1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "trace.h" 13 #include "cpu.h" 14 #include "internals.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/host-utils.h" 17 #include "qemu/main-loop.h" 18 #include "qemu/timer.h" 19 #include "qemu/bitops.h" 20 #include "qemu/crc32c.h" 21 #include "qemu/qemu-print.h" 22 #include "exec/exec-all.h" 23 #include <zlib.h> /* For crc32 */ 24 #include "hw/irq.h" 25 #include "semihosting/semihost.h" 26 #include "sysemu/cpus.h" 27 #include "sysemu/cpu-timers.h" 28 #include "sysemu/kvm.h" 29 #include "qemu/range.h" 30 #include "qapi/qapi-commands-machine-target.h" 31 #include "qapi/error.h" 32 #include "qemu/guest-random.h" 33 #ifdef CONFIG_TCG 34 #include "arm_ldst.h" 35 #include "exec/cpu_ldst.h" 36 #include "semihosting/common-semi.h" 37 #endif 38 #include "cpregs.h" 39 40 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 41 42 static void switch_mode(CPUARMState *env, int mode); 43 44 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 45 { 46 assert(ri->fieldoffset); 47 if (cpreg_field_is_64bit(ri)) { 48 return CPREG_FIELD64(env, ri); 49 } else { 50 return CPREG_FIELD32(env, ri); 51 } 52 } 53 54 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 55 { 56 assert(ri->fieldoffset); 57 if (cpreg_field_is_64bit(ri)) { 58 CPREG_FIELD64(env, ri) = value; 59 } else { 60 CPREG_FIELD32(env, ri) = value; 61 } 62 } 63 64 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 return (char *)env + ri->fieldoffset; 67 } 68 69 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 70 { 71 /* Raw read of a coprocessor register (as needed for migration, etc). */ 72 if (ri->type & ARM_CP_CONST) { 73 return ri->resetvalue; 74 } else if (ri->raw_readfn) { 75 return ri->raw_readfn(env, ri); 76 } else if (ri->readfn) { 77 return ri->readfn(env, ri); 78 } else { 79 return raw_read(env, ri); 80 } 81 } 82 83 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 84 uint64_t v) 85 { 86 /* Raw write of a coprocessor register (as needed for migration, etc). 87 * Note that constant registers are treated as write-ignored; the 88 * caller should check for success by whether a readback gives the 89 * value written. 90 */ 91 if (ri->type & ARM_CP_CONST) { 92 return; 93 } else if (ri->raw_writefn) { 94 ri->raw_writefn(env, ri, v); 95 } else if (ri->writefn) { 96 ri->writefn(env, ri, v); 97 } else { 98 raw_write(env, ri, v); 99 } 100 } 101 102 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 103 { 104 /* Return true if the regdef would cause an assertion if you called 105 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 106 * program bug for it not to have the NO_RAW flag). 107 * NB that returning false here doesn't necessarily mean that calling 108 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 109 * read/write access functions which are safe for raw use" from "has 110 * read/write access functions which have side effects but has forgotten 111 * to provide raw access functions". 112 * The tests here line up with the conditions in read/write_raw_cp_reg() 113 * and assertions in raw_read()/raw_write(). 114 */ 115 if ((ri->type & ARM_CP_CONST) || 116 ri->fieldoffset || 117 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 118 return false; 119 } 120 return true; 121 } 122 123 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 124 { 125 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 126 int i; 127 bool ok = true; 128 129 for (i = 0; i < cpu->cpreg_array_len; i++) { 130 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 131 const ARMCPRegInfo *ri; 132 uint64_t newval; 133 134 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 135 if (!ri) { 136 ok = false; 137 continue; 138 } 139 if (ri->type & ARM_CP_NO_RAW) { 140 continue; 141 } 142 143 newval = read_raw_cp_reg(&cpu->env, ri); 144 if (kvm_sync) { 145 /* 146 * Only sync if the previous list->cpustate sync succeeded. 147 * Rather than tracking the success/failure state for every 148 * item in the list, we just recheck "does the raw write we must 149 * have made in write_list_to_cpustate() read back OK" here. 150 */ 151 uint64_t oldval = cpu->cpreg_values[i]; 152 153 if (oldval == newval) { 154 continue; 155 } 156 157 write_raw_cp_reg(&cpu->env, ri, oldval); 158 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 159 continue; 160 } 161 162 write_raw_cp_reg(&cpu->env, ri, newval); 163 } 164 cpu->cpreg_values[i] = newval; 165 } 166 return ok; 167 } 168 169 bool write_list_to_cpustate(ARMCPU *cpu) 170 { 171 int i; 172 bool ok = true; 173 174 for (i = 0; i < cpu->cpreg_array_len; i++) { 175 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 176 uint64_t v = cpu->cpreg_values[i]; 177 const ARMCPRegInfo *ri; 178 179 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 180 if (!ri) { 181 ok = false; 182 continue; 183 } 184 if (ri->type & ARM_CP_NO_RAW) { 185 continue; 186 } 187 /* Write value and confirm it reads back as written 188 * (to catch read-only registers and partially read-only 189 * registers where the incoming migration value doesn't match) 190 */ 191 write_raw_cp_reg(&cpu->env, ri, v); 192 if (read_raw_cp_reg(&cpu->env, ri) != v) { 193 ok = false; 194 } 195 } 196 return ok; 197 } 198 199 static void add_cpreg_to_list(gpointer key, gpointer opaque) 200 { 201 ARMCPU *cpu = opaque; 202 uint32_t regidx = (uintptr_t)key; 203 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 204 205 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 206 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 207 /* The value array need not be initialized at this point */ 208 cpu->cpreg_array_len++; 209 } 210 } 211 212 static void count_cpreg(gpointer key, gpointer opaque) 213 { 214 ARMCPU *cpu = opaque; 215 const ARMCPRegInfo *ri; 216 217 ri = g_hash_table_lookup(cpu->cp_regs, key); 218 219 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 220 cpu->cpreg_array_len++; 221 } 222 } 223 224 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 225 { 226 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 227 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 228 229 if (aidx > bidx) { 230 return 1; 231 } 232 if (aidx < bidx) { 233 return -1; 234 } 235 return 0; 236 } 237 238 void init_cpreg_list(ARMCPU *cpu) 239 { 240 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 241 * Note that we require cpreg_tuples[] to be sorted by key ID. 242 */ 243 GList *keys; 244 int arraylen; 245 246 keys = g_hash_table_get_keys(cpu->cp_regs); 247 keys = g_list_sort(keys, cpreg_key_compare); 248 249 cpu->cpreg_array_len = 0; 250 251 g_list_foreach(keys, count_cpreg, cpu); 252 253 arraylen = cpu->cpreg_array_len; 254 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 258 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 259 cpu->cpreg_array_len = 0; 260 261 g_list_foreach(keys, add_cpreg_to_list, cpu); 262 263 assert(cpu->cpreg_array_len == arraylen); 264 265 g_list_free(keys); 266 } 267 268 /* 269 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 270 */ 271 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 272 const ARMCPRegInfo *ri, 273 bool isread) 274 { 275 if (!is_a64(env) && arm_current_el(env) == 3 && 276 arm_is_secure_below_el3(env)) { 277 return CP_ACCESS_TRAP_UNCATEGORIZED; 278 } 279 return CP_ACCESS_OK; 280 } 281 282 /* Some secure-only AArch32 registers trap to EL3 if used from 283 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 284 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 285 * We assume that the .access field is set to PL1_RW. 286 */ 287 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 288 const ARMCPRegInfo *ri, 289 bool isread) 290 { 291 if (arm_current_el(env) == 3) { 292 return CP_ACCESS_OK; 293 } 294 if (arm_is_secure_below_el3(env)) { 295 if (env->cp15.scr_el3 & SCR_EEL2) { 296 return CP_ACCESS_TRAP_EL2; 297 } 298 return CP_ACCESS_TRAP_EL3; 299 } 300 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 301 return CP_ACCESS_TRAP_UNCATEGORIZED; 302 } 303 304 /* Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 366 { 367 ARMCPU *cpu = env_archcpu(env); 368 369 raw_write(env, ri, value); 370 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 371 } 372 373 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 374 { 375 ARMCPU *cpu = env_archcpu(env); 376 377 if (raw_read(env, ri) != value) { 378 /* Unlike real hardware the qemu TLB uses virtual addresses, 379 * not modified virtual addresses, so this causes a TLB flush. 380 */ 381 tlb_flush(CPU(cpu)); 382 raw_write(env, ri, value); 383 } 384 } 385 386 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 387 uint64_t value) 388 { 389 ARMCPU *cpu = env_archcpu(env); 390 391 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 392 && !extended_addresses_enabled(env)) { 393 /* For VMSA (when not using the LPAE long descriptor page table 394 * format) this register includes the ASID, so do a TLB flush. 395 * For PMSA it is purely a process ID and no action is needed. 396 */ 397 tlb_flush(CPU(cpu)); 398 } 399 raw_write(env, ri, value); 400 } 401 402 static int alle1_tlbmask(CPUARMState *env) 403 { 404 /* 405 * Note that the 'ALL' scope must invalidate both stage 1 and 406 * stage 2 translations, whereas most other scopes only invalidate 407 * stage 1 translations. 408 */ 409 return (ARMMMUIdxBit_E10_1 | 410 ARMMMUIdxBit_E10_1_PAN | 411 ARMMMUIdxBit_E10_0 | 412 ARMMMUIdxBit_Stage2 | 413 ARMMMUIdxBit_Stage2_S); 414 } 415 416 417 /* IS variants of TLB operations must affect all cores */ 418 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 419 uint64_t value) 420 { 421 CPUState *cs = env_cpu(env); 422 423 tlb_flush_all_cpus_synced(cs); 424 } 425 426 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 427 uint64_t value) 428 { 429 CPUState *cs = env_cpu(env); 430 431 tlb_flush_all_cpus_synced(cs); 432 } 433 434 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 435 uint64_t value) 436 { 437 CPUState *cs = env_cpu(env); 438 439 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 440 } 441 442 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 443 uint64_t value) 444 { 445 CPUState *cs = env_cpu(env); 446 447 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 448 } 449 450 /* 451 * Non-IS variants of TLB operations are upgraded to 452 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 453 * force broadcast of these operations. 454 */ 455 static bool tlb_force_broadcast(CPUARMState *env) 456 { 457 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 458 } 459 460 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 /* Invalidate all (TLBIALL) */ 464 CPUState *cs = env_cpu(env); 465 466 if (tlb_force_broadcast(env)) { 467 tlb_flush_all_cpus_synced(cs); 468 } else { 469 tlb_flush(cs); 470 } 471 } 472 473 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 477 CPUState *cs = env_cpu(env); 478 479 value &= TARGET_PAGE_MASK; 480 if (tlb_force_broadcast(env)) { 481 tlb_flush_page_all_cpus_synced(cs, value); 482 } else { 483 tlb_flush_page(cs, value); 484 } 485 } 486 487 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 488 uint64_t value) 489 { 490 /* Invalidate by ASID (TLBIASID) */ 491 CPUState *cs = env_cpu(env); 492 493 if (tlb_force_broadcast(env)) { 494 tlb_flush_all_cpus_synced(cs); 495 } else { 496 tlb_flush(cs); 497 } 498 } 499 500 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 501 uint64_t value) 502 { 503 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 504 CPUState *cs = env_cpu(env); 505 506 value &= TARGET_PAGE_MASK; 507 if (tlb_force_broadcast(env)) { 508 tlb_flush_page_all_cpus_synced(cs, value); 509 } else { 510 tlb_flush_page(cs, value); 511 } 512 } 513 514 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 515 uint64_t value) 516 { 517 CPUState *cs = env_cpu(env); 518 519 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 520 } 521 522 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 523 uint64_t value) 524 { 525 CPUState *cs = env_cpu(env); 526 527 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 528 } 529 530 531 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 532 uint64_t value) 533 { 534 CPUState *cs = env_cpu(env); 535 536 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 537 } 538 539 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 CPUState *cs = env_cpu(env); 543 544 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 545 } 546 547 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 548 uint64_t value) 549 { 550 CPUState *cs = env_cpu(env); 551 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 552 553 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 554 } 555 556 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 561 562 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 563 ARMMMUIdxBit_E2); 564 } 565 566 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 567 uint64_t value) 568 { 569 CPUState *cs = env_cpu(env); 570 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 571 572 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 573 } 574 575 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 576 uint64_t value) 577 { 578 CPUState *cs = env_cpu(env); 579 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 580 581 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 582 } 583 584 static const ARMCPRegInfo cp_reginfo[] = { 585 /* Define the secure and non-secure FCSE identifier CP registers 586 * separately because there is no secure bank in V8 (no _EL3). This allows 587 * the secure register to be properly reset and migrated. There is also no 588 * v8 EL1 version of the register so the non-secure instance stands alone. 589 */ 590 { .name = "FCSEIDR", 591 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 592 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 593 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 594 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 595 { .name = "FCSEIDR_S", 596 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 597 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 598 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 599 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 600 /* Define the secure and non-secure context identifier CP registers 601 * separately because there is no secure bank in V8 (no _EL3). This allows 602 * the secure register to be properly reset and migrated. In the 603 * non-secure case, the 32-bit register will have reset and migration 604 * disabled during registration as it is handled by the 64-bit instance. 605 */ 606 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 607 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 608 .access = PL1_RW, .accessfn = access_tvm_trvm, 609 .secure = ARM_CP_SECSTATE_NS, 610 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 611 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 612 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 613 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 614 .access = PL1_RW, .accessfn = access_tvm_trvm, 615 .secure = ARM_CP_SECSTATE_S, 616 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 617 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 618 }; 619 620 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 621 /* NB: Some of these registers exist in v8 but with more precise 622 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 623 */ 624 /* MMU Domain access control / MPU write buffer control */ 625 { .name = "DACR", 626 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 627 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 628 .writefn = dacr_write, .raw_writefn = raw_write, 629 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 630 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 631 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 632 * For v6 and v5, these mappings are overly broad. 633 */ 634 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 635 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 636 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 637 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 638 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 639 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 640 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 641 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 642 /* Cache maintenance ops; some of this space may be overridden later. */ 643 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 644 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 645 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 646 }; 647 648 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 649 /* Not all pre-v6 cores implemented this WFI, so this is slightly 650 * over-broad. 651 */ 652 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 653 .access = PL1_W, .type = ARM_CP_WFI }, 654 }; 655 656 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 657 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 658 * is UNPREDICTABLE; we choose to NOP as most implementations do). 659 */ 660 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 661 .access = PL1_W, .type = ARM_CP_WFI }, 662 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 663 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 664 * OMAPCP will override this space. 665 */ 666 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 667 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 668 .resetvalue = 0 }, 669 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 670 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 671 .resetvalue = 0 }, 672 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 673 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 674 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 675 .resetvalue = 0 }, 676 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 677 * implementing it as RAZ means the "debug architecture version" bits 678 * will read as a reserved value, which should cause Linux to not try 679 * to use the debug hardware. 680 */ 681 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 682 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 683 /* MMU TLB control. Note that the wildcarding means we cover not just 684 * the unified TLB ops but also the dside/iside/inner-shareable variants. 685 */ 686 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 687 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 688 .type = ARM_CP_NO_RAW }, 689 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 690 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 691 .type = ARM_CP_NO_RAW }, 692 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 693 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 694 .type = ARM_CP_NO_RAW }, 695 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 696 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 697 .type = ARM_CP_NO_RAW }, 698 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 699 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 700 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 701 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 702 }; 703 704 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 705 uint64_t value) 706 { 707 uint32_t mask = 0; 708 709 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 710 if (!arm_feature(env, ARM_FEATURE_V8)) { 711 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 712 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 713 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 714 */ 715 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 716 /* VFP coprocessor: cp10 & cp11 [23:20] */ 717 mask |= R_CPACR_ASEDIS_MASK | 718 R_CPACR_D32DIS_MASK | 719 R_CPACR_CP11_MASK | 720 R_CPACR_CP10_MASK; 721 722 if (!arm_feature(env, ARM_FEATURE_NEON)) { 723 /* ASEDIS [31] bit is RAO/WI */ 724 value |= R_CPACR_ASEDIS_MASK; 725 } 726 727 /* VFPv3 and upwards with NEON implement 32 double precision 728 * registers (D0-D31). 729 */ 730 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 731 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 732 value |= R_CPACR_D32DIS_MASK; 733 } 734 } 735 value &= mask; 736 } 737 738 /* 739 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 740 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 741 */ 742 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 743 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 744 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 745 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 746 } 747 748 env->cp15.cpacr_el1 = value; 749 } 750 751 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 752 { 753 /* 754 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 755 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 756 */ 757 uint64_t value = env->cp15.cpacr_el1; 758 759 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 760 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 761 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 762 } 763 return value; 764 } 765 766 767 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 768 { 769 /* Call cpacr_write() so that we reset with the correct RAO bits set 770 * for our CPU features. 771 */ 772 cpacr_write(env, ri, 0); 773 } 774 775 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 776 bool isread) 777 { 778 if (arm_feature(env, ARM_FEATURE_V8)) { 779 /* Check if CPACR accesses are to be trapped to EL2 */ 780 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 781 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 782 return CP_ACCESS_TRAP_EL2; 783 /* Check if CPACR accesses are to be trapped to EL3 */ 784 } else if (arm_current_el(env) < 3 && 785 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 786 return CP_ACCESS_TRAP_EL3; 787 } 788 } 789 790 return CP_ACCESS_OK; 791 } 792 793 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 794 bool isread) 795 { 796 /* Check if CPTR accesses are set to trap to EL3 */ 797 if (arm_current_el(env) == 2 && 798 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 799 return CP_ACCESS_TRAP_EL3; 800 } 801 802 return CP_ACCESS_OK; 803 } 804 805 static const ARMCPRegInfo v6_cp_reginfo[] = { 806 /* prefetch by MVA in v6, NOP in v7 */ 807 { .name = "MVA_prefetch", 808 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 809 .access = PL1_W, .type = ARM_CP_NOP }, 810 /* We need to break the TB after ISB to execute self-modifying code 811 * correctly and also to take any pending interrupts immediately. 812 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 813 */ 814 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 815 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 816 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 817 .access = PL0_W, .type = ARM_CP_NOP }, 818 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 819 .access = PL0_W, .type = ARM_CP_NOP }, 820 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 821 .access = PL1_RW, .accessfn = access_tvm_trvm, 822 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 823 offsetof(CPUARMState, cp15.ifar_ns) }, 824 .resetvalue = 0, }, 825 /* Watchpoint Fault Address Register : should actually only be present 826 * for 1136, 1176, 11MPCore. 827 */ 828 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 829 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 830 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 831 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 832 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 833 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 834 }; 835 836 typedef struct pm_event { 837 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 838 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 839 bool (*supported)(CPUARMState *); 840 /* 841 * Retrieve the current count of the underlying event. The programmed 842 * counters hold a difference from the return value from this function 843 */ 844 uint64_t (*get_count)(CPUARMState *); 845 /* 846 * Return how many nanoseconds it will take (at a minimum) for count events 847 * to occur. A negative value indicates the counter will never overflow, or 848 * that the counter has otherwise arranged for the overflow bit to be set 849 * and the PMU interrupt to be raised on overflow. 850 */ 851 int64_t (*ns_per_count)(uint64_t); 852 } pm_event; 853 854 static bool event_always_supported(CPUARMState *env) 855 { 856 return true; 857 } 858 859 static uint64_t swinc_get_count(CPUARMState *env) 860 { 861 /* 862 * SW_INCR events are written directly to the pmevcntr's by writes to 863 * PMSWINC, so there is no underlying count maintained by the PMU itself 864 */ 865 return 0; 866 } 867 868 static int64_t swinc_ns_per(uint64_t ignored) 869 { 870 return -1; 871 } 872 873 /* 874 * Return the underlying cycle count for the PMU cycle counters. If we're in 875 * usermode, simply return 0. 876 */ 877 static uint64_t cycles_get_count(CPUARMState *env) 878 { 879 #ifndef CONFIG_USER_ONLY 880 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 881 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 882 #else 883 return cpu_get_host_ticks(); 884 #endif 885 } 886 887 #ifndef CONFIG_USER_ONLY 888 static int64_t cycles_ns_per(uint64_t cycles) 889 { 890 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 891 } 892 893 static bool instructions_supported(CPUARMState *env) 894 { 895 return icount_enabled() == 1; /* Precise instruction counting */ 896 } 897 898 static uint64_t instructions_get_count(CPUARMState *env) 899 { 900 return (uint64_t)icount_get_raw(); 901 } 902 903 static int64_t instructions_ns_per(uint64_t icount) 904 { 905 return icount_to_ns((int64_t)icount); 906 } 907 #endif 908 909 static bool pmuv3p1_events_supported(CPUARMState *env) 910 { 911 /* For events which are supported in any v8.1 PMU */ 912 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 913 } 914 915 static bool pmuv3p4_events_supported(CPUARMState *env) 916 { 917 /* For events which are supported in any v8.1 PMU */ 918 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 919 } 920 921 static uint64_t zero_event_get_count(CPUARMState *env) 922 { 923 /* For events which on QEMU never fire, so their count is always zero */ 924 return 0; 925 } 926 927 static int64_t zero_event_ns_per(uint64_t cycles) 928 { 929 /* An event which never fires can never overflow */ 930 return -1; 931 } 932 933 static const pm_event pm_events[] = { 934 { .number = 0x000, /* SW_INCR */ 935 .supported = event_always_supported, 936 .get_count = swinc_get_count, 937 .ns_per_count = swinc_ns_per, 938 }, 939 #ifndef CONFIG_USER_ONLY 940 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 941 .supported = instructions_supported, 942 .get_count = instructions_get_count, 943 .ns_per_count = instructions_ns_per, 944 }, 945 { .number = 0x011, /* CPU_CYCLES, Cycle */ 946 .supported = event_always_supported, 947 .get_count = cycles_get_count, 948 .ns_per_count = cycles_ns_per, 949 }, 950 #endif 951 { .number = 0x023, /* STALL_FRONTEND */ 952 .supported = pmuv3p1_events_supported, 953 .get_count = zero_event_get_count, 954 .ns_per_count = zero_event_ns_per, 955 }, 956 { .number = 0x024, /* STALL_BACKEND */ 957 .supported = pmuv3p1_events_supported, 958 .get_count = zero_event_get_count, 959 .ns_per_count = zero_event_ns_per, 960 }, 961 { .number = 0x03c, /* STALL */ 962 .supported = pmuv3p4_events_supported, 963 .get_count = zero_event_get_count, 964 .ns_per_count = zero_event_ns_per, 965 }, 966 }; 967 968 /* 969 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 970 * events (i.e. the statistical profiling extension), this implementation 971 * should first be updated to something sparse instead of the current 972 * supported_event_map[] array. 973 */ 974 #define MAX_EVENT_ID 0x3c 975 #define UNSUPPORTED_EVENT UINT16_MAX 976 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 977 978 /* 979 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 980 * of ARM event numbers to indices in our pm_events array. 981 * 982 * Note: Events in the 0x40XX range are not currently supported. 983 */ 984 void pmu_init(ARMCPU *cpu) 985 { 986 unsigned int i; 987 988 /* 989 * Empty supported_event_map and cpu->pmceid[01] before adding supported 990 * events to them 991 */ 992 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 993 supported_event_map[i] = UNSUPPORTED_EVENT; 994 } 995 cpu->pmceid0 = 0; 996 cpu->pmceid1 = 0; 997 998 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 999 const pm_event *cnt = &pm_events[i]; 1000 assert(cnt->number <= MAX_EVENT_ID); 1001 /* We do not currently support events in the 0x40xx range */ 1002 assert(cnt->number <= 0x3f); 1003 1004 if (cnt->supported(&cpu->env)) { 1005 supported_event_map[cnt->number] = i; 1006 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1007 if (cnt->number & 0x20) { 1008 cpu->pmceid1 |= event_mask; 1009 } else { 1010 cpu->pmceid0 |= event_mask; 1011 } 1012 } 1013 } 1014 } 1015 1016 /* 1017 * Check at runtime whether a PMU event is supported for the current machine 1018 */ 1019 static bool event_supported(uint16_t number) 1020 { 1021 if (number > MAX_EVENT_ID) { 1022 return false; 1023 } 1024 return supported_event_map[number] != UNSUPPORTED_EVENT; 1025 } 1026 1027 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1028 bool isread) 1029 { 1030 /* Performance monitor registers user accessibility is controlled 1031 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1032 * trapping to EL2 or EL3 for other accesses. 1033 */ 1034 int el = arm_current_el(env); 1035 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1036 1037 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1038 return CP_ACCESS_TRAP; 1039 } 1040 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1041 return CP_ACCESS_TRAP_EL2; 1042 } 1043 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1044 return CP_ACCESS_TRAP_EL3; 1045 } 1046 1047 return CP_ACCESS_OK; 1048 } 1049 1050 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1051 const ARMCPRegInfo *ri, 1052 bool isread) 1053 { 1054 /* ER: event counter read trap control */ 1055 if (arm_feature(env, ARM_FEATURE_V8) 1056 && arm_current_el(env) == 0 1057 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1058 && isread) { 1059 return CP_ACCESS_OK; 1060 } 1061 1062 return pmreg_access(env, ri, isread); 1063 } 1064 1065 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1066 const ARMCPRegInfo *ri, 1067 bool isread) 1068 { 1069 /* SW: software increment write trap control */ 1070 if (arm_feature(env, ARM_FEATURE_V8) 1071 && arm_current_el(env) == 0 1072 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1073 && !isread) { 1074 return CP_ACCESS_OK; 1075 } 1076 1077 return pmreg_access(env, ri, isread); 1078 } 1079 1080 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1081 const ARMCPRegInfo *ri, 1082 bool isread) 1083 { 1084 /* ER: event counter read trap control */ 1085 if (arm_feature(env, ARM_FEATURE_V8) 1086 && arm_current_el(env) == 0 1087 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1088 return CP_ACCESS_OK; 1089 } 1090 1091 return pmreg_access(env, ri, isread); 1092 } 1093 1094 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1095 const ARMCPRegInfo *ri, 1096 bool isread) 1097 { 1098 /* CR: cycle counter read trap control */ 1099 if (arm_feature(env, ARM_FEATURE_V8) 1100 && arm_current_el(env) == 0 1101 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1102 && isread) { 1103 return CP_ACCESS_OK; 1104 } 1105 1106 return pmreg_access(env, ri, isread); 1107 } 1108 1109 /* 1110 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1111 * We use these to decide whether we need to wrap a write to MDCR_EL2 1112 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1113 */ 1114 #define MDCR_EL2_PMU_ENABLE_BITS \ 1115 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1116 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1117 1118 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1119 * the current EL, security state, and register configuration. 1120 */ 1121 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1122 { 1123 uint64_t filter; 1124 bool e, p, u, nsk, nsu, nsh, m; 1125 bool enabled, prohibited = false, filtered; 1126 bool secure = arm_is_secure(env); 1127 int el = arm_current_el(env); 1128 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1129 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1130 1131 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1132 return false; 1133 } 1134 1135 if (!arm_feature(env, ARM_FEATURE_EL2) || 1136 (counter < hpmn || counter == 31)) { 1137 e = env->cp15.c9_pmcr & PMCRE; 1138 } else { 1139 e = mdcr_el2 & MDCR_HPME; 1140 } 1141 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1142 1143 /* Is event counting prohibited? */ 1144 if (el == 2 && (counter < hpmn || counter == 31)) { 1145 prohibited = mdcr_el2 & MDCR_HPMD; 1146 } 1147 if (secure) { 1148 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1149 } 1150 1151 if (counter == 31) { 1152 /* 1153 * The cycle counter defaults to running. PMCR.DP says "disable 1154 * the cycle counter when event counting is prohibited". 1155 * Some MDCR bits disable the cycle counter specifically. 1156 */ 1157 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1158 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1159 if (secure) { 1160 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1161 } 1162 if (el == 2) { 1163 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1164 } 1165 } 1166 } 1167 1168 if (counter == 31) { 1169 filter = env->cp15.pmccfiltr_el0; 1170 } else { 1171 filter = env->cp15.c14_pmevtyper[counter]; 1172 } 1173 1174 p = filter & PMXEVTYPER_P; 1175 u = filter & PMXEVTYPER_U; 1176 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1177 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1178 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1179 m = arm_el_is_aa64(env, 1) && 1180 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1181 1182 if (el == 0) { 1183 filtered = secure ? u : u != nsu; 1184 } else if (el == 1) { 1185 filtered = secure ? p : p != nsk; 1186 } else if (el == 2) { 1187 filtered = !nsh; 1188 } else { /* EL3 */ 1189 filtered = m != p; 1190 } 1191 1192 if (counter != 31) { 1193 /* 1194 * If not checking PMCCNTR, ensure the counter is setup to an event we 1195 * support 1196 */ 1197 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1198 if (!event_supported(event)) { 1199 return false; 1200 } 1201 } 1202 1203 return enabled && !prohibited && !filtered; 1204 } 1205 1206 static void pmu_update_irq(CPUARMState *env) 1207 { 1208 ARMCPU *cpu = env_archcpu(env); 1209 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1210 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1211 } 1212 1213 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1214 { 1215 /* 1216 * Return true if the clock divider is enabled and the cycle counter 1217 * is supposed to tick only once every 64 clock cycles. This is 1218 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1219 * (64-bit) cycle counter PMCR.D has no effect. 1220 */ 1221 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1222 } 1223 1224 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1225 { 1226 /* Return true if the specified event counter is configured to be 64 bit */ 1227 1228 /* This isn't intended to be used with the cycle counter */ 1229 assert(counter < 31); 1230 1231 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1232 return false; 1233 } 1234 1235 if (arm_feature(env, ARM_FEATURE_EL2)) { 1236 /* 1237 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1238 * current security state, so we don't use arm_mdcr_el2_eff() here. 1239 */ 1240 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1241 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1242 1243 if (hpmn != 0 && counter >= hpmn) { 1244 return hlp; 1245 } 1246 } 1247 return env->cp15.c9_pmcr & PMCRLP; 1248 } 1249 1250 /* 1251 * Ensure c15_ccnt is the guest-visible count so that operations such as 1252 * enabling/disabling the counter or filtering, modifying the count itself, 1253 * etc. can be done logically. This is essentially a no-op if the counter is 1254 * not enabled at the time of the call. 1255 */ 1256 static void pmccntr_op_start(CPUARMState *env) 1257 { 1258 uint64_t cycles = cycles_get_count(env); 1259 1260 if (pmu_counter_enabled(env, 31)) { 1261 uint64_t eff_cycles = cycles; 1262 if (pmccntr_clockdiv_enabled(env)) { 1263 eff_cycles /= 64; 1264 } 1265 1266 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1267 1268 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1269 1ull << 63 : 1ull << 31; 1270 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1271 env->cp15.c9_pmovsr |= (1ULL << 31); 1272 pmu_update_irq(env); 1273 } 1274 1275 env->cp15.c15_ccnt = new_pmccntr; 1276 } 1277 env->cp15.c15_ccnt_delta = cycles; 1278 } 1279 1280 /* 1281 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1282 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1283 * pmccntr_op_start. 1284 */ 1285 static void pmccntr_op_finish(CPUARMState *env) 1286 { 1287 if (pmu_counter_enabled(env, 31)) { 1288 #ifndef CONFIG_USER_ONLY 1289 /* Calculate when the counter will next overflow */ 1290 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1291 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1292 remaining_cycles = (uint32_t)remaining_cycles; 1293 } 1294 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1295 1296 if (overflow_in > 0) { 1297 int64_t overflow_at; 1298 1299 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1300 overflow_in, &overflow_at)) { 1301 ARMCPU *cpu = env_archcpu(env); 1302 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1303 } 1304 } 1305 #endif 1306 1307 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1308 if (pmccntr_clockdiv_enabled(env)) { 1309 prev_cycles /= 64; 1310 } 1311 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1312 } 1313 } 1314 1315 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1316 { 1317 1318 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1319 uint64_t count = 0; 1320 if (event_supported(event)) { 1321 uint16_t event_idx = supported_event_map[event]; 1322 count = pm_events[event_idx].get_count(env); 1323 } 1324 1325 if (pmu_counter_enabled(env, counter)) { 1326 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1327 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1328 1ULL << 63 : 1ULL << 31; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1346 int64_t overflow_in; 1347 1348 if (!pmevcntr_is_64_bit(env, counter)) { 1349 delta = (uint32_t)delta; 1350 } 1351 overflow_in = pm_events[event_idx].ns_per_count(delta); 1352 1353 if (overflow_in > 0) { 1354 int64_t overflow_at; 1355 1356 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1357 overflow_in, &overflow_at)) { 1358 ARMCPU *cpu = env_archcpu(env); 1359 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1360 } 1361 } 1362 #endif 1363 1364 env->cp15.c14_pmevcntr_delta[counter] -= 1365 env->cp15.c14_pmevcntr[counter]; 1366 } 1367 } 1368 1369 void pmu_op_start(CPUARMState *env) 1370 { 1371 unsigned int i; 1372 pmccntr_op_start(env); 1373 for (i = 0; i < pmu_num_counters(env); i++) { 1374 pmevcntr_op_start(env, i); 1375 } 1376 } 1377 1378 void pmu_op_finish(CPUARMState *env) 1379 { 1380 unsigned int i; 1381 pmccntr_op_finish(env); 1382 for (i = 0; i < pmu_num_counters(env); i++) { 1383 pmevcntr_op_finish(env, i); 1384 } 1385 } 1386 1387 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1388 { 1389 pmu_op_start(&cpu->env); 1390 } 1391 1392 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1393 { 1394 pmu_op_finish(&cpu->env); 1395 } 1396 1397 void arm_pmu_timer_cb(void *opaque) 1398 { 1399 ARMCPU *cpu = opaque; 1400 1401 /* 1402 * Update all the counter values based on the current underlying counts, 1403 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1404 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1405 * counter may expire. 