6923 * then it shares the offset with the _EL12 register, 6924 * and which one is redirected depends on HCR_EL2.NV1. 6925 */ 6926 if (new_reg->nv2_redirect_offset) { 6927 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6928 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6929 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6930 } 6931 6932 ok = g_hash_table_insert(cpu->cp_regs, 6933 (gpointer)(uintptr_t)a->new_key, new_reg); 6934 g_assert(ok); 6935 6936 src_reg->opaque = dst_reg; 6937 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6938 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6939 if (!src_reg->raw_readfn) { 6940 src_reg->raw_readfn = raw_read; 6941 } 6942 if (!src_reg->raw_writefn) { 6943 src_reg->raw_writefn = raw_write; 6944 } 6945 src_reg->readfn = el2_e2h_read; 6946 src_reg->writefn = el2_e2h_write; 6947 } 6948 } 6949 #endif 6950 6951 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6952 bool isread) 6953 { 6954 int cur_el = arm_current_el(env); 6955 6956 if (cur_el < 2) { 6957 uint64_t hcr = arm_hcr_el2_eff(env); 6958 6959 if (cur_el == 0) { 6960 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6961 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6962 return CP_ACCESS_TRAP_EL2; 6963 } 6964 } else { 6965 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6966 return CP_ACCESS_TRAP; 6967 } 6968 if (hcr & HCR_TID2) { 6969 return CP_ACCESS_TRAP_EL2; 6970 } 6971 } 6972 } else if (hcr & HCR_TID2) { 6973 return CP_ACCESS_TRAP_EL2; 6974 } 6975 } 6976 6977 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6978 return CP_ACCESS_TRAP_EL2; 6979 } 6980 6981 return CP_ACCESS_OK; 6982 } 6983 6984 /* 6985 * Check for traps to RAS registers, which are controlled 6986 * by HCR_EL2.TERR and SCR_EL3.TERR. 6987 */ 6988 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6989 bool isread) 6990 { 6991 int el = arm_current_el(env); 6992 6993 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6994 return CP_ACCESS_TRAP_EL2; 6995 } 6996 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6997 return CP_ACCESS_TRAP_EL3; 6998 } 6999 return CP_ACCESS_OK; 7000 } 7001 7002 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 7003 { 7004 int el = arm_current_el(env); 7005 7006 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7007 return env->cp15.vdisr_el2; 7008 } 7009 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7010 return 0; /* RAZ/WI */ 7011 } 7012 return env->cp15.disr_el1; 7013 } 7014 7015 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7016 { 7017 int el = arm_current_el(env); 7018 7019 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7020 env->cp15.vdisr_el2 = val; 7021 return; 7022 } 7023 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7024 return; /* RAZ/WI */ 7025 } 7026 env->cp15.disr_el1 = val; 7027 } 7028 7029 /* 7030 * Minimal RAS implementation with no Error Records. 7031 * Which means that all of the Error Record registers: 7032 * ERXADDR_EL1 7033 * ERXCTLR_EL1 7034 * ERXFR_EL1 7035 * ERXMISC0_EL1 7036 * ERXMISC1_EL1 7037 * ERXMISC2_EL1 7038 * ERXMISC3_EL1 7039 * ERXPFGCDN_EL1 (RASv1p1) 7040 * ERXPFGCTL_EL1 (RASv1p1) 7041 * ERXPFGF_EL1 (RASv1p1) 7042 * ERXSTATUS_EL1 7043 * and 7044 * ERRSELR_EL1 7045 * may generate UNDEFINED, which is the effect we get by not 7046 * listing them at all. 7047 * 7048 * These registers have fine-grained trap bits, but UNDEF-to-EL1 7049 * is higher priority than FGT-to-EL2 so we do not need to list them 7050 * in order to check for an FGT. 7051 */ 7052 static const ARMCPRegInfo minimal_ras_reginfo[] = { 7053 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 7054 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 7055 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 7056 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 7057 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 7058 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 7059 .access = PL1_R, .accessfn = access_terr, 7060 .fgt = FGT_ERRIDR_EL1, 7061 .type = ARM_CP_CONST, .resetvalue = 0 }, 7062 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 7063 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 7064 .nv2_redirect_offset = 0x500, 7065 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 7066 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 7067 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 7068 .nv2_redirect_offset = 0x508, 7069 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 7070 }; 7071 7072 /* 7073 * Return the exception level to which exceptions should be taken 7074 * via SVEAccessTrap. This excludes the check for whether the exception 7075 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 7076 * be found by testing 0 < fp_exception_el < sve_exception_el. 7077 * 7078 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 7079 * pseudocode does *not* separate out the FP trap checks, but has them 7080 * all in one function. 7081 */ 7082 int sve_exception_el(CPUARMState *env, int el) 7083 { 7084 #ifndef CONFIG_USER_ONLY 7085 if (el <= 1 && !el_is_in_host(env, el)) { 7086 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 7087 case 1: 7088 if (el != 0) { 7089 break; 7090 } 7091 /* fall through */ 7092 case 0: 7093 case 2: 7094 return 1; 7095 } 7096 } 7097 7098 if (el <= 2 && arm_is_el2_enabled(env)) { 7099 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7100 if (env->cp15.hcr_el2 & HCR_E2H) { 7101 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 7102 case 1: 7103 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7104 break; 7105 } 7106 /* fall through */ 7107 case 0: 7108 case 2: 7109 return 2; 7110 } 7111 } else { 7112 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 7113 return 2; 7114 } 7115 } 7116 } 7117 7118 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 7119 if (arm_feature(env, ARM_FEATURE_EL3) 7120 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 7121 return 3; 7122 } 7123 #endif 7124 return 0; 7125 } 7126 7127 /* 7128 * Return the exception level to which exceptions should be taken for SME. 7129 * C.f. the ARM pseudocode function CheckSMEAccess. 7130 */ 7131 int sme_exception_el(CPUARMState *env, int el) 7132 { 7133 #ifndef CONFIG_USER_ONLY 7134 if (el <= 1 && !el_is_in_host(env, el)) { 7135 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 7136 case 1: 7137 if (el != 0) { 7138 break; 7139 } 7140 /* fall through */ 7141 case 0: 7142 case 2: 7143 return 1; 7144 } 7145 } 7146 7147 if (el <= 2 && arm_is_el2_enabled(env)) { 7148 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7149 if (env->cp15.hcr_el2 & HCR_E2H) { 7150 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 7151 case 1: 7152 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7153 break; 7154 } 7155 /* fall through */ 7156 case 0: 7157 case 2: 7158 return 2; 7159 } 7160 } else { 7161 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7162 return 2; 7163 } 7164 } 7165 } 7166 7167 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7168 if (arm_feature(env, ARM_FEATURE_EL3) 7169 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7170 return 3; 7171 } 7172 #endif 7173 return 0; 7174 } 7175 7176 /* 7177 * Given that SVE is enabled, return the vector length for EL. 7178 */ 7179 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7180 { 7181 ARMCPU *cpu = env_archcpu(env); 7182 uint64_t *cr = env->vfp.zcr_el; 7183 uint32_t map = cpu->sve_vq.map; 7184 uint32_t len = ARM_MAX_VQ - 1; 7185 7186 if (sm) { 7187 cr = env->vfp.smcr_el; 7188 map = cpu->sme_vq.map; 7189 } 7190 7191 if (el <= 1 && !el_is_in_host(env, el)) { 7192 len = MIN(len, 0xf & (uint32_t)cr[1]); 7193 } 7194 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7195 len = MIN(len, 0xf & (uint32_t)cr[2]); 7196 } 7197 if (arm_feature(env, ARM_FEATURE_EL3)) { 7198 len = MIN(len, 0xf & (uint32_t)cr[3]); 7199 } 7200 7201 map &= MAKE_64BIT_MASK(0, len + 1); 7202 if (map != 0) { 7203 return 31 - clz32(map); 7204 } 7205 7206 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7207 assert(sm); 7208 return ctz32(cpu->sme_vq.map); 7209 } 7210 7211 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7212 { 7213 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7214 } 7215 7216 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7217 uint64_t value) 7218 { 7219 int cur_el = arm_current_el(env); 7220 int old_len = sve_vqm1_for_el(env, cur_el); 7221 int new_len; 7222 7223 /* Bits other than [3:0] are RAZ/WI. */ 7224 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7225 raw_write(env, ri, value & 0xf); 7226 7227 /* 7228 * Because we arrived here, we know both FP and SVE are enabled; 7229 * otherwise we would have trapped access to the ZCR_ELn register. 7230 */ 7231 new_len = sve_vqm1_for_el(env, cur_el); 7232 if (new_len < old_len) { 7233 aarch64_sve_narrow_vq(env, new_len + 1); 7234 } 7235 } 7236 7237 static const ARMCPRegInfo zcr_reginfo[] = { 7238 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7239 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7240 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7241 .access = PL1_RW, .type = ARM_CP_SVE, 7242 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7243 .writefn = zcr_write, .raw_writefn = raw_write }, 7244 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7245 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7246 .access = PL2_RW, .type = ARM_CP_SVE, 7247 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7248 .writefn = zcr_write, .raw_writefn = raw_write }, 7249 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7250 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7251 .access = PL3_RW, .type = ARM_CP_SVE, 7252 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7253 .writefn = zcr_write, .raw_writefn = raw_write }, 7254 }; 7255 7256 #ifdef TARGET_AARCH64 7257 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7258 bool isread) 7259 { 7260 int el = arm_current_el(env); 7261 7262 if (el == 0) { 7263 uint64_t sctlr = arm_sctlr(env, el); 7264 if (!(sctlr & SCTLR_EnTP2)) { 7265 return CP_ACCESS_TRAP; 7266 } 7267 } 7268 /* TODO: FEAT_FGT */ 7269 if (el < 3 7270 && arm_feature(env, ARM_FEATURE_EL3) 7271 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7272 return CP_ACCESS_TRAP_EL3; 7273 } 7274 return CP_ACCESS_OK; 7275 } 7276 7277 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7278 bool isread) 7279 { 7280 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7281 if (arm_current_el(env) == 2 7282 && arm_feature(env, ARM_FEATURE_EL3) 7283 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7284 return CP_ACCESS_TRAP_EL3; 7285 } 7286 return CP_ACCESS_OK; 7287 } 7288 7289 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7290 bool isread) 7291 { 7292 if (arm_current_el(env) < 3 7293 && arm_feature(env, ARM_FEATURE_EL3) 7294 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7295 return CP_ACCESS_TRAP_EL3; 7296 } 7297 return CP_ACCESS_OK; 7298 } 7299 7300 /* ResetSVEState */ 7301 static void arm_reset_sve_state(CPUARMState *env) 7302 { 7303 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7304 /* Recall that FFR is stored as pregs[16]. */ 7305 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7306 vfp_set_fpcr(env, 0x0800009f); 7307 } 7308 7309 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7310 { 7311 uint64_t change = (env->svcr ^ new) & mask; 7312 7313 if (change == 0) { 7314 return; 7315 } 7316 env->svcr ^= change; 7317 7318 if (change & R_SVCR_SM_MASK) { 7319 arm_reset_sve_state(env); 7320 } 7321 7322 /* 7323 * ResetSMEState. 7324 * 7325 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7326 * on enable: while disabled, the storage is inaccessible and the 7327 * value does not matter. We're not saving the storage in vmstate 7328 * when disabled either. 7329 */ 7330 if (change & new & R_SVCR_ZA_MASK) { 7331 memset(env->zarray, 0, sizeof(env->zarray)); 7332 } 7333 7334 if (tcg_enabled()) { 7335 arm_rebuild_hflags(env); 7336 } 7337 } 7338 7339 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7340 uint64_t value) 7341 { 7342 aarch64_set_svcr(env, value, -1); 7343 } 7344 7345 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7346 uint64_t value) 7347 { 7348 int cur_el = arm_current_el(env); 7349 int old_len = sve_vqm1_for_el(env, cur_el); 7350 int new_len; 7351 7352 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7353 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7354 raw_write(env, ri, value); 7355 7356 /* 7357 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7358 * when SVL is widened (old values kept, or zeros). Choose to keep the 7359 * current values for simplicity. But for QEMU internals, we must still 7360 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7361 * above aarch64_sve_narrow_vq. 7362 */ 7363 new_len = sve_vqm1_for_el(env, cur_el); 7364 if (new_len < old_len) { 7365 aarch64_sve_narrow_vq(env, new_len + 1); 7366 } 7367 } 7368 7369 static const ARMCPRegInfo sme_reginfo[] = { 7370 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7371 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7372 .access = PL0_RW, .accessfn = access_tpidr2, 7373 .fgt = FGT_NTPIDR2_EL0, 7374 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7375 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7376 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7377 .access = PL0_RW, .type = ARM_CP_SME, 7378 .fieldoffset = offsetof(CPUARMState, svcr), 7379 .writefn = svcr_write, .raw_writefn = raw_write }, 7380 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7382 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7383 .access = PL1_RW, .type = ARM_CP_SME, 7384 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7385 .writefn = smcr_write, .raw_writefn = raw_write }, 7386 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7387 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7388 .access = PL2_RW, .type = ARM_CP_SME, 7389 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7390 .writefn = smcr_write, .raw_writefn = raw_write }, 7391 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7392 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7393 .access = PL3_RW, .type = ARM_CP_SME, 7394 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7395 .writefn = smcr_write, .raw_writefn = raw_write }, 7396 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7397 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7398 .access = PL1_R, .accessfn = access_aa64_tid1, 7399 /* 7400 * IMPLEMENTOR = 0 (software) 7401 * REVISION = 0 (implementation defined) 7402 * SMPS = 0 (no streaming execution priority in QEMU) 7403 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7404 */ 7405 .type = ARM_CP_CONST, .resetvalue = 0, }, 7406 /* 7407 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7408 */ 7409 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7410 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7411 .access = PL1_RW, .accessfn = access_smpri, 7412 .fgt = FGT_NSMPRI_EL1, 7413 .type = ARM_CP_CONST, .resetvalue = 0 }, 7414 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7415 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7416 .nv2_redirect_offset = 0x1f8, 7417 .access = PL2_RW, .accessfn = access_smprimap, 7418 .type = ARM_CP_CONST, .resetvalue = 0 }, 7419 }; 7420 7421 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7422 uint64_t value) 7423 { 7424 CPUState *cs = env_cpu(env); 7425 7426 tlb_flush(cs); 7427 } 7428 7429 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7430 uint64_t value) 7431 { 7432 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7433 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7434 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7435 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7436 7437 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7438 } 7439 7440 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7441 { 7442 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7443 env_archcpu(env)->reset_l0gptsz); 7444 } 7445 7446 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7447 uint64_t value) 7448 { 7449 CPUState *cs = env_cpu(env); 7450 7451 tlb_flush_all_cpus_synced(cs); 7452 } 7453 7454 static const ARMCPRegInfo rme_reginfo[] = { 7455 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7456 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7457 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7458 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7459 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7460 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7461 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7462 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7464 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7465 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7466 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7467 .access = PL3_W, .type = ARM_CP_NO_RAW, 7468 .writefn = tlbi_aa64_paall_write }, 7469 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7471 .access = PL3_W, .type = ARM_CP_NO_RAW, 7472 .writefn = tlbi_aa64_paallos_write }, 7473 /* 7474 * QEMU does not have a way to invalidate by physical address, thus 7475 * invalidating a range of physical addresses is accomplished by 7476 * flushing all tlb entries in the outer shareable domain, 7477 * just like PAALLOS. 7478 */ 7479 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7481 .access = PL3_W, .type = ARM_CP_NO_RAW, 7482 .writefn = tlbi_aa64_paallos_write }, 7483 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7484 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7485 .access = PL3_W, .type = ARM_CP_NO_RAW, 7486 .writefn = tlbi_aa64_paallos_write }, 7487 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7488 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7489 .access = PL3_W, .type = ARM_CP_NOP }, 7490 }; 7491 7492 static const ARMCPRegInfo rme_mte_reginfo[] = { 7493 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7494 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7495 .access = PL3_W, .type = ARM_CP_NOP }, 7496 }; 7497 #endif /* TARGET_AARCH64 */ 7498 7499 static void define_pmu_regs(ARMCPU *cpu) 7500 { 7501 /* 7502 * v7 performance monitor control register: same implementor 7503 * field as main ID register, and we implement four counters in 7504 * addition to the cycle count register. 7505 */ 7506 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7507 ARMCPRegInfo pmcr = { 7508 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7509 .access = PL0_RW, 7510 .fgt = FGT_PMCR_EL0, 7511 .type = ARM_CP_IO | ARM_CP_ALIAS, 7512 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7513 .accessfn = pmreg_access, 7514 .readfn = pmcr_read, .raw_readfn = raw_read, 7515 .writefn = pmcr_write, .raw_writefn = raw_write, 7516 }; 7517 ARMCPRegInfo pmcr64 = { 7518 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7520 .access = PL0_RW, .accessfn = pmreg_access, 7521 .fgt = FGT_PMCR_EL0, 7522 .type = ARM_CP_IO, 7523 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7524 .resetvalue = cpu->isar.reset_pmcr_el0, 7525 .readfn = pmcr_read, .raw_readfn = raw_read, 7526 .writefn = pmcr_write, .raw_writefn = raw_write, 7527 }; 7528 7529 define_one_arm_cp_reg(cpu, &pmcr); 7530 define_one_arm_cp_reg(cpu, &pmcr64); 7531 for (i = 0; i < pmcrn; i++) { 7532 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7533 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7534 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7535 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7536 ARMCPRegInfo pmev_regs[] = { 7537 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7538 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7539 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7540 .fgt = FGT_PMEVCNTRN_EL0, 7541 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7542 .accessfn = pmreg_access_xevcntr }, 7543 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7544 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7545 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7546 .type = ARM_CP_IO, 7547 .fgt = FGT_PMEVCNTRN_EL0, 7548 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7549 .raw_readfn = pmevcntr_rawread, 7550 .raw_writefn = pmevcntr_rawwrite }, 7551 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7552 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7553 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7554 .fgt = FGT_PMEVTYPERN_EL0, 7555 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7556 .accessfn = pmreg_access }, 7557 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7558 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7559 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7560 .fgt = FGT_PMEVTYPERN_EL0, 7561 .type = ARM_CP_IO, 7562 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7563 .raw_writefn = pmevtyper_rawwrite }, 7564 }; 7565 define_arm_cp_regs(cpu, pmev_regs); 7566 g_free(pmevcntr_name); 7567 g_free(pmevcntr_el0_name); 7568 g_free(pmevtyper_name); 7569 g_free(pmevtyper_el0_name); 7570 } 7571 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7572 ARMCPRegInfo v81_pmu_regs[] = { 7573 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7574 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7575 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7576 .fgt = FGT_PMCEIDN_EL0, 7577 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7578 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7579 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7580 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7581 .fgt = FGT_PMCEIDN_EL0, 7582 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7583 }; 7584 define_arm_cp_regs(cpu, v81_pmu_regs); 7585 } 7586 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7587 static const ARMCPRegInfo v84_pmmir = { 7588 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7589 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7590 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7591 .fgt = FGT_PMMIR_EL1, 7592 .resetvalue = 0 7593 }; 7594 define_one_arm_cp_reg(cpu, &v84_pmmir); 7595 } 7596 } 7597 7598 #ifndef CONFIG_USER_ONLY 7599 /* 7600 * We don't know until after realize whether there's a GICv3 7601 * attached, and that is what registers the gicv3 sysregs. 7602 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7603 * at runtime. 7604 */ 7605 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7606 { 7607 ARMCPU *cpu = env_archcpu(env); 7608 uint64_t pfr1 = cpu->isar.id_pfr1; 7609 7610 if (env->gicv3state) { 7611 pfr1 |= 1 << 28; 7612 } 7613 return pfr1; 7614 } 7615 7616 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7617 { 7618 ARMCPU *cpu = env_archcpu(env); 7619 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7620 7621 if (env->gicv3state) { 7622 pfr0 |= 1 << 24; 7623 } 7624 return pfr0; 7625 } 7626 #endif 7627 7628 /* 7629 * Shared logic between LORID and the rest of the LOR* registers. 7630 * Secure state exclusion has already been dealt with. 7631 */ 7632 static CPAccessResult access_lor_ns(CPUARMState *env, 7633 const ARMCPRegInfo *ri, bool isread) 7634 { 7635 int el = arm_current_el(env); 7636 7637 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7638 return CP_ACCESS_TRAP_EL2; 7639 } 7640 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7641 return CP_ACCESS_TRAP_EL3; 7642 } 7643 return CP_ACCESS_OK; 7644 } 7645 7646 static CPAccessResult access_lor_other(CPUARMState *env, 7647 const ARMCPRegInfo *ri, bool isread) 7648 { 7649 if (arm_is_secure_below_el3(env)) { 7650 /* Access denied in secure mode. */ 7651 return CP_ACCESS_TRAP; 7652 } 7653 return access_lor_ns(env, ri, isread); 7654 } 7655 7656 /* 7657 * A trivial implementation of ARMv8.1-LOR leaves all of these 7658 * registers fixed at 0, which indicates that there are zero 7659 * supported Limited Ordering regions. 7660 */ 7661 static const ARMCPRegInfo lor_reginfo[] = { 7662 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7663 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7664 .access = PL1_RW, .accessfn = access_lor_other, 7665 .fgt = FGT_LORSA_EL1, 7666 .type = ARM_CP_CONST, .resetvalue = 0 }, 7667 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7668 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7669 .access = PL1_RW, .accessfn = access_lor_other, 7670 .fgt = FGT_LOREA_EL1, 7671 .type = ARM_CP_CONST, .resetvalue = 0 }, 7672 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7673 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7674 .access = PL1_RW, .accessfn = access_lor_other, 7675 .fgt = FGT_LORN_EL1, 7676 .type = ARM_CP_CONST, .resetvalue = 0 }, 7677 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7678 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7679 .access = PL1_RW, .accessfn = access_lor_other, 7680 .fgt = FGT_LORC_EL1, 7681 .type = ARM_CP_CONST, .resetvalue = 0 }, 7682 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7683 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7684 .access = PL1_R, .accessfn = access_lor_ns, 7685 .fgt = FGT_LORID_EL1, 7686 .type = ARM_CP_CONST, .resetvalue = 0 }, 7687 }; 7688 7689 #ifdef TARGET_AARCH64 7690 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7691 bool isread) 7692 { 7693 int el = arm_current_el(env); 7694 7695 if (el < 2 && 7696 arm_is_el2_enabled(env) && 7697 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7698 return CP_ACCESS_TRAP_EL2; 7699 } 7700 if (el < 3 && 7701 arm_feature(env, ARM_FEATURE_EL3) && 7702 !