xref: /openbmc/qemu/target/arm/helper.c (revision 3aeaac8fa2d008a1f55b040fde6d4ec06f2f5146)
1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
3 #include "trace.h"
4 #include "cpu.h"
5 #include "internals.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
15 #include "arm_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
21 
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
23 
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs {
27     unsigned int attrs:8; /* as in the MAIR register encoding */
28     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
29 } ARMCacheAttrs;
30 
31 static bool get_phys_addr(CPUARMState *env, target_ulong address,
32                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
33                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
34                           target_ulong *page_size,
35                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
36 
37 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
38                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
39                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
40                                target_ulong *page_size_ptr,
41                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
42 
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes {
45     bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
46     bool ns;
47     bool nsc;
48     uint8_t sregion;
49     bool srvalid;
50     uint8_t iregion;
51     bool irvalid;
52 } V8M_SAttributes;
53 
54 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
55                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
56                                 V8M_SAttributes *sattrs);
57 #endif
58 
59 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
60 {
61     int nregs;
62 
63     /* VFP data registers are always little-endian.  */
64     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
65     if (reg < nregs) {
66         stq_le_p(buf, *aa32_vfp_dreg(env, reg));
67         return 8;
68     }
69     if (arm_feature(env, ARM_FEATURE_NEON)) {
70         /* Aliases for Q regs.  */
71         nregs += 16;
72         if (reg < nregs) {
73             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
74             stq_le_p(buf, q[0]);
75             stq_le_p(buf + 8, q[1]);
76             return 16;
77         }
78     }
79     switch (reg - nregs) {
80     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83     }
84     return 0;
85 }
86 
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89     int nregs;
90 
91     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92     if (reg < nregs) {
93         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
94         return 8;
95     }
96     if (arm_feature(env, ARM_FEATURE_NEON)) {
97         nregs += 16;
98         if (reg < nregs) {
99             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
100             q[0] = ldq_le_p(buf);
101             q[1] = ldq_le_p(buf + 8);
102             return 16;
103         }
104     }
105     switch (reg - nregs) {
106     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
107     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
108     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
109     }
110     return 0;
111 }
112 
113 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
114 {
115     switch (reg) {
116     case 0 ... 31:
117         /* 128 bit FP register */
118         {
119             uint64_t *q = aa64_vfp_qreg(env, reg);
120             stq_le_p(buf, q[0]);
121             stq_le_p(buf + 8, q[1]);
122             return 16;
123         }
124     case 32:
125         /* FPSR */
126         stl_p(buf, vfp_get_fpsr(env));
127         return 4;
128     case 33:
129         /* FPCR */
130         stl_p(buf, vfp_get_fpcr(env));
131         return 4;
132     default:
133         return 0;
134     }
135 }
136 
137 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
138 {
139     switch (reg) {
140     case 0 ... 31:
141         /* 128 bit FP register */
142         {
143             uint64_t *q = aa64_vfp_qreg(env, reg);
144             q[0] = ldq_le_p(buf);
145             q[1] = ldq_le_p(buf + 8);
146             return 16;
147         }
148     case 32:
149         /* FPSR */
150         vfp_set_fpsr(env, ldl_p(buf));
151         return 4;
152     case 33:
153         /* FPCR */
154         vfp_set_fpcr(env, ldl_p(buf));
155         return 4;
156     default:
157         return 0;
158     }
159 }
160 
161 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
162 {
163     assert(ri->fieldoffset);
164     if (cpreg_field_is_64bit(ri)) {
165         return CPREG_FIELD64(env, ri);
166     } else {
167         return CPREG_FIELD32(env, ri);
168     }
169 }
170 
171 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
172                       uint64_t value)
173 {
174     assert(ri->fieldoffset);
175     if (cpreg_field_is_64bit(ri)) {
176         CPREG_FIELD64(env, ri) = value;
177     } else {
178         CPREG_FIELD32(env, ri) = value;
179     }
180 }
181 
182 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
183 {
184     return (char *)env + ri->fieldoffset;
185 }
186 
187 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
188 {
189     /* Raw read of a coprocessor register (as needed for migration, etc). */
190     if (ri->type & ARM_CP_CONST) {
191         return ri->resetvalue;
192     } else if (ri->raw_readfn) {
193         return ri->raw_readfn(env, ri);
194     } else if (ri->readfn) {
195         return ri->readfn(env, ri);
196     } else {
197         return raw_read(env, ri);
198     }
199 }
200 
201 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
202                              uint64_t v)
203 {
204     /* Raw write of a coprocessor register (as needed for migration, etc).
205      * Note that constant registers are treated as write-ignored; the
206      * caller should check for success by whether a readback gives the
207      * value written.
208      */
209     if (ri->type & ARM_CP_CONST) {
210         return;
211     } else if (ri->raw_writefn) {
212         ri->raw_writefn(env, ri, v);
213     } else if (ri->writefn) {
214         ri->writefn(env, ri, v);
215     } else {
216         raw_write(env, ri, v);
217     }
218 }
219 
220 static int arm_gdb_get_sysreg(CPUARMState *env, uint8_t *buf, int reg)
221 {
222     ARMCPU *cpu = arm_env_get_cpu(env);
223     const ARMCPRegInfo *ri;
224     uint32_t key;
225 
226     key = cpu->dyn_xml.cpregs_keys[reg];
227     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
228     if (ri) {
229         if (cpreg_field_is_64bit(ri)) {
230             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
231         } else {
232             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
233         }
234     }
235     return 0;
236 }
237 
238 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
239 {
240     return 0;
241 }
242 
243 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
244 {
245    /* Return true if the regdef would cause an assertion if you called
246     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
247     * program bug for it not to have the NO_RAW flag).
248     * NB that returning false here doesn't necessarily mean that calling
249     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
250     * read/write access functions which are safe for raw use" from "has
251     * read/write access functions which have side effects but has forgotten
252     * to provide raw access functions".
253     * The tests here line up with the conditions in read/write_raw_cp_reg()
254     * and assertions in raw_read()/raw_write().
255     */
256     if ((ri->type & ARM_CP_CONST) ||
257         ri->fieldoffset ||
258         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
259         return false;
260     }
261     return true;
262 }
263 
264 bool write_cpustate_to_list(ARMCPU *cpu)
265 {
266     /* Write the coprocessor state from cpu->env to the (index,value) list. */
267     int i;
268     bool ok = true;
269 
270     for (i = 0; i < cpu->cpreg_array_len; i++) {
271         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
272         const ARMCPRegInfo *ri;
273 
274         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275         if (!ri) {
276             ok = false;
277             continue;
278         }
279         if (ri->type & ARM_CP_NO_RAW) {
280             continue;
281         }
282         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
283     }
284     return ok;
285 }
286 
287 bool write_list_to_cpustate(ARMCPU *cpu)
288 {
289     int i;
290     bool ok = true;
291 
292     for (i = 0; i < cpu->cpreg_array_len; i++) {
293         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
294         uint64_t v = cpu->cpreg_values[i];
295         const ARMCPRegInfo *ri;
296 
297         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
298         if (!ri) {
299             ok = false;
300             continue;
301         }
302         if (ri->type & ARM_CP_NO_RAW) {
303             continue;
304         }
305         /* Write value and confirm it reads back as written
306          * (to catch read-only registers and partially read-only
307          * registers where the incoming migration value doesn't match)
308          */
309         write_raw_cp_reg(&cpu->env, ri, v);
310         if (read_raw_cp_reg(&cpu->env, ri) != v) {
311             ok = false;
312         }
313     }
314     return ok;
315 }
316 
317 static void add_cpreg_to_list(gpointer key, gpointer opaque)
318 {
319     ARMCPU *cpu = opaque;
320     uint64_t regidx;
321     const ARMCPRegInfo *ri;
322 
323     regidx = *(uint32_t *)key;
324     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
325 
326     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
327         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
328         /* The value array need not be initialized at this point */
329         cpu->cpreg_array_len++;
330     }
331 }
332 
333 static void count_cpreg(gpointer key, gpointer opaque)
334 {
335     ARMCPU *cpu = opaque;
336     uint64_t regidx;
337     const ARMCPRegInfo *ri;
338 
339     regidx = *(uint32_t *)key;
340     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
341 
342     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
343         cpu->cpreg_array_len++;
344     }
345 }
346 
347 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
348 {
349     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
350     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
351 
352     if (aidx > bidx) {
353         return 1;
354     }
355     if (aidx < bidx) {
356         return -1;
357     }
358     return 0;
359 }
360 
361 void init_cpreg_list(ARMCPU *cpu)
362 {
363     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
364      * Note that we require cpreg_tuples[] to be sorted by key ID.
365      */
366     GList *keys;
367     int arraylen;
368 
369     keys = g_hash_table_get_keys(cpu->cp_regs);
370     keys = g_list_sort(keys, cpreg_key_compare);
371 
372     cpu->cpreg_array_len = 0;
373 
374     g_list_foreach(keys, count_cpreg, cpu);
375 
376     arraylen = cpu->cpreg_array_len;
377     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
378     cpu->cpreg_values = g_new(uint64_t, arraylen);
379     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
380     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
381     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
382     cpu->cpreg_array_len = 0;
383 
384     g_list_foreach(keys, add_cpreg_to_list, cpu);
385 
386     assert(cpu->cpreg_array_len == arraylen);
387 
388     g_list_free(keys);
389 }
390 
391 /*
392  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
393  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
394  *
395  * access_el3_aa32ns: Used to check AArch32 register views.
396  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
397  */
398 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
399                                         const ARMCPRegInfo *ri,
400                                         bool isread)
401 {
402     bool secure = arm_is_secure_below_el3(env);
403 
404     assert(!arm_el_is_aa64(env, 3));
405     if (secure) {
406         return CP_ACCESS_TRAP_UNCATEGORIZED;
407     }
408     return CP_ACCESS_OK;
409 }
410 
411 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
412                                                 const ARMCPRegInfo *ri,
413                                                 bool isread)
414 {
415     if (!arm_el_is_aa64(env, 3)) {
416         return access_el3_aa32ns(env, ri, isread);
417     }
418     return CP_ACCESS_OK;
419 }
420 
421 /* Some secure-only AArch32 registers trap to EL3 if used from
422  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
423  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
424  * We assume that the .access field is set to PL1_RW.
425  */
426 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
427                                             const ARMCPRegInfo *ri,
428                                             bool isread)
429 {
430     if (arm_current_el(env) == 3) {
431         return CP_ACCESS_OK;
432     }
433     if (arm_is_secure_below_el3(env)) {
434         return CP_ACCESS_TRAP_EL3;
435     }
436     /* This will be EL1 NS and EL2 NS, which just UNDEF */
437     return CP_ACCESS_TRAP_UNCATEGORIZED;
438 }
439 
440 /* Check for traps to "powerdown debug" registers, which are controlled
441  * by MDCR.TDOSA
442  */
443 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
444                                    bool isread)
445 {
446     int el = arm_current_el(env);
447     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
448         (env->cp15.mdcr_el2 & MDCR_TDE) ||
449         (env->cp15.hcr_el2 & HCR_TGE);
450 
451     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
452         return CP_ACCESS_TRAP_EL2;
453     }
454     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
455         return CP_ACCESS_TRAP_EL3;
456     }
457     return CP_ACCESS_OK;
458 }
459 
460 /* Check for traps to "debug ROM" registers, which are controlled
461  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
462  */
463 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
464                                   bool isread)
465 {
466     int el = arm_current_el(env);
467     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
468         (env->cp15.mdcr_el2 & MDCR_TDE) ||
469         (env->cp15.hcr_el2 & HCR_TGE);
470 
471     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
472         return CP_ACCESS_TRAP_EL2;
473     }
474     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
475         return CP_ACCESS_TRAP_EL3;
476     }
477     return CP_ACCESS_OK;
478 }
479 
480 /* Check for traps to general debug registers, which are controlled
481  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
482  */
483 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
484                                   bool isread)
485 {
486     int el = arm_current_el(env);
487     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
488         (env->cp15.mdcr_el2 & MDCR_TDE) ||
489         (env->cp15.hcr_el2 & HCR_TGE);
490 
491     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
492         return CP_ACCESS_TRAP_EL2;
493     }
494     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
495         return CP_ACCESS_TRAP_EL3;
496     }
497     return CP_ACCESS_OK;
498 }
499 
500 /* Check for traps to performance monitor registers, which are controlled
501  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
502  */
503 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
504                                  bool isread)
505 {
506     int el = arm_current_el(env);
507 
508     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
509         && !arm_is_secure_below_el3(env)) {
510         return CP_ACCESS_TRAP_EL2;
511     }
512     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
513         return CP_ACCESS_TRAP_EL3;
514     }
515     return CP_ACCESS_OK;
516 }
517 
518 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519 {
520     ARMCPU *cpu = arm_env_get_cpu(env);
521 
522     raw_write(env, ri, value);
523     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
524 }
525 
526 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
527 {
528     ARMCPU *cpu = arm_env_get_cpu(env);
529 
530     if (raw_read(env, ri) != value) {
531         /* Unlike real hardware the qemu TLB uses virtual addresses,
532          * not modified virtual addresses, so this causes a TLB flush.
533          */
534         tlb_flush(CPU(cpu));
535         raw_write(env, ri, value);
536     }
537 }
538 
539 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
540                              uint64_t value)
541 {
542     ARMCPU *cpu = arm_env_get_cpu(env);
543 
544     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
545         && !extended_addresses_enabled(env)) {
546         /* For VMSA (when not using the LPAE long descriptor page table
547          * format) this register includes the ASID, so do a TLB flush.
548          * For PMSA it is purely a process ID and no action is needed.
549          */
550         tlb_flush(CPU(cpu));
551     }
552     raw_write(env, ri, value);
553 }
554 
555 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
556                           uint64_t value)
557 {
558     /* Invalidate all (TLBIALL) */
559     ARMCPU *cpu = arm_env_get_cpu(env);
560 
561     tlb_flush(CPU(cpu));
562 }
563 
564 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                           uint64_t value)
566 {
567     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
568     ARMCPU *cpu = arm_env_get_cpu(env);
569 
570     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
571 }
572 
573 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                            uint64_t value)
575 {
576     /* Invalidate by ASID (TLBIASID) */
577     ARMCPU *cpu = arm_env_get_cpu(env);
578 
579     tlb_flush(CPU(cpu));
580 }
581 
582 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                            uint64_t value)
584 {
585     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
586     ARMCPU *cpu = arm_env_get_cpu(env);
587 
588     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
589 }
590 
591 /* IS variants of TLB operations must affect all cores */
592 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
593                              uint64_t value)
594 {
595     CPUState *cs = ENV_GET_CPU(env);
596 
597     tlb_flush_all_cpus_synced(cs);
598 }
599 
600 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
601                              uint64_t value)
602 {
603     CPUState *cs = ENV_GET_CPU(env);
604 
605     tlb_flush_all_cpus_synced(cs);
606 }
607 
608 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
609                              uint64_t value)
610 {
611     CPUState *cs = ENV_GET_CPU(env);
612 
613     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
614 }
615 
616 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
617                              uint64_t value)
618 {
619     CPUState *cs = ENV_GET_CPU(env);
620 
621     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
622 }
623 
624 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
625                                uint64_t value)
626 {
627     CPUState *cs = ENV_GET_CPU(env);
628 
629     tlb_flush_by_mmuidx(cs,
630                         ARMMMUIdxBit_S12NSE1 |
631                         ARMMMUIdxBit_S12NSE0 |
632                         ARMMMUIdxBit_S2NS);
633 }
634 
635 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
636                                   uint64_t value)
637 {
638     CPUState *cs = ENV_GET_CPU(env);
639 
640     tlb_flush_by_mmuidx_all_cpus_synced(cs,
641                                         ARMMMUIdxBit_S12NSE1 |
642                                         ARMMMUIdxBit_S12NSE0 |
643                                         ARMMMUIdxBit_S2NS);
644 }
645 
646 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
647                             uint64_t value)
648 {
649     /* Invalidate by IPA. This has to invalidate any structures that
650      * contain only stage 2 translation information, but does not need
651      * to apply to structures that contain combined stage 1 and stage 2
652      * translation information.
653      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
654      */
655     CPUState *cs = ENV_GET_CPU(env);
656     uint64_t pageaddr;
657 
658     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
659         return;
660     }
661 
662     pageaddr = sextract64(value << 12, 0, 40);
663 
664     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
665 }
666 
667 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
668                                uint64_t value)
669 {
670     CPUState *cs = ENV_GET_CPU(env);
671     uint64_t pageaddr;
672 
673     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
674         return;
675     }
676 
677     pageaddr = sextract64(value << 12, 0, 40);
678 
679     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
680                                              ARMMMUIdxBit_S2NS);
681 }
682 
683 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
684                               uint64_t value)
685 {
686     CPUState *cs = ENV_GET_CPU(env);
687 
688     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
689 }
690 
691 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
692                                  uint64_t value)
693 {
694     CPUState *cs = ENV_GET_CPU(env);
695 
696     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
697 }
698 
699 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
700                               uint64_t value)
701 {
702     CPUState *cs = ENV_GET_CPU(env);
703     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
704 
705     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
706 }
707 
708 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709                                  uint64_t value)
710 {
711     CPUState *cs = ENV_GET_CPU(env);
712     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
713 
714     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
715                                              ARMMMUIdxBit_S1E2);
716 }
717 
718 static const ARMCPRegInfo cp_reginfo[] = {
719     /* Define the secure and non-secure FCSE identifier CP registers
720      * separately because there is no secure bank in V8 (no _EL3).  This allows
721      * the secure register to be properly reset and migrated. There is also no
722      * v8 EL1 version of the register so the non-secure instance stands alone.
723      */
724     { .name = "FCSEIDR",
725       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
726       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
727       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
728       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
729     { .name = "FCSEIDR_S",
730       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
731       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
732       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
733       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
734     /* Define the secure and non-secure context identifier CP registers
735      * separately because there is no secure bank in V8 (no _EL3).  This allows
736      * the secure register to be properly reset and migrated.  In the
737      * non-secure case, the 32-bit register will have reset and migration
738      * disabled during registration as it is handled by the 64-bit instance.
739      */
740     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
741       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
742       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
743       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
744       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
745     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
746       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
747       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
748       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
749       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
750     REGINFO_SENTINEL
751 };
752 
753 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
754     /* NB: Some of these registers exist in v8 but with more precise
755      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
756      */
757     /* MMU Domain access control / MPU write buffer control */
758     { .name = "DACR",
759       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
760       .access = PL1_RW, .resetvalue = 0,
761       .writefn = dacr_write, .raw_writefn = raw_write,
762       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
763                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
764     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
765      * For v6 and v5, these mappings are overly broad.
766      */
767     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
768       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
769     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
770       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
771     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
772       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
773     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
774       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
775     /* Cache maintenance ops; some of this space may be overridden later. */
776     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
777       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
778       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
779     REGINFO_SENTINEL
780 };
781 
782 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
783     /* Not all pre-v6 cores implemented this WFI, so this is slightly
784      * over-broad.
785      */
786     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
787       .access = PL1_W, .type = ARM_CP_WFI },
788     REGINFO_SENTINEL
789 };
790 
791 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
792     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
793      * is UNPREDICTABLE; we choose to NOP as most implementations do).
794      */
795     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
796       .access = PL1_W, .type = ARM_CP_WFI },
797     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
798      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
799      * OMAPCP will override this space.
800      */
801     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
802       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
803       .resetvalue = 0 },
804     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
805       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
806       .resetvalue = 0 },
807     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
808     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
809       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
810       .resetvalue = 0 },
811     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
812      * implementing it as RAZ means the "debug architecture version" bits
813      * will read as a reserved value, which should cause Linux to not try
814      * to use the debug hardware.
815      */
816     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
817       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
818     /* MMU TLB control. Note that the wildcarding means we cover not just
819      * the unified TLB ops but also the dside/iside/inner-shareable variants.
820      */
821     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
822       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
823       .type = ARM_CP_NO_RAW },
824     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
825       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
826       .type = ARM_CP_NO_RAW },
827     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
828       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
829       .type = ARM_CP_NO_RAW },
830     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
831       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
832       .type = ARM_CP_NO_RAW },
833     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
834       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
835     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
836       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
837     REGINFO_SENTINEL
838 };
839 
840 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
841                         uint64_t value)
842 {
843     uint32_t mask = 0;
844 
845     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
846     if (!arm_feature(env, ARM_FEATURE_V8)) {
847         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
848          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
849          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
850          */
851         if (arm_feature(env, ARM_FEATURE_VFP)) {
852             /* VFP coprocessor: cp10 & cp11 [23:20] */
853             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
854 
855             if (!arm_feature(env, ARM_FEATURE_NEON)) {
856                 /* ASEDIS [31] bit is RAO/WI */
857                 value |= (1 << 31);
858             }
859 
860             /* VFPv3 and upwards with NEON implement 32 double precision
861              * registers (D0-D31).
862              */
863             if (!arm_feature(env, ARM_FEATURE_NEON) ||
864                     !arm_feature(env, ARM_FEATURE_VFP3)) {
865                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
866                 value |= (1 << 30);
867             }
868         }
869         value &= mask;
870     }
871     env->cp15.cpacr_el1 = value;
872 }
873 
874 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
875 {
876     /* Call cpacr_write() so that we reset with the correct RAO bits set
877      * for our CPU features.
878      */
879     cpacr_write(env, ri, 0);
880 }
881 
882 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
883                                    bool isread)
884 {
885     if (arm_feature(env, ARM_FEATURE_V8)) {
886         /* Check if CPACR accesses are to be trapped to EL2 */
887         if (arm_current_el(env) == 1 &&
888             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
889             return CP_ACCESS_TRAP_EL2;
890         /* Check if CPACR accesses are to be trapped to EL3 */
891         } else if (arm_current_el(env) < 3 &&
892                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
893             return CP_ACCESS_TRAP_EL3;
894         }
895     }
896 
897     return CP_ACCESS_OK;
898 }
899 
900 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
901                                   bool isread)
902 {
903     /* Check if CPTR accesses are set to trap to EL3 */
904     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
905         return CP_ACCESS_TRAP_EL3;
906     }
907 
908     return CP_ACCESS_OK;
909 }
910 
911 static const ARMCPRegInfo v6_cp_reginfo[] = {
912     /* prefetch by MVA in v6, NOP in v7 */
913     { .name = "MVA_prefetch",
914       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
915       .access = PL1_W, .type = ARM_CP_NOP },
916     /* We need to break the TB after ISB to execute self-modifying code
917      * correctly and also to take any pending interrupts immediately.
918      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
919      */
920     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
921       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
922     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
923       .access = PL0_W, .type = ARM_CP_NOP },
924     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
925       .access = PL0_W, .type = ARM_CP_NOP },
926     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
927       .access = PL1_RW,
928       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
929                              offsetof(CPUARMState, cp15.ifar_ns) },
930       .resetvalue = 0, },
931     /* Watchpoint Fault Address Register : should actually only be present
932      * for 1136, 1176, 11MPCore.
933      */
934     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
935       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
936     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
937       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
938       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
939       .resetfn = cpacr_reset, .writefn = cpacr_write },
940     REGINFO_SENTINEL
941 };
942 
943 /* Definitions for the PMU registers */
944 #define PMCRN_MASK  0xf800
945 #define PMCRN_SHIFT 11
946 #define PMCRD   0x8
947 #define PMCRC   0x4
948 #define PMCRE   0x1
949 
950 static inline uint32_t pmu_num_counters(CPUARMState *env)
951 {
952   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
953 }
954 
955 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
956 static inline uint64_t pmu_counter_mask(CPUARMState *env)
957 {
958   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
959 }
960 
961 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
962                                    bool isread)
963 {
964     /* Performance monitor registers user accessibility is controlled
965      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
966      * trapping to EL2 or EL3 for other accesses.
967      */
968     int el = arm_current_el(env);
969 
970     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
971         return CP_ACCESS_TRAP;
972     }
973     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
974         && !arm_is_secure_below_el3(env)) {
975         return CP_ACCESS_TRAP_EL2;
976     }
977     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
978         return CP_ACCESS_TRAP_EL3;
979     }
980 
981     return CP_ACCESS_OK;
982 }
983 
984 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
985                                            const ARMCPRegInfo *ri,
986                                            bool isread)
987 {
988     /* ER: event counter read trap control */
989     if (arm_feature(env, ARM_FEATURE_V8)
990         && arm_current_el(env) == 0
991         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
992         && isread) {
993         return CP_ACCESS_OK;
994     }
995 
996     return pmreg_access(env, ri, isread);
997 }
998 
999 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1000                                          const ARMCPRegInfo *ri,
1001                                          bool isread)
1002 {
1003     /* SW: software increment write trap control */
1004     if (arm_feature(env, ARM_FEATURE_V8)
1005         && arm_current_el(env) == 0
1006         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1007         && !isread) {
1008         return CP_ACCESS_OK;
1009     }
1010 
1011     return pmreg_access(env, ri, isread);
1012 }
1013 
1014 #ifndef CONFIG_USER_ONLY
1015 
1016 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1017                                         const ARMCPRegInfo *ri,
1018                                         bool isread)
1019 {
1020     /* ER: event counter read trap control */
1021     if (arm_feature(env, ARM_FEATURE_V8)
1022         && arm_current_el(env) == 0
1023         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1024         return CP_ACCESS_OK;
1025     }
1026 
1027     return pmreg_access(env, ri, isread);
1028 }
1029 
1030 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1031                                          const ARMCPRegInfo *ri,
1032                                          bool isread)
1033 {
1034     /* CR: cycle counter read trap control */
1035     if (arm_feature(env, ARM_FEATURE_V8)
1036         && arm_current_el(env) == 0
1037         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1038         && isread) {
1039         return CP_ACCESS_OK;
1040     }
1041 
1042     return pmreg_access(env, ri, isread);
1043 }
1044 
1045 static inline bool arm_ccnt_enabled(CPUARMState *env)
1046 {
1047     /* This does not support checking PMCCFILTR_EL0 register */
1048 
1049     if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) {
1050         return false;
1051     }
1052 
1053     return true;
1054 }
1055 
1056 void pmccntr_sync(CPUARMState *env)
1057 {
1058     uint64_t temp_ticks;
1059 
1060     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1061                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1062 
1063     if (env->cp15.c9_pmcr & PMCRD) {
1064         /* Increment once every 64 processor clock cycles */
1065         temp_ticks /= 64;
1066     }
1067 
1068     if (arm_ccnt_enabled(env)) {
1069         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1070     }
1071 }
1072 
1073 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1074                        uint64_t value)
1075 {
1076     pmccntr_sync(env);
1077 
1078     if (value & PMCRC) {
1079         /* The counter has been reset */
1080         env->cp15.c15_ccnt = 0;
1081     }
1082 
1083     /* only the DP, X, D and E bits are writable */
1084     env->cp15.c9_pmcr &= ~0x39;
1085     env->cp15.c9_pmcr |= (value & 0x39);
1086 
1087     pmccntr_sync(env);
1088 }
1089 
1090 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1091 {
1092     uint64_t total_ticks;
1093 
1094     if (!arm_ccnt_enabled(env)) {
1095         /* Counter is disabled, do not change value */
1096         return env->cp15.c15_ccnt;
1097     }
1098 
1099     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1100                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1101 
1102     if (env->cp15.c9_pmcr & PMCRD) {
1103         /* Increment once every 64 processor clock cycles */
1104         total_ticks /= 64;
1105     }
1106     return total_ticks - env->cp15.c15_ccnt;
1107 }
1108 
1109 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1110                          uint64_t value)
1111 {
1112     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1113      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1114      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1115      * accessed.
1116      */
1117     env->cp15.c9_pmselr = value & 0x1f;
1118 }
1119 
1120 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1121                         uint64_t value)
1122 {
1123     uint64_t total_ticks;
1124 
1125     if (!arm_ccnt_enabled(env)) {
1126         /* Counter is disabled, set the absolute value */
1127         env->cp15.c15_ccnt = value;
1128         return;
1129     }
1130 
1131     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1132                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1133 
1134     if (env->cp15.c9_pmcr & PMCRD) {
1135         /* Increment once every 64 processor clock cycles */
1136         total_ticks /= 64;
1137     }
1138     env->cp15.c15_ccnt = total_ticks - value;
1139 }
1140 
1141 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1142                             uint64_t value)
1143 {
1144     uint64_t cur_val = pmccntr_read(env, NULL);
1145 
1146     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1147 }
1148 
1149 #else /* CONFIG_USER_ONLY */
1150 
1151 void pmccntr_sync(CPUARMState *env)
1152 {
1153 }
1154 
1155 #endif
1156 
1157 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                             uint64_t value)
1159 {
1160     pmccntr_sync(env);
1161     env->cp15.pmccfiltr_el0 = value & 0xfc000000;
1162     pmccntr_sync(env);
1163 }
1164 
1165 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166                             uint64_t value)
1167 {
1168     value &= pmu_counter_mask(env);
1169     env->cp15.c9_pmcnten |= value;
1170 }
1171 
1172 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173                              uint64_t value)
1174 {
1175     value &= pmu_counter_mask(env);
1176     env->cp15.c9_pmcnten &= ~value;
1177 }
1178 
1179 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1180                          uint64_t value)
1181 {
1182     env->cp15.c9_pmovsr &= ~value;
1183 }
1184 
1185 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1186                              uint64_t value)
1187 {
1188     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1189      * PMSELR value is equal to or greater than the number of implemented
1190      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1191      */
1192     if (env->cp15.c9_pmselr == 0x1f) {
1193         pmccfiltr_write(env, ri, value);
1194     }
1195 }
1196 
1197 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1198 {
1199     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1200      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1201      */
1202     if (env->cp15.c9_pmselr == 0x1f) {
1203         return env->cp15.pmccfiltr_el0;
1204     } else {
1205         return 0;
1206     }
1207 }
1208 
1209 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1210                             uint64_t value)
1211 {
1212     if (arm_feature(env, ARM_FEATURE_V8)) {
1213         env->cp15.c9_pmuserenr = value & 0xf;
1214     } else {
1215         env->cp15.c9_pmuserenr = value & 1;
1216     }
1217 }
1218 
1219 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1220                              uint64_t value)
1221 {
1222     /* We have no event counters so only the C bit can be changed */
1223     value &= pmu_counter_mask(env);
1224     env->cp15.c9_pminten |= value;
1225 }
1226 
1227 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1228                              uint64_t value)
1229 {
1230     value &= pmu_counter_mask(env);
1231     env->cp15.c9_pminten &= ~value;
1232 }
1233 
1234 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1235                        uint64_t value)
1236 {
1237     /* Note that even though the AArch64 view of this register has bits
1238      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1239      * architectural requirements for bits which are RES0 only in some
1240      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1241      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1242      */
1243     raw_write(env, ri, value & ~0x1FULL);
1244 }
1245 
1246 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1247 {
1248     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1249      * For bits that vary between AArch32/64, code needs to check the
1250      * current execution mode before directly using the feature bit.
1251      */
1252     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1253 
1254     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1255         valid_mask &= ~SCR_HCE;
1256 
1257         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1258          * supported if EL2 exists. The bit is UNK/SBZP when
1259          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1260          * when EL2 is unavailable.
1261          * On ARMv8, this bit is always available.
1262          */
1263         if (arm_feature(env, ARM_FEATURE_V7) &&
1264             !arm_feature(env, ARM_FEATURE_V8)) {
1265             valid_mask &= ~SCR_SMD;
1266         }
1267     }
1268 
1269     /* Clear all-context RES0 bits.  */
1270     value &= valid_mask;
1271     raw_write(env, ri, value);
1272 }
1273 
1274 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1275 {
1276     ARMCPU *cpu = arm_env_get_cpu(env);
1277 
1278     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1279      * bank
1280      */
1281     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1282                                         ri->secure & ARM_CP_SECSTATE_S);
1283 
1284     return cpu->ccsidr[index];
1285 }
1286 
1287 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1288                          uint64_t value)
1289 {
1290     raw_write(env, ri, value & 0xf);
1291 }
1292 
1293 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1294 {
1295     CPUState *cs = ENV_GET_CPU(env);
1296     uint64_t ret = 0;
1297 
1298     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1299         ret |= CPSR_I;
1300     }
1301     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1302         ret |= CPSR_F;
1303     }
1304     /* External aborts are not possible in QEMU so A bit is always clear */
1305     return ret;
1306 }
1307 
1308 static const ARMCPRegInfo v7_cp_reginfo[] = {
1309     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1310     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1311       .access = PL1_W, .type = ARM_CP_NOP },
1312     /* Performance monitors are implementation defined in v7,
1313      * but with an ARM recommended set of registers, which we
1314      * follow (although we don't actually implement any counters)
1315      *
1316      * Performance registers fall into three categories:
1317      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1318      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1319      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1320      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1321      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1322      */
1323     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1324       .access = PL0_RW, .type = ARM_CP_ALIAS,
1325       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1326       .writefn = pmcntenset_write,
1327       .accessfn = pmreg_access,
1328       .raw_writefn = raw_write },
1329     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1330       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1331       .access = PL0_RW, .accessfn = pmreg_access,
1332       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1333       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1334     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1335       .access = PL0_RW,
1336       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1337       .accessfn = pmreg_access,
1338       .writefn = pmcntenclr_write,
1339       .type = ARM_CP_ALIAS },
1340     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1341       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1342       .access = PL0_RW, .accessfn = pmreg_access,
1343       .type = ARM_CP_ALIAS,
1344       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1345       .writefn = pmcntenclr_write },
1346     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1347       .access = PL0_RW,
1348       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
1349       .accessfn = pmreg_access,
1350       .writefn = pmovsr_write,
1351       .raw_writefn = raw_write },
1352     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1353       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1354       .access = PL0_RW, .accessfn = pmreg_access,
1355       .type = ARM_CP_ALIAS,
1356       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1357       .writefn = pmovsr_write,
1358       .raw_writefn = raw_write },
1359     /* Unimplemented so WI. */
1360     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1361       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1362 #ifndef CONFIG_USER_ONLY
1363     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1364       .access = PL0_RW, .type = ARM_CP_ALIAS,
1365       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1366       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1367       .raw_writefn = raw_write},
1368     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1369       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1370       .access = PL0_RW, .accessfn = pmreg_access_selr,
1371       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1372       .writefn = pmselr_write, .raw_writefn = raw_write, },
1373     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1374       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
1375       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1376       .accessfn = pmreg_access_ccntr },
1377     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1378       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1379       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1380       .type = ARM_CP_IO,
1381       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1382 #endif
1383     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1384       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1385       .writefn = pmccfiltr_write,
1386       .access = PL0_RW, .accessfn = pmreg_access,
1387       .type = ARM_CP_IO,
1388       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1389       .resetvalue = 0, },
1390     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1391       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1392       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1393     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1394       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1395       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1396       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1397     /* Unimplemented, RAZ/WI. */
1398     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1399       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1400       .accessfn = pmreg_access_xevcntr },
1401     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1402       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1403       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
1404       .resetvalue = 0,
1405       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1406     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1407       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1408       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1409       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1410       .resetvalue = 0,
1411       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1412     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1413       .access = PL1_RW, .accessfn = access_tpm,
1414       .type = ARM_CP_ALIAS | ARM_CP_IO,
1415       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1416       .resetvalue = 0,
1417       .writefn = pmintenset_write, .raw_writefn = raw_write },
1418     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1419       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1420       .access = PL1_RW, .accessfn = access_tpm,
1421       .type = ARM_CP_IO,
1422       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1423       .writefn = pmintenset_write, .raw_writefn = raw_write,
1424       .resetvalue = 0x0 },
1425     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1426       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1427       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1428       .writefn = pmintenclr_write, },
1429     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1430       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1431       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1432       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1433       .writefn = pmintenclr_write },
1434     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1435       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1436       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1437     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1438       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1439       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1440       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1441                              offsetof(CPUARMState, cp15.csselr_ns) } },
1442     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1443      * just RAZ for all cores:
1444      */
1445     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1446       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1447       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1448     /* Auxiliary fault status registers: these also are IMPDEF, and we
1449      * choose to RAZ/WI for all cores.
1450      */
1451     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1452       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1453       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1454     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1455       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1456       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1457     /* MAIR can just read-as-written because we don't implement caches
1458      * and so don't need to care about memory attributes.
1459      */
1460     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1461       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1462       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1463       .resetvalue = 0 },
1464     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1465       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1466       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1467       .resetvalue = 0 },
1468     /* For non-long-descriptor page tables these are PRRR and NMRR;
1469      * regardless they still act as reads-as-written for QEMU.
1470      */
1471      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1472       * allows them to assign the correct fieldoffset based on the endianness
1473       * handled in the field definitions.
1474       */
1475     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1476       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1477       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1478                              offsetof(CPUARMState, cp15.mair0_ns) },
1479       .resetfn = arm_cp_reset_ignore },
1480     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1481       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1482       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1483                              offsetof(CPUARMState, cp15.mair1_ns) },
1484       .resetfn = arm_cp_reset_ignore },
1485     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1486       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1487       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1488     /* 32 bit ITLB invalidates */
1489     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1490       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1491     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1492       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1493     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1494       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1495     /* 32 bit DTLB invalidates */
1496     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1497       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1498     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1499       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1500     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1501       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1502     /* 32 bit TLB invalidates */
1503     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1504       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1505     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1506       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1507     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1508       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1509     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1510       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1511     REGINFO_SENTINEL
1512 };
1513 
1514 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1515     /* 32 bit TLB invalidates, Inner Shareable */
1516     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1517       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1518     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1519       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1520     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1521       .type = ARM_CP_NO_RAW, .access = PL1_W,
1522       .writefn = tlbiasid_is_write },
1523     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1524       .type = ARM_CP_NO_RAW, .access = PL1_W,
1525       .writefn = tlbimvaa_is_write },
1526     REGINFO_SENTINEL
1527 };
1528 
1529 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1530                         uint64_t value)
1531 {
1532     value &= 1;
1533     env->teecr = value;
1534 }
1535 
1536 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1537                                     bool isread)
1538 {
1539     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1540         return CP_ACCESS_TRAP;
1541     }
1542     return CP_ACCESS_OK;
1543 }
1544 
1545 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1546     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1547       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1548       .resetvalue = 0,
1549       .writefn = teecr_write },
1550     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1551       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1552       .accessfn = teehbr_access, .resetvalue = 0 },
1553     REGINFO_SENTINEL
1554 };
1555 
1556 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1557     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1558       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1559       .access = PL0_RW,
1560       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1561     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1562       .access = PL0_RW,
1563       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1564                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1565       .resetfn = arm_cp_reset_ignore },
1566     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1567       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1568       .access = PL0_R|PL1_W,
1569       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1570       .resetvalue = 0},
1571     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1572       .access = PL0_R|PL1_W,
1573       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1574                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1575       .resetfn = arm_cp_reset_ignore },
1576     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1577       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1578       .access = PL1_RW,
1579       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1580     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1581       .access = PL1_RW,
1582       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1583                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1584       .resetvalue = 0 },
1585     REGINFO_SENTINEL
1586 };
1587 
1588 #ifndef CONFIG_USER_ONLY
1589 
1590 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1591                                        bool isread)
1592 {
1593     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1594      * Writable only at the highest implemented exception level.
1595      */
1596     int el = arm_current_el(env);
1597 
1598     switch (el) {
1599     case 0:
1600         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1601             return CP_ACCESS_TRAP;
1602         }
1603         break;
1604     case 1:
1605         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1606             arm_is_secure_below_el3(env)) {
1607             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1608             return CP_ACCESS_TRAP_UNCATEGORIZED;
1609         }
1610         break;
1611     case 2:
1612     case 3:
1613         break;
1614     }
1615 
1616     if (!isread && el < arm_highest_el(env)) {
1617         return CP_ACCESS_TRAP_UNCATEGORIZED;
1618     }
1619 
1620     return CP_ACCESS_OK;
1621 }
1622 
1623 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1624                                         bool isread)
1625 {
1626     unsigned int cur_el = arm_current_el(env);
1627     bool secure = arm_is_secure(env);
1628 
1629     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1630     if (cur_el == 0 &&
1631         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1632         return CP_ACCESS_TRAP;
1633     }
1634 
1635     if (arm_feature(env, ARM_FEATURE_EL2) &&
1636         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1637         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1638         return CP_ACCESS_TRAP_EL2;
1639     }
1640     return CP_ACCESS_OK;
1641 }
1642 
1643 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1644                                       bool isread)
1645 {
1646     unsigned int cur_el = arm_current_el(env);
1647     bool secure = arm_is_secure(env);
1648 
1649     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1650      * EL0[PV]TEN is zero.
1651      */
1652     if (cur_el == 0 &&
1653         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1654         return CP_ACCESS_TRAP;
1655     }
1656 
1657     if (arm_feature(env, ARM_FEATURE_EL2) &&
1658         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1659         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1660         return CP_ACCESS_TRAP_EL2;
1661     }
1662     return CP_ACCESS_OK;
1663 }
1664 
1665 static CPAccessResult gt_pct_access(CPUARMState *env,
1666                                     const ARMCPRegInfo *ri,
1667                                     bool isread)
1668 {
1669     return gt_counter_access(env, GTIMER_PHYS, isread);
1670 }
1671 
1672 static CPAccessResult gt_vct_access(CPUARMState *env,
1673                                     const ARMCPRegInfo *ri,
1674                                     bool isread)
1675 {
1676     return gt_counter_access(env, GTIMER_VIRT, isread);
1677 }
1678 
1679 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1680                                        bool isread)
1681 {
1682     return gt_timer_access(env, GTIMER_PHYS, isread);
1683 }
1684 
1685 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1686                                        bool isread)
1687 {
1688     return gt_timer_access(env, GTIMER_VIRT, isread);
1689 }
1690 
1691 static CPAccessResult gt_stimer_access(CPUARMState *env,
1692                                        const ARMCPRegInfo *ri,
1693                                        bool isread)
1694 {
1695     /* The AArch64 register view of the secure physical timer is
1696      * always accessible from EL3, and configurably accessible from
1697      * Secure EL1.
1698      */
1699     switch (arm_current_el(env)) {
1700     case 1:
1701         if (!arm_is_secure(env)) {
1702             return CP_ACCESS_TRAP;
1703         }
1704         if (!(env->cp15.scr_el3 & SCR_ST)) {
1705             return CP_ACCESS_TRAP_EL3;
1706         }
1707         return CP_ACCESS_OK;
1708     case 0:
1709     case 2:
1710         return CP_ACCESS_TRAP;
1711     case 3:
1712         return CP_ACCESS_OK;
1713     default:
1714         g_assert_not_reached();
1715     }
1716 }
1717 
1718 static uint64_t gt_get_countervalue(CPUARMState *env)
1719 {
1720     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1721 }
1722 
1723 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1724 {
1725     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1726 
1727     if (gt->ctl & 1) {
1728         /* Timer enabled: calculate and set current ISTATUS, irq, and
1729          * reset timer to when ISTATUS next has to change
1730          */
1731         uint64_t offset = timeridx == GTIMER_VIRT ?
1732                                       cpu->env.cp15.cntvoff_el2 : 0;
1733         uint64_t count = gt_get_countervalue(&cpu->env);
1734         /* Note that this must be unsigned 64 bit arithmetic: */
1735         int istatus = count - offset >= gt->cval;
1736         uint64_t nexttick;
1737         int irqstate;
1738 
1739         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1740 
1741         irqstate = (istatus && !(gt->ctl & 2));
1742         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1743 
1744         if (istatus) {
1745             /* Next transition is when count rolls back over to zero */
1746             nexttick = UINT64_MAX;
1747         } else {
1748             /* Next transition is when we hit cval */
1749             nexttick = gt->cval + offset;
1750         }
1751         /* Note that the desired next expiry time might be beyond the
1752          * signed-64-bit range of a QEMUTimer -- in this case we just
1753          * set the timer for as far in the future as possible. When the
1754          * timer expires we will reset the timer for any remaining period.