1406 */ 1407 pmu_op_start(&cpu->env); 1408 pmu_op_finish(&cpu->env); 1409 } 1410 1411 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1412 uint64_t value) 1413 { 1414 pmu_op_start(env); 1415 1416 if (value & PMCRC) { 1417 /* The counter has been reset */ 1418 env->cp15.c15_ccnt = 0; 1419 } 1420 1421 if (value & PMCRP) { 1422 unsigned int i; 1423 for (i = 0; i < pmu_num_counters(env); i++) { 1424 env->cp15.c14_pmevcntr[i] = 0; 1425 } 1426 } 1427 1428 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1429 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1430 1431 pmu_op_finish(env); 1432 } 1433 1434 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1435 uint64_t value) 1436 { 1437 unsigned int i; 1438 uint64_t overflow_mask, new_pmswinc; 1439 1440 for (i = 0; i < pmu_num_counters(env); i++) { 1441 /* Increment a counter's count iff: */ 1442 if ((value & (1 << i)) && /* counter's bit is set */ 1443 /* counter is enabled and not filtered */ 1444 pmu_counter_enabled(env, i) && 1445 /* counter is SW_INCR */ 1446 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1447 pmevcntr_op_start(env, i); 1448 1449 /* 1450 * Detect if this write causes an overflow since we can't predict 1451 * PMSWINC overflows like we can for other events 1452 */ 1453 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1454 1455 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1456 1ULL << 63 : 1ULL << 31; 1457 1458 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1459 env->cp15.c9_pmovsr |= (1 << i); 1460 pmu_update_irq(env); 1461 } 1462 1463 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1464 1465 pmevcntr_op_finish(env, i); 1466 } 1467 } 1468 } 1469 1470 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1471 { 1472 uint64_t ret; 1473 pmccntr_op_start(env); 1474 ret = env->cp15.c15_ccnt; 1475 pmccntr_op_finish(env); 1476 return ret; 1477 } 1478 1479 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1480 uint64_t value) 1481 { 1482 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1483 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1484 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1485 * accessed. 1486 */ 1487 env->cp15.c9_pmselr = value & 0x1f; 1488 } 1489 1490 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1491 uint64_t value) 1492 { 1493 pmccntr_op_start(env); 1494 env->cp15.c15_ccnt = value; 1495 pmccntr_op_finish(env); 1496 } 1497 1498 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1499 uint64_t value) 1500 { 1501 uint64_t cur_val = pmccntr_read(env, NULL); 1502 1503 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1504 } 1505 1506 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1507 uint64_t value) 1508 { 1509 pmccntr_op_start(env); 1510 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1511 pmccntr_op_finish(env); 1512 } 1513 1514 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1515 uint64_t value) 1516 { 1517 pmccntr_op_start(env); 1518 /* M is not accessible from AArch32 */ 1519 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1520 (value & PMCCFILTR); 1521 pmccntr_op_finish(env); 1522 } 1523 1524 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1525 { 1526 /* M is not visible in AArch32 */ 1527 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1528 } 1529 1530 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1531 uint64_t value) 1532 { 1533 pmu_op_start(env); 1534 value &= pmu_counter_mask(env); 1535 env->cp15.c9_pmcnten |= value; 1536 pmu_op_finish(env); 1537 } 1538 1539 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 pmu_op_start(env); 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmcnten &= ~value; 1545 pmu_op_finish(env); 1546 } 1547 1548 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value) 1550 { 1551 value &= pmu_counter_mask(env); 1552 env->cp15.c9_pmovsr &= ~value; 1553 pmu_update_irq(env); 1554 } 1555 1556 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1557 uint64_t value) 1558 { 1559 value &= pmu_counter_mask(env); 1560 env->cp15.c9_pmovsr |= value; 1561 pmu_update_irq(env); 1562 } 1563 1564 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1565 uint64_t value, const uint8_t counter) 1566 { 1567 if (counter == 31) { 1568 pmccfiltr_write(env, ri, value); 1569 } else if (counter < pmu_num_counters(env)) { 1570 pmevcntr_op_start(env, counter); 1571 1572 /* 1573 * If this counter's event type is changing, store the current 1574 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1575 * pmevcntr_op_finish has the correct baseline when it converts back to 1576 * a delta. 1577 */ 1578 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1579 PMXEVTYPER_EVTCOUNT; 1580 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1581 if (old_event != new_event) { 1582 uint64_t count = 0; 1583 if (event_supported(new_event)) { 1584 uint16_t event_idx = supported_event_map[new_event]; 1585 count = pm_events[event_idx].get_count(env); 1586 } 1587 env->cp15.c14_pmevcntr_delta[counter] = count; 1588 } 1589 1590 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1591 pmevcntr_op_finish(env, counter); 1592 } 1593 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1594 * PMSELR value is equal to or greater than the number of implemented 1595 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1596 */ 1597 } 1598 1599 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1600 const uint8_t counter) 1601 { 1602 if (counter == 31) { 1603 return env->cp15.pmccfiltr_el0; 1604 } else if (counter < pmu_num_counters(env)) { 1605 return env->cp15.c14_pmevtyper[counter]; 1606 } else { 1607 /* 1608 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1609 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1610 */ 1611 return 0; 1612 } 1613 } 1614 1615 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1616 uint64_t value) 1617 { 1618 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1619 pmevtyper_write(env, ri, value, counter); 1620 } 1621 1622 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1623 uint64_t value) 1624 { 1625 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1626 env->cp15.c14_pmevtyper[counter] = value; 1627 1628 /* 1629 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1630 * pmu_op_finish calls when loading saved state for a migration. Because 1631 * we're potentially updating the type of event here, the value written to 1632 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1633 * different counter type. Therefore, we need to set this value to the 1634 * current count for the counter type we're writing so that pmu_op_finish 1635 * has the correct count for its calculation. 1636 */ 1637 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1638 if (event_supported(event)) { 1639 uint16_t event_idx = supported_event_map[event]; 1640 env->cp15.c14_pmevcntr_delta[counter] = 1641 pm_events[event_idx].get_count(env); 1642 } 1643 } 1644 1645 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1646 { 1647 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1648 return pmevtyper_read(env, ri, counter); 1649 } 1650 1651 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value) 1653 { 1654 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1655 } 1656 1657 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1658 { 1659 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1660 } 1661 1662 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1663 uint64_t value, uint8_t counter) 1664 { 1665 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1666 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1667 value &= MAKE_64BIT_MASK(0, 32); 1668 } 1669 if (counter < pmu_num_counters(env)) { 1670 pmevcntr_op_start(env, counter); 1671 env->cp15.c14_pmevcntr[counter] = value; 1672 pmevcntr_op_finish(env, counter); 1673 } 1674 /* 1675 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1676 * are CONSTRAINED UNPREDICTABLE. 1677 */ 1678 } 1679 1680 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1681 uint8_t counter) 1682 { 1683 if (counter < pmu_num_counters(env)) { 1684 uint64_t ret; 1685 pmevcntr_op_start(env, counter); 1686 ret = env->cp15.c14_pmevcntr[counter]; 1687 pmevcntr_op_finish(env, counter); 1688 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1689 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1690 ret &= MAKE_64BIT_MASK(0, 32); 1691 } 1692 return ret; 1693 } else { 1694 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1695 * are CONSTRAINED UNPREDICTABLE. */ 1696 return 0; 1697 } 1698 } 1699 1700 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1701 uint64_t value) 1702 { 1703 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1704 pmevcntr_write(env, ri, value, counter); 1705 } 1706 1707 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1708 { 1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1710 return pmevcntr_read(env, ri, counter); 1711 } 1712 1713 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1717 assert(counter < pmu_num_counters(env)); 1718 env->cp15.c14_pmevcntr[counter] = value; 1719 pmevcntr_write(env, ri, value, counter); 1720 } 1721 1722 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1723 { 1724 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1725 assert(counter < pmu_num_counters(env)); 1726 return env->cp15.c14_pmevcntr[counter]; 1727 } 1728 1729 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1730 uint64_t value) 1731 { 1732 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1733 } 1734 1735 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1736 { 1737 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1738 } 1739 1740 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1741 uint64_t value) 1742 { 1743 if (arm_feature(env, ARM_FEATURE_V8)) { 1744 env->cp15.c9_pmuserenr = value & 0xf; 1745 } else { 1746 env->cp15.c9_pmuserenr = value & 1; 1747 } 1748 } 1749 1750 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value) 1752 { 1753 /* We have no event counters so only the C bit can be changed */ 1754 value &= pmu_counter_mask(env); 1755 env->cp15.c9_pminten |= value; 1756 pmu_update_irq(env); 1757 } 1758 1759 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1760 uint64_t value) 1761 { 1762 value &= pmu_counter_mask(env); 1763 env->cp15.c9_pminten &= ~value; 1764 pmu_update_irq(env); 1765 } 1766 1767 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1768 uint64_t value) 1769 { 1770 /* Note that even though the AArch64 view of this register has bits 1771 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1772 * architectural requirements for bits which are RES0 only in some 1773 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1774 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1775 */ 1776 raw_write(env, ri, value & ~0x1FULL); 1777 } 1778 1779 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1780 { 1781 /* Begin with base v8.0 state. */ 1782 uint64_t valid_mask = 0x3fff; 1783 ARMCPU *cpu = env_archcpu(env); 1784 uint64_t changed; 1785 1786 /* 1787 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1788 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1789 * Instead, choose the format based on the mode of EL3. 1790 */ 1791 if (arm_el_is_aa64(env, 3)) { 1792 value |= SCR_FW | SCR_AW; /* RES1 */ 1793 valid_mask &= ~SCR_NET; /* RES0 */ 1794 1795 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1796 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1797 value |= SCR_RW; /* RAO/WI */ 1798 } 1799 if (cpu_isar_feature(aa64_ras, cpu)) { 1800 valid_mask |= SCR_TERR; 1801 } 1802 if (cpu_isar_feature(aa64_lor, cpu)) { 1803 valid_mask |= SCR_TLOR; 1804 } 1805 if (cpu_isar_feature(aa64_pauth, cpu)) { 1806 valid_mask |= SCR_API | SCR_APK; 1807 } 1808 if (cpu_isar_feature(aa64_sel2, cpu)) { 1809 valid_mask |= SCR_EEL2; 1810 } 1811 if (cpu_isar_feature(aa64_mte, cpu)) { 1812 valid_mask |= SCR_ATA; 1813 } 1814 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1815 valid_mask |= SCR_ENSCXT; 1816 } 1817 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1818 valid_mask |= SCR_EASE | SCR_NMEA; 1819 } 1820 if (cpu_isar_feature(aa64_sme, cpu)) { 1821 valid_mask |= SCR_ENTP2; 1822 } 1823 } else { 1824 valid_mask &= ~(SCR_RW | SCR_ST); 1825 if (cpu_isar_feature(aa32_ras, cpu)) { 1826 valid_mask |= SCR_TERR; 1827 } 1828 } 1829 1830 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1831 valid_mask &= ~SCR_HCE; 1832 1833 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1834 * supported if EL2 exists. The bit is UNK/SBZP when 1835 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1836 * when EL2 is unavailable. 1837 * On ARMv8, this bit is always available. 1838 */ 1839 if (arm_feature(env, ARM_FEATURE_V7) && 1840 !arm_feature(env, ARM_FEATURE_V8)) { 1841 valid_mask &= ~SCR_SMD; 1842 } 1843 } 1844 1845 /* Clear all-context RES0 bits. */ 1846 value &= valid_mask; 1847 changed = env->cp15.scr_el3 ^ value; 1848 env->cp15.scr_el3 = value; 1849 1850 /* 1851 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1852 * we must invalidate all TLBs below EL3. 1853 */ 1854 if (changed & SCR_NS) { 1855 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1856 ARMMMUIdxBit_E20_0 | 1857 ARMMMUIdxBit_E10_1 | 1858 ARMMMUIdxBit_E20_2 | 1859 ARMMMUIdxBit_E10_1_PAN | 1860 ARMMMUIdxBit_E20_2_PAN | 1861 ARMMMUIdxBit_E2)); 1862 } 1863 } 1864 1865 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1866 { 1867 /* 1868 * scr_write will set the RES1 bits on an AArch64-only CPU. 1869 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1870 */ 1871 scr_write(env, ri, 0); 1872 } 1873 1874 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1875 const ARMCPRegInfo *ri, 1876 bool isread) 1877 { 1878 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1879 return CP_ACCESS_TRAP_EL2; 1880 } 1881 1882 return CP_ACCESS_OK; 1883 } 1884 1885 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1886 { 1887 ARMCPU *cpu = env_archcpu(env); 1888 1889 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1890 * bank 1891 */ 1892 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1893 ri->secure & ARM_CP_SECSTATE_S); 1894 1895 return cpu->ccsidr[index]; 1896 } 1897 1898 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1899 uint64_t value) 1900 { 1901 raw_write(env, ri, value & 0xf); 1902 } 1903 1904 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1905 { 1906 CPUState *cs = env_cpu(env); 1907 bool el1 = arm_current_el(env) == 1; 1908 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1909 uint64_t ret = 0; 1910 1911 if (hcr_el2 & HCR_IMO) { 1912 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1913 ret |= CPSR_I; 1914 } 1915 } else { 1916 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1917 ret |= CPSR_I; 1918 } 1919 } 1920 1921 if (hcr_el2 & HCR_FMO) { 1922 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1923 ret |= CPSR_F; 1924 } 1925 } else { 1926 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1927 ret |= CPSR_F; 1928 } 1929 } 1930 1931 if (hcr_el2 & HCR_AMO) { 1932 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1933 ret |= CPSR_A; 1934 } 1935 } 1936 1937 return ret; 1938 } 1939 1940 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1941 bool isread) 1942 { 1943 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1944 return CP_ACCESS_TRAP_EL2; 1945 } 1946 1947 return CP_ACCESS_OK; 1948 } 1949 1950 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1951 bool isread) 1952 { 1953 if (arm_feature(env, ARM_FEATURE_V8)) { 1954 return access_aa64_tid1(env, ri, isread); 1955 } 1956 1957 return CP_ACCESS_OK; 1958 } 1959 1960 static const ARMCPRegInfo v7_cp_reginfo[] = { 1961 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1962 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1963 .access = PL1_W, .type = ARM_CP_NOP }, 1964 /* Performance monitors are implementation defined in v7, 1965 * but with an ARM recommended set of registers, which we 1966 * follow. 1967 * 1968 * Performance registers fall into three categories: 1969 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1970 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1971 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1972 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1973 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1974 */ 1975 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1976 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 1977 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1978 .writefn = pmcntenset_write, 1979 .accessfn = pmreg_access, 1980 .raw_writefn = raw_write }, 1981 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 1982 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1985 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1986 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1987 .access = PL0_RW, 1988 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1989 .accessfn = pmreg_access, 1990 .writefn = pmcntenclr_write, 1991 .type = ARM_CP_ALIAS | ARM_CP_IO }, 1992 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1993 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1994 .access = PL0_RW, .accessfn = pmreg_access, 1995 .type = ARM_CP_ALIAS | ARM_CP_IO, 1996 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1997 .writefn = pmcntenclr_write }, 1998 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1999 .access = PL0_RW, .type = ARM_CP_IO, 2000 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2001 .accessfn = pmreg_access, 2002 .writefn = pmovsr_write, 2003 .raw_writefn = raw_write }, 2004 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2005 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2006 .access = PL0_RW, .accessfn = pmreg_access, 2007 .type = ARM_CP_ALIAS | ARM_CP_IO, 2008 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2009 .writefn = pmovsr_write, 2010 .raw_writefn = raw_write }, 2011 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2012 .access = PL0_W, .accessfn = pmreg_access_swinc, 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2014 .writefn = pmswinc_write }, 2015 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2016 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2017 .access = PL0_W, .accessfn = pmreg_access_swinc, 2018 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2019 .writefn = pmswinc_write }, 2020 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2021 .access = PL0_RW, .type = ARM_CP_ALIAS, 2022 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2023 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2024 .raw_writefn = raw_write}, 2025 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2026 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2027 .access = PL0_RW, .accessfn = pmreg_access_selr, 2028 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2029 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2030 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2031 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2032 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2033 .accessfn = pmreg_access_ccntr }, 2034 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2036 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2037 .type = ARM_CP_IO, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2039 .readfn = pmccntr_read, .writefn = pmccntr_write, 2040 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2041 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2042 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2043 .access = PL0_RW, .accessfn = pmreg_access, 2044 .type = ARM_CP_ALIAS | ARM_CP_IO, 2045 .resetvalue = 0, }, 2046 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2047 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2048 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2049 .access = PL0_RW, .accessfn = pmreg_access, 2050 .type = ARM_CP_IO, 2051 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2052 .resetvalue = 0, }, 2053 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2054 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2055 .accessfn = pmreg_access, 2056 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2057 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2058 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2059 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2060 .accessfn = pmreg_access, 2061 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2062 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2063 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2064 .accessfn = pmreg_access_xevcntr, 2065 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2066 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2067 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2068 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2069 .accessfn = pmreg_access_xevcntr, 2070 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2071 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2072 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2073 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2074 .resetvalue = 0, 2075 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2076 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2078 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2079 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2080 .resetvalue = 0, 2081 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2082 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2083 .access = PL1_RW, .accessfn = access_tpm, 2084 .type = ARM_CP_ALIAS | ARM_CP_IO, 2085 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2086 .resetvalue = 0, 2087 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2088 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2089 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2090 .access = PL1_RW, .accessfn = access_tpm, 2091 .type = ARM_CP_IO, 2092 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2093 .writefn = pmintenset_write, .raw_writefn = raw_write, 2094 .resetvalue = 0x0 }, 2095 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2096 .access = PL1_RW, .accessfn = access_tpm, 2097 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2098 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2099 .writefn = pmintenclr_write, }, 2100 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2101 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2102 .access = PL1_RW, .accessfn = access_tpm, 2103 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2104 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2105 .writefn = pmintenclr_write }, 2106 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2108 .access = PL1_R, 2109 .accessfn = access_aa64_tid2, 2110 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2111 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2113 .access = PL1_RW, 2114 .accessfn = access_aa64_tid2, 2115 .writefn = csselr_write, .resetvalue = 0, 2116 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2117 offsetof(CPUARMState, cp15.csselr_ns) } }, 2118 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2119 * just RAZ for all cores: 2120 */ 2121 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2122 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2123 .access = PL1_R, .type = ARM_CP_CONST, 2124 .accessfn = access_aa64_tid1, 2125 .resetvalue = 0 }, 2126 /* Auxiliary fault status registers: these also are IMPDEF, and we 2127 * choose to RAZ/WI for all cores. 2128 */ 2129 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2130 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2131 .access = PL1_RW, .accessfn = access_tvm_trvm, 2132 .type = ARM_CP_CONST, .resetvalue = 0 }, 2133 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2134 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2135 .access = PL1_RW, .accessfn = access_tvm_trvm, 2136 .type = ARM_CP_CONST, .resetvalue = 0 }, 2137 /* MAIR can just read-as-written because we don't implement caches 2138 * and so don't need to care about memory attributes. 2139 */ 2140 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2141 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2142 .access = PL1_RW, .accessfn = access_tvm_trvm, 2143 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2144 .resetvalue = 0 }, 2145 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2146 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2147 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2148 .resetvalue = 0 }, 2149 /* For non-long-descriptor page tables these are PRRR and NMRR; 2150 * regardless they still act as reads-as-written for QEMU. 2151 */ 2152 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2153 * allows them to assign the correct fieldoffset based on the endianness 2154 * handled in the field definitions. 2155 */ 2156 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2157 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2158 .access = PL1_RW, .accessfn = access_tvm_trvm, 2159 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2160 offsetof(CPUARMState, cp15.mair0_ns) }, 2161 .resetfn = arm_cp_reset_ignore }, 2162 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2163 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2164 .access = PL1_RW, .accessfn = access_tvm_trvm, 2165 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2166 offsetof(CPUARMState, cp15.mair1_ns) }, 2167 .resetfn = arm_cp_reset_ignore }, 2168 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2169 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2170 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2171 /* 32 bit ITLB invalidates */ 2172 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2173 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2174 .writefn = tlbiall_write }, 2175 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2176 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2177 .writefn = tlbimva_write }, 2178 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2179 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2180 .writefn = tlbiasid_write }, 2181 /* 32 bit DTLB invalidates */ 2182 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2183 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2184 .writefn = tlbiall_write }, 2185 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2186 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2187 .writefn = tlbimva_write }, 2188 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2189 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2190 .writefn = tlbiasid_write }, 2191 /* 32 bit TLB invalidates */ 2192 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2193 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2194 .writefn = tlbiall_write }, 2195 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2196 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2197 .writefn = tlbimva_write }, 2198 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2199 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2200 .writefn = tlbiasid_write }, 2201 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2202 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2203 .writefn = tlbimvaa_write }, 2204 }; 2205 2206 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2207 /* 32 bit TLB invalidates, Inner Shareable */ 2208 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2209 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2210 .writefn = tlbiall_is_write }, 2211 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2212 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2213 .writefn = tlbimva_is_write }, 2214 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2215 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2216 .writefn = tlbiasid_is_write }, 2217 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2218 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2219 .writefn = tlbimvaa_is_write }, 2220 }; 2221 2222 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2223 /* PMOVSSET is not implemented in v7 before v7ve */ 2224 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2225 .access = PL0_RW, .accessfn = pmreg_access, 2226 .type = ARM_CP_ALIAS | ARM_CP_IO, 2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2228 .writefn = pmovsset_write, 2229 .raw_writefn = raw_write }, 2230 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2232 .access = PL0_RW, .accessfn = pmreg_access, 2233 .type = ARM_CP_ALIAS | ARM_CP_IO, 2234 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2235 .writefn = pmovsset_write, 2236 .raw_writefn = raw_write }, 2237 }; 2238 2239 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2240 uint64_t value) 2241 { 2242 value &= 1; 2243 env->teecr = value; 2244 } 2245 2246 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2247 bool isread) 2248 { 2249 /* 2250 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2251 * at all, so we don't need to check whether we're v8A. 2252 */ 2253 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2254 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2255 return CP_ACCESS_TRAP_EL2; 2256 } 2257 return CP_ACCESS_OK; 2258 } 2259 2260 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2261 bool isread) 2262 { 2263 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2264 return CP_ACCESS_TRAP; 2265 } 2266 return teecr_access(env, ri, isread); 2267 } 2268 2269 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2270 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2271 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2272 .resetvalue = 0, 2273 .writefn = teecr_write, .accessfn = teecr_access }, 2274 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2275 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2276 .accessfn = teehbr_access, .resetvalue = 0 }, 2277 }; 2278 2279 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2280 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2281 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2282 .access = PL0_RW, 2283 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2284 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2285 .access = PL0_RW, 2286 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2287 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2288 .resetfn = arm_cp_reset_ignore }, 2289 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2290 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2291 .access = PL0_R|PL1_W, 2292 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2293 .resetvalue = 0}, 2294 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2295 .access = PL0_R|PL1_W, 2296 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2297 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2298 .resetfn = arm_cp_reset_ignore }, 2299 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2300 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2301 .access = PL1_RW, 2302 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2303 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2304 .access = PL1_RW, 2305 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2306 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2307 .resetvalue = 0 }, 2308 }; 2309 2310 #ifndef CONFIG_USER_ONLY 2311 2312 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2313 bool isread) 2314 { 2315 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2316 * Writable only at the highest implemented exception level. 2317 */ 2318 int el = arm_current_el(env); 2319 uint64_t hcr; 2320 uint32_t cntkctl; 2321 2322 switch (el) { 2323 case 0: 2324 hcr = arm_hcr_el2_eff(env); 2325 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2326 cntkctl = env->cp15.cnthctl_el2; 2327 } else { 2328 cntkctl = env->cp15.c14_cntkctl; 2329 } 2330 if (!extract32(cntkctl, 0, 2)) { 2331 return CP_ACCESS_TRAP; 2332 } 2333 break; 2334 case 1: 2335 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2336 arm_is_secure_below_el3(env)) { 2337 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2338 return CP_ACCESS_TRAP_UNCATEGORIZED; 2339 } 2340 break; 2341 case 2: 2342 case 3: 2343 break; 2344 } 2345 2346 if (!isread && el < arm_highest_el(env)) { 2347 return CP_ACCESS_TRAP_UNCATEGORIZED; 2348 } 2349 2350 return CP_ACCESS_OK; 2351 } 2352 2353 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2354 bool isread) 2355 { 2356 unsigned int cur_el = arm_current_el(env); 2357 bool has_el2 = arm_is_el2_enabled(env); 2358 uint64_t hcr = arm_hcr_el2_eff(env); 2359 2360 switch (cur_el) { 2361 case 0: 2362 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2363 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2364 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2365 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2366 } 2367 2368 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2369 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2370 return CP_ACCESS_TRAP; 2371 } 2372 2373 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2374 if (hcr & HCR_E2H) { 2375 if (timeridx == GTIMER_PHYS && 2376 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2377 return CP_ACCESS_TRAP_EL2; 2378 } 2379 } else { 2380 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2381 if (has_el2 && timeridx == GTIMER_PHYS && 2382 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2383 return CP_ACCESS_TRAP_EL2; 2384 } 2385 } 2386 break; 2387 2388 case 1: 2389 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2390 if (has_el2 && timeridx == GTIMER_PHYS && 2391 (hcr & HCR_E2H 2392 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2393 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2394 return CP_ACCESS_TRAP_EL2; 2395 } 2396 break; 2397 } 2398 return CP_ACCESS_OK; 2399 } 2400 2401 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2402 bool isread) 2403 { 2404 unsigned int cur_el = arm_current_el(env); 2405 bool has_el2 = arm_is_el2_enabled(env); 2406 uint64_t hcr = arm_hcr_el2_eff(env); 2407 2408 switch (cur_el) { 2409 case 0: 2410 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2411 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2412 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2413 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2414 } 2415 2416 /* 2417 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2418 * EL0 if EL0[PV]TEN is zero. 2419 */ 2420 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2421 return CP_ACCESS_TRAP; 2422 } 2423 /* fall through */ 2424 2425 case 1: 2426 if (has_el2 && timeridx == GTIMER_PHYS) { 2427 if (hcr & HCR_E2H) { 2428 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2429 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2430 return CP_ACCESS_TRAP_EL2; 2431 } 2432 } else { 2433 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2434 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2435 return CP_ACCESS_TRAP_EL2; 2436 } 2437 } 2438 } 2439 break; 2440 } 2441 return CP_ACCESS_OK; 2442 } 2443 2444 static CPAccessResult gt_pct_access(CPUARMState *env, 2445 const ARMCPRegInfo *ri, 2446 bool isread) 2447 { 2448 return gt_counter_access(env, GTIMER_PHYS, isread); 2449 } 2450 2451 static CPAccessResult gt_vct_access(CPUARMState *env, 2452 const ARMCPRegInfo *ri, 2453 bool isread) 2454 { 2455 return gt_counter_access(env, GTIMER_VIRT, isread); 2456 } 2457 2458 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2459 bool isread) 2460 { 2461 return gt_timer_access(env, GTIMER_PHYS, isread); 2462 } 2463 2464 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2465 bool isread) 2466 { 2467 return gt_timer_access(env, GTIMER_VIRT, isread); 2468 } 2469 2470 static CPAccessResult gt_stimer_access(CPUARMState *env, 2471 const ARMCPRegInfo *ri, 2472 bool isread) 2473 { 2474 /* The AArch64 register view of the secure physical timer is 2475 * always accessible from EL3, and configurably accessible from 2476 * Secure EL1. 2477 */ 2478 switch (arm_current_el(env)) { 2479 case 1: 2480 if (!arm_is_secure(env)) { 2481 return CP_ACCESS_TRAP; 2482 } 2483 if (!(env->cp15.scr_el3 & SCR_ST)) { 2484 return CP_ACCESS_TRAP_EL3; 2485 } 2486 return CP_ACCESS_OK; 2487 case 0: 2488 case 2: 2489 return CP_ACCESS_TRAP; 2490 case 3: 2491 return CP_ACCESS_OK; 2492 default: 2493 g_assert_not_reached(); 2494 } 2495 } 2496 2497 static uint64_t gt_get_countervalue(CPUARMState *env) 2498 { 2499 ARMCPU *cpu = env_archcpu(env); 2500 2501 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2502 } 2503 2504 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2505 { 2506 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2507 2508 if (gt->ctl & 1) { 2509 /* Timer enabled: calculate and set current ISTATUS, irq, and 2510 * reset timer to when ISTATUS next has to change 2511 */ 2512 uint64_t offset = timeridx == GTIMER_VIRT ? 2513 cpu->env.cp15.cntvoff_el2 : 0; 2514 uint64_t count = gt_get_countervalue(&cpu->env); 2515 /* Note that this must be unsigned 64 bit arithmetic: */ 2516 int istatus = count - offset >= gt->cval; 2517 uint64_t nexttick; 2518 int irqstate; 2519 2520 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2521 2522 irqstate = (istatus && !