(env->cp15.scr_el3 & SCR_APK)) { 7703 return CP_ACCESS_TRAP_EL3; 7704 } 7705 return CP_ACCESS_OK; 7706 } 7707 7708 static const ARMCPRegInfo pauth_reginfo[] = { 7709 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7710 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7711 .access = PL1_RW, .accessfn = access_pauth, 7712 .fgt = FGT_APDAKEY, 7713 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7714 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7715 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7716 .access = PL1_RW, .accessfn = access_pauth, 7717 .fgt = FGT_APDAKEY, 7718 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7719 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7721 .access = PL1_RW, .accessfn = access_pauth, 7722 .fgt = FGT_APDBKEY, 7723 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7724 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7726 .access = PL1_RW, .accessfn = access_pauth, 7727 .fgt = FGT_APDBKEY, 7728 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7729 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7731 .access = PL1_RW, .accessfn = access_pauth, 7732 .fgt = FGT_APGAKEY, 7733 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7734 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7736 .access = PL1_RW, .accessfn = access_pauth, 7737 .fgt = FGT_APGAKEY, 7738 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7739 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7741 .access = PL1_RW, .accessfn = access_pauth, 7742 .fgt = FGT_APIAKEY, 7743 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7744 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7746 .access = PL1_RW, .accessfn = access_pauth, 7747 .fgt = FGT_APIAKEY, 7748 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7749 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7751 .access = PL1_RW, .accessfn = access_pauth, 7752 .fgt = FGT_APIBKEY, 7753 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7754 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7756 .access = PL1_RW, .accessfn = access_pauth, 7757 .fgt = FGT_APIBKEY, 7758 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7759 }; 7760 7761 static const ARMCPRegInfo tlbirange_reginfo[] = { 7762 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7763 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7764 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7765 .fgt = FGT_TLBIRVAE1IS, 7766 .writefn = tlbi_aa64_rvae1is_write }, 7767 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7768 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7769 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7770 .fgt = FGT_TLBIRVAAE1IS, 7771 .writefn = tlbi_aa64_rvae1is_write }, 7772 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7773 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7774 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7775 .fgt = FGT_TLBIRVALE1IS, 7776 .writefn = tlbi_aa64_rvae1is_write }, 7777 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7778 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7779 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7780 .fgt = FGT_TLBIRVAALE1IS, 7781 .writefn = tlbi_aa64_rvae1is_write }, 7782 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7783 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7784 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7785 .fgt = FGT_TLBIRVAE1OS, 7786 .writefn = tlbi_aa64_rvae1is_write }, 7787 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7788 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7789 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7790 .fgt = FGT_TLBIRVAAE1OS, 7791 .writefn = tlbi_aa64_rvae1is_write }, 7792 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7793 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7794 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7795 .fgt = FGT_TLBIRVALE1OS, 7796 .writefn = tlbi_aa64_rvae1is_write }, 7797 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7798 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7799 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7800 .fgt = FGT_TLBIRVAALE1OS, 7801 .writefn = tlbi_aa64_rvae1is_write }, 7802 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7803 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7804 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7805 .fgt = FGT_TLBIRVAE1, 7806 .writefn = tlbi_aa64_rvae1_write }, 7807 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7809 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7810 .fgt = FGT_TLBIRVAAE1, 7811 .writefn = tlbi_aa64_rvae1_write }, 7812 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7813 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7814 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7815 .fgt = FGT_TLBIRVALE1, 7816 .writefn = tlbi_aa64_rvae1_write }, 7817 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7818 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7819 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7820 .fgt = FGT_TLBIRVAALE1, 7821 .writefn = tlbi_aa64_rvae1_write }, 7822 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7823 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7824 .access = PL2_W, .type = ARM_CP_NO_RAW, 7825 .writefn = tlbi_aa64_ripas2e1is_write }, 7826 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7827 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7828 .access = PL2_W, .type = ARM_CP_NO_RAW, 7829 .writefn = tlbi_aa64_ripas2e1is_write }, 7830 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7831 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7832 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7833 .writefn = tlbi_aa64_rvae2is_write }, 7834 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7836 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7837 .writefn = tlbi_aa64_rvae2is_write }, 7838 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7840 .access = PL2_W, .type = ARM_CP_NO_RAW, 7841 .writefn = tlbi_aa64_ripas2e1_write }, 7842 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7843 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7844 .access = PL2_W, .type = ARM_CP_NO_RAW, 7845 .writefn = tlbi_aa64_ripas2e1_write }, 7846 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7848 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7849 .writefn = tlbi_aa64_rvae2is_write }, 7850 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7851 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7852 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7853 .writefn = tlbi_aa64_rvae2is_write }, 7854 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7856 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7857 .writefn = tlbi_aa64_rvae2_write }, 7858 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7860 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7861 .writefn = tlbi_aa64_rvae2_write }, 7862 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7863 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7864 .access = PL3_W, .type = ARM_CP_NO_RAW, 7865 .writefn = tlbi_aa64_rvae3is_write }, 7866 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7868 .access = PL3_W, .type = ARM_CP_NO_RAW, 7869 .writefn = tlbi_aa64_rvae3is_write }, 7870 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7872 .access = PL3_W, .type = ARM_CP_NO_RAW, 7873 .writefn = tlbi_aa64_rvae3is_write }, 7874 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7875 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7876 .access = PL3_W, .type = ARM_CP_NO_RAW, 7877 .writefn = tlbi_aa64_rvae3is_write }, 7878 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7880 .access = PL3_W, .type = ARM_CP_NO_RAW, 7881 .writefn = tlbi_aa64_rvae3_write }, 7882 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7883 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7884 .access = PL3_W, .type = ARM_CP_NO_RAW, 7885 .writefn = tlbi_aa64_rvae3_write }, 7886 }; 7887 7888 static const ARMCPRegInfo tlbios_reginfo[] = { 7889 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7891 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7892 .fgt = FGT_TLBIVMALLE1OS, 7893 .writefn = tlbi_aa64_vmalle1is_write }, 7894 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7895 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7896 .fgt = FGT_TLBIVAE1OS, 7897 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7898 .writefn = tlbi_aa64_vae1is_write }, 7899 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7901 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7902 .fgt = FGT_TLBIASIDE1OS, 7903 .writefn = tlbi_aa64_vmalle1is_write }, 7904 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7906 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7907 .fgt = FGT_TLBIVAAE1OS, 7908 .writefn = tlbi_aa64_vae1is_write }, 7909 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7911 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7912 .fgt = FGT_TLBIVALE1OS, 7913 .writefn = tlbi_aa64_vae1is_write }, 7914 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7915 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7916 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7917 .fgt = FGT_TLBIVAALE1OS, 7918 .writefn = tlbi_aa64_vae1is_write }, 7919 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7920 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7921 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7922 .writefn = tlbi_aa64_alle2is_write }, 7923 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7924 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7925 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7926 .writefn = tlbi_aa64_vae2is_write }, 7927 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7928 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7929 .access = PL2_W, .type = ARM_CP_NO_RAW, 7930 .writefn = tlbi_aa64_alle1is_write }, 7931 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7932 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7933 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7934 .writefn = tlbi_aa64_vae2is_write }, 7935 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7937 .access = PL2_W, .type = ARM_CP_NO_RAW, 7938 .writefn = tlbi_aa64_alle1is_write }, 7939 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7941 .access = PL2_W, .type = ARM_CP_NOP }, 7942 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7944 .access = PL2_W, .type = ARM_CP_NOP }, 7945 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7947 .access = PL2_W, .type = ARM_CP_NOP }, 7948 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7950 .access = PL2_W, .type = ARM_CP_NOP }, 7951 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7952 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7953 .access = PL3_W, .type = ARM_CP_NO_RAW, 7954 .writefn = tlbi_aa64_alle3is_write }, 7955 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7956 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7957 .access = PL3_W, .type = ARM_CP_NO_RAW, 7958 .writefn = tlbi_aa64_vae3is_write }, 7959 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7960 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7961 .access = PL3_W, .type = ARM_CP_NO_RAW, 7962 .writefn = tlbi_aa64_vae3is_write }, 7963 }; 7964 7965 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7966 { 7967 Error *err = NULL; 7968 uint64_t ret; 7969 7970 /* Success sets NZCV = 0000. */ 7971 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7972 7973 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7974 /* 7975 * ??? Failed, for unknown reasons in the crypto subsystem. 7976 * The best we can do is log the reason and return the 7977 * timed-out indication to the guest. There is no reason 7978 * we know to expect this failure to be transitory, so the 7979 * guest may well hang retrying the operation. 7980 */ 7981 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7982 ri->name, error_get_pretty(err)); 7983 error_free(err); 7984 7985 env->ZF = 0; /* NZCF = 0100 */ 7986 return 0; 7987 } 7988 return ret; 7989 } 7990 7991 /* We do not support re-seeding, so the two registers operate the same. */ 7992 static const ARMCPRegInfo rndr_reginfo[] = { 7993 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7994 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7995 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7996 .access = PL0_R, .readfn = rndr_readfn }, 7997 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7998 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7999 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 8000 .access = PL0_R, .readfn = rndr_readfn }, 8001 }; 8002 8003 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 8004 uint64_t value) 8005 { 8006 #ifdef CONFIG_TCG 8007 ARMCPU *cpu = env_archcpu(env); 8008 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 8009 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 8010 uint64_t vaddr_in = (uint64_t) value; 8011 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 8012 void *haddr; 8013 int mem_idx = arm_env_mmu_index(env); 8014 8015 /* This won't be crossing page boundaries */ 8016 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 8017 if (haddr) { 8018 #ifndef CONFIG_USER_ONLY 8019 8020 ram_addr_t offset; 8021 MemoryRegion *mr; 8022 8023 /* RCU lock is already being held */ 8024 mr = memory_region_from_host(haddr, &offset); 8025 8026 if (mr) { 8027 memory_region_writeback(mr, offset, dline_size); 8028 } 8029 #endif /*CONFIG_USER_ONLY*/ 8030 } 8031 #else 8032 /* Handled by hardware accelerator. */ 8033 g_assert_not_reached(); 8034 #endif /* CONFIG_TCG */ 8035 } 8036 8037 static const ARMCPRegInfo dcpop_reg[] = { 8038 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 8039 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 8040 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8041 .fgt = FGT_DCCVAP, 8042 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8043 }; 8044 8045 static const ARMCPRegInfo dcpodp_reg[] = { 8046 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 8047 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 8048 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8049 .fgt = FGT_DCCVADP, 8050 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8051 }; 8052 8053 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 8054 bool isread) 8055 { 8056 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 8057 return CP_ACCESS_TRAP_EL2; 8058 } 8059 8060 return CP_ACCESS_OK; 8061 } 8062 8063 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 8064 bool isread) 8065 { 8066 int el = arm_current_el(env); 8067 if (el < 2 && arm_is_el2_enabled(env)) { 8068 uint64_t hcr = arm_hcr_el2_eff(env); 8069 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8070 return CP_ACCESS_TRAP_EL2; 8071 } 8072 } 8073 if (el < 3 && 8074 arm_feature(env, ARM_FEATURE_EL3) && 8075 !(env->cp15.scr_el3 & SCR_ATA)) { 8076 return CP_ACCESS_TRAP_EL3; 8077 } 8078 return CP_ACCESS_OK; 8079 } 8080 8081 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 8082 bool isread) 8083 { 8084 CPAccessResult nv1 = access_nv1(env, ri, isread); 8085 8086 if (nv1 != CP_ACCESS_OK) { 8087 return nv1; 8088 } 8089 return access_mte(env, ri, isread); 8090 } 8091 8092 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 8093 bool isread) 8094 { 8095 /* 8096 * TFSR_EL2: similar to generic access_mte(), but we need to 8097 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 8098 * if NV2 is enabled then we will redirect this to TFSR_EL1 8099 * after doing the HCR and SCR ATA traps; otherwise this will 8100 * be a trap to EL2 and the HCR/SCR traps do not apply. 8101 */ 8102 int el = arm_current_el(env); 8103 8104 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 8105 return CP_ACCESS_OK; 8106 } 8107 if (el < 2 && arm_is_el2_enabled(env)) { 8108 uint64_t hcr = arm_hcr_el2_eff(env); 8109 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8110 return CP_ACCESS_TRAP_EL2; 8111 } 8112 } 8113 if (el < 3 && 8114 arm_feature(env, ARM_FEATURE_EL3) && 8115 !(env->cp15.scr_el3 & SCR_ATA)) { 8116 return CP_ACCESS_TRAP_EL3; 8117 } 8118 return CP_ACCESS_OK; 8119 } 8120 8121 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 8122 { 8123 return env->pstate & PSTATE_TCO; 8124 } 8125 8126 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 8127 { 8128 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 8129 } 8130 8131 static const ARMCPRegInfo mte_reginfo[] = { 8132 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 8133 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 8134 .access = PL1_RW, .accessfn = access_mte, 8135 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 8136 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 8137 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 8138 .access = PL1_RW, .accessfn = access_tfsr_el1, 8139 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 8140 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 8141 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 8142 .type = ARM_CP_NV2_REDIRECT, 8143 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 8144 .access = PL2_RW, .accessfn = access_tfsr_el2, 8145 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 8146 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 8147 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 8148 .access = PL3_RW, 8149 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 8150 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 8151 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 8152 .access = PL1_RW, .accessfn = access_mte, 8153 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 8154 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 8155 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 8156 .access = PL1_RW, .accessfn = access_mte, 8157 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 8158 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8159 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8160 .type = ARM_CP_NO_RAW, 8161 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8162 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8163 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8164 .type = ARM_CP_NOP, .access = PL1_W, 8165 .fgt = FGT_DCIVAC, 8166 .accessfn = aa64_cacheop_poc_access }, 8167 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8168 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8169 .fgt = FGT_DCISW, 8170 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8171 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8172 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8173 .type = ARM_CP_NOP, .access = PL1_W, 8174 .fgt = FGT_DCIVAC, 8175 .accessfn = aa64_cacheop_poc_access }, 8176 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8177 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8178 .fgt = FGT_DCISW, 8179 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8180 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8181 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8182 .fgt = FGT_DCCSW, 8183 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8184 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8185 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8186 .fgt = FGT_DCCSW, 8187 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8188 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8189 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8190 .fgt = FGT_DCCISW, 8191 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8192 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8193 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8194 .fgt = FGT_DCCISW, 8195 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8196 }; 8197 8198 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8199 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8200 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8201 .type = ARM_CP_CONST, .access = PL0_RW, }, 8202 }; 8203 8204 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8205 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8206 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8207 .type = ARM_CP_NOP, .access = PL0_W, 8208 .fgt = FGT_DCCVAC, 8209 .accessfn = aa64_cacheop_poc_access }, 8210 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8211 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8212 .type = ARM_CP_NOP, .access = PL0_W, 8213 .fgt = FGT_DCCVAC, 8214 .accessfn = aa64_cacheop_poc_access }, 8215 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8216 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8217 .type = ARM_CP_NOP, .access = PL0_W, 8218 .fgt = FGT_DCCVAP, 8219 .accessfn = aa64_cacheop_poc_access }, 8220 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8221 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8222 .type = ARM_CP_NOP, .access = PL0_W, 8223 .fgt = FGT_DCCVAP, 8224 .accessfn = aa64_cacheop_poc_access }, 8225 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8226 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8227 .type = ARM_CP_NOP, .access = PL0_W, 8228 .fgt = FGT_DCCVADP, 8229 .accessfn = aa64_cacheop_poc_access }, 8230 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8231 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8232 .type = ARM_CP_NOP, .access = PL0_W, 8233 .fgt = FGT_DCCVADP, 8234 .accessfn = aa64_cacheop_poc_access }, 8235 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8236 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8237 .type = ARM_CP_NOP, .access = PL0_W, 8238 .fgt = FGT_DCCIVAC, 8239 .accessfn = aa64_cacheop_poc_access }, 8240 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8241 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8242 .type = ARM_CP_NOP, .access = PL0_W, 8243 .fgt = FGT_DCCIVAC, 8244 .accessfn = aa64_cacheop_poc_access }, 8245 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8246 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8247 .access = PL0_W, .type = ARM_CP_DC_GVA, 8248 #ifndef CONFIG_USER_ONLY 8249 /* Avoid overhead of an access check that always passes in user-mode */ 8250 .accessfn = aa64_zva_access, 8251 .fgt = FGT_DCZVA, 8252 #endif 8253 }, 8254 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8255 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8256 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8257 #ifndef CONFIG_USER_ONLY 8258 /* Avoid overhead of an access check that always passes in user-mode */ 8259 .accessfn = aa64_zva_access, 8260 .fgt = FGT_DCZVA, 8261 #endif 8262 }, 8263 }; 8264 8265 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8266 bool isread) 8267 { 8268 uint64_t hcr = arm_hcr_el2_eff(env); 8269 int el = arm_current_el(env); 8270 8271 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8272 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8273 if (hcr & HCR_TGE) { 8274 return CP_ACCESS_TRAP_EL2; 8275 } 8276 return CP_ACCESS_TRAP; 8277 } 8278 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8279 return CP_ACCESS_TRAP_EL2; 8280 } 8281 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8282 return CP_ACCESS_TRAP_EL2; 8283 } 8284 if (el < 3 8285 && arm_feature(env, ARM_FEATURE_EL3) 8286 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8287 return CP_ACCESS_TRAP_EL3; 8288 } 8289 return CP_ACCESS_OK; 8290 } 8291 8292 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8293 const ARMCPRegInfo *ri, 8294 bool isread) 8295 { 8296 CPAccessResult nv1 = access_nv1(env, ri, isread); 8297 8298 if (nv1 != CP_ACCESS_OK) { 8299 return nv1; 8300 } 8301 return access_scxtnum(env, ri, isread); 8302 } 8303 8304 static const ARMCPRegInfo scxtnum_reginfo[] = { 8305 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8306 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8307 .access = PL0_RW, .accessfn = access_scxtnum, 8308 .fgt = FGT_SCXTNUM_EL0, 8309 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8310 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8311 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8312 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8313 .fgt = FGT_SCXTNUM_EL1, 8314 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8315 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8316 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8317 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8318 .access = PL2_RW, .accessfn = access_scxtnum, 8319 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8320 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8321 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8322 .access = PL3_RW, 8323 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8324 }; 8325 8326 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8327 bool isread) 8328 { 8329 if (arm_current_el(env) == 2 && 8330 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8331 return CP_ACCESS_TRAP_EL3; 8332 } 8333 return CP_ACCESS_OK; 8334 } 8335 8336 static const ARMCPRegInfo fgt_reginfo[] = { 8337 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8338 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8339 .nv2_redirect_offset = 0x1b8, 8340 .access = PL2_RW, .accessfn = access_fgt, 8341 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8342 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8343 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8344 .nv2_redirect_offset = 0x1c0, 8345 .access = PL2_RW, .accessfn = access_fgt, 8346 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8347 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8348 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8349 .nv2_redirect_offset = 0x1d0, 8350 .access = PL2_RW, .accessfn = access_fgt, 8351 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8352 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8353 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8354 .nv2_redirect_offset = 0x1d8, 8355 .access = PL2_RW, .accessfn = access_fgt, 8356 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8357 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8358 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8359 .nv2_redirect_offset = 0x1c8, 8360 .access = PL2_RW, .accessfn = access_fgt, 8361 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8362 }; 8363 8364 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8365 uint64_t value) 8366 { 8367 /* 8368 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8369 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8370 * about the RESS bits at the top -- we choose the "generate an EL2 8371 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8372 * the ptw.c code detect the resulting invalid address). 