1755          */
1756         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1757             nexttick = INT64_MAX / GTIMER_SCALE;
1758         }
1759         timer_mod(cpu->gt_timer[timeridx], nexttick);
1760         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1761     } else {
1762         /* Timer disabled: ISTATUS and timer output always clear */
1763         gt->ctl &= ~4;
1764         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1765         timer_del(cpu->gt_timer[timeridx]);
1766         trace_arm_gt_recalc_disabled(timeridx);
1767     }
1768 }
1769 
1770 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1771                            int timeridx)
1772 {
1773     ARMCPU *cpu = arm_env_get_cpu(env);
1774 
1775     timer_del(cpu->gt_timer[timeridx]);
1776 }
1777 
1778 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     return gt_get_countervalue(env);
1781 }
1782 
1783 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1786 }
1787 
1788 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                           int timeridx,
1790                           uint64_t value)
1791 {
1792     trace_arm_gt_cval_write(timeridx, value);
1793     env->cp15.c14_timer[timeridx].cval = value;
1794     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1795 }
1796 
1797 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1798                              int timeridx)
1799 {
1800     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1801 
1802     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1803                       (gt_get_countervalue(env) - offset));
1804 }
1805 
1806 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1807                           int timeridx,
1808                           uint64_t value)
1809 {
1810     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1811 
1812     trace_arm_gt_tval_write(timeridx, value);
1813     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1814                                          sextract64(value, 0, 32);
1815     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1816 }
1817 
1818 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819                          int timeridx,
1820                          uint64_t value)
1821 {
1822     ARMCPU *cpu = arm_env_get_cpu(env);
1823     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1824 
1825     trace_arm_gt_ctl_write(timeridx, value);
1826     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1827     if ((oldval ^ value) & 1) {
1828         /* Enable toggled */
1829         gt_recalc_timer(cpu, timeridx);
1830     } else if ((oldval ^ value) & 2) {
1831         /* IMASK toggled: don't need to recalculate,
1832          * just set the interrupt line based on ISTATUS
1833          */
1834         int irqstate = (oldval & 4) && !(value & 2);
1835 
1836         trace_arm_gt_imask_toggle(timeridx, irqstate);
1837         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1838     }
1839 }
1840 
1841 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1842 {
1843     gt_timer_reset(env, ri, GTIMER_PHYS);
1844 }
1845 
1846 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1847                                uint64_t value)
1848 {
1849     gt_cval_write(env, ri, GTIMER_PHYS, value);
1850 }
1851 
1852 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1853 {
1854     return gt_tval_read(env, ri, GTIMER_PHYS);
1855 }
1856 
1857 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1858                                uint64_t value)
1859 {
1860     gt_tval_write(env, ri, GTIMER_PHYS, value);
1861 }
1862 
1863 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1864                               uint64_t value)
1865 {
1866     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1867 }
1868 
1869 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1870 {
1871     gt_timer_reset(env, ri, GTIMER_VIRT);
1872 }
1873 
1874 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                                uint64_t value)
1876 {
1877     gt_cval_write(env, ri, GTIMER_VIRT, value);
1878 }
1879 
1880 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1881 {
1882     return gt_tval_read(env, ri, GTIMER_VIRT);
1883 }
1884 
1885 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886                                uint64_t value)
1887 {
1888     gt_tval_write(env, ri, GTIMER_VIRT, value);
1889 }
1890 
1891 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1892                               uint64_t value)
1893 {
1894     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1895 }
1896 
1897 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1898                               uint64_t value)
1899 {
1900     ARMCPU *cpu = arm_env_get_cpu(env);
1901 
1902     trace_arm_gt_cntvoff_write(value);
1903     raw_write(env, ri, value);
1904     gt_recalc_timer(cpu, GTIMER_VIRT);
1905 }
1906 
1907 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1908 {
1909     gt_timer_reset(env, ri, GTIMER_HYP);
1910 }
1911 
1912 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1913                               uint64_t value)
1914 {
1915     gt_cval_write(env, ri, GTIMER_HYP, value);
1916 }
1917 
1918 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1919 {
1920     return gt_tval_read(env, ri, GTIMER_HYP);
1921 }
1922 
1923 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1924                               uint64_t value)
1925 {
1926     gt_tval_write(env, ri, GTIMER_HYP, value);
1927 }
1928 
1929 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1930                               uint64_t value)
1931 {
1932     gt_ctl_write(env, ri, GTIMER_HYP, value);
1933 }
1934 
1935 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1936 {
1937     gt_timer_reset(env, ri, GTIMER_SEC);
1938 }
1939 
1940 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1941                               uint64_t value)
1942 {
1943     gt_cval_write(env, ri, GTIMER_SEC, value);
1944 }
1945 
1946 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1947 {
1948     return gt_tval_read(env, ri, GTIMER_SEC);
1949 }
1950 
1951 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1952                               uint64_t value)
1953 {
1954     gt_tval_write(env, ri, GTIMER_SEC, value);
1955 }
1956 
1957 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1958                               uint64_t value)
1959 {
1960     gt_ctl_write(env, ri, GTIMER_SEC, value);
1961 }
1962 
1963 void arm_gt_ptimer_cb(void *opaque)
1964 {
1965     ARMCPU *cpu = opaque;
1966 
1967     gt_recalc_timer(cpu, GTIMER_PHYS);
1968 }
1969 
1970 void arm_gt_vtimer_cb(void *opaque)
1971 {
1972     ARMCPU *cpu = opaque;
1973 
1974     gt_recalc_timer(cpu, GTIMER_VIRT);
1975 }
1976 
1977 void arm_gt_htimer_cb(void *opaque)
1978 {
1979     ARMCPU *cpu = opaque;
1980 
1981     gt_recalc_timer(cpu, GTIMER_HYP);
1982 }
1983 
1984 void arm_gt_stimer_cb(void *opaque)
1985 {
1986     ARMCPU *cpu = opaque;
1987 
1988     gt_recalc_timer(cpu, GTIMER_SEC);
1989 }
1990 
1991 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1992     /* Note that CNTFRQ is purely reads-as-written for the benefit
1993      * of software; writing it doesn't actually change the timer frequency.
1994      * Our reset value matches the fixed frequency we implement the timer at.
1995      */
1996     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1997       .type = ARM_CP_ALIAS,
1998       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1999       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
2000     },
2001     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2002       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2003       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
2004       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2005       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
2006     },
2007     /* overall control: mostly access permissions */
2008     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
2009       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
2010       .access = PL1_RW,
2011       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
2012       .resetvalue = 0,
2013     },
2014     /* per-timer control */
2015     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2016       .secure = ARM_CP_SECSTATE_NS,
2017       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2018       .accessfn = gt_ptimer_access,
2019       .fieldoffset = offsetoflow32(CPUARMState,
2020                                    cp15.c14_timer[GTIMER_PHYS].ctl),
2021       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2022     },
2023     { .name = "CNTP_CTL_S",
2024       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
2025       .secure = ARM_CP_SECSTATE_S,
2026       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2027       .accessfn = gt_ptimer_access,
2028       .fieldoffset = offsetoflow32(CPUARMState,
2029                                    cp15.c14_timer[GTIMER_SEC].ctl),
2030       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2031     },
2032     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
2033       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
2034       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2035       .accessfn = gt_ptimer_access,
2036       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
2037       .resetvalue = 0,
2038       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
2039     },
2040     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
2041       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
2042       .accessfn = gt_vtimer_access,
2043       .fieldoffset = offsetoflow32(CPUARMState,
2044                                    cp15.c14_timer[GTIMER_VIRT].ctl),
2045       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2046     },
2047     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
2048       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
2049       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
2050       .accessfn = gt_vtimer_access,
2051       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
2052       .resetvalue = 0,
2053       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2054     },
2055     /* TimerValue views: a 32 bit downcounting view of the underlying state */
2056     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2057       .secure = ARM_CP_SECSTATE_NS,
2058       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2059       .accessfn = gt_ptimer_access,
2060       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2061     },
2062     { .name = "CNTP_TVAL_S",
2063       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2064       .secure = ARM_CP_SECSTATE_S,
2065       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2066       .accessfn = gt_ptimer_access,
2067       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2068     },
2069     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2070       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2071       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2072       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2073       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2074     },
2075     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2076       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2077       .accessfn = gt_vtimer_access,
2078       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2079     },
2080     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2081       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2082       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2083       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2084       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2085     },
2086     /* The counter itself */
2087     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2088       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2089       .accessfn = gt_pct_access,
2090       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2091     },
2092     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2093       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2094       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2095       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2096     },
2097     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2098       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2099       .accessfn = gt_vct_access,
2100       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2101     },
2102     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2103       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2104       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2105       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2106     },
2107     /* Comparison value, indicating when the timer goes off */
2108     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2109       .secure = ARM_CP_SECSTATE_NS,
2110       .access = PL1_RW | PL0_R,
2111       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2112       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2113       .accessfn = gt_ptimer_access,
2114       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2115     },
2116     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
2117       .secure = ARM_CP_SECSTATE_S,
2118       .access = PL1_RW | PL0_R,
2119       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2120       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2121       .accessfn = gt_ptimer_access,
2122       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2123     },
2124     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2126       .access = PL1_RW | PL0_R,
2127       .type = ARM_CP_IO,
2128       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2129       .resetvalue = 0, .accessfn = gt_ptimer_access,
2130       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2131     },
2132     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2133       .access = PL1_RW | PL0_R,
2134       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2135       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2136       .accessfn = gt_vtimer_access,
2137       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2138     },
2139     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2140       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2141       .access = PL1_RW | PL0_R,
2142       .type = ARM_CP_IO,
2143       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2144       .resetvalue = 0, .accessfn = gt_vtimer_access,
2145       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2146     },
2147     /* Secure timer -- this is actually restricted to only EL3
2148      * and configurably Secure-EL1 via the accessfn.
2149      */
2150     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2151       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2152       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2153       .accessfn = gt_stimer_access,
2154       .readfn = gt_sec_tval_read,
2155       .writefn = gt_sec_tval_write,
2156       .resetfn = gt_sec_timer_reset,
2157     },
2158     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2159       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2160       .type = ARM_CP_IO, .access = PL1_RW,
2161       .accessfn = gt_stimer_access,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2163       .resetvalue = 0,
2164       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2165     },
2166     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2167       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2168       .type = ARM_CP_IO, .access = PL1_RW,
2169       .accessfn = gt_stimer_access,
2170       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2171       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2172     },
2173     REGINFO_SENTINEL
2174 };
2175 
2176 #else
2177 
2178 /* In user-mode most of the generic timer registers are inaccessible
2179  * however modern kernels (4.12+) allow access to cntvct_el0
2180  */
2181 
2182 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2183 {
2184     /* Currently we have no support for QEMUTimer in linux-user so we
2185      * can't call gt_get_countervalue(env), instead we directly
2186      * call the lower level functions.
2187      */
2188     return cpu_get_clock() / GTIMER_SCALE;
2189 }
2190 
2191 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2192     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
2193       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
2194       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
2195       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
2196       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
2197     },
2198     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2199       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2200       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2201       .readfn = gt_virt_cnt_read,
2202     },
2203     REGINFO_SENTINEL
2204 };
2205 
2206 #endif
2207 
2208 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2209 {
2210     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2211         raw_write(env, ri, value);
2212     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2213         raw_write(env, ri, value & 0xfffff6ff);
2214     } else {
2215         raw_write(env, ri, value & 0xfffff1ff);
2216     }
2217 }
2218 
2219 #ifndef CONFIG_USER_ONLY
2220 /* get_phys_addr() isn't present for user-mode-only targets */
2221 
2222 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2223                                  bool isread)
2224 {
2225     if (ri->opc2 & 4) {
2226         /* The ATS12NSO* operations must trap to EL3 if executed in
2227          * Secure EL1 (which can only happen if EL3 is AArch64).
2228          * They are simply UNDEF if executed from NS EL1.
2229          * They function normally from EL2 or EL3.
2230          */
2231         if (arm_current_el(env) == 1) {
2232             if (arm_is_secure_below_el3(env)) {
2233                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2234             }
2235             return CP_ACCESS_TRAP_UNCATEGORIZED;
2236         }
2237     }
2238     return CP_ACCESS_OK;
2239 }
2240 
2241 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2242                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2243 {
2244     hwaddr phys_addr;
2245     target_ulong page_size;
2246     int prot;
2247     bool ret;
2248     uint64_t par64;
2249     bool format64 = false;
2250     MemTxAttrs attrs = {};
2251     ARMMMUFaultInfo fi = {};
2252     ARMCacheAttrs cacheattrs = {};
2253 
2254     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2255                         &prot, &page_size, &fi, &cacheattrs);
2256 
2257     if (is_a64(env)) {
2258         format64 = true;
2259     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
2260         /*
2261          * ATS1Cxx:
2262          * * TTBCR.EAE determines whether the result is returned using the
2263          *   32-bit or the 64-bit PAR format
2264          * * Instructions executed in Hyp mode always use the 64bit format
2265          *
2266          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2267          * * The Non-secure TTBCR.EAE bit is set to 1
2268          * * The implementation includes EL2, and the value of HCR.VM is 1
2269          *
2270          * ATS1Hx always uses the 64bit format (not supported yet).
2271          */
2272         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
2273 
2274         if (arm_feature(env, ARM_FEATURE_EL2)) {
2275             if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
2276                 format64 |= env->cp15.hcr_el2 & HCR_VM;
2277             } else {
2278                 format64 |= arm_current_el(env) == 2;
2279             }
2280         }
2281     }
2282 
2283     if (format64) {
2284         /* Create a 64-bit PAR */
2285         par64 = (1 << 11); /* LPAE bit always set */
2286         if (!ret) {
2287             par64 |= phys_addr & ~0xfffULL;
2288             if (!attrs.secure) {
2289                 par64 |= (1 << 9); /* NS */
2290             }
2291             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2292             par64 |= cacheattrs.shareability << 7; /* SH */
2293         } else {
2294             uint32_t fsr = arm_fi_to_lfsc(&fi);
2295 
2296             par64 |= 1; /* F */
2297             par64 |= (fsr & 0x3f) << 1; /* FS */
2298             /* Note that S2WLK and FSTAGE are always zero, because we don't
2299              * implement virtualization and therefore there can't be a stage 2
2300              * fault.
2301              */
2302         }
2303     } else {
2304         /* fsr is a DFSR/IFSR value for the short descriptor
2305          * translation table format (with WnR always clear).
2306          * Convert it to a 32-bit PAR.
2307          */
2308         if (!ret) {
2309             /* We do not set any attribute bits in the PAR */
2310             if (page_size == (1 << 24)
2311                 && arm_feature(env, ARM_FEATURE_V7)) {
2312                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2313             } else {
2314                 par64 = phys_addr & 0xfffff000;
2315             }
2316             if (!attrs.secure) {
2317                 par64 |= (1 << 9); /* NS */
2318             }
2319         } else {
2320             uint32_t fsr = arm_fi_to_sfsc(&fi);
2321 
2322             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2323                     ((fsr & 0xf) << 1) | 1;
2324         }
2325     }
2326     return par64;
2327 }
2328 
2329 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2330 {
2331     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2332     uint64_t par64;
2333     ARMMMUIdx mmu_idx;
2334     int el = arm_current_el(env);
2335     bool secure = arm_is_secure_below_el3(env);
2336 
2337     switch (ri->opc2 & 6) {
2338     case 0:
2339         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2340         switch (el) {
2341         case 3:
2342             mmu_idx = ARMMMUIdx_S1E3;
2343             break;
2344         case 2:
2345             mmu_idx = ARMMMUIdx_S1NSE1;
2346             break;
2347         case 1:
2348             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2349             break;
2350         default:
2351             g_assert_not_reached();
2352         }
2353         break;
2354     case 2:
2355         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2356         switch (el) {
2357         case 3:
2358             mmu_idx = ARMMMUIdx_S1SE0;
2359             break;
2360         case 2:
2361             mmu_idx = ARMMMUIdx_S1NSE0;
2362             break;
2363         case 1:
2364             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2365             break;
2366         default:
2367             g_assert_not_reached();
2368         }
2369         break;
2370     case 4:
2371         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2372         mmu_idx = ARMMMUIdx_S12NSE1;
2373         break;
2374     case 6:
2375         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2376         mmu_idx = ARMMMUIdx_S12NSE0;
2377         break;
2378     default:
2379         g_assert_not_reached();
2380     }
2381 
2382     par64 = do_ats_write(env, value, access_type, mmu_idx);
2383 
2384     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2385 }
2386 
2387 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2388                         uint64_t value)
2389 {
2390     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2391     uint64_t par64;
2392 
2393     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2394 
2395     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2396 }
2397 
2398 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2399                                      bool isread)
2400 {
2401     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2402         return CP_ACCESS_TRAP;
2403     }
2404     return CP_ACCESS_OK;
2405 }
2406 
2407 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2408                         uint64_t value)
2409 {
2410     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2411     ARMMMUIdx mmu_idx;
2412     int secure = arm_is_secure_below_el3(env);
2413 
2414     switch (ri->opc2 & 6) {
2415     case 0:
2416         switch (ri->opc1) {
2417         case 0: /* AT S1E1R, AT S1E1W */
2418             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2419             break;
2420         case 4: /* AT S1E2R, AT S1E2W */
2421             mmu_idx = ARMMMUIdx_S1E2;
2422             break;
2423         case 6: /* AT S1E3R, AT S1E3W */
2424             mmu_idx = ARMMMUIdx_S1E3;
2425             break;
2426         default:
2427             g_assert_not_reached();
2428         }
2429         break;
2430     case 2: /* AT S1E0R, AT S1E0W */
2431         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2432         break;
2433     case 4: /* AT S12E1R, AT S12E1W */
2434         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2435         break;
2436     case 6: /* AT S12E0R, AT S12E0W */
2437         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2438         break;
2439     default:
2440         g_assert_not_reached();
2441     }
2442 
2443     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2444 }
2445 #endif
2446 
2447 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2448     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2449       .access = PL1_RW, .resetvalue = 0,
2450       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2451                              offsetoflow32(CPUARMState, cp15.par_ns) },
2452       .writefn = par_write },
2453 #ifndef CONFIG_USER_ONLY
2454     /* This underdecoding is safe because the reginfo is NO_RAW. */
2455     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2456       .access = PL1_W, .accessfn = ats_access,
2457       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2458 #endif
2459     REGINFO_SENTINEL
2460 };
2461 
2462 /* Return basic MPU access permission bits.  */
2463 static uint32_t simple_mpu_ap_bits(uint32_t val)
2464 {
2465     uint32_t ret;
2466     uint32_t mask;
2467     int i;
2468     ret = 0;
2469     mask = 3;
2470     for (i = 0; i < 16; i += 2) {
2471         ret |= (val >> i) & mask;
2472         mask <<= 2;
2473     }
2474     return ret;
2475 }
2476 
2477 /* Pad basic MPU access permission bits to extended format.  */
2478 static uint32_t extended_mpu_ap_bits(uint32_t val)
2479 {
2480     uint32_t ret;
2481     uint32_t mask;
2482     int i;
2483     ret = 0;
2484     mask = 3;
2485     for (i = 0; i < 16; i += 2) {
2486         ret |= (val & mask) << i;
2487         mask <<= 2;
2488     }
2489     return ret;
2490 }
2491 
2492 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2493                                  uint64_t value)
2494 {
2495     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2496 }
2497 
2498 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2499 {
2500     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2501 }
2502 
2503 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2504                                  uint64_t value)
2505 {
2506     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2507 }
2508 
2509 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2510 {
2511     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2512 }
2513 
2514 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2515 {
2516     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2517 
2518     if (!u32p) {
2519         return 0;
2520     }
2521 
2522     u32p += env->pmsav7.rnr[M_REG_NS];
2523     return *u32p;
2524 }
2525 
2526 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2527                          uint64_t value)
2528 {
2529     ARMCPU *cpu = arm_env_get_cpu(env);
2530     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2531 
2532     if (!u32p) {
2533         return;
2534     }
2535 
2536     u32p += env->pmsav7.rnr[M_REG_NS];
2537     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2538     *u32p = value;
2539 }
2540 
2541 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2542                               uint64_t value)
2543 {
2544     ARMCPU *cpu = arm_env_get_cpu(env);
2545     uint32_t nrgs = cpu->pmsav7_dregion;
2546 
2547     if (value >= nrgs) {
2548         qemu_log_mask(LOG_GUEST_ERROR,
2549                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2550                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2551         return;
2552     }
2553 
2554     raw_write(env, ri, value);
2555 }
2556 
2557 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2558     /* Reset for all these registers is handled in arm_cpu_reset(),
2559      * because the PMSAv7 is also used by M-profile CPUs, which do
2560      * not register cpregs but still need the state to be reset.
2561      */
2562     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2563       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2564       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2565       .readfn = pmsav7_read, .writefn = pmsav7_write,
2566       .resetfn = arm_cp_reset_ignore },
2567     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2568       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2569       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2570       .readfn = pmsav7_read, .writefn = pmsav7_write,
2571       .resetfn = arm_cp_reset_ignore },
2572     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2573       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2574       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2575       .readfn = pmsav7_read, .writefn = pmsav7_write,
2576       .resetfn = arm_cp_reset_ignore },
2577     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2578       .access = PL1_RW,
2579       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2580       .writefn = pmsav7_rgnr_write,
2581       .resetfn = arm_cp_reset_ignore },
2582     REGINFO_SENTINEL
2583 };
2584 
2585 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2586     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2587       .access = PL1_RW, .type = ARM_CP_ALIAS,
2588       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2589       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2590     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2591       .access = PL1_RW, .type = ARM_CP_ALIAS,
2592       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2593       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2594     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2595       .access = PL1_RW,
2596       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2597       .resetvalue = 0, },
2598     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2599       .access = PL1_RW,
2600       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2601       .resetvalue = 0, },
2602     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2603       .access = PL1_RW,
2604       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2605     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2606       .access = PL1_RW,
2607       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2608     /* Protection region base and size registers */
2609     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2610       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2611       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2612     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2613       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2614       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2615     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2616       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2617       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2618     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2619       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2620       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2621     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2622       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2623       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2624     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2625       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2626       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2627     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2628       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2629       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2630     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2631       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2632       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2633     REGINFO_SENTINEL
2634 };
2635 
2636 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2637                                  uint64_t value)
2638 {
2639     TCR *tcr = raw_ptr(env, ri);
2640     int maskshift = extract32(value, 0, 3);
2641 
2642     if (!arm_feature(env, ARM_FEATURE_V8)) {
2643         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2644             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2645              * using Long-desciptor translation table format */
2646             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2647         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2648             /* In an implementation that includes the Security Extensions
2649              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2650              * Short-descriptor translation table format.
2651              */
2652             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2653         } else {
2654             value &= TTBCR_N;
2655         }
2656     }
2657 
2658     /* Update the masks corresponding to the TCR bank being written
2659      * Note that we always calculate mask and base_mask, but
2660      * they are only used for short-descriptor tables (ie if EAE is 0);
2661      * for long-descriptor tables the TCR fields are used differently
2662      * and the mask and base_mask values are meaningless.
2663      */
2664     tcr->raw_tcr = value;
2665     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2666     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2667 }
2668 
2669 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2670                              uint64_t value)
2671 {
2672     ARMCPU *cpu = arm_env_get_cpu(env);
2673 
2674     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2675         /* With LPAE the TTBCR could result in a change of ASID
2676          * via the TTBCR.A1 bit, so do a TLB flush.
2677          */
2678         tlb_flush(CPU(cpu));
2679     }
2680     vmsa_ttbcr_raw_write(env, ri, value);
2681 }
2682 
2683 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2684 {
2685     TCR *tcr = raw_ptr(env, ri);
2686 
2687     /* Reset both the TCR as well as the masks corresponding to the bank of
2688      * the TCR being reset.
2689      */
2690     tcr->raw_tcr = 0;
2691     tcr->mask = 0;
2692     tcr->base_mask = 0xffffc000u;
2693 }
2694 
2695 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2696                                uint64_t value)
2697 {
2698     ARMCPU *cpu = arm_env_get_cpu(env);
2699     TCR *tcr = raw_ptr(env, ri);
2700 
2701     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2702     tlb_flush(CPU(cpu));
2703     tcr->raw_tcr = value;
2704 }
2705 
2706 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2707                             uint64_t value)
2708 {
2709     /* 64 bit accesses to the TTBRs can change the ASID and so we
2710      * must flush the TLB.
2711      */
2712     if (cpreg_field_is_64bit(ri)) {
2713         ARMCPU *cpu = arm_env_get_cpu(env);
2714 
2715         tlb_flush(CPU(cpu));
2716     }
2717     raw_write(env, ri, value);
2718 }
2719 
2720 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2721                         uint64_t value)
2722 {
2723     ARMCPU *cpu = arm_env_get_cpu(env);
2724     CPUState *cs = CPU(cpu);
2725 
2726     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2727     if (raw_read(env, ri) != value) {
2728         tlb_flush_by_mmuidx(cs,
2729                             ARMMMUIdxBit_S12NSE1 |
2730                             ARMMMUIdxBit_S12NSE0 |
2731                             ARMMMUIdxBit_S2NS);
2732         raw_write(env, ri, value);
2733     }
2734 }
2735 
2736 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2737     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2738       .access = PL1_RW, .type = ARM_CP_ALIAS,
2739       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2740                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2741     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2742       .access = PL1_RW, .resetvalue = 0,
2743       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2744                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2745     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2746       .access = PL1_RW, .resetvalue = 0,
2747       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2748                              offsetof(CPUARMState, cp15.dfar_ns) } },
2749     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2750       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2751       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2752       .resetvalue = 0, },
2753     REGINFO_SENTINEL
2754 };
2755 
2756 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2757     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2758       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2759       .access = PL1_RW,
2760       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2761     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2762       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2763       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2764       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2765                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2766     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2767       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2768       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2769       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2770                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2771     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2772       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2773       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2774       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2775       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2776     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2777       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2778       .raw_writefn = vmsa_ttbcr_raw_write,
2779       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2780                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2781     REGINFO_SENTINEL
2782 };
2783 
2784 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2785                                 uint64_t value)
2786 {
2787     env->cp15.c15_ticonfig = value & 0xe7;
2788     /* The OS_TYPE bit in this register changes the reported CPUID! */
2789     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2790         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2791 }
2792 
2793 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2794                                 uint64_t value)
2795 {
2796     env->cp15.c15_threadid = value & 0xffff;
2797 }
2798 
2799 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2800                            uint64_t value)
2801 {
2802     /* Wait-for-interrupt (deprecated) */
2803     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2804 }
2805 
2806 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807                                   uint64_t value)
2808 {
2809     /* On OMAP there are registers indicating the max/min index of dcache lines
2810      * containing a dirty line; cache flush operations have to reset these.
2811      */
2812     env->cp15.c15_i_max = 0x000;
2813     env->cp15.c15_i_min = 0xff0;
2814 }
2815 
2816 static const ARMCPRegInfo omap_cp_reginfo[] = {
2817     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2818       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2819       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2820       .resetvalue = 0, },
2821     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2822       .access = PL1_RW, .type = ARM_CP_NOP },
2823     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2824       .access = PL1_RW,
2825       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2826       .writefn = omap_ticonfig_write },
2827     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2828       .access = PL1_RW,
2829       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2830     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2831       .access = PL1_RW, .resetvalue = 0xff0,
2832       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2833     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2834       .access = PL1_RW,
2835       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2836       .writefn = omap_threadid_write },
2837     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2838       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2839       .type = ARM_CP_NO_RAW,
2840       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2841     /* TODO: Peripheral port remap register:
2842      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2843      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2844      * when MMU is off.
2845      */
2846     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2847       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2848       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2849       .writefn = omap_cachemaint_write },
2850     { .name = "C9", .cp = 15, .crn = 9,
2851       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2852       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2853     REGINFO_SENTINEL
2854 };
2855 
2856 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2857                               uint64_t value)
2858 {
2859     env->cp15.c15_cpar = value & 0x3fff;
2860 }
2861 
2862 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2863     { .name = "XSCALE_CPAR",
2864       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2865       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2866       .writefn = xscale_cpar_write, },
2867     { .name = "XSCALE_AUXCR",
2868       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2869       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2870       .resetvalue = 0, },
2871     /* XScale specific cache-lockdown: since we have no cache we NOP these
2872      * and hope the guest does not really rely on cache behaviour.
2873      */
2874     { .name = "XSCALE_LOCK_ICACHE_LINE",
2875       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2876       .access = PL1_W, .type = ARM_CP_NOP },
2877     { .name = "XSCALE_UNLOCK_ICACHE",
2878       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2879       .access = PL1_W, .type = ARM_CP_NOP },
2880     { .name = "XSCALE_DCACHE_LOCK",
2881       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2882       .access = PL1_RW, .type = ARM_CP_NOP },
2883     { .name = "XSCALE_UNLOCK_DCACHE",
2884       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2885       .access = PL1_W, .type = ARM_CP_NOP },
2886     REGINFO_SENTINEL
2887 };
2888 
2889 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2890     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2891      * implementation of this implementation-defined space.
2892      * Ideally this should eventually disappear in favour of actually
2893      * implementing the correct behaviour for all cores.
2894      */
2895     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2896       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2897       .access = PL1_RW,
2898       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2899       .resetvalue = 0 },
2900     REGINFO_SENTINEL
2901 };
2902 
2903 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2904     /* Cache status: RAZ because we have no cache so it's always clean */
2905     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2906       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2907       .resetvalue = 0 },
2908     REGINFO_SENTINEL
2909 };
2910 
2911 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2912     /* We never have a a block transfer operation in progress */
2913     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2914       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2915       .resetvalue = 0 },
2916     /* The cache ops themselves: these all NOP for QEMU */
2917     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2918       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2919     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2920       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2921     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2922       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2923     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2924       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2925     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2926       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2927     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2928       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2929     REGINFO_SENTINEL
2930 };
2931 
2932 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2933     /* The cache test-and-clean instructions always return (1 << 30)
2934      * to indicate that there are no dirty cache lines.
2935      */
2936     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2937       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2938       .resetvalue = (1 << 30) },
2939     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2940       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2941       .resetvalue = (1 << 30) },
2942     REGINFO_SENTINEL
2943 };
2944 
2945 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2946     /* Ignore ReadBuffer accesses */
2947     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2948       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2949       .access = PL1_RW, .resetvalue = 0,
2950       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2951     REGINFO_SENTINEL
2952 };
2953 
2954 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2955 {
2956     ARMCPU *cpu = arm_env_get_cpu(env);
2957     unsigned int cur_el = arm_current_el(env);
2958     bool secure = arm_is_secure(env);
2959 
2960     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2961         return env->cp15.vpidr_el2;
2962     }
2963     return raw_read(env, ri);
2964 }
2965 
2966 static uint64_t mpidr_read_val(CPUARMState *env)
2967 {
2968     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2969     uint64_t mpidr = cpu->mp_affinity;
2970 
2971     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2972         mpidr |= (1U << 31);
2973         /* Cores which are uniprocessor (non-coherent)
2974          * but still implement the MP extensions set
2975          * bit 30. (For instance, Cortex-R5).
2976          */
2977         if (cpu->mp_is_up) {
2978             mpidr |= (1u << 30);
2979         }
2980     }
2981     return mpidr;
2982 }
2983 
2984 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2985 {
2986     unsigned int cur_el = arm_current_el(env);
2987     bool secure = arm_is_secure(env);
2988 
2989     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2990         return env->cp15.vmpidr_el2;
2991     }
2992     return mpidr_read_val(env);
2993 }
2994 
2995 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2996     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2997       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2998       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2999     REGINFO_SENTINEL
3000 };
3001 
3002 static const ARMCPRegInfo lpae_cp_reginfo[] = {
3003     /* NOP AMAIR0/1 */
3004     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
3005       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
3006       .access = PL1_RW, .type = ARM_CP_CONST,
3007       .resetvalue = 0 },
3008     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3009     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
3010       .access = PL1_RW, .type = ARM_CP_CONST,
3011       .resetvalue = 0 },
3012     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
3013       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
3014       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
3015                              offsetof(CPUARMState, cp15.par_ns)} },
3016     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
3017       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3018       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
3019                              offsetof(CPUARMState, cp15.ttbr0_ns) },
3020       .writefn = vmsa_ttbr_write, },
3021     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
3022       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3023       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
3024                              offsetof(CPUARMState, cp15.ttbr1_ns) },
3025       .writefn = vmsa_ttbr_write, },
3026     REGINFO_SENTINEL
3027 };
3028 
3029 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3030 {
3031     return vfp_get_fpcr(env);
3032 }
3033 
3034 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3035                             uint64_t value)
3036 {
3037     vfp_set_fpcr(env, value);
3038 }
3039 
3040 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3041 {
3042     return vfp_get_fpsr(env);
3043 }
3044 
3045 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3046                             uint64_t value)
3047 {
3048     vfp_set_fpsr(env, value);
3049 }
3050 
3051 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
3052                                        bool isread)
3053 {
3054     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
3055         return CP_ACCESS_TRAP;
3056     }
3057     return CP_ACCESS_OK;
3058 }
3059 
3060 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
3061                             uint64_t value)
3062 {
3063     env->daif = value & PSTATE_DAIF;
3064 }
3065 
3066 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
3067                                           const ARMCPRegInfo *ri,
3068                                           bool isread)
3069 {
3070     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3071      * SCTLR_EL1.UCI is set.
3072      */
3073     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3074         return CP_ACCESS_TRAP;
3075     }
3076     return CP_ACCESS_OK;
3077 }
3078 
3079 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3080  * Page D4-1736 (DDI0487A.b)
3081  */
3082 
3083 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3084                                     uint64_t value)
3085 {
3086     CPUState *cs = ENV_GET_CPU(env);
3087 
3088     if (arm_is_secure_below_el3(env)) {
3089         tlb_flush_by_mmuidx(cs,
3090                             ARMMMUIdxBit_S1SE1 |
3091                             ARMMMUIdxBit_S1SE0);
3092     } else {
3093         tlb_flush_by_mmuidx(cs,
3094                             ARMMMUIdxBit_S12NSE1 |
3095                             ARMMMUIdxBit_S12NSE0);
3096     }
3097 }
3098 
3099 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3100                                       uint64_t value)
3101 {
3102     CPUState *cs = ENV_GET_CPU(env);
3103     bool sec = arm_is_secure_below_el3(env);
3104 
3105     if (sec) {
3106         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3107                                             ARMMMUIdxBit_S1SE1 |
3108                                             ARMMMUIdxBit_S1SE0);
3109     } else {
3110         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3111                                             ARMMMUIdxBit_S12NSE1 |
3112                                             ARMMMUIdxBit_S12NSE0);
3113     }
3114 }
3115 
3116 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117                                   uint64_t value)
3118 {
3119     /* Note that the 'ALL' scope must invalidate both stage 1 and
3120      * stage 2 translations, whereas most other scopes only invalidate
3121      * stage 1 translations.
3122      */
3123     ARMCPU *cpu = arm_env_get_cpu(env);
3124     CPUState *cs = CPU(cpu);
3125 
3126     if (arm_is_secure_below_el3(env)) {
3127         tlb_flush_by_mmuidx(cs,
3128                             ARMMMUIdxBit_S1SE1 |
3129                             ARMMMUIdxBit_S1SE0);
3130     } else {
3131         if (arm_feature(env, ARM_FEATURE_EL2)) {
3132             tlb_flush_by_mmuidx(cs,
3133                                 ARMMMUIdxBit_S12NSE1 |
3134                                 ARMMMUIdxBit_S12NSE0 |
3135                                 ARMMMUIdxBit_S2NS);
3136         } else {
3137             tlb_flush_by_mmuidx(cs,
3138                                 ARMMMUIdxBit_S12NSE1 |
3139                                 ARMMMUIdxBit_S12NSE0);
3140         }
3141     }
3142 }
3143 
3144 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                                   uint64_t value)
3146 {
3147     ARMCPU *cpu = arm_env_get_cpu(env);
3148     CPUState *cs = CPU(cpu);
3149 
3150     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3151 }
3152 
3153 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3154                                   uint64_t value)
3155 {
3156     ARMCPU *cpu = arm_env_get_cpu(env);
3157     CPUState *cs = CPU(cpu);
3158 
3159     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3160 }
3161 
3162 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3163                                     uint64_t value)
3164 {
3165     /* Note that the 'ALL' scope must invalidate both stage 1 and
3166      * stage 2 translations, whereas most other scopes only invalidate
3167      * stage 1 translations.
3168      */
3169     CPUState *cs = ENV_GET_CPU(env);
3170     bool sec = arm_is_secure_below_el3(env);
3171     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3172 
3173     if (sec) {
3174         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3175                                             ARMMMUIdxBit_S1SE1 |
3176                                             ARMMMUIdxBit_S1SE0);
3177     } else if (has_el2) {
3178         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3179                                             ARMMMUIdxBit_S12NSE1 |
3180                                             ARMMMUIdxBit_S12NSE0 |
3181                                             ARMMMUIdxBit_S2NS);
3182     } else {
3183           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3184                                               ARMMMUIdxBit_S12NSE1 |
3185                                               ARMMMUIdxBit_S12NSE0);
3186     }
3187 }
3188 
3189 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3190                                     uint64_t value)
3191 {
3192     CPUState *cs = ENV_GET_CPU(env);
3193 
3194     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3195 }
3196 
3197 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3198                                     uint64_t value)
3199 {
3200     CPUState *cs = ENV_GET_CPU(env);
3201 
3202     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3203 }
3204 
3205 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206                                  uint64_t value)
3207 {
3208     /* Invalidate by VA, EL1&0 (AArch64 version).
3209      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3210      * since we don't support flush-for-specific-ASID-only or
3211      * flush-last-level-only.
3212      */
3213     ARMCPU *cpu = arm_env_get_cpu(env);
3214     CPUState *cs = CPU(cpu);
3215     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3216 
3217     if (arm_is_secure_below_el3(env)) {
3218         tlb_flush_page_by_mmuidx(cs, pageaddr,
3219                                  ARMMMUIdxBit_S1SE1 |
3220                                  ARMMMUIdxBit_S1SE0);
3221     } else {
3222         tlb_flush_page_by_mmuidx(cs, pageaddr,
3223                                  ARMMMUIdxBit_S12NSE1 |
3224                                  ARMMMUIdxBit_S12NSE0);
3225     }
3226 }
3227 
3228 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3229                                  uint64_t value)
3230 {
3231     /* Invalidate by VA, EL2
3232      * Currently handles both VAE2 and VALE2, since we don't support
3233      * flush-last-level-only.
3234      */
3235     ARMCPU *cpu = arm_env_get_cpu(env);
3236     CPUState *cs = CPU(cpu);
3237     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3238 
3239     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3240 }
3241 
3242 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3243                                  uint64_t value)
3244 {
3245     /* Invalidate by VA, EL3
3246      * Currently handles both VAE3 and VALE3, since we don't support
3247      * flush-last-level-only.
3248      */
3249     ARMCPU *cpu = arm_env_get_cpu(env);
3250     CPUState *cs = CPU(cpu);
3251     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3252 
3253     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3254 }
3255 
3256 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3257                                    uint64_t value)
3258 {
3259     ARMCPU *cpu = arm_env_get_cpu(env);
3260     CPUState *cs = CPU(cpu);
3261     bool sec = arm_is_secure_below_el3(env);
3262     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3263 
3264     if (sec) {
3265         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3266                                                  ARMMMUIdxBit_S1SE1 |
3267                                                  ARMMMUIdxBit_S1SE0);
3268     } else {
3269         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3270                                                  ARMMMUIdxBit_S12NSE1 |
3271                                                  ARMMMUIdxBit_S12NSE0);
3272     }
3273 }
3274 
3275 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3276                                    uint64_t value)
3277 {
3278     CPUState *cs = ENV_GET_CPU(env);
3279     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3280 
3281     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3282                                              ARMMMUIdxBit_S1E2);
3283 }
3284 
3285 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3286                                    uint64_t value)
3287 {
3288     CPUState *cs = ENV_GET_CPU(env);
3289     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3290 
3291     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3292                                              ARMMMUIdxBit_S1E3);
3293 }
3294 
3295 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3296                                     uint64_t value)
3297 {
3298     /* Invalidate by IPA. This has to invalidate any structures that
3299      * contain only stage 2 translation information, but does not need
3300      * to apply to structures that contain combined stage 1 and stage 2
3301      * translation information.
3302      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3303      */
3304     ARMCPU *cpu = arm_env_get_cpu(env);
3305     CPUState *cs = CPU(cpu);
3306     uint64_t pageaddr;
3307 
3308     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3309         return;
3310     }
3311 
3312     pageaddr = sextract64(value << 12, 0, 48);
3313 
3314     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3315 }
3316 
3317 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3318                                       uint64_t value)
3319 {
3320     CPUState *cs = ENV_GET_CPU(env);
3321     uint64_t pageaddr;
3322 
3323     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3324         return;
3325     }
3326 
3327     pageaddr = sextract64(value << 12, 0, 48);
3328 
3329     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3330                                              ARMMMUIdxBit_S2NS);
3331 }
3332 
3333 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3334                                       bool isread)
3335 {
3336     /* We don't implement EL2, so the only control on DC ZVA is the
3337      * bit in the SCTLR which can prohibit access for EL0.
3338      */
3339     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3340         return CP_ACCESS_TRAP;
3341     }
3342     return CP_ACCESS_OK;
3343 }
3344 
3345 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3346 {
3347     ARMCPU *cpu = arm_env_get_cpu(env);
3348     int dzp_bit = 1 << 4;
3349 
3350     /* DZP indicates whether DC ZVA access is allowed */
3351     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3352         dzp_bit = 0;
3353     }
3354     return cpu->dcz_blocksize | dzp_bit;
3355 }
3356 
3357 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3358                                     bool isread)
3359 {
3360     if (!(env->pstate & PSTATE_SP)) {
3361         /* Access to SP_EL0 is undefined if it's being used as
3362          * the stack pointer.
3363          */
3364         return CP_ACCESS_TRAP_UNCATEGORIZED;
3365     }
3366     return CP_ACCESS_OK;
3367 }
3368 
3369 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3370 {
3371     return env->pstate & PSTATE_SP;
3372 }
3373 
3374 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3375 {
3376     update_spsel(env, val);
3377 }
3378 
3379 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3380                         uint64_t value)
3381 {
3382     ARMCPU *cpu = arm_env_get_cpu(env);
3383 
3384     if (raw_read(env, ri) == value) {
3385         /* Skip the TLB flush if nothing actually changed; Linux likes
3386          * to do a lot of pointless SCTLR writes.
3387          */
3388         return;
3389     }
3390 
3391     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3392         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3393         value &= ~SCTLR_M;
3394     }
3395 
3396     raw_write(env, ri, value);
3397     /* ??? Lots of these bits are not implemented.  */
3398     /* This may enable/disable the MMU, so do a TLB flush.  */
3399     tlb_flush(CPU(cpu));
3400 }
3401 
3402 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3403                                      bool isread)
3404 {
3405     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3406         return CP_ACCESS_TRAP_FP_EL2;
3407     }
3408     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3409         return CP_ACCESS_TRAP_FP_EL3;
3410     }
3411     return CP_ACCESS_OK;
3412 }
3413 
3414 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3415                        uint64_t value)
3416 {
3417     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3418 }
3419 
3420 static const ARMCPRegInfo v8_cp_reginfo[] = {
3421     /* Minimal set of EL0-visible registers. This will need to be expanded
3422      * significantly for system emulation of AArch64 CPUs.
3423      */
3424     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3425       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3426       .access = PL0_RW, .type = ARM_CP_NZCV },
3427     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3428       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3429       .type = ARM_CP_NO_RAW,
3430       .access = PL0_RW, .accessfn = aa64_daif_access,
3431       .fieldoffset = offsetof(CPUARMState, daif),
3432       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3433     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3434       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3435       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3436       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3437     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3438       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3439       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3440       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3441     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3442       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3443       .access = PL0_R, .type = ARM_CP_NO_RAW,
3444       .readfn = aa64_dczid_read },
3445     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3446       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3447       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3448 #ifndef CONFIG_USER_ONLY
3449       /* Avoid overhead of an access check that always passes in user-mode */
3450       .accessfn = aa64_zva_access,
3451 #endif
3452     },
3453     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3454       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3455       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3456     /* Cache ops: all NOPs since we don't emulate caches */
3457     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3458       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3459       .access = PL1_W, .type = ARM_CP_NOP },
3460     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3462       .access = PL1_W, .type = ARM_CP_NOP },
3463     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3465       .access = PL0_W, .type = ARM_CP_NOP,
3466       .accessfn = aa64_cacheop_access },
3467     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3468       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3469       .access = PL1_W, .type = ARM_CP_NOP },
3470     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3471       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3472       .access = PL1_W, .type = ARM_CP_NOP },
3473     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3474       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3475       .access = PL0_W, .type = ARM_CP_NOP,
3476       .accessfn = aa64_cacheop_access },
3477     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3478       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3479       .access = PL1_W, .type = ARM_CP_NOP },
3480     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3481       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3482       .access = PL0_W, .type = ARM_CP_NOP,
3483       .accessfn = aa64_cacheop_access },
3484     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3485       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3486       .access = PL0_W, .type = ARM_CP_NOP,
3487       .accessfn = aa64_cacheop_access },
3488     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3489       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3490       .access = PL1_W, .type = ARM_CP_NOP },
3491     /* TLBI operations */
3492     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3493       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3494       .access = PL1_W, .type = ARM_CP_NO_RAW,
3495       .writefn = tlbi_aa64_vmalle1is_write },
3496     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3497       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3498       .access = PL1_W, .type = ARM_CP_NO_RAW,
3499       .writefn = tlbi_aa64_vae1is_write },
3500     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3501       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3502       .access = PL1_W, .type = ARM_CP_NO_RAW,
3503       .writefn = tlbi_aa64_vmalle1is_write },
3504     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3505       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3506       .access = PL1_W, .type = ARM_CP_NO_RAW,
3507       .writefn = tlbi_aa64_vae1is_write },
3508     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3509       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3510       .access = PL1_W, .type = ARM_CP_NO_RAW,
3511       .writefn = tlbi_aa64_vae1is_write },
3512     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3513       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3514       .access = PL1_W, .type = ARM_CP_NO_RAW,
3515       .writefn = tlbi_aa64_vae1is_write },
3516     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3517       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3518       .access = PL1_W, .type = ARM_CP_NO_RAW,
3519       .writefn = tlbi_aa64_vmalle1_write },
3520     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3521       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3522       .access = PL1_W, .type = ARM_CP_NO_RAW,
3523       .writefn = tlbi_aa64_vae1_write },
3524     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3525       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3526       .access = PL1_W, .type = ARM_CP_NO_RAW,
3527       .writefn = tlbi_aa64_vmalle1_write },
3528     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3529       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3530       .access = PL1_W, .type = ARM_CP_NO_RAW,
3531       .writefn = tlbi_aa64_vae1_write },
3532     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3533       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3534       .access = PL1_W, .type = ARM_CP_NO_RAW,
3535       .writefn = tlbi_aa64_vae1_write },
3536     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3537       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3538       .access = PL1_W, .type = ARM_CP_NO_RAW,
3539       .writefn = tlbi_aa64_vae1_write },
3540     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3541       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3542       .access = PL2_W, .type = ARM_CP_NO_RAW,
3543       .writefn = tlbi_aa64_ipas2e1is_write },
3544     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3545       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3546       .access = PL2_W, .type = ARM_CP_NO_RAW,
3547       .writefn = tlbi_aa64_ipas2e1is_write },
3548     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3549       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3550       .access = PL2_W, .type = ARM_CP_NO_RAW,
3551       .writefn = tlbi_aa64_alle1is_write },
3552     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3553       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3554       .access = PL2_W, .type = ARM_CP_NO_RAW,
3555       .writefn = tlbi_aa64_alle1is_write },
3556     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3557       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3558       .access = PL2_W, .type = ARM_CP_NO_RAW,
3559       .writefn = tlbi_aa64_ipas2e1_write },
3560     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3561       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3562       .access = PL2_W, .type = ARM_CP_NO_RAW,
3563       .writefn = tlbi_aa64_ipas2e1_write },
3564     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3565       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3566       .access = PL2_W, .type = ARM_CP_NO_RAW,
3567       .writefn = tlbi_aa64_alle1_write },
3568     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3569       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3570       .access = PL2_W, .type = ARM_CP_NO_RAW,
3571       .writefn = tlbi_aa64_alle1is_write },
3572 #ifndef CONFIG_USER_ONLY
3573     /* 64 bit address translation operations */
3574     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3575       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3576       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3577     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3578       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3579       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3580     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3581       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3582       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3583     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3584       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3585       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3586     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3587       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3588       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3589     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3590       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3591       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3592     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3593       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3594       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3595     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3596       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3597       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3598     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3599     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3600       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3601       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3602     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3603       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3604       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3605     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3606       .type = ARM_CP_ALIAS,
3607       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3608       .access = PL1_RW, .resetvalue = 0,
3609       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3610       .writefn = par_write },
3611 #endif
3612     /* TLB invalidate last level of translation table walk */
3613     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3614       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3615     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3616       .type = ARM_CP_NO_RAW, .access = PL1_W,
3617       .writefn = tlbimvaa_is_write },
3618     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3619       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3620     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3621       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3622     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3623       .type = ARM_CP_NO_RAW, .access = PL2_W,
3624       .writefn = tlbimva_hyp_write },
3625     { .name = "TLBIMVALHIS",
3626       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3627       .type = ARM_CP_NO_RAW, .access = PL2_W,
3628       .writefn = tlbimva_hyp_is_write },
3629     { .name = "TLBIIPAS2",
3630       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3631       .type = ARM_CP_NO_RAW, .access = PL2_W,
3632       .writefn = tlbiipas2_write },
3633     { .name = "TLBIIPAS2IS",
3634       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3635       .type = ARM_CP_NO_RAW, .access = PL2_W,
3636       .writefn = tlbiipas2_is_write },
3637     { .name = "TLBIIPAS2L",
3638       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3639       .type = ARM_CP_NO_RAW, .access = PL2_W,
3640       .writefn = tlbiipas2_write },
3641     { .name = "TLBIIPAS2LIS",
3642       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3643       .type = ARM_CP_NO_RAW, .access = PL2_W,
3644       .writefn = tlbiipas2_is_write },
3645     /* 32 bit cache operations */
3646     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3647       .type = ARM_CP_NOP, .access = PL1_W },
3648     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3649       .type = ARM_CP_NOP, .access = PL1_W },
3650     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3651       .type = ARM_CP_NOP, .access = PL1_W },
3652     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3653       .type = ARM_CP_NOP, .access = PL1_W },
3654     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3655       .type = ARM_CP_NOP, .access = PL1_W },
3656     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3657       .type = ARM_CP_NOP, .access = PL1_W },
3658     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3659       .type = ARM_CP_NOP, .access = PL1_W },
3660     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3661       .type = ARM_CP_NOP, .access = PL1_W },
3662     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3663       .type = ARM_CP_NOP, .access = PL1_W },
3664     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3665       .type = ARM_CP_NOP, .access = PL1_W },
3666     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3667       .type = ARM_CP_NOP, .access = PL1_W },
3668     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3669       .type = ARM_CP_NOP, .access = PL1_W },
3670     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3671       .type = ARM_CP_NOP, .access = PL1_W },
3672     /* MMU Domain access control / MPU write buffer control */
3673     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3674       .access = PL1_RW, .resetvalue = 0,
3675       .writefn = dacr_write, .raw_writefn = raw_write,
3676       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3677                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3678     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3679       .type = ARM_CP_ALIAS,
3680       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3681       .access = PL1_RW,
3682       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3683     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3684       .type = ARM_CP_ALIAS,
3685       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3686       .access = PL1_RW,
3687       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3688     /* We rely on the access checks not allowing the guest to write to the
3689      * state field when SPSel indicates that it's being used as the stack
3690      * pointer.