(gt->ctl & 2)); 2523 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2524 2525 if (istatus) { 2526 /* Next transition is when count rolls back over to zero */ 2527 nexttick = UINT64_MAX; 2528 } else { 2529 /* Next transition is when we hit cval */ 2530 nexttick = gt->cval + offset; 2531 } 2532 /* Note that the desired next expiry time might be beyond the 2533 * signed-64-bit range of a QEMUTimer -- in this case we just 2534 * set the timer for as far in the future as possible. When the 2535 * timer expires we will reset the timer for any remaining period. 2536 */ 2537 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2538 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2539 } else { 2540 timer_mod(cpu->gt_timer[timeridx], nexttick); 2541 } 2542 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2543 } else { 2544 /* Timer disabled: ISTATUS and timer output always clear */ 2545 gt->ctl &= ~4; 2546 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2547 timer_del(cpu->gt_timer[timeridx]); 2548 trace_arm_gt_recalc_disabled(timeridx); 2549 } 2550 } 2551 2552 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2553 int timeridx) 2554 { 2555 ARMCPU *cpu = env_archcpu(env); 2556 2557 timer_del(cpu->gt_timer[timeridx]); 2558 } 2559 2560 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2561 { 2562 return gt_get_countervalue(env); 2563 } 2564 2565 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2566 { 2567 uint64_t hcr; 2568 2569 switch (arm_current_el(env)) { 2570 case 2: 2571 hcr = arm_hcr_el2_eff(env); 2572 if (hcr & HCR_E2H) { 2573 return 0; 2574 } 2575 break; 2576 case 0: 2577 hcr = arm_hcr_el2_eff(env); 2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2579 return 0; 2580 } 2581 break; 2582 } 2583 2584 return env->cp15.cntvoff_el2; 2585 } 2586 2587 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2588 { 2589 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2590 } 2591 2592 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2593 int timeridx, 2594 uint64_t value) 2595 { 2596 trace_arm_gt_cval_write(timeridx, value); 2597 env->cp15.c14_timer[timeridx].cval = value; 2598 gt_recalc_timer(env_archcpu(env), timeridx); 2599 } 2600 2601 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2602 int timeridx) 2603 { 2604 uint64_t offset = 0; 2605 2606 switch (timeridx) { 2607 case GTIMER_VIRT: 2608 case GTIMER_HYPVIRT: 2609 offset = gt_virt_cnt_offset(env); 2610 break; 2611 } 2612 2613 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2614 (gt_get_countervalue(env) - offset)); 2615 } 2616 2617 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2618 int timeridx, 2619 uint64_t value) 2620 { 2621 uint64_t offset = 0; 2622 2623 switch (timeridx) { 2624 case GTIMER_VIRT: 2625 case GTIMER_HYPVIRT: 2626 offset = gt_virt_cnt_offset(env); 2627 break; 2628 } 2629 2630 trace_arm_gt_tval_write(timeridx, value); 2631 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2632 sextract64(value, 0, 32); 2633 gt_recalc_timer(env_archcpu(env), timeridx); 2634 } 2635 2636 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2637 int timeridx, 2638 uint64_t value) 2639 { 2640 ARMCPU *cpu = env_archcpu(env); 2641 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2642 2643 trace_arm_gt_ctl_write(timeridx, value); 2644 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2645 if ((oldval ^ value) & 1) { 2646 /* Enable toggled */ 2647 gt_recalc_timer(cpu, timeridx); 2648 } else if ((oldval ^ value) & 2) { 2649 /* IMASK toggled: don't need to recalculate, 2650 * just set the interrupt line based on ISTATUS 2651 */ 2652 int irqstate = (oldval & 4) && !(value & 2); 2653 2654 trace_arm_gt_imask_toggle(timeridx, irqstate); 2655 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2656 } 2657 } 2658 2659 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2660 { 2661 gt_timer_reset(env, ri, GTIMER_PHYS); 2662 } 2663 2664 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2665 uint64_t value) 2666 { 2667 gt_cval_write(env, ri, GTIMER_PHYS, value); 2668 } 2669 2670 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2671 { 2672 return gt_tval_read(env, ri, GTIMER_PHYS); 2673 } 2674 2675 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2676 uint64_t value) 2677 { 2678 gt_tval_write(env, ri, GTIMER_PHYS, value); 2679 } 2680 2681 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2682 uint64_t value) 2683 { 2684 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2685 } 2686 2687 static int gt_phys_redir_timeridx(CPUARMState *env) 2688 { 2689 switch (arm_mmu_idx(env)) { 2690 case ARMMMUIdx_E20_0: 2691 case ARMMMUIdx_E20_2: 2692 case ARMMMUIdx_E20_2_PAN: 2693 return GTIMER_HYP; 2694 default: 2695 return GTIMER_PHYS; 2696 } 2697 } 2698 2699 static int gt_virt_redir_timeridx(CPUARMState *env) 2700 { 2701 switch (arm_mmu_idx(env)) { 2702 case ARMMMUIdx_E20_0: 2703 case ARMMMUIdx_E20_2: 2704 case ARMMMUIdx_E20_2_PAN: 2705 return GTIMER_HYPVIRT; 2706 default: 2707 return GTIMER_VIRT; 2708 } 2709 } 2710 2711 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2712 const ARMCPRegInfo *ri) 2713 { 2714 int timeridx = gt_phys_redir_timeridx(env); 2715 return env->cp15.c14_timer[timeridx].cval; 2716 } 2717 2718 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2719 uint64_t value) 2720 { 2721 int timeridx = gt_phys_redir_timeridx(env); 2722 gt_cval_write(env, ri, timeridx, value); 2723 } 2724 2725 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2726 const ARMCPRegInfo *ri) 2727 { 2728 int timeridx = gt_phys_redir_timeridx(env); 2729 return gt_tval_read(env, ri, timeridx); 2730 } 2731 2732 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2733 uint64_t value) 2734 { 2735 int timeridx = gt_phys_redir_timeridx(env); 2736 gt_tval_write(env, ri, timeridx, value); 2737 } 2738 2739 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2740 const ARMCPRegInfo *ri) 2741 { 2742 int timeridx = gt_phys_redir_timeridx(env); 2743 return env->cp15.c14_timer[timeridx].ctl; 2744 } 2745 2746 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2747 uint64_t value) 2748 { 2749 int timeridx = gt_phys_redir_timeridx(env); 2750 gt_ctl_write(env, ri, timeridx, value); 2751 } 2752 2753 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2754 { 2755 gt_timer_reset(env, ri, GTIMER_VIRT); 2756 } 2757 2758 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2759 uint64_t value) 2760 { 2761 gt_cval_write(env, ri, GTIMER_VIRT, value); 2762 } 2763 2764 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2765 { 2766 return gt_tval_read(env, ri, GTIMER_VIRT); 2767 } 2768 2769 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 gt_tval_write(env, ri, GTIMER_VIRT, value); 2773 } 2774 2775 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2776 uint64_t value) 2777 { 2778 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2779 } 2780 2781 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2782 uint64_t value) 2783 { 2784 ARMCPU *cpu = env_archcpu(env); 2785 2786 trace_arm_gt_cntvoff_write(value); 2787 raw_write(env, ri, value); 2788 gt_recalc_timer(cpu, GTIMER_VIRT); 2789 } 2790 2791 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2792 const ARMCPRegInfo *ri) 2793 { 2794 int timeridx = gt_virt_redir_timeridx(env); 2795 return env->cp15.c14_timer[timeridx].cval; 2796 } 2797 2798 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 int timeridx = gt_virt_redir_timeridx(env); 2802 gt_cval_write(env, ri, timeridx, value); 2803 } 2804 2805 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2806 const ARMCPRegInfo *ri) 2807 { 2808 int timeridx = gt_virt_redir_timeridx(env); 2809 return gt_tval_read(env, ri, timeridx); 2810 } 2811 2812 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2813 uint64_t value) 2814 { 2815 int timeridx = gt_virt_redir_timeridx(env); 2816 gt_tval_write(env, ri, timeridx, value); 2817 } 2818 2819 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2820 const ARMCPRegInfo *ri) 2821 { 2822 int timeridx = gt_virt_redir_timeridx(env); 2823 return env->cp15.c14_timer[timeridx].ctl; 2824 } 2825 2826 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2827 uint64_t value) 2828 { 2829 int timeridx = gt_virt_redir_timeridx(env); 2830 gt_ctl_write(env, ri, timeridx, value); 2831 } 2832 2833 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2834 { 2835 gt_timer_reset(env, ri, GTIMER_HYP); 2836 } 2837 2838 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2839 uint64_t value) 2840 { 2841 gt_cval_write(env, ri, GTIMER_HYP, value); 2842 } 2843 2844 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2845 { 2846 return gt_tval_read(env, ri, GTIMER_HYP); 2847 } 2848 2849 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2850 uint64_t value) 2851 { 2852 gt_tval_write(env, ri, GTIMER_HYP, value); 2853 } 2854 2855 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2856 uint64_t value) 2857 { 2858 gt_ctl_write(env, ri, GTIMER_HYP, value); 2859 } 2860 2861 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2862 { 2863 gt_timer_reset(env, ri, GTIMER_SEC); 2864 } 2865 2866 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2867 uint64_t value) 2868 { 2869 gt_cval_write(env, ri, GTIMER_SEC, value); 2870 } 2871 2872 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2873 { 2874 return gt_tval_read(env, ri, GTIMER_SEC); 2875 } 2876 2877 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2878 uint64_t value) 2879 { 2880 gt_tval_write(env, ri, GTIMER_SEC, value); 2881 } 2882 2883 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2884 uint64_t value) 2885 { 2886 gt_ctl_write(env, ri, GTIMER_SEC, value); 2887 } 2888 2889 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2890 { 2891 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2892 } 2893 2894 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2895 uint64_t value) 2896 { 2897 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2898 } 2899 2900 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2901 { 2902 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2903 } 2904 2905 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2906 uint64_t value) 2907 { 2908 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2909 } 2910 2911 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2912 uint64_t value) 2913 { 2914 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2915 } 2916 2917 void arm_gt_ptimer_cb(void *opaque) 2918 { 2919 ARMCPU *cpu = opaque; 2920 2921 gt_recalc_timer(cpu, GTIMER_PHYS); 2922 } 2923 2924 void arm_gt_vtimer_cb(void *opaque) 2925 { 2926 ARMCPU *cpu = opaque; 2927 2928 gt_recalc_timer(cpu, GTIMER_VIRT); 2929 } 2930 2931 void arm_gt_htimer_cb(void *opaque) 2932 { 2933 ARMCPU *cpu = opaque; 2934 2935 gt_recalc_timer(cpu, GTIMER_HYP); 2936 } 2937 2938 void arm_gt_stimer_cb(void *opaque) 2939 { 2940 ARMCPU *cpu = opaque; 2941 2942 gt_recalc_timer(cpu, GTIMER_SEC); 2943 } 2944 2945 void arm_gt_hvtimer_cb(void *opaque) 2946 { 2947 ARMCPU *cpu = opaque; 2948 2949 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2950 } 2951 2952 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2953 { 2954 ARMCPU *cpu = env_archcpu(env); 2955 2956 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2957 } 2958 2959 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2960 /* Note that CNTFRQ is purely reads-as-written for the benefit 2961 * of software; writing it doesn't actually change the timer frequency. 2962 * Our reset value matches the fixed frequency we implement the timer at. 2963 */ 2964 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2965 .type = ARM_CP_ALIAS, 2966 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2967 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2968 }, 2969 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2971 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2972 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2973 .resetfn = arm_gt_cntfrq_reset, 2974 }, 2975 /* overall control: mostly access permissions */ 2976 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2977 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2978 .access = PL1_RW, 2979 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2980 .resetvalue = 0, 2981 }, 2982 /* per-timer control */ 2983 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2984 .secure = ARM_CP_SECSTATE_NS, 2985 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2986 .accessfn = gt_ptimer_access, 2987 .fieldoffset = offsetoflow32(CPUARMState, 2988 cp15.c14_timer[GTIMER_PHYS].ctl), 2989 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2990 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2991 }, 2992 { .name = "CNTP_CTL_S", 2993 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2994 .secure = ARM_CP_SECSTATE_S, 2995 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2996 .accessfn = gt_ptimer_access, 2997 .fieldoffset = offsetoflow32(CPUARMState, 2998 cp15.c14_timer[GTIMER_SEC].ctl), 2999 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3000 }, 3001 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3002 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3003 .type = ARM_CP_IO, .access = PL0_RW, 3004 .accessfn = gt_ptimer_access, 3005 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3006 .resetvalue = 0, 3007 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3008 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3009 }, 3010 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3011 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3012 .accessfn = gt_vtimer_access, 3013 .fieldoffset = offsetoflow32(CPUARMState, 3014 cp15.c14_timer[GTIMER_VIRT].ctl), 3015 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3016 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3017 }, 3018 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3019 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3020 .type = ARM_CP_IO, .access = PL0_RW, 3021 .accessfn = gt_vtimer_access, 3022 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3023 .resetvalue = 0, 3024 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3025 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3026 }, 3027 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3028 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3029 .secure = ARM_CP_SECSTATE_NS, 3030 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3031 .accessfn = gt_ptimer_access, 3032 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3033 }, 3034 { .name = "CNTP_TVAL_S", 3035 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3036 .secure = ARM_CP_SECSTATE_S, 3037 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3038 .accessfn = gt_ptimer_access, 3039 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3040 }, 3041 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3043 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3044 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3045 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3046 }, 3047 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3048 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3049 .accessfn = gt_vtimer_access, 3050 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3051 }, 3052 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3053 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3054 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3055 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3056 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3057 }, 3058 /* The counter itself */ 3059 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3060 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3061 .accessfn = gt_pct_access, 3062 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3063 }, 3064 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3065 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3066 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3067 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3068 }, 3069 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3070 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3071 .accessfn = gt_vct_access, 3072 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3073 }, 3074 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3075 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3076 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3077 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3078 }, 3079 /* Comparison value, indicating when the timer goes off */ 3080 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3081 .secure = ARM_CP_SECSTATE_NS, 3082 .access = PL0_RW, 3083 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3084 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3085 .accessfn = gt_ptimer_access, 3086 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3087 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3088 }, 3089 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3090 .secure = ARM_CP_SECSTATE_S, 3091 .access = PL0_RW, 3092 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3093 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3094 .accessfn = gt_ptimer_access, 3095 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3096 }, 3097 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3098 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3099 .access = PL0_RW, 3100 .type = ARM_CP_IO, 3101 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3102 .resetvalue = 0, .accessfn = gt_ptimer_access, 3103 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3104 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3105 }, 3106 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3107 .access = PL0_RW, 3108 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3109 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3110 .accessfn = gt_vtimer_access, 3111 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3112 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3113 }, 3114 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3115 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3116 .access = PL0_RW, 3117 .type = ARM_CP_IO, 3118 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3119 .resetvalue = 0, .accessfn = gt_vtimer_access, 3120 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3121 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3122 }, 3123 /* Secure timer -- this is actually restricted to only EL3 3124 * and configurably Secure-EL1 via the accessfn. 3125 */ 3126 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3127 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3128 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3129 .accessfn = gt_stimer_access, 3130 .readfn = gt_sec_tval_read, 3131 .writefn = gt_sec_tval_write, 3132 .resetfn = gt_sec_timer_reset, 3133 }, 3134 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3135 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3136 .type = ARM_CP_IO, .access = PL1_RW, 3137 .accessfn = gt_stimer_access, 3138 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3139 .resetvalue = 0, 3140 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3141 }, 3142 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3143 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3144 .type = ARM_CP_IO, .access = PL1_RW, 3145 .accessfn = gt_stimer_access, 3146 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3147 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3148 }, 3149 }; 3150 3151 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3152 bool isread) 3153 { 3154 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3155 return CP_ACCESS_TRAP; 3156 } 3157 return CP_ACCESS_OK; 3158 } 3159 3160 #else 3161 3162 /* In user-mode most of the generic timer registers are inaccessible 3163 * however modern kernels (4.12+) allow access to cntvct_el0 3164 */ 3165 3166 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3167 { 3168 ARMCPU *cpu = env_archcpu(env); 3169 3170 /* Currently we have no support for QEMUTimer in linux-user so we 3171 * can't call gt_get_countervalue(env), instead we directly 3172 * call the lower level functions. 3173 */ 3174 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3175 } 3176 3177 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3178 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3179 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3180 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3181 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3182 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3183 }, 3184 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3185 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3186 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3187 .readfn = gt_virt_cnt_read, 3188 }, 3189 }; 3190 3191 #endif 3192 3193 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3194 { 3195 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3196 raw_write(env, ri, value); 3197 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3198 raw_write(env, ri, value & 0xfffff6ff); 3199 } else { 3200 raw_write(env, ri, value & 0xfffff1ff); 3201 } 3202 } 3203 3204 #ifndef CONFIG_USER_ONLY 3205 /* get_phys_addr() isn't present for user-mode-only targets */ 3206 3207 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3208 bool isread) 3209 { 3210 if (ri->opc2 & 4) { 3211 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3212 * Secure EL1 (which can only happen if EL3 is AArch64). 3213 * They are simply UNDEF if executed from NS EL1. 3214 * They function normally from EL2 or EL3. 3215 */ 3216 if (arm_current_el(env) == 1) { 3217 if (arm_is_secure_below_el3(env)) { 3218 if (env->cp15.scr_el3 & SCR_EEL2) { 3219 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3220 } 3221 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3222 } 3223 return CP_ACCESS_TRAP_UNCATEGORIZED; 3224 } 3225 } 3226 return CP_ACCESS_OK; 3227 } 3228 3229 #ifdef CONFIG_TCG 3230 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3231 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3232 bool is_secure) 3233 { 3234 bool ret; 3235 uint64_t par64; 3236 bool format64 = false; 3237 ARMMMUFaultInfo fi = {}; 3238 GetPhysAddrResult res = {}; 3239 3240 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3241 is_secure, &res, &fi); 3242 3243 /* 3244 * ATS operations only do S1 or S1+S2 translations, so we never 3245 * have to deal with the ARMCacheAttrs format for S2 only. 3246 */ 3247 assert(!res.cacheattrs.is_s2_format); 3248 3249 if (ret) { 3250 /* 3251 * Some kinds of translation fault must cause exceptions rather 3252 * than being reported in the PAR. 3253 */ 3254 int current_el = arm_current_el(env); 3255 int target_el; 3256 uint32_t syn, fsr, fsc; 3257 bool take_exc = false; 3258 3259 if (fi.s1ptw && current_el == 1 3260 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3261 /* 3262 * Synchronous stage 2 fault on an access made as part of the 3263 * translation table walk for AT S1E0* or AT S1E1* insn 3264 * executed from NS EL1. If this is a synchronous external abort 3265 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3266 * to EL3. Otherwise the fault is taken as an exception to EL2, 3267 * and HPFAR_EL2 holds the faulting IPA. 3268 */ 3269 if (fi.type == ARMFault_SyncExternalOnWalk && 3270 (env->cp15.scr_el3 & SCR_EA)) { 3271 target_el = 3; 3272 } else { 3273 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3274 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3275 env->cp15.hpfar_el2 |= HPFAR_NS; 3276 } 3277 target_el = 2; 3278 } 3279 take_exc = true; 3280 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3281 /* 3282 * Synchronous external aborts during a translation table walk 3283 * are taken as Data Abort exceptions. 3284 */ 3285 if (fi.stage2) { 3286 if (current_el == 3) { 3287 target_el = 3; 3288 } else { 3289 target_el = 2; 3290 } 3291 } else { 3292 target_el = exception_target_el(env); 3293 } 3294 take_exc = true; 3295 } 3296 3297 if (take_exc) { 3298 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3299 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3300 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3301 fsr = arm_fi_to_lfsc(&fi); 3302 fsc = extract32(fsr, 0, 6); 3303 } else { 3304 fsr = arm_fi_to_sfsc(&fi); 3305 fsc = 0x3f; 3306 } 3307 /* 3308 * Report exception with ESR indicating a fault due to a 3309 * translation table walk for a cache maintenance instruction. 3310 */ 3311 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3312 fi.ea, 1, fi.s1ptw, 1, fsc); 3313 env->exception.vaddress = value; 3314 env->exception.fsr = fsr; 3315 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3316 } 3317 } 3318 3319 if (is_a64(env)) { 3320 format64 = true; 3321 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3322 /* 3323 * ATS1Cxx: 3324 * * TTBCR.EAE determines whether the result is returned using the 3325 * 32-bit or the 64-bit PAR format 3326 * * Instructions executed in Hyp mode always use the 64bit format 3327 * 3328 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3329 * * The Non-secure TTBCR.EAE bit is set to 1 3330 * * The implementation includes EL2, and the value of HCR.VM is 1 3331 * 3332 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3333 * 3334 * ATS1Hx always uses the 64bit format. 3335 */ 3336 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3337 3338 if (arm_feature(env, ARM_FEATURE_EL2)) { 3339 if (mmu_idx == ARMMMUIdx_E10_0 || 3340 mmu_idx == ARMMMUIdx_E10_1 || 3341 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3342 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3343 } else { 3344 format64 |= arm_current_el(env) == 2; 3345 } 3346 } 3347 } 3348 3349 if (format64) { 3350 /* Create a 64-bit PAR */ 3351 par64 = (1 << 11); /* LPAE bit always set */ 3352 if (!ret) { 3353 par64 |= res.f.phys_addr & ~0xfffULL; 3354 if (!res.f.attrs.secure) { 3355 par64 |= (1 << 9); /* NS */ 3356 } 3357 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3358 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3359 } else { 3360 uint32_t fsr = arm_fi_to_lfsc(&fi); 3361 3362 par64 |= 1; /* F */ 3363 par64 |= (fsr & 0x3f) << 1; /* FS */ 3364 if (fi.stage2) { 3365 par64 |= (1 << 9); /* S */ 3366 } 3367 if (fi.s1ptw) { 3368 par64 |= (1 << 8); /* PTW */ 3369 } 3370 } 3371 } else { 3372 /* fsr is a DFSR/IFSR value for the short descriptor 3373 * translation table format (with WnR always clear). 3374 * Convert it to a 32-bit PAR. 3375 */ 3376 if (!ret) { 3377 /* We do not set any attribute bits in the PAR */ 3378 if (res.f.lg_page_size == 24 3379 && arm_feature(env, ARM_FEATURE_V7)) { 3380 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3381 } else { 3382 par64 = res.f.phys_addr & 0xfffff000; 3383 } 3384 if (!res.f.attrs.secure) { 3385 par64 |= (1 << 9); /* NS */ 3386 } 3387 } else { 3388 uint32_t fsr = arm_fi_to_sfsc(&fi); 3389 3390 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3391 ((fsr & 0xf) << 1) | 1; 3392 } 3393 } 3394 return par64; 3395 } 3396 #endif /* CONFIG_TCG */ 3397 3398 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3399 { 3400 #ifdef CONFIG_TCG 3401 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3402 uint64_t par64; 3403 ARMMMUIdx mmu_idx; 3404 int el = arm_current_el(env); 3405 bool secure = arm_is_secure_below_el3(env); 3406 3407 switch (ri->opc2 & 6) { 3408 case 0: 3409 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3410 switch (el) { 3411 case 3: 3412 mmu_idx = ARMMMUIdx_E3; 3413 secure = true; 3414 break; 3415 case 2: 3416 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3417 /* fall through */ 3418 case 1: 3419 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3420 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3421 } else { 3422 mmu_idx = ARMMMUIdx_Stage1_E1; 3423 } 3424 break; 3425 default: 3426 g_assert_not_reached(); 3427 } 3428 break; 3429 case 2: 3430 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3431 switch (el) { 3432 case 3: 3433 mmu_idx = ARMMMUIdx_E10_0; 3434 secure = true; 3435 break; 3436 case 2: 3437 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3438 mmu_idx = ARMMMUIdx_Stage1_E0; 3439 break; 3440 case 1: 3441 mmu_idx = ARMMMUIdx_Stage1_E0; 3442 break; 3443 default: 3444 g_assert_not_reached(); 3445 } 3446 break; 3447 case 4: 3448 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3449 mmu_idx = ARMMMUIdx_E10_1; 3450 secure = false; 3451 break; 3452 case 6: 3453 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3454 mmu_idx = ARMMMUIdx_E10_0; 3455 secure = false; 3456 break; 3457 default: 3458 g_assert_not_reached(); 3459 } 3460 3461 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3462 3463 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3464 #else 3465 /* Handled by hardware accelerator. */ 3466 g_assert_not_reached(); 3467 #endif /* CONFIG_TCG */ 3468 } 3469 3470 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3471 uint64_t value) 3472 { 3473 #ifdef CONFIG_TCG 3474 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3475 uint64_t par64; 3476 3477 /* There is no SecureEL2 for AArch32. */ 3478 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3479 3480 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3481 #else 3482 /* Handled by hardware accelerator. */ 3483 g_assert_not_reached(); 3484 #endif /* CONFIG_TCG */ 3485 } 3486 3487 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3488 bool isread) 3489 { 3490 if (arm_current_el(env) == 3 && 3491 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3492 return CP_ACCESS_TRAP; 3493 } 3494 return CP_ACCESS_OK; 3495 } 3496 3497 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3498 uint64_t value) 3499 { 3500 #ifdef CONFIG_TCG 3501 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3502 ARMMMUIdx mmu_idx; 3503 int secure = arm_is_secure_below_el3(env); 3504 3505 switch (ri->opc2 & 6) { 3506 case 0: 3507 switch (ri->opc1) { 3508 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3509 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3510 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3511 } else { 3512 mmu_idx = ARMMMUIdx_Stage1_E1; 3513 } 3514 break; 3515 case 4: /* AT S1E2R, AT S1E2W */ 3516 mmu_idx = ARMMMUIdx_E2; 3517 break; 3518 case 6: /* AT S1E3R, AT S1E3W */ 3519 mmu_idx = ARMMMUIdx_E3; 3520 secure = true; 3521 break; 3522 default: 3523 g_assert_not_reached(); 3524 } 3525 break; 3526 case 2: /* AT S1E0R, AT S1E0W */ 3527 mmu_idx = ARMMMUIdx_Stage1_E0; 3528 break; 3529 case 4: /* AT S12E1R, AT S12E1W */ 3530 mmu_idx = ARMMMUIdx_E10_1; 3531 break; 3532 case 6: /* AT S12E0R, AT S12E0W */ 3533 mmu_idx = ARMMMUIdx_E10_0; 3534 break; 3535 default: 3536 g_assert_not_reached(); 3537 } 3538 3539 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3540 mmu_idx, secure); 3541 #else 3542 /* Handled by hardware accelerator. */ 3543 g_assert_not_reached(); 3544 #endif /* CONFIG_TCG */ 3545 } 3546 #endif 3547 3548 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3549 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3550 .access = PL1_RW, .resetvalue = 0, 3551 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3552 offsetoflow32(CPUARMState, cp15.par_ns) }, 3553 .writefn = par_write }, 3554 #ifndef CONFIG_USER_ONLY 3555 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3556 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3557 .access = PL1_W, .accessfn = ats_access, 3558 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3559 #endif 3560 }; 3561 3562 /* Return basic MPU access permission bits. */ 3563 static uint32_t simple_mpu_ap_bits(uint32_t val) 3564 { 3565 uint32_t ret; 3566 uint32_t mask; 3567 int i; 3568 ret = 0; 3569 mask = 3; 3570 for (i = 0; i < 16; i += 2) { 3571 ret |= (val >> i) & mask; 3572 mask <<= 2; 3573 } 3574 return ret; 3575 } 3576 3577 /* Pad basic MPU access permission bits to extended format. */ 3578 static uint32_t extended_mpu_ap_bits(uint32_t val) 3579 { 3580 uint32_t ret; 3581 uint32_t mask; 3582 int i; 3583 ret = 0; 3584 mask = 3; 3585 for (i = 0; i < 16; i += 2) { 3586 ret |= (val & mask) << i; 3587 mask <<= 2; 3588 } 3589 return ret; 3590 } 3591 3592 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3593 uint64_t value) 3594 { 3595 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3596 } 3597 3598 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3599 { 3600 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3601 } 3602 3603 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3604 uint64_t value) 3605 { 3606 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3607 } 3608 3609 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3610 { 3611 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3612 } 3613 3614 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3615 { 3616 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3617 3618 if (!u32p) { 3619 return 0; 3620 } 3621 3622 u32p += env->pmsav7.rnr[M_REG_NS]; 3623 return *u32p; 3624 } 3625 3626 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3627 uint64_t value) 3628 { 3629 ARMCPU *cpu = env_archcpu(env); 3630 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3631 3632 if (!u32p) { 3633 return; 3634 } 3635 3636 u32p += env->pmsav7.rnr[M_REG_NS]; 3637 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3638 *u32p = value; 3639 } 3640 3641 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3642 uint64_t value) 3643 { 3644 ARMCPU *cpu = env_archcpu(env); 3645 uint32_t nrgs = cpu->pmsav7_dregion; 3646 3647 if (value >= nrgs) { 3648 qemu_log_mask(LOG_GUEST_ERROR, 3649 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3650 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3651 return; 3652 } 3653 3654 raw_write(env, ri, value); 3655 } 3656 3657 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3658 /* Reset for all these registers is handled in arm_cpu_reset(), 3659 * because the PMSAv7 is also used by M-profile CPUs, which do 3660 * not register cpregs but still need the state to be reset. 3661 */ 3662 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3663 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3664 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3665 .readfn = pmsav7_read, .writefn = pmsav7_write, 3666 .resetfn = arm_cp_reset_ignore }, 3667 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3668 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3669 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3670 .readfn = pmsav7_read, .writefn = pmsav7_write, 3671 .resetfn = arm_cp_reset_ignore }, 3672 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3673 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3674 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3675 .readfn = pmsav7_read, .writefn = pmsav7_write, 3676 .resetfn = arm_cp_reset_ignore }, 3677 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3678 .access = PL1_RW, 3679 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3680 .writefn = pmsav7_rgnr_write, 3681 .resetfn = arm_cp_reset_ignore }, 3682 }; 3683 3684 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3685 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3686 .access = PL1_RW, .type = ARM_CP_ALIAS, 3687 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3688 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3689 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3690 .access = PL1_RW, .type = ARM_CP_ALIAS, 3691 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3692 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3693 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3694 .access = PL1_RW, 3695 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3696 .resetvalue = 0, }, 3697 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3698 .access = PL1_RW, 3699 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3700 .resetvalue = 0, }, 3701 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3702 .access = PL1_RW, 3703 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3704 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3705 .access = PL1_RW, 3706 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3707 /* Protection region base and size registers */ 3708 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3709 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3710 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3711 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3712 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3713 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3714 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3715 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3716 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3717 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3718 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3719 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3720 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3721 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3722 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3723 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3724 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3725 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3726 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3727 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3728 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3729 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3730 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3731 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3732 }; 3733 3734 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3735 uint64_t value) 3736 { 3737 ARMCPU *cpu = env_archcpu(env); 3738 3739 if (!arm_feature(env, ARM_FEATURE_V8)) { 3740 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3741 /* 3742 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3743 * using Long-descriptor translation table format 3744 */ 3745 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3746 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3747 /* 3748 * In an implementation that includes the Security Extensions 3749 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3750 * Short-descriptor translation table format. 