8373 */ 8374 env->cp15.vncr_el2 = value & ~0xfffULL; 8375 } 8376 8377 static const ARMCPRegInfo nv2_reginfo[] = { 8378 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8379 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8380 .access = PL2_RW, 8381 .writefn = vncr_write, 8382 .nv2_redirect_offset = 0xb0, 8383 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8384 }; 8385 8386 #endif /* TARGET_AARCH64 */ 8387 8388 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8389 bool isread) 8390 { 8391 int el = arm_current_el(env); 8392 8393 if (el == 0) { 8394 uint64_t sctlr = arm_sctlr(env, el); 8395 if (!(sctlr & SCTLR_EnRCTX)) { 8396 return CP_ACCESS_TRAP; 8397 } 8398 } else if (el == 1) { 8399 uint64_t hcr = arm_hcr_el2_eff(env); 8400 if (hcr & HCR_NV) { 8401 return CP_ACCESS_TRAP_EL2; 8402 } 8403 } 8404 return CP_ACCESS_OK; 8405 } 8406 8407 static const ARMCPRegInfo predinv_reginfo[] = { 8408 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8409 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8410 .fgt = FGT_CFPRCTX, 8411 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8412 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8413 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8414 .fgt = FGT_DVPRCTX, 8415 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8416 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8417 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8418 .fgt = FGT_CPPRCTX, 8419 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8420 /* 8421 * Note the AArch32 opcodes have a different OPC1. 8422 */ 8423 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8424 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8425 .fgt = FGT_CFPRCTX, 8426 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8427 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8428 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8429 .fgt = FGT_DVPRCTX, 8430 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8431 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8432 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8433 .fgt = FGT_CPPRCTX, 8434 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8435 }; 8436 8437 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8438 { 8439 /* Read the high 32 bits of the current CCSIDR */ 8440 return extract64(ccsidr_read(env, ri), 32, 32); 8441 } 8442 8443 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8444 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8445 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8446 .access = PL1_R, 8447 .accessfn = access_tid4, 8448 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8449 }; 8450 8451 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8452 bool isread) 8453 { 8454 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8455 return CP_ACCESS_TRAP_EL2; 8456 } 8457 8458 return CP_ACCESS_OK; 8459 } 8460 8461 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8462 bool isread) 8463 { 8464 if (arm_feature(env, ARM_FEATURE_V8)) { 8465 return access_aa64_tid3(env, ri, isread); 8466 } 8467 8468 return CP_ACCESS_OK; 8469 } 8470 8471 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8472 bool isread) 8473 { 8474 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8475 return CP_ACCESS_TRAP_EL2; 8476 } 8477 8478 return CP_ACCESS_OK; 8479 } 8480 8481 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8482 const ARMCPRegInfo *ri, bool isread) 8483 { 8484 /* 8485 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8486 * in v7A, not in v8A. 8487 */ 8488 if (!arm_feature(env, ARM_FEATURE_V8) && 8489 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8490 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8491 return CP_ACCESS_TRAP_EL2; 8492 } 8493 return CP_ACCESS_OK; 8494 } 8495 8496 static const ARMCPRegInfo jazelle_regs[] = { 8497 { .name = "JIDR", 8498 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8499 .access = PL1_R, .accessfn = access_jazelle, 8500 .type = ARM_CP_CONST, .resetvalue = 0 }, 8501 { .name = "JOSCR", 8502 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8503 .accessfn = access_joscr_jmcr, 8504 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8505 { .name = "JMCR", 8506 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8507 .accessfn = access_joscr_jmcr, 8508 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8509 }; 8510 8511 static const ARMCPRegInfo contextidr_el2 = { 8512 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8513 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8514 .access = PL2_RW, 8515 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8516 }; 8517 8518 static const ARMCPRegInfo vhe_reginfo[] = { 8519 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8520 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8521 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8522 .raw_writefn = raw_write, 8523 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8524 #ifndef CONFIG_USER_ONLY 8525 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8526 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8527 .fieldoffset = 8528 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8529 .type = ARM_CP_IO, .access = PL2_RW, 8530 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8531 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8532 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8533 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8534 .resetfn = gt_hv_timer_reset, 8535 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8536 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8537 .type = ARM_CP_IO, 8538 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8539 .access = PL2_RW, 8540 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8541 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8542 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8543 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8544 .type = ARM_CP_IO | ARM_CP_ALIAS, 8545 .access = PL2_RW, .accessfn = access_el1nvpct, 8546 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8547 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8548 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8549 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8550 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8551 .type = ARM_CP_IO | ARM_CP_ALIAS, 8552 .access = PL2_RW, .accessfn = access_el1nvvct, 8553 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8554 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8555 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8556 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8557 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8558 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8559 .access = PL2_RW, .accessfn = e2h_access, 8560 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8561 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8562 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8563 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8564 .access = PL2_RW, .accessfn = e2h_access, 8565 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8566 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8567 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8568 .type = ARM_CP_IO | ARM_CP_ALIAS, 8569 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8570 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8571 .access = PL2_RW, .accessfn = access_el1nvpct, 8572 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8573 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8574 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8575 .type = ARM_CP_IO | ARM_CP_ALIAS, 8576 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8577 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8578 .access = PL2_RW, .accessfn = access_el1nvvct, 8579 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8580 #endif 8581 }; 8582 8583 #ifndef CONFIG_USER_ONLY 8584 static const ARMCPRegInfo ats1e1_reginfo[] = { 8585 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8586 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8587 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8588 .fgt = FGT_ATS1E1RP, 8589 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8590 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8591 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8592 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8593 .fgt = FGT_ATS1E1WP, 8594 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8595 }; 8596 8597 static const ARMCPRegInfo ats1cp_reginfo[] = { 8598 { .name = "ATS1CPRP", 8599 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8600 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8601 .writefn = ats_write }, 8602 { .name = "ATS1CPWP", 8603 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8604 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8605 .writefn = ats_write }, 8606 }; 8607 #endif 8608 8609 /* 8610 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8611 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8612 * is non-zero, which is never for ARMv7, optionally in ARMv8 8613 * and mandatorily for ARMv8.2 and up. 8614 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8615 * implementation is RAZ/WI we can ignore this detail, as we 8616 * do for ACTLR. 8617 */ 8618 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8619 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8620 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8621 .access = PL1_RW, .accessfn = access_tacr, 8622 .type = ARM_CP_CONST, .resetvalue = 0 }, 8623 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8624 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8625 .access = PL2_RW, .type = ARM_CP_CONST, 8626 .resetvalue = 0 }, 8627 }; 8628 8629 void register_cp_regs_for_features(ARMCPU *cpu) 8630 { 8631 /* Register all the coprocessor registers based on feature bits */ 8632 CPUARMState *env = &cpu->env; 8633 if (arm_feature(env, ARM_FEATURE_M)) { 8634 /* M profile has no coprocessor registers */ 8635 return; 8636 } 8637 8638 define_arm_cp_regs(cpu, cp_reginfo); 8639 if (!arm_feature(env, ARM_FEATURE_V8)) { 8640 /* 8641 * Must go early as it is full of wildcards that may be 8642 * overridden by later definitions. 8643 */ 8644 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8645 } 8646 8647 if (arm_feature(env, ARM_FEATURE_V6)) { 8648 /* The ID registers all have impdef reset values */ 8649 ARMCPRegInfo v6_idregs[] = { 8650 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8652 .access = PL1_R, .type = ARM_CP_CONST, 8653 .accessfn = access_aa32_tid3, 8654 .resetvalue = cpu->isar.id_pfr0 }, 8655 /* 8656 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8657 * the value of the GIC field until after we define these regs. 8658 */ 8659 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8661 .access = PL1_R, .type = ARM_CP_NO_RAW, 8662 .accessfn = access_aa32_tid3, 8663 #ifdef CONFIG_USER_ONLY 8664 .type = ARM_CP_CONST, 8665 .resetvalue = cpu->isar.id_pfr1, 8666 #else 8667 .type = ARM_CP_NO_RAW, 8668 .accessfn = access_aa32_tid3, 8669 .readfn = id_pfr1_read, 8670 .writefn = arm_cp_write_ignore 8671 #endif 8672 }, 8673 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8674 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8675 .access = PL1_R, .type = ARM_CP_CONST, 8676 .accessfn = access_aa32_tid3, 8677 .resetvalue = cpu->isar.id_dfr0 }, 8678 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8680 .access = PL1_R, .type = ARM_CP_CONST, 8681 .accessfn = access_aa32_tid3, 8682 .resetvalue = cpu->id_afr0 }, 8683 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8684 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8685 .access = PL1_R, .type = ARM_CP_CONST, 8686 .accessfn = access_aa32_tid3, 8687 .resetvalue = cpu->isar.id_mmfr0 }, 8688 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8689 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8690 .access = PL1_R, .type = ARM_CP_CONST, 8691 .accessfn = access_aa32_tid3, 8692 .resetvalue = cpu->isar.id_mmfr1 }, 8693 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8694 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8695 .access = PL1_R, .type = ARM_CP_CONST, 8696 .accessfn = access_aa32_tid3, 8697 .resetvalue = cpu->isar.id_mmfr2 }, 8698 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8700 .access = PL1_R, .type = ARM_CP_CONST, 8701 .accessfn = access_aa32_tid3, 8702 .resetvalue = cpu->isar.id_mmfr3 }, 8703 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8704 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8705 .access = PL1_R, .type = ARM_CP_CONST, 8706 .accessfn = access_aa32_tid3, 8707 .resetvalue = cpu->isar.id_isar0 }, 8708 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8709 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8710 .access = PL1_R, .type = ARM_CP_CONST, 8711 .accessfn = access_aa32_tid3, 8712 .resetvalue = cpu->isar.id_isar1 }, 8713 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8714 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8715 .access = PL1_R, .type = ARM_CP_CONST, 8716 .accessfn = access_aa32_tid3, 8717 .resetvalue = cpu->isar.id_isar2 }, 8718 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8719 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8720 .access = PL1_R, .type = ARM_CP_CONST, 8721 .accessfn = access_aa32_tid3, 8722 .resetvalue = cpu->isar.id_isar3 }, 8723 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8724 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8725 .access = PL1_R, .type = ARM_CP_CONST, 8726 .accessfn = access_aa32_tid3, 8727 .resetvalue = cpu->isar.id_isar4 }, 8728 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8729 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8730 .access = PL1_R, .type = ARM_CP_CONST, 8731 .accessfn = access_aa32_tid3, 8732 .resetvalue = cpu->isar.id_isar5 }, 8733 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8734 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8735 .access = PL1_R, .type = ARM_CP_CONST, 8736 .accessfn = access_aa32_tid3, 8737 .resetvalue = cpu->isar.id_mmfr4 }, 8738 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8739 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8740 .access = PL1_R, .type = ARM_CP_CONST, 8741 .accessfn = access_aa32_tid3, 8742 .resetvalue = cpu->isar.id_isar6 }, 8743 }; 8744 define_arm_cp_regs(cpu, v6_idregs); 8745 define_arm_cp_regs(cpu, v6_cp_reginfo); 8746 } else { 8747 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8748 } 8749 if (arm_feature(env, ARM_FEATURE_V6K)) { 8750 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8751 } 8752 if (arm_feature(env, ARM_FEATURE_V7MP) && 8753 !arm_feature(env, ARM_FEATURE_PMSA)) { 8754 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8755 } 8756 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8757 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8758 } 8759 if (arm_feature(env, ARM_FEATURE_V7)) { 8760 ARMCPRegInfo clidr = { 8761 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8762 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8763 .access = PL1_R, .type = ARM_CP_CONST, 8764 .accessfn = access_tid4, 8765 .fgt = FGT_CLIDR_EL1, 8766 .resetvalue = cpu->clidr 8767 }; 8768 define_one_arm_cp_reg(cpu, &clidr); 8769 define_arm_cp_regs(cpu, v7_cp_reginfo); 8770 define_debug_regs(cpu); 8771 define_pmu_regs(cpu); 8772 } else { 8773 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8774 } 8775 if (arm_feature(env, ARM_FEATURE_V8)) { 8776 /* 8777 * v8 ID registers, which all have impdef reset values. 8778 * Note that within the ID register ranges the unused slots 8779 * must all RAZ, not UNDEF; future architecture versions may 8780 * define new registers here. 8781 * ID registers which are AArch64 views of the AArch32 ID registers 8782 * which already existed in v6 and v7 are handled elsewhere, 8783 * in v6_idregs[]. 8784 */ 8785 int i; 8786 ARMCPRegInfo v8_idregs[] = { 8787 /* 8788 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8789 * emulation because we don't know the right value for the 8790 * GIC field until after we define these regs. 8791 */ 8792 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8794 .access = PL1_R, 8795 #ifdef CONFIG_USER_ONLY 8796 .type = ARM_CP_CONST, 8797 .resetvalue = cpu->isar.id_aa64pfr0 8798 #else 8799 .type = ARM_CP_NO_RAW, 8800 .accessfn = access_aa64_tid3, 8801 .readfn = id_aa64pfr0_read, 8802 .writefn = arm_cp_write_ignore 8803 #endif 8804 }, 8805 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8806 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8807 .access = PL1_R, .type = ARM_CP_CONST, 8808 .accessfn = access_aa64_tid3, 8809 .resetvalue = cpu->isar.id_aa64pfr1}, 8810 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8812 .access = PL1_R, .type = ARM_CP_CONST, 8813 .accessfn = access_aa64_tid3, 8814 .resetvalue = 0 }, 8815 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8817 .access = PL1_R, .type = ARM_CP_CONST, 8818 .accessfn = access_aa64_tid3, 8819 .resetvalue = 0 }, 8820 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8821 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8822 .access = PL1_R, .type = ARM_CP_CONST, 8823 .accessfn = access_aa64_tid3, 8824 .resetvalue = cpu->isar.id_aa64zfr0 }, 8825 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8826 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8827 .access = PL1_R, .type = ARM_CP_CONST, 8828 .accessfn = access_aa64_tid3, 8829 .resetvalue = cpu->isar.id_aa64smfr0 }, 8830 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8831 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8832 .access = PL1_R, .type = ARM_CP_CONST, 8833 .accessfn = access_aa64_tid3, 8834 .resetvalue = 0 }, 8835 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8837 .access = PL1_R, .type = ARM_CP_CONST, 8838 .accessfn = access_aa64_tid3, 8839 .resetvalue = 0 }, 8840 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8841 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8842 .access = PL1_R, .type = ARM_CP_CONST, 8843 .accessfn = access_aa64_tid3, 8844 .resetvalue = cpu->isar.id_aa64dfr0 }, 8845 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8846 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8847 .access = PL1_R, .type = ARM_CP_CONST, 8848 .accessfn = access_aa64_tid3, 8849 .resetvalue = cpu->isar.id_aa64dfr1 }, 8850 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8851 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8852 .access = PL1_R, .type = ARM_CP_CONST, 8853 .accessfn = access_aa64_tid3, 8854 .resetvalue = 0 }, 8855 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8857 .access = PL1_R, .type = ARM_CP_CONST, 8858 .accessfn = access_aa64_tid3, 8859 .resetvalue = 0 }, 8860 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8861 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8862 .access = PL1_R, .type = ARM_CP_CONST, 8863 .accessfn = access_aa64_tid3, 8864 .resetvalue = cpu->id_aa64afr0 }, 8865 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8866 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8867 .access = PL1_R, .type = ARM_CP_CONST, 8868 .accessfn = access_aa64_tid3, 8869 .resetvalue = cpu->id_aa64afr1 }, 8870 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8871 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8872 .access = PL1_R, .type = ARM_CP_CONST, 8873 .accessfn = access_aa64_tid3, 8874 .resetvalue = 0 }, 8875 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8877 .access = PL1_R, .type = ARM_CP_CONST, 8878 .accessfn = access_aa64_tid3, 8879 .resetvalue = 0 }, 8880 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8881 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8882 .access = PL1_R, .type = ARM_CP_CONST, 8883 .accessfn = access_aa64_tid3, 8884 .resetvalue = cpu->isar.id_aa64isar0 }, 8885 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8886 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8887 .access = PL1_R, .type = ARM_CP_CONST, 8888 .accessfn = access_aa64_tid3, 8889 .resetvalue = cpu->isar.id_aa64isar1 }, 8890 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8891 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8892 .access = PL1_R, .type = ARM_CP_CONST, 8893 .accessfn = access_aa64_tid3, 8894 .resetvalue = cpu->isar.id_aa64isar2 }, 8895 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8896 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8897 .access = PL1_R, .type = ARM_CP_CONST, 8898 .accessfn = access_aa64_tid3, 8899 .resetvalue = 0 }, 8900 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8901 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8902 .access = PL1_R, .type = ARM_CP_CONST, 8903 .accessfn = access_aa64_tid3, 8904 .resetvalue = 0 }, 8905 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8906 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8907 .access = PL1_R, .type = ARM_CP_CONST, 8908 .accessfn = access_aa64_tid3, 8909 .resetvalue = 0 }, 8910 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8912 .access = PL1_R, .type = ARM_CP_CONST, 8913 .accessfn = access_aa64_tid3, 8914 .resetvalue = 0 }, 8915 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8916 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8917 .access = PL1_R, .type = ARM_CP_CONST, 8918 .accessfn = access_aa64_tid3, 8919 .resetvalue = 0 }, 8920 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8921 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8922 .access = PL1_R, .type = ARM_CP_CONST, 8923 .accessfn = access_aa64_tid3, 8924 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8925 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8926 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8927 .access = PL1_R, .type = ARM_CP_CONST, 8928 .accessfn = access_aa64_tid3, 8929 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8930 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8932 .access = PL1_R, .type = ARM_CP_CONST, 8933 .accessfn = access_aa64_tid3, 8934 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8935 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8936 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8937 .access = PL1_R, .type = ARM_CP_CONST, 8938 .accessfn = access_aa64_tid3, 8939 .resetvalue = 0 }, 8940 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8941 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8942 .access = PL1_R, .type = ARM_CP_CONST, 8943 .accessfn = access_aa64_tid3, 8944 .resetvalue = 0 }, 8945 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8946 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8947 .access = PL1_R, .type = ARM_CP_CONST, 8948 .accessfn = access_aa64_tid3, 8949 .resetvalue = 0 }, 8950 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8952 .access = PL1_R, .type = ARM_CP_CONST, 8953 .accessfn = access_aa64_tid3, 8954 .resetvalue = 0 }, 8955 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8956 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8957 .access = PL1_R, .type = ARM_CP_CONST, 8958 .accessfn = access_aa64_tid3, 8959 .resetvalue = 0 }, 8960 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8961 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8962 .access = PL1_R, .type = ARM_CP_CONST, 8963 .accessfn = access_aa64_tid3, 8964 .resetvalue = cpu->isar.mvfr0 }, 8965 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8966 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8967 .access = PL1_R, .type = ARM_CP_CONST, 8968 .accessfn = access_aa64_tid3, 8969 .resetvalue = cpu->isar.mvfr1 }, 8970 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8972 .access = PL1_R, .type = ARM_CP_CONST, 8973 .accessfn = access_aa64_tid3, 8974 .resetvalue = cpu->isar.mvfr2 }, 8975 /* 8976 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8977 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8978 * as RAZ, since it is in the "reserved for future ID 8979 * registers, RAZ" part of the AArch32 encoding space. 