3691      */
3692     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3693       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3694       .access = PL1_RW, .accessfn = sp_el0_access,
3695       .type = ARM_CP_ALIAS,
3696       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3697     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3698       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3699       .access = PL2_RW, .type = ARM_CP_ALIAS,
3700       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3701     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3702       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3703       .type = ARM_CP_NO_RAW,
3704       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3705     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3706       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3707       .type = ARM_CP_ALIAS,
3708       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3709       .access = PL2_RW, .accessfn = fpexc32_access },
3710     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3711       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3712       .access = PL2_RW, .resetvalue = 0,
3713       .writefn = dacr_write, .raw_writefn = raw_write,
3714       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3715     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3716       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3717       .access = PL2_RW, .resetvalue = 0,
3718       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3719     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3720       .type = ARM_CP_ALIAS,
3721       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3722       .access = PL2_RW,
3723       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3724     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3725       .type = ARM_CP_ALIAS,
3726       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3727       .access = PL2_RW,
3728       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3729     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3730       .type = ARM_CP_ALIAS,
3731       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3732       .access = PL2_RW,
3733       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3734     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3735       .type = ARM_CP_ALIAS,
3736       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3737       .access = PL2_RW,
3738       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3739     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3740       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3741       .resetvalue = 0,
3742       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3743     { .name = "SDCR", .type = ARM_CP_ALIAS,
3744       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3745       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3746       .writefn = sdcr_write,
3747       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3748     REGINFO_SENTINEL
3749 };
3750 
3751 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3752 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3753     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3754       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3755       .access = PL2_RW,
3756       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3757     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3758       .type = ARM_CP_NO_RAW,
3759       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3760       .access = PL2_RW,
3761       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3762     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3763       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3764       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3765     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3766       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3767       .access = PL2_RW, .type = ARM_CP_CONST,
3768       .resetvalue = 0 },
3769     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3770       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3771       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3772     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3773       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3774       .access = PL2_RW, .type = ARM_CP_CONST,
3775       .resetvalue = 0 },
3776     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3777       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3778       .access = PL2_RW, .type = ARM_CP_CONST,
3779       .resetvalue = 0 },
3780     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3781       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3782       .access = PL2_RW, .type = ARM_CP_CONST,
3783       .resetvalue = 0 },
3784     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3785       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3786       .access = PL2_RW, .type = ARM_CP_CONST,
3787       .resetvalue = 0 },
3788     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3789       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3790       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3791     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3792       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3793       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3794       .type = ARM_CP_CONST, .resetvalue = 0 },
3795     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3796       .cp = 15, .opc1 = 6, .crm = 2,
3797       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3798       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3799     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3800       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3801       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3802     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3803       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3804       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3805     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3806       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3807       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3808     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3809       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3810       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3811     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3812       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3813       .resetvalue = 0 },
3814     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3815       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3816       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3817     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3818       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3819       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3820     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3821       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3822       .resetvalue = 0 },
3823     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3824       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3825       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3826     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3827       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3828       .resetvalue = 0 },
3829     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3830       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3831       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3832     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3833       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3834       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3835     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3836       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3837       .access = PL2_RW, .accessfn = access_tda,
3838       .type = ARM_CP_CONST, .resetvalue = 0 },
3839     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3840       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3841       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3842       .type = ARM_CP_CONST, .resetvalue = 0 },
3843     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3844       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3845       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3846     REGINFO_SENTINEL
3847 };
3848 
3849 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3850 {
3851     ARMCPU *cpu = arm_env_get_cpu(env);
3852     uint64_t valid_mask = HCR_MASK;
3853 
3854     if (arm_feature(env, ARM_FEATURE_EL3)) {
3855         valid_mask &= ~HCR_HCD;
3856     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3857         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3858          * However, if we're using the SMC PSCI conduit then QEMU is
3859          * effectively acting like EL3 firmware and so the guest at
3860          * EL2 should retain the ability to prevent EL1 from being
3861          * able to make SMC calls into the ersatz firmware, so in
3862          * that case HCR.TSC should be read/write.
3863          */
3864         valid_mask &= ~HCR_TSC;
3865     }
3866 
3867     /* Clear RES0 bits.  */
3868     value &= valid_mask;
3869 
3870     /* These bits change the MMU setup:
3871      * HCR_VM enables stage 2 translation
3872      * HCR_PTW forbids certain page-table setups
3873      * HCR_DC Disables stage1 and enables stage2 translation
3874      */
3875     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3876         tlb_flush(CPU(cpu));
3877     }
3878     raw_write(env, ri, value);
3879 }
3880 
3881 static const ARMCPRegInfo el2_cp_reginfo[] = {
3882     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3883       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3884       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3885       .writefn = hcr_write },
3886     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3887       .type = ARM_CP_ALIAS,
3888       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3889       .access = PL2_RW,
3890       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3891     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3892       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3893       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3894     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3895       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3896       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3897     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3898       .type = ARM_CP_ALIAS,
3899       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3900       .access = PL2_RW,
3901       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3902     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3903       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3904       .access = PL2_RW, .writefn = vbar_write,
3905       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3906       .resetvalue = 0 },
3907     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3908       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3909       .access = PL3_RW, .type = ARM_CP_ALIAS,
3910       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3911     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3912       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3913       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3914       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3915     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3916       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3917       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3918       .resetvalue = 0 },
3919     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3920       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3921       .access = PL2_RW, .type = ARM_CP_ALIAS,
3922       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3923     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3924       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3925       .access = PL2_RW, .type = ARM_CP_CONST,
3926       .resetvalue = 0 },
3927     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3928     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3929       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3930       .access = PL2_RW, .type = ARM_CP_CONST,
3931       .resetvalue = 0 },
3932     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3933       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3934       .access = PL2_RW, .type = ARM_CP_CONST,
3935       .resetvalue = 0 },
3936     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3937       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3938       .access = PL2_RW, .type = ARM_CP_CONST,
3939       .resetvalue = 0 },
3940     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3941       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3942       .access = PL2_RW,
3943       /* no .writefn needed as this can't cause an ASID change;
3944        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3945        */
3946       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3947     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3948       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3949       .type = ARM_CP_ALIAS,
3950       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3951       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3952     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3953       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3954       .access = PL2_RW,
3955       /* no .writefn needed as this can't cause an ASID change;
3956        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3957        */
3958       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3959     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3960       .cp = 15, .opc1 = 6, .crm = 2,
3961       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3962       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3963       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3964       .writefn = vttbr_write },
3965     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3966       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3967       .access = PL2_RW, .writefn = vttbr_write,
3968       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3969     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3970       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3971       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3972       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3973     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3974       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3975       .access = PL2_RW, .resetvalue = 0,
3976       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3977     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3978       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3979       .access = PL2_RW, .resetvalue = 0,
3980       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3981     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3982       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3983       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3984     { .name = "TLBIALLNSNH",
3985       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3986       .type = ARM_CP_NO_RAW, .access = PL2_W,
3987       .writefn = tlbiall_nsnh_write },
3988     { .name = "TLBIALLNSNHIS",
3989       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3990       .type = ARM_CP_NO_RAW, .access = PL2_W,
3991       .writefn = tlbiall_nsnh_is_write },
3992     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3993       .type = ARM_CP_NO_RAW, .access = PL2_W,
3994       .writefn = tlbiall_hyp_write },
3995     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3996       .type = ARM_CP_NO_RAW, .access = PL2_W,
3997       .writefn = tlbiall_hyp_is_write },
3998     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3999       .type = ARM_CP_NO_RAW, .access = PL2_W,
4000       .writefn = tlbimva_hyp_write },
4001     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4002       .type = ARM_CP_NO_RAW, .access = PL2_W,
4003       .writefn = tlbimva_hyp_is_write },
4004     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
4005       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
4006       .type = ARM_CP_NO_RAW, .access = PL2_W,
4007       .writefn = tlbi_aa64_alle2_write },
4008     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
4009       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
4010       .type = ARM_CP_NO_RAW, .access = PL2_W,
4011       .writefn = tlbi_aa64_vae2_write },
4012     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
4013       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
4014       .access = PL2_W, .type = ARM_CP_NO_RAW,
4015       .writefn = tlbi_aa64_vae2_write },
4016     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
4017       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
4018       .access = PL2_W, .type = ARM_CP_NO_RAW,
4019       .writefn = tlbi_aa64_alle2is_write },
4020     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
4021       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
4022       .type = ARM_CP_NO_RAW, .access = PL2_W,
4023       .writefn = tlbi_aa64_vae2is_write },
4024     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
4025       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
4026       .access = PL2_W, .type = ARM_CP_NO_RAW,
4027       .writefn = tlbi_aa64_vae2is_write },
4028 #ifndef CONFIG_USER_ONLY
4029     /* Unlike the other EL2-related AT operations, these must
4030      * UNDEF from EL3 if EL2 is not implemented, which is why we
4031      * define them here rather than with the rest of the AT ops.
4032      */
4033     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
4034       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4035       .access = PL2_W, .accessfn = at_s1e2_access,
4036       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4037     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
4038       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4039       .access = PL2_W, .accessfn = at_s1e2_access,
4040       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
4041     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4042      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4043      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4044      * to behave as if SCR.NS was 1.
4045      */
4046     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
4047       .access = PL2_W,
4048       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4049     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
4050       .access = PL2_W,
4051       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
4052     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
4053       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
4054       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4055        * reset values as IMPDEF. We choose to reset to 3 to comply with
4056        * both ARMv7 and ARMv8.
4057        */
4058       .access = PL2_RW, .resetvalue = 3,
4059       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
4060     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
4061       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
4062       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
4063       .writefn = gt_cntvoff_write,
4064       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4065     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
4066       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
4067       .writefn = gt_cntvoff_write,
4068       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
4069     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
4070       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
4071       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4072       .type = ARM_CP_IO, .access = PL2_RW,
4073       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4074     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
4075       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
4076       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
4077       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
4078     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
4079       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4080       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4081       .resetfn = gt_hyp_timer_reset,
4082       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
4083     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
4084       .type = ARM_CP_IO,
4085       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
4086       .access = PL2_RW,
4087       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
4088       .resetvalue = 0,
4089       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
4090 #endif
4091     /* The only field of MDCR_EL2 that has a defined architectural reset value
4092      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4093      * don't impelment any PMU event counters, so using zero as a reset
4094      * value for MDCR_EL2 is okay
4095      */
4096     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
4097       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
4098       .access = PL2_RW, .resetvalue = 0,
4099       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
4100     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
4101       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4102       .access = PL2_RW, .accessfn = access_el3_aa32ns,
4103       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4104     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
4105       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
4106       .access = PL2_RW,
4107       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4108     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
4109       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
4110       .access = PL2_RW,
4111       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4112     REGINFO_SENTINEL
4113 };
4114 
4115 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4116                                    bool isread)
4117 {
4118     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4119      * At Secure EL1 it traps to EL3.
4120      */
4121     if (arm_current_el(env) == 3) {
4122         return CP_ACCESS_OK;
4123     }
4124     if (arm_is_secure_below_el3(env)) {
4125         return CP_ACCESS_TRAP_EL3;
4126     }
4127     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4128     if (isread) {
4129         return CP_ACCESS_OK;
4130     }
4131     return CP_ACCESS_TRAP_UNCATEGORIZED;
4132 }
4133 
4134 static const ARMCPRegInfo el3_cp_reginfo[] = {
4135     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4136       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4137       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4138       .resetvalue = 0, .writefn = scr_write },
4139     { .name = "SCR",  .type = ARM_CP_ALIAS,
4140       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4141       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4142       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4143       .writefn = scr_write },
4144     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4145       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4146       .access = PL3_RW, .resetvalue = 0,
4147       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4148     { .name = "SDER",
4149       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4150       .access = PL3_RW, .resetvalue = 0,
4151       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4152     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4153       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4154       .writefn = vbar_write, .resetvalue = 0,
4155       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4156     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4157       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4158       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4159       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4160     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4161       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4162       .access = PL3_RW,
4163       /* no .writefn needed as this can't cause an ASID change;
4164        * we must provide a .raw_writefn and .resetfn because we handle
4165        * reset and migration for the AArch32 TTBCR(S), which might be
4166        * using mask and base_mask.
4167        */
4168       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4169       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4170     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4171       .type = ARM_CP_ALIAS,
4172       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4173       .access = PL3_RW,
4174       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4175     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4176       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4177       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4178     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4179       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4180       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4181     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4182       .type = ARM_CP_ALIAS,
4183       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4184       .access = PL3_RW,
4185       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4186     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4187       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4188       .access = PL3_RW, .writefn = vbar_write,
4189       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4190       .resetvalue = 0 },
4191     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4192       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4193       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4194       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4195     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4196       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4197       .access = PL3_RW, .resetvalue = 0,
4198       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4199     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4200       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4201       .access = PL3_RW, .type = ARM_CP_CONST,
4202       .resetvalue = 0 },
4203     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4204       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4205       .access = PL3_RW, .type = ARM_CP_CONST,
4206       .resetvalue = 0 },
4207     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4208       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4209       .access = PL3_RW, .type = ARM_CP_CONST,
4210       .resetvalue = 0 },
4211     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4212       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4213       .access = PL3_W, .type = ARM_CP_NO_RAW,
4214       .writefn = tlbi_aa64_alle3is_write },
4215     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4216       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4217       .access = PL3_W, .type = ARM_CP_NO_RAW,
4218       .writefn = tlbi_aa64_vae3is_write },
4219     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4220       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4221       .access = PL3_W, .type = ARM_CP_NO_RAW,
4222       .writefn = tlbi_aa64_vae3is_write },
4223     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4224       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4225       .access = PL3_W, .type = ARM_CP_NO_RAW,
4226       .writefn = tlbi_aa64_alle3_write },
4227     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4228       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4229       .access = PL3_W, .type = ARM_CP_NO_RAW,
4230       .writefn = tlbi_aa64_vae3_write },
4231     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4232       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4233       .access = PL3_W, .type = ARM_CP_NO_RAW,
4234       .writefn = tlbi_aa64_vae3_write },
4235     REGINFO_SENTINEL
4236 };
4237 
4238 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4239                                      bool isread)
4240 {
4241     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4242      * but the AArch32 CTR has its own reginfo struct)
4243      */
4244     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4245         return CP_ACCESS_TRAP;
4246     }
4247     return CP_ACCESS_OK;
4248 }
4249 
4250 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4251                         uint64_t value)
4252 {
4253     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4254      * read via a bit in OSLSR_EL1.
4255      */
4256     int oslock;
4257 
4258     if (ri->state == ARM_CP_STATE_AA32) {
4259         oslock = (value == 0xC5ACCE55);
4260     } else {
4261         oslock = value & 1;
4262     }
4263 
4264     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4265 }
4266 
4267 static const ARMCPRegInfo debug_cp_reginfo[] = {
4268     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4269      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4270      * unlike DBGDRAR it is never accessible from EL0.
4271      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4272      * accessor.
4273      */
4274     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4275       .access = PL0_R, .accessfn = access_tdra,
4276       .type = ARM_CP_CONST, .resetvalue = 0 },
4277     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4278       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4279       .access = PL1_R, .accessfn = access_tdra,
4280       .type = ARM_CP_CONST, .resetvalue = 0 },
4281     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4282       .access = PL0_R, .accessfn = access_tdra,
4283       .type = ARM_CP_CONST, .resetvalue = 0 },
4284     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4285     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4286       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4287       .access = PL1_RW, .accessfn = access_tda,
4288       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4289       .resetvalue = 0 },
4290     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4291      * We don't implement the configurable EL0 access.
4292      */
4293     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4294       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4295       .type = ARM_CP_ALIAS,
4296       .access = PL1_R, .accessfn = access_tda,
4297       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4298     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4299       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4300       .access = PL1_W, .type = ARM_CP_NO_RAW,
4301       .accessfn = access_tdosa,
4302       .writefn = oslar_write },
4303     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4304       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4305       .access = PL1_R, .resetvalue = 10,
4306       .accessfn = access_tdosa,
4307       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4308     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4309     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4310       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4311       .access = PL1_RW, .accessfn = access_tdosa,
4312       .type = ARM_CP_NOP },
4313     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4314      * implement vector catch debug events yet.
4315      */
4316     { .name = "DBGVCR",
4317       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4318       .access = PL1_RW, .accessfn = access_tda,
4319       .type = ARM_CP_NOP },
4320     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4321      * to save and restore a 32-bit guest's DBGVCR)
4322      */
4323     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4324       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4325       .access = PL2_RW, .accessfn = access_tda,
4326       .type = ARM_CP_NOP },
4327     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4328      * Channel but Linux may try to access this register. The 32-bit
4329      * alias is DBGDCCINT.
4330      */
4331     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4332       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4333       .access = PL1_RW, .accessfn = access_tda,
4334       .type = ARM_CP_NOP },
4335     REGINFO_SENTINEL
4336 };
4337 
4338 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4339     /* 64 bit access versions of the (dummy) debug registers */
4340     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4341       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4342     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4343       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4344     REGINFO_SENTINEL
4345 };
4346 
4347 /* Return the exception level to which SVE-disabled exceptions should
4348  * be taken, or 0 if SVE is enabled.
4349  */
4350 static int sve_exception_el(CPUARMState *env)
4351 {
4352 #ifndef CONFIG_USER_ONLY
4353     unsigned current_el = arm_current_el(env);
4354 
4355     /* The CPACR.ZEN controls traps to EL1:
4356      * 0, 2 : trap EL0 and EL1 accesses
4357      * 1    : trap only EL0 accesses
4358      * 3    : trap no accesses
4359      */
4360     switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
4361     default:
4362         if (current_el <= 1) {
4363             /* Trap to PL1, which might be EL1 or EL3 */
4364             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4365                 return 3;
4366             }
4367             return 1;
4368         }
4369         break;
4370     case 1:
4371         if (current_el == 0) {
4372             return 1;
4373         }
4374         break;
4375     case 3:
4376         break;
4377     }
4378 
4379     /* Similarly for CPACR.FPEN, after having checked ZEN.  */
4380     switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
4381     default:
4382         if (current_el <= 1) {
4383             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
4384                 return 3;
4385             }
4386             return 1;
4387         }
4388         break;
4389     case 1:
4390         if (current_el == 0) {
4391             return 1;
4392         }
4393         break;
4394     case 3:
4395         break;
4396     }
4397 
4398     /* CPTR_EL2.  Check both TZ and TFP.  */
4399     if (current_el <= 2
4400         && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
4401         && !arm_is_secure_below_el3(env)) {
4402         return 2;
4403     }
4404 
4405     /* CPTR_EL3.  Check both EZ and TFP.  */
4406     if (!(env->cp15.cptr_el[3] & CPTR_EZ)
4407         || (env->cp15.cptr_el[3] & CPTR_TFP)) {
4408         return 3;
4409     }
4410 #endif
4411     return 0;
4412 }
4413 
4414 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4415                       uint64_t value)
4416 {
4417     /* Bits other than [3:0] are RAZ/WI.  */
4418     raw_write(env, ri, value & 0xf);
4419 }
4420 
4421 static const ARMCPRegInfo zcr_el1_reginfo = {
4422     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
4423     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4424     .access = PL1_RW, .type = ARM_CP_SVE,
4425     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
4426     .writefn = zcr_write, .raw_writefn = raw_write
4427 };
4428 
4429 static const ARMCPRegInfo zcr_el2_reginfo = {
4430     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4431     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4432     .access = PL2_RW, .type = ARM_CP_SVE,
4433     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
4434     .writefn = zcr_write, .raw_writefn = raw_write
4435 };
4436 
4437 static const ARMCPRegInfo zcr_no_el2_reginfo = {
4438     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
4439     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4440     .access = PL2_RW, .type = ARM_CP_SVE,
4441     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
4442 };
4443 
4444 static const ARMCPRegInfo zcr_el3_reginfo = {
4445     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
4446     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4447     .access = PL3_RW, .type = ARM_CP_SVE,
4448     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
4449     .writefn = zcr_write, .raw_writefn = raw_write
4450 };
4451 
4452 void hw_watchpoint_update(ARMCPU *cpu, int n)
4453 {
4454     CPUARMState *env = &cpu->env;
4455     vaddr len = 0;
4456     vaddr wvr = env->cp15.dbgwvr[n];
4457     uint64_t wcr = env->cp15.dbgwcr[n];
4458     int mask;
4459     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4460 
4461     if (env->cpu_watchpoint[n]) {
4462         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4463         env->cpu_watchpoint[n] = NULL;
4464     }
4465 
4466     if (!extract64(wcr, 0, 1)) {
4467         /* E bit clear : watchpoint disabled */
4468         return;
4469     }
4470 
4471     switch (extract64(wcr, 3, 2)) {
4472     case 0:
4473         /* LSC 00 is reserved and must behave as if the wp is disabled */
4474         return;
4475     case 1:
4476         flags |= BP_MEM_READ;
4477         break;
4478     case 2:
4479         flags |= BP_MEM_WRITE;
4480         break;
4481     case 3:
4482         flags |= BP_MEM_ACCESS;
4483         break;
4484     }
4485 
4486     /* Attempts to use both MASK and BAS fields simultaneously are
4487      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4488      * thus generating a watchpoint for every byte in the masked region.
4489      */
4490     mask = extract64(wcr, 24, 4);
4491     if (mask == 1 || mask == 2) {
4492         /* Reserved values of MASK; we must act as if the mask value was
4493          * some non-reserved value, or as if the watchpoint were disabled.
4494          * We choose the latter.
4495          */
4496         return;
4497     } else if (mask) {
4498         /* Watchpoint covers an aligned area up to 2GB in size */
4499         len = 1ULL << mask;
4500         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4501          * whether the watchpoint fires when the unmasked bits match; we opt
4502          * to generate the exceptions.
4503          */
4504         wvr &= ~(len - 1);
4505     } else {
4506         /* Watchpoint covers bytes defined by the byte address select bits */
4507         int bas = extract64(wcr, 5, 8);
4508         int basstart;
4509 
4510         if (bas == 0) {
4511             /* This must act as if the watchpoint is disabled */
4512             return;
4513         }
4514 
4515         if (extract64(wvr, 2, 1)) {
4516             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4517              * ignored, and BAS[3:0] define which bytes to watch.
4518              */
4519             bas &= 0xf;
4520         }
4521         /* The BAS bits are supposed to be programmed to indicate a contiguous
4522          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4523          * we fire for each byte in the word/doubleword addressed by the WVR.
4524          * We choose to ignore any non-zero bits after the first range of 1s.
4525          */
4526         basstart = ctz32(bas);
4527         len = cto32(bas >> basstart);
4528         wvr += basstart;
4529     }
4530 
4531     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4532                           &env->cpu_watchpoint[n]);
4533 }
4534 
4535 void hw_watchpoint_update_all(ARMCPU *cpu)
4536 {
4537     int i;
4538     CPUARMState *env = &cpu->env;
4539 
4540     /* Completely clear out existing QEMU watchpoints and our array, to
4541      * avoid possible stale entries following migration load.
4542      */
4543     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4544     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4545 
4546     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4547         hw_watchpoint_update(cpu, i);
4548     }
4549 }
4550 
4551 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4552                          uint64_t value)
4553 {
4554     ARMCPU *cpu = arm_env_get_cpu(env);
4555     int i = ri->crm;
4556 
4557     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4558      * register reads and behaves as if values written are sign extended.
4559      * Bits [1:0] are RES0.
4560      */
4561     value = sextract64(value, 0, 49) & ~3ULL;
4562 
4563     raw_write(env, ri, value);
4564     hw_watchpoint_update(cpu, i);
4565 }
4566 
4567 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4568                          uint64_t value)
4569 {
4570     ARMCPU *cpu = arm_env_get_cpu(env);
4571     int i = ri->crm;
4572 
4573     raw_write(env, ri, value);
4574     hw_watchpoint_update(cpu, i);
4575 }
4576 
4577 void hw_breakpoint_update(ARMCPU *cpu, int n)
4578 {
4579     CPUARMState *env = &cpu->env;
4580     uint64_t bvr = env->cp15.dbgbvr[n];
4581     uint64_t bcr = env->cp15.dbgbcr[n];
4582     vaddr addr;
4583     int bt;
4584     int flags = BP_CPU;
4585 
4586     if (env->cpu_breakpoint[n]) {
4587         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4588         env->cpu_breakpoint[n] = NULL;
4589     }
4590 
4591     if (!extract64(bcr, 0, 1)) {
4592         /* E bit clear : watchpoint disabled */
4593         return;
4594     }
4595 
4596     bt = extract64(bcr, 20, 4);
4597 
4598     switch (bt) {
4599     case 4: /* unlinked address mismatch (reserved if AArch64) */
4600     case 5: /* linked address mismatch (reserved if AArch64) */
4601         qemu_log_mask(LOG_UNIMP,
4602                       "arm: address mismatch breakpoint types not implemented\n");
4603         return;
4604     case 0: /* unlinked address match */
4605     case 1: /* linked address match */
4606     {
4607         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4608          * we behave as if the register was sign extended. Bits [1:0] are
4609          * RES0. The BAS field is used to allow setting breakpoints on 16
4610          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4611          * a bp will fire if the addresses covered by the bp and the addresses
4612          * covered by the insn overlap but the insn doesn't start at the
4613          * start of the bp address range. We choose to require the insn and
4614          * the bp to have the same address. The constraints on writing to
4615          * BAS enforced in dbgbcr_write mean we have only four cases:
4616          *  0b0000  => no breakpoint
4617          *  0b0011  => breakpoint on addr
4618          *  0b1100  => breakpoint on addr + 2
4619          *  0b1111  => breakpoint on addr
4620          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4621          */
4622         int bas = extract64(bcr, 5, 4);
4623         addr = sextract64(bvr, 0, 49) & ~3ULL;
4624         if (bas == 0) {
4625             return;
4626         }
4627         if (bas == 0xc) {
4628             addr += 2;
4629         }
4630         break;
4631     }
4632     case 2: /* unlinked context ID match */
4633     case 8: /* unlinked VMID match (reserved if no EL2) */
4634     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4635         qemu_log_mask(LOG_UNIMP,
4636                       "arm: unlinked context breakpoint types not implemented\n");
4637         return;
4638     case 9: /* linked VMID match (reserved if no EL2) */
4639     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4640     case 3: /* linked context ID match */
4641     default:
4642         /* We must generate no events for Linked context matches (unless
4643          * they are linked to by some other bp/wp, which is handled in
4644          * updates for the linking bp/wp). We choose to also generate no events
4645          * for reserved values.
4646          */
4647         return;
4648     }
4649 
4650     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4651 }
4652 
4653 void hw_breakpoint_update_all(ARMCPU *cpu)
4654 {
4655     int i;
4656     CPUARMState *env = &cpu->env;
4657 
4658     /* Completely clear out existing QEMU breakpoints and our array, to
4659      * avoid possible stale entries following migration load.
4660      */
4661     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4662     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4663 
4664     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4665         hw_breakpoint_update(cpu, i);
4666     }
4667 }
4668 
4669 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4670                          uint64_t value)
4671 {
4672     ARMCPU *cpu = arm_env_get_cpu(env);
4673     int i = ri->crm;
4674 
4675     raw_write(env, ri, value);
4676     hw_breakpoint_update(cpu, i);
4677 }
4678 
4679 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4680                          uint64_t value)
4681 {
4682     ARMCPU *cpu = arm_env_get_cpu(env);
4683     int i = ri->crm;
4684 
4685     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4686      * copy of BAS[0].
4687      */
4688     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4689     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4690 
4691     raw_write(env, ri, value);
4692     hw_breakpoint_update(cpu, i);
4693 }
4694 
4695 static void define_debug_regs(ARMCPU *cpu)
4696 {
4697     /* Define v7 and v8 architectural debug registers.
4698      * These are just dummy implementations for now.
4699      */
4700     int i;
4701     int wrps, brps, ctx_cmps;
4702     ARMCPRegInfo dbgdidr = {
4703         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4704         .access = PL0_R, .accessfn = access_tda,
4705         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4706     };
4707 
4708     /* Note that all these register fields hold "number of Xs minus 1". */
4709     brps = extract32(cpu->dbgdidr, 24, 4);
4710     wrps = extract32(cpu->dbgdidr, 28, 4);
4711     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4712 
4713     assert(ctx_cmps <= brps);
4714 
4715     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4716      * of the debug registers such as number of breakpoints;
4717      * check that if they both exist then they agree.
4718      */
4719     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4720         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4721         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4722         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4723     }
4724 
4725     define_one_arm_cp_reg(cpu, &dbgdidr);
4726     define_arm_cp_regs(cpu, debug_cp_reginfo);
4727 
4728     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4729         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4730     }
4731 
4732     for (i = 0; i < brps + 1; i++) {
4733         ARMCPRegInfo dbgregs[] = {
4734             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4735               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4736               .access = PL1_RW, .accessfn = access_tda,
4737               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4738               .writefn = dbgbvr_write, .raw_writefn = raw_write
4739             },
4740             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4741               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4742               .access = PL1_RW, .accessfn = access_tda,
4743               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4744               .writefn = dbgbcr_write, .raw_writefn = raw_write
4745             },
4746             REGINFO_SENTINEL
4747         };
4748         define_arm_cp_regs(cpu, dbgregs);
4749     }
4750 
4751     for (i = 0; i < wrps + 1; i++) {
4752         ARMCPRegInfo dbgregs[] = {
4753             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4754               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4755               .access = PL1_RW, .accessfn = access_tda,
4756               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4757               .writefn = dbgwvr_write, .raw_writefn = raw_write
4758             },
4759             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4760               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4761               .access = PL1_RW, .accessfn = access_tda,
4762               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4763               .writefn = dbgwcr_write, .raw_writefn = raw_write
4764             },
4765             REGINFO_SENTINEL
4766         };
4767         define_arm_cp_regs(cpu, dbgregs);
4768     }
4769 }
4770 
4771 /* We don't know until after realize whether there's a GICv3
4772  * attached, and that is what registers the gicv3 sysregs.
4773  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4774  * at runtime.
4775  */
4776 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4777 {
4778     ARMCPU *cpu = arm_env_get_cpu(env);
4779     uint64_t pfr1 = cpu->id_pfr1;
4780 
4781     if (env->gicv3state) {
4782         pfr1 |= 1 << 28;
4783     }
4784     return pfr1;
4785 }
4786 
4787 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4788 {
4789     ARMCPU *cpu = arm_env_get_cpu(env);
4790     uint64_t pfr0 = cpu->id_aa64pfr0;
4791 
4792     if (env->gicv3state) {
4793         pfr0 |= 1 << 24;
4794     }
4795     return pfr0;
4796 }
4797 
4798 void register_cp_regs_for_features(ARMCPU *cpu)
4799 {
4800     /* Register all the coprocessor registers based on feature bits */
4801     CPUARMState *env = &cpu->env;
4802     if (arm_feature(env, ARM_FEATURE_M)) {
4803         /* M profile has no coprocessor registers */
4804         return;
4805     }
4806 
4807     define_arm_cp_regs(cpu, cp_reginfo);
4808     if (!arm_feature(env, ARM_FEATURE_V8)) {
4809         /* Must go early as it is full of wildcards that may be
4810          * overridden by later definitions.
4811          */
4812         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4813     }
4814 
4815     if (arm_feature(env, ARM_FEATURE_V6)) {
4816         /* The ID registers all have impdef reset values */
4817         ARMCPRegInfo v6_idregs[] = {
4818             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4819               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4820               .access = PL1_R, .type = ARM_CP_CONST,
4821               .resetvalue = cpu->id_pfr0 },
4822             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4823              * the value of the GIC field until after we define these regs.
4824              */
4825             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4826               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4827               .access = PL1_R, .type = ARM_CP_NO_RAW,
4828               .readfn = id_pfr1_read,
4829               .writefn = arm_cp_write_ignore },
4830             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4831               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4832               .access = PL1_R, .type = ARM_CP_CONST,
4833               .resetvalue = cpu->id_dfr0 },
4834             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4835               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4836               .access = PL1_R, .type = ARM_CP_CONST,
4837               .resetvalue = cpu->id_afr0 },
4838             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4839               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4840               .access = PL1_R, .type = ARM_CP_CONST,
4841               .resetvalue = cpu->id_mmfr0 },
4842             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4843               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4844               .access = PL1_R, .type = ARM_CP_CONST,
4845               .resetvalue = cpu->id_mmfr1 },
4846             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4847               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4848               .access = PL1_R, .type = ARM_CP_CONST,
4849               .resetvalue = cpu->id_mmfr2 },
4850             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4851               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4852               .access = PL1_R, .type = ARM_CP_CONST,
4853               .resetvalue = cpu->id_mmfr3 },
4854             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4855               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4856               .access = PL1_R, .type = ARM_CP_CONST,
4857               .resetvalue = cpu->id_isar0 },
4858             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4859               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4860               .access = PL1_R, .type = ARM_CP_CONST,
4861               .resetvalue = cpu->id_isar1 },
4862             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4863               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4864               .access = PL1_R, .type = ARM_CP_CONST,
4865               .resetvalue = cpu->id_isar2 },
4866             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4867               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4868               .access = PL1_R, .type = ARM_CP_CONST,
4869               .resetvalue = cpu->id_isar3 },
4870             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4871               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4872               .access = PL1_R, .type = ARM_CP_CONST,
4873               .resetvalue = cpu->id_isar4 },
4874             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4875               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4876               .access = PL1_R, .type = ARM_CP_CONST,
4877               .resetvalue = cpu->id_isar5 },
4878             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4879               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4880               .access = PL1_R, .type = ARM_CP_CONST,
4881               .resetvalue = cpu->id_mmfr4 },
4882             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
4883               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4884               .access = PL1_R, .type = ARM_CP_CONST,
4885               .resetvalue = cpu->id_isar6 },
4886             REGINFO_SENTINEL
4887         };
4888         define_arm_cp_regs(cpu, v6_idregs);
4889         define_arm_cp_regs(cpu, v6_cp_reginfo);
4890     } else {
4891         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4892     }
4893     if (arm_feature(env, ARM_FEATURE_V6K)) {
4894         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4895     }
4896     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4897         !arm_feature(env, ARM_FEATURE_PMSA)) {
4898         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4899     }
4900     if (arm_feature(env, ARM_FEATURE_V7)) {
4901         /* v7 performance monitor control register: same implementor
4902          * field as main ID register, and we implement only the cycle
4903          * count register.
4904          */
4905 #ifndef CONFIG_USER_ONLY
4906         ARMCPRegInfo pmcr = {
4907             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4908             .access = PL0_RW,
4909             .type = ARM_CP_IO | ARM_CP_ALIAS,
4910             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4911             .accessfn = pmreg_access, .writefn = pmcr_write,
4912             .raw_writefn = raw_write,
4913         };
4914         ARMCPRegInfo pmcr64 = {
4915             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4916             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4917             .access = PL0_RW, .accessfn = pmreg_access,
4918             .type = ARM_CP_IO,
4919             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4920             .resetvalue = cpu->midr & 0xff000000,
4921             .writefn = pmcr_write, .raw_writefn = raw_write,
4922         };
4923         define_one_arm_cp_reg(cpu, &pmcr);
4924         define_one_arm_cp_reg(cpu, &pmcr64);
4925 #endif
4926         ARMCPRegInfo clidr = {
4927             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4928             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4929             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4930         };
4931         define_one_arm_cp_reg(cpu, &clidr);
4932         define_arm_cp_regs(cpu, v7_cp_reginfo);
4933         define_debug_regs(cpu);
4934     } else {
4935         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4936     }
4937     if (arm_feature(env, ARM_FEATURE_V8)) {
4938         /* AArch64 ID registers, which all have impdef reset values.
4939          * Note that within the ID register ranges the unused slots
4940          * must all RAZ, not UNDEF; future architecture versions may
4941          * define new registers here.
4942          */
4943         ARMCPRegInfo v8_idregs[] = {
4944             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4945              * know the right value for the GIC field until after we
4946              * define these regs.
4947              */
4948             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4949               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4950               .access = PL1_R, .type = ARM_CP_NO_RAW,
4951               .readfn = id_aa64pfr0_read,
4952               .writefn = arm_cp_write_ignore },
4953             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4954               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4955               .access = PL1_R, .type = ARM_CP_CONST,
4956               .resetvalue = cpu->id_aa64pfr1},
4957             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4958               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4959               .access = PL1_R, .type = ARM_CP_CONST,
4960               .resetvalue = 0 },
4961             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4962               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4963               .access = PL1_R, .type = ARM_CP_CONST,
4964               .resetvalue = 0 },
4965             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4966               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4967               .access = PL1_R, .type = ARM_CP_CONST,
4968               .resetvalue = 0 },
4969             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4970               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4971               .access = PL1_R, .type = ARM_CP_CONST,
4972               .resetvalue = 0 },
4973             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4974               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4975               .access = PL1_R, .type = ARM_CP_CONST,
4976               .resetvalue = 0 },
4977             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4978               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4979               .access = PL1_R, .type = ARM_CP_CONST,
4980               .resetvalue = 0 },
4981             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4982               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4983               .access = PL1_R, .type = ARM_CP_CONST,
4984               .resetvalue = cpu->id_aa64dfr0 },
4985             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4986               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4987               .access = PL1_R, .type = ARM_CP_CONST,
4988               .resetvalue = cpu->id_aa64dfr1 },
4989             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4990               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4991               .access = PL1_R, .type = ARM_CP_CONST,
4992               .resetvalue = 0 },
4993             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4994               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4995               .access = PL1_R, .type = ARM_CP_CONST,
4996               .resetvalue = 0 },
4997             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4998               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4999               .access = PL1_R, .type = ARM_CP_CONST,
5000               .resetvalue = cpu->id_aa64afr0 },
5001             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
5002               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
5003               .access = PL1_R, .type = ARM_CP_CONST,
5004               .resetvalue = cpu->id_aa64afr1 },
5005             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5006               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
5007               .access = PL1_R, .type = ARM_CP_CONST,
5008               .resetvalue = 0 },
5009             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5010               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
5011               .access = PL1_R, .type = ARM_CP_CONST,
5012               .resetvalue = 0 },
5013             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
5014               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
5015               .access = PL1_R, .type = ARM_CP_CONST,
5016               .resetvalue = cpu->id_aa64isar0 },
5017             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
5018               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
5019               .access = PL1_R, .type = ARM_CP_CONST,
5020               .resetvalue = cpu->id_aa64isar1 },
5021             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5022               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
5023               .access = PL1_R, .type = ARM_CP_CONST,
5024               .resetvalue = 0 },
5025             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5026               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
5027               .access = PL1_R, .type = ARM_CP_CONST,
5028               .resetvalue = 0 },
5029             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5030               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
5031               .access = PL1_R, .type = ARM_CP_CONST,
5032               .resetvalue = 0 },
5033             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5034               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
5035               .access = PL1_R, .type = ARM_CP_CONST,
5036               .resetvalue = 0 },
5037             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5038               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
5039               .access = PL1_R, .type = ARM_CP_CONST,
5040               .resetvalue = 0 },
5041             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5042               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
5043               .access = PL1_R, .type = ARM_CP_CONST,
5044               .resetvalue = 0 },
5045             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
5046               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
5047               .access = PL1_R, .type = ARM_CP_CONST,
5048               .resetvalue = cpu->id_aa64mmfr0 },
5049             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
5050               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
5051               .access = PL1_R, .type = ARM_CP_CONST,
5052               .resetvalue = cpu->id_aa64mmfr1 },
5053             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5054               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
5055               .access = PL1_R, .type = ARM_CP_CONST,
5056               .resetvalue = 0 },
5057             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5058               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
5059               .access = PL1_R, .type = ARM_CP_CONST,
5060               .resetvalue = 0 },
5061             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5062               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
5063               .access = PL1_R, .type = ARM_CP_CONST,
5064               .resetvalue = 0 },
5065             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5066               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
5067               .access = PL1_R, .type = ARM_CP_CONST,
5068               .resetvalue = 0 },
5069             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5070               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
5071               .access = PL1_R, .type = ARM_CP_CONST,
5072               .resetvalue = 0 },
5073             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5074               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
5075               .access = PL1_R, .type = ARM_CP_CONST,
5076               .resetvalue = 0 },
5077             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
5078               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
5079               .access = PL1_R, .type = ARM_CP_CONST,
5080               .resetvalue = cpu->mvfr0 },
5081             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
5082               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
5083               .access = PL1_R, .type = ARM_CP_CONST,
5084               .resetvalue = cpu->mvfr1 },
5085             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
5086               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
5087               .access = PL1_R, .type = ARM_CP_CONST,
5088               .resetvalue = cpu->mvfr2 },
5089             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5090               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
5091               .access = PL1_R, .type = ARM_CP_CONST,
5092               .resetvalue = 0 },
5093             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5094               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
5095               .access = PL1_R, .type = ARM_CP_CONST,
5096               .resetvalue = 0 },
5097             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5098               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
5099               .access = PL1_R, .type = ARM_CP_CONST,
5100               .resetvalue = 0 },
5101             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5102               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
5103               .access = PL1_R, .type = ARM_CP_CONST,
5104               .resetvalue = 0 },
5105             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
5106               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
5107               .access = PL1_R, .type = ARM_CP_CONST,
5108               .resetvalue = 0 },
5109             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
5110               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
5111               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5112               .resetvalue = cpu->pmceid0 },
5113             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
5114               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
5115               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5116               .resetvalue = cpu->pmceid0 },
5117             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
5118               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
5119               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5120               .resetvalue = cpu->pmceid1 },
5121             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
5122               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
5123               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
5124               .resetvalue = cpu->pmceid1 },
5125             REGINFO_SENTINEL
5126         };
5127         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5128         if (!arm_feature(env, ARM_FEATURE_EL3) &&
5129             !arm_feature(env, ARM_FEATURE_EL2)) {
5130             ARMCPRegInfo rvbar = {
5131                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
5132                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5133                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
5134             };
5135             define_one_arm_cp_reg(cpu, &rvbar);
5136         }
5137         define_arm_cp_regs(cpu, v8_idregs);
5138         define_arm_cp_regs(cpu, v8_cp_reginfo);
5139     }
5140     if (arm_feature(env, ARM_FEATURE_EL2)) {
5141         uint64_t vmpidr_def = mpidr_read_val(env);
5142         ARMCPRegInfo vpidr_regs[] = {
5143             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
5144               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5145               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5146               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
5147               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
5148             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
5149               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5150               .access = PL2_RW, .resetvalue = cpu->midr,
5151               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5152             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
5153               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5154               .access = PL2_RW, .accessfn = access_el3_aa32ns,
5155               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
5156               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
5157             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
5158               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5159               .access = PL2_RW,
5160               .resetvalue = vmpidr_def,
5161               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
5162             REGINFO_SENTINEL
5163         };
5164         define_arm_cp_regs(cpu, vpidr_regs);
5165         define_arm_cp_regs(cpu, el2_cp_reginfo);
5166         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5167         if (!arm_feature(env, ARM_FEATURE_EL3)) {
5168             ARMCPRegInfo rvbar = {
5169                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
5170                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
5171                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
5172             };
5173             define_one_arm_cp_reg(cpu, &rvbar);
5174         }
5175     } else {
5176         /* If EL2 is missing but higher ELs are enabled, we need to
5177          * register the no_el2 reginfos.