3751 */ 3752 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3753 } else { 3754 value &= TTBCR_N; 3755 } 3756 } 3757 3758 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3759 /* With LPAE the TTBCR could result in a change of ASID 3760 * via the TTBCR.A1 bit, so do a TLB flush. 3761 */ 3762 tlb_flush(CPU(cpu)); 3763 } 3764 raw_write(env, ri, value); 3765 } 3766 3767 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3768 uint64_t value) 3769 { 3770 ARMCPU *cpu = env_archcpu(env); 3771 3772 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3773 tlb_flush(CPU(cpu)); 3774 raw_write(env, ri, value); 3775 } 3776 3777 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3778 uint64_t value) 3779 { 3780 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3781 if (cpreg_field_is_64bit(ri) && 3782 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3783 ARMCPU *cpu = env_archcpu(env); 3784 tlb_flush(CPU(cpu)); 3785 } 3786 raw_write(env, ri, value); 3787 } 3788 3789 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3790 uint64_t value) 3791 { 3792 /* 3793 * If we are running with E2&0 regime, then an ASID is active. 3794 * Flush if that might be changing. Note we're not checking 3795 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3796 * holds the active ASID, only checking the field that might. 3797 */ 3798 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3799 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3800 uint16_t mask = ARMMMUIdxBit_E20_2 | 3801 ARMMMUIdxBit_E20_2_PAN | 3802 ARMMMUIdxBit_E20_0; 3803 tlb_flush_by_mmuidx(env_cpu(env), mask); 3804 } 3805 raw_write(env, ri, value); 3806 } 3807 3808 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3809 uint64_t value) 3810 { 3811 ARMCPU *cpu = env_archcpu(env); 3812 CPUState *cs = CPU(cpu); 3813 3814 /* 3815 * A change in VMID to the stage2 page table (Stage2) invalidates 3816 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 3817 */ 3818 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3819 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 3820 } 3821 raw_write(env, ri, value); 3822 } 3823 3824 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3825 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3826 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3827 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3828 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3829 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3830 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3831 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3832 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3833 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3834 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3835 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3836 offsetof(CPUARMState, cp15.dfar_ns) } }, 3837 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3838 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3839 .access = PL1_RW, .accessfn = access_tvm_trvm, 3840 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3841 .resetvalue = 0, }, 3842 }; 3843 3844 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3845 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3846 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3847 .access = PL1_RW, .accessfn = access_tvm_trvm, 3848 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3849 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3850 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3851 .access = PL1_RW, .accessfn = access_tvm_trvm, 3852 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3853 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3854 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3855 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3856 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3857 .access = PL1_RW, .accessfn = access_tvm_trvm, 3858 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3859 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3860 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3861 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3862 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3863 .access = PL1_RW, .accessfn = access_tvm_trvm, 3864 .writefn = vmsa_tcr_el12_write, 3865 .raw_writefn = raw_write, 3866 .resetvalue = 0, 3867 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3868 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3869 .access = PL1_RW, .accessfn = access_tvm_trvm, 3870 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3871 .raw_writefn = raw_write, 3872 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 3873 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 3874 }; 3875 3876 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3877 * qemu tlbs nor adjusting cached masks. 3878 */ 3879 static const ARMCPRegInfo ttbcr2_reginfo = { 3880 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3881 .access = PL1_RW, .accessfn = access_tvm_trvm, 3882 .type = ARM_CP_ALIAS, 3883 .bank_fieldoffsets = { 3884 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 3885 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 3886 }, 3887 }; 3888 3889 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3890 uint64_t value) 3891 { 3892 env->cp15.c15_ticonfig = value & 0xe7; 3893 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3894 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3895 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3896 } 3897 3898 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 env->cp15.c15_threadid = value & 0xffff; 3902 } 3903 3904 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3905 uint64_t value) 3906 { 3907 /* Wait-for-interrupt (deprecated) */ 3908 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3909 } 3910 3911 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3912 uint64_t value) 3913 { 3914 /* On OMAP there are registers indicating the max/min index of dcache lines 3915 * containing a dirty line; cache flush operations have to reset these. 3916 */ 3917 env->cp15.c15_i_max = 0x000; 3918 env->cp15.c15_i_min = 0xff0; 3919 } 3920 3921 static const ARMCPRegInfo omap_cp_reginfo[] = { 3922 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3923 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3924 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3925 .resetvalue = 0, }, 3926 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3927 .access = PL1_RW, .type = ARM_CP_NOP }, 3928 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3929 .access = PL1_RW, 3930 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3931 .writefn = omap_ticonfig_write }, 3932 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3933 .access = PL1_RW, 3934 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3935 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3936 .access = PL1_RW, .resetvalue = 0xff0, 3937 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3938 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3939 .access = PL1_RW, 3940 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3941 .writefn = omap_threadid_write }, 3942 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3943 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3944 .type = ARM_CP_NO_RAW, 3945 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3946 /* TODO: Peripheral port remap register: 3947 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3948 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3949 * when MMU is off. 3950 */ 3951 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3952 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3953 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3954 .writefn = omap_cachemaint_write }, 3955 { .name = "C9", .cp = 15, .crn = 9, 3956 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3957 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3958 }; 3959 3960 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3961 uint64_t value) 3962 { 3963 env->cp15.c15_cpar = value & 0x3fff; 3964 } 3965 3966 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3967 { .name = "XSCALE_CPAR", 3968 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3969 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3970 .writefn = xscale_cpar_write, }, 3971 { .name = "XSCALE_AUXCR", 3972 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3973 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3974 .resetvalue = 0, }, 3975 /* XScale specific cache-lockdown: since we have no cache we NOP these 3976 * and hope the guest does not really rely on cache behaviour. 3977 */ 3978 { .name = "XSCALE_LOCK_ICACHE_LINE", 3979 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3980 .access = PL1_W, .type = ARM_CP_NOP }, 3981 { .name = "XSCALE_UNLOCK_ICACHE", 3982 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3983 .access = PL1_W, .type = ARM_CP_NOP }, 3984 { .name = "XSCALE_DCACHE_LOCK", 3985 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3986 .access = PL1_RW, .type = ARM_CP_NOP }, 3987 { .name = "XSCALE_UNLOCK_DCACHE", 3988 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3989 .access = PL1_W, .type = ARM_CP_NOP }, 3990 }; 3991 3992 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3993 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3994 * implementation of this implementation-defined space. 3995 * Ideally this should eventually disappear in favour of actually 3996 * implementing the correct behaviour for all cores. 3997 */ 3998 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3999 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4000 .access = PL1_RW, 4001 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4002 .resetvalue = 0 }, 4003 }; 4004 4005 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4006 /* Cache status: RAZ because we have no cache so it's always clean */ 4007 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4008 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4009 .resetvalue = 0 }, 4010 }; 4011 4012 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4013 /* We never have a block transfer operation in progress */ 4014 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4015 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4016 .resetvalue = 0 }, 4017 /* The cache ops themselves: these all NOP for QEMU */ 4018 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4019 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4020 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4021 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4022 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4023 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4024 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4025 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4026 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4027 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4028 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4029 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4030 }; 4031 4032 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4033 /* The cache test-and-clean instructions always return (1 << 30) 4034 * to indicate that there are no dirty cache lines. 4035 */ 4036 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4037 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4038 .resetvalue = (1 << 30) }, 4039 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4040 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4041 .resetvalue = (1 << 30) }, 4042 }; 4043 4044 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4045 /* Ignore ReadBuffer accesses */ 4046 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4047 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4048 .access = PL1_RW, .resetvalue = 0, 4049 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4050 }; 4051 4052 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4053 { 4054 unsigned int cur_el = arm_current_el(env); 4055 4056 if (arm_is_el2_enabled(env) && cur_el == 1) { 4057 return env->cp15.vpidr_el2; 4058 } 4059 return raw_read(env, ri); 4060 } 4061 4062 static uint64_t mpidr_read_val(CPUARMState *env) 4063 { 4064 ARMCPU *cpu = env_archcpu(env); 4065 uint64_t mpidr = cpu->mp_affinity; 4066 4067 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4068 mpidr |= (1U << 31); 4069 /* Cores which are uniprocessor (non-coherent) 4070 * but still implement the MP extensions set 4071 * bit 30. (For instance, Cortex-R5). 4072 */ 4073 if (cpu->mp_is_up) { 4074 mpidr |= (1u << 30); 4075 } 4076 } 4077 return mpidr; 4078 } 4079 4080 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4081 { 4082 unsigned int cur_el = arm_current_el(env); 4083 4084 if (arm_is_el2_enabled(env) && cur_el == 1) { 4085 return env->cp15.vmpidr_el2; 4086 } 4087 return mpidr_read_val(env); 4088 } 4089 4090 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4091 /* NOP AMAIR0/1 */ 4092 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4093 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4094 .access = PL1_RW, .accessfn = access_tvm_trvm, 4095 .type = ARM_CP_CONST, .resetvalue = 0 }, 4096 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4097 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4098 .access = PL1_RW, .accessfn = access_tvm_trvm, 4099 .type = ARM_CP_CONST, .resetvalue = 0 }, 4100 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4101 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4102 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4103 offsetof(CPUARMState, cp15.par_ns)} }, 4104 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4108 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4109 .writefn = vmsa_ttbr_write, }, 4110 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4111 .access = PL1_RW, .accessfn = access_tvm_trvm, 4112 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4113 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4114 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4115 .writefn = vmsa_ttbr_write, }, 4116 }; 4117 4118 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4119 { 4120 return vfp_get_fpcr(env); 4121 } 4122 4123 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4124 uint64_t value) 4125 { 4126 vfp_set_fpcr(env, value); 4127 } 4128 4129 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4130 { 4131 return vfp_get_fpsr(env); 4132 } 4133 4134 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4135 uint64_t value) 4136 { 4137 vfp_set_fpsr(env, value); 4138 } 4139 4140 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4141 bool isread) 4142 { 4143 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4144 return CP_ACCESS_TRAP; 4145 } 4146 return CP_ACCESS_OK; 4147 } 4148 4149 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4150 uint64_t value) 4151 { 4152 env->daif = value & PSTATE_DAIF; 4153 } 4154 4155 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4156 { 4157 return env->pstate & PSTATE_PAN; 4158 } 4159 4160 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4161 uint64_t value) 4162 { 4163 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4164 } 4165 4166 static const ARMCPRegInfo pan_reginfo = { 4167 .name = "PAN", .state = ARM_CP_STATE_AA64, 4168 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4169 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4170 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4171 }; 4172 4173 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4174 { 4175 return env->pstate & PSTATE_UAO; 4176 } 4177 4178 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4179 uint64_t value) 4180 { 4181 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4182 } 4183 4184 static const ARMCPRegInfo uao_reginfo = { 4185 .name = "UAO", .state = ARM_CP_STATE_AA64, 4186 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4187 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4188 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4189 }; 4190 4191 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4192 { 4193 return env->pstate & PSTATE_DIT; 4194 } 4195 4196 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4197 uint64_t value) 4198 { 4199 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4200 } 4201 4202 static const ARMCPRegInfo dit_reginfo = { 4203 .name = "DIT", .state = ARM_CP_STATE_AA64, 4204 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4205 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4206 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4207 }; 4208 4209 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4210 { 4211 return env->pstate & PSTATE_SSBS; 4212 } 4213 4214 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4215 uint64_t value) 4216 { 4217 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4218 } 4219 4220 static const ARMCPRegInfo ssbs_reginfo = { 4221 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4222 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4223 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4224 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4225 }; 4226 4227 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4228 const ARMCPRegInfo *ri, 4229 bool isread) 4230 { 4231 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4232 switch (arm_current_el(env)) { 4233 case 0: 4234 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4235 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4236 return CP_ACCESS_TRAP; 4237 } 4238 /* fall through */ 4239 case 1: 4240 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4241 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4242 return CP_ACCESS_TRAP_EL2; 4243 } 4244 break; 4245 } 4246 return CP_ACCESS_OK; 4247 } 4248 4249 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4250 const ARMCPRegInfo *ri, 4251 bool isread) 4252 { 4253 /* Cache invalidate/clean to Point of Unification... */ 4254 switch (arm_current_el(env)) { 4255 case 0: 4256 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4257 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4258 return CP_ACCESS_TRAP; 4259 } 4260 /* fall through */ 4261 case 1: 4262 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4263 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4264 return CP_ACCESS_TRAP_EL2; 4265 } 4266 break; 4267 } 4268 return CP_ACCESS_OK; 4269 } 4270 4271 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4272 * Page D4-1736 (DDI0487A.b) 4273 */ 4274 4275 static int vae1_tlbmask(CPUARMState *env) 4276 { 4277 uint64_t hcr = arm_hcr_el2_eff(env); 4278 uint16_t mask; 4279 4280 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4281 mask = ARMMMUIdxBit_E20_2 | 4282 ARMMMUIdxBit_E20_2_PAN | 4283 ARMMMUIdxBit_E20_0; 4284 } else { 4285 mask = ARMMMUIdxBit_E10_1 | 4286 ARMMMUIdxBit_E10_1_PAN | 4287 ARMMMUIdxBit_E10_0; 4288 } 4289 return mask; 4290 } 4291 4292 /* Return 56 if TBI is enabled, 64 otherwise. */ 4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4294 uint64_t addr) 4295 { 4296 uint64_t tcr = regime_tcr(env, mmu_idx); 4297 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4298 int select = extract64(addr, 55, 1); 4299 4300 return (tbi >> select) & 1 ? 56 : 64; 4301 } 4302 4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4304 { 4305 uint64_t hcr = arm_hcr_el2_eff(env); 4306 ARMMMUIdx mmu_idx; 4307 4308 /* Only the regime of the mmu_idx below is significant. */ 4309 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4310 mmu_idx = ARMMMUIdx_E20_0; 4311 } else { 4312 mmu_idx = ARMMMUIdx_E10_0; 4313 } 4314 4315 return tlbbits_for_regime(env, mmu_idx, addr); 4316 } 4317 4318 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4319 uint64_t value) 4320 { 4321 CPUState *cs = env_cpu(env); 4322 int mask = vae1_tlbmask(env); 4323 4324 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4325 } 4326 4327 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4328 uint64_t value) 4329 { 4330 CPUState *cs = env_cpu(env); 4331 int mask = vae1_tlbmask(env); 4332 4333 if (tlb_force_broadcast(env)) { 4334 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4335 } else { 4336 tlb_flush_by_mmuidx(cs, mask); 4337 } 4338 } 4339 4340 static int e2_tlbmask(CPUARMState *env) 4341 { 4342 return (ARMMMUIdxBit_E20_0 | 4343 ARMMMUIdxBit_E20_2 | 4344 ARMMMUIdxBit_E20_2_PAN | 4345 ARMMMUIdxBit_E2); 4346 } 4347 4348 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4349 uint64_t value) 4350 { 4351 CPUState *cs = env_cpu(env); 4352 int mask = alle1_tlbmask(env); 4353 4354 tlb_flush_by_mmuidx(cs, mask); 4355 } 4356 4357 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4358 uint64_t value) 4359 { 4360 CPUState *cs = env_cpu(env); 4361 int mask = e2_tlbmask(env); 4362 4363 tlb_flush_by_mmuidx(cs, mask); 4364 } 4365 4366 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4367 uint64_t value) 4368 { 4369 ARMCPU *cpu = env_archcpu(env); 4370 CPUState *cs = CPU(cpu); 4371 4372 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4373 } 4374 4375 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4376 uint64_t value) 4377 { 4378 CPUState *cs = env_cpu(env); 4379 int mask = alle1_tlbmask(env); 4380 4381 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4382 } 4383 4384 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4385 uint64_t value) 4386 { 4387 CPUState *cs = env_cpu(env); 4388 int mask = e2_tlbmask(env); 4389 4390 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4391 } 4392 4393 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4394 uint64_t value) 4395 { 4396 CPUState *cs = env_cpu(env); 4397 4398 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4399 } 4400 4401 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4402 uint64_t value) 4403 { 4404 /* Invalidate by VA, EL2 4405 * Currently handles both VAE2 and VALE2, since we don't support 4406 * flush-last-level-only. 4407 */ 4408 CPUState *cs = env_cpu(env); 4409 int mask = e2_tlbmask(env); 4410 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4411 4412 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4413 } 4414 4415 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4416 uint64_t value) 4417 { 4418 /* Invalidate by VA, EL3 4419 * Currently handles both VAE3 and VALE3, since we don't support 4420 * flush-last-level-only. 4421 */ 4422 ARMCPU *cpu = env_archcpu(env); 4423 CPUState *cs = CPU(cpu); 4424 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4425 4426 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4427 } 4428 4429 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4430 uint64_t value) 4431 { 4432 CPUState *cs = env_cpu(env); 4433 int mask = vae1_tlbmask(env); 4434 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4435 int bits = vae1_tlbbits(env, pageaddr); 4436 4437 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4438 } 4439 4440 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4441 uint64_t value) 4442 { 4443 /* Invalidate by VA, EL1&0 (AArch64 version). 4444 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4445 * since we don't support flush-for-specific-ASID-only or 4446 * flush-last-level-only. 4447 */ 4448 CPUState *cs = env_cpu(env); 4449 int mask = vae1_tlbmask(env); 4450 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4451 int bits = vae1_tlbbits(env, pageaddr); 4452 4453 if (tlb_force_broadcast(env)) { 4454 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4455 } else { 4456 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4457 } 4458 } 4459 4460 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4461 uint64_t value) 4462 { 4463 CPUState *cs = env_cpu(env); 4464 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4465 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4466 4467 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4468 ARMMMUIdxBit_E2, bits); 4469 } 4470 4471 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4472 uint64_t value) 4473 { 4474 CPUState *cs = env_cpu(env); 4475 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4476 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4477 4478 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4479 ARMMMUIdxBit_E3, bits); 4480 } 4481 4482 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4483 { 4484 /* 4485 * The MSB of value is the NS field, which only applies if SEL2 4486 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4487 */ 4488 return (value >= 0 4489 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4490 && arm_is_secure_below_el3(env) 4491 ? ARMMMUIdxBit_Stage2_S 4492 : ARMMMUIdxBit_Stage2); 4493 } 4494 4495 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4496 uint64_t value) 4497 { 4498 CPUState *cs = env_cpu(env); 4499 int mask = ipas2e1_tlbmask(env, value); 4500 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4501 4502 if (tlb_force_broadcast(env)) { 4503 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4504 } else { 4505 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4506 } 4507 } 4508 4509 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4510 uint64_t value) 4511 { 4512 CPUState *cs = env_cpu(env); 4513 int mask = ipas2e1_tlbmask(env, value); 4514 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4515 4516 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4517 } 4518 4519 #ifdef TARGET_AARCH64 4520 typedef struct { 4521 uint64_t base; 4522 uint64_t length; 4523 } TLBIRange; 4524 4525 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4526 { 4527 /* 4528 * Note that the TLBI range TG field encoding differs from both 4529 * TG0 and TG1 encodings. 4530 */ 4531 switch (tg) { 4532 case 1: 4533 return Gran4K; 4534 case 2: 4535 return Gran16K; 4536 case 3: 4537 return Gran64K; 4538 default: 4539 return GranInvalid; 4540 } 4541 } 4542 4543 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4544 uint64_t value) 4545 { 4546 unsigned int page_size_granule, page_shift, num, scale, exponent; 4547 /* Extract one bit to represent the va selector in use. */ 4548 uint64_t select = sextract64(value, 36, 1); 4549 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4550 TLBIRange ret = { }; 4551 ARMGranuleSize gran; 4552 4553 page_size_granule = extract64(value, 46, 2); 4554 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4555 4556 /* The granule encoded in value must match the granule in use. */ 4557 if (gran != param.gran) { 4558 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4559 page_size_granule); 4560 return ret; 4561 } 4562 4563 page_shift = arm_granule_bits(gran); 4564 num = extract64(value, 39, 5); 4565 scale = extract64(value, 44, 2); 4566 exponent = (5 * scale) + 1; 4567 4568 ret.length = (num + 1) << (exponent + page_shift); 4569 4570 if (param.select) { 4571 ret.base = sextract64(value, 0, 37); 4572 } else { 4573 ret.base = extract64(value, 0, 37); 4574 } 4575 if (param.ds) { 4576 /* 4577 * With DS=1, BaseADDR is always shifted 16 so that it is able 4578 * to address all 52 va bits. The input address is perforce 4579 * aligned on a 64k boundary regardless of translation granule. 4580 */ 4581 page_shift = 16; 4582 } 4583 ret.base <<= page_shift; 4584 4585 return ret; 4586 } 4587 4588 static void do_rvae_write(CPUARMState *env, uint64_t value, 4589 int idxmap, bool synced) 4590 { 4591 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4592 TLBIRange range; 4593 int bits; 4594 4595 range = tlbi_aa64_get_range(env, one_idx, value); 4596 bits = tlbbits_for_regime(env, one_idx, range.base); 4597 4598 if (synced) { 4599 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4600 range.base, 4601 range.length, 4602 idxmap, 4603 bits); 4604 } else { 4605 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4606 range.length, idxmap, bits); 4607 } 4608 } 4609 4610 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4611 const ARMCPRegInfo *ri, 4612 uint64_t value) 4613 { 4614 /* 4615 * Invalidate by VA range, EL1&0. 4616 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4617 * since we don't support flush-for-specific-ASID-only or 4618 * flush-last-level-only. 4619 */ 4620 4621 do_rvae_write(env, value, vae1_tlbmask(env), 4622 tlb_force_broadcast(env)); 4623 } 4624 4625 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4626 const ARMCPRegInfo *ri, 4627 uint64_t value) 4628 { 4629 /* 4630 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4631 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4632 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4633 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4634 * shareable specific flushes. 4635 */ 4636 4637 do_rvae_write(env, value, vae1_tlbmask(env), true); 4638 } 4639 4640 static int vae2_tlbmask(CPUARMState *env) 4641 { 4642 return ARMMMUIdxBit_E2; 4643 } 4644 4645 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4646 const ARMCPRegInfo *ri, 4647 uint64_t value) 4648 { 4649 /* 4650 * Invalidate by VA range, EL2. 4651 * Currently handles all of RVAE2 and RVALE2, 4652 * since we don't support flush-for-specific-ASID-only or 4653 * flush-last-level-only. 4654 */ 4655 4656 do_rvae_write(env, value, vae2_tlbmask(env), 4657 tlb_force_broadcast(env)); 4658 4659 4660 } 4661 4662 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4663 const ARMCPRegInfo *ri, 4664 uint64_t value) 4665 { 4666 /* 4667 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4668 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4669 * since we don't support flush-for-specific-ASID-only, 4670 * flush-last-level-only or inner/outer shareable specific flushes. 4671 */ 4672 4673 do_rvae_write(env, value, vae2_tlbmask(env), true); 4674 4675 } 4676 4677 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4678 const ARMCPRegInfo *ri, 4679 uint64_t value) 4680 { 4681 /* 4682 * Invalidate by VA range, EL3. 4683 * Currently handles all of RVAE3 and RVALE3, 4684 * since we don't support flush-for-specific-ASID-only or 4685 * flush-last-level-only. 4686 */ 4687 4688 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 4689 } 4690 4691 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4692 const ARMCPRegInfo *ri, 4693 uint64_t value) 4694 { 4695 /* 4696 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4697 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4698 * since we don't support flush-for-specific-ASID-only, 4699 * flush-last-level-only or inner/outer specific flushes. 4700 */ 4701 4702 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 4703 } 4704 4705 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4706 uint64_t value) 4707 { 4708 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 4709 tlb_force_broadcast(env)); 4710 } 4711 4712 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 4713 const ARMCPRegInfo *ri, 4714 uint64_t value) 4715 { 4716 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 4717 } 4718 #endif 4719 4720 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4721 bool isread) 4722 { 4723 int cur_el = arm_current_el(env); 4724 4725 if (cur_el < 2) { 4726 uint64_t hcr = arm_hcr_el2_eff(env); 4727 4728 if (cur_el == 0) { 4729 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4730 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4731 return CP_ACCESS_TRAP_EL2; 4732 } 4733 } else { 4734 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4735 return CP_ACCESS_TRAP; 4736 } 4737 if (hcr & HCR_TDZ) { 4738 return CP_ACCESS_TRAP_EL2; 4739 } 4740 } 4741 } else if (hcr & HCR_TDZ) { 4742 return CP_ACCESS_TRAP_EL2; 4743 } 4744 } 4745 return CP_ACCESS_OK; 4746 } 4747 4748 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4749 { 4750 ARMCPU *cpu = env_archcpu(env); 4751 int dzp_bit = 1 << 4; 4752 4753 /* DZP indicates whether DC ZVA access is allowed */ 4754 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4755 dzp_bit = 0; 4756 } 4757 return cpu->dcz_blocksize | dzp_bit; 4758 } 4759 4760 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4761 bool isread) 4762 { 4763 if (!(env->pstate & PSTATE_SP)) { 4764 /* Access to SP_EL0 is undefined if it's being used as 4765 * the stack pointer. 4766 */ 4767 return CP_ACCESS_TRAP_UNCATEGORIZED; 4768 } 4769 return CP_ACCESS_OK; 4770 } 4771 4772 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4773 { 4774 return env->pstate & PSTATE_SP; 4775 } 4776 4777 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4778 { 4779 update_spsel(env, val); 4780 } 4781 4782 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4783 uint64_t value) 4784 { 4785 ARMCPU *cpu = env_archcpu(env); 4786 4787 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4788 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4789 value &= ~SCTLR_M; 4790 } 4791 4792 /* ??? Lots of these bits are not implemented. */ 4793 4794 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4795 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4796 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4797 } else { 4798 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4799 SCTLR_ATA0 | SCTLR_ATA); 4800 } 4801 } 4802 4803 if (raw_read(env, ri) == value) { 4804 /* Skip the TLB flush if nothing actually changed; Linux likes 4805 * to do a lot of pointless SCTLR writes. 4806 */ 4807 return; 4808 } 4809 4810 raw_write(env, ri, value); 4811 4812 /* This may enable/disable the MMU, so do a TLB flush. */ 4813 tlb_flush(CPU(cpu)); 4814 4815 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4816 /* 4817 * Normally we would always end the TB on an SCTLR write; see the 4818 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4819 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4820 * of hflags from the translator, so do it here. 4821 */ 4822 arm_rebuild_hflags(env); 4823 } 4824 } 4825 4826 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4827 uint64_t value) 4828 { 4829 /* 4830 * Some MDCR_EL3 bits affect whether PMU counters are running: 4831 * if we are trying to change any of those then we must 4832 * bracket this update with PMU start/finish calls. 4833 */ 4834 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 4835 4836 if (pmu_op) { 4837 pmu_op_start(env); 4838 } 4839 env->cp15.mdcr_el3 = value; 4840 if (pmu_op) { 4841 pmu_op_finish(env); 4842 } 4843 } 4844 4845 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4846 uint64_t value) 4847 { 4848 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 4849 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 4850 } 4851 4852 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4853 uint64_t value) 4854 { 4855 /* 4856 * Some MDCR_EL2 bits affect whether PMU counters are running: 4857 * if we are trying to change any of those then we must 4858 * bracket this update with PMU start/finish calls. 