8980 */ 8981 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8982 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8983 .access = PL1_R, .type = ARM_CP_CONST, 8984 .accessfn = access_aa64_tid3, 8985 .resetvalue = 0 }, 8986 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8987 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8988 .access = PL1_R, .type = ARM_CP_CONST, 8989 .accessfn = access_aa64_tid3, 8990 .resetvalue = 0 }, 8991 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8992 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8993 .access = PL1_R, .type = ARM_CP_CONST, 8994 .accessfn = access_aa64_tid3, 8995 .resetvalue = 0 }, 8996 /* 8997 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8998 * they're also RAZ for AArch64, and in v8 are gradually 8999 * being filled with AArch64-view-of-AArch32-ID-register 9000 * for new ID registers. 9001 */ 9002 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 9003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 9004 .access = PL1_R, .type = ARM_CP_CONST, 9005 .accessfn = access_aa64_tid3, 9006 .resetvalue = 0 }, 9007 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 9008 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 9009 .access = PL1_R, .type = ARM_CP_CONST, 9010 .accessfn = access_aa64_tid3, 9011 .resetvalue = cpu->isar.id_pfr2 }, 9012 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 9013 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 9014 .access = PL1_R, .type = ARM_CP_CONST, 9015 .accessfn = access_aa64_tid3, 9016 .resetvalue = cpu->isar.id_dfr1 }, 9017 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 9018 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 9019 .access = PL1_R, .type = ARM_CP_CONST, 9020 .accessfn = access_aa64_tid3, 9021 .resetvalue = cpu->isar.id_mmfr5 }, 9022 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 9023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 9024 .access = PL1_R, .type = ARM_CP_CONST, 9025 .accessfn = access_aa64_tid3, 9026 .resetvalue = 0 }, 9027 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 9028 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 9029 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9030 .fgt = FGT_PMCEIDN_EL0, 9031 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 9032 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 9033 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 9034 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9035 .fgt = FGT_PMCEIDN_EL0, 9036 .resetvalue = cpu->pmceid0 }, 9037 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 9038 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 9039 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9040 .fgt = FGT_PMCEIDN_EL0, 9041 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 9042 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 9043 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 9044 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9045 .fgt = FGT_PMCEIDN_EL0, 9046 .resetvalue = cpu->pmceid1 }, 9047 }; 9048 #ifdef CONFIG_USER_ONLY 9049 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 9050 { .name = "ID_AA64PFR0_EL1", 9051 .exported_bits = R_ID_AA64PFR0_FP_MASK | 9052 R_ID_AA64PFR0_ADVSIMD_MASK | 9053 R_ID_AA64PFR0_SVE_MASK | 9054 R_ID_AA64PFR0_DIT_MASK, 9055 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 9056 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 9057 { .name = "ID_AA64PFR1_EL1", 9058 .exported_bits = R_ID_AA64PFR1_BT_MASK | 9059 R_ID_AA64PFR1_SSBS_MASK | 9060 R_ID_AA64PFR1_MTE_MASK | 9061 R_ID_AA64PFR1_SME_MASK }, 9062 { .name = "ID_AA64PFR*_EL1_RESERVED", 9063 .is_glob = true }, 9064 { .name = "ID_AA64ZFR0_EL1", 9065 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 9066 R_ID_AA64ZFR0_AES_MASK | 9067 R_ID_AA64ZFR0_BITPERM_MASK | 9068 R_ID_AA64ZFR0_BFLOAT16_MASK | 9069 R_ID_AA64ZFR0_B16B16_MASK | 9070 R_ID_AA64ZFR0_SHA3_MASK | 9071 R_ID_AA64ZFR0_SM4_MASK | 9072 R_ID_AA64ZFR0_I8MM_MASK | 9073 R_ID_AA64ZFR0_F32MM_MASK | 9074 R_ID_AA64ZFR0_F64MM_MASK }, 9075 { .name = "ID_AA64SMFR0_EL1", 9076 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 9077 R_ID_AA64SMFR0_BI32I32_MASK | 9078 R_ID_AA64SMFR0_B16F32_MASK | 9079 R_ID_AA64SMFR0_F16F32_MASK | 9080 R_ID_AA64SMFR0_I8I32_MASK | 9081 R_ID_AA64SMFR0_F16F16_MASK | 9082 R_ID_AA64SMFR0_B16B16_MASK | 9083 R_ID_AA64SMFR0_I16I32_MASK | 9084 R_ID_AA64SMFR0_F64F64_MASK | 9085 R_ID_AA64SMFR0_I16I64_MASK | 9086 R_ID_AA64SMFR0_SMEVER_MASK | 9087 R_ID_AA64SMFR0_FA64_MASK }, 9088 { .name = "ID_AA64MMFR0_EL1", 9089 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 9090 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 9091 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 9092 { .name = "ID_AA64MMFR1_EL1", 9093 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 9094 { .name = "ID_AA64MMFR2_EL1", 9095 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 9096 { .name = "ID_AA64MMFR*_EL1_RESERVED", 9097 .is_glob = true }, 9098 { .name = "ID_AA64DFR0_EL1", 9099 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 9100 { .name = "ID_AA64DFR1_EL1" }, 9101 { .name = "ID_AA64DFR*_EL1_RESERVED", 9102 .is_glob = true }, 9103 { .name = "ID_AA64AFR*", 9104 .is_glob = true }, 9105 { .name = "ID_AA64ISAR0_EL1", 9106 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 9107 R_ID_AA64ISAR0_SHA1_MASK | 9108 R_ID_AA64ISAR0_SHA2_MASK | 9109 R_ID_AA64ISAR0_CRC32_MASK | 9110 R_ID_AA64ISAR0_ATOMIC_MASK | 9111 R_ID_AA64ISAR0_RDM_MASK | 9112 R_ID_AA64ISAR0_SHA3_MASK | 9113 R_ID_AA64ISAR0_SM3_MASK | 9114 R_ID_AA64ISAR0_SM4_MASK | 9115 R_ID_AA64ISAR0_DP_MASK | 9116 R_ID_AA64ISAR0_FHM_MASK | 9117 R_ID_AA64ISAR0_TS_MASK | 9118 R_ID_AA64ISAR0_RNDR_MASK }, 9119 { .name = "ID_AA64ISAR1_EL1", 9120 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 9121 R_ID_AA64ISAR1_APA_MASK | 9122 R_ID_AA64ISAR1_API_MASK | 9123 R_ID_AA64ISAR1_JSCVT_MASK | 9124 R_ID_AA64ISAR1_FCMA_MASK | 9125 R_ID_AA64ISAR1_LRCPC_MASK | 9126 R_ID_AA64ISAR1_GPA_MASK | 9127 R_ID_AA64ISAR1_GPI_MASK | 9128 R_ID_AA64ISAR1_FRINTTS_MASK | 9129 R_ID_AA64ISAR1_SB_MASK | 9130 R_ID_AA64ISAR1_BF16_MASK | 9131 R_ID_AA64ISAR1_DGH_MASK | 9132 R_ID_AA64ISAR1_I8MM_MASK }, 9133 { .name = "ID_AA64ISAR2_EL1", 9134 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 9135 R_ID_AA64ISAR2_RPRES_MASK | 9136 R_ID_AA64ISAR2_GPA3_MASK | 9137 R_ID_AA64ISAR2_APA3_MASK | 9138 R_ID_AA64ISAR2_MOPS_MASK | 9139 R_ID_AA64ISAR2_BC_MASK | 9140 R_ID_AA64ISAR2_RPRFM_MASK | 9141 R_ID_AA64ISAR2_CSSC_MASK }, 9142 { .name = "ID_AA64ISAR*_EL1_RESERVED", 9143 .is_glob = true }, 9144 }; 9145 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 9146 #endif 9147 /* 9148 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 9149 * TODO: For RMR, a write with bit 1 set should do something with 9150 * cpu_reset(). In the meantime, "the bit is strictly a request", 9151 * so we are in spec just ignoring writes. 9152 */ 9153 if (!arm_feature(env, ARM_FEATURE_EL3) && 9154 !arm_feature(env, ARM_FEATURE_EL2)) { 9155 ARMCPRegInfo el1_reset_regs[] = { 9156 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 9157 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9158 .access = PL1_R, 9159 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9160 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9162 .access = PL1_RW, .type = ARM_CP_CONST, 9163 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9164 }; 9165 define_arm_cp_regs(cpu, el1_reset_regs); 9166 } 9167 define_arm_cp_regs(cpu, v8_idregs); 9168 define_arm_cp_regs(cpu, v8_cp_reginfo); 9169 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9170 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9171 } 9172 9173 for (i = 4; i < 16; i++) { 9174 /* 9175 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9176 * For pre-v8 cores there are RAZ patterns for these in 9177 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9178 * v8 extends the "must RAZ" part of the ID register space 9179 * to also cover c0, 0, c{8-15}, {0-7}. 9180 * These are STATE_AA32 because in the AArch64 sysreg space 9181 * c4-c7 is where the AArch64 ID registers live (and we've 9182 * already defined those in v8_idregs[]), and c8-c15 are not 9183 * "must RAZ" for AArch64. 9184 */ 9185 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9186 ARMCPRegInfo v8_aa32_raz_idregs = { 9187 .name = name, 9188 .state = ARM_CP_STATE_AA32, 9189 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9190 .access = PL1_R, .type = ARM_CP_CONST, 9191 .accessfn = access_aa64_tid3, 9192 .resetvalue = 0 }; 9193 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9194 } 9195 } 9196 9197 /* 9198 * Register the base EL2 cpregs. 9199 * Pre v8, these registers are implemented only as part of the 9200 * Virtualization Extensions (EL2 present). Beginning with v8, 9201 * if EL2 is missing but EL3 is enabled, mostly these become 9202 * RES0 from EL3, with some specific exceptions. 9203 */ 9204 if (arm_feature(env, ARM_FEATURE_EL2) 9205 || (arm_feature(env, ARM_FEATURE_EL3) 9206 && arm_feature(env, ARM_FEATURE_V8))) { 9207 uint64_t vmpidr_def = mpidr_read_val(env); 9208 ARMCPRegInfo vpidr_regs[] = { 9209 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9210 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9211 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9212 .resetvalue = cpu->midr, 9213 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9214 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9215 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9216 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9217 .access = PL2_RW, .resetvalue = cpu->midr, 9218 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9219 .nv2_redirect_offset = 0x88, 9220 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9221 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9222 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9223 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9224 .resetvalue = vmpidr_def, 9225 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9226 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9227 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9228 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9229 .access = PL2_RW, .resetvalue = vmpidr_def, 9230 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9231 .nv2_redirect_offset = 0x50, 9232 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9233 }; 9234 /* 9235 * The only field of MDCR_EL2 that has a defined architectural reset 9236 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9237 */ 9238 ARMCPRegInfo mdcr_el2 = { 9239 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9240 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9241 .writefn = mdcr_el2_write, 9242 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9243 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9244 }; 9245 define_one_arm_cp_reg(cpu, &mdcr_el2); 9246 define_arm_cp_regs(cpu, vpidr_regs); 9247 define_arm_cp_regs(cpu, el2_cp_reginfo); 9248 if (arm_feature(env, ARM_FEATURE_V8)) { 9249 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9250 } 9251 if (cpu_isar_feature(aa64_sel2, cpu)) { 9252 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9253 } 9254 /* 9255 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9256 * See commentary near RMR_EL1. 9257 */ 9258 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9259 static const ARMCPRegInfo el2_reset_regs[] = { 9260 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9261 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9262 .access = PL2_R, 9263 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9264 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9265 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9266 .access = PL2_R, 9267 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9268 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9269 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9270 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9271 }; 9272 define_arm_cp_regs(cpu, el2_reset_regs); 9273 } 9274 } 9275 9276 /* Register the base EL3 cpregs. */ 9277 if (arm_feature(env, ARM_FEATURE_EL3)) { 9278 define_arm_cp_regs(cpu, el3_cp_reginfo); 9279 ARMCPRegInfo el3_regs[] = { 9280 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9281 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9282 .access = PL3_R, 9283 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9284 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9285 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9286 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9287 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9288 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9289 .access = PL3_RW, .type = ARM_CP_CONST, 9290 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9291 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9292 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9293 .access = PL3_RW, 9294 .raw_writefn = raw_write, .writefn = sctlr_write, 9295 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9296 .resetvalue = cpu->reset_sctlr }, 9297 }; 9298 9299 define_arm_cp_regs(cpu, el3_regs); 9300 } 9301 /* 9302 * The behaviour of NSACR is sufficiently various that we don't 9303 * try to describe it in a single reginfo: 9304 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9305 * reads as constant 0xc00 from NS EL1 and NS EL2 9306 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9307 * if v7 without EL3, register doesn't exist 9308 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9309 */ 9310 if (arm_feature(env, ARM_FEATURE_EL3)) { 9311 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9312 static const ARMCPRegInfo nsacr = { 9313 .name = "NSACR", .type = ARM_CP_CONST, 9314 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9315 .access = PL1_RW, .accessfn = nsacr_access, 9316 .resetvalue = 0xc00 9317 }; 9318 define_one_arm_cp_reg(cpu, &nsacr); 9319 } else { 9320 static const ARMCPRegInfo nsacr = { 9321 .name = "NSACR", 9322 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9323 .access = PL3_RW | PL1_R, 9324 .resetvalue = 0, 9325 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9326 }; 9327 define_one_arm_cp_reg(cpu, &nsacr); 9328 } 9329 } else { 9330 if (arm_feature(env, ARM_FEATURE_V8)) { 9331 static const ARMCPRegInfo nsacr = { 9332 .name = "NSACR", .type = ARM_CP_CONST, 9333 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9334 .access = PL1_R, 9335 .resetvalue = 0xc00 9336 }; 9337 define_one_arm_cp_reg(cpu, &nsacr); 9338 } 9339 } 9340 9341 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9342 if (arm_feature(env, ARM_FEATURE_V6)) { 9343 /* PMSAv6 not implemented */ 9344 assert(arm_feature(env, ARM_FEATURE_V7)); 9345 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9346 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9347 } else { 9348 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9349 } 9350 } else { 9351 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9352 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9353 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9354 if (cpu_isar_feature(aa32_hpd, cpu)) { 9355 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9356 } 9357 } 9358 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9359 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9360 } 9361 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9362 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9363 } 9364 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 9365 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 9366 } 9367 #ifndef CONFIG_USER_ONLY 9368 if (cpu_isar_feature(aa64_ecv, cpu)) { 9369 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 9370 } 9371 #endif 9372 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9373 ARMCPRegInfo vapa_cp_reginfo[] = { 9374 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9375 .access = PL1_RW, .resetvalue = 0, 9376 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9377 offsetoflow32(CPUARMState, cp15.par_ns) }, 9378 .writefn = par_write}, 9379 #ifndef CONFIG_USER_ONLY 9380 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9381 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9382 .access = PL1_W, .accessfn = ats_access, 9383 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9384 #endif 9385 }; 9386 9387 /* 9388 * When LPAE exists this 32-bit PAR register is an alias of the 9389 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9390 */ 9391 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9392 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9393 } 9394 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9395 } 9396 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9397 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9398 } 9399 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9400 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9401 } 9402 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9403 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9404 } 9405 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9406 define_arm_cp_regs(cpu, omap_cp_reginfo); 9407 } 9408 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9409 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9410 } 9411 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9412 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9413 } 9414 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9415 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9416 } 9417 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9418 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9419 } 9420 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9421 define_arm_cp_regs(cpu, jazelle_regs); 9422 } 9423 /* 9424 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9425 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9426 * be read-only (ie write causes UNDEF exception). 9427 */ 9428 { 9429 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9430 /* 9431 * Pre-v8 MIDR space. 9432 * Note that the MIDR isn't a simple constant register because 9433 * of the TI925 behaviour where writes to another register can 9434 * cause the MIDR value to change. 9435 * 9436 * Unimplemented registers in the c15 0 0 0 space default to 9437 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9438 * and friends override accordingly. 9439 */ 9440 { .name = "MIDR", 9441 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9442 .access = PL1_R, .resetvalue = cpu->midr, 9443 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9444 .readfn = midr_read, 9445 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9446 .type = ARM_CP_OVERRIDE }, 9447 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9448 { .name = "DUMMY", 9449 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9450 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9451 { .name = "DUMMY", 9452 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9453 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9454 { .name = "DUMMY", 9455 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9456 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9457 { .name = "DUMMY", 9458 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9459 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9460 { .name = "DUMMY", 9461 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9462 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9463 }; 9464 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9465 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9467 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9468 .fgt = FGT_MIDR_EL1, 9469 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9470 .readfn = midr_read }, 9471 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9472 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9473 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9474 .access = PL1_R, .resetvalue = cpu->midr }, 9475 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9477 .access = PL1_R, 9478 .accessfn = access_aa64_tid1, 9479 .fgt = FGT_REVIDR_EL1, 9480 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9481 }; 9482 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9483 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9484 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9485 .access = PL1_R, .resetvalue = cpu->midr 9486 }; 9487 ARMCPRegInfo id_cp_reginfo[] = { 9488 /* These are common to v8 and pre-v8 */ 9489 { .name = "CTR", 9490 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9491 .access = PL1_R, .accessfn = ctr_el0_access, 9492 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9493 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9494 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9495 .access = PL0_R, .accessfn = ctr_el0_access, 9496 .fgt = FGT_CTR_EL0, 9497 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9498 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9499 { .name = "TCMTR", 9500 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9501 .access = PL1_R, 9502 .accessfn = access_aa32_tid1, 9503 .type = ARM_CP_CONST, .resetvalue = 0 }, 9504 }; 9505 /* TLBTR is specific to VMSA */ 9506 ARMCPRegInfo id_tlbtr_reginfo = { 9507 .name = "TLBTR", 9508 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9509 .access = PL1_R, 9510 .accessfn = access_aa32_tid1, 9511 .type = ARM_CP_CONST, .resetvalue = 0, 9512 }; 9513 /* MPUIR is specific to PMSA V6+ */ 9514 ARMCPRegInfo id_mpuir_reginfo = { 9515 .name = "MPUIR", 9516 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9517 .access = PL1_R, .type = ARM_CP_CONST, 9518 .resetvalue = cpu->pmsav7_dregion << 8 9519 }; 9520 /* HMPUIR is specific to PMSA V8 */ 9521 ARMCPRegInfo id_hmpuir_reginfo = { 9522 .name = "HMPUIR", 9523 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9524 .access = PL2_R, .type = ARM_CP_CONST, 9525 .resetvalue = cpu->pmsav8r_hdregion 9526 }; 9527 static const ARMCPRegInfo crn0_wi_reginfo = { 9528 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9529 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9530 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9531 }; 9532 #ifdef CONFIG_USER_ONLY 9533 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9534 { .name = "MIDR_EL1", 9535 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9536 R_MIDR_EL1_PARTNUM_MASK | 9537 R_MIDR_EL1_ARCHITECTURE_MASK | 9538 R_MIDR_EL1_VARIANT_MASK | 9539 R_MIDR_EL1_IMPLEMENTER_MASK }, 9540 { .name = "REVIDR_EL1" }, 9541 }; 9542 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9543 #endif 9544 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9545 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9546 size_t i; 9547 /* 9548 * Register the blanket "writes ignored" value first to cover the 9549 * whole space. Then update the specific ID registers to allow write 9550 * access, so that they ignore writes rather than causing them to 9551 * UNDEF. 