5178          */
5179         if (arm_feature(env, ARM_FEATURE_EL3)) {
5180             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5181              * of MIDR_EL1 and MPIDR_EL1.
5182              */
5183             ARMCPRegInfo vpidr_regs[] = {
5184                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5185                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
5186                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5187                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
5188                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
5189                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5190                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
5191                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
5192                   .type = ARM_CP_NO_RAW,
5193                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
5194                 REGINFO_SENTINEL
5195             };
5196             define_arm_cp_regs(cpu, vpidr_regs);
5197             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5198         }
5199     }
5200     if (arm_feature(env, ARM_FEATURE_EL3)) {
5201         define_arm_cp_regs(cpu, el3_cp_reginfo);
5202         ARMCPRegInfo el3_regs[] = {
5203             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
5204               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
5205               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
5206             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
5207               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
5208               .access = PL3_RW,
5209               .raw_writefn = raw_write, .writefn = sctlr_write,
5210               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
5211               .resetvalue = cpu->reset_sctlr },
5212             REGINFO_SENTINEL
5213         };
5214 
5215         define_arm_cp_regs(cpu, el3_regs);
5216     }
5217     /* The behaviour of NSACR is sufficiently various that we don't
5218      * try to describe it in a single reginfo:
5219      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5220      *     reads as constant 0xc00 from NS EL1 and NS EL2
5221      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5222      *  if v7 without EL3, register doesn't exist
5223      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5224      */
5225     if (arm_feature(env, ARM_FEATURE_EL3)) {
5226         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5227             ARMCPRegInfo nsacr = {
5228                 .name = "NSACR", .type = ARM_CP_CONST,
5229                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5230                 .access = PL1_RW, .accessfn = nsacr_access,
5231                 .resetvalue = 0xc00
5232             };
5233             define_one_arm_cp_reg(cpu, &nsacr);
5234         } else {
5235             ARMCPRegInfo nsacr = {
5236                 .name = "NSACR",
5237                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5238                 .access = PL3_RW | PL1_R,
5239                 .resetvalue = 0,
5240                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5241             };
5242             define_one_arm_cp_reg(cpu, &nsacr);
5243         }
5244     } else {
5245         if (arm_feature(env, ARM_FEATURE_V8)) {
5246             ARMCPRegInfo nsacr = {
5247                 .name = "NSACR", .type = ARM_CP_CONST,
5248                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5249                 .access = PL1_R,
5250                 .resetvalue = 0xc00
5251             };
5252             define_one_arm_cp_reg(cpu, &nsacr);
5253         }
5254     }
5255 
5256     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5257         if (arm_feature(env, ARM_FEATURE_V6)) {
5258             /* PMSAv6 not implemented */
5259             assert(arm_feature(env, ARM_FEATURE_V7));
5260             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5261             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5262         } else {
5263             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5264         }
5265     } else {
5266         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5267         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5268     }
5269     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5270         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5271     }
5272     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5273         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5274     }
5275     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5276         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5277     }
5278     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5279         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5280     }
5281     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5282         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5283     }
5284     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5285         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5286     }
5287     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5288         define_arm_cp_regs(cpu, omap_cp_reginfo);
5289     }
5290     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5291         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5292     }
5293     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5294         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5295     }
5296     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5297         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5298     }
5299     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5300         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5301     }
5302     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5303      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5304      * be read-only (ie write causes UNDEF exception).
5305      */
5306     {
5307         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5308             /* Pre-v8 MIDR space.
5309              * Note that the MIDR isn't a simple constant register because
5310              * of the TI925 behaviour where writes to another register can
5311              * cause the MIDR value to change.
5312              *
5313              * Unimplemented registers in the c15 0 0 0 space default to
5314              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5315              * and friends override accordingly.
5316              */
5317             { .name = "MIDR",
5318               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5319               .access = PL1_R, .resetvalue = cpu->midr,
5320               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5321               .readfn = midr_read,
5322               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5323               .type = ARM_CP_OVERRIDE },
5324             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5325             { .name = "DUMMY",
5326               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5327               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5328             { .name = "DUMMY",
5329               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5330               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5331             { .name = "DUMMY",
5332               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5333               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5334             { .name = "DUMMY",
5335               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5336               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5337             { .name = "DUMMY",
5338               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5339               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5340             REGINFO_SENTINEL
5341         };
5342         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5343             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5344               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5345               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5346               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5347               .readfn = midr_read },
5348             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5349             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5350               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5351               .access = PL1_R, .resetvalue = cpu->midr },
5352             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5353               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5354               .access = PL1_R, .resetvalue = cpu->midr },
5355             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5356               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5357               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5358             REGINFO_SENTINEL
5359         };
5360         ARMCPRegInfo id_cp_reginfo[] = {
5361             /* These are common to v8 and pre-v8 */
5362             { .name = "CTR",
5363               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5364               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5365             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5366               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5367               .access = PL0_R, .accessfn = ctr_el0_access,
5368               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5369             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5370             { .name = "TCMTR",
5371               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5372               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5373             REGINFO_SENTINEL
5374         };
5375         /* TLBTR is specific to VMSA */
5376         ARMCPRegInfo id_tlbtr_reginfo = {
5377               .name = "TLBTR",
5378               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5379               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5380         };
5381         /* MPUIR is specific to PMSA V6+ */
5382         ARMCPRegInfo id_mpuir_reginfo = {
5383               .name = "MPUIR",
5384               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5385               .access = PL1_R, .type = ARM_CP_CONST,
5386               .resetvalue = cpu->pmsav7_dregion << 8
5387         };
5388         ARMCPRegInfo crn0_wi_reginfo = {
5389             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5390             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5391             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5392         };
5393         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5394             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5395             ARMCPRegInfo *r;
5396             /* Register the blanket "writes ignored" value first to cover the
5397              * whole space. Then update the specific ID registers to allow write
5398              * access, so that they ignore writes rather than causing them to
5399              * UNDEF.
5400              */
5401             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5402             for (r = id_pre_v8_midr_cp_reginfo;
5403                  r->type != ARM_CP_SENTINEL; r++) {
5404                 r->access = PL1_RW;
5405             }
5406             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5407                 r->access = PL1_RW;
5408             }
5409             id_mpuir_reginfo.access = PL1_RW;
5410             id_tlbtr_reginfo.access = PL1_RW;
5411         }
5412         if (arm_feature(env, ARM_FEATURE_V8)) {
5413             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5414         } else {
5415             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5416         }
5417         define_arm_cp_regs(cpu, id_cp_reginfo);
5418         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5419             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5420         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5421             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5422         }
5423     }
5424 
5425     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5426         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5427     }
5428 
5429     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5430         ARMCPRegInfo auxcr_reginfo[] = {
5431             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5432               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5433               .access = PL1_RW, .type = ARM_CP_CONST,
5434               .resetvalue = cpu->reset_auxcr },
5435             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5436               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5437               .access = PL2_RW, .type = ARM_CP_CONST,
5438               .resetvalue = 0 },
5439             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5440               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5441               .access = PL3_RW, .type = ARM_CP_CONST,
5442               .resetvalue = 0 },
5443             REGINFO_SENTINEL
5444         };
5445         define_arm_cp_regs(cpu, auxcr_reginfo);
5446     }
5447 
5448     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5449         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5450             /* 32 bit view is [31:18] 0...0 [43:32]. */
5451             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5452                 | extract64(cpu->reset_cbar, 32, 12);
5453             ARMCPRegInfo cbar_reginfo[] = {
5454                 { .name = "CBAR",
5455                   .type = ARM_CP_CONST,
5456                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5457                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5458                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5459                   .type = ARM_CP_CONST,
5460                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5461                   .access = PL1_R, .resetvalue = cbar32 },
5462                 REGINFO_SENTINEL
5463             };
5464             /* We don't implement a r/w 64 bit CBAR currently */
5465             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5466             define_arm_cp_regs(cpu, cbar_reginfo);
5467         } else {
5468             ARMCPRegInfo cbar = {
5469                 .name = "CBAR",
5470                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5471                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5472                 .fieldoffset = offsetof(CPUARMState,
5473                                         cp15.c15_config_base_address)
5474             };
5475             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5476                 cbar.access = PL1_R;
5477                 cbar.fieldoffset = 0;
5478                 cbar.type = ARM_CP_CONST;
5479             }
5480             define_one_arm_cp_reg(cpu, &cbar);
5481         }
5482     }
5483 
5484     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5485         ARMCPRegInfo vbar_cp_reginfo[] = {
5486             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5487               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5488               .access = PL1_RW, .writefn = vbar_write,
5489               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5490                                      offsetof(CPUARMState, cp15.vbar_ns) },
5491               .resetvalue = 0 },
5492             REGINFO_SENTINEL
5493         };
5494         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5495     }
5496 
5497     /* Generic registers whose values depend on the implementation */
5498     {
5499         ARMCPRegInfo sctlr = {
5500             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5501             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5502             .access = PL1_RW,
5503             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5504                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5505             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5506             .raw_writefn = raw_write,
5507         };
5508         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5509             /* Normally we would always end the TB on an SCTLR write, but Linux
5510              * arch/arm/mach-pxa/sleep.S expects two instructions following
5511              * an MMU enable to execute from cache.  Imitate this behaviour.
5512              */
5513             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5514         }
5515         define_one_arm_cp_reg(cpu, &sctlr);
5516     }
5517 
5518     if (arm_feature(env, ARM_FEATURE_SVE)) {
5519         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
5520         if (arm_feature(env, ARM_FEATURE_EL2)) {
5521             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
5522         } else {
5523             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
5524         }
5525         if (arm_feature(env, ARM_FEATURE_EL3)) {
5526             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
5527         }
5528     }
5529 }
5530 
5531 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5532 {
5533     CPUState *cs = CPU(cpu);
5534     CPUARMState *env = &cpu->env;
5535 
5536     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5537         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5538                                  aarch64_fpu_gdb_set_reg,
5539                                  34, "aarch64-fpu.xml", 0);
5540     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5541         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5542                                  51, "arm-neon.xml", 0);
5543     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5544         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5545                                  35, "arm-vfp3.xml", 0);
5546     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5547         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5548                                  19, "arm-vfp.xml", 0);
5549     }
5550     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
5551                              arm_gen_dynamic_xml(cs),
5552                              "system-registers.xml", 0);
5553 }
5554 
5555 /* Sort alphabetically by type name, except for "any". */
5556 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5557 {
5558     ObjectClass *class_a = (ObjectClass *)a;
5559     ObjectClass *class_b = (ObjectClass *)b;
5560     const char *name_a, *name_b;
5561 
5562     name_a = object_class_get_name(class_a);
5563     name_b = object_class_get_name(class_b);
5564     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5565         return 1;
5566     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5567         return -1;
5568     } else {
5569         return strcmp(name_a, name_b);
5570     }
5571 }
5572 
5573 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5574 {
5575     ObjectClass *oc = data;
5576     CPUListState *s = user_data;
5577     const char *typename;
5578     char *name;
5579 
5580     typename = object_class_get_name(oc);
5581     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5582     (*s->cpu_fprintf)(s->file, "  %s\n",
5583                       name);
5584     g_free(name);
5585 }
5586 
5587 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5588 {
5589     CPUListState s = {
5590         .file = f,
5591         .cpu_fprintf = cpu_fprintf,
5592     };
5593     GSList *list;
5594 
5595     list = object_class_get_list(TYPE_ARM_CPU, false);
5596     list = g_slist_sort(list, arm_cpu_list_compare);
5597     (*cpu_fprintf)(f, "Available CPUs:\n");
5598     g_slist_foreach(list, arm_cpu_list_entry, &s);
5599     g_slist_free(list);
5600 }
5601 
5602 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5603 {
5604     ObjectClass *oc = data;
5605     CpuDefinitionInfoList **cpu_list = user_data;
5606     CpuDefinitionInfoList *entry;
5607     CpuDefinitionInfo *info;
5608     const char *typename;
5609 
5610     typename = object_class_get_name(oc);
5611     info = g_malloc0(sizeof(*info));
5612     info->name = g_strndup(typename,
5613                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5614     info->q_typename = g_strdup(typename);
5615 
5616     entry = g_malloc0(sizeof(*entry));
5617     entry->value = info;
5618     entry->next = *cpu_list;
5619     *cpu_list = entry;
5620 }
5621 
5622 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5623 {
5624     CpuDefinitionInfoList *cpu_list = NULL;
5625     GSList *list;
5626 
5627     list = object_class_get_list(TYPE_ARM_CPU, false);
5628     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5629     g_slist_free(list);
5630 
5631     return cpu_list;
5632 }
5633 
5634 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5635                                    void *opaque, int state, int secstate,
5636                                    int crm, int opc1, int opc2,
5637                                    const char *name)
5638 {
5639     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5640      * add a single reginfo struct to the hash table.
5641      */
5642     uint32_t *key = g_new(uint32_t, 1);
5643     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5644     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5645     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5646 
5647     r2->name = g_strdup(name);
5648     /* Reset the secure state to the specific incoming state.  This is
5649      * necessary as the register may have been defined with both states.
5650      */
5651     r2->secure = secstate;
5652 
5653     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5654         /* Register is banked (using both entries in array).
5655          * Overwriting fieldoffset as the array is only used to define
5656          * banked registers but later only fieldoffset is used.
5657          */
5658         r2->fieldoffset = r->bank_fieldoffsets[ns];
5659     }
5660 
5661     if (state == ARM_CP_STATE_AA32) {
5662         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5663             /* If the register is banked then we don't need to migrate or
5664              * reset the 32-bit instance in certain cases:
5665              *
5666              * 1) If the register has both 32-bit and 64-bit instances then we
5667              *    can count on the 64-bit instance taking care of the
5668              *    non-secure bank.
5669              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5670              *    taking care of the secure bank.  This requires that separate
5671              *    32 and 64-bit definitions are provided.
5672              */
5673             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5674                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5675                 r2->type |= ARM_CP_ALIAS;
5676             }
5677         } else if ((secstate != r->secure) && !ns) {
5678             /* The register is not banked so we only want to allow migration of
5679              * the non-secure instance.
5680              */
5681             r2->type |= ARM_CP_ALIAS;
5682         }
5683 
5684         if (r->state == ARM_CP_STATE_BOTH) {
5685             /* We assume it is a cp15 register if the .cp field is left unset.
5686              */
5687             if (r2->cp == 0) {
5688                 r2->cp = 15;
5689             }
5690 
5691 #ifdef HOST_WORDS_BIGENDIAN
5692             if (r2->fieldoffset) {
5693                 r2->fieldoffset += sizeof(uint32_t);
5694             }
5695 #endif
5696         }
5697     }
5698     if (state == ARM_CP_STATE_AA64) {
5699         /* To allow abbreviation of ARMCPRegInfo
5700          * definitions, we treat cp == 0 as equivalent to
5701          * the value for "standard guest-visible sysreg".
5702          * STATE_BOTH definitions are also always "standard
5703          * sysreg" in their AArch64 view (the .cp value may
5704          * be non-zero for the benefit of the AArch32 view).
5705          */
5706         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5707             r2->cp = CP_REG_ARM64_SYSREG_CP;
5708         }
5709         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5710                                   r2->opc0, opc1, opc2);
5711     } else {
5712         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5713     }
5714     if (opaque) {
5715         r2->opaque = opaque;
5716     }
5717     /* reginfo passed to helpers is correct for the actual access,
5718      * and is never ARM_CP_STATE_BOTH:
5719      */
5720     r2->state = state;
5721     /* Make sure reginfo passed to helpers for wildcarded regs
5722      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5723      */
5724     r2->crm = crm;
5725     r2->opc1 = opc1;
5726     r2->opc2 = opc2;
5727     /* By convention, for wildcarded registers only the first
5728      * entry is used for migration; the others are marked as
5729      * ALIAS so we don't try to transfer the register
5730      * multiple times. Special registers (ie NOP/WFI) are
5731      * never migratable and not even raw-accessible.
5732      */
5733     if ((r->type & ARM_CP_SPECIAL)) {
5734         r2->type |= ARM_CP_NO_RAW;
5735     }
5736     if (((r->crm == CP_ANY) && crm != 0) ||
5737         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5738         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5739         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
5740     }
5741 
5742     /* Check that raw accesses are either forbidden or handled. Note that
5743      * we can't assert this earlier because the setup of fieldoffset for
5744      * banked registers has to be done first.
5745      */
5746     if (!(r2->type & ARM_CP_NO_RAW)) {
5747         assert(!raw_accessors_invalid(r2));
5748     }
5749 
5750     /* Overriding of an existing definition must be explicitly
5751      * requested.
5752      */
5753     if (!(r->type & ARM_CP_OVERRIDE)) {
5754         ARMCPRegInfo *oldreg;
5755         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5756         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5757             fprintf(stderr, "Register redefined: cp=%d %d bit "
5758                     "crn=%d crm=%d opc1=%d opc2=%d, "
5759                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5760                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5761                     oldreg->name, r2->name);
5762             g_assert_not_reached();
5763         }
5764     }
5765     g_hash_table_insert(cpu->cp_regs, key, r2);
5766 }
5767 
5768 
5769 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5770                                        const ARMCPRegInfo *r, void *opaque)
5771 {
5772     /* Define implementations of coprocessor registers.
5773      * We store these in a hashtable because typically
5774      * there are less than 150 registers in a space which
5775      * is 16*16*16*8*8 = 262144 in size.
5776      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5777      * If a register is defined twice then the second definition is
5778      * used, so this can be used to define some generic registers and
5779      * then override them with implementation specific variations.
5780      * At least one of the original and the second definition should
5781      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5782      * against accidental use.
5783      *
5784      * The state field defines whether the register is to be
5785      * visible in the AArch32 or AArch64 execution state. If the
5786      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5787      * reginfo structure for the AArch32 view, which sees the lower
5788      * 32 bits of the 64 bit register.
5789      *
5790      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5791      * be wildcarded. AArch64 registers are always considered to be 64
5792      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5793      * the register, if any.
5794      */
5795     int crm, opc1, opc2, state;
5796     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5797     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5798     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5799     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5800     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5801     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5802     /* 64 bit registers have only CRm and Opc1 fields */
5803     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5804     /* op0 only exists in the AArch64 encodings */
5805     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5806     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5807     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5808     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5809      * encodes a minimum access level for the register. We roll this
5810      * runtime check into our general permission check code, so check
5811      * here that the reginfo's specified permissions are strict enough
5812      * to encompass the generic architectural permission check.
5813      */
5814     if (r->state != ARM_CP_STATE_AA32) {
5815         int mask = 0;
5816         switch (r->opc1) {
5817         case 0: case 1: case 2:
5818             /* min_EL EL1 */
5819             mask = PL1_RW;
5820             break;
5821         case 3:
5822             /* min_EL EL0 */
5823             mask = PL0_RW;
5824             break;
5825         case 4:
5826             /* min_EL EL2 */
5827             mask = PL2_RW;
5828             break;
5829         case 5:
5830             /* unallocated encoding, so not possible */
5831             assert(false);
5832             break;
5833         case 6:
5834             /* min_EL EL3 */
5835             mask = PL3_RW;
5836             break;
5837         case 7:
5838             /* min_EL EL1, secure mode only (we don't check the latter) */
5839             mask = PL1_RW;
5840             break;
5841         default:
5842             /* broken reginfo with out-of-range opc1 */
5843             assert(false);
5844             break;
5845         }
5846         /* assert our permissions are not too lax (stricter is fine) */
5847         assert((r->access & ~mask) == 0);
5848     }
5849 
5850     /* Check that the register definition has enough info to handle
5851      * reads and writes if they are permitted.
5852      */
5853     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5854         if (r->access & PL3_R) {
5855             assert((r->fieldoffset ||
5856                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5857                    r->readfn);
5858         }
5859         if (r->access & PL3_W) {
5860             assert((r->fieldoffset ||
5861                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5862                    r->writefn);
5863         }
5864     }
5865     /* Bad type field probably means missing sentinel at end of reg list */
5866     assert(cptype_valid(r->type));
5867     for (crm = crmmin; crm <= crmmax; crm++) {
5868         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5869             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5870                 for (state = ARM_CP_STATE_AA32;
5871                      state <= ARM_CP_STATE_AA64; state++) {
5872                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5873                         continue;
5874                     }
5875                     if (state == ARM_CP_STATE_AA32) {
5876                         /* Under AArch32 CP registers can be common
5877                          * (same for secure and non-secure world) or banked.
5878                          */
5879                         char *name;
5880 
5881                         switch (r->secure) {
5882                         case ARM_CP_SECSTATE_S:
5883                         case ARM_CP_SECSTATE_NS:
5884                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5885                                                    r->secure, crm, opc1, opc2,
5886                                                    r->name);
5887                             break;
5888                         default:
5889                             name = g_strdup_printf("%s_S", r->name);
5890                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5891                                                    ARM_CP_SECSTATE_S,
5892                                                    crm, opc1, opc2, name);
5893                             g_free(name);
5894                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5895                                                    ARM_CP_SECSTATE_NS,
5896                                                    crm, opc1, opc2, r->name);
5897                             break;
5898                         }
5899                     } else {
5900                         /* AArch64 registers get mapped to non-secure instance
5901                          * of AArch32 */
5902                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5903                                                ARM_CP_SECSTATE_NS,
5904                                                crm, opc1, opc2, r->name);
5905                     }
5906                 }
5907             }
5908         }
5909     }
5910 }
5911 
5912 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5913                                     const ARMCPRegInfo *regs, void *opaque)
5914 {
5915     /* Define a whole list of registers */
5916     const ARMCPRegInfo *r;
5917     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5918         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5919     }
5920 }
5921 
5922 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5923 {
5924     return g_hash_table_lookup(cpregs, &encoded_cp);
5925 }
5926 
5927 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5928                          uint64_t value)
5929 {
5930     /* Helper coprocessor write function for write-ignore registers */
5931 }
5932 
5933 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5934 {
5935     /* Helper coprocessor write function for read-as-zero registers */
5936     return 0;
5937 }
5938 
5939 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5940 {
5941     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5942 }
5943 
5944 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5945 {
5946     /* Return true if it is not valid for us to switch to
5947      * this CPU mode (ie all the UNPREDICTABLE cases in
5948      * the ARM ARM CPSRWriteByInstr pseudocode).
5949      */
5950 
5951     /* Changes to or from Hyp via MSR and CPS are illegal. */
5952     if (write_type == CPSRWriteByInstr &&
5953         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5954          mode == ARM_CPU_MODE_HYP)) {
5955         return 1;
5956     }
5957 
5958     switch (mode) {
5959     case ARM_CPU_MODE_USR:
5960         return 0;
5961     case ARM_CPU_MODE_SYS:
5962     case ARM_CPU_MODE_SVC:
5963     case ARM_CPU_MODE_ABT:
5964     case ARM_CPU_MODE_UND:
5965     case ARM_CPU_MODE_IRQ:
5966     case ARM_CPU_MODE_FIQ:
5967         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5968          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5969          */
5970         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5971          * and CPS are treated as illegal mode changes.
5972          */
5973         if (write_type == CPSRWriteByInstr &&
5974             (env->cp15.hcr_el2 & HCR_TGE) &&
5975             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5976             !arm_is_secure_below_el3(env)) {
5977             return 1;
5978         }
5979         return 0;
5980     case ARM_CPU_MODE_HYP:
5981         return !arm_feature(env, ARM_FEATURE_EL2)
5982             || arm_current_el(env) < 2 || arm_is_secure(env);
5983     case ARM_CPU_MODE_MON:
5984         return arm_current_el(env) < 3;
5985     default:
5986         return 1;
5987     }
5988 }
5989 
5990 uint32_t cpsr_read(CPUARMState *env)
5991 {
5992     int ZF;
5993     ZF = (env->ZF == 0);
5994     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5995         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5996         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5997         | ((env->condexec_bits & 0xfc) << 8)
5998         | (env->GE << 16) | (env->daif & CPSR_AIF);
5999 }
6000 
6001 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
6002                 CPSRWriteType write_type)
6003 {
6004     uint32_t changed_daif;
6005 
6006     if (mask & CPSR_NZCV) {
6007         env->ZF = (~val) & CPSR_Z;
6008         env->NF = val;
6009         env->CF = (val >> 29) & 1;
6010         env->VF = (val << 3) & 0x80000000;
6011     }
6012     if (mask & CPSR_Q)
6013         env->QF = ((val & CPSR_Q) != 0);
6014     if (mask & CPSR_T)
6015         env->thumb = ((val & CPSR_T) != 0);
6016     if (mask & CPSR_IT_0_1) {
6017         env->condexec_bits &= ~3;
6018         env->condexec_bits |= (val >> 25) & 3;
6019     }
6020     if (mask & CPSR_IT_2_7) {
6021         env->condexec_bits &= 3;
6022         env->condexec_bits |= (val >> 8) & 0xfc;
6023     }
6024     if (mask & CPSR_GE) {
6025         env->GE = (val >> 16) & 0xf;
6026     }
6027 
6028     /* In a V7 implementation that includes the security extensions but does
6029      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6030      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6031      * bits respectively.
6032      *
6033      * In a V8 implementation, it is permitted for privileged software to
6034      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6035      */
6036     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
6037         arm_feature(env, ARM_FEATURE_EL3) &&
6038         !arm_feature(env, ARM_FEATURE_EL2) &&
6039         !arm_is_secure(env)) {
6040 
6041         changed_daif = (env->daif ^ val) & mask;
6042 
6043         if (changed_daif & CPSR_A) {
6044             /* Check to see if we are allowed to change the masking of async
6045              * abort exceptions from a non-secure state.
6046              */
6047             if (!(env->cp15.scr_el3 & SCR_AW)) {
6048                 qemu_log_mask(LOG_GUEST_ERROR,
6049                               "Ignoring attempt to switch CPSR_A flag from "
6050                               "non-secure world with SCR.AW bit clear\n");
6051                 mask &= ~CPSR_A;
6052             }
6053         }
6054 
6055         if (changed_daif & CPSR_F) {
6056             /* Check to see if we are allowed to change the masking of FIQ
6057              * exceptions from a non-secure state.
6058              */
6059             if (!(env->cp15.scr_el3 & SCR_FW)) {
6060                 qemu_log_mask(LOG_GUEST_ERROR,
6061                               "Ignoring attempt to switch CPSR_F flag from "
6062                               "non-secure world with SCR.FW bit clear\n");
6063                 mask &= ~CPSR_F;
6064             }
6065 
6066             /* Check whether non-maskable FIQ (NMFI) support is enabled.
6067              * If this bit is set software is not allowed to mask
6068              * FIQs, but is allowed to set CPSR_F to 0.
6069              */
6070             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
6071                 (val & CPSR_F)) {
6072                 qemu_log_mask(LOG_GUEST_ERROR,
6073                               "Ignoring attempt to enable CPSR_F flag "
6074                               "(non-maskable FIQ [NMFI] support enabled)\n");
6075                 mask &= ~CPSR_F;
6076             }
6077         }
6078     }
6079 
6080     env->daif &= ~(CPSR_AIF & mask);
6081     env->daif |= val & CPSR_AIF & mask;
6082 
6083     if (write_type != CPSRWriteRaw &&
6084         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6085         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
6086             /* Note that we can only get here in USR mode if this is a
6087              * gdb stub write; for this case we follow the architectural
6088              * behaviour for guest writes in USR mode of ignoring an attempt
6089              * to switch mode. (Those are caught by translate.c for writes
6090              * triggered by guest instructions.)
6091              */
6092             mask &= ~CPSR_M;
6093         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6094             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6095              * v7, and has defined behaviour in v8:
6096              *  + leave CPSR.M untouched
6097              *  + allow changes to the other CPSR fields
6098              *  + set PSTATE.IL
6099              * For user changes via the GDB stub, we don't set PSTATE.IL,
6100              * as this would be unnecessarily harsh for a user error.
6101              */
6102             mask &= ~CPSR_M;
6103             if (write_type != CPSRWriteByGDBStub &&
6104                 arm_feature(env, ARM_FEATURE_V8)) {
6105                 mask |= CPSR_IL;
6106                 val |= CPSR_IL;
6107             }
6108         } else {
6109             switch_mode(env, val & CPSR_M);
6110         }
6111     }
6112     mask &= ~CACHED_CPSR_BITS;
6113     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
6114 }
6115 
6116 /* Sign/zero extend */
6117 uint32_t HELPER(sxtb16)(uint32_t x)
6118 {
6119     uint32_t res;
6120     res = (uint16_t)(int8_t)x;
6121     res |= (uint32_t)(int8_t)(x >> 16) << 16;
6122     return res;
6123 }
6124 
6125 uint32_t HELPER(uxtb16)(uint32_t x)
6126 {
6127     uint32_t res;
6128     res = (uint16_t)(uint8_t)x;
6129     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
6130     return res;
6131 }
6132 
6133 int32_t HELPER(sdiv)(int32_t num, int32_t den)
6134 {
6135     if (den == 0)
6136       return 0;
6137     if (num == INT_MIN && den == -1)
6138       return INT_MIN;
6139     return num / den;
6140 }
6141 
6142 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
6143 {
6144     if (den == 0)
6145       return 0;
6146     return num / den;
6147 }
6148 
6149 uint32_t HELPER(rbit)(uint32_t x)
6150 {
6151     return revbit32(x);
6152 }
6153 
6154 #if defined(CONFIG_USER_ONLY)
6155 
6156 /* These should probably raise undefined insn exceptions.  */
6157 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
6158 {
6159     ARMCPU *cpu = arm_env_get_cpu(env);
6160 
6161     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
6162 }
6163 
6164 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
6165 {
6166     ARMCPU *cpu = arm_env_get_cpu(env);
6167 
6168     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
6169     return 0;
6170 }
6171 
6172 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6173 {
6174     /* translate.c should never generate calls here in user-only mode */
6175     g_assert_not_reached();
6176 }
6177 
6178 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6179 {
6180     /* translate.c should never generate calls here in user-only mode */
6181     g_assert_not_reached();
6182 }
6183 
6184 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
6185 {
6186     /* The TT instructions can be used by unprivileged code, but in
6187      * user-only emulation we don't have the MPU.
6188      * Luckily since we know we are NonSecure unprivileged (and that in
6189      * turn means that the A flag wasn't specified), all the bits in the
6190      * register must be zero:
6191      *  IREGION: 0 because IRVALID is 0
6192      *  IRVALID: 0 because NS
6193      *  S: 0 because NS
6194      *  NSRW: 0 because NS
6195      *  NSR: 0 because NS
6196      *  RW: 0 because unpriv and A flag not set
6197      *  R: 0 because unpriv and A flag not set
6198      *  SRVALID: 0 because NS
6199      *  MRVALID: 0 because unpriv and A flag not set
6200      *  SREGION: 0 becaus SRVALID is 0
6201      *  MREGION: 0 because MRVALID is 0
6202      */
6203     return 0;
6204 }
6205 
6206 void switch_mode(CPUARMState *env, int mode)
6207 {
6208     ARMCPU *cpu = arm_env_get_cpu(env);
6209 
6210     if (mode != ARM_CPU_MODE_USR) {
6211         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
6212     }
6213 }
6214 
6215 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6216                                  uint32_t cur_el, bool secure)
6217 {
6218     return 1;
6219 }
6220 
6221 void aarch64_sync_64_to_32(CPUARMState *env)
6222 {
6223     g_assert_not_reached();
6224 }
6225 
6226 #else
6227 
6228 void switch_mode(CPUARMState *env, int mode)
6229 {
6230     int old_mode;
6231     int i;
6232 
6233     old_mode = env->uncached_cpsr & CPSR_M;
6234     if (mode == old_mode)
6235         return;
6236 
6237     if (old_mode == ARM_CPU_MODE_FIQ) {
6238         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
6239         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
6240     } else if (mode == ARM_CPU_MODE_FIQ) {
6241         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
6242         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
6243     }
6244 
6245     i = bank_number(old_mode);
6246     env->banked_r13[i] = env->regs[13];
6247     env->banked_r14[i] = env->regs[14];
6248     env->banked_spsr[i] = env->spsr;
6249 
6250     i = bank_number(mode);
6251     env->regs[13] = env->banked_r13[i];
6252     env->regs[14] = env->banked_r14[i];
6253     env->spsr = env->banked_spsr[i];
6254 }
6255 
6256 /* Physical Interrupt Target EL Lookup Table
6257  *
6258  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6259  *
6260  * The below multi-dimensional table is used for looking up the target
6261  * exception level given numerous condition criteria.  Specifically, the
6262  * target EL is based on SCR and HCR routing controls as well as the
6263  * currently executing EL and secure state.
6264  *
6265  *    Dimensions:
6266  *    target_el_table[2][2][2][2][2][4]
6267  *                    |  |  |  |  |  +--- Current EL
6268  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6269  *                    |  |  |  +--------- HCR mask override
6270  *                    |  |  +------------ SCR exec state control
6271  *                    |  +--------------- SCR mask override
6272  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6273  *
6274  *    The table values are as such:
6275  *    0-3 = EL0-EL3
6276  *     -1 = Cannot occur
6277  *
6278  * The ARM ARM target EL table includes entries indicating that an "exception
6279  * is not taken".  The two cases where this is applicable are:
6280  *    1) An exception is taken from EL3 but the SCR does not have the exception
6281  *    routed to EL3.
6282  *    2) An exception is taken from EL2 but the HCR does not have the exception
6283  *    routed to EL2.
6284  * In these two cases, the below table contain a target of EL1.  This value is
6285  * returned as it is expected that the consumer of the table data will check
6286  * for "target EL >= current EL" to ensure the exception is not taken.
6287  *
6288  *            SCR     HCR
6289  *         64  EA     AMO                 From
6290  *        BIT IRQ     IMO      Non-secure         Secure
6291  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6292  */
6293 static const int8_t target_el_table[2][2][2][2][2][4] = {
6294     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6295        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6296       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6297        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6298      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6299        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6300       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6301        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6302     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6303        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6304       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6305        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6306      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6307        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6308       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6309        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6310 };
6311 
6312 /*
6313  * Determine the target EL for physical exceptions
6314  */
6315 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6316                                  uint32_t cur_el, bool secure)
6317 {
6318     CPUARMState *env = cs->env_ptr;
6319     int rw;
6320     int scr;
6321     int hcr;
6322     int target_el;
6323     /* Is the highest EL AArch64? */
6324     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6325 
6326     if (arm_feature(env, ARM_FEATURE_EL3)) {
6327         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6328     } else {
6329         /* Either EL2 is the highest EL (and so the EL2 register width
6330          * is given by is64); or there is no EL2 or EL3, in which case
6331          * the value of 'rw' does not affect the table lookup anyway.
6332          */
6333         rw = is64;
6334     }
6335 
6336     switch (excp_idx) {
6337     case EXCP_IRQ:
6338         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6339         hcr = arm_hcr_el2_imo(env);
6340         break;
6341     case EXCP_FIQ:
6342         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6343         hcr = arm_hcr_el2_fmo(env);
6344         break;
6345     default:
6346         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6347         hcr = arm_hcr_el2_amo(env);
6348         break;
6349     };
6350 
6351     /* If HCR.TGE is set then HCR is treated as being 1 */
6352     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6353 
6354     /* Perform a table-lookup for the target EL given the current state */
6355     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6356 
6357     assert(target_el > 0);
6358 
6359     return target_el;
6360 }
6361 
6362 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
6363                             ARMMMUIdx mmu_idx, bool ignfault)
6364 {
6365     CPUState *cs = CPU(cpu);
6366     CPUARMState *env = &cpu->env;
6367     MemTxAttrs attrs = {};
6368     MemTxResult txres;
6369     target_ulong page_size;
6370     hwaddr physaddr;
6371     int prot;
6372     ARMMMUFaultInfo fi;
6373     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6374     int exc;
6375     bool exc_secure;
6376 
6377     if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
6378                       &attrs, &prot, &page_size, &fi, NULL)) {
6379         /* MPU/SAU lookup failed */
6380         if (fi.type == ARMFault_QEMU_SFault) {
6381             qemu_log_mask(CPU_LOG_INT,
6382                           "...SecureFault with SFSR.AUVIOL during stacking\n");
6383             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6384             env->v7m.sfar = addr;
6385             exc = ARMV7M_EXCP_SECURE;
6386             exc_secure = false;
6387         } else {
6388             qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
6389             env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
6390             exc = ARMV7M_EXCP_MEM;
6391             exc_secure = secure;
6392         }
6393         goto pend_fault;
6394     }
6395     address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
6396                          attrs, &txres);
6397     if (txres != MEMTX_OK) {
6398         /* BusFault trying to write the data */
6399         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
6400         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
6401         exc = ARMV7M_EXCP_BUS;
6402         exc_secure = false;
6403         goto pend_fault;
6404     }
6405     return true;
6406 
6407 pend_fault:
6408     /* By pending the exception at this point we are making
6409      * the IMPDEF choice "overridden exceptions pended" (see the
6410      * MergeExcInfo() pseudocode). The other choice would be to not
6411      * pend them now and then make a choice about which to throw away
6412      * later if we have two derived exceptions.
6413      * The only case when we must not pend the exception but instead
6414      * throw it away is if we are doing the push of the callee registers
6415      * and we've already generated a derived exception. Even in this
6416      * case we will still update the fault status registers.
6417      */
6418     if (!ignfault) {
6419         armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
6420     }
6421     return false;
6422 }
6423 
6424 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
6425                            ARMMMUIdx mmu_idx)
6426 {
6427     CPUState *cs = CPU(cpu);
6428     CPUARMState *env = &cpu->env;
6429     MemTxAttrs attrs = {};
6430     MemTxResult txres;
6431     target_ulong page_size;
6432     hwaddr physaddr;
6433     int prot;
6434     ARMMMUFaultInfo fi;
6435     bool secure = mmu_idx & ARM_MMU_IDX_M_S;
6436     int exc;
6437     bool exc_secure;
6438     uint32_t value;
6439 
6440     if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
6441                       &attrs, &prot, &page_size, &fi, NULL)) {
6442         /* MPU/SAU lookup failed */
6443         if (fi.type == ARMFault_QEMU_SFault) {
6444             qemu_log_mask(CPU_LOG_INT,
6445                           "...SecureFault with SFSR.AUVIOL during unstack\n");
6446             env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
6447             env->v7m.sfar = addr;
6448             exc = ARMV7M_EXCP_SECURE;
6449             exc_secure = false;
6450         } else {
6451             qemu_log_mask(CPU_LOG_INT,
6452                           "...MemManageFault with CFSR.MUNSTKERR\n");
6453             env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
6454             exc = ARMV7M_EXCP_MEM;
6455             exc_secure = secure;
6456         }
6457         goto pend_fault;
6458     }
6459 
6460     value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
6461                               attrs, &txres);
6462     if (txres != MEMTX_OK) {
6463         /* BusFault trying to read the data */
6464         qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
6465         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
6466         exc = ARMV7M_EXCP_BUS;
6467         exc_secure = false;
6468         goto pend_fault;
6469     }
6470 
6471     *dest = value;
6472     return true;
6473 
6474 pend_fault:
6475     /* By pending the exception at this point we are making
6476      * the IMPDEF choice "overridden exceptions pended" (see the
6477      * MergeExcInfo() pseudocode). The other choice would be to not
6478      * pend them now and then make a choice about which to throw away
6479      * later if we have two derived exceptions.
6480      */
6481     armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
6482     return false;
6483 }
6484 
6485 /* Return true if we're using the process stack pointer (not the MSP) */
6486 static bool v7m_using_psp(CPUARMState *env)
6487 {
6488     /* Handler mode always uses the main stack; for thread mode
6489      * the CONTROL.SPSEL bit determines the answer.
6490      * Note that in v7M it is not possible to be in Handler mode with
6491      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6492      */
6493     return !arm_v7m_is_handler_mode(env) &&
6494         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6495 }
6496 
6497 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6498  * This may change the current stack pointer between Main and Process
6499  * stack pointers if it is done for the CONTROL register for the current
6500  * security state.
6501  */
6502 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6503                                                  bool new_spsel,
6504                                                  bool secstate)
6505 {
6506     bool old_is_psp = v7m_using_psp(env);
6507 
6508     env->v7m.control[secstate] =
6509         deposit32(env->v7m.control[secstate],
6510                   R_V7M_CONTROL_SPSEL_SHIFT,
6511                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6512 
6513     if (secstate == env->v7m.secure) {
6514         bool new_is_psp = v7m_using_psp(env);
6515         uint32_t tmp;
6516 
6517         if (old_is_psp != new_is_psp) {
6518             tmp = env->v7m.other_sp;
6519             env->v7m.other_sp = env->regs[13];
6520             env->regs[13] = tmp;
6521         }
6522     }
6523 }
6524 
6525 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6526  * stack pointer between Main and Process stack pointers.
6527  */
6528 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6529 {
6530     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6531 }
6532 
6533 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6534 {
6535     /* Write a new value to v7m.exception, thus transitioning into or out
6536      * of Handler mode; this may result in a change of active stack pointer.
6537      */
6538     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6539     uint32_t tmp;
6540 
6541     env->v7m.exception = new_exc;
6542 
6543     new_is_psp = v7m_using_psp(env);
6544 
6545     if (old_is_psp != new_is_psp) {
6546         tmp = env->v7m.other_sp;
6547         env->v7m.other_sp = env->regs[13];
6548         env->regs[13] = tmp;
6549     }
6550 }
6551 
6552 /* Switch M profile security state between NS and S */
6553 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6554 {
6555     uint32_t new_ss_msp, new_ss_psp;
6556 
6557     if (env->v7m.secure == new_secstate) {
6558         return;
6559     }
6560 
6561     /* All the banked state is accessed by looking at env->v7m.secure
6562      * except for the stack pointer; rearrange the SP appropriately.
6563      */
6564     new_ss_msp = env->v7m.other_ss_msp;
6565     new_ss_psp = env->v7m.other_ss_psp;
6566 
6567     if (v7m_using_psp(env)) {
6568         env->v7m.other_ss_psp = env->regs[13];
6569         env->v7m.other_ss_msp = env->v7m.other_sp;
6570     } else {
6571         env->v7m.other_ss_msp = env->regs[13];
6572         env->v7m.other_ss_psp = env->v7m.other_sp;
6573     }
6574 
6575     env->v7m.secure = new_secstate;
6576 
6577     if (v7m_using_psp(env)) {
6578         env->regs[13] = new_ss_psp;
6579         env->v7m.other_sp = new_ss_msp;
6580     } else {
6581         env->regs[13] = new_ss_msp;
6582         env->v7m.other_sp = new_ss_psp;
6583     }
6584 }
6585 
6586 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6587 {
6588     /* Handle v7M BXNS:
6589      *  - if the return value is a magic value, do exception return (like BX)
6590      *  - otherwise bit 0 of the return value is the target security state
6591      */
6592     uint32_t min_magic;
6593 
6594     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6595         /* Covers FNC_RETURN and EXC_RETURN magic */
6596         min_magic = FNC_RETURN_MIN_MAGIC;
6597     } else {
6598         /* EXC_RETURN magic only */
6599         min_magic = EXC_RETURN_MIN_MAGIC;
6600     }
6601 
6602     if (dest >= min_magic) {
6603         /* This is an exception return magic value; put it where
6604          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6605          * Note that if we ever add gen_ss_advance() singlestep support to
6606          * M profile this should count as an "instruction execution complete"
6607          * event (compare gen_bx_excret_final_code()).
6608          */
6609         env->regs[15] = dest & ~1;
6610         env->thumb = dest & 1;
6611         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6612         /* notreached */
6613     }
6614 
6615     /* translate.c should have made BXNS UNDEF unless we're secure */
6616     assert(env->v7m.secure);
6617 
6618     switch_v7m_security_state(env, dest & 1);
6619     env->thumb = 1;
6620     env->regs[15] = dest & ~1;
6621 }
6622 
6623 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6624 {
6625     /* Handle v7M BLXNS:
6626      *  - bit 0 of the destination address is the target security state
6627      */
6628 
6629     /* At this point regs[15] is the address just after the BLXNS */
6630     uint32_t nextinst = env->regs[15] | 1;
6631     uint32_t sp = env->regs[13] - 8;
6632     uint32_t saved_psr;
6633 
6634     /* translate.c will have made BLXNS UNDEF unless we're secure */
6635     assert(env->v7m.secure);
6636 
6637     if (dest & 1) {
6638         /* target is Secure, so this is just a normal BLX,
6639          * except that the low bit doesn't indicate Thumb/not.