4859 */ 4860 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 4861 4862 if (pmu_op) { 4863 pmu_op_start(env); 4864 } 4865 env->cp15.mdcr_el2 = value; 4866 if (pmu_op) { 4867 pmu_op_finish(env); 4868 } 4869 } 4870 4871 static const ARMCPRegInfo v8_cp_reginfo[] = { 4872 /* Minimal set of EL0-visible registers. This will need to be expanded 4873 * significantly for system emulation of AArch64 CPUs. 4874 */ 4875 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4877 .access = PL0_RW, .type = ARM_CP_NZCV }, 4878 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4879 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4880 .type = ARM_CP_NO_RAW, 4881 .access = PL0_RW, .accessfn = aa64_daif_access, 4882 .fieldoffset = offsetof(CPUARMState, daif), 4883 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4884 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4885 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4886 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4887 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4888 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4889 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4890 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4891 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4892 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4893 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4894 .access = PL0_R, .type = ARM_CP_NO_RAW, 4895 .readfn = aa64_dczid_read }, 4896 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4897 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4898 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4899 #ifndef CONFIG_USER_ONLY 4900 /* Avoid overhead of an access check that always passes in user-mode */ 4901 .accessfn = aa64_zva_access, 4902 #endif 4903 }, 4904 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4905 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4906 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4907 /* Cache ops: all NOPs since we don't emulate caches */ 4908 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4909 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4910 .access = PL1_W, .type = ARM_CP_NOP, 4911 .accessfn = aa64_cacheop_pou_access }, 4912 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4913 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4914 .access = PL1_W, .type = ARM_CP_NOP, 4915 .accessfn = aa64_cacheop_pou_access }, 4916 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4917 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4918 .access = PL0_W, .type = ARM_CP_NOP, 4919 .accessfn = aa64_cacheop_pou_access }, 4920 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4921 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4922 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4923 .type = ARM_CP_NOP }, 4924 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4925 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4926 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4927 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4928 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4929 .access = PL0_W, .type = ARM_CP_NOP, 4930 .accessfn = aa64_cacheop_poc_access }, 4931 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4932 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4933 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4934 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4936 .access = PL0_W, .type = ARM_CP_NOP, 4937 .accessfn = aa64_cacheop_pou_access }, 4938 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4940 .access = PL0_W, .type = ARM_CP_NOP, 4941 .accessfn = aa64_cacheop_poc_access }, 4942 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4944 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4945 /* TLBI operations */ 4946 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4948 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4949 .writefn = tlbi_aa64_vmalle1is_write }, 4950 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4952 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4953 .writefn = tlbi_aa64_vae1is_write }, 4954 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4956 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4957 .writefn = tlbi_aa64_vmalle1is_write }, 4958 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4960 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4961 .writefn = tlbi_aa64_vae1is_write }, 4962 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4964 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4965 .writefn = tlbi_aa64_vae1is_write }, 4966 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4968 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4969 .writefn = tlbi_aa64_vae1is_write }, 4970 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4972 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4973 .writefn = tlbi_aa64_vmalle1_write }, 4974 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4976 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4977 .writefn = tlbi_aa64_vae1_write }, 4978 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4980 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4981 .writefn = tlbi_aa64_vmalle1_write }, 4982 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4984 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4985 .writefn = tlbi_aa64_vae1_write }, 4986 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4988 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4989 .writefn = tlbi_aa64_vae1_write }, 4990 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4992 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4993 .writefn = tlbi_aa64_vae1_write }, 4994 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4996 .access = PL2_W, .type = ARM_CP_NO_RAW, 4997 .writefn = tlbi_aa64_ipas2e1is_write }, 4998 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5000 .access = PL2_W, .type = ARM_CP_NO_RAW, 5001 .writefn = tlbi_aa64_ipas2e1is_write }, 5002 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5004 .access = PL2_W, .type = ARM_CP_NO_RAW, 5005 .writefn = tlbi_aa64_alle1is_write }, 5006 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5008 .access = PL2_W, .type = ARM_CP_NO_RAW, 5009 .writefn = tlbi_aa64_alle1is_write }, 5010 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5012 .access = PL2_W, .type = ARM_CP_NO_RAW, 5013 .writefn = tlbi_aa64_ipas2e1_write }, 5014 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5015 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5016 .access = PL2_W, .type = ARM_CP_NO_RAW, 5017 .writefn = tlbi_aa64_ipas2e1_write }, 5018 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5019 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5020 .access = PL2_W, .type = ARM_CP_NO_RAW, 5021 .writefn = tlbi_aa64_alle1_write }, 5022 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5023 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5024 .access = PL2_W, .type = ARM_CP_NO_RAW, 5025 .writefn = tlbi_aa64_alle1is_write }, 5026 #ifndef CONFIG_USER_ONLY 5027 /* 64 bit address translation operations */ 5028 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5029 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5030 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5031 .writefn = ats_write64 }, 5032 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5033 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5034 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5035 .writefn = ats_write64 }, 5036 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5037 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5038 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5039 .writefn = ats_write64 }, 5040 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5041 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5042 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5043 .writefn = ats_write64 }, 5044 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5045 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5046 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5047 .writefn = ats_write64 }, 5048 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5049 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5050 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5051 .writefn = ats_write64 }, 5052 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5053 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5054 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5055 .writefn = ats_write64 }, 5056 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5057 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5058 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5059 .writefn = ats_write64 }, 5060 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5061 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5062 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5063 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5064 .writefn = ats_write64 }, 5065 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5066 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5067 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5068 .writefn = ats_write64 }, 5069 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5070 .type = ARM_CP_ALIAS, 5071 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5072 .access = PL1_RW, .resetvalue = 0, 5073 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5074 .writefn = par_write }, 5075 #endif 5076 /* TLB invalidate last level of translation table walk */ 5077 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5078 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5079 .writefn = tlbimva_is_write }, 5080 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5081 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5082 .writefn = tlbimvaa_is_write }, 5083 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5084 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5085 .writefn = tlbimva_write }, 5086 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5087 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5088 .writefn = tlbimvaa_write }, 5089 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5090 .type = ARM_CP_NO_RAW, .access = PL2_W, 5091 .writefn = tlbimva_hyp_write }, 5092 { .name = "TLBIMVALHIS", 5093 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5094 .type = ARM_CP_NO_RAW, .access = PL2_W, 5095 .writefn = tlbimva_hyp_is_write }, 5096 { .name = "TLBIIPAS2", 5097 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5098 .type = ARM_CP_NO_RAW, .access = PL2_W, 5099 .writefn = tlbiipas2_hyp_write }, 5100 { .name = "TLBIIPAS2IS", 5101 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5102 .type = ARM_CP_NO_RAW, .access = PL2_W, 5103 .writefn = tlbiipas2is_hyp_write }, 5104 { .name = "TLBIIPAS2L", 5105 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5106 .type = ARM_CP_NO_RAW, .access = PL2_W, 5107 .writefn = tlbiipas2_hyp_write }, 5108 { .name = "TLBIIPAS2LIS", 5109 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5110 .type = ARM_CP_NO_RAW, .access = PL2_W, 5111 .writefn = tlbiipas2is_hyp_write }, 5112 /* 32 bit cache operations */ 5113 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5114 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5115 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5116 .type = ARM_CP_NOP, .access = PL1_W }, 5117 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5118 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5119 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5120 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5121 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5122 .type = ARM_CP_NOP, .access = PL1_W }, 5123 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5124 .type = ARM_CP_NOP, .access = PL1_W }, 5125 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5126 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5127 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5128 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5129 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5130 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5131 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5132 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5133 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5134 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5135 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5136 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5137 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5138 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5139 /* MMU Domain access control / MPU write buffer control */ 5140 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5141 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5142 .writefn = dacr_write, .raw_writefn = raw_write, 5143 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5144 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5145 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5146 .type = ARM_CP_ALIAS, 5147 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5148 .access = PL1_RW, 5149 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5150 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5151 .type = ARM_CP_ALIAS, 5152 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5153 .access = PL1_RW, 5154 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5155 /* We rely on the access checks not allowing the guest to write to the 5156 * state field when SPSel indicates that it's being used as the stack 5157 * pointer. 5158 */ 5159 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5160 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5161 .access = PL1_RW, .accessfn = sp_el0_access, 5162 .type = ARM_CP_ALIAS, 5163 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5164 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5165 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5166 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5167 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5168 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5169 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5170 .type = ARM_CP_NO_RAW, 5171 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5172 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5173 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5174 .access = PL2_RW, 5175 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5176 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5177 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5178 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5179 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5180 .writefn = dacr_write, .raw_writefn = raw_write, 5181 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5182 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5183 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5184 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5185 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5186 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5187 .type = ARM_CP_ALIAS, 5188 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5189 .access = PL2_RW, 5190 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5191 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5192 .type = ARM_CP_ALIAS, 5193 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5194 .access = PL2_RW, 5195 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5196 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5197 .type = ARM_CP_ALIAS, 5198 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5199 .access = PL2_RW, 5200 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5201 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5202 .type = ARM_CP_ALIAS, 5203 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5204 .access = PL2_RW, 5205 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5206 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5207 .type = ARM_CP_IO, 5208 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5209 .resetvalue = 0, 5210 .access = PL3_RW, 5211 .writefn = mdcr_el3_write, 5212 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5213 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5214 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5215 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5216 .writefn = sdcr_write, 5217 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5218 }; 5219 5220 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5221 { 5222 ARMCPU *cpu = env_archcpu(env); 5223 5224 if (arm_feature(env, ARM_FEATURE_V8)) { 5225 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5226 } else { 5227 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5228 } 5229 5230 if (arm_feature(env, ARM_FEATURE_EL3)) { 5231 valid_mask &= ~HCR_HCD; 5232 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5233 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5234 * However, if we're using the SMC PSCI conduit then QEMU is 5235 * effectively acting like EL3 firmware and so the guest at 5236 * EL2 should retain the ability to prevent EL1 from being 5237 * able to make SMC calls into the ersatz firmware, so in 5238 * that case HCR.TSC should be read/write. 5239 */ 5240 valid_mask &= ~HCR_TSC; 5241 } 5242 5243 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5244 if (cpu_isar_feature(aa64_vh, cpu)) { 5245 valid_mask |= HCR_E2H; 5246 } 5247 if (cpu_isar_feature(aa64_ras, cpu)) { 5248 valid_mask |= HCR_TERR | HCR_TEA; 5249 } 5250 if (cpu_isar_feature(aa64_lor, cpu)) { 5251 valid_mask |= HCR_TLOR; 5252 } 5253 if (cpu_isar_feature(aa64_pauth, cpu)) { 5254 valid_mask |= HCR_API | HCR_APK; 5255 } 5256 if (cpu_isar_feature(aa64_mte, cpu)) { 5257 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5258 } 5259 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5260 valid_mask |= HCR_ENSCXT; 5261 } 5262 if (cpu_isar_feature(aa64_fwb, cpu)) { 5263 valid_mask |= HCR_FWB; 5264 } 5265 } 5266 5267 /* Clear RES0 bits. */ 5268 value &= valid_mask; 5269 5270 /* 5271 * These bits change the MMU setup: 5272 * HCR_VM enables stage 2 translation 5273 * HCR_PTW forbids certain page-table setups 5274 * HCR_DC disables stage1 and enables stage2 translation 5275 * HCR_DCT enables tagging on (disabled) stage1 translation 5276 * HCR_FWB changes the interpretation of stage2 descriptor bits 5277 */ 5278 if ((env->cp15.hcr_el2 ^ value) & 5279 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5280 tlb_flush(CPU(cpu)); 5281 } 5282 env->cp15.hcr_el2 = value; 5283 5284 /* 5285 * Updates to VI and VF require us to update the status of 5286 * virtual interrupts, which are the logical OR of these bits 5287 * and the state of the input lines from the GIC. (This requires 5288 * that we have the iothread lock, which is done by marking the 5289 * reginfo structs as ARM_CP_IO.) 5290 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5291 * possible for it to be taken immediately, because VIRQ and 5292 * VFIQ are masked unless running at EL0 or EL1, and HCR 5293 * can only be written at EL2. 5294 */ 5295 g_assert(qemu_mutex_iothread_locked()); 5296 arm_cpu_update_virq(cpu); 5297 arm_cpu_update_vfiq(cpu); 5298 arm_cpu_update_vserr(cpu); 5299 } 5300 5301 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5302 { 5303 do_hcr_write(env, value, 0); 5304 } 5305 5306 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5307 uint64_t value) 5308 { 5309 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5310 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5311 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5312 } 5313 5314 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5315 uint64_t value) 5316 { 5317 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5318 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5319 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5320 } 5321 5322 /* 5323 * Return the effective value of HCR_EL2, at the given security state. 5324 * Bits that are not included here: 5325 * RW (read from SCR_EL3.RW as needed) 5326 */ 5327 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5328 { 5329 uint64_t ret = env->cp15.hcr_el2; 5330 5331 if (!arm_is_el2_enabled_secstate(env, secure)) { 5332 /* 5333 * "This register has no effect if EL2 is not enabled in the 5334 * current Security state". This is ARMv8.4-SecEL2 speak for 5335 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5336 * 5337 * Prior to that, the language was "In an implementation that 5338 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5339 * as if this field is 0 for all purposes other than a direct 5340 * read or write access of HCR_EL2". With lots of enumeration 5341 * on a per-field basis. In current QEMU, this is condition 5342 * is arm_is_secure_below_el3. 5343 * 5344 * Since the v8.4 language applies to the entire register, and 5345 * appears to be backward compatible, use that. 5346 */ 5347 return 0; 5348 } 5349 5350 /* 5351 * For a cpu that supports both aarch64 and aarch32, we can set bits 5352 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5353 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5354 */ 5355 if (!arm_el_is_aa64(env, 2)) { 5356 uint64_t aa32_valid; 5357 5358 /* 5359 * These bits are up-to-date as of ARMv8.6. 5360 * For HCR, it's easiest to list just the 2 bits that are invalid. 5361 * For HCR2, list those that are valid. 5362 */ 5363 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5364 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5365 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5366 ret &= aa32_valid; 5367 } 5368 5369 if (ret & HCR_TGE) { 5370 /* These bits are up-to-date as of ARMv8.6. */ 5371 if (ret & HCR_E2H) { 5372 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5373 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5374 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5375 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5376 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5377 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5378 } else { 5379 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5380 } 5381 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5382 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5383 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5384 HCR_TLOR); 5385 } 5386 5387 return ret; 5388 } 5389 5390 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5391 { 5392 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5393 } 5394 5395 /* 5396 * Corresponds to ARM pseudocode function ELIsInHost(). 5397 */ 5398 bool el_is_in_host(CPUARMState *env, int el) 5399 { 5400 uint64_t mask; 5401 5402 /* 5403 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5404 * Perform the simplest bit tests first, and validate EL2 afterward. 5405 */ 5406 if (el & 1) { 5407 return false; /* EL1 or EL3 */ 5408 } 5409 5410 /* 5411 * Note that hcr_write() checks isar_feature_aa64_vh(), 5412 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5413 */ 5414 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5415 if ((env->cp15.hcr_el2 & mask) != mask) { 5416 return false; 5417 } 5418 5419 /* TGE and/or E2H set: double check those bits are currently legal. */ 5420 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5421 } 5422 5423 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5424 uint64_t value) 5425 { 5426 uint64_t valid_mask = 0; 5427 5428 /* No features adding bits to HCRX are implemented. */ 5429 5430 /* Clear RES0 bits. */ 5431 env->cp15.hcrx_el2 = value & valid_mask; 5432 } 5433 5434 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5435 bool isread) 5436 { 5437 if (arm_current_el(env) < 3 5438 && arm_feature(env, ARM_FEATURE_EL3) 5439 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5440 return CP_ACCESS_TRAP_EL3; 5441 } 5442 return CP_ACCESS_OK; 5443 } 5444 5445 static const ARMCPRegInfo hcrx_el2_reginfo = { 5446 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5447 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5448 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5449 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5450 }; 5451 5452 /* Return the effective value of HCRX_EL2. */ 5453 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5454 { 5455 /* 5456 * The bits in this register behave as 0 for all purposes other than 5457 * direct reads of the register if: 5458 * - EL2 is not enabled in the current security state, 5459 * - SCR_EL3.HXEn is 0. 5460 */ 5461 if (!arm_is_el2_enabled(env) 5462 || (arm_feature(env, ARM_FEATURE_EL3) 5463 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5464 return 0; 5465 } 5466 return env->cp15.hcrx_el2; 5467 } 5468 5469 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5470 uint64_t value) 5471 { 5472 /* 5473 * For A-profile AArch32 EL3, if NSACR.CP10 5474 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5475 */ 5476 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5477 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5478 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5479 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5480 } 5481 env->cp15.cptr_el[2] = value; 5482 } 5483 5484 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5485 { 5486 /* 5487 * For A-profile AArch32 EL3, if NSACR.CP10 5488 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5489 */ 5490 uint64_t value = env->cp15.cptr_el[2]; 5491 5492 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5493 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5494 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5495 } 5496 return value; 5497 } 5498 5499 static const ARMCPRegInfo el2_cp_reginfo[] = { 5500 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5501 .type = ARM_CP_IO, 5502 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5503 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5504 .writefn = hcr_write }, 5505 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5506 .type = ARM_CP_ALIAS | ARM_CP_IO, 5507 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5508 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5509 .writefn = hcr_writelow }, 5510 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5511 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5512 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5513 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5514 .type = ARM_CP_ALIAS, 5515 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5516 .access = PL2_RW, 5517 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5518 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5519 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5520 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5521 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5522 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5523 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5524 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5525 .type = ARM_CP_ALIAS, 5526 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5527 .access = PL2_RW, 5528 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5529 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5530 .type = ARM_CP_ALIAS, 5531 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5532 .access = PL2_RW, 5533 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5534 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5535 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5536 .access = PL2_RW, .writefn = vbar_write, 5537 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5538 .resetvalue = 0 }, 5539 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5540 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5541 .access = PL3_RW, .type = ARM_CP_ALIAS, 5542 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5543 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5544 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5545 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5546 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5547 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5548 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5549 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5550 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5551 .resetvalue = 0 }, 5552 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5553 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5554 .access = PL2_RW, .type = ARM_CP_ALIAS, 5555 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5556 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5557 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5558 .access = PL2_RW, .type = ARM_CP_CONST, 5559 .resetvalue = 0 }, 5560 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5561 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5562 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5563 .access = PL2_RW, .type = ARM_CP_CONST, 5564 .resetvalue = 0 }, 5565 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5566 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5567 .access = PL2_RW, .type = ARM_CP_CONST, 5568 .resetvalue = 0 }, 5569 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5570 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5571 .access = PL2_RW, .type = ARM_CP_CONST, 5572 .resetvalue = 0 }, 5573 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5574 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5575 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5576 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5577 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5578 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5579 .type = ARM_CP_ALIAS, 5580 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5581 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5582 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5583 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5584 .access = PL2_RW, 5585 /* no .writefn needed as this can't cause an ASID change */ 5586 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5587 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5588 .cp = 15, .opc1 = 6, .crm = 2, 5589 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5590 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5591 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5592 .writefn = vttbr_write }, 5593 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5595 .access = PL2_RW, .writefn = vttbr_write, 5596 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5597 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5598 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5599 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5600 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5601 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5602 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5603 .access = PL2_RW, .resetvalue = 0, 5604 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5605 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5607 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5608 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5609 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5610 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5611 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5612 { .name = "TLBIALLNSNH", 5613 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5614 .type = ARM_CP_NO_RAW, .access = PL2_W, 5615 .writefn = tlbiall_nsnh_write }, 5616 { .name = "TLBIALLNSNHIS", 5617 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5618 .type = ARM_CP_NO_RAW, .access = PL2_W, 5619 .writefn = tlbiall_nsnh_is_write }, 5620 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5621 .type = ARM_CP_NO_RAW, .access = PL2_W, 5622 .writefn = tlbiall_hyp_write }, 5623 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5624 .type = ARM_CP_NO_RAW, .access = PL2_W, 5625 .writefn = tlbiall_hyp_is_write }, 5626 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5627 .type = ARM_CP_NO_RAW, .access = PL2_W, 5628 .writefn = tlbimva_hyp_write }, 5629 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5630 .type = ARM_CP_NO_RAW, .access = PL2_W, 5631 .writefn = tlbimva_hyp_is_write }, 5632 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5633 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5634 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5635 .writefn = tlbi_aa64_alle2_write }, 5636 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5637 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5638 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5639 .writefn = tlbi_aa64_vae2_write }, 5640 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5641 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5642 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5643 .writefn = tlbi_aa64_vae2_write }, 5644 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5645 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5646 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5647 .writefn = tlbi_aa64_alle2is_write }, 5648 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5649 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5650 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5651 .writefn = tlbi_aa64_vae2is_write }, 5652 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5653 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5654 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 5655 .writefn = tlbi_aa64_vae2is_write }, 5656 #ifndef CONFIG_USER_ONLY 5657 /* Unlike the other EL2-related AT operations, these must 5658 * UNDEF from EL3 if EL2 is not implemented, which is why we 5659 * define them here rather than with the rest of the AT ops. 5660 */ 5661 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5662 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5663 .access = PL2_W, .accessfn = at_s1e2_access, 5664 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5665 .writefn = ats_write64 }, 5666 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5667 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5668 .access = PL2_W, .accessfn = at_s1e2_access, 5669 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 5670 .writefn = ats_write64 }, 5671 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5672 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5673 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5674 * to behave as if SCR.NS was 1. 5675 */ 5676 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5677 .access = PL2_W, 5678 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5679 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5680 .access = PL2_W, 5681 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5682 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5683 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5684 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5685 * reset values as IMPDEF. We choose to reset to 3 to comply with 5686 * both ARMv7 and ARMv8. 5687 */ 5688 .access = PL2_RW, .resetvalue = 3, 5689 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5690 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5691 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5692 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5693 .writefn = gt_cntvoff_write, 5694 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5695 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5696 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5697 .writefn = gt_cntvoff_write, 5698 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5699 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5700 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5701 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5702 .type = ARM_CP_IO, .access = PL2_RW, 5703 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5704 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5705 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5706 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5707 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5708 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5709 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5710 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5711 .resetfn = gt_hyp_timer_reset, 5712 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5713 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5714 .type = ARM_CP_IO, 5715 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5716 .access = PL2_RW, 5717 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5718 .resetvalue = 0, 5719 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5720 #endif 5721 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5722 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5723 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5724 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5725 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5726 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5727 .access = PL2_RW, 5728 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5729 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5730 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5731 .access = PL2_RW, 5732 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5733 }; 5734 5735 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5736 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5737 .type = ARM_CP_ALIAS | ARM_CP_IO, 5738 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5739 .access = PL2_RW, 5740 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5741 .writefn = hcr_writehigh }, 5742 }; 5743 5744 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5745 bool isread) 5746 { 5747 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5748 return CP_ACCESS_OK; 5749 } 5750 return CP_ACCESS_TRAP_UNCATEGORIZED; 5751 } 5752 5753 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5754 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5755 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5756 .access = PL2_RW, .accessfn = sel2_access, 5757 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5758 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5759 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5760 .access = PL2_RW, .accessfn = sel2_access, 5761 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5762 }; 5763 5764 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5765 bool isread) 5766 { 5767 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5768 * At Secure EL1 it traps to EL3 or EL2. 