9552 */ 9553 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9554 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9555 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9556 } 9557 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9558 id_cp_reginfo[i].access = PL1_RW; 9559 } 9560 id_mpuir_reginfo.access = PL1_RW; 9561 id_tlbtr_reginfo.access = PL1_RW; 9562 } 9563 if (arm_feature(env, ARM_FEATURE_V8)) { 9564 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9565 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9566 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9567 } 9568 } else { 9569 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9570 } 9571 define_arm_cp_regs(cpu, id_cp_reginfo); 9572 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9573 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9574 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9575 arm_feature(env, ARM_FEATURE_V8)) { 9576 uint32_t i = 0; 9577 char *tmp_string; 9578 9579 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9580 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9581 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9582 9583 /* Register alias is only valid for first 32 indexes */ 9584 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9585 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9586 uint8_t opc1 = extract32(i, 4, 1); 9587 uint8_t opc2 = extract32(i, 0, 1) << 2; 9588 9589 tmp_string = g_strdup_printf("PRBAR%u", i); 9590 ARMCPRegInfo tmp_prbarn_reginfo = { 9591 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9592 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9593 .access = PL1_RW, .resetvalue = 0, 9594 .accessfn = access_tvm_trvm, 9595 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9596 }; 9597 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9598 g_free(tmp_string); 9599 9600 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9601 tmp_string = g_strdup_printf("PRLAR%u", i); 9602 ARMCPRegInfo tmp_prlarn_reginfo = { 9603 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9604 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9605 .access = PL1_RW, .resetvalue = 0, 9606 .accessfn = access_tvm_trvm, 9607 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9608 }; 9609 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9610 g_free(tmp_string); 9611 } 9612 9613 /* Register alias is only valid for first 32 indexes */ 9614 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9615 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9616 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9617 uint8_t opc2 = extract32(i, 0, 1) << 2; 9618 9619 tmp_string = g_strdup_printf("HPRBAR%u", i); 9620 ARMCPRegInfo tmp_hprbarn_reginfo = { 9621 .name = tmp_string, 9622 .type = ARM_CP_NO_RAW, 9623 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9624 .access = PL2_RW, .resetvalue = 0, 9625 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9626 }; 9627 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9628 g_free(tmp_string); 9629 9630 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9631 tmp_string = g_strdup_printf("HPRLAR%u", i); 9632 ARMCPRegInfo tmp_hprlarn_reginfo = { 9633 .name = tmp_string, 9634 .type = ARM_CP_NO_RAW, 9635 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9636 .access = PL2_RW, .resetvalue = 0, 9637 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9638 }; 9639 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9640 g_free(tmp_string); 9641 } 9642 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9643 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9644 } 9645 } 9646 9647 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9648 ARMCPRegInfo mpidr_cp_reginfo[] = { 9649 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9650 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9651 .fgt = FGT_MPIDR_EL1, 9652 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9653 }; 9654 #ifdef CONFIG_USER_ONLY 9655 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9656 { .name = "MPIDR_EL1", 9657 .fixed_bits = 0x0000000080000000 }, 9658 }; 9659 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9660 #endif 9661 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9662 } 9663 9664 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9665 ARMCPRegInfo auxcr_reginfo[] = { 9666 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9667 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9668 .access = PL1_RW, .accessfn = access_tacr, 9669 .nv2_redirect_offset = 0x118, 9670 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9671 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9672 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9673 .access = PL2_RW, .type = ARM_CP_CONST, 9674 .resetvalue = 0 }, 9675 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9677 .access = PL3_RW, .type = ARM_CP_CONST, 9678 .resetvalue = 0 }, 9679 }; 9680 define_arm_cp_regs(cpu, auxcr_reginfo); 9681 if (cpu_isar_feature(aa32_ac2, cpu)) { 9682 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9683 } 9684 } 9685 9686 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9687 /* 9688 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9689 * There are two flavours: 9690 * (1) older 32-bit only cores have a simple 32-bit CBAR 9691 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9692 * 32-bit register visible to AArch32 at a different encoding 9693 * to the "flavour 1" register and with the bits rearranged to 9694 * be able to squash a 64-bit address into the 32-bit view. 9695 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9696 * in future if we support AArch32-only configs of some of the 9697 * AArch64 cores we might need to add a specific feature flag 9698 * to indicate cores with "flavour 2" CBAR. 9699 */ 9700 if (arm_feature(env, ARM_FEATURE_V8)) { 9701 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9702 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9703 | extract64(cpu->reset_cbar, 32, 12); 9704 ARMCPRegInfo cbar_reginfo[] = { 9705 { .name = "CBAR", 9706 .type = ARM_CP_CONST, 9707 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9708 .access = PL1_R, .resetvalue = cbar32 }, 9709 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9710 .type = ARM_CP_CONST, 9711 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9712 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9713 }; 9714 /* We don't implement a r/w 64 bit CBAR currently */ 9715 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9716 define_arm_cp_regs(cpu, cbar_reginfo); 9717 } else { 9718 ARMCPRegInfo cbar = { 9719 .name = "CBAR", 9720 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9721 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9722 .fieldoffset = offsetof(CPUARMState, 9723 cp15.c15_config_base_address) 9724 }; 9725 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9726 cbar.access = PL1_R; 9727 cbar.fieldoffset = 0; 9728 cbar.type = ARM_CP_CONST; 9729 } 9730 define_one_arm_cp_reg(cpu, &cbar); 9731 } 9732 } 9733 9734 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9735 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9736 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9737 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9738 .access = PL1_RW, .writefn = vbar_write, 9739 .accessfn = access_nv1, 9740 .fgt = FGT_VBAR_EL1, 9741 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9742 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9743 offsetof(CPUARMState, cp15.vbar_ns) }, 9744 .resetvalue = 0 }, 9745 }; 9746 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9747 } 9748 9749 /* Generic registers whose values depend on the implementation */ 9750 { 9751 ARMCPRegInfo sctlr = { 9752 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9753 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9754 .access = PL1_RW, .accessfn = access_tvm_trvm, 9755 .fgt = FGT_SCTLR_EL1, 9756 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9757 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9758 offsetof(CPUARMState, cp15.sctlr_ns) }, 9759 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9760 .raw_writefn = raw_write, 9761 }; 9762 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9763 /* 9764 * Normally we would always end the TB on an SCTLR write, but Linux 9765 * arch/arm/mach-pxa/sleep.S expects two instructions following 9766 * an MMU enable to execute from cache. Imitate this behaviour. 9767 */ 9768 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9769 } 9770 define_one_arm_cp_reg(cpu, &sctlr); 9771 9772 if (arm_feature(env, ARM_FEATURE_PMSA) && 9773 arm_feature(env, ARM_FEATURE_V8)) { 9774 ARMCPRegInfo vsctlr = { 9775 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9776 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9777 .access = PL2_RW, .resetvalue = 0x0, 9778 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9779 }; 9780 define_one_arm_cp_reg(cpu, &vsctlr); 9781 } 9782 } 9783 9784 if (cpu_isar_feature(aa64_lor, cpu)) { 9785 define_arm_cp_regs(cpu, lor_reginfo); 9786 } 9787 if (cpu_isar_feature(aa64_pan, cpu)) { 9788 define_one_arm_cp_reg(cpu, &pan_reginfo); 9789 } 9790 #ifndef CONFIG_USER_ONLY 9791 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9792 define_arm_cp_regs(cpu, ats1e1_reginfo); 9793 } 9794 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9795 define_arm_cp_regs(cpu, ats1cp_reginfo); 9796 } 9797 #endif 9798 if (cpu_isar_feature(aa64_uao, cpu)) { 9799 define_one_arm_cp_reg(cpu, &uao_reginfo); 9800 } 9801 9802 if (cpu_isar_feature(aa64_dit, cpu)) { 9803 define_one_arm_cp_reg(cpu, &dit_reginfo); 9804 } 9805 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9806 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9807 } 9808 if (cpu_isar_feature(any_ras, cpu)) { 9809 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9810 } 9811 9812 if (cpu_isar_feature(aa64_vh, cpu) || 9813 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9814 define_one_arm_cp_reg(cpu, &contextidr_el2); 9815 } 9816 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9817 define_arm_cp_regs(cpu, vhe_reginfo); 9818 } 9819 9820 if (cpu_isar_feature(aa64_sve, cpu)) { 9821 define_arm_cp_regs(cpu, zcr_reginfo); 9822 } 9823 9824 if (cpu_isar_feature(aa64_hcx, cpu)) { 9825 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9826 } 9827 9828 #ifdef TARGET_AARCH64 9829 if (cpu_isar_feature(aa64_sme, cpu)) { 9830 define_arm_cp_regs(cpu, sme_reginfo); 9831 } 9832 if (cpu_isar_feature(aa64_pauth, cpu)) { 9833 define_arm_cp_regs(cpu, pauth_reginfo); 9834 } 9835 if (cpu_isar_feature(aa64_rndr, cpu)) { 9836 define_arm_cp_regs(cpu, rndr_reginfo); 9837 } 9838 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9839 define_arm_cp_regs(cpu, tlbirange_reginfo); 9840 } 9841 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9842 define_arm_cp_regs(cpu, tlbios_reginfo); 9843 } 9844 /* Data Cache clean instructions up to PoP */ 9845 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9846 define_one_arm_cp_reg(cpu, dcpop_reg); 9847 9848 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9849 define_one_arm_cp_reg(cpu, dcpodp_reg); 9850 } 9851 } 9852 9853 /* 9854 * If full MTE is enabled, add all of the system registers. 9855 * If only "instructions available at EL0" are enabled, 9856 * then define only a RAZ/WI version of PSTATE.TCO. 9857 */ 9858 if (cpu_isar_feature(aa64_mte, cpu)) { 9859 ARMCPRegInfo gmid_reginfo = { 9860 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9861 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9862 .access = PL1_R, .accessfn = access_aa64_tid5, 9863 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9864 }; 9865 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9866 define_arm_cp_regs(cpu, mte_reginfo); 9867 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9868 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9869 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9870 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9871 } 9872 9873 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9874 define_arm_cp_regs(cpu, scxtnum_reginfo); 9875 } 9876 9877 if (cpu_isar_feature(aa64_fgt, cpu)) { 9878 define_arm_cp_regs(cpu, fgt_reginfo); 9879 } 9880 9881 if (cpu_isar_feature(aa64_rme, cpu)) { 9882 define_arm_cp_regs(cpu, rme_reginfo); 9883 if (cpu_isar_feature(aa64_mte, cpu)) { 9884 define_arm_cp_regs(cpu, rme_mte_reginfo); 9885 } 9886 } 9887 9888 if (cpu_isar_feature(aa64_nv2, cpu)) { 9889 define_arm_cp_regs(cpu, nv2_reginfo); 9890 } 9891 #endif 9892 9893 if (cpu_isar_feature(any_predinv, cpu)) { 9894 define_arm_cp_regs(cpu, predinv_reginfo); 9895 } 9896 9897 if (cpu_isar_feature(any_ccidx, cpu)) { 9898 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9899 } 9900 9901 #ifndef CONFIG_USER_ONLY 9902 /* 9903 * Register redirections and aliases must be done last, 9904 * after the registers from the other extensions have been defined. 9905 */ 9906 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9907 define_arm_vh_e2h_redirects_aliases(cpu); 9908 } 9909 #endif 9910 } 9911 9912 /* 9913 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9914 * add a single reginfo struct to the hash table. 9915 */ 9916 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9917 void *opaque, CPState state, 9918 CPSecureState secstate, 9919 int crm, int opc1, int opc2, 9920 const char *name) 9921 { 9922 CPUARMState *env = &cpu->env; 9923 uint32_t key; 9924 ARMCPRegInfo *r2; 9925 bool is64 = r->type & ARM_CP_64BIT; 9926 bool ns = secstate & ARM_CP_SECSTATE_NS; 9927 int cp = r->cp; 9928 size_t name_len; 9929 bool make_const; 9930 9931 switch (state) { 9932 case ARM_CP_STATE_AA32: 9933 /* We assume it is a cp15 register if the .cp field is left unset. */ 9934 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9935 cp = 15; 9936 } 9937 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9938 break; 9939 case ARM_CP_STATE_AA64: 9940 /* 9941 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9942 * cp == 0 as equivalent to the value for "standard guest-visible 9943 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9944 * in their AArch64 view (the .cp value may be non-zero for the 9945 * benefit of the AArch32 view). 9946 */ 9947 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9948 cp = CP_REG_ARM64_SYSREG_CP; 9949 } 9950 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9951 break; 9952 default: 9953 g_assert_not_reached(); 9954 } 9955 9956 /* Overriding of an existing definition must be explicitly requested. */ 9957 if (!(r->type & ARM_CP_OVERRIDE)) { 9958 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9959 if (oldreg) { 9960 assert(oldreg->type & ARM_CP_OVERRIDE); 9961 } 9962 } 9963 9964 /* 9965 * Eliminate registers that are not present because the EL is missing. 9966 * Doing this here makes it easier to put all registers for a given 9967 * feature into the same ARMCPRegInfo array and define them all at once. 9968 */ 9969 make_const = false; 9970 if (arm_feature(env, ARM_FEATURE_EL3)) { 9971 /* 9972 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9973 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9974 */ 9975 int min_el = ctz32(r->access) / 2; 9976 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9977 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9978 return; 9979 } 9980 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9981 } 9982 } else { 9983 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9984 ? PL2_RW : PL1_RW); 9985 if ((r->access & max_el) == 0) { 9986 return; 9987 } 9988 } 9989 9990 /* Combine cpreg and name into one allocation. */ 9991 name_len = strlen(name) + 1; 9992 r2 = g_malloc(sizeof(*r2) + name_len); 9993 *r2 = *r; 9994 r2->name = memcpy(r2 + 1, name, name_len); 9995 9996 /* 9997 * Update fields to match the instantiation, overwiting wildcards 9998 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9999 */ 10000 r2->cp = cp; 10001 r2->crm = crm; 10002 r2->opc1 = opc1; 10003 r2->opc2 = opc2; 10004 r2->state = state; 10005 r2->secure = secstate; 10006 if (opaque) { 10007 r2->opaque = opaque; 10008 } 10009 10010 if (make_const) { 10011 /* This should not have been a very special register to begin. */ 10012 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 10013 assert(old_special == 0 || old_special == ARM_CP_NOP); 10014 /* 10015 * Set the special function to CONST, retaining the other flags. 10016 * This is important for e.g. ARM_CP_SVE so that we still 10017 * take the SVE trap if CPTR_EL3.EZ == 0. 10018 */ 10019 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 10020 /* 10021 * Usually, these registers become RES0, but there are a few 10022 * special cases like VPIDR_EL2 which have a constant non-zero 10023 * value with writes ignored. 10024 */ 10025 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 10026 r2->resetvalue = 0; 10027 } 10028 /* 10029 * ARM_CP_CONST has precedence, so removing the callbacks and 10030 * offsets are not strictly necessary, but it is potentially 10031 * less confusing to debug later. 10032 */ 10033 r2->readfn = NULL; 10034 r2->writefn = NULL; 10035 r2->raw_readfn = NULL; 10036 r2->raw_writefn = NULL; 10037 r2->resetfn = NULL; 10038 r2->fieldoffset = 0; 10039 r2->bank_fieldoffsets[0] = 0; 10040 r2->bank_fieldoffsets[1] = 0; 10041 } else { 10042 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 10043 10044 if (isbanked) { 10045 /* 10046 * Register is banked (using both entries in array). 10047 * Overwriting fieldoffset as the array is only used to define 10048 * banked registers but later only fieldoffset is used. 10049 */ 10050 r2->fieldoffset = r->bank_fieldoffsets[ns]; 10051 } 10052 if (state == ARM_CP_STATE_AA32) { 10053 if (isbanked) { 10054 /* 10055 * If the register is banked then we don't need to migrate or 10056 * reset the 32-bit instance in certain cases: 10057 * 10058 * 1) If the register has both 32-bit and 64-bit instances 10059 * then we can count on the 64-bit instance taking care 10060 * of the non-secure bank. 10061 * 2) If ARMv8 is enabled then we can count on a 64-bit 10062 * version taking care of the secure bank. This requires 10063 * that separate 32 and 64-bit definitions are provided. 10064 */ 10065 if ((r->state == ARM_CP_STATE_BOTH && ns) || 10066 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 10067 r2->type |= ARM_CP_ALIAS; 10068 } 10069 } else if ((secstate != r->secure) && !ns) { 10070 /* 10071 * The register is not banked so we only want to allow 10072 * migration of the non-secure instance. 10073 */ 10074 r2->type |= ARM_CP_ALIAS; 10075 } 10076 10077 if (HOST_BIG_ENDIAN && 10078 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 10079 r2->fieldoffset += sizeof(uint32_t); 10080 } 10081 } 10082 } 10083 10084 /* 10085 * By convention, for wildcarded registers only the first 10086 * entry is used for migration; the others are marked as 10087 * ALIAS so we don't try to transfer the register 10088 * multiple times. Special registers (ie NOP/WFI) are 10089 * never migratable and not even raw-accessible. 10090 */ 10091 if (r2->type & ARM_CP_SPECIAL_MASK) { 10092 r2->type |= ARM_CP_NO_RAW; 10093 } 10094 if (((r->crm == CP_ANY) && crm != 0) || 10095 ((r->opc1 == CP_ANY) && opc1 != 0) || 10096 ((r->opc2 == CP_ANY) && opc2 != 0)) { 10097 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 10098 } 10099 10100 /* 10101 * Check that raw accesses are either forbidden or handled. Note that 10102 * we can't assert this earlier because the setup of fieldoffset for 10103 * banked registers has to be done first. 10104 */ 10105 if (!(r2->type & ARM_CP_NO_RAW)) { 10106 assert(!raw_accessors_invalid(r2)); 10107 } 10108 10109 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 10110 } 10111 10112 10113 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 10114 const ARMCPRegInfo *r, void *opaque) 10115 { 10116 /* 10117 * Define implementations of coprocessor registers. 10118 * We store these in a hashtable because typically 10119 * there are less than 150 registers in a space which 10120 * is 16*16*16*8*8 = 262144 in size. 10121 * Wildcarding is supported for the crm, opc1 and opc2 fields. 10122 * If a register is defined twice then the second definition is 10123 * used, so this can be used to define some generic registers and 10124 * then override them with implementation specific variations. 10125 * At least one of the original and the second definition should 10126 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 10127 * against accidental use. 10128 * 10129 * The state field defines whether the register is to be 10130 * visible in the AArch32 or AArch64 execution state. If the 10131 * state is set to ARM_CP_STATE_BOTH then we synthesise a 10132 * reginfo structure for the AArch32 view, which sees the lower 10133 * 32 bits of the 64 bit register. 10134 * 10135 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 10136 * be wildcarded. AArch64 registers are always considered to be 64 10137 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 10138 * the register, if any. 10139 */ 10140 int crm, opc1, opc2; 10141 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 10142 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 10143 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 10144 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 10145 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 10146 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 10147 CPState state; 10148 10149 /* 64 bit registers have only CRm and Opc1 fields */ 10150 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 10151 /* op0 only exists in the AArch64 encodings */ 10152 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 10153 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 10154 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 10155 /* 10156 * This API is only for Arm's system coprocessors (14 and 15) or 10157 * (M-profile or v7A-and-earlier only) for implementation defined 10158 * coprocessors in the range 0..7. Our decode assumes this, since 10159 * 8..13 can be used for other insns including VFP and Neon. See 10160 * valid_cp() in translate.c. Assert here that we haven't tried 10161 * to use an invalid coprocessor number. 10162 */ 10163 switch (r->state) { 10164 case ARM_CP_STATE_BOTH: 10165 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 10166 if (r->cp == 0) { 10167 break; 10168 } 10169 /* fall through */ 10170 case ARM_CP_STATE_AA32: 10171 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10172 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10173 assert(r->cp >= 14 && r->cp <= 15); 10174 } else { 10175 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10176 } 10177 break; 10178 case ARM_CP_STATE_AA64: 10179 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10180 break; 10181 default: 10182 g_assert_not_reached(); 10183 } 10184 /* 10185 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10186 * encodes a minimum access level for the register. We roll this 10187 * runtime check into our general permission check code, so check 10188 * here that the reginfo's specified permissions are strict enough 10189 * to encompass the generic architectural permission check. 10190 */ 10191 if (r->state != ARM_CP_STATE_AA32) { 10192 CPAccessRights mask; 10193 switch (r->opc1) { 10194 case 0: 10195 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10196 mask = PL0U_R | PL1_RW; 10197 break; 10198 case 1: case 2: 10199 /* min_EL EL1 */ 10200 mask = PL1_RW; 10201 break; 10202 case 3: 10203 /* min_EL EL0 */ 10204 mask = PL0_RW; 10205 break; 10206 case 4: 10207 case 5: 10208 /* min_EL EL2 */ 10209 mask = PL2_RW; 10210 break; 10211 case 6: 10212 /* min_EL EL3 */ 10213 mask = PL3_RW; 10214 break; 10215 case 7: 10216 /* min_EL EL1, secure mode only (we don't check the latter) */ 10217 mask = PL1_RW; 10218 break; 10219 default: 10220 /* broken reginfo with out-of-range opc1 */ 10221 g_assert_not_reached(); 10222 } 10223 /* assert our permissions are not too lax (stricter is fine) */ 10224 assert((r->access & ~mask) == 0); 10225 } 10226 10227 /* 10228 * Check that the register definition has enough info to handle 10229 * reads and writes if they are permitted. 10230 */ 10231 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10232 if (r->access & PL3_R) { 10233 assert((r->fieldoffset || 10234 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10235 r->readfn); 10236 } 10237 if (r->access & PL3_W) { 10238 assert((r->fieldoffset || 10239 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10240 r->writefn); 10241 } 10242 } 10243 10244 for (crm = crmmin; crm <= crmmax; crm++) { 10245 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10246 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10247 for (state = ARM_CP_STATE_AA32; 10248 state <= ARM_CP_STATE_AA64; state++) { 10249 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10250 continue; 10251 } 10252 if (state == ARM_CP_STATE_AA32) { 10253 /* 10254 * Under AArch32 CP registers can be common 10255 * (same for secure and non-secure world) or banked. 