6640          */
6641         env->regs[14] = nextinst;
6642         env->thumb = 1;
6643         env->regs[15] = dest & ~1;
6644         return;
6645     }
6646 
6647     /* Target is non-secure: first push a stack frame */
6648     if (!QEMU_IS_ALIGNED(sp, 8)) {
6649         qemu_log_mask(LOG_GUEST_ERROR,
6650                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6651     }
6652 
6653     saved_psr = env->v7m.exception;
6654     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6655         saved_psr |= XPSR_SFPA;
6656     }
6657 
6658     /* Note that these stores can throw exceptions on MPU faults */
6659     cpu_stl_data(env, sp, nextinst);
6660     cpu_stl_data(env, sp + 4, saved_psr);
6661 
6662     env->regs[13] = sp;
6663     env->regs[14] = 0xfeffffff;
6664     if (arm_v7m_is_handler_mode(env)) {
6665         /* Write a dummy value to IPSR, to avoid leaking the current secure
6666          * exception number to non-secure code. This is guaranteed not
6667          * to cause write_v7m_exception() to actually change stacks.
6668          */
6669         write_v7m_exception(env, 1);
6670     }
6671     switch_v7m_security_state(env, 0);
6672     env->thumb = 1;
6673     env->regs[15] = dest;
6674 }
6675 
6676 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6677                                 bool spsel)
6678 {
6679     /* Return a pointer to the location where we currently store the
6680      * stack pointer for the requested security state and thread mode.
6681      * This pointer will become invalid if the CPU state is updated
6682      * such that the stack pointers are switched around (eg changing
6683      * the SPSEL control bit).
6684      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6685      * Unlike that pseudocode, we require the caller to pass us in the
6686      * SPSEL control bit value; this is because we also use this
6687      * function in handling of pushing of the callee-saves registers
6688      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6689      * and in the tailchain codepath the SPSEL bit comes from the exception
6690      * return magic LR value from the previous exception. The pseudocode
6691      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6692      * to make this utility function generic enough to do the job.
6693      */
6694     bool want_psp = threadmode && spsel;
6695 
6696     if (secure == env->v7m.secure) {
6697         if (want_psp == v7m_using_psp(env)) {
6698             return &env->regs[13];
6699         } else {
6700             return &env->v7m.other_sp;
6701         }
6702     } else {
6703         if (want_psp) {
6704             return &env->v7m.other_ss_psp;
6705         } else {
6706             return &env->v7m.other_ss_msp;
6707         }
6708     }
6709 }
6710 
6711 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
6712                                 uint32_t *pvec)
6713 {
6714     CPUState *cs = CPU(cpu);
6715     CPUARMState *env = &cpu->env;
6716     MemTxResult result;
6717     uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
6718     uint32_t vector_entry;
6719     MemTxAttrs attrs = {};
6720     ARMMMUIdx mmu_idx;
6721     bool exc_secure;
6722 
6723     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6724 
6725     /* We don't do a get_phys_addr() here because the rules for vector
6726      * loads are special: they always use the default memory map, and
6727      * the default memory map permits reads from all addresses.
6728      * Since there's no easy way to pass through to pmsav8_mpu_lookup()
6729      * that we want this special case which would always say "yes",
6730      * we just do the SAU lookup here followed by a direct physical load.
6731      */
6732     attrs.secure = targets_secure;
6733     attrs.user = false;
6734 
6735     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6736         V8M_SAttributes sattrs = {};
6737 
6738         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
6739         if (sattrs.ns) {
6740             attrs.secure = false;
6741         } else if (!targets_secure) {
6742             /* NS access to S memory */
6743             goto load_fail;
6744         }
6745     }
6746 
6747     vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
6748                                      attrs, &result);
6749     if (result != MEMTX_OK) {
6750         goto load_fail;
6751     }
6752     *pvec = vector_entry;
6753     return true;
6754 
6755 load_fail:
6756     /* All vector table fetch fails are reported as HardFault, with
6757      * HFSR.VECTTBL and .FORCED set. (FORCED is set because
6758      * technically the underlying exception is a MemManage or BusFault
6759      * that is escalated to HardFault.) This is a terminal exception,
6760      * so we will either take the HardFault immediately or else enter
6761      * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
6762      */
6763     exc_secure = targets_secure ||
6764         !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
6765     env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
6766     armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
6767     return false;
6768 }
6769 
6770 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6771                                   bool ignore_faults)
6772 {
6773     /* For v8M, push the callee-saves register part of the stack frame.
6774      * Compare the v8M pseudocode PushCalleeStack().
6775      * In the tailchaining case this may not be the current stack.
6776      */
6777     CPUARMState *env = &cpu->env;
6778     uint32_t *frame_sp_p;
6779     uint32_t frameptr;
6780     ARMMMUIdx mmu_idx;
6781     bool stacked_ok;
6782 
6783     if (dotailchain) {
6784         bool mode = lr & R_V7M_EXCRET_MODE_MASK;
6785         bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
6786             !mode;
6787 
6788         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
6789         frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6790                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6791     } else {
6792         mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6793         frame_sp_p = &env->regs[13];
6794     }
6795 
6796     frameptr = *frame_sp_p - 0x28;
6797 
6798     /* Write as much of the stack frame as we can. A write failure may
6799      * cause us to pend a derived exception.
6800      */
6801     stacked_ok =
6802         v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
6803         v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
6804                         ignore_faults) &&
6805         v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
6806                         ignore_faults) &&
6807         v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
6808                         ignore_faults) &&
6809         v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
6810                         ignore_faults) &&
6811         v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
6812                         ignore_faults) &&
6813         v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
6814                         ignore_faults) &&
6815         v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
6816                         ignore_faults) &&
6817         v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
6818                         ignore_faults);
6819 
6820     /* Update SP regardless of whether any of the stack accesses failed.
6821      * When we implement v8M stack limit checking then this attempt to
6822      * update SP might also fail and result in a derived exception.
6823      */
6824     *frame_sp_p = frameptr;
6825 
6826     return !stacked_ok;
6827 }
6828 
6829 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6830                                 bool ignore_stackfaults)
6831 {
6832     /* Do the "take the exception" parts of exception entry,
6833      * but not the pushing of state to the stack. This is
6834      * similar to the pseudocode ExceptionTaken() function.
6835      */
6836     CPUARMState *env = &cpu->env;
6837     uint32_t addr;
6838     bool targets_secure;
6839     int exc;
6840     bool push_failed = false;
6841 
6842     armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6843     qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
6844                   targets_secure ? "secure" : "nonsecure", exc);
6845 
6846     if (arm_feature(env, ARM_FEATURE_V8)) {
6847         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6848             (lr & R_V7M_EXCRET_S_MASK)) {
6849             /* The background code (the owner of the registers in the
6850              * exception frame) is Secure. This means it may either already
6851              * have or now needs to push callee-saves registers.
6852              */
6853             if (targets_secure) {
6854                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6855                     /* We took an exception from Secure to NonSecure
6856                      * (which means the callee-saved registers got stacked)
6857                      * and are now tailchaining to a Secure exception.
6858                      * Clear DCRS so eventual return from this Secure
6859                      * exception unstacks the callee-saved registers.
6860                      */
6861                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6862                 }
6863             } else {
6864                 /* We're going to a non-secure exception; push the
6865                  * callee-saves registers to the stack now, if they're
6866                  * not already saved.
6867                  */
6868                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6869                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6870                     push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
6871                                                         ignore_stackfaults);
6872                 }
6873                 lr |= R_V7M_EXCRET_DCRS_MASK;
6874             }
6875         }
6876 
6877         lr &= ~R_V7M_EXCRET_ES_MASK;
6878         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6879             lr |= R_V7M_EXCRET_ES_MASK;
6880         }
6881         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6882         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6883             lr |= R_V7M_EXCRET_SPSEL_MASK;
6884         }
6885 
6886         /* Clear registers if necessary to prevent non-secure exception
6887          * code being able to see register values from secure code.
6888          * Where register values become architecturally UNKNOWN we leave
6889          * them with their previous values.
6890          */
6891         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6892             if (!targets_secure) {
6893                 /* Always clear the caller-saved registers (they have been
6894                  * pushed to the stack earlier in v7m_push_stack()).
6895                  * Clear callee-saved registers if the background code is
6896                  * Secure (in which case these regs were saved in
6897                  * v7m_push_callee_stack()).
6898                  */
6899                 int i;
6900 
6901                 for (i = 0; i < 13; i++) {
6902                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6903                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6904                         env->regs[i] = 0;
6905                     }
6906                 }
6907                 /* Clear EAPSR */
6908                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6909             }
6910         }
6911     }
6912 
6913     if (push_failed && !ignore_stackfaults) {
6914         /* Derived exception on callee-saves register stacking:
6915          * we might now want to take a different exception which
6916          * targets a different security state, so try again from the top.
6917          */
6918         qemu_log_mask(CPU_LOG_INT,
6919                       "...derived exception on callee-saves register stacking");
6920         v7m_exception_taken(cpu, lr, true, true);
6921         return;
6922     }
6923 
6924     if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
6925         /* Vector load failed: derived exception */
6926         qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
6927         v7m_exception_taken(cpu, lr, true, true);
6928         return;
6929     }
6930 
6931     /* Now we've done everything that might cause a derived exception
6932      * we can go ahead and activate whichever exception we're going to
6933      * take (which might now be the derived exception).
6934      */
6935     armv7m_nvic_acknowledge_irq(env->nvic);
6936 
6937     /* Switch to target security state -- must do this before writing SPSEL */
6938     switch_v7m_security_state(env, targets_secure);
6939     write_v7m_control_spsel(env, 0);
6940     arm_clear_exclusive(env);
6941     /* Clear IT bits */
6942     env->condexec_bits = 0;
6943     env->regs[14] = lr;
6944     env->regs[15] = addr & 0xfffffffe;
6945     env->thumb = addr & 1;
6946 }
6947 
6948 static bool v7m_push_stack(ARMCPU *cpu)
6949 {
6950     /* Do the "set up stack frame" part of exception entry,
6951      * similar to pseudocode PushStack().
6952      * Return true if we generate a derived exception (and so
6953      * should ignore further stack faults trying to process
6954      * that derived exception.)
6955      */
6956     bool stacked_ok;
6957     CPUARMState *env = &cpu->env;
6958     uint32_t xpsr = xpsr_read(env);
6959     uint32_t frameptr = env->regs[13];
6960     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6961 
6962     /* Align stack pointer if the guest wants that */
6963     if ((frameptr & 4) &&
6964         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6965         frameptr -= 4;
6966         xpsr |= XPSR_SPREALIGN;
6967     }
6968 
6969     frameptr -= 0x20;
6970 
6971     /* Write as much of the stack frame as we can. If we fail a stack
6972      * write this will result in a derived exception being pended
6973      * (which may be taken in preference to the one we started with
6974      * if it has higher priority).
6975      */
6976     stacked_ok =
6977         v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
6978         v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
6979         v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
6980         v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
6981         v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
6982         v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
6983         v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
6984         v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
6985 
6986     /* Update SP regardless of whether any of the stack accesses failed.
6987      * When we implement v8M stack limit checking then this attempt to
6988      * update SP might also fail and result in a derived exception.
6989      */
6990     env->regs[13] = frameptr;
6991 
6992     return !stacked_ok;
6993 }
6994 
6995 static void do_v7m_exception_exit(ARMCPU *cpu)
6996 {
6997     CPUARMState *env = &cpu->env;
6998     uint32_t excret;
6999     uint32_t xpsr;
7000     bool ufault = false;
7001     bool sfault = false;
7002     bool return_to_sp_process;
7003     bool return_to_handler;
7004     bool rettobase = false;
7005     bool exc_secure = false;
7006     bool return_to_secure;
7007 
7008     /* If we're not in Handler mode then jumps to magic exception-exit
7009      * addresses don't have magic behaviour. However for the v8M
7010      * security extensions the magic secure-function-return has to
7011      * work in thread mode too, so to avoid doing an extra check in
7012      * the generated code we allow exception-exit magic to also cause the
7013      * internal exception and bring us here in thread mode. Correct code
7014      * will never try to do this (the following insn fetch will always
7015      * fault) so we the overhead of having taken an unnecessary exception
7016      * doesn't matter.
7017      */
7018     if (!arm_v7m_is_handler_mode(env)) {
7019         return;
7020     }
7021 
7022     /* In the spec pseudocode ExceptionReturn() is called directly
7023      * from BXWritePC() and gets the full target PC value including
7024      * bit zero. In QEMU's implementation we treat it as a normal
7025      * jump-to-register (which is then caught later on), and so split
7026      * the target value up between env->regs[15] and env->thumb in
7027      * gen_bx(). Reconstitute it.
7028      */
7029     excret = env->regs[15];
7030     if (env->thumb) {
7031         excret |= 1;
7032     }
7033 
7034     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
7035                   " previous exception %d\n",
7036                   excret, env->v7m.exception);
7037 
7038     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
7039         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
7040                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
7041                       excret);
7042     }
7043 
7044     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7045         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7046          * we pick which FAULTMASK to clear.
7047          */
7048         if (!env->v7m.secure &&
7049             ((excret & R_V7M_EXCRET_ES_MASK) ||
7050              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
7051             sfault = 1;
7052             /* For all other purposes, treat ES as 0 (R_HXSR) */
7053             excret &= ~R_V7M_EXCRET_ES_MASK;
7054         }
7055         exc_secure = excret & R_V7M_EXCRET_ES_MASK;
7056     }
7057 
7058     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
7059         /* Auto-clear FAULTMASK on return from other than NMI.
7060          * If the security extension is implemented then this only
7061          * happens if the raw execution priority is >= 0; the
7062          * value of the ES bit in the exception return value indicates
7063          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7064          */
7065         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7066             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
7067                 env->v7m.faultmask[exc_secure] = 0;
7068             }
7069         } else {
7070             env->v7m.faultmask[M_REG_NS] = 0;
7071         }
7072     }
7073 
7074     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
7075                                      exc_secure)) {
7076     case -1:
7077         /* attempt to exit an exception that isn't active */
7078         ufault = true;
7079         break;
7080     case 0:
7081         /* still an irq active now */
7082         break;
7083     case 1:
7084         /* we returned to base exception level, no nesting.
7085          * (In the pseudocode this is written using "NestedActivation != 1"
7086          * where we have 'rettobase == false'.)
7087          */
7088         rettobase = true;
7089         break;
7090     default:
7091         g_assert_not_reached();
7092     }
7093 
7094     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
7095     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7096     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
7097         (excret & R_V7M_EXCRET_S_MASK);
7098 
7099     if (arm_feature(env, ARM_FEATURE_V8)) {
7100         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
7101             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7102              * we choose to take the UsageFault.
7103              */
7104             if ((excret & R_V7M_EXCRET_S_MASK) ||
7105                 (excret & R_V7M_EXCRET_ES_MASK) ||
7106                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
7107                 ufault = true;
7108             }
7109         }
7110         if (excret & R_V7M_EXCRET_RES0_MASK) {
7111             ufault = true;
7112         }
7113     } else {
7114         /* For v7M we only recognize certain combinations of the low bits */
7115         switch (excret & 0xf) {
7116         case 1: /* Return to Handler */
7117             break;
7118         case 13: /* Return to Thread using Process stack */
7119         case 9: /* Return to Thread using Main stack */
7120             /* We only need to check NONBASETHRDENA for v7M, because in
7121              * v8M this bit does not exist (it is RES1).
7122              */
7123             if (!rettobase &&
7124                 !(env->v7m.ccr[env->v7m.secure] &
7125                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
7126                 ufault = true;
7127             }
7128             break;
7129         default:
7130             ufault = true;
7131         }
7132     }
7133 
7134     /*
7135      * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7136      * Handler mode (and will be until we write the new XPSR.Interrupt
7137      * field) this does not switch around the current stack pointer.
7138      * We must do this before we do any kind of tailchaining, including
7139      * for the derived exceptions on integrity check failures, or we will
7140      * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7141      */
7142     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7143 
7144     if (sfault) {
7145         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
7146         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7147         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7148                       "stackframe: failed EXC_RETURN.ES validity check\n");
7149         v7m_exception_taken(cpu, excret, true, false);
7150         return;
7151     }
7152 
7153     if (ufault) {
7154         /* Bad exception return: instead of popping the exception
7155          * stack, directly take a usage fault on the current stack.
7156          */
7157         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7158         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7159         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7160                       "stackframe: failed exception return integrity check\n");
7161         v7m_exception_taken(cpu, excret, true, false);
7162         return;
7163     }
7164 
7165     /*
7166      * Tailchaining: if there is currently a pending exception that
7167      * is high enough priority to preempt execution at the level we're
7168      * about to return to, then just directly take that exception now,
7169      * avoiding an unstack-and-then-stack. Note that now we have
7170      * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7171      * our current execution priority is already the execution priority we are
7172      * returning to -- none of the state we would unstack or set based on
7173      * the EXCRET value affects it.
7174      */
7175     if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
7176         qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
7177         v7m_exception_taken(cpu, excret, true, false);
7178         return;
7179     }
7180 
7181     switch_v7m_security_state(env, return_to_secure);
7182 
7183     {
7184         /* The stack pointer we should be reading the exception frame from
7185          * depends on bits in the magic exception return type value (and
7186          * for v8M isn't necessarily the stack pointer we will eventually
7187          * end up resuming execution with). Get a pointer to the location
7188          * in the CPU state struct where the SP we need is currently being
7189          * stored; we will use and modify it in place.
7190          * We use this limited C variable scope so we don't accidentally
7191          * use 'frame_sp_p' after we do something that makes it invalid.
7192          */
7193         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
7194                                               return_to_secure,
7195                                               !return_to_handler,
7196                                               return_to_sp_process);
7197         uint32_t frameptr = *frame_sp_p;
7198         bool pop_ok = true;
7199         ARMMMUIdx mmu_idx;
7200         bool return_to_priv = return_to_handler ||
7201             !(env->v7m.control[return_to_secure] & R_V7M_CONTROL_NPRIV_MASK);
7202 
7203         mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
7204                                                         return_to_priv);
7205 
7206         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
7207             arm_feature(env, ARM_FEATURE_V8)) {
7208             qemu_log_mask(LOG_GUEST_ERROR,
7209                           "M profile exception return with non-8-aligned SP "
7210                           "for destination state is UNPREDICTABLE\n");
7211         }
7212 
7213         /* Do we need to pop callee-saved registers? */
7214         if (return_to_secure &&
7215             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
7216              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
7217             uint32_t expected_sig = 0xfefa125b;
7218             uint32_t actual_sig;
7219 
7220             pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx);
7221 
7222             if (pop_ok && expected_sig != actual_sig) {
7223                 /* Take a SecureFault on the current stack */
7224                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
7225                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7226                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
7227                               "stackframe: failed exception return integrity "
7228                               "signature check\n");
7229                 v7m_exception_taken(cpu, excret, true, false);
7230                 return;
7231             }
7232 
7233             pop_ok = pop_ok &&
7234                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7235                 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
7236                 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
7237                 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
7238                 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
7239                 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
7240                 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
7241                 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
7242                 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7243 
7244             frameptr += 0x28;
7245         }
7246 
7247         /* Pop registers */
7248         pop_ok = pop_ok &&
7249             v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
7250             v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
7251             v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
7252             v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
7253             v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
7254             v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
7255             v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
7256             v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
7257 
7258         if (!pop_ok) {
7259             /* v7m_stack_read() pended a fault, so take it (as a tail
7260              * chained exception on the same stack frame)
7261              */
7262             qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
7263             v7m_exception_taken(cpu, excret, true, false);
7264             return;
7265         }
7266 
7267         /* Returning from an exception with a PC with bit 0 set is defined
7268          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7269          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7270          * the lsbit, and there are several RTOSes out there which incorrectly
7271          * assume the r15 in the stack frame should be a Thumb-style "lsbit
7272          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7273          * complain about the badly behaved guest.
7274          */
7275         if (env->regs[15] & 1) {
7276             env->regs[15] &= ~1U;
7277             if (!arm_feature(env, ARM_FEATURE_V8)) {
7278                 qemu_log_mask(LOG_GUEST_ERROR,
7279                               "M profile return from interrupt with misaligned "
7280                               "PC is UNPREDICTABLE on v7M\n");
7281             }
7282         }
7283 
7284         if (arm_feature(env, ARM_FEATURE_V8)) {
7285             /* For v8M we have to check whether the xPSR exception field
7286              * matches the EXCRET value for return to handler/thread
7287              * before we commit to changing the SP and xPSR.
7288              */
7289             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
7290             if (return_to_handler != will_be_handler) {
7291                 /* Take an INVPC UsageFault on the current stack.
7292                  * By this point we will have switched to the security state
7293                  * for the background state, so this UsageFault will target
7294                  * that state.
7295                  */
7296                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7297                                         env->v7m.secure);
7298                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7299                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
7300                               "stackframe: failed exception return integrity "
7301                               "check\n");
7302                 v7m_exception_taken(cpu, excret, true, false);
7303                 return;
7304             }
7305         }
7306 
7307         /* Commit to consuming the stack frame */
7308         frameptr += 0x20;
7309         /* Undo stack alignment (the SPREALIGN bit indicates that the original
7310          * pre-exception SP was not 8-aligned and we added a padding word to
7311          * align it, so we undo this by ORing in the bit that increases it
7312          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7313          * would work too but a logical OR is how the pseudocode specifies it.)
7314          */
7315         if (xpsr & XPSR_SPREALIGN) {
7316             frameptr |= 4;
7317         }
7318         *frame_sp_p = frameptr;
7319     }
7320     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7321     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7322 
7323     /* The restored xPSR exception field will be zero if we're
7324      * resuming in Thread mode. If that doesn't match what the
7325      * exception return excret specified then this is a UsageFault.
7326      * v7M requires we make this check here; v8M did it earlier.
7327      */
7328     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7329         /* Take an INVPC UsageFault by pushing the stack again;
7330          * we know we're v7M so this is never a Secure UsageFault.
7331          */
7332         bool ignore_stackfaults;
7333 
7334         assert(!arm_feature(env, ARM_FEATURE_V8));
7335         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7336         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7337         ignore_stackfaults = v7m_push_stack(cpu);
7338         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
7339                       "failed exception return integrity check\n");
7340         v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7341         return;
7342     }
7343 
7344     /* Otherwise, we have a successful exception exit. */
7345     arm_clear_exclusive(env);
7346     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
7347 }
7348 
7349 static bool do_v7m_function_return(ARMCPU *cpu)
7350 {
7351     /* v8M security extensions magic function return.
7352      * We may either:
7353      *  (1) throw an exception (longjump)
7354      *  (2) return true if we successfully handled the function return
7355      *  (3) return false if we failed a consistency check and have
7356      *      pended a UsageFault that needs to be taken now
7357      *
7358      * At this point the magic return value is split between env->regs[15]
7359      * and env->thumb. We don't bother to reconstitute it because we don't
7360      * need it (all values are handled the same way).
7361      */
7362     CPUARMState *env = &cpu->env;
7363     uint32_t newpc, newpsr, newpsr_exc;
7364 
7365     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
7366 
7367     {
7368         bool threadmode, spsel;
7369         TCGMemOpIdx oi;
7370         ARMMMUIdx mmu_idx;
7371         uint32_t *frame_sp_p;
7372         uint32_t frameptr;
7373 
7374         /* Pull the return address and IPSR from the Secure stack */
7375         threadmode = !arm_v7m_is_handler_mode(env);
7376         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
7377 
7378         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
7379         frameptr = *frame_sp_p;
7380 
7381         /* These loads may throw an exception (for MPU faults). We want to
7382          * do them as secure, so work out what MMU index that is.
7383          */
7384         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7385         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
7386         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
7387         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
7388 
7389         /* Consistency checks on new IPSR */
7390         newpsr_exc = newpsr & XPSR_EXCP;
7391         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
7392               (env->v7m.exception == 1 && newpsr_exc != 0))) {
7393             /* Pend the fault and tell our caller to take it */
7394             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7395             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
7396                                     env->v7m.secure);
7397             qemu_log_mask(CPU_LOG_INT,
7398                           "...taking INVPC UsageFault: "
7399                           "IPSR consistency check failed\n");
7400             return false;
7401         }
7402 
7403         *frame_sp_p = frameptr + 8;
7404     }
7405 
7406     /* This invalidates frame_sp_p */
7407     switch_v7m_security_state(env, true);
7408     env->v7m.exception = newpsr_exc;
7409     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
7410     if (newpsr & XPSR_SFPA) {
7411         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
7412     }
7413     xpsr_write(env, 0, XPSR_IT);
7414     env->thumb = newpc & 1;
7415     env->regs[15] = newpc & ~1;
7416 
7417     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
7418     return true;
7419 }
7420 
7421 static void arm_log_exception(int idx)
7422 {
7423     if (qemu_loglevel_mask(CPU_LOG_INT)) {
7424         const char *exc = NULL;
7425         static const char * const excnames[] = {
7426             [EXCP_UDEF] = "Undefined Instruction",
7427             [EXCP_SWI] = "SVC",
7428             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
7429             [EXCP_DATA_ABORT] = "Data Abort",
7430             [EXCP_IRQ] = "IRQ",
7431             [EXCP_FIQ] = "FIQ",
7432             [EXCP_BKPT] = "Breakpoint",
7433             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
7434             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
7435             [EXCP_HVC] = "Hypervisor Call",
7436             [EXCP_HYP_TRAP] = "Hypervisor Trap",
7437             [EXCP_SMC] = "Secure Monitor Call",
7438             [EXCP_VIRQ] = "Virtual IRQ",
7439             [EXCP_VFIQ] = "Virtual FIQ",
7440             [EXCP_SEMIHOST] = "Semihosting call",
7441             [EXCP_NOCP] = "v7M NOCP UsageFault",
7442             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
7443         };
7444 
7445         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
7446             exc = excnames[idx];
7447         }
7448         if (!exc) {
7449             exc = "unknown";
7450         }
7451         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
7452     }
7453 }
7454 
7455 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
7456                                uint32_t addr, uint16_t *insn)
7457 {
7458     /* Load a 16-bit portion of a v7M instruction, returning true on success,
7459      * or false on failure (in which case we will have pended the appropriate
7460      * exception).
7461      * We need to do the instruction fetch's MPU and SAU checks
7462      * like this because there is no MMU index that would allow
7463      * doing the load with a single function call. Instead we must
7464      * first check that the security attributes permit the load
7465      * and that they don't mismatch on the two halves of the instruction,
7466      * and then we do the load as a secure load (ie using the security
7467      * attributes of the address, not the CPU, as architecturally required).
7468      */
7469     CPUState *cs = CPU(cpu);
7470     CPUARMState *env = &cpu->env;
7471     V8M_SAttributes sattrs = {};
7472     MemTxAttrs attrs = {};
7473     ARMMMUFaultInfo fi = {};
7474     MemTxResult txres;
7475     target_ulong page_size;
7476     hwaddr physaddr;
7477     int prot;
7478 
7479     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
7480     if (!sattrs.nsc || sattrs.ns) {
7481         /* This must be the second half of the insn, and it straddles a
7482          * region boundary with the second half not being S&NSC.
7483          */
7484         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7485         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7486         qemu_log_mask(CPU_LOG_INT,
7487                       "...really SecureFault with SFSR.INVEP\n");
7488         return false;
7489     }
7490     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7491                       &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7492         /* the MPU lookup failed */
7493         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7494         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
7495         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
7496         return false;
7497     }
7498     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
7499                                  attrs, &txres);
7500     if (txres != MEMTX_OK) {
7501         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7502         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7503         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
7504         return false;
7505     }
7506     return true;
7507 }
7508 
7509 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
7510 {
7511     /* Check whether this attempt to execute code in a Secure & NS-Callable
7512      * memory region is for an SG instruction; if so, then emulate the
7513      * effect of the SG instruction and return true. Otherwise pend
7514      * the correct kind of exception and return false.
7515      */
7516     CPUARMState *env = &cpu->env;
7517     ARMMMUIdx mmu_idx;
7518     uint16_t insn;
7519 
7520     /* We should never get here unless get_phys_addr_pmsav8() caused
7521      * an exception for NS executing in S&NSC memory.
7522      */
7523     assert(!env->v7m.secure);
7524     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7525 
7526     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7527     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7528 
7529     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7530         return false;
7531     }
7532 
7533     if (!env->thumb) {
7534         goto gen_invep;
7535     }
7536 
7537     if (insn != 0xe97f) {
7538         /* Not an SG instruction first half (we choose the IMPDEF
7539          * early-SG-check option).
7540          */
7541         goto gen_invep;
7542     }
7543 
7544     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7545         return false;
7546     }
7547 
7548     if (insn != 0xe97f) {
7549         /* Not an SG instruction second half (yes, both halves of the SG
7550          * insn have the same hex value)
7551          */
7552         goto gen_invep;
7553     }
7554 
7555     /* OK, we have confirmed that we really have an SG instruction.
7556      * We know we're NS in S memory so don't need to repeat those checks.
7557      */
7558     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7559                   ", executing it\n", env->regs[15]);
7560     env->regs[14] &= ~1;
7561     switch_v7m_security_state(env, true);
7562     xpsr_write(env, 0, XPSR_IT);
7563     env->regs[15] += 4;
7564     return true;
7565 
7566 gen_invep:
7567     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7568     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7569     qemu_log_mask(CPU_LOG_INT,
7570                   "...really SecureFault with SFSR.INVEP\n");
7571     return false;
7572 }
7573 
7574 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7575 {
7576     ARMCPU *cpu = ARM_CPU(cs);
7577     CPUARMState *env = &cpu->env;
7578     uint32_t lr;
7579     bool ignore_stackfaults;
7580 
7581     arm_log_exception(cs->exception_index);
7582 
7583     /* For exceptions we just mark as pending on the NVIC, and let that
7584        handle it.  */
7585     switch (cs->exception_index) {
7586     case EXCP_UDEF:
7587         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7588         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7589         break;
7590     case EXCP_NOCP:
7591         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7592         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7593         break;
7594     case EXCP_INVSTATE:
7595         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7596         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7597         break;
7598     case EXCP_SWI:
7599         /* The PC already points to the next instruction.  */
7600         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7601         break;
7602     case EXCP_PREFETCH_ABORT:
7603     case EXCP_DATA_ABORT:
7604         /* Note that for M profile we don't have a guest facing FSR, but
7605          * the env->exception.fsr will be populated by the code that
7606          * raises the fault, in the A profile short-descriptor format.
7607          */
7608         switch (env->exception.fsr & 0xf) {
7609         case M_FAKE_FSR_NSC_EXEC:
7610             /* Exception generated when we try to execute code at an address
7611              * which is marked as Secure & Non-Secure Callable and the CPU
7612              * is in the Non-Secure state. The only instruction which can
7613              * be executed like this is SG (and that only if both halves of
7614              * the SG instruction have the same security attributes.)
7615              * Everything else must generate an INVEP SecureFault, so we
7616              * emulate the SG instruction here.
7617              */
7618             if (v7m_handle_execute_nsc(cpu)) {
7619                 return;
7620             }
7621             break;
7622         case M_FAKE_FSR_SFAULT:
7623             /* Various flavours of SecureFault for attempts to execute or
7624              * access data in the wrong security state.
7625              */
7626             switch (cs->exception_index) {
7627             case EXCP_PREFETCH_ABORT:
7628                 if (env->v7m.secure) {
7629                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7630                     qemu_log_mask(CPU_LOG_INT,
7631                                   "...really SecureFault with SFSR.INVTRAN\n");
7632                 } else {
7633                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7634                     qemu_log_mask(CPU_LOG_INT,
7635                                   "...really SecureFault with SFSR.INVEP\n");
7636                 }
7637                 break;
7638             case EXCP_DATA_ABORT:
7639                 /* This must be an NS access to S memory */
7640                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7641                 qemu_log_mask(CPU_LOG_INT,
7642                               "...really SecureFault with SFSR.AUVIOL\n");
7643                 break;
7644             }
7645             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7646             break;
7647         case 0x8: /* External Abort */
7648             switch (cs->exception_index) {
7649             case EXCP_PREFETCH_ABORT:
7650                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7651                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7652                 break;
7653             case EXCP_DATA_ABORT:
7654                 env->v7m.cfsr[M_REG_NS] |=
7655                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7656                 env->v7m.bfar = env->exception.vaddress;
7657                 qemu_log_mask(CPU_LOG_INT,
7658                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7659                               env->v7m.bfar);
7660                 break;
7661             }
7662             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7663             break;
7664         default:
7665             /* All other FSR values are either MPU faults or "can't happen
7666              * for M profile" cases.
7667              */
7668             switch (cs->exception_index) {
7669             case EXCP_PREFETCH_ABORT:
7670                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7671                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7672                 break;
7673             case EXCP_DATA_ABORT:
7674                 env->v7m.cfsr[env->v7m.secure] |=
7675                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7676                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7677                 qemu_log_mask(CPU_LOG_INT,
7678                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7679                               env->v7m.mmfar[env->v7m.secure]);
7680                 break;
7681             }
7682             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7683                                     env->v7m.secure);
7684             break;
7685         }
7686         break;
7687     case EXCP_BKPT:
7688         if (semihosting_enabled()) {
7689             int nr;
7690             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7691             if (nr == 0xab) {
7692                 env->regs[15] += 2;
7693                 qemu_log_mask(CPU_LOG_INT,
7694                               "...handling as semihosting call 0x%x\n",
7695                               env->regs[0]);
7696                 env->regs[0] = do_arm_semihosting(env);
7697                 return;
7698             }
7699         }
7700         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7701         break;
7702     case EXCP_IRQ:
7703         break;
7704     case EXCP_EXCEPTION_EXIT:
7705         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7706             /* Must be v8M security extension function return */
7707             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7708             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7709             if (do_v7m_function_return(cpu)) {
7710                 return;
7711             }
7712         } else {
7713             do_v7m_exception_exit(cpu);
7714             return;
7715         }
7716         break;
7717     default:
7718         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7719         return; /* Never happens.  Keep compiler happy.  */
7720     }
7721 
7722     if (arm_feature(env, ARM_FEATURE_V8)) {
7723         lr = R_V7M_EXCRET_RES1_MASK |
7724             R_V7M_EXCRET_DCRS_MASK |
7725             R_V7M_EXCRET_FTYPE_MASK;
7726         /* The S bit indicates whether we should return to Secure
7727          * or NonSecure (ie our current state).
7728          * The ES bit indicates whether we're taking this exception
7729          * to Secure or NonSecure (ie our target state). We set it
7730          * later, in v7m_exception_taken().
7731          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7732          * This corresponds to the ARM ARM pseudocode for v8M setting
7733          * some LR bits in PushStack() and some in ExceptionTaken();
7734          * the distinction matters for the tailchain cases where we
7735          * can take an exception without pushing the stack.
7736          */
7737         if (env->v7m.secure) {
7738             lr |= R_V7M_EXCRET_S_MASK;
7739         }
7740     } else {
7741         lr = R_V7M_EXCRET_RES1_MASK |
7742             R_V7M_EXCRET_S_MASK |
7743             R_V7M_EXCRET_DCRS_MASK |
7744             R_V7M_EXCRET_FTYPE_MASK |
7745             R_V7M_EXCRET_ES_MASK;
7746         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7747             lr |= R_V7M_EXCRET_SPSEL_MASK;
7748         }
7749     }
7750     if (!arm_v7m_is_handler_mode(env)) {
7751         lr |= R_V7M_EXCRET_MODE_MASK;
7752     }
7753 
7754     ignore_stackfaults = v7m_push_stack(cpu);
7755     v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7756 }
7757 
7758 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7759  * register set.  This is necessary when switching between AArch32 and AArch64
7760  * execution state.
7761  */
7762 void aarch64_sync_32_to_64(CPUARMState *env)
7763 {
7764     int i;
7765     uint32_t mode = env->uncached_cpsr & CPSR_M;
7766 
7767     /* We can blanket copy R[0:7] to X[0:7] */
7768     for (i = 0; i < 8; i++) {
7769         env->xregs[i] = env->regs[i];
7770     }
7771 
7772     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7773      * Otherwise, they come from the banked user regs.
7774      */
7775     if (mode == ARM_CPU_MODE_FIQ) {
7776         for (i = 8; i < 13; i++) {
7777             env->xregs[i] = env->usr_regs[i - 8];
7778         }
7779     } else {
7780         for (i = 8; i < 13; i++) {
7781             env->xregs[i] = env->regs[i];
7782         }
7783     }
7784 
7785     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7786      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7787      * from the mode banked register.
7788      */
7789     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7790         env->xregs[13] = env->regs[13];
7791         env->xregs[14] = env->regs[14];
7792     } else {
7793         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7794         /* HYP is an exception in that it is copied from r14 */
7795         if (mode == ARM_CPU_MODE_HYP) {
7796             env->xregs[14] = env->regs[14];
7797         } else {
7798             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7799         }
7800     }
7801 
7802     if (mode == ARM_CPU_MODE_HYP) {
7803         env->xregs[15] = env->regs[13];
7804     } else {
7805         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7806     }
7807 
7808     if (mode == ARM_CPU_MODE_IRQ) {
7809         env->xregs[16] = env->regs[14];
7810         env->xregs[17] = env->regs[13];
7811     } else {
7812         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7813         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7814     }
7815 
7816     if (mode == ARM_CPU_MODE_SVC) {
7817         env->xregs[18] = env->regs[14];
7818         env->xregs[19] = env->regs[13];
7819     } else {
7820         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7821         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7822     }
7823 
7824     if (mode == ARM_CPU_MODE_ABT) {
7825         env->xregs[20] = env->regs[14];
7826         env->xregs[21] = env->regs[13];
7827     } else {
7828         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7829         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7830     }
7831 
7832     if (mode == ARM_CPU_MODE_UND) {
7833         env->xregs[22] = env->regs[14];
7834         env->xregs[23] = env->regs[13];
7835     } else {
7836         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7837         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7838     }
7839 
7840     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7841      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7842      * FIQ bank for r8-r14.
7843      */
7844     if (mode == ARM_CPU_MODE_FIQ) {
7845         for (i = 24; i < 31; i++) {
7846             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7847         }
7848     } else {
7849         for (i = 24; i < 29; i++) {
7850             env->xregs[i] = env->fiq_regs[i - 24];
7851         }
7852         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7853         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7854     }
7855 
7856     env->pc = env->regs[15];
7857 }
7858 
7859 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7860  * register set.  This is necessary when switching between AArch32 and AArch64
7861  * execution state.
7862  */
7863 void aarch64_sync_64_to_32(CPUARMState *env)
7864 {
7865     int i;
7866     uint32_t mode = env->uncached_cpsr & CPSR_M;
7867 
7868     /* We can blanket copy X[0:7] to R[0:7] */
7869     for (i = 0; i < 8; i++) {
7870         env->regs[i] = env->xregs[i];
7871     }
7872 
7873     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7874      * Otherwise, we copy x8-x12 into the banked user regs.
7875      */
7876     if (mode == ARM_CPU_MODE_FIQ) {
7877         for (i = 8; i < 13; i++) {
7878             env->usr_regs[i - 8] = env->xregs[i];
7879         }
7880     } else {
7881         for (i = 8; i < 13; i++) {
7882             env->regs[i] = env->xregs[i];
7883         }
7884     }
7885 
7886     /* Registers r13 & r14 depend on the current mode.
7887      * If we are in a given mode, we copy the corresponding x registers to r13
7888      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7889      * for the mode.
7890      */
7891     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7892         env->regs[13] = env->xregs[13];
7893         env->regs[14] = env->xregs[14];
7894     } else {
7895         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7896 
7897         /* HYP is an exception in that it does not have its own banked r14 but
7898          * shares the USR r14
7899          */
7900         if (mode == ARM_CPU_MODE_HYP) {
7901             env->regs[14] = env->xregs[14];
7902         } else {
7903             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7904         }
7905     }
7906 
7907     if (mode == ARM_CPU_MODE_HYP) {
7908         env->regs[13] = env->xregs[15];
7909     } else {
7910         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7911     }
7912 
7913     if (mode == ARM_CPU_MODE_IRQ) {
7914         env->regs[14] = env->xregs[16];
7915         env->regs[13] = env->xregs[17];
7916     } else {
7917         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7918         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7919     }
7920 
7921     if (mode == ARM_CPU_MODE_SVC) {
7922         env->regs[14] = env->xregs[18];
7923         env->regs[13] = env->xregs[19];
7924     } else {
7925         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7926         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7927     }
7928 
7929     if (mode == ARM_CPU_MODE_ABT) {
7930         env->regs[14] = env->xregs[20];
7931         env->regs[13] = env->xregs[21];
7932     } else {
7933         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7934         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7935     }
7936 
7937     if (mode == ARM_CPU_MODE_UND) {
7938         env->regs[14] = env->xregs[22];
7939         env->regs[13] = env->xregs[23];
7940     } else {
7941         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7942         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7943     }
7944 
7945     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7946      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7947      * FIQ bank for r8-r14.
7948      */
7949     if (mode == ARM_CPU_MODE_FIQ) {
7950         for (i = 24; i < 31; i++) {
7951             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7952         }
7953     } else {
7954         for (i = 24; i < 29; i++) {
7955             env->fiq_regs[i - 24] = env->xregs[i];
7956         }
7957         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7958         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7959     }
7960 
7961     env->regs[15] = env->pc;
7962 }
7963 
7964 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7965 {
7966     ARMCPU *cpu = ARM_CPU(cs);
7967     CPUARMState *env = &cpu->env;
7968     uint32_t addr;
7969     uint32_t mask;
7970     int new_mode;
7971     uint32_t offset;
7972     uint32_t moe;
7973 
7974     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7975     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7976     case EC_BREAKPOINT:
7977     case EC_BREAKPOINT_SAME_EL:
7978         moe = 1;
7979         break;
7980     case EC_WATCHPOINT:
7981     case EC_WATCHPOINT_SAME_EL:
7982         moe = 10;
7983         break;
7984     case EC_AA32_BKPT:
7985         moe = 3;
7986         break;
7987     case EC_VECTORCATCH:
7988         moe = 5;
7989         break;
7990     default:
7991         moe = 0;
7992         break;
7993     }
7994 
7995     if (moe) {
7996         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7997     }
7998 
7999     /* TODO: Vectored interrupt controller.  */
8000     switch (cs->exception_index) {
8001     case EXCP_UDEF:
8002         new_mode = ARM_CPU_MODE_UND;
8003         addr = 0x04;
8004         mask = CPSR_I;
8005         if (env->thumb)
8006             offset = 2;
8007         else
8008             offset = 4;
8009         break;
8010     case EXCP_SWI:
8011         new_mode = ARM_CPU_MODE_SVC;
8012         addr = 0x08;
8013         mask = CPSR_I;
8014         /* The PC already points to the next instruction.  */
8015         offset = 0;
8016         break;
8017     case EXCP_BKPT:
8018         /* Fall through to prefetch abort.  */
8019     case EXCP_PREFETCH_ABORT:
8020         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
8021         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
8022         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
8023                       env->exception.fsr, (uint32_t)env->exception.vaddress);
8024         new_mode = ARM_CPU_MODE_ABT;
8025         addr = 0x0c;
8026         mask = CPSR_A | CPSR_I;
8027         offset = 4;
8028         break;
8029     case EXCP_DATA_ABORT:
8030         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
8031         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
8032         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
8033                       env->exception.fsr,
8034                       (uint32_t)env->exception.vaddress);
8035         new_mode = ARM_CPU_MODE_ABT;
8036         addr = 0x10;
8037         mask = CPSR_A | CPSR_I;
8038         offset = 8;
8039         break;
8040     case EXCP_IRQ:
8041         new_mode = ARM_CPU_MODE_IRQ;
8042         addr = 0x18;
8043         /* Disable IRQ and imprecise data aborts.  */
8044         mask = CPSR_A | CPSR_I;
8045         offset = 4;
8046         if (env->cp15.scr_el3 & SCR_IRQ) {
8047             /* IRQ routed to monitor mode */
8048             new_mode = ARM_CPU_MODE_MON;
8049             mask |= CPSR_F;
8050         }
8051         break;
8052     case EXCP_FIQ:
8053         new_mode = ARM_CPU_MODE_FIQ;
8054         addr = 0x1c;
8055         /* Disable FIQ, IRQ and imprecise data aborts.  */
8056         mask = CPSR_A | CPSR_I | CPSR_F;
8057         if (env->cp15.scr_el3 & SCR_FIQ) {
8058             /* FIQ routed to monitor mode */
8059             new_mode = ARM_CPU_MODE_MON;
8060         }
8061         offset = 4;
8062         break;
8063     case EXCP_VIRQ:
8064         new_mode = ARM_CPU_MODE_IRQ;
8065         addr = 0x18;
8066         /* Disable IRQ and imprecise data aborts.  */
8067         mask = CPSR_A | CPSR_I;
8068         offset = 4;
8069         break;
8070     case EXCP_VFIQ:
8071         new_mode = ARM_CPU_MODE_FIQ;
8072         addr = 0x1c;
8073         /* Disable FIQ, IRQ and imprecise data aborts.  */
8074         mask = CPSR_A | CPSR_I | CPSR_F;
8075         offset = 4;
8076         break;
8077     case EXCP_SMC:
8078         new_mode = ARM_CPU_MODE_MON;
8079         addr = 0x08;
8080         mask = CPSR_A | CPSR_I | CPSR_F;
8081         offset = 0;
8082         break;
8083     default:
8084         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8085         return; /* Never happens.  Keep compiler happy.  */
8086     }
8087 
8088     if (new_mode == ARM_CPU_MODE_MON) {
8089         addr += env->cp15.mvbar;
8090     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
8091         /* High vectors. When enabled, base address cannot be remapped. */
8092         addr += 0xffff0000;
8093     } else {
8094         /* ARM v7 architectures provide a vector base address register to remap
8095          * the interrupt vector table.
8096          * This register is only followed in non-monitor mode, and is banked.
8097          * Note: only bits 31:5 are valid.