5769 */ 5770 if (arm_current_el(env) == 3) { 5771 return CP_ACCESS_OK; 5772 } 5773 if (arm_is_secure_below_el3(env)) { 5774 if (env->cp15.scr_el3 & SCR_EEL2) { 5775 return CP_ACCESS_TRAP_EL2; 5776 } 5777 return CP_ACCESS_TRAP_EL3; 5778 } 5779 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5780 if (isread) { 5781 return CP_ACCESS_OK; 5782 } 5783 return CP_ACCESS_TRAP_UNCATEGORIZED; 5784 } 5785 5786 static const ARMCPRegInfo el3_cp_reginfo[] = { 5787 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5788 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5789 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5790 .resetfn = scr_reset, .writefn = scr_write }, 5791 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5792 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5793 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5794 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5795 .writefn = scr_write }, 5796 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5797 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5798 .access = PL3_RW, .resetvalue = 0, 5799 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5800 { .name = "SDER", 5801 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5802 .access = PL3_RW, .resetvalue = 0, 5803 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5804 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5805 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5806 .writefn = vbar_write, .resetvalue = 0, 5807 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5808 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5810 .access = PL3_RW, .resetvalue = 0, 5811 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5812 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5814 .access = PL3_RW, 5815 /* no .writefn needed as this can't cause an ASID change */ 5816 .resetvalue = 0, 5817 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5818 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5819 .type = ARM_CP_ALIAS, 5820 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5821 .access = PL3_RW, 5822 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5823 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5825 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5826 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5827 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5828 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5829 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5830 .type = ARM_CP_ALIAS, 5831 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5832 .access = PL3_RW, 5833 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5834 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5835 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5836 .access = PL3_RW, .writefn = vbar_write, 5837 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5838 .resetvalue = 0 }, 5839 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5840 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5841 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5842 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5843 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5844 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5845 .access = PL3_RW, .resetvalue = 0, 5846 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5847 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5848 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5849 .access = PL3_RW, .type = ARM_CP_CONST, 5850 .resetvalue = 0 }, 5851 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5852 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5853 .access = PL3_RW, .type = ARM_CP_CONST, 5854 .resetvalue = 0 }, 5855 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5856 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5857 .access = PL3_RW, .type = ARM_CP_CONST, 5858 .resetvalue = 0 }, 5859 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5860 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5861 .access = PL3_W, .type = ARM_CP_NO_RAW, 5862 .writefn = tlbi_aa64_alle3is_write }, 5863 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5864 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5865 .access = PL3_W, .type = ARM_CP_NO_RAW, 5866 .writefn = tlbi_aa64_vae3is_write }, 5867 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5868 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5869 .access = PL3_W, .type = ARM_CP_NO_RAW, 5870 .writefn = tlbi_aa64_vae3is_write }, 5871 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5872 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5873 .access = PL3_W, .type = ARM_CP_NO_RAW, 5874 .writefn = tlbi_aa64_alle3_write }, 5875 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5876 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5877 .access = PL3_W, .type = ARM_CP_NO_RAW, 5878 .writefn = tlbi_aa64_vae3_write }, 5879 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5880 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5881 .access = PL3_W, .type = ARM_CP_NO_RAW, 5882 .writefn = tlbi_aa64_vae3_write }, 5883 }; 5884 5885 #ifndef CONFIG_USER_ONLY 5886 /* Test if system register redirection is to occur in the current state. */ 5887 static bool redirect_for_e2h(CPUARMState *env) 5888 { 5889 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5890 } 5891 5892 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5893 { 5894 CPReadFn *readfn; 5895 5896 if (redirect_for_e2h(env)) { 5897 /* Switch to the saved EL2 version of the register. */ 5898 ri = ri->opaque; 5899 readfn = ri->readfn; 5900 } else { 5901 readfn = ri->orig_readfn; 5902 } 5903 if (readfn == NULL) { 5904 readfn = raw_read; 5905 } 5906 return readfn(env, ri); 5907 } 5908 5909 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5910 uint64_t value) 5911 { 5912 CPWriteFn *writefn; 5913 5914 if (redirect_for_e2h(env)) { 5915 /* Switch to the saved EL2 version of the register. */ 5916 ri = ri->opaque; 5917 writefn = ri->writefn; 5918 } else { 5919 writefn = ri->orig_writefn; 5920 } 5921 if (writefn == NULL) { 5922 writefn = raw_write; 5923 } 5924 writefn(env, ri, value); 5925 } 5926 5927 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5928 { 5929 struct E2HAlias { 5930 uint32_t src_key, dst_key, new_key; 5931 const char *src_name, *dst_name, *new_name; 5932 bool (*feature)(const ARMISARegisters *id); 5933 }; 5934 5935 #define K(op0, op1, crn, crm, op2) \ 5936 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5937 5938 static const struct E2HAlias aliases[] = { 5939 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5940 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5941 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5942 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5943 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5944 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5945 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5946 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5947 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5948 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5949 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5950 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5951 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5952 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5953 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5954 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5955 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5956 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5957 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5958 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5959 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5960 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5961 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5962 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5963 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5964 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5965 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5966 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5967 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5968 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5969 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5970 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5971 5972 /* 5973 * Note that redirection of ZCR is mentioned in the description 5974 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5975 * not in the summary table. 5976 */ 5977 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5978 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5979 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 5980 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 5981 5982 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5983 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5984 5985 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 5986 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 5987 isar_feature_aa64_scxtnum }, 5988 5989 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5990 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5991 }; 5992 #undef K 5993 5994 size_t i; 5995 5996 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5997 const struct E2HAlias *a = &aliases[i]; 5998 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 5999 bool ok; 6000 6001 if (a->feature && !a->feature(&cpu->isar)) { 6002 continue; 6003 } 6004 6005 src_reg = g_hash_table_lookup(cpu->cp_regs, 6006 (gpointer)(uintptr_t)a->src_key); 6007 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6008 (gpointer)(uintptr_t)a->dst_key); 6009 g_assert(src_reg != NULL); 6010 g_assert(dst_reg != NULL); 6011 6012 /* Cross-compare names to detect typos in the keys. */ 6013 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6014 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6015 6016 /* None of the core system registers use opaque; we will. */ 6017 g_assert(src_reg->opaque == NULL); 6018 6019 /* Create alias before redirection so we dup the right data. */ 6020 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6021 6022 new_reg->name = a->new_name; 6023 new_reg->type |= ARM_CP_ALIAS; 6024 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6025 new_reg->access &= PL2_RW | PL3_RW; 6026 6027 ok = g_hash_table_insert(cpu->cp_regs, 6028 (gpointer)(uintptr_t)a->new_key, new_reg); 6029 g_assert(ok); 6030 6031 src_reg->opaque = dst_reg; 6032 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6033 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6034 if (!src_reg->raw_readfn) { 6035 src_reg->raw_readfn = raw_read; 6036 } 6037 if (!src_reg->raw_writefn) { 6038 src_reg->raw_writefn = raw_write; 6039 } 6040 src_reg->readfn = el2_e2h_read; 6041 src_reg->writefn = el2_e2h_write; 6042 } 6043 } 6044 #endif 6045 6046 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6047 bool isread) 6048 { 6049 int cur_el = arm_current_el(env); 6050 6051 if (cur_el < 2) { 6052 uint64_t hcr = arm_hcr_el2_eff(env); 6053 6054 if (cur_el == 0) { 6055 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6056 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6057 return CP_ACCESS_TRAP_EL2; 6058 } 6059 } else { 6060 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6061 return CP_ACCESS_TRAP; 6062 } 6063 if (hcr & HCR_TID2) { 6064 return CP_ACCESS_TRAP_EL2; 6065 } 6066 } 6067 } else if (hcr & HCR_TID2) { 6068 return CP_ACCESS_TRAP_EL2; 6069 } 6070 } 6071 6072 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6073 return CP_ACCESS_TRAP_EL2; 6074 } 6075 6076 return CP_ACCESS_OK; 6077 } 6078 6079 /* 6080 * Check for traps to RAS registers, which are controlled 6081 * by HCR_EL2.TERR and SCR_EL3.TERR. 6082 */ 6083 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6084 bool isread) 6085 { 6086 int el = arm_current_el(env); 6087 6088 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6089 return CP_ACCESS_TRAP_EL2; 6090 } 6091 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6092 return CP_ACCESS_TRAP_EL3; 6093 } 6094 return CP_ACCESS_OK; 6095 } 6096 6097 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6098 { 6099 int el = arm_current_el(env); 6100 6101 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6102 return env->cp15.vdisr_el2; 6103 } 6104 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6105 return 0; /* RAZ/WI */ 6106 } 6107 return env->cp15.disr_el1; 6108 } 6109 6110 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6111 { 6112 int el = arm_current_el(env); 6113 6114 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6115 env->cp15.vdisr_el2 = val; 6116 return; 6117 } 6118 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6119 return; /* RAZ/WI */ 6120 } 6121 env->cp15.disr_el1 = val; 6122 } 6123 6124 /* 6125 * Minimal RAS implementation with no Error Records. 6126 * Which means that all of the Error Record registers: 6127 * ERXADDR_EL1 6128 * ERXCTLR_EL1 6129 * ERXFR_EL1 6130 * ERXMISC0_EL1 6131 * ERXMISC1_EL1 6132 * ERXMISC2_EL1 6133 * ERXMISC3_EL1 6134 * ERXPFGCDN_EL1 (RASv1p1) 6135 * ERXPFGCTL_EL1 (RASv1p1) 6136 * ERXPFGF_EL1 (RASv1p1) 6137 * ERXSTATUS_EL1 6138 * and 6139 * ERRSELR_EL1 6140 * may generate UNDEFINED, which is the effect we get by not 6141 * listing them at all. 6142 */ 6143 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6144 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6145 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6146 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6147 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6148 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6149 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6150 .access = PL1_R, .accessfn = access_terr, 6151 .type = ARM_CP_CONST, .resetvalue = 0 }, 6152 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6153 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6154 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6155 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6156 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6157 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6158 }; 6159 6160 /* 6161 * Return the exception level to which exceptions should be taken 6162 * via SVEAccessTrap. This excludes the check for whether the exception 6163 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6164 * be found by testing 0 < fp_exception_el < sve_exception_el. 6165 * 6166 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6167 * pseudocode does *not* separate out the FP trap checks, but has them 6168 * all in one function. 6169 */ 6170 int sve_exception_el(CPUARMState *env, int el) 6171 { 6172 #ifndef CONFIG_USER_ONLY 6173 if (el <= 1 && !el_is_in_host(env, el)) { 6174 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6175 case 1: 6176 if (el != 0) { 6177 break; 6178 } 6179 /* fall through */ 6180 case 0: 6181 case 2: 6182 return 1; 6183 } 6184 } 6185 6186 if (el <= 2 && arm_is_el2_enabled(env)) { 6187 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6188 if (env->cp15.hcr_el2 & HCR_E2H) { 6189 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6190 case 1: 6191 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6192 break; 6193 } 6194 /* fall through */ 6195 case 0: 6196 case 2: 6197 return 2; 6198 } 6199 } else { 6200 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6201 return 2; 6202 } 6203 } 6204 } 6205 6206 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6207 if (arm_feature(env, ARM_FEATURE_EL3) 6208 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6209 return 3; 6210 } 6211 #endif 6212 return 0; 6213 } 6214 6215 /* 6216 * Return the exception level to which exceptions should be taken for SME. 6217 * C.f. the ARM pseudocode function CheckSMEAccess. 6218 */ 6219 int sme_exception_el(CPUARMState *env, int el) 6220 { 6221 #ifndef CONFIG_USER_ONLY 6222 if (el <= 1 && !el_is_in_host(env, el)) { 6223 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6224 case 1: 6225 if (el != 0) { 6226 break; 6227 } 6228 /* fall through */ 6229 case 0: 6230 case 2: 6231 return 1; 6232 } 6233 } 6234 6235 if (el <= 2 && arm_is_el2_enabled(env)) { 6236 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6237 if (env->cp15.hcr_el2 & HCR_E2H) { 6238 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6239 case 1: 6240 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6241 break; 6242 } 6243 /* fall through */ 6244 case 0: 6245 case 2: 6246 return 2; 6247 } 6248 } else { 6249 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6250 return 2; 6251 } 6252 } 6253 } 6254 6255 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6256 if (arm_feature(env, ARM_FEATURE_EL3) 6257 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6258 return 3; 6259 } 6260 #endif 6261 return 0; 6262 } 6263 6264 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6265 static bool sme_fa64(CPUARMState *env, int el) 6266 { 6267 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6268 return false; 6269 } 6270 6271 if (el <= 1 && !el_is_in_host(env, el)) { 6272 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6273 return false; 6274 } 6275 } 6276 if (el <= 2 && arm_is_el2_enabled(env)) { 6277 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6278 return false; 6279 } 6280 } 6281 if (arm_feature(env, ARM_FEATURE_EL3)) { 6282 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6283 return false; 6284 } 6285 } 6286 6287 return true; 6288 } 6289 6290 /* 6291 * Given that SVE is enabled, return the vector length for EL. 6292 */ 6293 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6294 { 6295 ARMCPU *cpu = env_archcpu(env); 6296 uint64_t *cr = env->vfp.zcr_el; 6297 uint32_t map = cpu->sve_vq.map; 6298 uint32_t len = ARM_MAX_VQ - 1; 6299 6300 if (sm) { 6301 cr = env->vfp.smcr_el; 6302 map = cpu->sme_vq.map; 6303 } 6304 6305 if (el <= 1 && !el_is_in_host(env, el)) { 6306 len = MIN(len, 0xf & (uint32_t)cr[1]); 6307 } 6308 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6309 len = MIN(len, 0xf & (uint32_t)cr[2]); 6310 } 6311 if (arm_feature(env, ARM_FEATURE_EL3)) { 6312 len = MIN(len, 0xf & (uint32_t)cr[3]); 6313 } 6314 6315 map &= MAKE_64BIT_MASK(0, len + 1); 6316 if (map != 0) { 6317 return 31 - clz32(map); 6318 } 6319 6320 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6321 assert(sm); 6322 return ctz32(cpu->sme_vq.map); 6323 } 6324 6325 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6326 { 6327 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6328 } 6329 6330 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6331 uint64_t value) 6332 { 6333 int cur_el = arm_current_el(env); 6334 int old_len = sve_vqm1_for_el(env, cur_el); 6335 int new_len; 6336 6337 /* Bits other than [3:0] are RAZ/WI. */ 6338 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6339 raw_write(env, ri, value & 0xf); 6340 6341 /* 6342 * Because we arrived here, we know both FP and SVE are enabled; 6343 * otherwise we would have trapped access to the ZCR_ELn register. 6344 */ 6345 new_len = sve_vqm1_for_el(env, cur_el); 6346 if (new_len < old_len) { 6347 aarch64_sve_narrow_vq(env, new_len + 1); 6348 } 6349 } 6350 6351 static const ARMCPRegInfo zcr_reginfo[] = { 6352 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6353 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6354 .access = PL1_RW, .type = ARM_CP_SVE, 6355 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6356 .writefn = zcr_write, .raw_writefn = raw_write }, 6357 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6358 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6359 .access = PL2_RW, .type = ARM_CP_SVE, 6360 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6361 .writefn = zcr_write, .raw_writefn = raw_write }, 6362 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6363 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6364 .access = PL3_RW, .type = ARM_CP_SVE, 6365 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6366 .writefn = zcr_write, .raw_writefn = raw_write }, 6367 }; 6368 6369 #ifdef TARGET_AARCH64 6370 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6371 bool isread) 6372 { 6373 int el = arm_current_el(env); 6374 6375 if (el == 0) { 6376 uint64_t sctlr = arm_sctlr(env, el); 6377 if (!(sctlr & SCTLR_EnTP2)) { 6378 return CP_ACCESS_TRAP; 6379 } 6380 } 6381 /* TODO: FEAT_FGT */ 6382 if (el < 3 6383 && arm_feature(env, ARM_FEATURE_EL3) 6384 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6385 return CP_ACCESS_TRAP_EL3; 6386 } 6387 return CP_ACCESS_OK; 6388 } 6389 6390 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6391 bool isread) 6392 { 6393 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6394 if (arm_current_el(env) < 3 6395 && arm_feature(env, ARM_FEATURE_EL3) 6396 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6397 return CP_ACCESS_TRAP_EL3; 6398 } 6399 return CP_ACCESS_OK; 6400 } 6401 6402 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6403 uint64_t value) 6404 { 6405 helper_set_pstate_sm(env, FIELD_EX64(value, SVCR, SM)); 6406 helper_set_pstate_za(env, FIELD_EX64(value, SVCR, ZA)); 6407 arm_rebuild_hflags(env); 6408 } 6409 6410 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6411 uint64_t value) 6412 { 6413 int cur_el = arm_current_el(env); 6414 int old_len = sve_vqm1_for_el(env, cur_el); 6415 int new_len; 6416 6417 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6418 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6419 raw_write(env, ri, value); 6420 6421 /* 6422 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6423 * when SVL is widened (old values kept, or zeros). Choose to keep the 6424 * current values for simplicity. But for QEMU internals, we must still 6425 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6426 * above aarch64_sve_narrow_vq. 6427 */ 6428 new_len = sve_vqm1_for_el(env, cur_el); 6429 if (new_len < old_len) { 6430 aarch64_sve_narrow_vq(env, new_len + 1); 6431 } 6432 } 6433 6434 static const ARMCPRegInfo sme_reginfo[] = { 6435 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6436 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6437 .access = PL0_RW, .accessfn = access_tpidr2, 6438 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6439 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6440 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6441 .access = PL0_RW, .type = ARM_CP_SME, 6442 .fieldoffset = offsetof(CPUARMState, svcr), 6443 .writefn = svcr_write, .raw_writefn = raw_write }, 6444 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6445 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6446 .access = PL1_RW, .type = ARM_CP_SME, 6447 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6448 .writefn = smcr_write, .raw_writefn = raw_write }, 6449 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6450 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6451 .access = PL2_RW, .type = ARM_CP_SME, 6452 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6453 .writefn = smcr_write, .raw_writefn = raw_write }, 6454 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6455 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6456 .access = PL3_RW, .type = ARM_CP_SME, 6457 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6458 .writefn = smcr_write, .raw_writefn = raw_write }, 6459 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6460 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6461 .access = PL1_R, .accessfn = access_aa64_tid1, 6462 /* 6463 * IMPLEMENTOR = 0 (software) 6464 * REVISION = 0 (implementation defined) 6465 * SMPS = 0 (no streaming execution priority in QEMU) 6466 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6467 */ 6468 .type = ARM_CP_CONST, .resetvalue = 0, }, 6469 /* 6470 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6471 */ 6472 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6473 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6474 .access = PL1_RW, .accessfn = access_esm, 6475 .type = ARM_CP_CONST, .resetvalue = 0 }, 6476 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6477 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6478 .access = PL2_RW, .accessfn = access_esm, 6479 .type = ARM_CP_CONST, .resetvalue = 0 }, 6480 }; 6481 #endif /* TARGET_AARCH64 */ 6482 6483 static void define_pmu_regs(ARMCPU *cpu) 6484 { 6485 /* 6486 * v7 performance monitor control register: same implementor 6487 * field as main ID register, and we implement four counters in 6488 * addition to the cycle count register. 6489 */ 6490 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6491 ARMCPRegInfo pmcr = { 6492 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6493 .access = PL0_RW, 6494 .type = ARM_CP_IO | ARM_CP_ALIAS, 6495 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6496 .accessfn = pmreg_access, .writefn = pmcr_write, 6497 .raw_writefn = raw_write, 6498 }; 6499 ARMCPRegInfo pmcr64 = { 6500 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6501 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6502 .access = PL0_RW, .accessfn = pmreg_access, 6503 .type = ARM_CP_IO, 6504 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6505 .resetvalue = cpu->isar.reset_pmcr_el0, 6506 .writefn = pmcr_write, .raw_writefn = raw_write, 6507 }; 6508 6509 define_one_arm_cp_reg(cpu, &pmcr); 6510 define_one_arm_cp_reg(cpu, &pmcr64); 6511 for (i = 0; i < pmcrn; i++) { 6512 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6513 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6514 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6515 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6516 ARMCPRegInfo pmev_regs[] = { 6517 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6518 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6519 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6520 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6521 .accessfn = pmreg_access_xevcntr }, 6522 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6523 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6524 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6525 .type = ARM_CP_IO, 6526 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6527 .raw_readfn = pmevcntr_rawread, 6528 .raw_writefn = pmevcntr_rawwrite }, 6529 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6530 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6531 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6532 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6533 .accessfn = pmreg_access }, 6534 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6535 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6536 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6537 .type = ARM_CP_IO, 6538 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6539 .raw_writefn = pmevtyper_rawwrite }, 6540 }; 6541 define_arm_cp_regs(cpu, pmev_regs); 6542 g_free(pmevcntr_name); 6543 g_free(pmevcntr_el0_name); 6544 g_free(pmevtyper_name); 6545 g_free(pmevtyper_el0_name); 6546 } 6547 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 6548 ARMCPRegInfo v81_pmu_regs[] = { 6549 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6550 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6551 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6552 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6553 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6554 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6555 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6556 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6557 }; 6558 define_arm_cp_regs(cpu, v81_pmu_regs); 6559 } 6560 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 6561 static const ARMCPRegInfo v84_pmmir = { 6562 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6563 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6564 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6565 .resetvalue = 0 6566 }; 6567 define_one_arm_cp_reg(cpu, &v84_pmmir); 6568 } 6569 } 6570 6571 /* We don't know until after realize whether there's a GICv3 6572 * attached, and that is what registers the gicv3 sysregs. 6573 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6574 * at runtime. 6575 */ 6576 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6577 { 6578 ARMCPU *cpu = env_archcpu(env); 6579 uint64_t pfr1 = cpu->isar.id_pfr1; 6580 6581 if (env->gicv3state) { 6582 pfr1 |= 1 << 28; 6583 } 6584 return pfr1; 6585 } 6586 6587 #ifndef CONFIG_USER_ONLY 6588 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6589 { 6590 ARMCPU *cpu = env_archcpu(env); 6591 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6592 6593 if (env->gicv3state) { 6594 pfr0 |= 1 << 24; 6595 } 6596 return pfr0; 6597 } 6598 #endif 6599 6600 /* Shared logic between LORID and the rest of the LOR* registers. 6601 * Secure state exclusion has already been dealt with. 6602 */ 6603 static CPAccessResult access_lor_ns(CPUARMState *env, 6604 const ARMCPRegInfo *ri, bool isread) 6605 { 6606 int el = arm_current_el(env); 6607 6608 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6609 return CP_ACCESS_TRAP_EL2; 6610 } 6611 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6612 return CP_ACCESS_TRAP_EL3; 6613 } 6614 return CP_ACCESS_OK; 6615 } 6616 6617 static CPAccessResult access_lor_other(CPUARMState *env, 6618 const ARMCPRegInfo *ri, bool isread) 6619 { 6620 if (arm_is_secure_below_el3(env)) { 6621 /* Access denied in secure mode. */ 6622 return CP_ACCESS_TRAP; 6623 } 6624 return access_lor_ns(env, ri, isread); 6625 } 6626 6627 /* 6628 * A trivial implementation of ARMv8.1-LOR leaves all of these 6629 * registers fixed at 0, which indicates that there are zero 6630 * supported Limited Ordering regions. 6631 */ 6632 static const ARMCPRegInfo lor_reginfo[] = { 6633 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6634 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6635 .access = PL1_RW, .accessfn = access_lor_other, 6636 .type = ARM_CP_CONST, .resetvalue = 0 }, 6637 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6638 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6639 .access = PL1_RW, .accessfn = access_lor_other, 6640 .type = ARM_CP_CONST, .resetvalue = 0 }, 6641 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6642 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6643 .access = PL1_RW, .accessfn = access_lor_other, 6644 .type = ARM_CP_CONST, .resetvalue = 0 }, 6645 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6646 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6647 .access = PL1_RW, .accessfn = access_lor_other, 6648 .type = ARM_CP_CONST, .resetvalue = 0 }, 6649 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6650 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6651 .access = PL1_R, .accessfn = access_lor_ns, 6652 .type = ARM_CP_CONST, .resetvalue = 0 }, 6653 }; 6654 6655 #ifdef TARGET_AARCH64 6656 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6657 bool isread) 6658 { 6659 int el = arm_current_el(env); 6660 6661 if (el < 2 && 6662 arm_is_el2_enabled(env) && 6663 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6664 return CP_ACCESS_TRAP_EL2; 6665 } 6666 if (el < 3 && 6667 arm_feature(env, ARM_FEATURE_EL3) && 6668 !(env->cp15.scr_el3 & SCR_APK)) { 6669 return CP_ACCESS_TRAP_EL3; 6670 } 6671 return CP_ACCESS_OK; 6672 } 6673 6674 static const ARMCPRegInfo pauth_reginfo[] = { 6675 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6677 .access = PL1_RW, .accessfn = access_pauth, 6678 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6679 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6680 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6681 .access = PL1_RW, .accessfn = access_pauth, 6682 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6683 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6684 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6685 .access = PL1_RW, .accessfn = access_pauth, 6686 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6687 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6688 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6689 .access = PL1_RW, .accessfn = access_pauth, 6690 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6691 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6692 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6693 .access = PL1_RW, .accessfn = access_pauth, 6694 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6695 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6696 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6697 .access = PL1_RW, .accessfn = access_pauth, 6698 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6699 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6700 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6701 .access = PL1_RW, .accessfn = access_pauth, 6702 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6703 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6704 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6705 .access = PL1_RW, .accessfn = access_pauth, 6706 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6707 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6708 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6709 .access = PL1_RW, .accessfn = access_pauth, 6710 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6711 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6713 .access = PL1_RW, .accessfn = access_pauth, 6714 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6715 }; 6716 6717 static const ARMCPRegInfo tlbirange_reginfo[] = { 6718 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6719 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6720 .access = PL1_W, .type = ARM_CP_NO_RAW, 6721 .writefn = tlbi_aa64_rvae1is_write }, 6722 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6723 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6724 .access = PL1_W, .type = ARM_CP_NO_RAW, 6725 .writefn = tlbi_aa64_rvae1is_write }, 6726 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6727 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6728 .access = PL1_W, .type = ARM_CP_NO_RAW, 6729 .writefn = tlbi_aa64_rvae1is_write }, 6730 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6731 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6732 .access = PL1_W, .type = ARM_CP_NO_RAW, 6733 .writefn = tlbi_aa64_rvae1is_write }, 6734 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6735 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6736 .access = PL1_W, .type = ARM_CP_NO_RAW, 6737 .writefn = tlbi_aa64_rvae1is_write }, 6738 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6739 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6740 .access = PL1_W, .type = ARM_CP_NO_RAW, 6741 .writefn = tlbi_aa64_rvae1is_write }, 6742 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6743 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6744 .access = PL1_W, .type = ARM_CP_NO_RAW, 6745 .writefn = tlbi_aa64_rvae1is_write }, 6746 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6747 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6748 .access = PL1_W, .type = ARM_CP_NO_RAW, 6749 .writefn = tlbi_aa64_rvae1is_write }, 6750 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6751 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6752 .access = PL1_W, .type = ARM_CP_NO_RAW, 6753 .writefn = tlbi_aa64_rvae1_write }, 6754 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6755 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6756 .access = PL1_W, .type = ARM_CP_NO_RAW, 6757 .writefn = tlbi_aa64_rvae1_write }, 6758 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6759 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6760 .access = PL1_W, .type = ARM_CP_NO_RAW, 6761 .writefn = tlbi_aa64_rvae1_write }, 6762 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6763 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6764 .access = PL1_W, .type = ARM_CP_NO_RAW, 6765 .writefn = tlbi_aa64_rvae1_write }, 6766 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6767 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6768 .access = PL2_W, .type = ARM_CP_NO_RAW, 6769 .writefn = tlbi_aa64_ripas2e1is_write }, 6770 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6772 .access = PL2_W, .type = ARM_CP_NO_RAW, 6773 .writefn = tlbi_aa64_ripas2e1is_write }, 6774 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6775 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6776 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6777 .writefn = tlbi_aa64_rvae2is_write }, 6778 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6779 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6780 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6781 .writefn = tlbi_aa64_rvae2is_write }, 6782 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6783 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6784 .access = PL2_W, .type = ARM_CP_NO_RAW, 6785 .writefn = tlbi_aa64_ripas2e1_write }, 6786 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6787 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6788 .access = PL2_W, .type = ARM_CP_NO_RAW, 6789 .writefn = tlbi_aa64_ripas2e1_write }, 6790 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6791 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6792 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6793 .writefn = tlbi_aa64_rvae2is_write }, 6794 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6795 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6796 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6797 .writefn = tlbi_aa64_rvae2is_write }, 6798 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6799 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6800 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6801 .writefn = tlbi_aa64_rvae2_write }, 6802 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6803 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6804 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6805 .writefn = tlbi_aa64_rvae2_write }, 6806 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6807 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6808 .access = PL3_W, .type = ARM_CP_NO_RAW, 6809 .writefn = tlbi_aa64_rvae3is_write }, 6810 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6811 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6812 .access = PL3_W, .type = ARM_CP_NO_RAW, 6813 .writefn = tlbi_aa64_rvae3is_write }, 6814 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6816 .access = PL3_W, .type = ARM_CP_NO_RAW, 6817 .writefn = tlbi_aa64_rvae3is_write }, 6818 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6820 .access = PL3_W, .type = ARM_CP_NO_RAW, 6821 .writefn = tlbi_aa64_rvae3is_write }, 6822 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6824 .access = PL3_W, .type = ARM_CP_NO_RAW, 6825 .writefn = tlbi_aa64_rvae3_write }, 6826 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 6828 .access = PL3_W, .type = ARM_CP_NO_RAW, 6829 .writefn = tlbi_aa64_rvae3_write }, 6830 }; 6831 6832 static const ARMCPRegInfo tlbios_reginfo[] = { 6833 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 6834 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 6835 .access = PL1_W, .type = ARM_CP_NO_RAW, 6836 .writefn = tlbi_aa64_vmalle1is_write }, 6837 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 6838 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 6839 .access = PL1_W, .type = ARM_CP_NO_RAW, 6840 .writefn = tlbi_aa64_vae1is_write }, 6841 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 6842 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 6843 .access = PL1_W, .type = ARM_CP_NO_RAW, 6844 .writefn = tlbi_aa64_vmalle1is_write }, 6845 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 6846 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 6847 .access = PL1_W, .type = ARM_CP_NO_RAW, 6848 .writefn = tlbi_aa64_vae1is_write }, 6849 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 6850 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 6851 .access = PL1_W, .type = ARM_CP_NO_RAW, 6852 .writefn = tlbi_aa64_vae1is_write }, 6853 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 6855 .access = PL1_W, .type = ARM_CP_NO_RAW, 6856 .writefn = tlbi_aa64_vae1is_write }, 6857 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 6859 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6860 .writefn = tlbi_aa64_alle2is_write }, 6861 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 6863 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6864 .writefn = tlbi_aa64_vae2is_write }, 6865 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 6867 .access = PL2_W, .type = ARM_CP_NO_RAW, 6868 .writefn = tlbi_aa64_alle1is_write }, 6869 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 6871 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6872 .writefn = tlbi_aa64_vae2is_write }, 6873 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 6874 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 6875 .access = PL2_W, .type = ARM_CP_NO_RAW, 6876 .writefn = tlbi_aa64_alle1is_write }, 6877 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 6879 .access = PL2_W, .type = ARM_CP_NOP }, 6880 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 6882 .access = PL2_W, .type = ARM_CP_NOP }, 6883 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6884 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 6885 .access = PL2_W, .type = ARM_CP_NOP }, 6886 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 6887 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 6888 .access = PL2_W, .type = ARM_CP_NOP }, 6889 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 6891 .access = PL3_W, .type = ARM_CP_NO_RAW, 6892 .writefn = tlbi_aa64_alle3is_write }, 6893 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 6894 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 6895 .access = PL3_W, .type = ARM_CP_NO_RAW, 6896 .writefn = tlbi_aa64_vae3is_write }, 6897 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 6899 .access = PL3_W, .type = ARM_CP_NO_RAW, 6900 .writefn = tlbi_aa64_vae3is_write }, 6901 }; 6902 6903 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 6904 { 6905 Error *err = NULL; 6906 uint64_t ret; 6907 6908 /* Success sets NZCV = 0000. */ 6909 env->NF = env->CF = env->VF = 0, env->ZF = 1; 6910 6911 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 6912 /* 6913 * ??? Failed, for unknown reasons in the crypto subsystem. 