10256 */ 10257 char *name; 10258 10259 switch (r->secure) { 10260 case ARM_CP_SECSTATE_S: 10261 case ARM_CP_SECSTATE_NS: 10262 add_cpreg_to_hashtable(cpu, r, opaque, state, 10263 r->secure, crm, opc1, opc2, 10264 r->name); 10265 break; 10266 case ARM_CP_SECSTATE_BOTH: 10267 name = g_strdup_printf("%s_S", r->name); 10268 add_cpreg_to_hashtable(cpu, r, opaque, state, 10269 ARM_CP_SECSTATE_S, 10270 crm, opc1, opc2, name); 10271 g_free(name); 10272 add_cpreg_to_hashtable(cpu, r, opaque, state, 10273 ARM_CP_SECSTATE_NS, 10274 crm, opc1, opc2, r->name); 10275 break; 10276 default: 10277 g_assert_not_reached(); 10278 } 10279 } else { 10280 /* 10281 * AArch64 registers get mapped to non-secure instance 10282 * of AArch32 10283 */ 10284 add_cpreg_to_hashtable(cpu, r, opaque, state, 10285 ARM_CP_SECSTATE_NS, 10286 crm, opc1, opc2, r->name); 10287 } 10288 } 10289 } 10290 } 10291 } 10292 } 10293 10294 /* Define a whole list of registers */ 10295 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10296 void *opaque, size_t len) 10297 { 10298 size_t i; 10299 for (i = 0; i < len; ++i) { 10300 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10301 } 10302 } 10303 10304 /* 10305 * Modify ARMCPRegInfo for access from userspace. 10306 * 10307 * This is a data driven modification directed by 10308 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10309 * user-space cannot alter any values and dynamic values pertaining to 10310 * execution state are hidden from user space view anyway. 10311 */ 10312 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10313 const ARMCPRegUserSpaceInfo *mods, 10314 size_t mods_len) 10315 { 10316 for (size_t mi = 0; mi < mods_len; ++mi) { 10317 const ARMCPRegUserSpaceInfo *m = mods + mi; 10318 GPatternSpec *pat = NULL; 10319 10320 if (m->is_glob) { 10321 pat = g_pattern_spec_new(m->name); 10322 } 10323 for (size_t ri = 0; ri < regs_len; ++ri) { 10324 ARMCPRegInfo *r = regs + ri; 10325 10326 if (pat && g_pattern_match_string(pat, r->name)) { 10327 r->type = ARM_CP_CONST; 10328 r->access = PL0U_R; 10329 r->resetvalue = 0; 10330 /* continue */ 10331 } else if (strcmp(r->name, m->name) == 0) { 10332 r->type = ARM_CP_CONST; 10333 r->access = PL0U_R; 10334 r->resetvalue &= m->exported_bits; 10335 r->resetvalue |= m->fixed_bits; 10336 break; 10337 } 10338 } 10339 if (pat) { 10340 g_pattern_spec_free(pat); 10341 } 10342 } 10343 } 10344 10345 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10346 { 10347 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10348 } 10349 10350 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10351 uint64_t value) 10352 { 10353 /* Helper coprocessor write function for write-ignore registers */ 10354 } 10355 10356 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10357 { 10358 /* Helper coprocessor write function for read-as-zero registers */ 10359 return 0; 10360 } 10361 10362 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10363 { 10364 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10365 } 10366 10367 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10368 { 10369 /* 10370 * Return true if it is not valid for us to switch to 10371 * this CPU mode (ie all the UNPREDICTABLE cases in 10372 * the ARM ARM CPSRWriteByInstr pseudocode). 10373 */ 10374 10375 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10376 if (write_type == CPSRWriteByInstr && 10377 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10378 mode == ARM_CPU_MODE_HYP)) { 10379 return 1; 10380 } 10381 10382 switch (mode) { 10383 case ARM_CPU_MODE_USR: 10384 return 0; 10385 case ARM_CPU_MODE_SYS: 10386 case ARM_CPU_MODE_SVC: 10387 case ARM_CPU_MODE_ABT: 10388 case ARM_CPU_MODE_UND: 10389 case ARM_CPU_MODE_IRQ: 10390 case ARM_CPU_MODE_FIQ: 10391 /* 10392 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10393 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10394 */ 10395 /* 10396 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10397 * and CPS are treated as illegal mode changes. 10398 */ 10399 if (write_type == CPSRWriteByInstr && 10400 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10401 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10402 return 1; 10403 } 10404 return 0; 10405 case ARM_CPU_MODE_HYP: 10406 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10407 case ARM_CPU_MODE_MON: 10408 return arm_current_el(env) < 3; 10409 default: 10410 return 1; 10411 } 10412 } 10413 10414 uint32_t cpsr_read(CPUARMState *env) 10415 { 10416 int ZF; 10417 ZF = (env->ZF == 0); 10418 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10419 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10420 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10421 | ((env->condexec_bits & 0xfc) << 8) 10422 | (env->GE << 16) | (env->daif & CPSR_AIF); 10423 } 10424 10425 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10426 CPSRWriteType write_type) 10427 { 10428 uint32_t changed_daif; 10429 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10430 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10431 10432 if (mask & CPSR_NZCV) { 10433 env->ZF = (~val) & CPSR_Z; 10434 env->NF = val; 10435 env->CF = (val >> 29) & 1; 10436 env->VF = (val << 3) & 0x80000000; 10437 } 10438 if (mask & CPSR_Q) { 10439 env->QF = ((val & CPSR_Q) != 0); 10440 } 10441 if (mask & CPSR_T) { 10442 env->thumb = ((val & CPSR_T) != 0); 10443 } 10444 if (mask & CPSR_IT_0_1) { 10445 env->condexec_bits &= ~3; 10446 env->condexec_bits |= (val >> 25) & 3; 10447 } 10448 if (mask & CPSR_IT_2_7) { 10449 env->condexec_bits &= 3; 10450 env->condexec_bits |= (val >> 8) & 0xfc; 10451 } 10452 if (mask & CPSR_GE) { 10453 env->GE = (val >> 16) & 0xf; 10454 } 10455 10456 /* 10457 * In a V7 implementation that includes the security extensions but does 10458 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10459 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10460 * bits respectively. 10461 * 10462 * In a V8 implementation, it is permitted for privileged software to 10463 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10464 */ 10465 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10466 arm_feature(env, ARM_FEATURE_EL3) && 10467 !arm_feature(env, ARM_FEATURE_EL2) && 10468 !arm_is_secure(env)) { 10469 10470 changed_daif = (env->daif ^ val) & mask; 10471 10472 if (changed_daif & CPSR_A) { 10473 /* 10474 * Check to see if we are allowed to change the masking of async 10475 * abort exceptions from a non-secure state. 10476 */ 10477 if (!(env->cp15.scr_el3 & SCR_AW)) { 10478 qemu_log_mask(LOG_GUEST_ERROR, 10479 "Ignoring attempt to switch CPSR_A flag from " 10480 "non-secure world with SCR.AW bit clear\n"); 10481 mask &= ~CPSR_A; 10482 } 10483 } 10484 10485 if (changed_daif & CPSR_F) { 10486 /* 10487 * Check to see if we are allowed to change the masking of FIQ 10488 * exceptions from a non-secure state. 10489 */ 10490 if (!(env->cp15.scr_el3 & SCR_FW)) { 10491 qemu_log_mask(LOG_GUEST_ERROR, 10492 "Ignoring attempt to switch CPSR_F flag from " 10493 "non-secure world with SCR.FW bit clear\n"); 10494 mask &= ~CPSR_F; 10495 } 10496 10497 /* 10498 * Check whether non-maskable FIQ (NMFI) support is enabled. 10499 * If this bit is set software is not allowed to mask 10500 * FIQs, but is allowed to set CPSR_F to 0. 10501 */ 10502 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10503 (val & CPSR_F)) { 10504 qemu_log_mask(LOG_GUEST_ERROR, 10505 "Ignoring attempt to enable CPSR_F flag " 10506 "(non-maskable FIQ [NMFI] support enabled)\n"); 10507 mask &= ~CPSR_F; 10508 } 10509 } 10510 } 10511 10512 env->daif &= ~(CPSR_AIF & mask); 10513 env->daif |= val & CPSR_AIF & mask; 10514 10515 if (write_type != CPSRWriteRaw && 10516 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10517 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10518 /* 10519 * Note that we can only get here in USR mode if this is a 10520 * gdb stub write; for this case we follow the architectural 10521 * behaviour for guest writes in USR mode of ignoring an attempt 10522 * to switch mode. (Those are caught by translate.c for writes 10523 * triggered by guest instructions.) 10524 */ 10525 mask &= ~CPSR_M; 10526 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10527 /* 10528 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10529 * v7, and has defined behaviour in v8: 10530 * + leave CPSR.M untouched 10531 * + allow changes to the other CPSR fields 10532 * + set PSTATE.IL 10533 * For user changes via the GDB stub, we don't set PSTATE.IL, 10534 * as this would be unnecessarily harsh for a user error. 10535 */ 10536 mask &= ~CPSR_M; 10537 if (write_type != CPSRWriteByGDBStub && 10538 arm_feature(env, ARM_FEATURE_V8)) { 10539 mask |= CPSR_IL; 10540 val |= CPSR_IL; 10541 } 10542 qemu_log_mask(LOG_GUEST_ERROR, 10543 "Illegal AArch32 mode switch attempt from %s to %s\n", 10544 aarch32_mode_name(env->uncached_cpsr), 10545 aarch32_mode_name(val)); 10546 } else { 10547 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10548 write_type == CPSRWriteExceptionReturn ? 10549 "Exception return from AArch32" : 10550 "AArch32 mode switch from", 10551 aarch32_mode_name(env->uncached_cpsr), 10552 aarch32_mode_name(val), env->regs[15]); 10553 switch_mode(env, val & CPSR_M); 10554 } 10555 } 10556 mask &= ~CACHED_CPSR_BITS; 10557 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10558 if (tcg_enabled() && rebuild_hflags) { 10559 arm_rebuild_hflags(env); 10560 } 10561 } 10562 10563 #ifdef CONFIG_USER_ONLY 10564 10565 static void switch_mode(CPUARMState *env, int mode) 10566 { 10567 ARMCPU *cpu = env_archcpu(env); 10568 10569 if (mode != ARM_CPU_MODE_USR) { 10570 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10571 } 10572 } 10573 10574 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10575 uint32_t cur_el, bool secure) 10576 { 10577 return 1; 10578 } 10579 10580 void aarch64_sync_64_to_32(CPUARMState *env) 10581 { 10582 g_assert_not_reached(); 10583 } 10584 10585 #else 10586 10587 static void switch_mode(CPUARMState *env, int mode) 10588 { 10589 int old_mode; 10590 int i; 10591 10592 old_mode = env->uncached_cpsr & CPSR_M; 10593 if (mode == old_mode) { 10594 return; 10595 } 10596 10597 if (old_mode == ARM_CPU_MODE_FIQ) { 10598 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10599 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10600 } else if (mode == ARM_CPU_MODE_FIQ) { 10601 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10602 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10603 } 10604 10605 i = bank_number(old_mode); 10606 env->banked_r13[i] = env->regs[13]; 10607 env->banked_spsr[i] = env->spsr; 10608 10609 i = bank_number(mode); 10610 env->regs[13] = env->banked_r13[i]; 10611 env->spsr = env->banked_spsr[i]; 10612 10613 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10614 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10615 } 10616 10617 /* 10618 * Physical Interrupt Target EL Lookup Table 10619 * 10620 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10621 * 10622 * The below multi-dimensional table is used for looking up the target 10623 * exception level given numerous condition criteria. Specifically, the 10624 * target EL is based on SCR and HCR routing controls as well as the 10625 * currently executing EL and secure state. 10626 * 10627 * Dimensions: 10628 * target_el_table[2][2][2][2][2][4] 10629 * | | | | | +--- Current EL 10630 * | | | | +------ Non-secure(0)/Secure(1) 10631 * | | | +--------- HCR mask override 10632 * | | +------------ SCR exec state control 10633 * | +--------------- SCR mask override 10634 * +------------------ 32-bit(0)/64-bit(1) EL3 10635 * 10636 * The table values are as such: 10637 * 0-3 = EL0-EL3 10638 * -1 = Cannot occur 10639 * 10640 * The ARM ARM target EL table includes entries indicating that an "exception 10641 * is not taken". The two cases where this is applicable are: 10642 * 1) An exception is taken from EL3 but the SCR does not have the exception 10643 * routed to EL3. 10644 * 2) An exception is taken from EL2 but the HCR does not have the exception 10645 * routed to EL2. 10646 * In these two cases, the below table contain a target of EL1. This value is 10647 * returned as it is expected that the consumer of the table data will check 10648 * for "target EL >= current EL" to ensure the exception is not taken. 10649 * 10650 * SCR HCR 10651 * 64 EA AMO From 10652 * BIT IRQ IMO Non-secure Secure 10653 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10654 */ 10655 static const int8_t target_el_table[2][2][2][2][2][4] = { 10656 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10657 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10658 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10659 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10660 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10661 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10662 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10663 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10664 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10665 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10666 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10667 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10668 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10669 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10670 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10671 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10672 }; 10673 10674 /* 10675 * Determine the target EL for physical exceptions 10676 */ 10677 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10678 uint32_t cur_el, bool secure) 10679 { 10680 CPUARMState *env = cpu_env(cs); 10681 bool rw; 10682 bool scr; 10683 bool hcr; 10684 int target_el; 10685 /* Is the highest EL AArch64? */ 10686 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10687 uint64_t hcr_el2; 10688 10689 if (arm_feature(env, ARM_FEATURE_EL3)) { 10690 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10691 } else { 10692 /* 10693 * Either EL2 is the highest EL (and so the EL2 register width 10694 * is given by is64); or there is no EL2 or EL3, in which case 10695 * the value of 'rw' does not affect the table lookup anyway. 10696 */ 10697 rw = is64; 10698 } 10699 10700 hcr_el2 = arm_hcr_el2_eff(env); 10701 switch (excp_idx) { 10702 case EXCP_IRQ: 10703 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10704 hcr = hcr_el2 & HCR_IMO; 10705 break; 10706 case EXCP_FIQ: 10707 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10708 hcr = hcr_el2 & HCR_FMO; 10709 break; 10710 default: 10711 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10712 hcr = hcr_el2 & HCR_AMO; 10713 break; 10714 }; 10715 10716 /* 10717 * For these purposes, TGE and AMO/IMO/FMO both force the 10718 * interrupt to EL2. Fold TGE into the bit extracted above. 10719 */ 10720 hcr |= (hcr_el2 & HCR_TGE) != 0; 10721 10722 /* Perform a table-lookup for the target EL given the current state */ 10723 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10724 10725 assert(target_el > 0); 10726 10727 return target_el; 10728 } 10729 10730 void arm_log_exception(CPUState *cs) 10731 { 10732 int idx = cs->exception_index; 10733 10734 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10735 const char *exc = NULL; 10736 static const char * const excnames[] = { 10737 [EXCP_UDEF] = "Undefined Instruction", 10738 [EXCP_SWI] = "SVC", 10739 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10740 [EXCP_DATA_ABORT] = "Data Abort", 10741 [EXCP_IRQ] = "IRQ", 10742 [EXCP_FIQ] = "FIQ", 10743 [EXCP_BKPT] = "Breakpoint", 10744 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10745 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10746 [EXCP_HVC] = "Hypervisor Call", 10747 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10748 [EXCP_SMC] = "Secure Monitor Call", 10749 [EXCP_VIRQ] = "Virtual IRQ", 10750 [EXCP_VFIQ] = "Virtual FIQ", 10751 [EXCP_SEMIHOST] = "Semihosting call", 10752 [EXCP_NOCP] = "v7M NOCP UsageFault", 10753 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10754 [EXCP_STKOF] = "v8M STKOF UsageFault", 10755 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10756 [EXCP_LSERR] = "v8M LSERR UsageFault", 10757 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10758 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10759 [EXCP_VSERR] = "Virtual SERR", 10760 [EXCP_GPC] = "Granule Protection Check", 10761 }; 10762 10763 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10764 exc = excnames[idx]; 10765 } 10766 if (!exc) { 10767 exc = "unknown"; 10768 } 10769 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10770 idx, exc, cs->cpu_index); 10771 } 10772 } 10773 10774 /* 10775 * Function used to synchronize QEMU's AArch64 register set with AArch32 10776 * register set. This is necessary when switching between AArch32 and AArch64 10777 * execution state. 10778 */ 10779 void aarch64_sync_32_to_64(CPUARMState *env) 10780 { 10781 int i; 10782 uint32_t mode = env->uncached_cpsr & CPSR_M; 10783 10784 /* We can blanket copy R[0:7] to X[0:7] */ 10785 for (i = 0; i < 8; i++) { 10786 env->xregs[i] = env->regs[i]; 10787 } 10788 10789 /* 10790 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10791 * Otherwise, they come from the banked user regs. 10792 */ 10793 if (mode == ARM_CPU_MODE_FIQ) { 10794 for (i = 8; i < 13; i++) { 10795 env->xregs[i] = env->usr_regs[i - 8]; 10796 } 10797 } else { 10798 for (i = 8; i < 13; i++) { 10799 env->xregs[i] = env->regs[i]; 10800 } 10801 } 10802 10803 /* 10804 * Registers x13-x23 are the various mode SP and FP registers. Registers 10805 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10806 * from the mode banked register. 10807 */ 10808 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10809 env->xregs[13] = env->regs[13]; 10810 env->xregs[14] = env->regs[14]; 10811 } else { 10812 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10813 /* HYP is an exception in that it is copied from r14 */ 10814 if (mode == ARM_CPU_MODE_HYP) { 10815 env->xregs[14] = env->regs[14]; 10816 } else { 10817 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10818 } 10819 } 10820 10821 if (mode == ARM_CPU_MODE_HYP) { 10822 env->xregs[15] = env->regs[13]; 10823 } else { 10824 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10825 } 10826 10827 if (mode == ARM_CPU_MODE_IRQ) { 10828 env->xregs[16] = env->regs[14]; 10829 env->xregs[17] = env->regs[13]; 10830 } else { 10831 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10832 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10833 } 10834 10835 if (mode == ARM_CPU_MODE_SVC) { 10836 env->xregs[18] = env->regs[14]; 10837 env->xregs[19] = env->regs[13]; 10838 } else { 10839 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10840 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10841 } 10842 10843 if (mode == ARM_CPU_MODE_ABT) { 10844 env->xregs[20] = env->regs[14]; 10845 env->xregs[21] = env->regs[13]; 10846 } else { 10847 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10848 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10849 } 10850 10851 if (mode == ARM_CPU_MODE_UND) { 10852 env->xregs[22] = env->regs[14]; 10853 env->xregs[23] = env->regs[13]; 10854 } else { 10855 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10856 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10857 } 10858 10859 /* 10860 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10861 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10862 * FIQ bank for r8-r14. 10863 */ 10864 if (mode == ARM_CPU_MODE_FIQ) { 10865 for (i = 24; i < 31; i++) { 10866 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10867 } 10868 } else { 10869 for (i = 24; i < 29; i++) { 10870 env->xregs[i] = env->fiq_regs[i - 24]; 10871 } 10872 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10873 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10874 } 10875 10876 env->pc = env->regs[15]; 10877 } 10878 10879 /* 10880 * Function used to synchronize QEMU's AArch32 register set with AArch64 10881 * register set. This is necessary when switching between AArch32 and AArch64 10882 * execution state. 10883 */ 10884 void aarch64_sync_64_to_32(CPUARMState *env) 10885 { 10886 int i; 10887 uint32_t mode = env->uncached_cpsr & CPSR_M; 10888 10889 /* We can blanket copy X[0:7] to R[0:7] */ 10890 for (i = 0; i < 8; i++) { 10891 env->regs[i] = env->xregs[i]; 10892 } 10893 10894 /* 10895 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10896 * Otherwise, we copy x8-x12 into the banked user regs. 10897 */ 10898 if (mode == ARM_CPU_MODE_FIQ) { 10899 for (i = 8; i < 13; i++) { 10900 env->usr_regs[i - 8] = env->xregs[i]; 10901 } 10902 } else { 10903 for (i = 8; i < 13; i++) { 10904 env->regs[i] = env->xregs[i]; 10905 } 10906 } 10907 10908 /* 10909 * Registers r13 & r14 depend on the current mode. 10910 * If we are in a given mode, we copy the corresponding x registers to r13 10911 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10912 * for the mode. 10913 */ 10914 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10915 env->regs[13] = env->xregs[13]; 10916 env->regs[14] = env->xregs[14]; 10917 } else { 10918 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10919 10920 /* 10921 * HYP is an exception in that it does not have its own banked r14 but 10922 * shares the USR r14 10923 */ 10924 if (mode == ARM_CPU_MODE_HYP) { 10925 env->regs[14] = env->xregs[14]; 10926 } else { 10927 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10928 } 10929 } 10930 10931 if (mode == ARM_CPU_MODE_HYP) { 10932 env->regs[13] = env->xregs[15]; 10933 } else { 10934 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10935 } 10936 10937 if (mode == ARM_CPU_MODE_IRQ) { 10938 env->regs[14] = env->xregs[16]; 10939 env->regs[13] = env->xregs[17]; 10940 } else { 10941 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10942 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10943 } 10944 10945 if (mode == ARM_CPU_MODE_SVC) { 10946 env->regs[14] = env->xregs[18]; 10947 env->regs[13] = env->xregs[19]; 10948 } else { 10949 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10950 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10951 } 10952 10953 if (mode == ARM_CPU_MODE_ABT) { 10954 env->regs[14] = env->xregs[20]; 10955 env->regs[13] = env->xregs[21]; 10956 } else { 10957 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10958 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10959 } 10960 10961 if (mode == ARM_CPU_MODE_UND) { 10962 env->regs[14] = env->xregs[22]; 10963 env->regs[13] = env->xregs[23]; 10964 } else { 10965 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10966 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10967 } 10968 10969 /* 10970 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10971 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10972 * FIQ bank for r8-r14. 10973 */ 10974 if (mode == ARM_CPU_MODE_FIQ) { 10975 for (i = 24; i < 31; i++) { 10976 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10977 } 10978 } else { 10979 for (i = 24; i < 29; i++) { 10980 env->fiq_regs[i - 24] = env->xregs[i]; 10981 } 10982 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10983 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10984 } 10985 10986 env->regs[15] = env->pc; 10987 } 10988 10989 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10990 uint32_t mask, uint32_t offset, 10991 uint32_t newpc) 10992 { 10993 int new_el; 10994 10995 /* Change the CPU state so as to actually take the exception. */ 10996 switch_mode(env, new_mode); 10997 10998 /* 10999 * For exceptions taken to AArch32 we must clear the SS bit in both 11000 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 11001 */ 11002 env->pstate &= ~PSTATE_SS; 11003 env->spsr = cpsr_read(env); 11004 /* Clear IT bits. */ 11005 env->condexec_bits = 0; 11006 /* Switch to the new mode, and to the correct instruction set. */ 11007 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 11008 11009 /* This must be after mode switching. */ 11010 new_el = arm_current_el(env); 11011 11012 /* Set new mode endianness */ 11013 env->uncached_cpsr &= ~CPSR_E; 11014 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 11015 env->uncached_cpsr |= CPSR_E; 11016 } 11017 /* J and IL must always be cleared for exception entry */ 11018 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 11019 env->daif |= mask; 11020 11021 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 11022 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 11023 env->uncached_cpsr |= CPSR_SSBS; 11024 } else { 11025 env->uncached_cpsr &= ~CPSR_SSBS; 11026 } 11027 } 11028 11029 if (new_mode == ARM_CPU_MODE_HYP) { 11030 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 11031 env->elr_el[2] = env->regs[15]; 11032 } else { 11033 /* CPSR.PAN is normally preserved preserved unless... */ 11034 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 11035 switch (new_el) { 11036 case 3: 11037 if (!arm_is_secure_below_el3(env)) { 11038 /* ... the target is EL3, from non-secure state. */ 11039 env->uncached_cpsr &= ~CPSR_PAN; 11040 break; 11041 } 11042 /* ... the target is EL3, from secure state ... */ 11043 /* fall through */ 11044 case 1: 11045 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 11046 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 11047 env->uncached_cpsr |= CPSR_PAN; 11048 } 11049 break; 11050 } 11051 } 11052 /* 11053 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 11054 * and we should just guard the thumb mode on V4 11055 */ 11056 if (arm_feature(env, ARM_FEATURE_V4T)) { 11057 env->thumb = 11058 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 11059 } 11060 env->regs[14] = env->regs[15] + offset; 11061 } 11062 env->regs[15] = newpc; 11063 11064 if (tcg_enabled()) { 11065 arm_rebuild_hflags(env); 11066 } 11067 } 11068 11069 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 11070 { 11071 /* 11072 * Handle exception entry to Hyp mode; this is sufficiently 11073 * different to entry to other AArch32 modes that we handle it 11074 * separately here. 11075 * 11076 * The vector table entry used is always the 0x14 Hyp mode entry point, 11077 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 11078 * The offset applied to the preferred return address is always zero 11079 * (see DDI0487C.a section G1.12.3). 