8098          */
8099         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
8100     }
8101 
8102     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
8103         env->cp15.scr_el3 &= ~SCR_NS;
8104     }
8105 
8106     switch_mode (env, new_mode);
8107     /* For exceptions taken to AArch32 we must clear the SS bit in both
8108      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8109      */
8110     env->uncached_cpsr &= ~PSTATE_SS;
8111     env->spsr = cpsr_read(env);
8112     /* Clear IT bits.  */
8113     env->condexec_bits = 0;
8114     /* Switch to the new mode, and to the correct instruction set.  */
8115     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8116     /* Set new mode endianness */
8117     env->uncached_cpsr &= ~CPSR_E;
8118     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8119         env->uncached_cpsr |= CPSR_E;
8120     }
8121     env->daif |= mask;
8122     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
8123      * and we should just guard the thumb mode on V4 */
8124     if (arm_feature(env, ARM_FEATURE_V4T)) {
8125         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8126     }
8127     env->regs[14] = env->regs[15] + offset;
8128     env->regs[15] = addr;
8129 }
8130 
8131 /* Handle exception entry to a target EL which is using AArch64 */
8132 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8133 {
8134     ARMCPU *cpu = ARM_CPU(cs);
8135     CPUARMState *env = &cpu->env;
8136     unsigned int new_el = env->exception.target_el;
8137     target_ulong addr = env->cp15.vbar_el[new_el];
8138     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
8139 
8140     if (arm_current_el(env) < new_el) {
8141         /* Entry vector offset depends on whether the implemented EL
8142          * immediately lower than the target level is using AArch32 or AArch64
8143          */
8144         bool is_aa64;
8145 
8146         switch (new_el) {
8147         case 3:
8148             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
8149             break;
8150         case 2:
8151             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
8152             break;
8153         case 1:
8154             is_aa64 = is_a64(env);
8155             break;
8156         default:
8157             g_assert_not_reached();
8158         }
8159 
8160         if (is_aa64) {
8161             addr += 0x400;
8162         } else {
8163             addr += 0x600;
8164         }
8165     } else if (pstate_read(env) & PSTATE_SP) {
8166         addr += 0x200;
8167     }
8168 
8169     switch (cs->exception_index) {
8170     case EXCP_PREFETCH_ABORT:
8171     case EXCP_DATA_ABORT:
8172         env->cp15.far_el[new_el] = env->exception.vaddress;
8173         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
8174                       env->cp15.far_el[new_el]);
8175         /* fall through */
8176     case EXCP_BKPT:
8177     case EXCP_UDEF:
8178     case EXCP_SWI:
8179     case EXCP_HVC:
8180     case EXCP_HYP_TRAP:
8181     case EXCP_SMC:
8182         env->cp15.esr_el[new_el] = env->exception.syndrome;
8183         break;
8184     case EXCP_IRQ:
8185     case EXCP_VIRQ:
8186         addr += 0x80;
8187         break;
8188     case EXCP_FIQ:
8189     case EXCP_VFIQ:
8190         addr += 0x100;
8191         break;
8192     case EXCP_SEMIHOST:
8193         qemu_log_mask(CPU_LOG_INT,
8194                       "...handling as semihosting call 0x%" PRIx64 "\n",
8195                       env->xregs[0]);
8196         env->xregs[0] = do_arm_semihosting(env);
8197         return;
8198     default:
8199         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
8200     }
8201 
8202     if (is_a64(env)) {
8203         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
8204         aarch64_save_sp(env, arm_current_el(env));
8205         env->elr_el[new_el] = env->pc;
8206     } else {
8207         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
8208         env->elr_el[new_el] = env->regs[15];
8209 
8210         aarch64_sync_32_to_64(env);
8211 
8212         env->condexec_bits = 0;
8213     }
8214     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
8215                   env->elr_el[new_el]);
8216 
8217     pstate_write(env, PSTATE_DAIF | new_mode);
8218     env->aarch64 = 1;
8219     aarch64_restore_sp(env, new_el);
8220 
8221     env->pc = addr;
8222 
8223     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
8224                   new_el, env->pc, pstate_read(env));
8225 }
8226 
8227 static inline bool check_for_semihosting(CPUState *cs)
8228 {
8229     /* Check whether this exception is a semihosting call; if so
8230      * then handle it and return true; otherwise return false.
8231      */
8232     ARMCPU *cpu = ARM_CPU(cs);
8233     CPUARMState *env = &cpu->env;
8234 
8235     if (is_a64(env)) {
8236         if (cs->exception_index == EXCP_SEMIHOST) {
8237             /* This is always the 64-bit semihosting exception.
8238              * The "is this usermode" and "is semihosting enabled"
8239              * checks have been done at translate time.
8240              */
8241             qemu_log_mask(CPU_LOG_INT,
8242                           "...handling as semihosting call 0x%" PRIx64 "\n",
8243                           env->xregs[0]);
8244             env->xregs[0] = do_arm_semihosting(env);
8245             return true;
8246         }
8247         return false;
8248     } else {
8249         uint32_t imm;
8250 
8251         /* Only intercept calls from privileged modes, to provide some
8252          * semblance of security.
8253          */
8254         if (cs->exception_index != EXCP_SEMIHOST &&
8255             (!semihosting_enabled() ||
8256              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8257             return false;
8258         }
8259 
8260         switch (cs->exception_index) {
8261         case EXCP_SEMIHOST:
8262             /* This is always a semihosting call; the "is this usermode"
8263              * and "is semihosting enabled" checks have been done at
8264              * translate time.
8265              */
8266             break;
8267         case EXCP_SWI:
8268             /* Check for semihosting interrupt.  */
8269             if (env->thumb) {
8270                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8271                     & 0xff;
8272                 if (imm == 0xab) {
8273                     break;
8274                 }
8275             } else {
8276                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8277                     & 0xffffff;
8278                 if (imm == 0x123456) {
8279                     break;
8280                 }
8281             }
8282             return false;
8283         case EXCP_BKPT:
8284             /* See if this is a semihosting syscall.  */
8285             if (env->thumb) {
8286                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8287                     & 0xff;
8288                 if (imm == 0xab) {
8289                     env->regs[15] += 2;
8290                     break;
8291                 }
8292             }
8293             return false;
8294         default:
8295             return false;
8296         }
8297 
8298         qemu_log_mask(CPU_LOG_INT,
8299                       "...handling as semihosting call 0x%x\n",
8300                       env->regs[0]);
8301         env->regs[0] = do_arm_semihosting(env);
8302         return true;
8303     }
8304 }
8305 
8306 /* Handle a CPU exception for A and R profile CPUs.
8307  * Do any appropriate logging, handle PSCI calls, and then hand off
8308  * to the AArch64-entry or AArch32-entry function depending on the
8309  * target exception level's register width.
8310  */
8311 void arm_cpu_do_interrupt(CPUState *cs)
8312 {
8313     ARMCPU *cpu = ARM_CPU(cs);
8314     CPUARMState *env = &cpu->env;
8315     unsigned int new_el = env->exception.target_el;
8316 
8317     assert(!arm_feature(env, ARM_FEATURE_M));
8318 
8319     arm_log_exception(cs->exception_index);
8320     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
8321                   new_el);
8322     if (qemu_loglevel_mask(CPU_LOG_INT)
8323         && !excp_is_internal(cs->exception_index)) {
8324         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8325                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
8326                       env->exception.syndrome);
8327     }
8328 
8329     if (arm_is_psci_call(cpu, cs->exception_index)) {
8330         arm_handle_psci_call(cpu);
8331         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
8332         return;
8333     }
8334 
8335     /* Semihosting semantics depend on the register width of the
8336      * code that caused the exception, not the target exception level,
8337      * so must be handled here.
8338      */
8339     if (check_for_semihosting(cs)) {
8340         return;
8341     }
8342 
8343     /* Hooks may change global state so BQL should be held, also the
8344      * BQL needs to be held for any modification of
8345      * cs->interrupt_request.
8346      */
8347     g_assert(qemu_mutex_iothread_locked());
8348 
8349     arm_call_pre_el_change_hook(cpu);
8350 
8351     assert(!excp_is_internal(cs->exception_index));
8352     if (arm_el_is_aa64(env, new_el)) {
8353         arm_cpu_do_interrupt_aarch64(cs);
8354     } else {
8355         arm_cpu_do_interrupt_aarch32(cs);
8356     }
8357 
8358     arm_call_el_change_hook(cpu);
8359 
8360     if (!kvm_enabled()) {
8361         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
8362     }
8363 }
8364 
8365 /* Return the exception level which controls this address translation regime */
8366 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
8367 {
8368     switch (mmu_idx) {
8369     case ARMMMUIdx_S2NS:
8370     case ARMMMUIdx_S1E2:
8371         return 2;
8372     case ARMMMUIdx_S1E3:
8373         return 3;
8374     case ARMMMUIdx_S1SE0:
8375         return arm_el_is_aa64(env, 3) ? 1 : 3;
8376     case ARMMMUIdx_S1SE1:
8377     case ARMMMUIdx_S1NSE0:
8378     case ARMMMUIdx_S1NSE1:
8379     case ARMMMUIdx_MPrivNegPri:
8380     case ARMMMUIdx_MUserNegPri:
8381     case ARMMMUIdx_MPriv:
8382     case ARMMMUIdx_MUser:
8383     case ARMMMUIdx_MSPrivNegPri:
8384     case ARMMMUIdx_MSUserNegPri:
8385     case ARMMMUIdx_MSPriv:
8386     case ARMMMUIdx_MSUser:
8387         return 1;
8388     default:
8389         g_assert_not_reached();
8390     }
8391 }
8392 
8393 /* Return the SCTLR value which controls this address translation regime */
8394 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
8395 {
8396     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
8397 }
8398 
8399 /* Return true if the specified stage of address translation is disabled */
8400 static inline bool regime_translation_disabled(CPUARMState *env,
8401                                                ARMMMUIdx mmu_idx)
8402 {
8403     if (arm_feature(env, ARM_FEATURE_M)) {
8404         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8405                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
8406         case R_V7M_MPU_CTRL_ENABLE_MASK:
8407             /* Enabled, but not for HardFault and NMI */
8408             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8409         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
8410             /* Enabled for all cases */
8411             return false;
8412         case 0:
8413         default:
8414             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8415              * we warned about that in armv7m_nvic.c when the guest set it.
8416              */
8417             return true;
8418         }
8419     }
8420 
8421     if (mmu_idx == ARMMMUIdx_S2NS) {
8422         return (env->cp15.hcr_el2 & HCR_VM) == 0;
8423     }
8424 
8425     if (env->cp15.hcr_el2 & HCR_TGE) {
8426         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8427         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
8428             return true;
8429         }
8430     }
8431 
8432     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
8433 }
8434 
8435 static inline bool regime_translation_big_endian(CPUARMState *env,
8436                                                  ARMMMUIdx mmu_idx)
8437 {
8438     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
8439 }
8440 
8441 /* Return the TCR controlling this translation regime */
8442 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
8443 {
8444     if (mmu_idx == ARMMMUIdx_S2NS) {
8445         return &env->cp15.vtcr_el2;
8446     }
8447     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
8448 }
8449 
8450 /* Convert a possible stage1+2 MMU index into the appropriate
8451  * stage 1 MMU index
8452  */
8453 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
8454 {
8455     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8456         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
8457     }
8458     return mmu_idx;
8459 }
8460 
8461 /* Returns TBI0 value for current regime el */
8462 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
8463 {
8464     TCR *tcr;
8465     uint32_t el;
8466 
8467     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8468      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8469      */
8470     mmu_idx = stage_1_mmu_idx(mmu_idx);
8471 
8472     tcr = regime_tcr(env, mmu_idx);
8473     el = regime_el(env, mmu_idx);
8474 
8475     if (el > 1) {
8476         return extract64(tcr->raw_tcr, 20, 1);
8477     } else {
8478         return extract64(tcr->raw_tcr, 37, 1);
8479     }
8480 }
8481 
8482 /* Returns TBI1 value for current regime el */
8483 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
8484 {
8485     TCR *tcr;
8486     uint32_t el;
8487 
8488     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8489      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8490      */
8491     mmu_idx = stage_1_mmu_idx(mmu_idx);
8492 
8493     tcr = regime_tcr(env, mmu_idx);
8494     el = regime_el(env, mmu_idx);
8495 
8496     if (el > 1) {
8497         return 0;
8498     } else {
8499         return extract64(tcr->raw_tcr, 38, 1);
8500     }
8501 }
8502 
8503 /* Return the TTBR associated with this translation regime */
8504 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
8505                                    int ttbrn)
8506 {
8507     if (mmu_idx == ARMMMUIdx_S2NS) {
8508         return env->cp15.vttbr_el2;
8509     }
8510     if (ttbrn == 0) {
8511         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
8512     } else {
8513         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
8514     }
8515 }
8516 
8517 /* Return true if the translation regime is using LPAE format page tables */
8518 static inline bool regime_using_lpae_format(CPUARMState *env,
8519                                             ARMMMUIdx mmu_idx)
8520 {
8521     int el = regime_el(env, mmu_idx);
8522     if (el == 2 || arm_el_is_aa64(env, el)) {
8523         return true;
8524     }
8525     if (arm_feature(env, ARM_FEATURE_LPAE)
8526         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
8527         return true;
8528     }
8529     return false;
8530 }
8531 
8532 /* Returns true if the stage 1 translation regime is using LPAE format page
8533  * tables. Used when raising alignment exceptions, whose FSR changes depending
8534  * on whether the long or short descriptor format is in use. */
8535 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8536 {
8537     mmu_idx = stage_1_mmu_idx(mmu_idx);
8538 
8539     return regime_using_lpae_format(env, mmu_idx);
8540 }
8541 
8542 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8543 {
8544     switch (mmu_idx) {
8545     case ARMMMUIdx_S1SE0:
8546     case ARMMMUIdx_S1NSE0:
8547     case ARMMMUIdx_MUser:
8548     case ARMMMUIdx_MSUser:
8549     case ARMMMUIdx_MUserNegPri:
8550     case ARMMMUIdx_MSUserNegPri:
8551         return true;
8552     default:
8553         return false;
8554     case ARMMMUIdx_S12NSE0:
8555     case ARMMMUIdx_S12NSE1:
8556         g_assert_not_reached();
8557     }
8558 }
8559 
8560 /* Translate section/page access permissions to page
8561  * R/W protection flags
8562  *
8563  * @env:         CPUARMState
8564  * @mmu_idx:     MMU index indicating required translation regime
8565  * @ap:          The 3-bit access permissions (AP[2:0])
8566  * @domain_prot: The 2-bit domain access permissions
8567  */
8568 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8569                                 int ap, int domain_prot)
8570 {
8571     bool is_user = regime_is_user(env, mmu_idx);
8572 
8573     if (domain_prot == 3) {
8574         return PAGE_READ | PAGE_WRITE;
8575     }
8576 
8577     switch (ap) {
8578     case 0:
8579         if (arm_feature(env, ARM_FEATURE_V7)) {
8580             return 0;
8581         }
8582         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8583         case SCTLR_S:
8584             return is_user ? 0 : PAGE_READ;
8585         case SCTLR_R:
8586             return PAGE_READ;
8587         default:
8588             return 0;
8589         }
8590     case 1:
8591         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8592     case 2:
8593         if (is_user) {
8594             return PAGE_READ;
8595         } else {
8596             return PAGE_READ | PAGE_WRITE;
8597         }
8598     case 3:
8599         return PAGE_READ | PAGE_WRITE;
8600     case 4: /* Reserved.  */
8601         return 0;
8602     case 5:
8603         return is_user ? 0 : PAGE_READ;
8604     case 6:
8605         return PAGE_READ;
8606     case 7:
8607         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8608             return 0;
8609         }
8610         return PAGE_READ;
8611     default:
8612         g_assert_not_reached();
8613     }
8614 }
8615 
8616 /* Translate section/page access permissions to page
8617  * R/W protection flags.
8618  *
8619  * @ap:      The 2-bit simple AP (AP[2:1])
8620  * @is_user: TRUE if accessing from PL0
8621  */
8622 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8623 {
8624     switch (ap) {
8625     case 0:
8626         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8627     case 1:
8628         return PAGE_READ | PAGE_WRITE;
8629     case 2:
8630         return is_user ? 0 : PAGE_READ;
8631     case 3:
8632         return PAGE_READ;
8633     default:
8634         g_assert_not_reached();
8635     }
8636 }
8637 
8638 static inline int
8639 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8640 {
8641     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8642 }
8643 
8644 /* Translate S2 section/page access permissions to protection flags
8645  *
8646  * @env:     CPUARMState
8647  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8648  * @xn:      XN (execute-never) bit
8649  */
8650 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8651 {
8652     int prot = 0;
8653 
8654     if (s2ap & 1) {
8655         prot |= PAGE_READ;
8656     }
8657     if (s2ap & 2) {
8658         prot |= PAGE_WRITE;
8659     }
8660     if (!xn) {
8661         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8662             prot |= PAGE_EXEC;
8663         }
8664     }
8665     return prot;
8666 }
8667 
8668 /* Translate section/page access permissions to protection flags
8669  *
8670  * @env:     CPUARMState
8671  * @mmu_idx: MMU index indicating required translation regime
8672  * @is_aa64: TRUE if AArch64
8673  * @ap:      The 2-bit simple AP (AP[2:1])
8674  * @ns:      NS (non-secure) bit
8675  * @xn:      XN (execute-never) bit
8676  * @pxn:     PXN (privileged execute-never) bit
8677  */
8678 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8679                       int ap, int ns, int xn, int pxn)
8680 {
8681     bool is_user = regime_is_user(env, mmu_idx);
8682     int prot_rw, user_rw;
8683     bool have_wxn;
8684     int wxn = 0;
8685 
8686     assert(mmu_idx != ARMMMUIdx_S2NS);
8687 
8688     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8689     if (is_user) {
8690         prot_rw = user_rw;
8691     } else {
8692         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8693     }
8694 
8695     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8696         return prot_rw;
8697     }
8698 
8699     /* TODO have_wxn should be replaced with
8700      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8701      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8702      * compatible processors have EL2, which is required for [U]WXN.
8703      */
8704     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8705 
8706     if (have_wxn) {
8707         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8708     }
8709 
8710     if (is_aa64) {
8711         switch (regime_el(env, mmu_idx)) {
8712         case 1:
8713             if (!is_user) {
8714                 xn = pxn || (user_rw & PAGE_WRITE);
8715             }
8716             break;
8717         case 2:
8718         case 3:
8719             break;
8720         }
8721     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8722         switch (regime_el(env, mmu_idx)) {
8723         case 1:
8724         case 3:
8725             if (is_user) {
8726                 xn = xn || !(user_rw & PAGE_READ);
8727             } else {
8728                 int uwxn = 0;
8729                 if (have_wxn) {
8730                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8731                 }
8732                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8733                      (uwxn && (user_rw & PAGE_WRITE));
8734             }
8735             break;
8736         case 2:
8737             break;
8738         }
8739     } else {
8740         xn = wxn = 0;
8741     }
8742 
8743     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8744         return prot_rw;
8745     }
8746     return prot_rw | PAGE_EXEC;
8747 }
8748 
8749 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8750                                      uint32_t *table, uint32_t address)
8751 {
8752     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8753     TCR *tcr = regime_tcr(env, mmu_idx);
8754 
8755     if (address & tcr->mask) {
8756         if (tcr->raw_tcr & TTBCR_PD1) {
8757             /* Translation table walk disabled for TTBR1 */
8758             return false;
8759         }
8760         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8761     } else {
8762         if (tcr->raw_tcr & TTBCR_PD0) {
8763             /* Translation table walk disabled for TTBR0 */
8764             return false;
8765         }
8766         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8767     }
8768     *table |= (address >> 18) & 0x3ffc;
8769     return true;
8770 }
8771 
8772 /* Translate a S1 pagetable walk through S2 if needed.  */
8773 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8774                                hwaddr addr, MemTxAttrs txattrs,
8775                                ARMMMUFaultInfo *fi)
8776 {
8777     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8778         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8779         target_ulong s2size;
8780         hwaddr s2pa;
8781         int s2prot;
8782         int ret;
8783 
8784         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8785                                  &txattrs, &s2prot, &s2size, fi, NULL);
8786         if (ret) {
8787             assert(fi->type != ARMFault_None);
8788             fi->s2addr = addr;
8789             fi->stage2 = true;
8790             fi->s1ptw = true;
8791             return ~0;
8792         }
8793         addr = s2pa;
8794     }
8795     return addr;
8796 }
8797 
8798 /* All loads done in the course of a page table walk go through here. */
8799 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8800                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8801 {
8802     ARMCPU *cpu = ARM_CPU(cs);
8803     CPUARMState *env = &cpu->env;
8804     MemTxAttrs attrs = {};
8805     MemTxResult result = MEMTX_OK;
8806     AddressSpace *as;
8807     uint32_t data;
8808 
8809     attrs.secure = is_secure;
8810     as = arm_addressspace(cs, attrs);
8811     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8812     if (fi->s1ptw) {
8813         return 0;
8814     }
8815     if (regime_translation_big_endian(env, mmu_idx)) {
8816         data = address_space_ldl_be(as, addr, attrs, &result);
8817     } else {
8818         data = address_space_ldl_le(as, addr, attrs, &result);
8819     }
8820     if (result == MEMTX_OK) {
8821         return data;
8822     }
8823     fi->type = ARMFault_SyncExternalOnWalk;
8824     fi->ea = arm_extabort_type(result);
8825     return 0;
8826 }
8827 
8828 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8829                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8830 {
8831     ARMCPU *cpu = ARM_CPU(cs);
8832     CPUARMState *env = &cpu->env;
8833     MemTxAttrs attrs = {};
8834     MemTxResult result = MEMTX_OK;
8835     AddressSpace *as;
8836     uint64_t data;
8837 
8838     attrs.secure = is_secure;
8839     as = arm_addressspace(cs, attrs);
8840     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8841     if (fi->s1ptw) {
8842         return 0;
8843     }
8844     if (regime_translation_big_endian(env, mmu_idx)) {
8845         data = address_space_ldq_be(as, addr, attrs, &result);
8846     } else {
8847         data = address_space_ldq_le(as, addr, attrs, &result);
8848     }
8849     if (result == MEMTX_OK) {
8850         return data;
8851     }
8852     fi->type = ARMFault_SyncExternalOnWalk;
8853     fi->ea = arm_extabort_type(result);
8854     return 0;
8855 }
8856 
8857 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8858                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8859                              hwaddr *phys_ptr, int *prot,
8860                              target_ulong *page_size,
8861                              ARMMMUFaultInfo *fi)
8862 {
8863     CPUState *cs = CPU(arm_env_get_cpu(env));
8864     int level = 1;
8865     uint32_t table;
8866     uint32_t desc;
8867     int type;
8868     int ap;
8869     int domain = 0;
8870     int domain_prot;
8871     hwaddr phys_addr;
8872     uint32_t dacr;
8873 
8874     /* Pagetable walk.  */
8875     /* Lookup l1 descriptor.  */
8876     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8877         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8878         fi->type = ARMFault_Translation;
8879         goto do_fault;
8880     }
8881     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8882                        mmu_idx, fi);
8883     if (fi->type != ARMFault_None) {
8884         goto do_fault;
8885     }
8886     type = (desc & 3);
8887     domain = (desc >> 5) & 0x0f;
8888     if (regime_el(env, mmu_idx) == 1) {
8889         dacr = env->cp15.dacr_ns;
8890     } else {
8891         dacr = env->cp15.dacr_s;
8892     }
8893     domain_prot = (dacr >> (domain * 2)) & 3;
8894     if (type == 0) {
8895         /* Section translation fault.  */
8896         fi->type = ARMFault_Translation;
8897         goto do_fault;
8898     }
8899     if (type != 2) {
8900         level = 2;
8901     }
8902     if (domain_prot == 0 || domain_prot == 2) {
8903         fi->type = ARMFault_Domain;
8904         goto do_fault;
8905     }
8906     if (type == 2) {
8907         /* 1Mb section.  */
8908         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8909         ap = (desc >> 10) & 3;
8910         *page_size = 1024 * 1024;
8911     } else {
8912         /* Lookup l2 entry.  */
8913         if (type == 1) {
8914             /* Coarse pagetable.  */
8915             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8916         } else {
8917             /* Fine pagetable.  */
8918             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8919         }
8920         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8921                            mmu_idx, fi);
8922         if (fi->type != ARMFault_None) {
8923             goto do_fault;
8924         }
8925         switch (desc & 3) {
8926         case 0: /* Page translation fault.  */
8927             fi->type = ARMFault_Translation;
8928             goto do_fault;
8929         case 1: /* 64k page.  */
8930             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8931             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8932             *page_size = 0x10000;
8933             break;
8934         case 2: /* 4k page.  */
8935             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8936             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8937             *page_size = 0x1000;
8938             break;
8939         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8940             if (type == 1) {
8941                 /* ARMv6/XScale extended small page format */
8942                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8943                     || arm_feature(env, ARM_FEATURE_V6)) {
8944                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8945                     *page_size = 0x1000;
8946                 } else {
8947                     /* UNPREDICTABLE in ARMv5; we choose to take a
8948                      * page translation fault.
8949                      */
8950                     fi->type = ARMFault_Translation;
8951                     goto do_fault;
8952                 }
8953             } else {
8954                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8955                 *page_size = 0x400;
8956             }
8957             ap = (desc >> 4) & 3;
8958             break;
8959         default:
8960             /* Never happens, but compiler isn't smart enough to tell.  */
8961             abort();
8962         }
8963     }
8964     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8965     *prot |= *prot ? PAGE_EXEC : 0;
8966     if (!(*prot & (1 << access_type))) {
8967         /* Access permission fault.  */
8968         fi->type = ARMFault_Permission;
8969         goto do_fault;
8970     }
8971     *phys_ptr = phys_addr;
8972     return false;
8973 do_fault:
8974     fi->domain = domain;
8975     fi->level = level;
8976     return true;
8977 }
8978 
8979 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8980                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8981                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8982                              target_ulong *page_size, ARMMMUFaultInfo *fi)
8983 {
8984     CPUState *cs = CPU(arm_env_get_cpu(env));
8985     int level = 1;
8986     uint32_t table;
8987     uint32_t desc;
8988     uint32_t xn;
8989     uint32_t pxn = 0;
8990     int type;
8991     int ap;
8992     int domain = 0;
8993     int domain_prot;
8994     hwaddr phys_addr;
8995     uint32_t dacr;
8996     bool ns;
8997 
8998     /* Pagetable walk.  */
8999     /* Lookup l1 descriptor.  */
9000     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
9001         /* Section translation fault if page walk is disabled by PD0 or PD1 */
9002         fi->type = ARMFault_Translation;
9003         goto do_fault;
9004     }
9005     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9006                        mmu_idx, fi);
9007     if (fi->type != ARMFault_None) {
9008         goto do_fault;
9009     }
9010     type = (desc & 3);
9011     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
9012         /* Section translation fault, or attempt to use the encoding
9013          * which is Reserved on implementations without PXN.
9014          */
9015         fi->type = ARMFault_Translation;
9016         goto do_fault;
9017     }
9018     if ((type == 1) || !(desc & (1 << 18))) {
9019         /* Page or Section.  */
9020         domain = (desc >> 5) & 0x0f;
9021     }
9022     if (regime_el(env, mmu_idx) == 1) {
9023         dacr = env->cp15.dacr_ns;
9024     } else {
9025         dacr = env->cp15.dacr_s;
9026     }
9027     if (type == 1) {
9028         level = 2;
9029     }
9030     domain_prot = (dacr >> (domain * 2)) & 3;
9031     if (domain_prot == 0 || domain_prot == 2) {
9032         /* Section or Page domain fault */
9033         fi->type = ARMFault_Domain;
9034         goto do_fault;
9035     }
9036     if (type != 1) {
9037         if (desc & (1 << 18)) {
9038             /* Supersection.  */
9039             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
9040             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
9041             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
9042             *page_size = 0x1000000;
9043         } else {
9044             /* Section.  */
9045             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
9046             *page_size = 0x100000;
9047         }
9048         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
9049         xn = desc & (1 << 4);
9050         pxn = desc & 1;
9051         ns = extract32(desc, 19, 1);
9052     } else {
9053         if (arm_feature(env, ARM_FEATURE_PXN)) {
9054             pxn = (desc >> 2) & 1;
9055         }
9056         ns = extract32(desc, 3, 1);
9057         /* Lookup l2 entry.  */
9058         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
9059         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
9060                            mmu_idx, fi);
9061         if (fi->type != ARMFault_None) {
9062             goto do_fault;
9063         }
9064         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
9065         switch (desc & 3) {
9066         case 0: /* Page translation fault.  */
9067             fi->type = ARMFault_Translation;
9068             goto do_fault;
9069         case 1: /* 64k page.  */
9070             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
9071             xn = desc & (1 << 15);
9072             *page_size = 0x10000;
9073             break;
9074         case 2: case 3: /* 4k page.  */
9075             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
9076             xn = desc & 1;
9077             *page_size = 0x1000;
9078             break;
9079         default:
9080             /* Never happens, but compiler isn't smart enough to tell.  */
9081             abort();
9082         }
9083     }
9084     if (domain_prot == 3) {
9085         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9086     } else {
9087         if (pxn && !regime_is_user(env, mmu_idx)) {
9088             xn = 1;
9089         }
9090         if (xn && access_type == MMU_INST_FETCH) {
9091             fi->type = ARMFault_Permission;
9092             goto do_fault;
9093         }
9094 
9095         if (arm_feature(env, ARM_FEATURE_V6K) &&
9096                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
9097             /* The simplified model uses AP[0] as an access control bit.  */
9098             if ((ap & 1) == 0) {
9099                 /* Access flag fault.  */
9100                 fi->type = ARMFault_AccessFlag;
9101                 goto do_fault;
9102             }
9103             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
9104         } else {
9105             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
9106         }
9107         if (*prot && !xn) {
9108             *prot |= PAGE_EXEC;
9109         }
9110         if (!(*prot & (1 << access_type))) {
9111             /* Access permission fault.  */
9112             fi->type = ARMFault_Permission;
9113             goto do_fault;
9114         }
9115     }
9116     if (ns) {
9117         /* The NS bit will (as required by the architecture) have no effect if
9118          * the CPU doesn't support TZ or this is a non-secure translation
9119          * regime, because the attribute will already be non-secure.
9120          */
9121         attrs->secure = false;
9122     }
9123     *phys_ptr = phys_addr;
9124     return false;
9125 do_fault:
9126     fi->domain = domain;
9127     fi->level = level;
9128     return true;
9129 }
9130 
9131 /*
9132  * check_s2_mmu_setup
9133  * @cpu:        ARMCPU
9134  * @is_aa64:    True if the translation regime is in AArch64 state
9135  * @startlevel: Suggested starting level
9136  * @inputsize:  Bitsize of IPAs
9137  * @stride:     Page-table stride (See the ARM ARM)
9138  *
9139  * Returns true if the suggested S2 translation parameters are OK and
9140  * false otherwise.
9141  */
9142 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
9143                                int inputsize, int stride)
9144 {
9145     const int grainsize = stride + 3;
9146     int startsizecheck;
9147 
9148     /* Negative levels are never allowed.  */
9149     if (level < 0) {
9150         return false;
9151     }
9152 
9153     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
9154     if (startsizecheck < 1 || startsizecheck > stride + 4) {
9155         return false;
9156     }
9157 
9158     if (is_aa64) {
9159         CPUARMState *env = &cpu->env;
9160         unsigned int pamax = arm_pamax(cpu);
9161 
9162         switch (stride) {
9163         case 13: /* 64KB Pages.  */
9164             if (level == 0 || (level == 1 && pamax <= 42)) {
9165                 return false;
9166             }
9167             break;
9168         case 11: /* 16KB Pages.  */
9169             if (level == 0 || (level == 1 && pamax <= 40)) {
9170                 return false;
9171             }
9172             break;
9173         case 9: /* 4KB Pages.  */
9174             if (level == 0 && pamax <= 42) {
9175                 return false;
9176             }
9177             break;
9178         default:
9179             g_assert_not_reached();
9180         }
9181 
9182         /* Inputsize checks.  */
9183         if (inputsize > pamax &&
9184             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
9185             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
9186             return false;
9187         }
9188     } else {
9189         /* AArch32 only supports 4KB pages. Assert on that.  */
9190         assert(stride == 9);
9191 
9192         if (level == 0) {
9193             return false;
9194         }
9195     }
9196     return true;
9197 }
9198 
9199 /* Translate from the 4-bit stage 2 representation of
9200  * memory attributes (without cache-allocation hints) to
9201  * the 8-bit representation of the stage 1 MAIR registers
9202  * (which includes allocation hints).
9203  *
9204  * ref: shared/translation/attrs/S2AttrDecode()
9205  *      .../S2ConvertAttrsHints()
9206  */
9207 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
9208 {
9209     uint8_t hiattr = extract32(s2attrs, 2, 2);
9210     uint8_t loattr = extract32(s2attrs, 0, 2);
9211     uint8_t hihint = 0, lohint = 0;
9212 
9213     if (hiattr != 0) { /* normal memory */
9214         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
9215             hiattr = loattr = 1; /* non-cacheable */
9216         } else {
9217             if (hiattr != 1) { /* Write-through or write-back */
9218                 hihint = 3; /* RW allocate */
9219             }
9220             if (loattr != 1) { /* Write-through or write-back */
9221                 lohint = 3; /* RW allocate */
9222             }
9223         }
9224     }
9225 
9226     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
9227 }
9228 
9229 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9230                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
9231                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9232                                target_ulong *page_size_ptr,
9233                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9234 {
9235     ARMCPU *cpu = arm_env_get_cpu(env);
9236     CPUState *cs = CPU(cpu);
9237     /* Read an LPAE long-descriptor translation table. */
9238     ARMFaultType fault_type = ARMFault_Translation;
9239     uint32_t level;
9240     uint32_t epd = 0;
9241     int32_t t0sz, t1sz;
9242     uint32_t tg;
9243     uint64_t ttbr;
9244     int ttbr_select;
9245     hwaddr descaddr, indexmask, indexmask_grainsize;
9246     uint32_t tableattrs;
9247     target_ulong page_size;
9248     uint32_t attrs;
9249     int32_t stride = 9;
9250     int32_t addrsize;
9251     int inputsize;
9252     int32_t tbi = 0;
9253     TCR *tcr = regime_tcr(env, mmu_idx);
9254     int ap, ns, xn, pxn;
9255     uint32_t el = regime_el(env, mmu_idx);
9256     bool ttbr1_valid = true;
9257     uint64_t descaddrmask;
9258     bool aarch64 = arm_el_is_aa64(env, el);
9259 
9260     /* TODO:
9261      * This code does not handle the different format TCR for VTCR_EL2.
9262      * This code also does not support shareability levels.
9263      * Attribute and permission bit handling should also be checked when adding
9264      * support for those page table walks.
9265      */
9266     if (aarch64) {
9267         level = 0;
9268         addrsize = 64;
9269         if (el > 1) {
9270             if (mmu_idx != ARMMMUIdx_S2NS) {
9271                 tbi = extract64(tcr->raw_tcr, 20, 1);
9272             }
9273         } else {
9274             if (extract64(address, 55, 1)) {
9275                 tbi = extract64(tcr->raw_tcr, 38, 1);
9276             } else {
9277                 tbi = extract64(tcr->raw_tcr, 37, 1);
9278             }
9279         }
9280         tbi *= 8;
9281 
9282         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9283          * invalid.
9284          */
9285         if (el > 1) {
9286             ttbr1_valid = false;
9287         }
9288     } else {
9289         level = 1;
9290         addrsize = 32;
9291         /* There is no TTBR1 for EL2 */
9292         if (el == 2) {
9293             ttbr1_valid = false;
9294         }
9295     }
9296 
9297     /* Determine whether this address is in the region controlled by
9298      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9299      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9300      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9301      */
9302     if (aarch64) {
9303         /* AArch64 translation.  */
9304         t0sz = extract32(tcr->raw_tcr, 0, 6);
9305         t0sz = MIN(t0sz, 39);
9306         t0sz = MAX(t0sz, 16);
9307     } else if (mmu_idx != ARMMMUIdx_S2NS) {
9308         /* AArch32 stage 1 translation.  */
9309         t0sz = extract32(tcr->raw_tcr, 0, 3);
9310     } else {
9311         /* AArch32 stage 2 translation.  */
9312         bool sext = extract32(tcr->raw_tcr, 4, 1);
9313         bool sign = extract32(tcr->raw_tcr, 3, 1);
9314         /* Address size is 40-bit for a stage 2 translation,
9315          * and t0sz can be negative (from -8 to 7),
9316          * so we need to adjust it to use the TTBR selecting logic below.
9317          */
9318         addrsize = 40;
9319         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9320 
9321         /* If the sign-extend bit is not the same as t0sz[3], the result
9322          * is unpredictable. Flag this as a guest error.  */
9323         if (sign != sext) {
9324             qemu_log_mask(LOG_GUEST_ERROR,
9325                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9326         }
9327     }
9328     t1sz = extract32(tcr->raw_tcr, 16, 6);
9329     if (aarch64) {
9330         t1sz = MIN(t1sz, 39);
9331         t1sz = MAX(t1sz, 16);
9332     }
9333     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9334         /* there is a ttbr0 region and we are in it (high bits all zero) */
9335         ttbr_select = 0;
9336     } else if (ttbr1_valid && t1sz &&
9337                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9338         /* there is a ttbr1 region and we are in it (high bits all one) */
9339         ttbr_select = 1;
9340     } else if (!t0sz) {
9341         /* ttbr0 region is "everything not in the ttbr1 region" */
9342         ttbr_select = 0;
9343     } else if (!t1sz && ttbr1_valid) {
9344         /* ttbr1 region is "everything not in the ttbr0 region" */
9345         ttbr_select = 1;
9346     } else {
9347         /* in the gap between the two regions, this is a Translation fault */
9348         fault_type = ARMFault_Translation;
9349         goto do_fault;
9350     }
9351 
9352     /* Note that QEMU ignores shareability and cacheability attributes,
9353      * so we don't need to do anything with the SH, ORGN, IRGN fields
9354      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
9355      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9356      * implement any ASID-like capability so we can ignore it (instead
9357      * we will always flush the TLB any time the ASID is changed).
9358      */
9359     if (ttbr_select == 0) {
9360         ttbr = regime_ttbr(env, mmu_idx, 0);
9361         if (el < 2) {
9362             epd = extract32(tcr->raw_tcr, 7, 1);
9363         }
9364         inputsize = addrsize - t0sz;
9365 
9366         tg = extract32(tcr->raw_tcr, 14, 2);
9367         if (tg == 1) { /* 64KB pages */
9368             stride = 13;
9369         }
9370         if (tg == 2) { /* 16KB pages */
9371             stride = 11;
9372         }
9373     } else {
9374         /* We should only be here if TTBR1 is valid */
9375         assert(ttbr1_valid);
9376 
9377         ttbr = regime_ttbr(env, mmu_idx, 1);
9378         epd = extract32(tcr->raw_tcr, 23, 1);
9379         inputsize = addrsize - t1sz;
9380 
9381         tg = extract32(tcr->raw_tcr, 30, 2);
9382         if (tg == 3)  { /* 64KB pages */
9383             stride = 13;
9384         }
9385         if (tg == 1) { /* 16KB pages */
9386             stride = 11;
9387         }
9388     }
9389 
9390     /* Here we should have set up all the parameters for the translation:
9391      * inputsize, ttbr, epd, stride, tbi
9392      */
9393 
9394     if (epd) {
9395         /* Translation table walk disabled => Translation fault on TLB miss
9396          * Note: This is always 0 on 64-bit EL2 and EL3.
9397          */
9398         goto do_fault;
9399     }
9400 
9401     if (mmu_idx != ARMMMUIdx_S2NS) {
9402         /* The starting level depends on the virtual address size (which can
9403          * be up to 48 bits) and the translation granule size. It indicates
9404          * the number of strides (stride bits at a time) needed to
9405          * consume the bits of the input address. In the pseudocode this is:
9406          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
9407          * where their 'inputsize' is our 'inputsize', 'grainsize' is
9408          * our 'stride + 3' and 'stride' is our 'stride'.
9409          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9410          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9411          * = 4 - (inputsize - 4) / stride;
9412          */
9413         level = 4 - (inputsize - 4) / stride;
9414     } else {
9415         /* For stage 2 translations the starting level is specified by the
9416          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9417          */
9418         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
9419         uint32_t startlevel;
9420         bool ok;
9421 
9422         if (!aarch64 || stride == 9) {
9423             /* AArch32 or 4KB pages */
9424             startlevel = 2 - sl0;
9425         } else {
9426             /* 16KB or 64KB pages */
9427             startlevel = 3 - sl0;
9428         }
9429 
9430         /* Check that the starting level is valid. */
9431         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9432                                 inputsize, stride);
9433         if (!ok) {
9434             fault_type = ARMFault_Translation;
9435             goto do_fault;
9436         }
9437         level = startlevel;
9438     }
9439 
9440     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
9441     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9442 
9443     /* Now we can extract the actual base address from the TTBR */
9444     descaddr = extract64(ttbr, 0, 48);
9445     descaddr &= ~indexmask;
9446 
9447     /* The address field in the descriptor goes up to bit 39 for ARMv7
9448      * but up to bit 47 for ARMv8, but we use the descaddrmask
9449      * up to bit 39 for AArch32, because we don't need other bits in that case
9450      * to construct next descriptor address (anyway they should be all zeroes).
9451      */
9452     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9453                    ~indexmask_grainsize;
9454 
9455     /* Secure accesses start with the page table in secure memory and
9456      * can be downgraded to non-secure at any step. Non-secure accesses
9457      * remain non-secure. We implement this by just ORing in the NSTable/NS
9458      * bits at each step.
9459      */
9460     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9461     for (;;) {
9462         uint64_t descriptor;
9463         bool nstable;
9464 
9465         descaddr |= (address >> (stride * (4 - level))) & indexmask;
9466         descaddr &= ~7ULL;
9467         nstable = extract32(tableattrs, 4, 1);
9468         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9469         if (fi->type != ARMFault_None) {
9470             goto do_fault;
9471         }
9472 
9473         if (!(descriptor & 1) ||
9474             (!(descriptor & 2) && (level == 3))) {
9475             /* Invalid, or the Reserved level 3 encoding */
9476             goto do_fault;
9477         }
9478         descaddr = descriptor & descaddrmask;
9479 
9480         if ((descriptor & 2) && (level < 3)) {
9481             /* Table entry. The top five bits are attributes which  may
9482              * propagate down through lower levels of the table (and
9483              * which are all arranged so that 0 means "no effect", so
9484              * we can gather them up by ORing in the bits at each level).
9485              */
9486             tableattrs |= extract64(descriptor, 59, 5);
9487             level++;
9488             indexmask = indexmask_grainsize;
9489             continue;
9490         }
9491         /* Block entry at level 1 or 2, or page entry at level 3.
9492          * These are basically the same thing, although the number
9493          * of bits we pull in from the vaddr varies.
9494          */
9495         page_size = (1ULL << ((stride * (4 - level)) + 3));
9496         descaddr |= (address & (page_size - 1));
9497         /* Extract attributes from the descriptor */
9498         attrs = extract64(descriptor, 2, 10)
9499             | (extract64(descriptor, 52, 12) << 10);
9500 
9501         if (mmu_idx == ARMMMUIdx_S2NS) {
9502             /* Stage 2 table descriptors do not include any attribute fields */
9503             break;
9504         }
9505         /* Merge in attributes from table descriptors */
9506         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
9507         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
9508         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
9509          * means "force PL1 access only", which means forcing AP[1] to 0.
9510          */
9511         if (extract32(tableattrs, 2, 1)) {
9512             attrs &= ~(1 << 4);
9513         }
9514         attrs |= nstable << 3; /* NS */
9515         break;
9516     }
9517     /* Here descaddr is the final physical address, and attributes
9518      * are all in attrs.
9519      */
9520     fault_type = ARMFault_AccessFlag;
9521     if ((attrs & (1 << 8)) == 0) {
9522         /* Access flag */
9523         goto do_fault;
9524     }
9525 
9526     ap = extract32(attrs, 4, 2);
9527     xn = extract32(attrs, 12, 1);
9528 
9529     if (mmu_idx == ARMMMUIdx_S2NS) {
9530         ns = true;
9531         *prot = get_S2prot(env, ap, xn);
9532     } else {
9533         ns = extract32(attrs, 3, 1);
9534         pxn = extract32(attrs, 11, 1);
9535         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9536     }
9537 
9538     fault_type = ARMFault_Permission;
9539     if (!(*prot & (1 << access_type))) {
9540         goto do_fault;
9541     }
9542 
9543     if (ns) {
9544         /* The NS bit will (as required by the architecture) have no effect if
9545          * the CPU doesn't support TZ or this is a non-secure translation
9546          * regime, because the attribute will already be non-secure.
9547          */
9548         txattrs->secure = false;
9549     }
9550 
9551     if (cacheattrs != NULL) {
9552         if (mmu_idx == ARMMMUIdx_S2NS) {
9553             cacheattrs->attrs = convert_stage2_attrs(env,
9554                                                      extract32(attrs, 0, 4));
9555         } else {
9556             /* Index into MAIR registers for cache attributes */
9557             uint8_t attrindx = extract32(attrs, 0, 3);
9558             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9559             assert(attrindx <= 7);
9560             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9561         }
9562         cacheattrs->shareability = extract32(attrs, 6, 2);
9563     }
9564 
9565     *phys_ptr = descaddr;
9566     *page_size_ptr = page_size;
9567     return false;
9568 
9569 do_fault:
9570     fi->type = fault_type;
9571     fi->level = level;
9572     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9573     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9574     return true;
9575 }
9576 
9577 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9578                                                 ARMMMUIdx mmu_idx,
9579                                                 int32_t address, int *prot)
9580 {
9581     if (!arm_feature(env, ARM_FEATURE_M)) {
9582         *prot = PAGE_READ | PAGE_WRITE;
9583         switch (address) {
9584         case 0xF0000000 ... 0xFFFFFFFF:
9585             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9586                 /* hivecs execing is ok */
9587                 *prot |= PAGE_EXEC;
9588             }
9589             break;
9590         case 0x00000000 ... 0x7FFFFFFF:
9591             *prot |= PAGE_EXEC;
9592             break;
9593         }
9594     } else {
9595         /* Default system address map for M profile cores.