6914 * The best we can do is log the reason and return the 6915 * timed-out indication to the guest. There is no reason 6916 * we know to expect this failure to be transitory, so the 6917 * guest may well hang retrying the operation. 6918 */ 6919 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 6920 ri->name, error_get_pretty(err)); 6921 error_free(err); 6922 6923 env->ZF = 0; /* NZCF = 0100 */ 6924 return 0; 6925 } 6926 return ret; 6927 } 6928 6929 /* We do not support re-seeding, so the two registers operate the same. */ 6930 static const ARMCPRegInfo rndr_reginfo[] = { 6931 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 6932 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6933 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 6934 .access = PL0_R, .readfn = rndr_readfn }, 6935 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 6936 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 6937 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 6938 .access = PL0_R, .readfn = rndr_readfn }, 6939 }; 6940 6941 #ifndef CONFIG_USER_ONLY 6942 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 6943 uint64_t value) 6944 { 6945 ARMCPU *cpu = env_archcpu(env); 6946 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 6947 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 6948 uint64_t vaddr_in = (uint64_t) value; 6949 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 6950 void *haddr; 6951 int mem_idx = cpu_mmu_index(env, false); 6952 6953 /* This won't be crossing page boundaries */ 6954 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 6955 if (haddr) { 6956 6957 ram_addr_t offset; 6958 MemoryRegion *mr; 6959 6960 /* RCU lock is already being held */ 6961 mr = memory_region_from_host(haddr, &offset); 6962 6963 if (mr) { 6964 memory_region_writeback(mr, offset, dline_size); 6965 } 6966 } 6967 } 6968 6969 static const ARMCPRegInfo dcpop_reg[] = { 6970 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 6971 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 6972 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6973 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6974 }; 6975 6976 static const ARMCPRegInfo dcpodp_reg[] = { 6977 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 6979 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 6980 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 6981 }; 6982 #endif /*CONFIG_USER_ONLY*/ 6983 6984 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 6985 bool isread) 6986 { 6987 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 6988 return CP_ACCESS_TRAP_EL2; 6989 } 6990 6991 return CP_ACCESS_OK; 6992 } 6993 6994 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 6995 bool isread) 6996 { 6997 int el = arm_current_el(env); 6998 6999 if (el < 2 && arm_is_el2_enabled(env)) { 7000 uint64_t hcr = arm_hcr_el2_eff(env); 7001 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7002 return CP_ACCESS_TRAP_EL2; 7003 } 7004 } 7005 if (el < 3 && 7006 arm_feature(env, ARM_FEATURE_EL3) && 7007 !(env->cp15.scr_el3 & SCR_ATA)) { 7008 return CP_ACCESS_TRAP_EL3; 7009 } 7010 return CP_ACCESS_OK; 7011 } 7012 7013 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7014 { 7015 return env->pstate & PSTATE_TCO; 7016 } 7017 7018 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7019 { 7020 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7021 } 7022 7023 static const ARMCPRegInfo mte_reginfo[] = { 7024 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7025 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7026 .access = PL1_RW, .accessfn = access_mte, 7027 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7028 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7029 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7030 .access = PL1_RW, .accessfn = access_mte, 7031 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7032 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7033 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7034 .access = PL2_RW, .accessfn = access_mte, 7035 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7036 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7037 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7038 .access = PL3_RW, 7039 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7040 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7041 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7042 .access = PL1_RW, .accessfn = access_mte, 7043 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7044 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7045 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7046 .access = PL1_RW, .accessfn = access_mte, 7047 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7048 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7049 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7050 .access = PL1_R, .accessfn = access_aa64_tid5, 7051 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7052 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7053 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7054 .type = ARM_CP_NO_RAW, 7055 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7056 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7058 .type = ARM_CP_NOP, .access = PL1_W, 7059 .accessfn = aa64_cacheop_poc_access }, 7060 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7061 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7062 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7063 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7064 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7065 .type = ARM_CP_NOP, .access = PL1_W, 7066 .accessfn = aa64_cacheop_poc_access }, 7067 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7068 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7069 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7070 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7071 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7072 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7073 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7075 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7076 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7077 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7078 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7079 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7080 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7081 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7082 }; 7083 7084 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7085 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7086 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7087 .type = ARM_CP_CONST, .access = PL0_RW, }, 7088 }; 7089 7090 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7091 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7093 .type = ARM_CP_NOP, .access = PL0_W, 7094 .accessfn = aa64_cacheop_poc_access }, 7095 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7096 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7097 .type = ARM_CP_NOP, .access = PL0_W, 7098 .accessfn = aa64_cacheop_poc_access }, 7099 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7100 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7101 .type = ARM_CP_NOP, .access = PL0_W, 7102 .accessfn = aa64_cacheop_poc_access }, 7103 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7104 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7105 .type = ARM_CP_NOP, .access = PL0_W, 7106 .accessfn = aa64_cacheop_poc_access }, 7107 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7108 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7109 .type = ARM_CP_NOP, .access = PL0_W, 7110 .accessfn = aa64_cacheop_poc_access }, 7111 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7113 .type = ARM_CP_NOP, .access = PL0_W, 7114 .accessfn = aa64_cacheop_poc_access }, 7115 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7116 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7117 .type = ARM_CP_NOP, .access = PL0_W, 7118 .accessfn = aa64_cacheop_poc_access }, 7119 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7120 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7121 .type = ARM_CP_NOP, .access = PL0_W, 7122 .accessfn = aa64_cacheop_poc_access }, 7123 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7124 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7125 .access = PL0_W, .type = ARM_CP_DC_GVA, 7126 #ifndef CONFIG_USER_ONLY 7127 /* Avoid overhead of an access check that always passes in user-mode */ 7128 .accessfn = aa64_zva_access, 7129 #endif 7130 }, 7131 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7132 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7133 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7134 #ifndef CONFIG_USER_ONLY 7135 /* Avoid overhead of an access check that always passes in user-mode */ 7136 .accessfn = aa64_zva_access, 7137 #endif 7138 }, 7139 }; 7140 7141 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7142 bool isread) 7143 { 7144 uint64_t hcr = arm_hcr_el2_eff(env); 7145 int el = arm_current_el(env); 7146 7147 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7148 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7149 if (hcr & HCR_TGE) { 7150 return CP_ACCESS_TRAP_EL2; 7151 } 7152 return CP_ACCESS_TRAP; 7153 } 7154 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7155 return CP_ACCESS_TRAP_EL2; 7156 } 7157 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7158 return CP_ACCESS_TRAP_EL2; 7159 } 7160 if (el < 3 7161 && arm_feature(env, ARM_FEATURE_EL3) 7162 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7163 return CP_ACCESS_TRAP_EL3; 7164 } 7165 return CP_ACCESS_OK; 7166 } 7167 7168 static const ARMCPRegInfo scxtnum_reginfo[] = { 7169 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7170 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7171 .access = PL0_RW, .accessfn = access_scxtnum, 7172 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7173 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7174 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7175 .access = PL1_RW, .accessfn = access_scxtnum, 7176 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7177 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7178 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7179 .access = PL2_RW, .accessfn = access_scxtnum, 7180 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7181 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7182 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7183 .access = PL3_RW, 7184 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7185 }; 7186 #endif /* TARGET_AARCH64 */ 7187 7188 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7189 bool isread) 7190 { 7191 int el = arm_current_el(env); 7192 7193 if (el == 0) { 7194 uint64_t sctlr = arm_sctlr(env, el); 7195 if (!(sctlr & SCTLR_EnRCTX)) { 7196 return CP_ACCESS_TRAP; 7197 } 7198 } else if (el == 1) { 7199 uint64_t hcr = arm_hcr_el2_eff(env); 7200 if (hcr & HCR_NV) { 7201 return CP_ACCESS_TRAP_EL2; 7202 } 7203 } 7204 return CP_ACCESS_OK; 7205 } 7206 7207 static const ARMCPRegInfo predinv_reginfo[] = { 7208 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7210 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7211 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7213 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7214 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7215 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7216 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7217 /* 7218 * Note the AArch32 opcodes have a different OPC1. 7219 */ 7220 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7221 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7222 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7223 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7224 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7225 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7226 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7227 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7228 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7229 }; 7230 7231 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7232 { 7233 /* Read the high 32 bits of the current CCSIDR */ 7234 return extract64(ccsidr_read(env, ri), 32, 32); 7235 } 7236 7237 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7238 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7239 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7240 .access = PL1_R, 7241 .accessfn = access_aa64_tid2, 7242 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7243 }; 7244 7245 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7246 bool isread) 7247 { 7248 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7249 return CP_ACCESS_TRAP_EL2; 7250 } 7251 7252 return CP_ACCESS_OK; 7253 } 7254 7255 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7256 bool isread) 7257 { 7258 if (arm_feature(env, ARM_FEATURE_V8)) { 7259 return access_aa64_tid3(env, ri, isread); 7260 } 7261 7262 return CP_ACCESS_OK; 7263 } 7264 7265 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7266 bool isread) 7267 { 7268 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7269 return CP_ACCESS_TRAP_EL2; 7270 } 7271 7272 return CP_ACCESS_OK; 7273 } 7274 7275 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7276 const ARMCPRegInfo *ri, bool isread) 7277 { 7278 /* 7279 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7280 * in v7A, not in v8A. 7281 */ 7282 if (!arm_feature(env, ARM_FEATURE_V8) && 7283 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7284 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7285 return CP_ACCESS_TRAP_EL2; 7286 } 7287 return CP_ACCESS_OK; 7288 } 7289 7290 static const ARMCPRegInfo jazelle_regs[] = { 7291 { .name = "JIDR", 7292 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7293 .access = PL1_R, .accessfn = access_jazelle, 7294 .type = ARM_CP_CONST, .resetvalue = 0 }, 7295 { .name = "JOSCR", 7296 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7297 .accessfn = access_joscr_jmcr, 7298 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7299 { .name = "JMCR", 7300 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7301 .accessfn = access_joscr_jmcr, 7302 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7303 }; 7304 7305 static const ARMCPRegInfo contextidr_el2 = { 7306 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7307 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7308 .access = PL2_RW, 7309 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7310 }; 7311 7312 static const ARMCPRegInfo vhe_reginfo[] = { 7313 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7315 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7316 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7317 #ifndef CONFIG_USER_ONLY 7318 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7319 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7320 .fieldoffset = 7321 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7322 .type = ARM_CP_IO, .access = PL2_RW, 7323 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7324 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7325 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7326 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7327 .resetfn = gt_hv_timer_reset, 7328 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7329 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7330 .type = ARM_CP_IO, 7331 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7332 .access = PL2_RW, 7333 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7334 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7335 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7336 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7337 .type = ARM_CP_IO | ARM_CP_ALIAS, 7338 .access = PL2_RW, .accessfn = e2h_access, 7339 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7340 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7341 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7342 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7343 .type = ARM_CP_IO | ARM_CP_ALIAS, 7344 .access = PL2_RW, .accessfn = e2h_access, 7345 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7346 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7347 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7348 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7349 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7350 .access = PL2_RW, .accessfn = e2h_access, 7351 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7352 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7354 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7355 .access = PL2_RW, .accessfn = e2h_access, 7356 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7357 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7358 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7359 .type = ARM_CP_IO | ARM_CP_ALIAS, 7360 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7361 .access = PL2_RW, .accessfn = e2h_access, 7362 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7363 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7364 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7365 .type = ARM_CP_IO | ARM_CP_ALIAS, 7366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7367 .access = PL2_RW, .accessfn = e2h_access, 7368 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7369 #endif 7370 }; 7371 7372 #ifndef CONFIG_USER_ONLY 7373 static const ARMCPRegInfo ats1e1_reginfo[] = { 7374 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7376 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7377 .writefn = ats_write64 }, 7378 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7379 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7380 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7381 .writefn = ats_write64 }, 7382 }; 7383 7384 static const ARMCPRegInfo ats1cp_reginfo[] = { 7385 { .name = "ATS1CPRP", 7386 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7387 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7388 .writefn = ats_write }, 7389 { .name = "ATS1CPWP", 7390 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7391 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7392 .writefn = ats_write }, 7393 }; 7394 #endif 7395 7396 /* 7397 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7398 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7399 * is non-zero, which is never for ARMv7, optionally in ARMv8 7400 * and mandatorily for ARMv8.2 and up. 7401 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7402 * implementation is RAZ/WI we can ignore this detail, as we 7403 * do for ACTLR. 7404 */ 7405 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7406 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7407 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7408 .access = PL1_RW, .accessfn = access_tacr, 7409 .type = ARM_CP_CONST, .resetvalue = 0 }, 7410 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7411 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7412 .access = PL2_RW, .type = ARM_CP_CONST, 7413 .resetvalue = 0 }, 7414 }; 7415 7416 void register_cp_regs_for_features(ARMCPU *cpu) 7417 { 7418 /* Register all the coprocessor registers based on feature bits */ 7419 CPUARMState *env = &cpu->env; 7420 if (arm_feature(env, ARM_FEATURE_M)) { 7421 /* M profile has no coprocessor registers */ 7422 return; 7423 } 7424 7425 define_arm_cp_regs(cpu, cp_reginfo); 7426 if (!arm_feature(env, ARM_FEATURE_V8)) { 7427 /* Must go early as it is full of wildcards that may be 7428 * overridden by later definitions. 7429 */ 7430 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7431 } 7432 7433 if (arm_feature(env, ARM_FEATURE_V6)) { 7434 /* The ID registers all have impdef reset values */ 7435 ARMCPRegInfo v6_idregs[] = { 7436 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7437 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7438 .access = PL1_R, .type = ARM_CP_CONST, 7439 .accessfn = access_aa32_tid3, 7440 .resetvalue = cpu->isar.id_pfr0 }, 7441 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7442 * the value of the GIC field until after we define these regs. 7443 */ 7444 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7445 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7446 .access = PL1_R, .type = ARM_CP_NO_RAW, 7447 .accessfn = access_aa32_tid3, 7448 .readfn = id_pfr1_read, 7449 .writefn = arm_cp_write_ignore }, 7450 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7452 .access = PL1_R, .type = ARM_CP_CONST, 7453 .accessfn = access_aa32_tid3, 7454 .resetvalue = cpu->isar.id_dfr0 }, 7455 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7456 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7457 .access = PL1_R, .type = ARM_CP_CONST, 7458 .accessfn = access_aa32_tid3, 7459 .resetvalue = cpu->id_afr0 }, 7460 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7461 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7462 .access = PL1_R, .type = ARM_CP_CONST, 7463 .accessfn = access_aa32_tid3, 7464 .resetvalue = cpu->isar.id_mmfr0 }, 7465 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7466 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7467 .access = PL1_R, .type = ARM_CP_CONST, 7468 .accessfn = access_aa32_tid3, 7469 .resetvalue = cpu->isar.id_mmfr1 }, 7470 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7472 .access = PL1_R, .type = ARM_CP_CONST, 7473 .accessfn = access_aa32_tid3, 7474 .resetvalue = cpu->isar.id_mmfr2 }, 7475 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7477 .access = PL1_R, .type = ARM_CP_CONST, 7478 .accessfn = access_aa32_tid3, 7479 .resetvalue = cpu->isar.id_mmfr3 }, 7480 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7481 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7482 .access = PL1_R, .type = ARM_CP_CONST, 7483 .accessfn = access_aa32_tid3, 7484 .resetvalue = cpu->isar.id_isar0 }, 7485 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7486 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7487 .access = PL1_R, .type = ARM_CP_CONST, 7488 .accessfn = access_aa32_tid3, 7489 .resetvalue = cpu->isar.id_isar1 }, 7490 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7491 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7492 .access = PL1_R, .type = ARM_CP_CONST, 7493 .accessfn = access_aa32_tid3, 7494 .resetvalue = cpu->isar.id_isar2 }, 7495 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7496 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7497 .access = PL1_R, .type = ARM_CP_CONST, 7498 .accessfn = access_aa32_tid3, 7499 .resetvalue = cpu->isar.id_isar3 }, 7500 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7501 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7502 .access = PL1_R, .type = ARM_CP_CONST, 7503 .accessfn = access_aa32_tid3, 7504 .resetvalue = cpu->isar.id_isar4 }, 7505 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7506 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7507 .access = PL1_R, .type = ARM_CP_CONST, 7508 .accessfn = access_aa32_tid3, 7509 .resetvalue = cpu->isar.id_isar5 }, 7510 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7511 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7512 .access = PL1_R, .type = ARM_CP_CONST, 7513 .accessfn = access_aa32_tid3, 7514 .resetvalue = cpu->isar.id_mmfr4 }, 7515 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7516 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7517 .access = PL1_R, .type = ARM_CP_CONST, 7518 .accessfn = access_aa32_tid3, 7519 .resetvalue = cpu->isar.id_isar6 }, 7520 }; 7521 define_arm_cp_regs(cpu, v6_idregs); 7522 define_arm_cp_regs(cpu, v6_cp_reginfo); 7523 } else { 7524 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7525 } 7526 if (arm_feature(env, ARM_FEATURE_V6K)) { 7527 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7528 } 7529 if (arm_feature(env, ARM_FEATURE_V7MP) && 7530 !arm_feature(env, ARM_FEATURE_PMSA)) { 7531 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7532 } 7533 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7534 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7535 } 7536 if (arm_feature(env, ARM_FEATURE_V7)) { 7537 ARMCPRegInfo clidr = { 7538 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7539 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7540 .access = PL1_R, .type = ARM_CP_CONST, 7541 .accessfn = access_aa64_tid2, 7542 .resetvalue = cpu->clidr 7543 }; 7544 define_one_arm_cp_reg(cpu, &clidr); 7545 define_arm_cp_regs(cpu, v7_cp_reginfo); 7546 define_debug_regs(cpu); 7547 define_pmu_regs(cpu); 7548 } else { 7549 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7550 } 7551 if (arm_feature(env, ARM_FEATURE_V8)) { 7552 /* 7553 * v8 ID registers, which all have impdef reset values. 7554 * Note that within the ID register ranges the unused slots 7555 * must all RAZ, not UNDEF; future architecture versions may 7556 * define new registers here. 7557 * ID registers which are AArch64 views of the AArch32 ID registers 7558 * which already existed in v6 and v7 are handled elsewhere, 7559 * in v6_idregs[]. 7560 */ 7561 int i; 7562 ARMCPRegInfo v8_idregs[] = { 7563 /* 7564 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7565 * emulation because we don't know the right value for the 7566 * GIC field until after we define these regs. 7567 */ 7568 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7569 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7570 .access = PL1_R, 7571 #ifdef CONFIG_USER_ONLY 7572 .type = ARM_CP_CONST, 7573 .resetvalue = cpu->isar.id_aa64pfr0 7574 #else 7575 .type = ARM_CP_NO_RAW, 7576 .accessfn = access_aa64_tid3, 7577 .readfn = id_aa64pfr0_read, 7578 .writefn = arm_cp_write_ignore 7579 #endif 7580 }, 7581 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7582 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7583 .access = PL1_R, .type = ARM_CP_CONST, 7584 .accessfn = access_aa64_tid3, 7585 .resetvalue = cpu->isar.id_aa64pfr1}, 7586 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7588 .access = PL1_R, .type = ARM_CP_CONST, 7589 .accessfn = access_aa64_tid3, 7590 .resetvalue = 0 }, 7591 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7592 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7593 .access = PL1_R, .type = ARM_CP_CONST, 7594 .accessfn = access_aa64_tid3, 7595 .resetvalue = 0 }, 7596 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7597 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7598 .access = PL1_R, .type = ARM_CP_CONST, 7599 .accessfn = access_aa64_tid3, 7600 .resetvalue = cpu->isar.id_aa64zfr0 }, 7601 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 7602 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7603 .access = PL1_R, .type = ARM_CP_CONST, 7604 .accessfn = access_aa64_tid3, 7605 .resetvalue = cpu->isar.id_aa64smfr0 }, 7606 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7608 .access = PL1_R, .type = ARM_CP_CONST, 7609 .accessfn = access_aa64_tid3, 7610 .resetvalue = 0 }, 7611 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7613 .access = PL1_R, .type = ARM_CP_CONST, 7614 .accessfn = access_aa64_tid3, 7615 .resetvalue = 0 }, 7616 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7617 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7618 .access = PL1_R, .type = ARM_CP_CONST, 7619 .accessfn = access_aa64_tid3, 7620 .resetvalue = cpu->isar.id_aa64dfr0 }, 7621 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7622 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7623 .access = PL1_R, .type = ARM_CP_CONST, 7624 .accessfn = access_aa64_tid3, 7625 .resetvalue = cpu->isar.id_aa64dfr1 }, 7626 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7628 .access = PL1_R, .type = ARM_CP_CONST, 7629 .accessfn = access_aa64_tid3, 7630 .resetvalue = 0 }, 7631 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7633 .access = PL1_R, .type = ARM_CP_CONST, 7634 .accessfn = access_aa64_tid3, 7635 .resetvalue = 0 }, 7636 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7637 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7638 .access = PL1_R, .type = ARM_CP_CONST, 7639 .accessfn = access_aa64_tid3, 7640 .resetvalue = cpu->id_aa64afr0 }, 7641 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7643 .access = PL1_R, .type = ARM_CP_CONST, 7644 .accessfn = access_aa64_tid3, 7645 .resetvalue = cpu->id_aa64afr1 }, 7646 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7648 .access = PL1_R, .type = ARM_CP_CONST, 7649 .accessfn = access_aa64_tid3, 7650 .resetvalue = 0 }, 7651 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7653 .access = PL1_R, .type = ARM_CP_CONST, 7654 .accessfn = access_aa64_tid3, 7655 .resetvalue = 0 }, 7656 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7657 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7658 .access = PL1_R, .type = ARM_CP_CONST, 7659 .accessfn = access_aa64_tid3, 7660 .resetvalue = cpu->isar.id_aa64isar0 }, 7661 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7662 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7663 .access = PL1_R, .type = ARM_CP_CONST, 7664 .accessfn = access_aa64_tid3, 7665 .resetvalue = cpu->isar.id_aa64isar1 }, 7666 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7668 .access = PL1_R, .type = ARM_CP_CONST, 7669 .accessfn = access_aa64_tid3, 7670 .resetvalue = 0 }, 7671 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7672 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7673 .access = PL1_R, .type = ARM_CP_CONST, 7674 .accessfn = access_aa64_tid3, 7675 .resetvalue = 0 }, 7676 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7677 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7678 .access = PL1_R, .type = ARM_CP_CONST, 7679 .accessfn = access_aa64_tid3, 7680 .resetvalue = 0 }, 7681 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7682 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid3, 7685 .resetvalue = 0 }, 7686 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7688 .access = PL1_R, .type = ARM_CP_CONST, 7689 .accessfn = access_aa64_tid3, 7690 .resetvalue = 0 }, 7691 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7692 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7693 .access = PL1_R, .type = ARM_CP_CONST, 7694 .accessfn = access_aa64_tid3, 7695 .resetvalue = 0 }, 7696 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7697 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7698 .access = PL1_R, .type = ARM_CP_CONST, 7699 .accessfn = access_aa64_tid3, 7700 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7701 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7702 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7703 .access = PL1_R, .type = ARM_CP_CONST, 7704 .accessfn = access_aa64_tid3, 7705 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7706 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7708 .access = PL1_R, .type = ARM_CP_CONST, 7709 .accessfn = access_aa64_tid3, 7710 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7711 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7713 .access = PL1_R, .type = ARM_CP_CONST, 7714 .accessfn = access_aa64_tid3, 7715 .resetvalue = 0 }, 7716 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7717 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7718 .access = PL1_R, .type = ARM_CP_CONST, 7719 .accessfn = access_aa64_tid3, 7720 .resetvalue = 0 }, 7721 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7723 .access = PL1_R, .type = ARM_CP_CONST, 7724 .accessfn = access_aa64_tid3, 7725 .resetvalue = 0 }, 7726 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7727 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7728 .access = PL1_R, .type = ARM_CP_CONST, 7729 .accessfn = access_aa64_tid3, 7730 .resetvalue = 0 }, 7731 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7732 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7733 .access = PL1_R, .type = ARM_CP_CONST, 7734 .accessfn = access_aa64_tid3, 7735 .resetvalue = 0 }, 7736 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7737 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7738 .access = PL1_R, .type = ARM_CP_CONST, 7739 .accessfn = access_aa64_tid3, 7740 .resetvalue = cpu->isar.mvfr0 }, 7741 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7742 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7743 .access = PL1_R, .type = ARM_CP_CONST, 7744 .accessfn = access_aa64_tid3, 7745 .resetvalue = cpu->isar.mvfr1 }, 7746 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7748 .access = PL1_R, .type = ARM_CP_CONST, 7749 .accessfn = access_aa64_tid3, 7750 .resetvalue = cpu->isar.mvfr2 }, 7751 /* 7752 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 7753 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 7754 * as RAZ, since it is in the "reserved for future ID 7755 * registers, RAZ" part of the AArch32 encoding space. 7756 */ 7757 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 7758 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7759 .access = PL1_R, .type = ARM_CP_CONST, 7760 .accessfn = access_aa64_tid3, 7761 .resetvalue = 0 }, 7762 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 7763 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7764 .access = PL1_R, .type = ARM_CP_CONST, 7765 .accessfn = access_aa64_tid3, 7766 .resetvalue = 0 }, 7767 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 7768 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7769 .access = PL1_R, .type = ARM_CP_CONST, 7770 .accessfn = access_aa64_tid3, 7771 .resetvalue = 0 }, 7772 /* 7773 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 7774 * they're also RAZ for AArch64, and in v8 are gradually 7775 * being filled with AArch64-view-of-AArch32-ID-register 7776 * for new ID registers. 7777 */ 7778 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 7779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7780 .access = PL1_R, .type = ARM_CP_CONST, 7781 .accessfn = access_aa64_tid3, 7782 .resetvalue = 0 }, 7783 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7785 .access = PL1_R, .type = ARM_CP_CONST, 7786 .accessfn = access_aa64_tid3, 7787 .resetvalue = cpu->isar.id_pfr2 }, 7788 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 7789 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7790 .access = PL1_R, .type = ARM_CP_CONST, 7791 .accessfn = access_aa64_tid3, 7792 .resetvalue = cpu->isar.id_dfr1 }, 7793 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 7794 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7795 .access = PL1_R, .type = ARM_CP_CONST, 7796 .accessfn = access_aa64_tid3, 7797 .resetvalue = cpu->isar.id_mmfr5 }, 7798 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 7799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7800 .access = PL1_R, .type = ARM_CP_CONST, 7801 .accessfn = access_aa64_tid3, 7802 .resetvalue = 0 }, 7803 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7804 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7805 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7806 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7807 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7808 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7809 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7810 .resetvalue = cpu->pmceid0 }, 7811 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7812 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7813 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7814 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7815 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7817 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7818 .resetvalue = cpu->pmceid1 }, 7819 }; 7820 #ifdef CONFIG_USER_ONLY 7821 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7822 { .name = "ID_AA64PFR0_EL1", 7823 .exported_bits = 0x000f000f00ff0000, 7824 .fixed_bits = 0x0000000000000011 }, 7825 { .name = "ID_AA64PFR1_EL1", 7826 .exported_bits = 0x00000000000000f0 }, 7827 { .name = "ID_AA64PFR*_EL1_RESERVED", 7828 .is_glob = true }, 7829 { .name = "ID_AA64ZFR0_EL1" }, 7830 { .name = "ID_AA64MMFR0_EL1", 7831 .fixed_bits = 0x00000000ff000000 }, 7832 { .name = "ID_AA64MMFR1_EL1" }, 7833 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7834 .is_glob = true }, 7835 { .name = "ID_AA64DFR0_EL1", 7836 .fixed_bits = 0x0000000000000006 }, 7837 { .name = "ID_AA64DFR1_EL1" }, 7838 { .name = "ID_AA64DFR*_EL1_RESERVED", 7839 .is_glob = true }, 7840 { .name = "ID_AA64AFR*", 7841 .is_glob = true }, 7842 { .name = "ID_AA64ISAR0_EL1", 7843 .exported_bits = 0x00fffffff0fffff0 }, 7844 { .name = "ID_AA64ISAR1_EL1", 7845 .exported_bits = 0x000000f0ffffffff }, 7846 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7847 .is_glob = true }, 7848 }; 7849 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7850 #endif 7851 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7852 if (!arm_feature(env, ARM_FEATURE_EL3) && 7853 !arm_feature(env, ARM_FEATURE_EL2)) { 7854 ARMCPRegInfo rvbar = { 7855 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7856 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7857 .access = PL1_R, 7858 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7859 }; 7860 define_one_arm_cp_reg(cpu, &rvbar); 7861 } 7862 define_arm_cp_regs(cpu, v8_idregs); 7863 define_arm_cp_regs(cpu, v8_cp_reginfo); 7864 7865 for (i = 4; i < 16; i++) { 7866 /* 7867 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 7868 * For pre-v8 cores there are RAZ patterns for these in 7869 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 7870 * v8 extends the "must RAZ" part of the ID register space 7871 * to also cover c0, 0, c{8-15}, {0-7}. 