11080 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 11081 */ 11082 uint32_t addr, mask; 11083 ARMCPU *cpu = ARM_CPU(cs); 11084 CPUARMState *env = &cpu->env; 11085 11086 switch (cs->exception_index) { 11087 case EXCP_UDEF: 11088 addr = 0x04; 11089 break; 11090 case EXCP_SWI: 11091 addr = 0x08; 11092 break; 11093 case EXCP_BKPT: 11094 /* Fall through to prefetch abort. */ 11095 case EXCP_PREFETCH_ABORT: 11096 env->cp15.ifar_s = env->exception.vaddress; 11097 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 11098 (uint32_t)env->exception.vaddress); 11099 addr = 0x0c; 11100 break; 11101 case EXCP_DATA_ABORT: 11102 env->cp15.dfar_s = env->exception.vaddress; 11103 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 11104 (uint32_t)env->exception.vaddress); 11105 addr = 0x10; 11106 break; 11107 case EXCP_IRQ: 11108 addr = 0x18; 11109 break; 11110 case EXCP_FIQ: 11111 addr = 0x1c; 11112 break; 11113 case EXCP_HVC: 11114 addr = 0x08; 11115 break; 11116 case EXCP_HYP_TRAP: 11117 addr = 0x14; 11118 break; 11119 default: 11120 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11121 } 11122 11123 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 11124 if (!arm_feature(env, ARM_FEATURE_V8)) { 11125 /* 11126 * QEMU syndrome values are v8-style. v7 has the IL bit 11127 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 11128 * If this is a v7 CPU, squash the IL bit in those cases. 11129 */ 11130 if (cs->exception_index == EXCP_PREFETCH_ABORT || 11131 (cs->exception_index == EXCP_DATA_ABORT && 11132 !(env->exception.syndrome & ARM_EL_ISV)) || 11133 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 11134 env->exception.syndrome &= ~ARM_EL_IL; 11135 } 11136 } 11137 env->cp15.esr_el[2] = env->exception.syndrome; 11138 } 11139 11140 if (arm_current_el(env) != 2 && addr < 0x14) { 11141 addr = 0x14; 11142 } 11143 11144 mask = 0; 11145 if (!(env->cp15.scr_el3 & SCR_EA)) { 11146 mask |= CPSR_A; 11147 } 11148 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 11149 mask |= CPSR_I; 11150 } 11151 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 11152 mask |= CPSR_F; 11153 } 11154 11155 addr += env->cp15.hvbar; 11156 11157 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 11158 } 11159 11160 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 11161 { 11162 ARMCPU *cpu = ARM_CPU(cs); 11163 CPUARMState *env = &cpu->env; 11164 uint32_t addr; 11165 uint32_t mask; 11166 int new_mode; 11167 uint32_t offset; 11168 uint32_t moe; 11169 11170 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11171 switch (syn_get_ec(env->exception.syndrome)) { 11172 case EC_BREAKPOINT: 11173 case EC_BREAKPOINT_SAME_EL: 11174 moe = 1; 11175 break; 11176 case EC_WATCHPOINT: 11177 case EC_WATCHPOINT_SAME_EL: 11178 moe = 10; 11179 break; 11180 case EC_AA32_BKPT: 11181 moe = 3; 11182 break; 11183 case EC_VECTORCATCH: 11184 moe = 5; 11185 break; 11186 default: 11187 moe = 0; 11188 break; 11189 } 11190 11191 if (moe) { 11192 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11193 } 11194 11195 if (env->exception.target_el == 2) { 11196 /* Debug exceptions are reported differently on AArch32 */ 11197 switch (syn_get_ec(env->exception.syndrome)) { 11198 case EC_BREAKPOINT: 11199 case EC_BREAKPOINT_SAME_EL: 11200 case EC_AA32_BKPT: 11201 case EC_VECTORCATCH: 11202 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11203 0, 0, 0x22); 11204 break; 11205 case EC_WATCHPOINT: 11206 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11207 EC_DATAABORT); 11208 break; 11209 case EC_WATCHPOINT_SAME_EL: 11210 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11211 EC_DATAABORT_SAME_EL); 11212 break; 11213 } 11214 arm_cpu_do_interrupt_aarch32_hyp(cs); 11215 return; 11216 } 11217 11218 switch (cs->exception_index) { 11219 case EXCP_UDEF: 11220 new_mode = ARM_CPU_MODE_UND; 11221 addr = 0x04; 11222 mask = CPSR_I; 11223 if (env->thumb) { 11224 offset = 2; 11225 } else { 11226 offset = 4; 11227 } 11228 break; 11229 case EXCP_SWI: 11230 new_mode = ARM_CPU_MODE_SVC; 11231 addr = 0x08; 11232 mask = CPSR_I; 11233 /* The PC already points to the next instruction. */ 11234 offset = 0; 11235 break; 11236 case EXCP_BKPT: 11237 /* Fall through to prefetch abort. */ 11238 case EXCP_PREFETCH_ABORT: 11239 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11240 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11241 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11242 env->exception.fsr, (uint32_t)env->exception.vaddress); 11243 new_mode = ARM_CPU_MODE_ABT; 11244 addr = 0x0c; 11245 mask = CPSR_A | CPSR_I; 11246 offset = 4; 11247 break; 11248 case EXCP_DATA_ABORT: 11249 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11250 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11251 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11252 env->exception.fsr, 11253 (uint32_t)env->exception.vaddress); 11254 new_mode = ARM_CPU_MODE_ABT; 11255 addr = 0x10; 11256 mask = CPSR_A | CPSR_I; 11257 offset = 8; 11258 break; 11259 case EXCP_IRQ: 11260 new_mode = ARM_CPU_MODE_IRQ; 11261 addr = 0x18; 11262 /* Disable IRQ and imprecise data aborts. */ 11263 mask = CPSR_A | CPSR_I; 11264 offset = 4; 11265 if (env->cp15.scr_el3 & SCR_IRQ) { 11266 /* IRQ routed to monitor mode */ 11267 new_mode = ARM_CPU_MODE_MON; 11268 mask |= CPSR_F; 11269 } 11270 break; 11271 case EXCP_FIQ: 11272 new_mode = ARM_CPU_MODE_FIQ; 11273 addr = 0x1c; 11274 /* Disable FIQ, IRQ and imprecise data aborts. */ 11275 mask = CPSR_A | CPSR_I | CPSR_F; 11276 if (env->cp15.scr_el3 & SCR_FIQ) { 11277 /* FIQ routed to monitor mode */ 11278 new_mode = ARM_CPU_MODE_MON; 11279 } 11280 offset = 4; 11281 break; 11282 case EXCP_VIRQ: 11283 new_mode = ARM_CPU_MODE_IRQ; 11284 addr = 0x18; 11285 /* Disable IRQ and imprecise data aborts. */ 11286 mask = CPSR_A | CPSR_I; 11287 offset = 4; 11288 break; 11289 case EXCP_VFIQ: 11290 new_mode = ARM_CPU_MODE_FIQ; 11291 addr = 0x1c; 11292 /* Disable FIQ, IRQ and imprecise data aborts. */ 11293 mask = CPSR_A | CPSR_I | CPSR_F; 11294 offset = 4; 11295 break; 11296 case EXCP_VSERR: 11297 { 11298 /* 11299 * Note that this is reported as a data abort, but the DFAR 11300 * has an UNKNOWN value. Construct the SError syndrome from 11301 * AET and ExT fields. 11302 */ 11303 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11304 11305 if (extended_addresses_enabled(env)) { 11306 env->exception.fsr = arm_fi_to_lfsc(&fi); 11307 } else { 11308 env->exception.fsr = arm_fi_to_sfsc(&fi); 11309 } 11310 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11311 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11312 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11313 env->exception.fsr); 11314 11315 new_mode = ARM_CPU_MODE_ABT; 11316 addr = 0x10; 11317 mask = CPSR_A | CPSR_I; 11318 offset = 8; 11319 } 11320 break; 11321 case EXCP_SMC: 11322 new_mode = ARM_CPU_MODE_MON; 11323 addr = 0x08; 11324 mask = CPSR_A | CPSR_I | CPSR_F; 11325 offset = 0; 11326 break; 11327 default: 11328 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11329 return; /* Never happens. Keep compiler happy. */ 11330 } 11331 11332 if (new_mode == ARM_CPU_MODE_MON) { 11333 addr += env->cp15.mvbar; 11334 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11335 /* High vectors. When enabled, base address cannot be remapped. */ 11336 addr += 0xffff0000; 11337 } else { 11338 /* 11339 * ARM v7 architectures provide a vector base address register to remap 11340 * the interrupt vector table. 11341 * This register is only followed in non-monitor mode, and is banked. 11342 * Note: only bits 31:5 are valid. 11343 */ 11344 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11345 } 11346 11347 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11348 env->cp15.scr_el3 &= ~SCR_NS; 11349 } 11350 11351 take_aarch32_exception(env, new_mode, mask, offset, addr); 11352 } 11353 11354 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11355 { 11356 /* 11357 * Return the register number of the AArch64 view of the AArch32 11358 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11359 * be that of the AArch32 mode the exception came from. 11360 */ 11361 int mode = env->uncached_cpsr & CPSR_M; 11362 11363 switch (aarch32_reg) { 11364 case 0 ... 7: 11365 return aarch32_reg; 11366 case 8 ... 12: 11367 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11368 case 13: 11369 switch (mode) { 11370 case ARM_CPU_MODE_USR: 11371 case ARM_CPU_MODE_SYS: 11372 return 13; 11373 case ARM_CPU_MODE_HYP: 11374 return 15; 11375 case ARM_CPU_MODE_IRQ: 11376 return 17; 11377 case ARM_CPU_MODE_SVC: 11378 return 19; 11379 case ARM_CPU_MODE_ABT: 11380 return 21; 11381 case ARM_CPU_MODE_UND: 11382 return 23; 11383 case ARM_CPU_MODE_FIQ: 11384 return 29; 11385 default: 11386 g_assert_not_reached(); 11387 } 11388 case 14: 11389 switch (mode) { 11390 case ARM_CPU_MODE_USR: 11391 case ARM_CPU_MODE_SYS: 11392 case ARM_CPU_MODE_HYP: 11393 return 14; 11394 case ARM_CPU_MODE_IRQ: 11395 return 16; 11396 case ARM_CPU_MODE_SVC: 11397 return 18; 11398 case ARM_CPU_MODE_ABT: 11399 return 20; 11400 case ARM_CPU_MODE_UND: 11401 return 22; 11402 case ARM_CPU_MODE_FIQ: 11403 return 30; 11404 default: 11405 g_assert_not_reached(); 11406 } 11407 case 15: 11408 return 31; 11409 default: 11410 g_assert_not_reached(); 11411 } 11412 } 11413 11414 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11415 { 11416 uint32_t ret = cpsr_read(env); 11417 11418 /* Move DIT to the correct location for SPSR_ELx */ 11419 if (ret & CPSR_DIT) { 11420 ret &= ~CPSR_DIT; 11421 ret |= PSTATE_DIT; 11422 } 11423 /* Merge PSTATE.SS into SPSR_ELx */ 11424 ret |= env->pstate & PSTATE_SS; 11425 11426 return ret; 11427 } 11428 11429 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11430 { 11431 /* Return true if this syndrome value is a synchronous external abort */ 11432 switch (syn_get_ec(syndrome)) { 11433 case EC_INSNABORT: 11434 case EC_INSNABORT_SAME_EL: 11435 case EC_DATAABORT: 11436 case EC_DATAABORT_SAME_EL: 11437 /* Look at fault status code for all the synchronous ext abort cases */ 11438 switch (syndrome & 0x3f) { 11439 case 0x10: 11440 case 0x13: 11441 case 0x14: 11442 case 0x15: 11443 case 0x16: 11444 case 0x17: 11445 return true; 11446 default: 11447 return false; 11448 } 11449 default: 11450 return false; 11451 } 11452 } 11453 11454 /* Handle exception entry to a target EL which is using AArch64 */ 11455 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11456 { 11457 ARMCPU *cpu = ARM_CPU(cs); 11458 CPUARMState *env = &cpu->env; 11459 unsigned int new_el = env->exception.target_el; 11460 target_ulong addr = env->cp15.vbar_el[new_el]; 11461 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11462 unsigned int old_mode; 11463 unsigned int cur_el = arm_current_el(env); 11464 int rt; 11465 11466 if (tcg_enabled()) { 11467 /* 11468 * Note that new_el can never be 0. If cur_el is 0, then 11469 * el0_a64 is is_a64(), else el0_a64 is ignored. 11470 */ 11471 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11472 } 11473 11474 if (cur_el < new_el) { 11475 /* 11476 * Entry vector offset depends on whether the implemented EL 11477 * immediately lower than the target level is using AArch32 or AArch64 11478 */ 11479 bool is_aa64; 11480 uint64_t hcr; 11481 11482 switch (new_el) { 11483 case 3: 11484 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11485 break; 11486 case 2: 11487 hcr = arm_hcr_el2_eff(env); 11488 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11489 is_aa64 = (hcr & HCR_RW) != 0; 11490 break; 11491 } 11492 /* fall through */ 11493 case 1: 11494 is_aa64 = is_a64(env); 11495 break; 11496 default: 11497 g_assert_not_reached(); 11498 } 11499 11500 if (is_aa64) { 11501 addr += 0x400; 11502 } else { 11503 addr += 0x600; 11504 } 11505 } else if (pstate_read(env) & PSTATE_SP) { 11506 addr += 0x200; 11507 } 11508 11509 switch (cs->exception_index) { 11510 case EXCP_GPC: 11511 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11512 env->cp15.mfar_el3); 11513 /* fall through */ 11514 case EXCP_PREFETCH_ABORT: 11515 case EXCP_DATA_ABORT: 11516 /* 11517 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11518 * to be taken to the SError vector entrypoint. 11519 */ 11520 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11521 syndrome_is_sync_extabt(env->exception.syndrome)) { 11522 addr += 0x180; 11523 } 11524 env->cp15.far_el[new_el] = env->exception.vaddress; 11525 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11526 env->cp15.far_el[new_el]); 11527 /* fall through */ 11528 case EXCP_BKPT: 11529 case EXCP_UDEF: 11530 case EXCP_SWI: 11531 case EXCP_HVC: 11532 case EXCP_HYP_TRAP: 11533 case EXCP_SMC: 11534 switch (syn_get_ec(env->exception.syndrome)) { 11535 case EC_ADVSIMDFPACCESSTRAP: 11536 /* 11537 * QEMU internal FP/SIMD syndromes from AArch32 include the 11538 * TA and coproc fields which are only exposed if the exception 11539 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11540 * AArch64 format syndrome. 11541 */ 11542 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11543 break; 11544 case EC_CP14RTTRAP: 11545 case EC_CP15RTTRAP: 11546 case EC_CP14DTTRAP: 11547 /* 11548 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11549 * the raw register field from the insn; when taking this to 11550 * AArch64 we must convert it to the AArch64 view of the register 11551 * number. Notice that we read a 4-bit AArch32 register number and 11552 * write back a 5-bit AArch64 one. 11553 */ 11554 rt = extract32(env->exception.syndrome, 5, 4); 11555 rt = aarch64_regnum(env, rt); 11556 env->exception.syndrome = deposit32(env->exception.syndrome, 11557 5, 5, rt); 11558 break; 11559 case EC_CP15RRTTRAP: 11560 case EC_CP14RRTTRAP: 11561 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11562 rt = extract32(env->exception.syndrome, 5, 4); 11563 rt = aarch64_regnum(env, rt); 11564 env->exception.syndrome = deposit32(env->exception.syndrome, 11565 5, 5, rt); 11566 rt = extract32(env->exception.syndrome, 10, 4); 11567 rt = aarch64_regnum(env, rt); 11568 env->exception.syndrome = deposit32(env->exception.syndrome, 11569 10, 5, rt); 11570 break; 11571 } 11572 env->cp15.esr_el[new_el] = env->exception.syndrome; 11573 break; 11574 case EXCP_IRQ: 11575 case EXCP_VIRQ: 11576 addr += 0x80; 11577 break; 11578 case EXCP_FIQ: 11579 case EXCP_VFIQ: 11580 addr += 0x100; 11581 break; 11582 case EXCP_VSERR: 11583 addr += 0x180; 11584 /* Construct the SError syndrome from IDS and ISS fields. */ 11585 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11586 env->cp15.esr_el[new_el] = env->exception.syndrome; 11587 break; 11588 default: 11589 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11590 } 11591 11592 if (is_a64(env)) { 11593 old_mode = pstate_read(env); 11594 aarch64_save_sp(env, arm_current_el(env)); 11595 env->elr_el[new_el] = env->pc; 11596 11597 if (cur_el == 1 && new_el == 1) { 11598 uint64_t hcr = arm_hcr_el2_eff(env); 11599 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11600 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11601 /* 11602 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11603 * by setting M[3:2] to 0b10. 11604 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11605 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11606 */ 11607 old_mode = deposit32(old_mode, 2, 2, 2); 11608 } 11609 } 11610 } else { 11611 old_mode = cpsr_read_for_spsr_elx(env); 11612 env->elr_el[new_el] = env->regs[15]; 11613 11614 aarch64_sync_32_to_64(env); 11615 11616 env->condexec_bits = 0; 11617 } 11618 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11619 11620 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11621 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11622 env->elr_el[new_el]); 11623 11624 if (cpu_isar_feature(aa64_pan, cpu)) { 11625 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11626 new_mode |= old_mode & PSTATE_PAN; 11627 switch (new_el) { 11628 case 2: 11629 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11630 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11631 != (HCR_E2H | HCR_TGE)) { 11632 break; 11633 } 11634 /* fall through */ 11635 case 1: 11636 /* ... the target is EL1 ... */ 11637 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11638 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11639 new_mode |= PSTATE_PAN; 11640 } 11641 break; 11642 } 11643 } 11644 if (cpu_isar_feature(aa64_mte, cpu)) { 11645 new_mode |= PSTATE_TCO; 11646 } 11647 11648 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11649 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11650 new_mode |= PSTATE_SSBS; 11651 } else { 11652 new_mode &= ~PSTATE_SSBS; 11653 } 11654 } 11655 11656 pstate_write(env, PSTATE_DAIF | new_mode); 11657 env->aarch64 = true; 11658 aarch64_restore_sp(env, new_el); 11659 11660 if (tcg_enabled()) { 11661 helper_rebuild_hflags_a64(env, new_el); 11662 } 11663 11664 env->pc = addr; 11665 11666 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11667 new_el, env->pc, pstate_read(env)); 11668 } 11669 11670 /* 11671 * Do semihosting call and set the appropriate return value. All the 11672 * permission and validity checks have been done at translate time. 11673 * 11674 * We only see semihosting exceptions in TCG only as they are not 11675 * trapped to the hypervisor in KVM. 11676 */ 11677 #ifdef CONFIG_TCG 11678 static void tcg_handle_semihosting(CPUState *cs) 11679 { 11680 ARMCPU *cpu = ARM_CPU(cs); 11681 CPUARMState *env = &cpu->env; 11682 11683 if (is_a64(env)) { 11684 qemu_log_mask(CPU_LOG_INT, 11685 "...handling as semihosting call 0x%" PRIx64 "\n", 11686 env->xregs[0]); 11687 do_common_semihosting(cs); 11688 env->pc += 4; 11689 } else { 11690 qemu_log_mask(CPU_LOG_INT, 11691 "...handling as semihosting call 0x%x\n", 11692 env->regs[0]); 11693 do_common_semihosting(cs); 11694 env->regs[15] += env->thumb ? 2 : 4; 11695 } 11696 } 11697 #endif 11698 11699 /* 11700 * Handle a CPU exception for A and R profile CPUs. 11701 * Do any appropriate logging, handle PSCI calls, and then hand off 11702 * to the AArch64-entry or AArch32-entry function depending on the 11703 * target exception level's register width. 11704 * 11705 * Note: this is used for both TCG (as the do_interrupt tcg op), 11706 * and KVM to re-inject guest debug exceptions, and to 11707 * inject a Synchronous-External-Abort. 11708 */ 11709 void arm_cpu_do_interrupt(CPUState *cs) 11710 { 11711 ARMCPU *cpu = ARM_CPU(cs); 11712 CPUARMState *env = &cpu->env; 11713 unsigned int new_el = env->exception.target_el; 11714 11715 assert(!arm_feature(env, ARM_FEATURE_M)); 11716 11717 arm_log_exception(cs); 11718 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11719 new_el); 11720 if (qemu_loglevel_mask(CPU_LOG_INT) 11721 && !excp_is_internal(cs->exception_index)) { 11722 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11723 syn_get_ec(env->exception.syndrome), 11724 env->exception.syndrome); 11725 } 11726 11727 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11728 arm_handle_psci_call(cpu); 11729 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11730 return; 11731 } 11732 11733 /* 11734 * Semihosting semantics depend on the register width of the code 11735 * that caused the exception, not the target exception level, so 11736 * must be handled here. 11737 */ 11738 #ifdef CONFIG_TCG 11739 if (cs->exception_index == EXCP_SEMIHOST) { 11740 tcg_handle_semihosting(cs); 11741 return; 11742 } 11743 #endif 11744 11745 /* 11746 * Hooks may change global state so BQL should be held, also the 11747 * BQL needs to be held for any modification of 11748 * cs->interrupt_request. 11749 */ 11750 g_assert(bql_locked()); 11751 11752 arm_call_pre_el_change_hook(cpu); 11753 11754 assert(!excp_is_internal(cs->exception_index)); 11755 if (arm_el_is_aa64(env, new_el)) { 11756 arm_cpu_do_interrupt_aarch64(cs); 11757 } else { 11758 arm_cpu_do_interrupt_aarch32(cs); 11759 } 11760 11761 arm_call_el_change_hook(cpu); 11762 11763 if (!kvm_enabled()) { 11764 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11765 } 11766 } 11767 #endif /* !CONFIG_USER_ONLY */ 11768 11769 uint64_t arm_sctlr(CPUARMState *env, int el) 11770 { 11771 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11772 if (el == 0) { 11773 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11774 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11775 } 11776 return env->cp15.sctlr_el[el]; 11777 } 11778 11779 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11780 { 11781 if (regime_has_2_ranges(mmu_idx)) { 11782 return extract64(tcr, 37, 2); 11783 } else if (regime_is_stage2(mmu_idx)) { 11784 return 0; /* VTCR_EL2 */ 11785 } else { 11786 /* Replicate the single TBI bit so we always have 2 bits. */ 11787 return extract32(tcr, 20, 1) * 3; 11788 } 11789 } 11790 11791 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11792 { 11793 if (regime_has_2_ranges(mmu_idx)) { 11794 return extract64(tcr, 51, 2); 11795 } else if (regime_is_stage2(mmu_idx)) { 11796 return 0; /* VTCR_EL2 */ 11797 } else { 11798 /* Replicate the single TBID bit so we always have 2 bits. */ 11799 return extract32(tcr, 29, 1) * 3; 11800 } 11801 } 11802 11803 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11804 { 11805 if (regime_has_2_ranges(mmu_idx)) { 11806 return extract64(tcr, 57, 2); 11807 } else { 11808 /* Replicate the single TCMA bit so we always have 2 bits. */ 11809 return extract32(tcr, 30, 1) * 3; 11810 } 11811 } 11812 11813 static ARMGranuleSize tg0_to_gran_size(int tg) 11814 { 11815 switch (tg) { 11816 case 0: 11817 return Gran4K; 11818 case 1: 11819 return Gran64K; 11820 case 2: 11821 return Gran16K; 11822 default: 11823 return GranInvalid; 11824 } 11825 } 11826 11827 static ARMGranuleSize tg1_to_gran_size(int tg) 11828 { 11829 switch (tg) { 11830 case 1: 11831 return Gran16K; 11832 case 2: 11833 return Gran4K; 11834 case 3: 11835 return Gran64K; 11836 default: 11837 return GranInvalid; 11838 } 11839 } 11840 11841 static inline bool have4k(ARMCPU *cpu, bool stage2) 11842 { 11843 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11844 : cpu_isar_feature(aa64_tgran4, cpu); 11845 } 11846 11847 static inline bool have16k(ARMCPU *cpu, bool stage2) 11848 { 11849 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11850 : cpu_isar_feature(aa64_tgran16, cpu); 11851 } 11852 11853 static inline bool have64k(ARMCPU *cpu, bool stage2) 11854 { 11855 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11856 : cpu_isar_feature(aa64_tgran64, cpu); 11857 } 11858 11859 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11860 bool stage2) 11861 { 11862 switch (gran) { 11863 case Gran4K: 11864 if (have4k(cpu, stage2)) { 11865 return gran; 11866 } 11867 break; 11868 case Gran16K: 11869 if (have16k(cpu, stage2)) { 11870 return gran; 11871 } 11872 break; 11873 case Gran64K: 11874 if (have64k(cpu, stage2)) { 11875 return gran; 11876 } 11877 break; 11878 case GranInvalid: 11879 break; 11880 } 11881 /* 11882 * If the guest selects a granule size that isn't implemented, 11883 * the architecture requires that we behave as if it selected one 11884 * that is (with an IMPDEF choice of which one to pick). We choose 11885 * to implement the smallest supported granule size. 11886 */ 11887 if (have4k(cpu, stage2)) { 11888 return Gran4K; 11889 } 11890 if (have16k(cpu, stage2)) { 11891 return Gran16K; 11892 } 11893 assert(have64k(cpu, stage2)); 11894 return Gran64K; 11895 } 11896 11897 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11898 ARMMMUIdx mmu_idx, bool data, 11899 bool el1_is_aa32) 11900 { 11901 uint64_t tcr = regime_tcr(env, mmu_idx); 11902 bool epd, hpd, tsz_oob, ds, ha, hd; 11903 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11904 ARMGranuleSize gran; 11905 ARMCPU *cpu = env_archcpu(env); 11906 bool stage2 = regime_is_stage2(mmu_idx); 11907 11908 if (!regime_has_2_ranges(mmu_idx)) { 11909 select = 0; 11910 tsz = extract32(tcr, 0, 6); 11911 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11912 if (stage2) { 11913 /* VTCR_EL2 */ 11914 hpd = false; 11915 } else { 11916 hpd = extract32(tcr, 24, 1); 11917 } 11918 epd = false; 11919 sh = extract32(tcr, 12, 2); 11920 ps = extract32(tcr, 16, 3); 11921 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11922 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11923 ds = extract64(tcr, 32, 1); 11924 } else { 11925 bool e0pd; 11926 11927 /* 11928 * Bit 55 is always between the two regions, and is canonical for 11929 * determining if address tagging is enabled. 