9596          * The architecture specifies which regions are execute-never;
9597          * at the MPU level no other checks are defined.
9598          */
9599         switch (address) {
9600         case 0x00000000 ... 0x1fffffff: /* ROM */
9601         case 0x20000000 ... 0x3fffffff: /* SRAM */
9602         case 0x60000000 ... 0x7fffffff: /* RAM */
9603         case 0x80000000 ... 0x9fffffff: /* RAM */
9604             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9605             break;
9606         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9607         case 0xa0000000 ... 0xbfffffff: /* Device */
9608         case 0xc0000000 ... 0xdfffffff: /* Device */
9609         case 0xe0000000 ... 0xffffffff: /* System */
9610             *prot = PAGE_READ | PAGE_WRITE;
9611             break;
9612         default:
9613             g_assert_not_reached();
9614         }
9615     }
9616 }
9617 
9618 static bool pmsav7_use_background_region(ARMCPU *cpu,
9619                                          ARMMMUIdx mmu_idx, bool is_user)
9620 {
9621     /* Return true if we should use the default memory map as a
9622      * "background" region if there are no hits against any MPU regions.
9623      */
9624     CPUARMState *env = &cpu->env;
9625 
9626     if (is_user) {
9627         return false;
9628     }
9629 
9630     if (arm_feature(env, ARM_FEATURE_M)) {
9631         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9632             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9633     } else {
9634         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9635     }
9636 }
9637 
9638 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9639 {
9640     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9641     return arm_feature(env, ARM_FEATURE_M) &&
9642         extract32(address, 20, 12) == 0xe00;
9643 }
9644 
9645 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9646 {
9647     /* True if address is in the M profile system region
9648      * 0xe0000000 - 0xffffffff
9649      */
9650     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9651 }
9652 
9653 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9654                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9655                                  hwaddr *phys_ptr, int *prot,
9656                                  target_ulong *page_size,
9657                                  ARMMMUFaultInfo *fi)
9658 {
9659     ARMCPU *cpu = arm_env_get_cpu(env);
9660     int n;
9661     bool is_user = regime_is_user(env, mmu_idx);
9662 
9663     *phys_ptr = address;
9664     *page_size = TARGET_PAGE_SIZE;
9665     *prot = 0;
9666 
9667     if (regime_translation_disabled(env, mmu_idx) ||
9668         m_is_ppb_region(env, address)) {
9669         /* MPU disabled or M profile PPB access: use default memory map.
9670          * The other case which uses the default memory map in the
9671          * v7M ARM ARM pseudocode is exception vector reads from the vector
9672          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9673          * which always does a direct read using address_space_ldl(), rather
9674          * than going via this function, so we don't need to check that here.
9675          */
9676         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9677     } else { /* MPU enabled */
9678         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9679             /* region search */
9680             uint32_t base = env->pmsav7.drbar[n];
9681             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9682             uint32_t rmask;
9683             bool srdis = false;
9684 
9685             if (!(env->pmsav7.drsr[n] & 0x1)) {
9686                 continue;
9687             }
9688 
9689             if (!rsize) {
9690                 qemu_log_mask(LOG_GUEST_ERROR,
9691                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9692                 continue;
9693             }
9694             rsize++;
9695             rmask = (1ull << rsize) - 1;
9696 
9697             if (base & rmask) {
9698                 qemu_log_mask(LOG_GUEST_ERROR,
9699                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9700                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9701                               n, base, rmask);
9702                 continue;
9703             }
9704 
9705             if (address < base || address > base + rmask) {
9706                 /*
9707                  * Address not in this region. We must check whether the
9708                  * region covers addresses in the same page as our address.
9709                  * In that case we must not report a size that covers the
9710                  * whole page for a subsequent hit against a different MPU
9711                  * region or the background region, because it would result in
9712                  * incorrect TLB hits for subsequent accesses to addresses that
9713                  * are in this MPU region.
9714                  */
9715                 if (ranges_overlap(base, rmask,
9716                                    address & TARGET_PAGE_MASK,
9717                                    TARGET_PAGE_SIZE)) {
9718                     *page_size = 1;
9719                 }
9720                 continue;
9721             }
9722 
9723             /* Region matched */
9724 
9725             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9726                 int i, snd;
9727                 uint32_t srdis_mask;
9728 
9729                 rsize -= 3; /* sub region size (power of 2) */
9730                 snd = ((address - base) >> rsize) & 0x7;
9731                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9732 
9733                 srdis_mask = srdis ? 0x3 : 0x0;
9734                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9735                     /* This will check in groups of 2, 4 and then 8, whether
9736                      * the subregion bits are consistent. rsize is incremented
9737                      * back up to give the region size, considering consistent
9738                      * adjacent subregions as one region. Stop testing if rsize
9739                      * is already big enough for an entire QEMU page.
9740                      */
9741                     int snd_rounded = snd & ~(i - 1);
9742                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9743                                                      snd_rounded + 8, i);
9744                     if (srdis_mask ^ srdis_multi) {
9745                         break;
9746                     }
9747                     srdis_mask = (srdis_mask << i) | srdis_mask;
9748                     rsize++;
9749                 }
9750             }
9751             if (srdis) {
9752                 continue;
9753             }
9754             if (rsize < TARGET_PAGE_BITS) {
9755                 *page_size = 1 << rsize;
9756             }
9757             break;
9758         }
9759 
9760         if (n == -1) { /* no hits */
9761             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9762                 /* background fault */
9763                 fi->type = ARMFault_Background;
9764                 return true;
9765             }
9766             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9767         } else { /* a MPU hit! */
9768             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9769             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9770 
9771             if (m_is_system_region(env, address)) {
9772                 /* System space is always execute never */
9773                 xn = 1;
9774             }
9775 
9776             if (is_user) { /* User mode AP bit decoding */
9777                 switch (ap) {
9778                 case 0:
9779                 case 1:
9780                 case 5:
9781                     break; /* no access */
9782                 case 3:
9783                     *prot |= PAGE_WRITE;
9784                     /* fall through */
9785                 case 2:
9786                 case 6:
9787                     *prot |= PAGE_READ | PAGE_EXEC;
9788                     break;
9789                 case 7:
9790                     /* for v7M, same as 6; for R profile a reserved value */
9791                     if (arm_feature(env, ARM_FEATURE_M)) {
9792                         *prot |= PAGE_READ | PAGE_EXEC;
9793                         break;
9794                     }
9795                     /* fall through */
9796                 default:
9797                     qemu_log_mask(LOG_GUEST_ERROR,
9798                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9799                                   PRIx32 "\n", n, ap);
9800                 }
9801             } else { /* Priv. mode AP bits decoding */
9802                 switch (ap) {
9803                 case 0:
9804                     break; /* no access */
9805                 case 1:
9806                 case 2:
9807                 case 3:
9808                     *prot |= PAGE_WRITE;
9809                     /* fall through */
9810                 case 5:
9811                 case 6:
9812                     *prot |= PAGE_READ | PAGE_EXEC;
9813                     break;
9814                 case 7:
9815                     /* for v7M, same as 6; for R profile a reserved value */
9816                     if (arm_feature(env, ARM_FEATURE_M)) {
9817                         *prot |= PAGE_READ | PAGE_EXEC;
9818                         break;
9819                     }
9820                     /* fall through */
9821                 default:
9822                     qemu_log_mask(LOG_GUEST_ERROR,
9823                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9824                                   PRIx32 "\n", n, ap);
9825                 }
9826             }
9827 
9828             /* execute never */
9829             if (xn) {
9830                 *prot &= ~PAGE_EXEC;
9831             }
9832         }
9833     }
9834 
9835     fi->type = ARMFault_Permission;
9836     fi->level = 1;
9837     return !(*prot & (1 << access_type));
9838 }
9839 
9840 static bool v8m_is_sau_exempt(CPUARMState *env,
9841                               uint32_t address, MMUAccessType access_type)
9842 {
9843     /* The architecture specifies that certain address ranges are
9844      * exempt from v8M SAU/IDAU checks.
9845      */
9846     return
9847         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9848         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9849         (address >= 0xe000e000 && address <= 0xe000efff) ||
9850         (address >= 0xe002e000 && address <= 0xe002efff) ||
9851         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9852         (address >= 0xe00ff000 && address <= 0xe00fffff);
9853 }
9854 
9855 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9856                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9857                                 V8M_SAttributes *sattrs)
9858 {
9859     /* Look up the security attributes for this address. Compare the
9860      * pseudocode SecurityCheck() function.
9861      * We assume the caller has zero-initialized *sattrs.
9862      */
9863     ARMCPU *cpu = arm_env_get_cpu(env);
9864     int r;
9865     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
9866     int idau_region = IREGION_NOTVALID;
9867     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9868     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9869 
9870     if (cpu->idau) {
9871         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
9872         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
9873 
9874         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
9875                    &idau_nsc);
9876     }
9877 
9878     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9879         /* 0xf0000000..0xffffffff is always S for insn fetches */
9880         return;
9881     }
9882 
9883     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9884         sattrs->ns = !regime_is_secure(env, mmu_idx);
9885         return;
9886     }
9887 
9888     if (idau_region != IREGION_NOTVALID) {
9889         sattrs->irvalid = true;
9890         sattrs->iregion = idau_region;
9891     }
9892 
9893     switch (env->sau.ctrl & 3) {
9894     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9895         break;
9896     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9897         sattrs->ns = true;
9898         break;
9899     default: /* SAU.ENABLE == 1 */
9900         for (r = 0; r < cpu->sau_sregion; r++) {
9901             if (env->sau.rlar[r] & 1) {
9902                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9903                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9904 
9905                 if (base <= address && limit >= address) {
9906                     if (base > addr_page_base || limit < addr_page_limit) {
9907                         sattrs->subpage = true;
9908                     }
9909                     if (sattrs->srvalid) {
9910                         /* If we hit in more than one region then we must report
9911                          * as Secure, not NS-Callable, with no valid region
9912                          * number info.
9913                          */
9914                         sattrs->ns = false;
9915                         sattrs->nsc = false;
9916                         sattrs->sregion = 0;
9917                         sattrs->srvalid = false;
9918                         break;
9919                     } else {
9920                         if (env->sau.rlar[r] & 2) {
9921                             sattrs->nsc = true;
9922                         } else {
9923                             sattrs->ns = true;
9924                         }
9925                         sattrs->srvalid = true;
9926                         sattrs->sregion = r;
9927                     }
9928                 } else {
9929                     /*
9930                      * Address not in this region. We must check whether the
9931                      * region covers addresses in the same page as our address.
9932                      * In that case we must not report a size that covers the
9933                      * whole page for a subsequent hit against a different MPU
9934                      * region or the background region, because it would result
9935                      * in incorrect TLB hits for subsequent accesses to
9936                      * addresses that are in this MPU region.
9937                      */
9938                     if (limit >= base &&
9939                         ranges_overlap(base, limit - base + 1,
9940                                        addr_page_base,
9941                                        TARGET_PAGE_SIZE)) {
9942                         sattrs->subpage = true;
9943                     }
9944                 }
9945             }
9946         }
9947 
9948         /* The IDAU will override the SAU lookup results if it specifies
9949          * higher security than the SAU does.
9950          */
9951         if (!idau_ns) {
9952             if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
9953                 sattrs->ns = false;
9954                 sattrs->nsc = idau_nsc;
9955             }
9956         }
9957         break;
9958     }
9959 }
9960 
9961 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
9962                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9963                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
9964                               int *prot, bool *is_subpage,
9965                               ARMMMUFaultInfo *fi, uint32_t *mregion)
9966 {
9967     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
9968      * that a full phys-to-virt translation does).
9969      * mregion is (if not NULL) set to the region number which matched,
9970      * or -1 if no region number is returned (MPU off, address did not
9971      * hit a region, address hit in multiple regions).
9972      * We set is_subpage to true if the region hit doesn't cover the
9973      * entire TARGET_PAGE the address is within.
9974      */
9975     ARMCPU *cpu = arm_env_get_cpu(env);
9976     bool is_user = regime_is_user(env, mmu_idx);
9977     uint32_t secure = regime_is_secure(env, mmu_idx);
9978     int n;
9979     int matchregion = -1;
9980     bool hit = false;
9981     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
9982     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
9983 
9984     *is_subpage = false;
9985     *phys_ptr = address;
9986     *prot = 0;
9987     if (mregion) {
9988         *mregion = -1;
9989     }
9990 
9991     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9992      * was an exception vector read from the vector table (which is always
9993      * done using the default system address map), because those accesses
9994      * are done in arm_v7m_load_vector(), which always does a direct
9995      * read using address_space_ldl(), rather than going via this function.
9996      */
9997     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9998         hit = true;
9999     } else if (m_is_ppb_region(env, address)) {
10000         hit = true;
10001     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
10002         hit = true;
10003     } else {
10004         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
10005             /* region search */
10006             /* Note that the base address is bits [31:5] from the register
10007              * with bits [4:0] all zeroes, but the limit address is bits
10008              * [31:5] from the register with bits [4:0] all ones.
10009              */
10010             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
10011             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
10012 
10013             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
10014                 /* Region disabled */
10015                 continue;
10016             }
10017 
10018             if (address < base || address > limit) {
10019                 /*
10020                  * Address not in this region. We must check whether the
10021                  * region covers addresses in the same page as our address.
10022                  * In that case we must not report a size that covers the
10023                  * whole page for a subsequent hit against a different MPU
10024                  * region or the background region, because it would result in
10025                  * incorrect TLB hits for subsequent accesses to addresses that
10026                  * are in this MPU region.
10027                  */
10028                 if (limit >= base &&
10029                     ranges_overlap(base, limit - base + 1,
10030                                    addr_page_base,
10031                                    TARGET_PAGE_SIZE)) {
10032                     *is_subpage = true;
10033                 }
10034                 continue;
10035             }
10036 
10037             if (base > addr_page_base || limit < addr_page_limit) {
10038                 *is_subpage = true;
10039             }
10040 
10041             if (hit) {
10042                 /* Multiple regions match -- always a failure (unlike
10043                  * PMSAv7 where highest-numbered-region wins)
10044                  */
10045                 fi->type = ARMFault_Permission;
10046                 fi->level = 1;
10047                 return true;
10048             }
10049 
10050             matchregion = n;
10051             hit = true;
10052         }
10053     }
10054 
10055     if (!hit) {
10056         /* background fault */
10057         fi->type = ARMFault_Background;
10058         return true;
10059     }
10060 
10061     if (matchregion == -1) {
10062         /* hit using the background region */
10063         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
10064     } else {
10065         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
10066         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
10067 
10068         if (m_is_system_region(env, address)) {
10069             /* System space is always execute never */
10070             xn = 1;
10071         }
10072 
10073         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
10074         if (*prot && !xn) {
10075             *prot |= PAGE_EXEC;
10076         }
10077         /* We don't need to look the attribute up in the MAIR0/MAIR1
10078          * registers because that only tells us about cacheability.
10079          */
10080         if (mregion) {
10081             *mregion = matchregion;
10082         }
10083     }
10084 
10085     fi->type = ARMFault_Permission;
10086     fi->level = 1;
10087     return !(*prot & (1 << access_type));
10088 }
10089 
10090 
10091 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
10092                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10093                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
10094                                  int *prot, target_ulong *page_size,
10095                                  ARMMMUFaultInfo *fi)
10096 {
10097     uint32_t secure = regime_is_secure(env, mmu_idx);
10098     V8M_SAttributes sattrs = {};
10099     bool ret;
10100     bool mpu_is_subpage;
10101 
10102     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10103         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
10104         if (access_type == MMU_INST_FETCH) {
10105             /* Instruction fetches always use the MMU bank and the
10106              * transaction attribute determined by the fetch address,
10107              * regardless of CPU state. This is painful for QEMU
10108              * to handle, because it would mean we need to encode
10109              * into the mmu_idx not just the (user, negpri) information
10110              * for the current security state but also that for the
10111              * other security state, which would balloon the number
10112              * of mmu_idx values needed alarmingly.
10113              * Fortunately we can avoid this because it's not actually
10114              * possible to arbitrarily execute code from memory with
10115              * the wrong security attribute: it will always generate
10116              * an exception of some kind or another, apart from the
10117              * special case of an NS CPU executing an SG instruction
10118              * in S&NSC memory. So we always just fail the translation
10119              * here and sort things out in the exception handler
10120              * (including possibly emulating an SG instruction).
10121              */
10122             if (sattrs.ns != !secure) {
10123                 if (sattrs.nsc) {
10124                     fi->type = ARMFault_QEMU_NSCExec;
10125                 } else {
10126                     fi->type = ARMFault_QEMU_SFault;
10127                 }
10128                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10129                 *phys_ptr = address;
10130                 *prot = 0;
10131                 return true;
10132             }
10133         } else {
10134             /* For data accesses we always use the MMU bank indicated
10135              * by the current CPU state, but the security attributes
10136              * might downgrade a secure access to nonsecure.
10137              */
10138             if (sattrs.ns) {
10139                 txattrs->secure = false;
10140             } else if (!secure) {
10141                 /* NS access to S memory must fault.
10142                  * Architecturally we should first check whether the
10143                  * MPU information for this address indicates that we
10144                  * are doing an unaligned access to Device memory, which
10145                  * should generate a UsageFault instead. QEMU does not
10146                  * currently check for that kind of unaligned access though.
10147                  * If we added it we would need to do so as a special case
10148                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10149                  */
10150                 fi->type = ARMFault_QEMU_SFault;
10151                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
10152                 *phys_ptr = address;
10153                 *prot = 0;
10154                 return true;
10155             }
10156         }
10157     }
10158 
10159     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10160                             txattrs, prot, &mpu_is_subpage, fi, NULL);
10161     /*
10162      * TODO: this is a temporary hack to ignore the fact that the SAU region
10163      * is smaller than a page if this is an executable region. We never
10164      * supported small MPU regions, but we did (accidentally) allow small
10165      * SAU regions, and if we now made small SAU regions not be executable
10166      * then this would break previously working guest code. We can't
10167      * remove this until/unless we implement support for execution from
10168      * small regions.
10169      */
10170     if (*prot & PAGE_EXEC) {
10171         sattrs.subpage = false;
10172     }
10173     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
10174     return ret;
10175 }
10176 
10177 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10178                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
10179                                  hwaddr *phys_ptr, int *prot,
10180                                  ARMMMUFaultInfo *fi)
10181 {
10182     int n;
10183     uint32_t mask;
10184     uint32_t base;
10185     bool is_user = regime_is_user(env, mmu_idx);
10186 
10187     if (regime_translation_disabled(env, mmu_idx)) {
10188         /* MPU disabled.  */
10189         *phys_ptr = address;
10190         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10191         return false;
10192     }
10193 
10194     *phys_ptr = address;
10195     for (n = 7; n >= 0; n--) {
10196         base = env->cp15.c6_region[n];
10197         if ((base & 1) == 0) {
10198             continue;
10199         }
10200         mask = 1 << ((base >> 1) & 0x1f);
10201         /* Keep this shift separate from the above to avoid an
10202            (undefined) << 32.  */
10203         mask = (mask << 1) - 1;
10204         if (((base ^ address) & ~mask) == 0) {
10205             break;
10206         }
10207     }
10208     if (n < 0) {
10209         fi->type = ARMFault_Background;
10210         return true;
10211     }
10212 
10213     if (access_type == MMU_INST_FETCH) {
10214         mask = env->cp15.pmsav5_insn_ap;
10215     } else {
10216         mask = env->cp15.pmsav5_data_ap;
10217     }
10218     mask = (mask >> (n * 4)) & 0xf;
10219     switch (mask) {
10220     case 0:
10221         fi->type = ARMFault_Permission;
10222         fi->level = 1;
10223         return true;
10224     case 1:
10225         if (is_user) {
10226             fi->type = ARMFault_Permission;
10227             fi->level = 1;
10228             return true;
10229         }
10230         *prot = PAGE_READ | PAGE_WRITE;
10231         break;
10232     case 2:
10233         *prot = PAGE_READ;
10234         if (!is_user) {
10235             *prot |= PAGE_WRITE;
10236         }
10237         break;
10238     case 3:
10239         *prot = PAGE_READ | PAGE_WRITE;
10240         break;
10241     case 5:
10242         if (is_user) {
10243             fi->type = ARMFault_Permission;
10244             fi->level = 1;
10245             return true;
10246         }
10247         *prot = PAGE_READ;
10248         break;
10249     case 6:
10250         *prot = PAGE_READ;
10251         break;
10252     default:
10253         /* Bad permission.  */
10254         fi->type = ARMFault_Permission;
10255         fi->level = 1;
10256         return true;
10257     }
10258     *prot |= PAGE_EXEC;
10259     return false;
10260 }
10261 
10262 /* Combine either inner or outer cacheability attributes for normal
10263  * memory, according to table D4-42 and pseudocode procedure
10264  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10265  *
10266  * NB: only stage 1 includes allocation hints (RW bits), leading to
10267  * some asymmetry.
10268  */
10269 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
10270 {
10271     if (s1 == 4 || s2 == 4) {
10272         /* non-cacheable has precedence */
10273         return 4;
10274     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
10275         /* stage 1 write-through takes precedence */
10276         return s1;
10277     } else if (extract32(s2, 2, 2) == 2) {
10278         /* stage 2 write-through takes precedence, but the allocation hint
10279          * is still taken from stage 1
10280          */
10281         return (2 << 2) | extract32(s1, 0, 2);
10282     } else { /* write-back */
10283         return s1;
10284     }
10285 }
10286 
10287 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10288  * and CombineS1S2Desc()
10289  *
10290  * @s1:      Attributes from stage 1 walk
10291  * @s2:      Attributes from stage 2 walk
10292  */
10293 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
10294 {
10295     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
10296     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
10297     ARMCacheAttrs ret;
10298 
10299     /* Combine shareability attributes (table D4-43) */
10300     if (s1.shareability == 2 || s2.shareability == 2) {
10301         /* if either are outer-shareable, the result is outer-shareable */
10302         ret.shareability = 2;
10303     } else if (s1.shareability == 3 || s2.shareability == 3) {
10304         /* if either are inner-shareable, the result is inner-shareable */
10305         ret.shareability = 3;
10306     } else {
10307         /* both non-shareable */
10308         ret.shareability = 0;
10309     }
10310 
10311     /* Combine memory type and cacheability attributes */
10312     if (s1hi == 0 || s2hi == 0) {
10313         /* Device has precedence over normal */
10314         if (s1lo == 0 || s2lo == 0) {
10315             /* nGnRnE has precedence over anything */
10316             ret.attrs = 0;
10317         } else if (s1lo == 4 || s2lo == 4) {
10318             /* non-Reordering has precedence over Reordering */
10319             ret.attrs = 4;  /* nGnRE */
10320         } else if (s1lo == 8 || s2lo == 8) {
10321             /* non-Gathering has precedence over Gathering */
10322             ret.attrs = 8;  /* nGRE */
10323         } else {
10324             ret.attrs = 0xc; /* GRE */
10325         }
10326 
10327         /* Any location for which the resultant memory type is any
10328          * type of Device memory is always treated as Outer Shareable.
10329          */
10330         ret.shareability = 2;
10331     } else { /* Normal memory */
10332         /* Outer/inner cacheability combine independently */
10333         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
10334                   | combine_cacheattr_nibble(s1lo, s2lo);
10335 
10336         if (ret.attrs == 0x44) {
10337             /* Any location for which the resultant memory type is Normal
10338              * Inner Non-cacheable, Outer Non-cacheable is always treated
10339              * as Outer Shareable.
10340              */
10341             ret.shareability = 2;
10342         }
10343     }
10344 
10345     return ret;
10346 }
10347 
10348 
10349 /* get_phys_addr - get the physical address for this virtual address
10350  *
10351  * Find the physical address corresponding to the given virtual address,
10352  * by doing a translation table walk on MMU based systems or using the
10353  * MPU state on MPU based systems.
10354  *
10355  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10356  * prot and page_size may not be filled in, and the populated fsr value provides
10357  * information on why the translation aborted, in the format of a
10358  * DFSR/IFSR fault register, with the following caveats:
10359  *  * we honour the short vs long DFSR format differences.
10360  *  * the WnR bit is never set (the caller must do this).
10361  *  * for PSMAv5 based systems we don't bother to return a full FSR format
10362  *    value.
10363  *
10364  * @env: CPUARMState
10365  * @address: virtual address to get physical address for
10366  * @access_type: 0 for read, 1 for write, 2 for execute
10367  * @mmu_idx: MMU index indicating required translation regime
10368  * @phys_ptr: set to the physical address corresponding to the virtual address
10369  * @attrs: set to the memory transaction attributes to use
10370  * @prot: set to the permissions for the page containing phys_ptr
10371  * @page_size: set to the size of the page containing phys_ptr
10372  * @fi: set to fault info if the translation fails
10373  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10374  */
10375 static bool get_phys_addr(CPUARMState *env, target_ulong address,
10376                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
10377                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10378                           target_ulong *page_size,
10379                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10380 {
10381     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10382         /* Call ourselves recursively to do the stage 1 and then stage 2
10383          * translations.
10384          */
10385         if (arm_feature(env, ARM_FEATURE_EL2)) {
10386             hwaddr ipa;
10387             int s2_prot;
10388             int ret;
10389             ARMCacheAttrs cacheattrs2 = {};
10390 
10391             ret = get_phys_addr(env, address, access_type,
10392                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10393                                 prot, page_size, fi, cacheattrs);
10394 
10395             /* If S1 fails or S2 is disabled, return early.  */
10396             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
10397                 *phys_ptr = ipa;
10398                 return ret;
10399             }
10400 
10401             /* S1 is done. Now do S2 translation.  */
10402             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
10403                                      phys_ptr, attrs, &s2_prot,
10404                                      page_size, fi,
10405                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
10406             fi->s2addr = ipa;
10407             /* Combine the S1 and S2 perms.  */
10408             *prot &= s2_prot;
10409 
10410             /* Combine the S1 and S2 cache attributes, if needed */
10411             if (!ret && cacheattrs != NULL) {
10412                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
10413             }
10414 
10415             return ret;
10416         } else {
10417             /*
10418              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10419              */
10420             mmu_idx = stage_1_mmu_idx(mmu_idx);
10421         }
10422     }
10423 
10424     /* The page table entries may downgrade secure to non-secure, but
10425      * cannot upgrade an non-secure translation regime's attributes
10426      * to secure.
10427      */
10428     attrs->secure = regime_is_secure(env, mmu_idx);
10429     attrs->user = regime_is_user(env, mmu_idx);
10430 
10431     /* Fast Context Switch Extension. This doesn't exist at all in v8.
10432      * In v7 and earlier it affects all stage 1 translations.
10433      */
10434     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
10435         && !arm_feature(env, ARM_FEATURE_V8)) {
10436         if (regime_el(env, mmu_idx) == 3) {
10437             address += env->cp15.fcseidr_s;
10438         } else {
10439             address += env->cp15.fcseidr_ns;
10440         }
10441     }
10442 
10443     if (arm_feature(env, ARM_FEATURE_PMSA)) {
10444         bool ret;
10445         *page_size = TARGET_PAGE_SIZE;
10446 
10447         if (arm_feature(env, ARM_FEATURE_V8)) {
10448             /* PMSAv8 */
10449             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10450                                        phys_ptr, attrs, prot, page_size, fi);
10451         } else if (arm_feature(env, ARM_FEATURE_V7)) {
10452             /* PMSAv7 */
10453             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10454                                        phys_ptr, prot, page_size, fi);
10455         } else {
10456             /* Pre-v7 MPU */
10457             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10458                                        phys_ptr, prot, fi);
10459         }
10460         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10461                       " mmu_idx %u -> %s (prot %c%c%c)\n",
10462                       access_type == MMU_DATA_LOAD ? "reading" :
10463                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10464                       (uint32_t)address, mmu_idx,
10465                       ret ? "Miss" : "Hit",
10466                       *prot & PAGE_READ ? 'r' : '-',
10467                       *prot & PAGE_WRITE ? 'w' : '-',
10468                       *prot & PAGE_EXEC ? 'x' : '-');
10469 
10470         return ret;
10471     }
10472 
10473     /* Definitely a real MMU, not an MPU */
10474 
10475     if (regime_translation_disabled(env, mmu_idx)) {
10476         /* MMU disabled. */
10477         *phys_ptr = address;
10478         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10479         *page_size = TARGET_PAGE_SIZE;
10480         return 0;
10481     }
10482 
10483     if (regime_using_lpae_format(env, mmu_idx)) {
10484         return get_phys_addr_lpae(env, address, access_type, mmu_idx,
10485                                   phys_ptr, attrs, prot, page_size,
10486                                   fi, cacheattrs);
10487     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10488         return get_phys_addr_v6(env, address, access_type, mmu_idx,
10489                                 phys_ptr, attrs, prot, page_size, fi);
10490     } else {
10491         return get_phys_addr_v5(env, address, access_type, mmu_idx,
10492                                     phys_ptr, prot, page_size, fi);
10493     }
10494 }
10495 
10496 /* Walk the page table and (if the mapping exists) add the page
10497  * to the TLB. Return false on success, or true on failure. Populate
10498  * fsr with ARM DFSR/IFSR fault register format value on failure.
10499  */
10500 bool arm_tlb_fill(CPUState *cs, vaddr address,
10501                   MMUAccessType access_type, int mmu_idx,
10502                   ARMMMUFaultInfo *fi)
10503 {
10504     ARMCPU *cpu = ARM_CPU(cs);
10505     CPUARMState *env = &cpu->env;
10506     hwaddr phys_addr;
10507     target_ulong page_size;
10508     int prot;
10509     int ret;
10510     MemTxAttrs attrs = {};
10511 
10512     ret = get_phys_addr(env, address, access_type,
10513                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10514                         &attrs, &prot, &page_size, fi, NULL);
10515     if (!ret) {
10516         /*
10517          * Map a single [sub]page. Regions smaller than our declared
10518          * target page size are handled specially, so for those we
10519          * pass in the exact addresses.
10520          */
10521         if (page_size >= TARGET_PAGE_SIZE) {
10522             phys_addr &= TARGET_PAGE_MASK;
10523             address &= TARGET_PAGE_MASK;
10524         }
10525         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
10526                                 prot, mmu_idx, page_size);
10527         return 0;
10528     }
10529 
10530     return ret;
10531 }
10532 
10533 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
10534                                          MemTxAttrs *attrs)
10535 {
10536     ARMCPU *cpu = ARM_CPU(cs);
10537     CPUARMState *env = &cpu->env;
10538     hwaddr phys_addr;
10539     target_ulong page_size;
10540     int prot;
10541     bool ret;
10542     ARMMMUFaultInfo fi = {};
10543     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
10544 
10545     *attrs = (MemTxAttrs) {};
10546 
10547     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10548                         attrs, &prot, &page_size, &fi, NULL);
10549 
10550     if (ret) {
10551         return -1;
10552     }
10553     return phys_addr;
10554 }
10555 
10556 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
10557 {
10558     uint32_t mask;
10559     unsigned el = arm_current_el(env);
10560 
10561     /* First handle registers which unprivileged can read */
10562 
10563     switch (reg) {
10564     case 0 ... 7: /* xPSR sub-fields */
10565         mask = 0;
10566         if ((reg & 1) && el) {
10567             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10568         }
10569         if (!(reg & 4)) {
10570             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10571         }
10572         /* EPSR reads as zero */
10573         return xpsr_read(env) & mask;
10574         break;
10575     case 20: /* CONTROL */
10576         return env->v7m.control[env->v7m.secure];
10577     case 0x94: /* CONTROL_NS */
10578         /* We have to handle this here because unprivileged Secure code
10579          * can read the NS CONTROL register.
10580          */
10581         if (!env->v7m.secure) {
10582             return 0;
10583         }
10584         return env->v7m.control[M_REG_NS];
10585     }
10586 
10587     if (el == 0) {
10588         return 0; /* unprivileged reads others as zero */
10589     }
10590 
10591     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10592         switch (reg) {
10593         case 0x88: /* MSP_NS */
10594             if (!env->v7m.secure) {
10595                 return 0;
10596             }
10597             return env->v7m.other_ss_msp;
10598         case 0x89: /* PSP_NS */
10599             if (!env->v7m.secure) {
10600                 return 0;
10601             }
10602             return env->v7m.other_ss_psp;
10603         case 0x8a: /* MSPLIM_NS */
10604             if (!env->v7m.secure) {
10605                 return 0;
10606             }
10607             return env->v7m.msplim[M_REG_NS];
10608         case 0x8b: /* PSPLIM_NS */
10609             if (!env->v7m.secure) {
10610                 return 0;
10611             }
10612             return env->v7m.psplim[M_REG_NS];
10613         case 0x90: /* PRIMASK_NS */
10614             if (!env->v7m.secure) {
10615                 return 0;
10616             }
10617             return env->v7m.primask[M_REG_NS];
10618         case 0x91: /* BASEPRI_NS */
10619             if (!env->v7m.secure) {
10620                 return 0;
10621             }
10622             return env->v7m.basepri[M_REG_NS];
10623         case 0x93: /* FAULTMASK_NS */
10624             if (!env->v7m.secure) {
10625                 return 0;
10626             }
10627             return env->v7m.faultmask[M_REG_NS];
10628         case 0x98: /* SP_NS */
10629         {
10630             /* This gives the non-secure SP selected based on whether we're
10631              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10632              */
10633             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10634 
10635             if (!env->v7m.secure) {
10636                 return 0;
10637             }
10638             if (!arm_v7m_is_handler_mode(env) && spsel) {
10639                 return env->v7m.other_ss_psp;
10640             } else {
10641                 return env->v7m.other_ss_msp;
10642             }
10643         }
10644         default:
10645             break;
10646         }
10647     }
10648 
10649     switch (reg) {
10650     case 8: /* MSP */
10651         return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
10652     case 9: /* PSP */
10653         return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10654     case 10: /* MSPLIM */
10655         if (!arm_feature(env, ARM_FEATURE_V8)) {
10656             goto bad_reg;
10657         }
10658         return env->v7m.msplim[env->v7m.secure];
10659     case 11: /* PSPLIM */
10660         if (!arm_feature(env, ARM_FEATURE_V8)) {
10661             goto bad_reg;
10662         }
10663         return env->v7m.psplim[env->v7m.secure];
10664     case 16: /* PRIMASK */
10665         return env->v7m.primask[env->v7m.secure];
10666     case 17: /* BASEPRI */
10667     case 18: /* BASEPRI_MAX */
10668         return env->v7m.basepri[env->v7m.secure];
10669     case 19: /* FAULTMASK */
10670         return env->v7m.faultmask[env->v7m.secure];
10671     default:
10672     bad_reg:
10673         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
10674                                        " register %d\n", reg);
10675         return 0;
10676     }
10677 }
10678 
10679 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
10680 {
10681     /* We're passed bits [11..0] of the instruction; extract
10682      * SYSm and the mask bits.
10683      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
10684      * we choose to treat them as if the mask bits were valid.
10685      * NB that the pseudocode 'mask' variable is bits [11..10],
10686      * whereas ours is [11..8].
10687      */
10688     uint32_t mask = extract32(maskreg, 8, 4);
10689     uint32_t reg = extract32(maskreg, 0, 8);
10690 
10691     if (arm_current_el(env) == 0 && reg > 7) {
10692         /* only xPSR sub-fields may be written by unprivileged */
10693         return;
10694     }
10695 
10696     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
10697         switch (reg) {
10698         case 0x88: /* MSP_NS */
10699             if (!env->v7m.secure) {
10700                 return;
10701             }
10702             env->v7m.other_ss_msp = val;
10703             return;
10704         case 0x89: /* PSP_NS */
10705             if (!env->v7m.secure) {
10706                 return;
10707             }
10708             env->v7m.other_ss_psp = val;
10709             return;
10710         case 0x8a: /* MSPLIM_NS */
10711             if (!env->v7m.secure) {
10712                 return;
10713             }
10714             env->v7m.msplim[M_REG_NS] = val & ~7;
10715             return;
10716         case 0x8b: /* PSPLIM_NS */
10717             if (!env->v7m.secure) {
10718                 return;
10719             }
10720             env->v7m.psplim[M_REG_NS] = val & ~7;
10721             return;
10722         case 0x90: /* PRIMASK_NS */
10723             if (!env->v7m.secure) {
10724                 return;
10725             }
10726             env->v7m.primask[M_REG_NS] = val & 1;
10727             return;
10728         case 0x91: /* BASEPRI_NS */
10729             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10730                 return;
10731             }
10732             env->v7m.basepri[M_REG_NS] = val & 0xff;
10733             return;
10734         case 0x93: /* FAULTMASK_NS */
10735             if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
10736                 return;
10737             }
10738             env->v7m.faultmask[M_REG_NS] = val & 1;
10739             return;
10740         case 0x94: /* CONTROL_NS */
10741             if (!env->v7m.secure) {
10742                 return;
10743             }
10744             write_v7m_control_spsel_for_secstate(env,
10745                                                  val & R_V7M_CONTROL_SPSEL_MASK,
10746                                                  M_REG_NS);
10747             if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10748                 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
10749                 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
10750             }
10751             return;
10752         case 0x98: /* SP_NS */
10753         {
10754             /* This gives the non-secure SP selected based on whether we're
10755              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10756              */
10757             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10758 
10759             if (!env->v7m.secure) {
10760                 return;
10761             }
10762             if (!arm_v7m_is_handler_mode(env) && spsel) {
10763                 env->v7m.other_ss_psp = val;
10764             } else {
10765                 env->v7m.other_ss_msp = val;
10766             }
10767             return;
10768         }
10769         default:
10770             break;
10771         }
10772     }
10773 
10774     switch (reg) {
10775     case 0 ... 7: /* xPSR sub-fields */
10776         /* only APSR is actually writable */
10777         if (!(reg & 4)) {
10778             uint32_t apsrmask = 0;
10779 
10780             if (mask & 8) {
10781                 apsrmask |= XPSR_NZCV | XPSR_Q;
10782             }
10783             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10784                 apsrmask |= XPSR_GE;
10785             }
10786             xpsr_write(env, val, apsrmask);
10787         }
10788         break;
10789     case 8: /* MSP */
10790         if (v7m_using_psp(env)) {
10791             env->v7m.other_sp = val;
10792         } else {
10793             env->regs[13] = val;
10794         }
10795         break;
10796     case 9: /* PSP */
10797         if (v7m_using_psp(env)) {
10798             env->regs[13] = val;
10799         } else {
10800             env->v7m.other_sp = val;
10801         }
10802         break;
10803     case 10: /* MSPLIM */
10804         if (!arm_feature(env, ARM_FEATURE_V8)) {
10805             goto bad_reg;
10806         }
10807         env->v7m.msplim[env->v7m.secure] = val & ~7;
10808         break;
10809     case 11: /* PSPLIM */
10810         if (!arm_feature(env, ARM_FEATURE_V8)) {
10811             goto bad_reg;
10812         }
10813         env->v7m.psplim[env->v7m.secure] = val & ~7;
10814         break;
10815     case 16: /* PRIMASK */
10816         env->v7m.primask[env->v7m.secure] = val & 1;
10817         break;
10818     case 17: /* BASEPRI */
10819         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10820             goto bad_reg;
10821         }
10822         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10823         break;
10824     case 18: /* BASEPRI_MAX */
10825         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10826             goto bad_reg;
10827         }
10828         val &= 0xff;
10829         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10830                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10831             env->v7m.basepri[env->v7m.secure] = val;
10832         }
10833         break;
10834     case 19: /* FAULTMASK */
10835         if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
10836             goto bad_reg;
10837         }
10838         env->v7m.faultmask[env->v7m.secure] = val & 1;
10839         break;
10840     case 20: /* CONTROL */
10841         /* Writing to the SPSEL bit only has an effect if we are in
10842          * thread mode; other bits can be updated by any privileged code.
10843          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10844          * env->v7m.control, so we only need update the others.
10845          * For v7M, we must just ignore explicit writes to SPSEL in handler
10846          * mode; for v8M the write is permitted but will have no effect.
10847          */
10848         if (arm_feature(env, ARM_FEATURE_V8) ||
10849             !arm_v7m_is_handler_mode(env)) {
10850             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10851         }
10852         if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
10853             env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10854             env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10855         }
10856         break;
10857     default:
10858     bad_reg:
10859         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10860                                        " register %d\n", reg);
10861         return;
10862     }
10863 }
10864 
10865 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
10866 {
10867     /* Implement the TT instruction. op is bits [7:6] of the insn. */
10868     bool forceunpriv = op & 1;
10869     bool alt = op & 2;
10870     V8M_SAttributes sattrs = {};
10871     uint32_t tt_resp;
10872     bool r, rw, nsr, nsrw, mrvalid;
10873     int prot;
10874     ARMMMUFaultInfo fi = {};
10875     MemTxAttrs attrs = {};
10876     hwaddr phys_addr;
10877     ARMMMUIdx mmu_idx;
10878     uint32_t mregion;
10879     bool targetpriv;
10880     bool targetsec = env->v7m.secure;
10881     bool is_subpage;
10882 
10883     /* Work out what the security state and privilege level we're
10884      * interested in is...
10885      */
10886     if (alt) {
10887         targetsec = !targetsec;
10888     }
10889 
10890     if (forceunpriv) {
10891         targetpriv = false;
10892     } else {
10893         targetpriv = arm_v7m_is_handler_mode(env) ||
10894             !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
10895     }
10896 
10897     /* ...and then figure out which MMU index this is */
10898     mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
10899 
10900     /* We know that the MPU and SAU don't care about the access type
10901      * for our purposes beyond that we don't want to claim to be
10902      * an insn fetch, so we arbitrarily call this a read.
10903      */
10904 
10905     /* MPU region info only available for privileged or if
10906      * inspecting the other MPU state.
10907      */
10908     if (arm_current_el(env) != 0 || alt) {
10909         /* We can ignore the return value as prot is always set */
10910         pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10911                           &phys_addr, &attrs, &prot, &is_subpage,
10912                           &fi, &mregion);
10913         if (mregion == -1) {
10914             mrvalid = false;
10915             mregion = 0;
10916         } else {
10917             mrvalid = true;
10918         }
10919         r = prot & PAGE_READ;
10920         rw = prot & PAGE_WRITE;
10921     } else {
10922         r = false;
10923         rw = false;
10924         mrvalid = false;
10925         mregion = 0;
10926     }
10927 
10928     if (env->v7m.secure) {
10929         v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
10930         nsr = sattrs.ns && r;
10931         nsrw = sattrs.ns && rw;
10932     } else {
10933         sattrs.ns = true;
10934         nsr = false;
10935         nsrw = false;
10936     }
10937 
10938     tt_resp = (sattrs.iregion << 24) |
10939         (sattrs.irvalid << 23) |
10940         ((!sattrs.ns) << 22) |
10941         (nsrw << 21) |
10942         (nsr << 20) |
10943         (rw << 19) |
10944         (r << 18) |
10945         (sattrs.srvalid << 17) |
10946         (mrvalid << 16) |
10947         (sattrs.sregion << 8) |
10948         mregion;
10949 
10950     return tt_resp;
10951 }
10952 
10953 #endif
10954 
10955 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10956 {
10957     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10958      * Note that we do not implement the (architecturally mandated)
10959      * alignment fault for attempts to use this on Device memory
10960      * (which matches the usual QEMU behaviour of not implementing either
10961      * alignment faults or any memory attribute handling).
10962      */
10963 
10964     ARMCPU *cpu = arm_env_get_cpu(env);
10965     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10966     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10967 
10968 #ifndef CONFIG_USER_ONLY
10969     {
10970         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10971          * the block size so we might have to do more than one TLB lookup.
10972          * We know that in fact for any v8 CPU the page size is at least 4K
10973          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10974          * 1K as an artefact of legacy v5 subpage support being present in the
10975          * same QEMU executable.
10976          */
10977         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10978         void *hostaddr[maxidx];
10979         int try, i;
10980         unsigned mmu_idx = cpu_mmu_index(env, false);
10981         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10982 
10983         for (try = 0; try < 2; try++) {
10984 
10985             for (i = 0; i < maxidx; i++) {
10986                 hostaddr[i] = tlb_vaddr_to_host(env,
10987                                                 vaddr + TARGET_PAGE_SIZE * i,
10988                                                 1, mmu_idx);
10989                 if (!hostaddr[i]) {
10990                     break;
10991                 }
10992             }
10993             if (i == maxidx) {
10994                 /* If it's all in the TLB it's fair game for just writing to;
10995                  * we know we don't need to update dirty status, etc.
10996                  */
10997                 for (i = 0; i < maxidx - 1; i++) {
10998                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10999                 }
11000                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
11001                 return;
11002             }
11003             /* OK, try a store and see if we can populate the tlb. This
11004              * might cause an exception if the memory isn't writable,
11005              * in which case we will longjmp out of here. We must for
11006              * this purpose use the actual register value passed to us
11007              * so that we get the fault address right.
11008              */
11009             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
11010             /* Now we can populate the other TLB entries, if any */
11011             for (i = 0; i < maxidx; i++) {
11012                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
11013                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
11014                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
11015                 }
11016             }
11017         }
11018 
11019         /* Slow path (probably attempt to do this to an I/O device or
11020          * similar, or clearing of a block of code we have translations
11021          * cached for). Just do a series of byte writes as the architecture
11022          * demands. It's not worth trying to use a cpu_physical_memory_map(),
11023          * memset(), unmap() sequence here because:
11024          *  + we'd need to account for the blocksize being larger than a page
11025          *  + the direct-RAM access case is almost always going to be dealt
11026          *    with in the fastpath code above, so there's no speed benefit
11027          *  + we would have to deal with the map returning NULL because the
11028          *    bounce buffer was in use
11029          */
11030         for (i = 0; i < blocklen; i++) {
11031             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
11032         }
11033     }
11034 #else
11035     memset(g2h(vaddr), 0, blocklen);
11036 #endif
11037 }
11038 
11039 /* Note that signed overflow is undefined in C.  The following routines are
11040    careful to use unsigned types where modulo arithmetic is required.