11930 */ 11931 select = extract64(va, 55, 1); 11932 if (!select) { 11933 tsz = extract32(tcr, 0, 6); 11934 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11935 epd = extract32(tcr, 7, 1); 11936 sh = extract32(tcr, 12, 2); 11937 hpd = extract64(tcr, 41, 1); 11938 e0pd = extract64(tcr, 55, 1); 11939 } else { 11940 tsz = extract32(tcr, 16, 6); 11941 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11942 epd = extract32(tcr, 23, 1); 11943 sh = extract32(tcr, 28, 2); 11944 hpd = extract64(tcr, 42, 1); 11945 e0pd = extract64(tcr, 56, 1); 11946 } 11947 ps = extract64(tcr, 32, 3); 11948 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11949 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11950 ds = extract64(tcr, 59, 1); 11951 11952 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11953 regime_is_user(env, mmu_idx)) { 11954 epd = true; 11955 } 11956 } 11957 11958 gran = sanitize_gran_size(cpu, gran, stage2); 11959 11960 if (cpu_isar_feature(aa64_st, cpu)) { 11961 max_tsz = 48 - (gran == Gran64K); 11962 } else { 11963 max_tsz = 39; 11964 } 11965 11966 /* 11967 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11968 * adjust the effective value of DS, as documented. 11969 */ 11970 min_tsz = 16; 11971 if (gran == Gran64K) { 11972 if (cpu_isar_feature(aa64_lva, cpu)) { 11973 min_tsz = 12; 11974 } 11975 ds = false; 11976 } else if (ds) { 11977 if (regime_is_stage2(mmu_idx)) { 11978 if (gran == Gran16K) { 11979 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11980 } else { 11981 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11982 } 11983 } else { 11984 if (gran == Gran16K) { 11985 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11986 } else { 11987 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11988 } 11989 } 11990 if (ds) { 11991 min_tsz = 12; 11992 } 11993 } 11994 11995 if (stage2 && el1_is_aa32) { 11996 /* 11997 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 11998 * are loosened: a configured IPA of 40 bits is permitted even if 11999 * the implemented PA is less than that (and so a 40 bit IPA would 12000 * fault for an AArch64 EL1). See R_DTLMN. 12001 */ 12002 min_tsz = MIN(min_tsz, 24); 12003 } 12004 12005 if (tsz > max_tsz) { 12006 tsz = max_tsz; 12007 tsz_oob = true; 12008 } else if (tsz < min_tsz) { 12009 tsz = min_tsz; 12010 tsz_oob = true; 12011 } else { 12012 tsz_oob = false; 12013 } 12014 12015 /* Present TBI as a composite with TBID. */ 12016 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12017 if (!data) { 12018 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12019 } 12020 tbi = (tbi >> select) & 1; 12021 12022 return (ARMVAParameters) { 12023 .tsz = tsz, 12024 .ps = ps, 12025 .sh = sh, 12026 .select = select, 12027 .tbi = tbi, 12028 .epd = epd, 12029 .hpd = hpd, 12030 .tsz_oob = tsz_oob, 12031 .ds = ds, 12032 .ha = ha, 12033 .hd = ha && hd, 12034 .gran = gran, 12035 }; 12036 } 12037 12038 /* 12039 * Note that signed overflow is undefined in C. The following routines are 12040 * careful to use unsigned types where modulo arithmetic is required. 12041 * Failure to do so _will_ break on newer gcc. 12042 */ 12043 12044 /* Signed saturating arithmetic. */ 12045 12046 /* Perform 16-bit signed saturating addition. */ 12047 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12048 { 12049 uint16_t res; 12050 12051 res = a + b; 12052 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12053 if (a & 0x8000) { 12054 res = 0x8000; 12055 } else { 12056 res = 0x7fff; 12057 } 12058 } 12059 return res; 12060 } 12061 12062 /* Perform 8-bit signed saturating addition. */ 12063 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12064 { 12065 uint8_t res; 12066 12067 res = a + b; 12068 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12069 if (a & 0x80) { 12070 res = 0x80; 12071 } else { 12072 res = 0x7f; 12073 } 12074 } 12075 return res; 12076 } 12077 12078 /* Perform 16-bit signed saturating subtraction. */ 12079 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12080 { 12081 uint16_t res; 12082 12083 res = a - b; 12084 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12085 if (a & 0x8000) { 12086 res = 0x8000; 12087 } else { 12088 res = 0x7fff; 12089 } 12090 } 12091 return res; 12092 } 12093 12094 /* Perform 8-bit signed saturating subtraction. */ 12095 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12096 { 12097 uint8_t res; 12098 12099 res = a - b; 12100 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12101 if (a & 0x80) { 12102 res = 0x80; 12103 } else { 12104 res = 0x7f; 12105 } 12106 } 12107 return res; 12108 } 12109 12110 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12111 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12112 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12113 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12114 #define PFX q 12115 12116 #include "op_addsub.h" 12117 12118 /* Unsigned saturating arithmetic. */ 12119 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12120 { 12121 uint16_t res; 12122 res = a + b; 12123 if (res < a) { 12124 res = 0xffff; 12125 } 12126 return res; 12127 } 12128 12129 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12130 { 12131 if (a > b) { 12132 return a - b; 12133 } else { 12134 return 0; 12135 } 12136 } 12137 12138 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12139 { 12140 uint8_t res; 12141 res = a + b; 12142 if (res < a) { 12143 res = 0xff; 12144 } 12145 return res; 12146 } 12147 12148 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12149 { 12150 if (a > b) { 12151 return a - b; 12152 } else { 12153 return 0; 12154 } 12155 } 12156 12157 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12158 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12159 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12160 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12161 #define PFX uq 12162 12163 #include "op_addsub.h" 12164 12165 /* Signed modulo arithmetic. */ 12166 #define SARITH16(a, b, n, op) do { \ 12167 int32_t sum; \ 12168 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12169 RESULT(sum, n, 16); \ 12170 if (sum >= 0) \ 12171 ge |= 3 << (n * 2); \ 12172 } while (0) 12173 12174 #define SARITH8(a, b, n, op) do { \ 12175 int32_t sum; \ 12176 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12177 RESULT(sum, n, 8); \ 12178 if (sum >= 0) \ 12179 ge |= 1 << n; \ 12180 } while (0) 12181 12182 12183 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12184 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12185 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12186 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12187 #define PFX s 12188 #define ARITH_GE 12189 12190 #include "op_addsub.h" 12191 12192 /* Unsigned modulo arithmetic. */ 12193 #define ADD16(a, b, n) do { \ 12194 uint32_t sum; \ 12195 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12196 RESULT(sum, n, 16); \ 12197 if ((sum >> 16) == 1) \ 12198 ge |= 3 << (n * 2); \ 12199 } while (0) 12200 12201 #define ADD8(a, b, n) do { \ 12202 uint32_t sum; \ 12203 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12204 RESULT(sum, n, 8); \ 12205 if ((sum >> 8) == 1) \ 12206 ge |= 1 << n; \ 12207 } while (0) 12208 12209 #define SUB16(a, b, n) do { \ 12210 uint32_t sum; \ 12211 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12212 RESULT(sum, n, 16); \ 12213 if ((sum >> 16) == 0) \ 12214 ge |= 3 << (n * 2); \ 12215 } while (0) 12216 12217 #define SUB8(a, b, n) do { \ 12218 uint32_t sum; \ 12219 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12220 RESULT(sum, n, 8); \ 12221 if ((sum >> 8) == 0) \ 12222 ge |= 1 << n; \ 12223 } while (0) 12224 12225 #define PFX u 12226 #define ARITH_GE 12227 12228 #include "op_addsub.h" 12229 12230 /* Halved signed arithmetic. */ 12231 #define ADD16(a, b, n) \ 12232 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12233 #define SUB16(a, b, n) \ 12234 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12235 #define ADD8(a, b, n) \ 12236 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12237 #define SUB8(a, b, n) \ 12238 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12239 #define PFX sh 12240 12241 #include "op_addsub.h" 12242 12243 /* Halved unsigned arithmetic. */ 12244 #define ADD16(a, b, n) \ 12245 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12246 #define SUB16(a, b, n) \ 12247 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12248 #define ADD8(a, b, n) \ 12249 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12250 #define SUB8(a, b, n) \ 12251 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12252 #define PFX uh 12253 12254 #include "op_addsub.h" 12255 12256 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12257 { 12258 if (a > b) { 12259 return a - b; 12260 } else { 12261 return b - a; 12262 } 12263 } 12264 12265 /* Unsigned sum of absolute byte differences. */ 12266 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12267 { 12268 uint32_t sum; 12269 sum = do_usad(a, b); 12270 sum += do_usad(a >> 8, b >> 8); 12271 sum += do_usad(a >> 16, b >> 16); 12272 sum += do_usad(a >> 24, b >> 24); 12273 return sum; 12274 } 12275 12276 /* For ARMv6 SEL instruction. */ 12277 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12278 { 12279 uint32_t mask; 12280 12281 mask = 0; 12282 if (flags & 1) { 12283 mask |= 0xff; 12284 } 12285 if (flags & 2) { 12286 mask |= 0xff00; 12287 } 12288 if (flags & 4) { 12289 mask |= 0xff0000; 12290 } 12291 if (flags & 8) { 12292 mask |= 0xff000000; 12293 } 12294 return (a & mask) | (b & ~mask); 12295 } 12296 12297 /* 12298 * CRC helpers. 12299 * The upper bytes of val (above the number specified by 'bytes') must have 12300 * been zeroed out by the caller. 12301 */ 12302 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12303 { 12304 uint8_t buf[4]; 12305 12306 stl_le_p(buf, val); 12307 12308 /* zlib crc32 converts the accumulator and output to one's complement. */ 12309 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12310 } 12311 12312 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12313 { 12314 uint8_t buf[4]; 12315 12316 stl_le_p(buf, val); 12317 12318 /* Linux crc32c converts the output to one's complement. */ 12319 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12320 } 12321 12322 /* 12323 * Return the exception level to which FP-disabled exceptions should 12324 * be taken, or 0 if FP is enabled. 12325 */ 12326 int fp_exception_el(CPUARMState *env, int cur_el) 12327 { 12328 #ifndef CONFIG_USER_ONLY 12329 uint64_t hcr_el2; 12330 12331 /* 12332 * CPACR and the CPTR registers don't exist before v6, so FP is 12333 * always accessible 12334 */ 12335 if (!arm_feature(env, ARM_FEATURE_V6)) { 12336 return 0; 12337 } 12338 12339 if (arm_feature(env, ARM_FEATURE_M)) { 12340 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12341 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12342 return 1; 12343 } 12344 12345 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12346 if (!extract32(env->v7m.nsacr, 10, 1)) { 12347 /* FP insns cause a NOCP UsageFault taken to Secure */ 12348 return 3; 12349 } 12350 } 12351 12352 return 0; 12353 } 12354 12355 hcr_el2 = arm_hcr_el2_eff(env); 12356 12357 /* 12358 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12359 * 0, 2 : trap EL0 and EL1/PL1 accesses 12360 * 1 : trap only EL0 accesses 12361 * 3 : trap no accesses 12362 * This register is ignored if E2H+TGE are both set. 12363 */ 12364 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12365 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12366 12367 switch (fpen) { 12368 case 1: 12369 if (cur_el != 0) { 12370 break; 12371 } 12372 /* fall through */ 12373 case 0: 12374 case 2: 12375 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12376 if (!arm_el_is_aa64(env, 3) 12377 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12378 return 3; 12379 } 12380 if (cur_el <= 1) { 12381 return 1; 12382 } 12383 break; 12384 } 12385 } 12386 12387 /* 12388 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12389 * to control non-secure access to the FPU. It doesn't have any 12390 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12391 */ 12392 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12393 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12394 if (!extract32(env->cp15.nsacr, 10, 1)) { 12395 /* FP insns act as UNDEF */ 12396 return cur_el == 2 ? 2 : 1; 12397 } 12398 } 12399 12400 /* 12401 * CPTR_EL2 is present in v7VE or v8, and changes format 12402 * with HCR_EL2.E2H (regardless of TGE). 12403 */ 12404 if (cur_el <= 2) { 12405 if (hcr_el2 & HCR_E2H) { 12406 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12407 case 1: 12408 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12409 break; 12410 } 12411 /* fall through */ 12412 case 0: 12413 case 2: 12414 return 2; 12415 } 12416 } else if (arm_is_el2_enabled(env)) { 12417 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12418 return 2; 12419 } 12420 } 12421 } 12422 12423 /* CPTR_EL3 : present in v8 */ 12424 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12425 /* Trap all FP ops to EL3 */ 12426 return 3; 12427 } 12428 #endif 12429 return 0; 12430 } 12431 12432 /* Return the exception level we're running at if this is our mmu_idx */ 12433 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12434 { 12435 if (mmu_idx & ARM_MMU_IDX_M) { 12436 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12437 } 12438 12439 switch (mmu_idx) { 12440 case ARMMMUIdx_E10_0: 12441 case ARMMMUIdx_E20_0: 12442 return 0; 12443 case ARMMMUIdx_E10_1: 12444 case ARMMMUIdx_E10_1_PAN: 12445 return 1; 12446 case ARMMMUIdx_E2: 12447 case ARMMMUIdx_E20_2: 12448 case ARMMMUIdx_E20_2_PAN: 12449 return 2; 12450 case ARMMMUIdx_E3: 12451 return 3; 12452 default: 12453 g_assert_not_reached(); 12454 } 12455 } 12456 12457 #ifndef CONFIG_TCG 12458 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12459 { 12460 g_assert_not_reached(); 12461 } 12462 #endif 12463 12464 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12465 { 12466 ARMMMUIdx idx; 12467 uint64_t hcr; 12468 12469 if (arm_feature(env, ARM_FEATURE_M)) { 12470 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12471 } 12472 12473 /* See ARM pseudo-function ELIsInHost. */ 12474 switch (el) { 12475 case 0: 12476 hcr = arm_hcr_el2_eff(env); 12477 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12478 idx = ARMMMUIdx_E20_0; 12479 } else { 12480 idx = ARMMMUIdx_E10_0; 12481 } 12482 break; 12483 case 1: 12484 if (arm_pan_enabled(env)) { 12485 idx = ARMMMUIdx_E10_1_PAN; 12486 } else { 12487 idx = ARMMMUIdx_E10_1; 12488 } 12489 break; 12490 case 2: 12491 /* Note that TGE does not apply at EL2. */ 12492 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12493 if (arm_pan_enabled(env)) { 12494 idx = ARMMMUIdx_E20_2_PAN; 12495 } else { 12496 idx = ARMMMUIdx_E20_2; 12497 } 12498 } else { 12499 idx = ARMMMUIdx_E2; 12500 } 12501 break; 12502 case 3: 12503 return ARMMMUIdx_E3; 12504 default: 12505 g_assert_not_reached(); 12506 } 12507 12508 return idx; 12509 } 12510 12511 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12512 { 12513 return arm_mmu_idx_el(env, arm_current_el(env)); 12514 } 12515 12516 static bool mve_no_pred(CPUARMState *env) 12517 { 12518 /* 12519 * Return true if there is definitely no predication of MVE 12520 * instructions by VPR or LTPSIZE. (Returning false even if there 12521 * isn't any predication is OK; generated code will just be 12522 * a little worse.) 12523 * If the CPU does not implement MVE then this TB flag is always 0. 12524 * 12525 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12526 * logic in gen_update_fp_context() needs to be updated to match. 12527 * 12528 * We do not include the effect of the ECI bits here -- they are 12529 * tracked in other TB flags. This simplifies the logic for 12530 * "when did we emit code that changes the MVE_NO_PRED TB flag 12531 * and thus need to end the TB?". 12532 */ 12533 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12534 return false; 12535 } 12536 if (env->v7m.vpr) { 12537 return false; 12538 } 12539 if (env->v7m.ltpsize < 4) { 12540 return false; 12541 } 12542 return true; 12543 } 12544 12545 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12546 uint64_t *cs_base, uint32_t *pflags) 12547 { 12548 CPUARMTBFlags flags; 12549 12550 assert_hflags_rebuild_correctly(env); 12551 flags = env->hflags; 12552 12553 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12554 *pc = env->pc; 12555 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12556 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12557 } 12558 } else { 12559 *pc = env->regs[15]; 12560 12561 if (arm_feature(env, ARM_FEATURE_M)) { 12562 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12563 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12564 != env->v7m.secure) { 12565 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12566 } 12567 12568 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12569 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12570 (env->v7m.secure && 12571 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12572 /* 12573 * ASPEN is set, but FPCA/SFPA indicate that there is no 12574 * active FP context; we must create a new FP context before 12575 * executing any FP insn. 12576 */ 12577 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12578 } 12579 12580 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12581 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12582 DP_TBFLAG_M32(flags, LSPACT, 1); 12583 } 12584 12585 if (mve_no_pred(env)) { 12586 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12587 } 12588 } else { 12589 /* 12590 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12591 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12592 */ 12593 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12594 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12595 } else { 12596 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12597 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12598 } 12599 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12600 DP_TBFLAG_A32(flags, VFPEN, 1); 12601 } 12602 } 12603 12604 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12605 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12606 } 12607 12608 /* 12609 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12610 * states defined in the ARM ARM for software singlestep: 12611 * SS_ACTIVE PSTATE.SS State 12612 * 0 x Inactive (the TB flag for SS is always 0) 12613 * 1 0 Active-pending 12614 * 1 1 Active-not-pending 12615 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12616 */ 12617 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12618 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12619 } 12620 12621 *pflags = flags.flags; 12622 *cs_base = flags.flags2; 12623 } 12624 12625 #ifdef TARGET_AARCH64 12626 /* 12627 * The manual says that when SVE is enabled and VQ is widened the 12628 * implementation is allowed to zero the previously inaccessible 12629 * portion of the registers. The corollary to that is that when 12630 * SVE is enabled and VQ is narrowed we are also allowed to zero 12631 * the now inaccessible portion of the registers. 12632 * 12633 * The intent of this is that no predicate bit beyond VQ is ever set. 12634 * Which means that some operations on predicate registers themselves 12635 * may operate on full uint64_t or even unrolled across the maximum 12636 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12637 * may well be cheaper than conditionals to restrict the operation 12638 * to the relevant portion of a uint16_t[16]. 12639 */ 12640 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12641 { 12642 int i, j; 12643 uint64_t pmask; 12644 12645 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12646 assert(vq <= env_archcpu(env)->sve_max_vq); 12647 12648 /* Zap the high bits of the zregs. */ 12649 for (i = 0; i < 32; i++) { 12650 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12651 } 12652 12653 /* Zap the high bits of the pregs and ffr. */ 12654 pmask = 0; 12655 if (vq & 3) { 12656 pmask = ~(-1ULL << (16 * (vq & 3))); 12657 } 12658 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12659 for (i = 0; i < 17; ++i) { 12660 env->vfp.pregs[i].p[j] &= pmask; 12661 } 12662 pmask = 0; 12663 } 12664 } 12665 12666 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12667 { 12668 int exc_el; 12669 12670 if (sm) { 12671 exc_el = sme_exception_el(env, el); 12672 } else { 12673 exc_el = sve_exception_el(env, el); 12674 } 12675 if (exc_el) { 12676 return 0; /* disabled */ 12677 } 12678 return sve_vqm1_for_el_sm(env, el, sm); 12679 } 12680 12681 /* 12682 * Notice a change in SVE vector size when changing EL. 12683 */ 12684 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12685 int new_el, bool el0_a64) 12686 { 12687 ARMCPU *cpu = env_archcpu(env); 12688 int old_len, new_len; 12689 bool old_a64, new_a64, sm; 12690 12691 /* Nothing to do if no SVE. */ 12692 if (!cpu_isar_feature(aa64_sve, cpu)) { 12693 return; 12694 } 12695 12696 /* Nothing to do if FP is disabled in either EL. */ 12697 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12698 return; 12699 } 12700 12701 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12702 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12703 12704 /* 12705 * Both AArch64.TakeException and AArch64.ExceptionReturn 12706 * invoke ResetSVEState when taking an exception from, or 12707 * returning to, AArch32 state when PSTATE.SM is enabled. 12708 */ 12709 sm = FIELD_EX64(env->svcr, SVCR, SM); 12710 if (old_a64 != new_a64 && sm) { 12711 arm_reset_sve_state(env); 12712 return; 12713 } 12714 12715 /* 12716 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12717 * at ELx, or not available because the EL is in AArch32 state, then 12718 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12719 * has an effective value of 0". 12720 * 12721 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12722 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12723 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12724 * we already have the correct register contents when encountering the 12725 * vq0->vq0 transition between EL0->EL1. 12726 */ 12727 old_len = new_len = 0; 12728 if (old_a64) { 12729 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12730 } 12731 if (new_a64) { 12732 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12733 } 12734 12735 /* When changing vector length, clear inaccessible state. */ 12736 if (new_len < old_len) { 12737 aarch64_sve_narrow_vq(env, new_len + 1); 12738 } 12739 } 12740 #endif 12741 12742 #ifndef CONFIG_USER_ONLY 12743 ARMSecuritySpace arm_security_space(CPUARMState *env) 12744 { 12745 if (arm_feature(env, ARM_FEATURE_M)) { 12746 return arm_secure_to_space(env->v7m.secure); 12747 } 12748 12749 /* 12750 * If EL3 is not supported then the secure state is implementation 12751 * defined, in which case QEMU defaults to non-secure. 12752 */ 12753 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12754 return ARMSS_NonSecure; 12755 } 12756 12757 /* Check for AArch64 EL3 or AArch32 Mon. */ 12758 if (is_a64(env)) { 12759 if (extract32(env->pstate, 2, 2) == 3) { 12760 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12761 return ARMSS_Root; 12762 } else { 12763 return ARMSS_Secure; 12764 } 12765 } 12766 } else { 12767 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12768 return ARMSS_Secure; 12769 } 12770 } 12771 12772 return arm_security_space_below_el3(env); 12773 } 12774 12775 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12776 { 12777 assert(!arm_feature(env, ARM_FEATURE_M)); 12778 12779 /* 12780 * If EL3 is not supported then the secure state is implementation 12781 * defined, in which case QEMU defaults to non-secure. 12782 */ 12783 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12784 return ARMSS_NonSecure; 12785 } 12786 12787 /* 12788 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12789 * Ignoring NSE when !NS retains consistency without having to 12790 * modify other predicates. 12791 */ 12792 if (!(env->cp15.scr_el3 & SCR_NS)) { 12793 return ARMSS_Secure; 12794 } else if (env->cp15.scr_el3 & SCR_NSE) { 12795 return ARMSS_Realm; 12796 } else { 12797 return ARMSS_NonSecure; 12798 } 12799 } 12800 #endif /* !CONFIG_USER_ONLY */ 12801