11041    Failure to do so _will_ break on newer gcc.  */
11042 
11043 /* Signed saturating arithmetic.  */
11044 
11045 /* Perform 16-bit signed saturating addition.  */
11046 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11047 {
11048     uint16_t res;
11049 
11050     res = a + b;
11051     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11052         if (a & 0x8000)
11053             res = 0x8000;
11054         else
11055             res = 0x7fff;
11056     }
11057     return res;
11058 }
11059 
11060 /* Perform 8-bit signed saturating addition.  */
11061 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11062 {
11063     uint8_t res;
11064 
11065     res = a + b;
11066     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11067         if (a & 0x80)
11068             res = 0x80;
11069         else
11070             res = 0x7f;
11071     }
11072     return res;
11073 }
11074 
11075 /* Perform 16-bit signed saturating subtraction.  */
11076 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11077 {
11078     uint16_t res;
11079 
11080     res = a - b;
11081     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11082         if (a & 0x8000)
11083             res = 0x8000;
11084         else
11085             res = 0x7fff;
11086     }
11087     return res;
11088 }
11089 
11090 /* Perform 8-bit signed saturating subtraction.  */
11091 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11092 {
11093     uint8_t res;
11094 
11095     res = a - b;
11096     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11097         if (a & 0x80)
11098             res = 0x80;
11099         else
11100             res = 0x7f;
11101     }
11102     return res;
11103 }
11104 
11105 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11106 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11107 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11108 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11109 #define PFX q
11110 
11111 #include "op_addsub.h"
11112 
11113 /* Unsigned saturating arithmetic.  */
11114 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11115 {
11116     uint16_t res;
11117     res = a + b;
11118     if (res < a)
11119         res = 0xffff;
11120     return res;
11121 }
11122 
11123 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11124 {
11125     if (a > b)
11126         return a - b;
11127     else
11128         return 0;
11129 }
11130 
11131 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11132 {
11133     uint8_t res;
11134     res = a + b;
11135     if (res < a)
11136         res = 0xff;
11137     return res;
11138 }
11139 
11140 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11141 {
11142     if (a > b)
11143         return a - b;
11144     else
11145         return 0;
11146 }
11147 
11148 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11149 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11150 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11151 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11152 #define PFX uq
11153 
11154 #include "op_addsub.h"
11155 
11156 /* Signed modulo arithmetic.  */
11157 #define SARITH16(a, b, n, op) do { \
11158     int32_t sum; \
11159     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11160     RESULT(sum, n, 16); \
11161     if (sum >= 0) \
11162         ge |= 3 << (n * 2); \
11163     } while(0)
11164 
11165 #define SARITH8(a, b, n, op) do { \
11166     int32_t sum; \
11167     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11168     RESULT(sum, n, 8); \
11169     if (sum >= 0) \
11170         ge |= 1 << n; \
11171     } while(0)
11172 
11173 
11174 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11175 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11176 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11177 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11178 #define PFX s
11179 #define ARITH_GE
11180 
11181 #include "op_addsub.h"
11182 
11183 /* Unsigned modulo arithmetic.  */
11184 #define ADD16(a, b, n) do { \
11185     uint32_t sum; \
11186     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11187     RESULT(sum, n, 16); \
11188     if ((sum >> 16) == 1) \
11189         ge |= 3 << (n * 2); \
11190     } while(0)
11191 
11192 #define ADD8(a, b, n) do { \
11193     uint32_t sum; \
11194     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11195     RESULT(sum, n, 8); \
11196     if ((sum >> 8) == 1) \
11197         ge |= 1 << n; \
11198     } while(0)
11199 
11200 #define SUB16(a, b, n) do { \
11201     uint32_t sum; \
11202     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11203     RESULT(sum, n, 16); \
11204     if ((sum >> 16) == 0) \
11205         ge |= 3 << (n * 2); \
11206     } while(0)
11207 
11208 #define SUB8(a, b, n) do { \
11209     uint32_t sum; \
11210     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11211     RESULT(sum, n, 8); \
11212     if ((sum >> 8) == 0) \
11213         ge |= 1 << n; \
11214     } while(0)
11215 
11216 #define PFX u
11217 #define ARITH_GE
11218 
11219 #include "op_addsub.h"
11220 
11221 /* Halved signed arithmetic.  */
11222 #define ADD16(a, b, n) \
11223   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11224 #define SUB16(a, b, n) \
11225   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11226 #define ADD8(a, b, n) \
11227   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11228 #define SUB8(a, b, n) \
11229   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11230 #define PFX sh
11231 
11232 #include "op_addsub.h"
11233 
11234 /* Halved unsigned arithmetic.  */
11235 #define ADD16(a, b, n) \
11236   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11237 #define SUB16(a, b, n) \
11238   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11239 #define ADD8(a, b, n) \
11240   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11241 #define SUB8(a, b, n) \
11242   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11243 #define PFX uh
11244 
11245 #include "op_addsub.h"
11246 
11247 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11248 {
11249     if (a > b)
11250         return a - b;
11251     else
11252         return b - a;
11253 }
11254 
11255 /* Unsigned sum of absolute byte differences.  */
11256 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11257 {
11258     uint32_t sum;
11259     sum = do_usad(a, b);
11260     sum += do_usad(a >> 8, b >> 8);
11261     sum += do_usad(a >> 16, b >>16);
11262     sum += do_usad(a >> 24, b >> 24);
11263     return sum;
11264 }
11265 
11266 /* For ARMv6 SEL instruction.  */
11267 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11268 {
11269     uint32_t mask;
11270 
11271     mask = 0;
11272     if (flags & 1)
11273         mask |= 0xff;
11274     if (flags & 2)
11275         mask |= 0xff00;
11276     if (flags & 4)
11277         mask |= 0xff0000;
11278     if (flags & 8)
11279         mask |= 0xff000000;
11280     return (a & mask) | (b & ~mask);
11281 }
11282 
11283 /* VFP support.  We follow the convention used for VFP instructions:
11284    Single precision routines have a "s" suffix, double precision a
11285    "d" suffix.  */
11286 
11287 /* Convert host exception flags to vfp form.  */
11288 static inline int vfp_exceptbits_from_host(int host_bits)
11289 {
11290     int target_bits = 0;
11291 
11292     if (host_bits & float_flag_invalid)
11293         target_bits |= 1;
11294     if (host_bits & float_flag_divbyzero)
11295         target_bits |= 2;
11296     if (host_bits & float_flag_overflow)
11297         target_bits |= 4;
11298     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
11299         target_bits |= 8;
11300     if (host_bits & float_flag_inexact)
11301         target_bits |= 0x10;
11302     if (host_bits & float_flag_input_denormal)
11303         target_bits |= 0x80;
11304     return target_bits;
11305 }
11306 
11307 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
11308 {
11309     int i;
11310     uint32_t fpscr;
11311 
11312     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
11313             | (env->vfp.vec_len << 16)
11314             | (env->vfp.vec_stride << 20);
11315 
11316     i = get_float_exception_flags(&env->vfp.fp_status);
11317     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11318     /* FZ16 does not generate an input denormal exception.  */
11319     i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
11320           & ~float_flag_input_denormal);
11321 
11322     fpscr |= vfp_exceptbits_from_host(i);
11323     return fpscr;
11324 }
11325 
11326 uint32_t vfp_get_fpscr(CPUARMState *env)
11327 {
11328     return HELPER(vfp_get_fpscr)(env);
11329 }
11330 
11331 /* Convert vfp exception flags to target form.  */
11332 static inline int vfp_exceptbits_to_host(int target_bits)
11333 {
11334     int host_bits = 0;
11335 
11336     if (target_bits & 1)
11337         host_bits |= float_flag_invalid;
11338     if (target_bits & 2)
11339         host_bits |= float_flag_divbyzero;
11340     if (target_bits & 4)
11341         host_bits |= float_flag_overflow;
11342     if (target_bits & 8)
11343         host_bits |= float_flag_underflow;
11344     if (target_bits & 0x10)
11345         host_bits |= float_flag_inexact;
11346     if (target_bits & 0x80)
11347         host_bits |= float_flag_input_denormal;
11348     return host_bits;
11349 }
11350 
11351 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
11352 {
11353     int i;
11354     uint32_t changed;
11355 
11356     /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
11357     if (!arm_feature(env, ARM_FEATURE_V8_FP16)) {
11358         val &= ~FPCR_FZ16;
11359     }
11360 
11361     changed = env->vfp.xregs[ARM_VFP_FPSCR];
11362     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
11363     env->vfp.vec_len = (val >> 16) & 7;
11364     env->vfp.vec_stride = (val >> 20) & 3;
11365 
11366     changed ^= val;
11367     if (changed & (3 << 22)) {
11368         i = (val >> 22) & 3;
11369         switch (i) {
11370         case FPROUNDING_TIEEVEN:
11371             i = float_round_nearest_even;
11372             break;
11373         case FPROUNDING_POSINF:
11374             i = float_round_up;
11375             break;
11376         case FPROUNDING_NEGINF:
11377             i = float_round_down;
11378             break;
11379         case FPROUNDING_ZERO:
11380             i = float_round_to_zero;
11381             break;
11382         }
11383         set_float_rounding_mode(i, &env->vfp.fp_status);
11384         set_float_rounding_mode(i, &env->vfp.fp_status_f16);
11385     }
11386     if (changed & FPCR_FZ16) {
11387         bool ftz_enabled = val & FPCR_FZ16;
11388         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11389         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
11390     }
11391     if (changed & FPCR_FZ) {
11392         bool ftz_enabled = val & FPCR_FZ;
11393         set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
11394         set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
11395     }
11396     if (changed & FPCR_DN) {
11397         bool dnan_enabled = val & FPCR_DN;
11398         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
11399         set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11400     }
11401 
11402     /* The exception flags are ORed together when we read fpscr so we
11403      * only need to preserve the current state in one of our
11404      * float_status values.
11405      */
11406     i = vfp_exceptbits_to_host(val);
11407     set_float_exception_flags(i, &env->vfp.fp_status);
11408     set_float_exception_flags(0, &env->vfp.fp_status_f16);
11409     set_float_exception_flags(0, &env->vfp.standard_fp_status);
11410 }
11411 
11412 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11413 {
11414     HELPER(vfp_set_fpscr)(env, val);
11415 }
11416 
11417 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11418 
11419 #define VFP_BINOP(name) \
11420 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11421 { \
11422     float_status *fpst = fpstp; \
11423     return float32_ ## name(a, b, fpst); \
11424 } \
11425 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11426 { \
11427     float_status *fpst = fpstp; \
11428     return float64_ ## name(a, b, fpst); \
11429 }
11430 VFP_BINOP(add)
11431 VFP_BINOP(sub)
11432 VFP_BINOP(mul)
11433 VFP_BINOP(div)
11434 VFP_BINOP(min)
11435 VFP_BINOP(max)
11436 VFP_BINOP(minnum)
11437 VFP_BINOP(maxnum)
11438 #undef VFP_BINOP
11439 
11440 float32 VFP_HELPER(neg, s)(float32 a)
11441 {
11442     return float32_chs(a);
11443 }
11444 
11445 float64 VFP_HELPER(neg, d)(float64 a)
11446 {
11447     return float64_chs(a);
11448 }
11449 
11450 float32 VFP_HELPER(abs, s)(float32 a)
11451 {
11452     return float32_abs(a);
11453 }
11454 
11455 float64 VFP_HELPER(abs, d)(float64 a)
11456 {
11457     return float64_abs(a);
11458 }
11459 
11460 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
11461 {
11462     return float32_sqrt(a, &env->vfp.fp_status);
11463 }
11464 
11465 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
11466 {
11467     return float64_sqrt(a, &env->vfp.fp_status);
11468 }
11469 
11470 /* XXX: check quiet/signaling case */
11471 #define DO_VFP_cmp(p, type) \
11472 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
11473 { \
11474     uint32_t flags; \
11475     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
11476     case 0: flags = 0x6; break; \
11477     case -1: flags = 0x8; break; \
11478     case 1: flags = 0x2; break; \
11479     default: case 2: flags = 0x3; break; \
11480     } \
11481     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11482         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11483 } \
11484 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
11485 { \
11486     uint32_t flags; \
11487     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
11488     case 0: flags = 0x6; break; \
11489     case -1: flags = 0x8; break; \
11490     case 1: flags = 0x2; break; \
11491     default: case 2: flags = 0x3; break; \
11492     } \
11493     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
11494         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
11495 }
11496 DO_VFP_cmp(s, float32)
11497 DO_VFP_cmp(d, float64)
11498 #undef DO_VFP_cmp
11499 
11500 /* Integer to float and float to integer conversions */
11501 
11502 #define CONV_ITOF(name, ftype, fsz, sign)                           \
11503 ftype HELPER(name)(uint32_t x, void *fpstp)                         \
11504 {                                                                   \
11505     float_status *fpst = fpstp;                                     \
11506     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
11507 }
11508 
11509 #define CONV_FTOI(name, ftype, fsz, sign, round)                \
11510 sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
11511 {                                                               \
11512     float_status *fpst = fpstp;                                 \
11513     if (float##fsz##_is_any_nan(x)) {                           \
11514         float_raise(float_flag_invalid, fpst);                  \
11515         return 0;                                               \
11516     }                                                           \
11517     return float##fsz##_to_##sign##int32##round(x, fpst);       \
11518 }
11519 
11520 #define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
11521     CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
11522     CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
11523     CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
11524 
11525 FLOAT_CONVS(si, h, uint32_t, 16, )
11526 FLOAT_CONVS(si, s, float32, 32, )
11527 FLOAT_CONVS(si, d, float64, 64, )
11528 FLOAT_CONVS(ui, h, uint32_t, 16, u)
11529 FLOAT_CONVS(ui, s, float32, 32, u)
11530 FLOAT_CONVS(ui, d, float64, 64, u)
11531 
11532 #undef CONV_ITOF
11533 #undef CONV_FTOI
11534 #undef FLOAT_CONVS
11535 
11536 /* floating point conversion */
11537 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
11538 {
11539     return float32_to_float64(x, &env->vfp.fp_status);
11540 }
11541 
11542 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
11543 {
11544     return float64_to_float32(x, &env->vfp.fp_status);
11545 }
11546 
11547 /* VFP3 fixed point conversion.  */
11548 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11549 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
11550                                      void *fpstp) \
11551 { \
11552     float_status *fpst = fpstp; \
11553     float##fsz tmp; \
11554     tmp = itype##_to_##float##fsz(x, fpst); \
11555     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11556 }
11557 
11558 /* Notice that we want only input-denormal exception flags from the
11559  * scalbn operation: the other possible flags (overflow+inexact if
11560  * we overflow to infinity, output-denormal) aren't correct for the
11561  * complete scale-and-convert operation.
11562  */
11563 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
11564 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
11565                                              uint32_t shift, \
11566                                              void *fpstp) \
11567 { \
11568     float_status *fpst = fpstp; \
11569     int old_exc_flags = get_float_exception_flags(fpst); \
11570     float##fsz tmp; \
11571     if (float##fsz##_is_any_nan(x)) { \
11572         float_raise(float_flag_invalid, fpst); \
11573         return 0; \
11574     } \
11575     tmp = float##fsz##_scalbn(x, shift, fpst); \
11576     old_exc_flags |= get_float_exception_flags(fpst) \
11577         & float_flag_input_denormal; \
11578     set_float_exception_flags(old_exc_flags, fpst); \
11579     return float##fsz##_to_##itype##round(tmp, fpst); \
11580 }
11581 
11582 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
11583 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11584 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
11585 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11586 
11587 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
11588 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11589 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11590 
11591 VFP_CONV_FIX(sh, d, 64, 64, int16)
11592 VFP_CONV_FIX(sl, d, 64, 64, int32)
11593 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11594 VFP_CONV_FIX(uh, d, 64, 64, uint16)
11595 VFP_CONV_FIX(ul, d, 64, 64, uint32)
11596 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11597 VFP_CONV_FIX(sh, s, 32, 32, int16)
11598 VFP_CONV_FIX(sl, s, 32, 32, int32)
11599 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11600 VFP_CONV_FIX(uh, s, 32, 32, uint16)
11601 VFP_CONV_FIX(ul, s, 32, 32, uint32)
11602 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11603 
11604 #undef VFP_CONV_FIX
11605 #undef VFP_CONV_FIX_FLOAT
11606 #undef VFP_CONV_FLOAT_FIX_ROUND
11607 #undef VFP_CONV_FIX_A64
11608 
11609 /* Conversion to/from f16 can overflow to infinity before/after scaling.
11610  * Therefore we convert to f64, scale, and then convert f64 to f16; or
11611  * vice versa for conversion to integer.
11612  *
11613  * For 16- and 32-bit integers, the conversion to f64 never rounds.
11614  * For 64-bit integers, any integer that would cause rounding will also
11615  * overflow to f16 infinity, so there is no double rounding problem.
11616  */
11617 
11618 static float16 do_postscale_fp16(float64 f, int shift, float_status *fpst)
11619 {
11620     return float64_to_float16(float64_scalbn(f, -shift, fpst), true, fpst);
11621 }
11622 
11623 uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
11624 {
11625     return do_postscale_fp16(int32_to_float64(x, fpst), shift, fpst);
11626 }
11627 
11628 uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
11629 {
11630     return do_postscale_fp16(uint32_to_float64(x, fpst), shift, fpst);
11631 }
11632 
11633 uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
11634 {
11635     return do_postscale_fp16(int64_to_float64(x, fpst), shift, fpst);
11636 }
11637 
11638 uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
11639 {
11640     return do_postscale_fp16(uint64_to_float64(x, fpst), shift, fpst);
11641 }
11642 
11643 static float64 do_prescale_fp16(float16 f, int shift, float_status *fpst)
11644 {
11645     if (unlikely(float16_is_any_nan(f))) {
11646         float_raise(float_flag_invalid, fpst);
11647         return 0;
11648     } else {
11649         int old_exc_flags = get_float_exception_flags(fpst);
11650         float64 ret;
11651 
11652         ret = float16_to_float64(f, true, fpst);
11653         ret = float64_scalbn(ret, shift, fpst);
11654         old_exc_flags |= get_float_exception_flags(fpst)
11655             & float_flag_input_denormal;
11656         set_float_exception_flags(old_exc_flags, fpst);
11657 
11658         return ret;
11659     }
11660 }
11661 
11662 uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
11663 {
11664     return float64_to_int16(do_prescale_fp16(x, shift, fpst), fpst);
11665 }
11666 
11667 uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
11668 {
11669     return float64_to_uint16(do_prescale_fp16(x, shift, fpst), fpst);
11670 }
11671 
11672 uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
11673 {
11674     return float64_to_int32(do_prescale_fp16(x, shift, fpst), fpst);
11675 }
11676 
11677 uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
11678 {
11679     return float64_to_uint32(do_prescale_fp16(x, shift, fpst), fpst);
11680 }
11681 
11682 uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
11683 {
11684     return float64_to_int64(do_prescale_fp16(x, shift, fpst), fpst);
11685 }
11686 
11687 uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
11688 {
11689     return float64_to_uint64(do_prescale_fp16(x, shift, fpst), fpst);
11690 }
11691 
11692 /* Set the current fp rounding mode and return the old one.
11693  * The argument is a softfloat float_round_ value.
11694  */
11695 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11696 {
11697     float_status *fp_status = fpstp;
11698 
11699     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11700     set_float_rounding_mode(rmode, fp_status);
11701 
11702     return prev_rmode;
11703 }
11704 
11705 /* Set the current fp rounding mode in the standard fp status and return
11706  * the old one. This is for NEON instructions that need to change the
11707  * rounding mode but wish to use the standard FPSCR values for everything
11708  * else. Always set the rounding mode back to the correct value after
11709  * modifying it.
11710  * The argument is a softfloat float_round_ value.
11711  */
11712 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
11713 {
11714     float_status *fp_status = &env->vfp.standard_fp_status;
11715 
11716     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
11717     set_float_rounding_mode(rmode, fp_status);
11718 
11719     return prev_rmode;
11720 }
11721 
11722 /* Half precision conversions.  */
11723 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11724 {
11725     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11726      * it would affect flushing input denormals.
11727      */
11728     float_status *fpst = fpstp;
11729     flag save = get_flush_inputs_to_zero(fpst);
11730     set_flush_inputs_to_zero(false, fpst);
11731     float32 r = float16_to_float32(a, !ahp_mode, fpst);
11732     set_flush_inputs_to_zero(save, fpst);
11733     return r;
11734 }
11735 
11736 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
11737 {
11738     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11739      * it would affect flushing output denormals.
11740      */
11741     float_status *fpst = fpstp;
11742     flag save = get_flush_to_zero(fpst);
11743     set_flush_to_zero(false, fpst);
11744     float16 r = float32_to_float16(a, !ahp_mode, fpst);
11745     set_flush_to_zero(save, fpst);
11746     return r;
11747 }
11748 
11749 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
11750 {
11751     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11752      * it would affect flushing input denormals.
11753      */
11754     float_status *fpst = fpstp;
11755     flag save = get_flush_inputs_to_zero(fpst);
11756     set_flush_inputs_to_zero(false, fpst);
11757     float64 r = float16_to_float64(a, !ahp_mode, fpst);
11758     set_flush_inputs_to_zero(save, fpst);
11759     return r;
11760 }
11761 
11762 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
11763 {
11764     /* Squash FZ16 to 0 for the duration of conversion.  In this case,
11765      * it would affect flushing output denormals.
11766      */
11767     float_status *fpst = fpstp;
11768     flag save = get_flush_to_zero(fpst);
11769     set_flush_to_zero(false, fpst);
11770     float16 r = float64_to_float16(a, !ahp_mode, fpst);
11771     set_flush_to_zero(save, fpst);
11772     return r;
11773 }
11774 
11775 #define float32_two make_float32(0x40000000)
11776 #define float32_three make_float32(0x40400000)
11777 #define float32_one_point_five make_float32(0x3fc00000)
11778 
11779 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
11780 {
11781     float_status *s = &env->vfp.standard_fp_status;
11782     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11783         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11784         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11785             float_raise(float_flag_input_denormal, s);
11786         }
11787         return float32_two;
11788     }
11789     return float32_sub(float32_two, float32_mul(a, b, s), s);
11790 }
11791 
11792 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
11793 {
11794     float_status *s = &env->vfp.standard_fp_status;
11795     float32 product;
11796     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
11797         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11798         if (!(float32_is_zero(a) || float32_is_zero(b))) {
11799             float_raise(float_flag_input_denormal, s);
11800         }
11801         return float32_one_point_five;
11802     }
11803     product = float32_mul(a, b, s);
11804     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
11805 }
11806 
11807 /* NEON helpers.  */
11808 
11809 /* Constants 256 and 512 are used in some helpers; we avoid relying on
11810  * int->float conversions at run-time.  */
11811 #define float64_256 make_float64(0x4070000000000000LL)
11812 #define float64_512 make_float64(0x4080000000000000LL)
11813 #define float16_maxnorm make_float16(0x7bff)
11814 #define float32_maxnorm make_float32(0x7f7fffff)
11815 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11816 
11817 /* Reciprocal functions
11818  *
11819  * The algorithm that must be used to calculate the estimate
11820  * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11821  */
11822 
11823 /* See RecipEstimate()
11824  *
11825  * input is a 9 bit fixed point number
11826  * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
11827  * result range 256 .. 511 for a number from 1.0 to 511/256.
11828  */
11829 
11830 static int recip_estimate(int input)
11831 {
11832     int a, b, r;
11833     assert(256 <= input && input < 512);
11834     a = (input * 2) + 1;
11835     b = (1 << 19) / a;
11836     r = (b + 1) >> 1;
11837     assert(256 <= r && r < 512);
11838     return r;
11839 }
11840 
11841 /*
11842  * Common wrapper to call recip_estimate
11843  *
11844  * The parameters are exponent and 64 bit fraction (without implicit
11845  * bit) where the binary point is nominally at bit 52. Returns a
11846  * float64 which can then be rounded to the appropriate size by the
11847  * callee.
11848  */
11849 
11850 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
11851 {
11852     uint32_t scaled, estimate;
11853     uint64_t result_frac;
11854     int result_exp;
11855 
11856     /* Handle sub-normals */
11857     if (*exp == 0) {
11858         if (extract64(frac, 51, 1) == 0) {
11859             *exp = -1;
11860             frac <<= 2;
11861         } else {
11862             frac <<= 1;
11863         }
11864     }
11865 
11866     /* scaled = UInt('1':fraction<51:44>) */
11867     scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
11868     estimate = recip_estimate(scaled);
11869 
11870     result_exp = exp_off - *exp;
11871     result_frac = deposit64(0, 44, 8, estimate);
11872     if (result_exp == 0) {
11873         result_frac = deposit64(result_frac >> 1, 51, 1, 1);
11874     } else if (result_exp == -1) {
11875         result_frac = deposit64(result_frac >> 2, 50, 2, 1);
11876         result_exp = 0;
11877     }
11878 
11879     *exp = result_exp;
11880 
11881     return result_frac;
11882 }
11883 
11884 static bool round_to_inf(float_status *fpst, bool sign_bit)
11885 {
11886     switch (fpst->float_rounding_mode) {
11887     case float_round_nearest_even: /* Round to Nearest */
11888         return true;
11889     case float_round_up: /* Round to +Inf */
11890         return !sign_bit;
11891     case float_round_down: /* Round to -Inf */
11892         return sign_bit;
11893     case float_round_to_zero: /* Round to Zero */
11894         return false;
11895     }
11896 
11897     g_assert_not_reached();
11898 }
11899 
11900 uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
11901 {
11902     float_status *fpst = fpstp;
11903     float16 f16 = float16_squash_input_denormal(input, fpst);
11904     uint32_t f16_val = float16_val(f16);
11905     uint32_t f16_sign = float16_is_neg(f16);
11906     int f16_exp = extract32(f16_val, 10, 5);
11907     uint32_t f16_frac = extract32(f16_val, 0, 10);
11908     uint64_t f64_frac;
11909 
11910     if (float16_is_any_nan(f16)) {
11911         float16 nan = f16;
11912         if (float16_is_signaling_nan(f16, fpst)) {
11913             float_raise(float_flag_invalid, fpst);
11914             nan = float16_silence_nan(f16, fpst);
11915         }
11916         if (fpst->default_nan_mode) {
11917             nan =  float16_default_nan(fpst);
11918         }
11919         return nan;
11920     } else if (float16_is_infinity(f16)) {
11921         return float16_set_sign(float16_zero, float16_is_neg(f16));
11922     } else if (float16_is_zero(f16)) {
11923         float_raise(float_flag_divbyzero, fpst);
11924         return float16_set_sign(float16_infinity, float16_is_neg(f16));
11925     } else if (float16_abs(f16) < (1 << 8)) {
11926         /* Abs(value) < 2.0^-16 */
11927         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11928         if (round_to_inf(fpst, f16_sign)) {
11929             return float16_set_sign(float16_infinity, f16_sign);
11930         } else {
11931             return float16_set_sign(float16_maxnorm, f16_sign);
11932         }
11933     } else if (f16_exp >= 29 && fpst->flush_to_zero) {
11934         float_raise(float_flag_underflow, fpst);
11935         return float16_set_sign(float16_zero, float16_is_neg(f16));
11936     }
11937 
11938     f64_frac = call_recip_estimate(&f16_exp, 29,
11939                                    ((uint64_t) f16_frac) << (52 - 10));
11940 
11941     /* result = sign : result_exp<4:0> : fraction<51:42> */
11942     f16_val = deposit32(0, 15, 1, f16_sign);
11943     f16_val = deposit32(f16_val, 10, 5, f16_exp);
11944     f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
11945     return make_float16(f16_val);
11946 }
11947 
11948 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
11949 {
11950     float_status *fpst = fpstp;
11951     float32 f32 = float32_squash_input_denormal(input, fpst);
11952     uint32_t f32_val = float32_val(f32);
11953     bool f32_sign = float32_is_neg(f32);
11954     int f32_exp = extract32(f32_val, 23, 8);
11955     uint32_t f32_frac = extract32(f32_val, 0, 23);
11956     uint64_t f64_frac;
11957 
11958     if (float32_is_any_nan(f32)) {
11959         float32 nan = f32;
11960         if (float32_is_signaling_nan(f32, fpst)) {
11961             float_raise(float_flag_invalid, fpst);
11962             nan = float32_silence_nan(f32, fpst);
11963         }
11964         if (fpst->default_nan_mode) {
11965             nan =  float32_default_nan(fpst);
11966         }
11967         return nan;
11968     } else if (float32_is_infinity(f32)) {
11969         return float32_set_sign(float32_zero, float32_is_neg(f32));
11970     } else if (float32_is_zero(f32)) {
11971         float_raise(float_flag_divbyzero, fpst);
11972         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11973     } else if (float32_abs(f32) < (1ULL << 21)) {
11974         /* Abs(value) < 2.0^-128 */
11975         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11976         if (round_to_inf(fpst, f32_sign)) {
11977             return float32_set_sign(float32_infinity, f32_sign);
11978         } else {
11979             return float32_set_sign(float32_maxnorm, f32_sign);
11980         }
11981     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11982         float_raise(float_flag_underflow, fpst);
11983         return float32_set_sign(float32_zero, float32_is_neg(f32));
11984     }
11985 
11986     f64_frac = call_recip_estimate(&f32_exp, 253,
11987                                    ((uint64_t) f32_frac) << (52 - 23));
11988 
11989     /* result = sign : result_exp<7:0> : fraction<51:29> */
11990     f32_val = deposit32(0, 31, 1, f32_sign);
11991     f32_val = deposit32(f32_val, 23, 8, f32_exp);
11992     f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
11993     return make_float32(f32_val);
11994 }
11995 
11996 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11997 {
11998     float_status *fpst = fpstp;
11999     float64 f64 = float64_squash_input_denormal(input, fpst);
12000     uint64_t f64_val = float64_val(f64);
12001     bool f64_sign = float64_is_neg(f64);
12002     int f64_exp = extract64(f64_val, 52, 11);
12003     uint64_t f64_frac = extract64(f64_val, 0, 52);
12004 
12005     /* Deal with any special cases */
12006     if (float64_is_any_nan(f64)) {
12007         float64 nan = f64;
12008         if (float64_is_signaling_nan(f64, fpst)) {
12009             float_raise(float_flag_invalid, fpst);
12010             nan = float64_silence_nan(f64, fpst);
12011         }
12012         if (fpst->default_nan_mode) {
12013             nan =  float64_default_nan(fpst);
12014         }
12015         return nan;
12016     } else if (float64_is_infinity(f64)) {
12017         return float64_set_sign(float64_zero, float64_is_neg(f64));
12018     } else if (float64_is_zero(f64)) {
12019         float_raise(float_flag_divbyzero, fpst);
12020         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12021     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
12022         /* Abs(value) < 2.0^-1024 */
12023         float_raise(float_flag_overflow | float_flag_inexact, fpst);
12024         if (round_to_inf(fpst, f64_sign)) {
12025             return float64_set_sign(float64_infinity, f64_sign);
12026         } else {
12027             return float64_set_sign(float64_maxnorm, f64_sign);
12028         }
12029     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
12030         float_raise(float_flag_underflow, fpst);
12031         return float64_set_sign(float64_zero, float64_is_neg(f64));
12032     }
12033 
12034     f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
12035 
12036     /* result = sign : result_exp<10:0> : fraction<51:0>; */
12037     f64_val = deposit64(0, 63, 1, f64_sign);
12038     f64_val = deposit64(f64_val, 52, 11, f64_exp);
12039     f64_val = deposit64(f64_val, 0, 52, f64_frac);
12040     return make_float64(f64_val);
12041 }
12042 
12043 /* The algorithm that must be used to calculate the estimate
12044  * is specified by the ARM ARM.
12045  */
12046 
12047 static int do_recip_sqrt_estimate(int a)
12048 {
12049     int b, estimate;
12050 
12051     assert(128 <= a && a < 512);
12052     if (a < 256) {
12053         a = a * 2 + 1;
12054     } else {
12055         a = (a >> 1) << 1;
12056         a = (a + 1) * 2;
12057     }
12058     b = 512;
12059     while (a * (b + 1) * (b + 1) < (1 << 28)) {
12060         b += 1;
12061     }
12062     estimate = (b + 1) / 2;
12063     assert(256 <= estimate && estimate < 512);
12064 
12065     return estimate;
12066 }
12067 
12068 
12069 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
12070 {
12071     int estimate;
12072     uint32_t scaled;
12073 
12074     if (*exp == 0) {
12075         while (extract64(frac, 51, 1) == 0) {
12076             frac = frac << 1;
12077             *exp -= 1;
12078         }
12079         frac = extract64(frac, 0, 51) << 1;
12080     }
12081 
12082     if (*exp & 1) {
12083         /* scaled = UInt('01':fraction<51:45>) */
12084         scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
12085     } else {
12086         /* scaled = UInt('1':fraction<51:44>) */
12087         scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
12088     }
12089     estimate = do_recip_sqrt_estimate(scaled);
12090 
12091     *exp = (exp_off - *exp) / 2;
12092     return extract64(estimate, 0, 8) << 44;
12093 }
12094 
12095 uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
12096 {
12097     float_status *s = fpstp;
12098     float16 f16 = float16_squash_input_denormal(input, s);
12099     uint16_t val = float16_val(f16);
12100     bool f16_sign = float16_is_neg(f16);
12101     int f16_exp = extract32(val, 10, 5);
12102     uint16_t f16_frac = extract32(val, 0, 10);
12103     uint64_t f64_frac;
12104 
12105     if (float16_is_any_nan(f16)) {
12106         float16 nan = f16;
12107         if (float16_is_signaling_nan(f16, s)) {
12108             float_raise(float_flag_invalid, s);
12109             nan = float16_silence_nan(f16, s);
12110         }
12111         if (s->default_nan_mode) {
12112             nan =  float16_default_nan(s);
12113         }
12114         return nan;
12115     } else if (float16_is_zero(f16)) {
12116         float_raise(float_flag_divbyzero, s);
12117         return float16_set_sign(float16_infinity, f16_sign);
12118     } else if (f16_sign) {
12119         float_raise(float_flag_invalid, s);
12120         return float16_default_nan(s);
12121     } else if (float16_is_infinity(f16)) {
12122         return float16_zero;
12123     }
12124 
12125     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12126      * preserving the parity of the exponent.  */
12127 
12128     f64_frac = ((uint64_t) f16_frac) << (52 - 10);
12129 
12130     f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);
12131 
12132     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12133     val = deposit32(0, 15, 1, f16_sign);
12134     val = deposit32(val, 10, 5, f16_exp);
12135     val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
12136     return make_float16(val);
12137 }
12138 
12139 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
12140 {
12141     float_status *s = fpstp;
12142     float32 f32 = float32_squash_input_denormal(input, s);
12143     uint32_t val = float32_val(f32);
12144     uint32_t f32_sign = float32_is_neg(f32);
12145     int f32_exp = extract32(val, 23, 8);
12146     uint32_t f32_frac = extract32(val, 0, 23);
12147     uint64_t f64_frac;
12148 
12149     if (float32_is_any_nan(f32)) {
12150         float32 nan = f32;
12151         if (float32_is_signaling_nan(f32, s)) {
12152             float_raise(float_flag_invalid, s);
12153             nan = float32_silence_nan(f32, s);
12154         }
12155         if (s->default_nan_mode) {
12156             nan =  float32_default_nan(s);
12157         }
12158         return nan;
12159     } else if (float32_is_zero(f32)) {
12160         float_raise(float_flag_divbyzero, s);
12161         return float32_set_sign(float32_infinity, float32_is_neg(f32));
12162     } else if (float32_is_neg(f32)) {
12163         float_raise(float_flag_invalid, s);
12164         return float32_default_nan(s);
12165     } else if (float32_is_infinity(f32)) {
12166         return float32_zero;
12167     }
12168 
12169     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12170      * preserving the parity of the exponent.  */
12171 
12172     f64_frac = ((uint64_t) f32_frac) << 29;
12173 
12174     f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
12175 
12176     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12177     val = deposit32(0, 31, 1, f32_sign);
12178     val = deposit32(val, 23, 8, f32_exp);
12179     val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
12180     return make_float32(val);
12181 }
12182 
12183 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
12184 {
12185     float_status *s = fpstp;
12186     float64 f64 = float64_squash_input_denormal(input, s);
12187     uint64_t val = float64_val(f64);
12188     bool f64_sign = float64_is_neg(f64);
12189     int f64_exp = extract64(val, 52, 11);
12190     uint64_t f64_frac = extract64(val, 0, 52);
12191 
12192     if (float64_is_any_nan(f64)) {
12193         float64 nan = f64;
12194         if (float64_is_signaling_nan(f64, s)) {
12195             float_raise(float_flag_invalid, s);
12196             nan = float64_silence_nan(f64, s);
12197         }
12198         if (s->default_nan_mode) {
12199             nan =  float64_default_nan(s);
12200         }
12201         return nan;
12202     } else if (float64_is_zero(f64)) {
12203         float_raise(float_flag_divbyzero, s);
12204         return float64_set_sign(float64_infinity, float64_is_neg(f64));
12205     } else if (float64_is_neg(f64)) {
12206         float_raise(float_flag_invalid, s);
12207         return float64_default_nan(s);
12208     } else if (float64_is_infinity(f64)) {
12209         return float64_zero;
12210     }
12211 
12212     f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
12213 
12214     /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12215     val = deposit64(0, 61, 1, f64_sign);
12216     val = deposit64(val, 52, 11, f64_exp);
12217     val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
12218     return make_float64(val);
12219 }
12220 
12221 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
12222 {
12223     /* float_status *s = fpstp; */
12224     int input, estimate;
12225 
12226     if ((a & 0x80000000) == 0) {
12227         return 0xffffffff;
12228     }
12229 
12230     input = extract32(a, 23, 9);
12231     estimate = recip_estimate(input);
12232 
12233     return deposit32(0, (32 - 9), 9, estimate);
12234 }
12235 
12236 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
12237 {
12238     int estimate;
12239 
12240     if ((a & 0xc0000000) == 0) {
12241         return 0xffffffff;
12242     }
12243 
12244     estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
12245 
12246     return deposit32(0, 23, 9, estimate);
12247 }
12248 
12249 /* VFPv4 fused multiply-accumulate */
12250 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
12251 {
12252     float_status *fpst = fpstp;
12253     return float32_muladd(a, b, c, 0, fpst);
12254 }
12255 
12256 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
12257 {
12258     float_status *fpst = fpstp;
12259     return float64_muladd(a, b, c, 0, fpst);
12260 }
12261 
12262 /* ARMv8 round to integral */
12263 float32 HELPER(rints_exact)(float32 x, void *fp_status)
12264 {
12265     return float32_round_to_int(x, fp_status);
12266 }
12267 
12268 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
12269 {
12270     return float64_round_to_int(x, fp_status);
12271 }
12272 
12273 float32 HELPER(rints)(float32 x, void *fp_status)
12274 {
12275     int old_flags = get_float_exception_flags(fp_status), new_flags;
12276     float32 ret;
12277 
12278     ret = float32_round_to_int(x, fp_status);
12279 
12280     /* Suppress any inexact exceptions the conversion produced */
12281     if (!(old_flags & float_flag_inexact)) {
12282         new_flags = get_float_exception_flags(fp_status);
12283         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12284     }
12285 
12286     return ret;
12287 }
12288 
12289 float64 HELPER(rintd)(float64 x, void *fp_status)
12290 {
12291     int old_flags = get_float_exception_flags(fp_status), new_flags;
12292     float64 ret;
12293 
12294     ret = float64_round_to_int(x, fp_status);
12295 
12296     new_flags = get_float_exception_flags(fp_status);
12297 
12298     /* Suppress any inexact exceptions the conversion produced */
12299     if (!(old_flags & float_flag_inexact)) {
12300         new_flags = get_float_exception_flags(fp_status);
12301         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
12302     }
12303 
12304     return ret;
12305 }
12306 
12307 /* Convert ARM rounding mode to softfloat */
12308 int arm_rmode_to_sf(int rmode)
12309 {
12310     switch (rmode) {
12311     case FPROUNDING_TIEAWAY:
12312         rmode = float_round_ties_away;
12313         break;
12314     case FPROUNDING_ODD:
12315         /* FIXME: add support for TIEAWAY and ODD */
12316         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
12317                       rmode);
12318     case FPROUNDING_TIEEVEN:
12319     default:
12320         rmode = float_round_nearest_even;
12321         break;
12322     case FPROUNDING_POSINF:
12323         rmode = float_round_up;
12324         break;
12325     case FPROUNDING_NEGINF:
12326         rmode = float_round_down;
12327         break;
12328     case FPROUNDING_ZERO:
12329         rmode = float_round_to_zero;
12330         break;
12331     }
12332     return rmode;
12333 }
12334 
12335 /* CRC helpers.
12336  * The upper bytes of val (above the number specified by 'bytes') must have
12337  * been zeroed out by the caller.
12338  */
12339 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12340 {
12341     uint8_t buf[4];
12342 
12343     stl_le_p(buf, val);
12344 
12345     /* zlib crc32 converts the accumulator and output to one's complement.  */
12346     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12347 }
12348 
12349 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12350 {
12351     uint8_t buf[4];
12352 
12353     stl_le_p(buf, val);
12354 
12355     /* Linux crc32c converts the output to one's complement.  */
12356     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12357 }
12358 
12359 /* Return the exception level to which FP-disabled exceptions should
12360  * be taken, or 0 if FP is enabled.
12361  */
12362 static inline int fp_exception_el(CPUARMState *env)
12363 {
12364 #ifndef CONFIG_USER_ONLY
12365     int fpen;
12366     int cur_el = arm_current_el(env);
12367 
12368     /* CPACR and the CPTR registers don't exist before v6, so FP is
12369      * always accessible
12370      */
12371     if (!arm_feature(env, ARM_FEATURE_V6)) {
12372         return 0;
12373     }
12374 
12375     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12376      * 0, 2 : trap EL0 and EL1/PL1 accesses
12377      * 1    : trap only EL0 accesses
12378      * 3    : trap no accesses
12379      */
12380     fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12381     switch (fpen) {
12382     case 0:
12383     case 2:
12384         if (cur_el == 0 || cur_el == 1) {
12385             /* Trap to PL1, which might be EL1 or EL3 */
12386             if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12387                 return 3;
12388             }
12389             return 1;
12390         }
12391         if (cur_el == 3 && !is_a64(env)) {
12392             /* Secure PL1 running at EL3 */
12393             return 3;
12394         }
12395         break;
12396     case 1:
12397         if (cur_el == 0) {
12398             return 1;
12399         }
12400         break;
12401     case 3:
12402         break;
12403     }
12404 
12405     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12406      * check because zero bits in the registers mean "don't trap".
12407      */
12408 
12409     /* CPTR_EL2 : present in v7VE or v8 */
12410     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12411         && !arm_is_secure_below_el3(env)) {
12412         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12413         return 2;
12414     }
12415 
12416     /* CPTR_EL3 : present in v8 */
12417     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12418         /* Trap all FP ops to EL3 */
12419         return 3;
12420     }
12421 #endif
12422     return 0;
12423 }
12424 
12425 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12426                           target_ulong *cs_base, uint32_t *pflags)
12427 {
12428     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12429     int fp_el = fp_exception_el(env);
12430     uint32_t flags;
12431 
12432     if (is_a64(env)) {
12433         int sve_el = sve_exception_el(env);
12434         uint32_t zcr_len;
12435 
12436         *pc = env->pc;
12437         flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12438         /* Get control bits for tagged addresses */
12439         flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
12440         flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12441         flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
12442 
12443         /* If SVE is disabled, but FP is enabled,
12444            then the effective len is 0.  */
12445         if (sve_el != 0 && fp_el == 0) {
12446             zcr_len = 0;
12447         } else {
12448             int current_el = arm_current_el(env);
12449             ARMCPU *cpu = arm_env_get_cpu(env);
12450 
12451             zcr_len = cpu->sve_max_vq - 1;
12452             if (current_el <= 1) {
12453                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
12454             }
12455             if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
12456                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
12457             }
12458             if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
12459                 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
12460             }
12461         }
12462         flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12463     } else {
12464         *pc = env->regs[15];
12465         flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12466             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
12467             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
12468             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
12469             | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
12470         if (!(access_secure_reg(env))) {
12471             flags |= ARM_TBFLAG_NS_MASK;
12472         }
12473         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
12474             || arm_el_is_aa64(env, 1)) {
12475             flags |= ARM_TBFLAG_VFPEN_MASK;
12476         }
12477         flags |= (extract32(env->cp15.c15_cpar, 0, 2)
12478                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12479     }
12480 
12481     flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12482 
12483     /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12484      * states defined in the ARM ARM for software singlestep:
12485      *  SS_ACTIVE   PSTATE.SS   State
12486      *     0            x       Inactive (the TB flag for SS is always 0)
12487      *     1            0       Active-pending
12488      *     1            1       Active-not-pending
12489      */
12490     if (arm_singlestep_active(env)) {
12491         flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12492         if (is_a64(env)) {
12493             if (env->pstate & PSTATE_SS) {
12494                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12495             }
12496         } else {
12497             if (env->uncached_cpsr & PSTATE_SS) {
12498                 flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12499             }
12500         }
12501     }
12502     if (arm_cpu_data_is_big_endian(env)) {
12503         flags |= ARM_TBFLAG_BE_DATA_MASK;
12504     }
12505     flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12506 
12507     if (arm_v7m_is_handler_mode(env)) {
12508         flags |= ARM_TBFLAG_HANDLER_MASK;
12509     }
12510 
12511     *pflags = flags;
12512     *cs_base = 0;
12513 }
12514