7872 * These are STATE_AA32 because in the AArch64 sysreg space 7873 * c4-c7 is where the AArch64 ID registers live (and we've 7874 * already defined those in v8_idregs[]), and c8-c15 are not 7875 * "must RAZ" for AArch64. 7876 */ 7877 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 7878 ARMCPRegInfo v8_aa32_raz_idregs = { 7879 .name = name, 7880 .state = ARM_CP_STATE_AA32, 7881 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 7882 .access = PL1_R, .type = ARM_CP_CONST, 7883 .accessfn = access_aa64_tid3, 7884 .resetvalue = 0 }; 7885 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 7886 } 7887 } 7888 7889 /* 7890 * Register the base EL2 cpregs. 7891 * Pre v8, these registers are implemented only as part of the 7892 * Virtualization Extensions (EL2 present). Beginning with v8, 7893 * if EL2 is missing but EL3 is enabled, mostly these become 7894 * RES0 from EL3, with some specific exceptions. 7895 */ 7896 if (arm_feature(env, ARM_FEATURE_EL2) 7897 || (arm_feature(env, ARM_FEATURE_EL3) 7898 && arm_feature(env, ARM_FEATURE_V8))) { 7899 uint64_t vmpidr_def = mpidr_read_val(env); 7900 ARMCPRegInfo vpidr_regs[] = { 7901 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7902 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7903 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7904 .resetvalue = cpu->midr, 7905 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7906 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7907 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7908 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7909 .access = PL2_RW, .resetvalue = cpu->midr, 7910 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7911 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7912 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7913 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7914 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7915 .resetvalue = vmpidr_def, 7916 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 7917 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7918 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7920 .access = PL2_RW, .resetvalue = vmpidr_def, 7921 .type = ARM_CP_EL3_NO_EL2_C_NZ, 7922 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 7923 }; 7924 /* 7925 * The only field of MDCR_EL2 that has a defined architectural reset 7926 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 7927 */ 7928 ARMCPRegInfo mdcr_el2 = { 7929 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 7930 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 7931 .writefn = mdcr_el2_write, 7932 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 7933 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 7934 }; 7935 define_one_arm_cp_reg(cpu, &mdcr_el2); 7936 define_arm_cp_regs(cpu, vpidr_regs); 7937 define_arm_cp_regs(cpu, el2_cp_reginfo); 7938 if (arm_feature(env, ARM_FEATURE_V8)) { 7939 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 7940 } 7941 if (cpu_isar_feature(aa64_sel2, cpu)) { 7942 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 7943 } 7944 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 7945 if (!arm_feature(env, ARM_FEATURE_EL3)) { 7946 ARMCPRegInfo rvbar = { 7947 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 7948 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 7949 .access = PL2_R, 7950 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7951 }; 7952 define_one_arm_cp_reg(cpu, &rvbar); 7953 } 7954 } 7955 7956 /* Register the base EL3 cpregs. */ 7957 if (arm_feature(env, ARM_FEATURE_EL3)) { 7958 define_arm_cp_regs(cpu, el3_cp_reginfo); 7959 ARMCPRegInfo el3_regs[] = { 7960 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 7961 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 7962 .access = PL3_R, 7963 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7964 }, 7965 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 7966 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 7967 .access = PL3_RW, 7968 .raw_writefn = raw_write, .writefn = sctlr_write, 7969 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 7970 .resetvalue = cpu->reset_sctlr }, 7971 }; 7972 7973 define_arm_cp_regs(cpu, el3_regs); 7974 } 7975 /* The behaviour of NSACR is sufficiently various that we don't 7976 * try to describe it in a single reginfo: 7977 * if EL3 is 64 bit, then trap to EL3 from S EL1, 7978 * reads as constant 0xc00 from NS EL1 and NS EL2 7979 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 7980 * if v7 without EL3, register doesn't exist 7981 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 7982 */ 7983 if (arm_feature(env, ARM_FEATURE_EL3)) { 7984 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 7985 static const ARMCPRegInfo nsacr = { 7986 .name = "NSACR", .type = ARM_CP_CONST, 7987 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7988 .access = PL1_RW, .accessfn = nsacr_access, 7989 .resetvalue = 0xc00 7990 }; 7991 define_one_arm_cp_reg(cpu, &nsacr); 7992 } else { 7993 static const ARMCPRegInfo nsacr = { 7994 .name = "NSACR", 7995 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 7996 .access = PL3_RW | PL1_R, 7997 .resetvalue = 0, 7998 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 7999 }; 8000 define_one_arm_cp_reg(cpu, &nsacr); 8001 } 8002 } else { 8003 if (arm_feature(env, ARM_FEATURE_V8)) { 8004 static const ARMCPRegInfo nsacr = { 8005 .name = "NSACR", .type = ARM_CP_CONST, 8006 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8007 .access = PL1_R, 8008 .resetvalue = 0xc00 8009 }; 8010 define_one_arm_cp_reg(cpu, &nsacr); 8011 } 8012 } 8013 8014 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8015 if (arm_feature(env, ARM_FEATURE_V6)) { 8016 /* PMSAv6 not implemented */ 8017 assert(arm_feature(env, ARM_FEATURE_V7)); 8018 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8019 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8020 } else { 8021 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8022 } 8023 } else { 8024 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8025 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8026 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8027 if (cpu_isar_feature(aa32_hpd, cpu)) { 8028 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8029 } 8030 } 8031 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8032 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8033 } 8034 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8035 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8036 } 8037 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8038 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8039 } 8040 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8041 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8042 } 8043 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8044 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8045 } 8046 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8047 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8048 } 8049 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8050 define_arm_cp_regs(cpu, omap_cp_reginfo); 8051 } 8052 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8053 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8054 } 8055 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8056 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8057 } 8058 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8059 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8060 } 8061 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8062 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8063 } 8064 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8065 define_arm_cp_regs(cpu, jazelle_regs); 8066 } 8067 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8068 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8069 * be read-only (ie write causes UNDEF exception). 8070 */ 8071 { 8072 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8073 /* Pre-v8 MIDR space. 8074 * Note that the MIDR isn't a simple constant register because 8075 * of the TI925 behaviour where writes to another register can 8076 * cause the MIDR value to change. 8077 * 8078 * Unimplemented registers in the c15 0 0 0 space default to 8079 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8080 * and friends override accordingly. 8081 */ 8082 { .name = "MIDR", 8083 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8084 .access = PL1_R, .resetvalue = cpu->midr, 8085 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8086 .readfn = midr_read, 8087 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8088 .type = ARM_CP_OVERRIDE }, 8089 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8090 { .name = "DUMMY", 8091 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8092 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8093 { .name = "DUMMY", 8094 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8095 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8096 { .name = "DUMMY", 8097 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8098 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8099 { .name = "DUMMY", 8100 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8101 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8102 { .name = "DUMMY", 8103 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8104 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8105 }; 8106 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8107 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8108 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8109 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8110 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8111 .readfn = midr_read }, 8112 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8113 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8114 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8115 .access = PL1_R, .resetvalue = cpu->midr }, 8116 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8117 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8118 .access = PL1_R, .resetvalue = cpu->midr }, 8119 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8120 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8121 .access = PL1_R, 8122 .accessfn = access_aa64_tid1, 8123 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8124 }; 8125 ARMCPRegInfo id_cp_reginfo[] = { 8126 /* These are common to v8 and pre-v8 */ 8127 { .name = "CTR", 8128 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8129 .access = PL1_R, .accessfn = ctr_el0_access, 8130 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8131 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8132 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8133 .access = PL0_R, .accessfn = ctr_el0_access, 8134 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8135 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8136 { .name = "TCMTR", 8137 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8138 .access = PL1_R, 8139 .accessfn = access_aa32_tid1, 8140 .type = ARM_CP_CONST, .resetvalue = 0 }, 8141 }; 8142 /* TLBTR is specific to VMSA */ 8143 ARMCPRegInfo id_tlbtr_reginfo = { 8144 .name = "TLBTR", 8145 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8146 .access = PL1_R, 8147 .accessfn = access_aa32_tid1, 8148 .type = ARM_CP_CONST, .resetvalue = 0, 8149 }; 8150 /* MPUIR is specific to PMSA V6+ */ 8151 ARMCPRegInfo id_mpuir_reginfo = { 8152 .name = "MPUIR", 8153 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8154 .access = PL1_R, .type = ARM_CP_CONST, 8155 .resetvalue = cpu->pmsav7_dregion << 8 8156 }; 8157 static const ARMCPRegInfo crn0_wi_reginfo = { 8158 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8159 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8160 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8161 }; 8162 #ifdef CONFIG_USER_ONLY 8163 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8164 { .name = "MIDR_EL1", 8165 .exported_bits = 0x00000000ffffffff }, 8166 { .name = "REVIDR_EL1" }, 8167 }; 8168 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8169 #endif 8170 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8171 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8172 size_t i; 8173 /* Register the blanket "writes ignored" value first to cover the 8174 * whole space. Then update the specific ID registers to allow write 8175 * access, so that they ignore writes rather than causing them to 8176 * UNDEF. 8177 */ 8178 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8179 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8180 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8181 } 8182 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8183 id_cp_reginfo[i].access = PL1_RW; 8184 } 8185 id_mpuir_reginfo.access = PL1_RW; 8186 id_tlbtr_reginfo.access = PL1_RW; 8187 } 8188 if (arm_feature(env, ARM_FEATURE_V8)) { 8189 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8190 } else { 8191 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8192 } 8193 define_arm_cp_regs(cpu, id_cp_reginfo); 8194 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8195 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8196 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8197 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8198 } 8199 } 8200 8201 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8202 ARMCPRegInfo mpidr_cp_reginfo[] = { 8203 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8204 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8205 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8206 }; 8207 #ifdef CONFIG_USER_ONLY 8208 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8209 { .name = "MPIDR_EL1", 8210 .fixed_bits = 0x0000000080000000 }, 8211 }; 8212 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8213 #endif 8214 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8215 } 8216 8217 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8218 ARMCPRegInfo auxcr_reginfo[] = { 8219 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8220 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8221 .access = PL1_RW, .accessfn = access_tacr, 8222 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8223 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8224 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8225 .access = PL2_RW, .type = ARM_CP_CONST, 8226 .resetvalue = 0 }, 8227 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8228 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8229 .access = PL3_RW, .type = ARM_CP_CONST, 8230 .resetvalue = 0 }, 8231 }; 8232 define_arm_cp_regs(cpu, auxcr_reginfo); 8233 if (cpu_isar_feature(aa32_ac2, cpu)) { 8234 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8235 } 8236 } 8237 8238 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8239 /* 8240 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8241 * There are two flavours: 8242 * (1) older 32-bit only cores have a simple 32-bit CBAR 8243 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8244 * 32-bit register visible to AArch32 at a different encoding 8245 * to the "flavour 1" register and with the bits rearranged to 8246 * be able to squash a 64-bit address into the 32-bit view. 8247 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8248 * in future if we support AArch32-only configs of some of the 8249 * AArch64 cores we might need to add a specific feature flag 8250 * to indicate cores with "flavour 2" CBAR. 8251 */ 8252 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8253 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8254 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8255 | extract64(cpu->reset_cbar, 32, 12); 8256 ARMCPRegInfo cbar_reginfo[] = { 8257 { .name = "CBAR", 8258 .type = ARM_CP_CONST, 8259 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8260 .access = PL1_R, .resetvalue = cbar32 }, 8261 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8262 .type = ARM_CP_CONST, 8263 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8264 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8265 }; 8266 /* We don't implement a r/w 64 bit CBAR currently */ 8267 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8268 define_arm_cp_regs(cpu, cbar_reginfo); 8269 } else { 8270 ARMCPRegInfo cbar = { 8271 .name = "CBAR", 8272 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8273 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8274 .fieldoffset = offsetof(CPUARMState, 8275 cp15.c15_config_base_address) 8276 }; 8277 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8278 cbar.access = PL1_R; 8279 cbar.fieldoffset = 0; 8280 cbar.type = ARM_CP_CONST; 8281 } 8282 define_one_arm_cp_reg(cpu, &cbar); 8283 } 8284 } 8285 8286 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8287 static const ARMCPRegInfo vbar_cp_reginfo[] = { 8288 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8289 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8290 .access = PL1_RW, .writefn = vbar_write, 8291 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8292 offsetof(CPUARMState, cp15.vbar_ns) }, 8293 .resetvalue = 0 }, 8294 }; 8295 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8296 } 8297 8298 /* Generic registers whose values depend on the implementation */ 8299 { 8300 ARMCPRegInfo sctlr = { 8301 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8302 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8303 .access = PL1_RW, .accessfn = access_tvm_trvm, 8304 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8305 offsetof(CPUARMState, cp15.sctlr_ns) }, 8306 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8307 .raw_writefn = raw_write, 8308 }; 8309 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8310 /* Normally we would always end the TB on an SCTLR write, but Linux 8311 * arch/arm/mach-pxa/sleep.S expects two instructions following 8312 * an MMU enable to execute from cache. Imitate this behaviour. 8313 */ 8314 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8315 } 8316 define_one_arm_cp_reg(cpu, &sctlr); 8317 } 8318 8319 if (cpu_isar_feature(aa64_lor, cpu)) { 8320 define_arm_cp_regs(cpu, lor_reginfo); 8321 } 8322 if (cpu_isar_feature(aa64_pan, cpu)) { 8323 define_one_arm_cp_reg(cpu, &pan_reginfo); 8324 } 8325 #ifndef CONFIG_USER_ONLY 8326 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8327 define_arm_cp_regs(cpu, ats1e1_reginfo); 8328 } 8329 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8330 define_arm_cp_regs(cpu, ats1cp_reginfo); 8331 } 8332 #endif 8333 if (cpu_isar_feature(aa64_uao, cpu)) { 8334 define_one_arm_cp_reg(cpu, &uao_reginfo); 8335 } 8336 8337 if (cpu_isar_feature(aa64_dit, cpu)) { 8338 define_one_arm_cp_reg(cpu, &dit_reginfo); 8339 } 8340 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8341 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8342 } 8343 if (cpu_isar_feature(any_ras, cpu)) { 8344 define_arm_cp_regs(cpu, minimal_ras_reginfo); 8345 } 8346 8347 if (cpu_isar_feature(aa64_vh, cpu) || 8348 cpu_isar_feature(aa64_debugv8p2, cpu)) { 8349 define_one_arm_cp_reg(cpu, &contextidr_el2); 8350 } 8351 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8352 define_arm_cp_regs(cpu, vhe_reginfo); 8353 } 8354 8355 if (cpu_isar_feature(aa64_sve, cpu)) { 8356 define_arm_cp_regs(cpu, zcr_reginfo); 8357 } 8358 8359 if (cpu_isar_feature(aa64_hcx, cpu)) { 8360 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 8361 } 8362 8363 #ifdef TARGET_AARCH64 8364 if (cpu_isar_feature(aa64_sme, cpu)) { 8365 define_arm_cp_regs(cpu, sme_reginfo); 8366 } 8367 if (cpu_isar_feature(aa64_pauth, cpu)) { 8368 define_arm_cp_regs(cpu, pauth_reginfo); 8369 } 8370 if (cpu_isar_feature(aa64_rndr, cpu)) { 8371 define_arm_cp_regs(cpu, rndr_reginfo); 8372 } 8373 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8374 define_arm_cp_regs(cpu, tlbirange_reginfo); 8375 } 8376 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8377 define_arm_cp_regs(cpu, tlbios_reginfo); 8378 } 8379 #ifndef CONFIG_USER_ONLY 8380 /* Data Cache clean instructions up to PoP */ 8381 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8382 define_one_arm_cp_reg(cpu, dcpop_reg); 8383 8384 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8385 define_one_arm_cp_reg(cpu, dcpodp_reg); 8386 } 8387 } 8388 #endif /*CONFIG_USER_ONLY*/ 8389 8390 /* 8391 * If full MTE is enabled, add all of the system registers. 8392 * If only "instructions available at EL0" are enabled, 8393 * then define only a RAZ/WI version of PSTATE.TCO. 8394 */ 8395 if (cpu_isar_feature(aa64_mte, cpu)) { 8396 define_arm_cp_regs(cpu, mte_reginfo); 8397 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8398 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8399 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8400 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8401 } 8402 8403 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 8404 define_arm_cp_regs(cpu, scxtnum_reginfo); 8405 } 8406 #endif 8407 8408 if (cpu_isar_feature(any_predinv, cpu)) { 8409 define_arm_cp_regs(cpu, predinv_reginfo); 8410 } 8411 8412 if (cpu_isar_feature(any_ccidx, cpu)) { 8413 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8414 } 8415 8416 #ifndef CONFIG_USER_ONLY 8417 /* 8418 * Register redirections and aliases must be done last, 8419 * after the registers from the other extensions have been defined. 8420 */ 8421 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8422 define_arm_vh_e2h_redirects_aliases(cpu); 8423 } 8424 #endif 8425 } 8426 8427 /* Sort alphabetically by type name, except for "any". */ 8428 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8429 { 8430 ObjectClass *class_a = (ObjectClass *)a; 8431 ObjectClass *class_b = (ObjectClass *)b; 8432 const char *name_a, *name_b; 8433 8434 name_a = object_class_get_name(class_a); 8435 name_b = object_class_get_name(class_b); 8436 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8437 return 1; 8438 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8439 return -1; 8440 } else { 8441 return strcmp(name_a, name_b); 8442 } 8443 } 8444 8445 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8446 { 8447 ObjectClass *oc = data; 8448 CPUClass *cc = CPU_CLASS(oc); 8449 const char *typename; 8450 char *name; 8451 8452 typename = object_class_get_name(oc); 8453 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8454 if (cc->deprecation_note) { 8455 qemu_printf(" %s (deprecated)\n", name); 8456 } else { 8457 qemu_printf(" %s\n", name); 8458 } 8459 g_free(name); 8460 } 8461 8462 void arm_cpu_list(void) 8463 { 8464 GSList *list; 8465 8466 list = object_class_get_list(TYPE_ARM_CPU, false); 8467 list = g_slist_sort(list, arm_cpu_list_compare); 8468 qemu_printf("Available CPUs:\n"); 8469 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8470 g_slist_free(list); 8471 } 8472 8473 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8474 { 8475 ObjectClass *oc = data; 8476 CpuDefinitionInfoList **cpu_list = user_data; 8477 CpuDefinitionInfo *info; 8478 const char *typename; 8479 8480 typename = object_class_get_name(oc); 8481 info = g_malloc0(sizeof(*info)); 8482 info->name = g_strndup(typename, 8483 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8484 info->q_typename = g_strdup(typename); 8485 8486 QAPI_LIST_PREPEND(*cpu_list, info); 8487 } 8488 8489 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8490 { 8491 CpuDefinitionInfoList *cpu_list = NULL; 8492 GSList *list; 8493 8494 list = object_class_get_list(TYPE_ARM_CPU, false); 8495 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8496 g_slist_free(list); 8497 8498 return cpu_list; 8499 } 8500 8501 /* 8502 * Private utility function for define_one_arm_cp_reg_with_opaque(): 8503 * add a single reginfo struct to the hash table. 8504 */ 8505 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8506 void *opaque, CPState state, 8507 CPSecureState secstate, 8508 int crm, int opc1, int opc2, 8509 const char *name) 8510 { 8511 CPUARMState *env = &cpu->env; 8512 uint32_t key; 8513 ARMCPRegInfo *r2; 8514 bool is64 = r->type & ARM_CP_64BIT; 8515 bool ns = secstate & ARM_CP_SECSTATE_NS; 8516 int cp = r->cp; 8517 size_t name_len; 8518 bool make_const; 8519 8520 switch (state) { 8521 case ARM_CP_STATE_AA32: 8522 /* We assume it is a cp15 register if the .cp field is left unset. */ 8523 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 8524 cp = 15; 8525 } 8526 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 8527 break; 8528 case ARM_CP_STATE_AA64: 8529 /* 8530 * To allow abbreviation of ARMCPRegInfo definitions, we treat 8531 * cp == 0 as equivalent to the value for "standard guest-visible 8532 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 8533 * in their AArch64 view (the .cp value may be non-zero for the 8534 * benefit of the AArch32 view). 8535 */ 8536 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8537 cp = CP_REG_ARM64_SYSREG_CP; 8538 } 8539 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 8540 break; 8541 default: 8542 g_assert_not_reached(); 8543 } 8544 8545 /* Overriding of an existing definition must be explicitly requested. */ 8546 if (!(r->type & ARM_CP_OVERRIDE)) { 8547 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 8548 if (oldreg) { 8549 assert(oldreg->type & ARM_CP_OVERRIDE); 8550 } 8551 } 8552 8553 /* 8554 * Eliminate registers that are not present because the EL is missing. 8555 * Doing this here makes it easier to put all registers for a given 8556 * feature into the same ARMCPRegInfo array and define them all at once. 8557 */ 8558 make_const = false; 8559 if (arm_feature(env, ARM_FEATURE_EL3)) { 8560 /* 8561 * An EL2 register without EL2 but with EL3 is (usually) RES0. 8562 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 8563 */ 8564 int min_el = ctz32(r->access) / 2; 8565 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 8566 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 8567 return; 8568 } 8569 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 8570 } 8571 } else { 8572 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 8573 ? PL2_RW : PL1_RW); 8574 if ((r->access & max_el) == 0) { 8575 return; 8576 } 8577 } 8578 8579 /* Combine cpreg and name into one allocation. */ 8580 name_len = strlen(name) + 1; 8581 r2 = g_malloc(sizeof(*r2) + name_len); 8582 *r2 = *r; 8583 r2->name = memcpy(r2 + 1, name, name_len); 8584 8585 /* 8586 * Update fields to match the instantiation, overwiting wildcards 8587 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 8588 */ 8589 r2->cp = cp; 8590 r2->crm = crm; 8591 r2->opc1 = opc1; 8592 r2->opc2 = opc2; 8593 r2->state = state; 8594 r2->secure = secstate; 8595 if (opaque) { 8596 r2->opaque = opaque; 8597 } 8598 8599 if (make_const) { 8600 /* This should not have been a very special register to begin. */ 8601 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 8602 assert(old_special == 0 || old_special == ARM_CP_NOP); 8603 /* 8604 * Set the special function to CONST, retaining the other flags. 8605 * This is important for e.g. ARM_CP_SVE so that we still 8606 * take the SVE trap if CPTR_EL3.EZ == 0. 8607 */ 8608 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 8609 /* 8610 * Usually, these registers become RES0, but there are a few 8611 * special cases like VPIDR_EL2 which have a constant non-zero 8612 * value with writes ignored. 8613 */ 8614 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 8615 r2->resetvalue = 0; 8616 } 8617 /* 8618 * ARM_CP_CONST has precedence, so removing the callbacks and 8619 * offsets are not strictly necessary, but it is potentially 8620 * less confusing to debug later. 8621 */ 8622 r2->readfn = NULL; 8623 r2->writefn = NULL; 8624 r2->raw_readfn = NULL; 8625 r2->raw_writefn = NULL; 8626 r2->resetfn = NULL; 8627 r2->fieldoffset = 0; 8628 r2->bank_fieldoffsets[0] = 0; 8629 r2->bank_fieldoffsets[1] = 0; 8630 } else { 8631 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 8632 8633 if (isbanked) { 8634 /* 8635 * Register is banked (using both entries in array). 8636 * Overwriting fieldoffset as the array is only used to define 8637 * banked registers but later only fieldoffset is used. 8638 */ 8639 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8640 } 8641 if (state == ARM_CP_STATE_AA32) { 8642 if (isbanked) { 8643 /* 8644 * If the register is banked then we don't need to migrate or 8645 * reset the 32-bit instance in certain cases: 8646 * 8647 * 1) If the register has both 32-bit and 64-bit instances 8648 * then we can count on the 64-bit instance taking care 8649 * of the non-secure bank. 8650 * 2) If ARMv8 is enabled then we can count on a 64-bit 8651 * version taking care of the secure bank. This requires 8652 * that separate 32 and 64-bit definitions are provided. 8653 */ 8654 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8655 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 8656 r2->type |= ARM_CP_ALIAS; 8657 } 8658 } else if ((secstate != r->secure) && !ns) { 8659 /* 8660 * The register is not banked so we only want to allow 8661 * migration of the non-secure instance. 8662 */ 8663 r2->type |= ARM_CP_ALIAS; 8664 } 8665 8666 if (HOST_BIG_ENDIAN && 8667 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 8668 r2->fieldoffset += sizeof(uint32_t); 8669 } 8670 } 8671 } 8672 8673 /* 8674 * By convention, for wildcarded registers only the first 8675 * entry is used for migration; the others are marked as 8676 * ALIAS so we don't try to transfer the register 8677 * multiple times. Special registers (ie NOP/WFI) are 8678 * never migratable and not even raw-accessible. 8679 */ 8680 if (r2->type & ARM_CP_SPECIAL_MASK) { 8681 r2->type |= ARM_CP_NO_RAW; 8682 } 8683 if (((r->crm == CP_ANY) && crm != 0) || 8684 ((r->opc1 == CP_ANY) && opc1 != 0) || 8685 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8686 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8687 } 8688 8689 /* 8690 * Check that raw accesses are either forbidden or handled. Note that 8691 * we can't assert this earlier because the setup of fieldoffset for 8692 * banked registers has to be done first. 8693 */ 8694 if (!(r2->type & ARM_CP_NO_RAW)) { 8695 assert(!raw_accessors_invalid(r2)); 8696 } 8697 8698 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 8699 } 8700 8701 8702 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8703 const ARMCPRegInfo *r, void *opaque) 8704 { 8705 /* Define implementations of coprocessor registers. 8706 * We store these in a hashtable because typically 8707 * there are less than 150 registers in a space which 8708 * is 16*16*16*8*8 = 262144 in size. 8709 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8710 * If a register is defined twice then the second definition is 8711 * used, so this can be used to define some generic registers and 8712 * then override them with implementation specific variations. 8713 * At least one of the original and the second definition should 8714 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8715 * against accidental use. 8716 * 8717 * The state field defines whether the register is to be 8718 * visible in the AArch32 or AArch64 execution state. If the 8719 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8720 * reginfo structure for the AArch32 view, which sees the lower 8721 * 32 bits of the 64 bit register. 8722 * 8723 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8724 * be wildcarded. AArch64 registers are always considered to be 64 8725 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8726 * the register, if any. 8727 */ 8728 int crm, opc1, opc2; 8729 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8730 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8731 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8732 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8733 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8734 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8735 CPState state; 8736 8737 /* 64 bit registers have only CRm and Opc1 fields */ 8738 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8739 /* op0 only exists in the AArch64 encodings */ 8740 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8741 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8742 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8743 /* 8744 * This API is only for Arm's system coprocessors (14 and 15) or 8745 * (M-profile or v7A-and-earlier only) for implementation defined 8746 * coprocessors in the range 0..7. Our decode assumes this, since 8747 * 8..13 can be used for other insns including VFP and Neon. See 8748 * valid_cp() in translate.c. Assert here that we haven't tried 8749 * to use an invalid coprocessor number. 8750 */ 8751 switch (r->state) { 8752 case ARM_CP_STATE_BOTH: 8753 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8754 if (r->cp == 0) { 8755 break; 8756 } 8757 /* fall through */ 8758 case ARM_CP_STATE_AA32: 8759 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8760 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8761 assert(r->cp >= 14 && r->cp <= 15); 8762 } else { 8763 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8764 } 8765 break; 8766 case ARM_CP_STATE_AA64: 8767 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8768 break; 8769 default: 8770 g_assert_not_reached(); 8771 } 8772 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8773 * encodes a minimum access level for the register. We roll this 8774 * runtime check into our general permission check code, so check 8775 * here that the reginfo's specified permissions are strict enough 8776 * to encompass the generic architectural permission check. 8777 */ 8778 if (r->state != ARM_CP_STATE_AA32) { 8779 CPAccessRights mask; 8780 switch (r->opc1) { 8781 case 0: 8782 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8783 mask = PL0U_R | PL1_RW; 8784 break; 8785 case 1: case 2: 8786 /* min_EL EL1 */ 8787 mask = PL1_RW; 8788 break; 8789 case 3: 8790 /* min_EL EL0 */ 8791 mask = PL0_RW; 8792 break; 8793 case 4: 8794 case 5: 8795 /* min_EL EL2 */ 8796 mask = PL2_RW; 8797 break; 8798 case 6: 8799 /* min_EL EL3 */ 8800 mask = PL3_RW; 8801 break; 8802 case 7: 8803 /* min_EL EL1, secure mode only (we don't check the latter) */ 8804 mask = PL1_RW; 8805 break; 8806 default: 8807 /* broken reginfo with out-of-range opc1 */ 8808 g_assert_not_reached(); 8809 } 8810 /* assert our permissions are not too lax (stricter is fine) */ 8811 assert((r->access & ~mask) == 0); 8812 } 8813 8814 /* Check that the register definition has enough info to handle 8815 * reads and writes if they are permitted. 8816 */ 8817 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 8818 if (r->access & PL3_R) { 8819 assert((r->fieldoffset || 8820 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8821 r->readfn); 8822 } 8823 if (r->access & PL3_W) { 8824 assert((r->fieldoffset || 8825 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8826 r->writefn); 8827 } 8828 } 8829 8830 for (crm = crmmin; crm <= crmmax; crm++) { 8831 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8832 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8833 for (state = ARM_CP_STATE_AA32; 8834 state <= ARM_CP_STATE_AA64; state++) { 8835 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8836 continue; 8837 } 8838 if (state == ARM_CP_STATE_AA32) { 8839 /* Under AArch32 CP registers can be common 8840 * (same for secure and non-secure world) or banked. 8841 */ 8842 char *name; 8843 8844 switch (r->secure) { 8845 case ARM_CP_SECSTATE_S: 8846 case ARM_CP_SECSTATE_NS: 8847 add_cpreg_to_hashtable(cpu, r, opaque, state, 8848 r->secure, crm, opc1, opc2, 8849 r->name); 8850 break; 8851 case ARM_CP_SECSTATE_BOTH: 8852 name = g_strdup_printf("%s_S", r->name); 8853 add_cpreg_to_hashtable(cpu, r, opaque, state, 8854 ARM_CP_SECSTATE_S, 8855 crm, opc1, opc2, name); 8856 g_free(name); 8857 add_cpreg_to_hashtable(cpu, r, opaque, state, 8858 ARM_CP_SECSTATE_NS, 8859 crm, opc1, opc2, r->name); 8860 break; 8861 default: 8862 g_assert_not_reached(); 8863 } 8864 } else { 8865 /* AArch64 registers get mapped to non-secure instance 8866 * of AArch32 */ 8867 add_cpreg_to_hashtable(cpu, r, opaque, state, 8868 ARM_CP_SECSTATE_NS, 8869 crm, opc1, opc2, r->name); 8870 } 8871 } 8872 } 8873 } 8874 } 8875 } 8876 8877 /* Define a whole list of registers */ 8878 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 8879 void *opaque, size_t len) 8880 { 8881 size_t i; 8882 for (i = 0; i < len; ++i) { 8883 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 8884 } 8885 } 8886 8887 /* 8888 * Modify ARMCPRegInfo for access from userspace. 8889 * 8890 * This is a data driven modification directed by 8891 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8892 * user-space cannot alter any values and dynamic values pertaining to 8893 * execution state are hidden from user space view anyway. 8894 */ 8895 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 8896 const ARMCPRegUserSpaceInfo *mods, 8897 size_t mods_len) 8898 { 8899 for (size_t mi = 0; mi < mods_len; ++mi) { 8900 const ARMCPRegUserSpaceInfo *m = mods + mi; 8901 GPatternSpec *pat = NULL; 8902 8903 if (m->is_glob) { 8904 pat = g_pattern_spec_new(m->name); 8905 } 8906 for (size_t ri = 0; ri < regs_len; ++ri) { 8907 ARMCPRegInfo *r = regs + ri; 8908 8909 if (pat && g_pattern_match_string(pat, r->name)) { 8910 r->type = ARM_CP_CONST; 8911 r->access = PL0U_R; 8912 r->resetvalue = 0; 8913 /* continue */ 8914 } else if (strcmp(r->name, m->name) == 0) { 8915 r->type = ARM_CP_CONST; 8916 r->access = PL0U_R; 8917 r->resetvalue &= m->exported_bits; 8918 r->resetvalue |= m->fixed_bits; 8919 break; 8920 } 8921 } 8922 if (pat) { 8923 g_pattern_spec_free(pat); 8924 } 8925 } 8926 } 8927 8928 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8929 { 8930 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 8931 } 8932 8933 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8934 uint64_t value) 8935 { 8936 /* Helper coprocessor write function for write-ignore registers */ 8937 } 8938 8939 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8940 { 8941 /* Helper coprocessor write function for read-as-zero registers */ 8942 return 0; 8943 } 8944 8945 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8946 { 8947 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8948 } 8949 8950 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8951 { 8952 /* Return true if it is not valid for us to switch to 8953 * this CPU mode (ie all the UNPREDICTABLE cases in 8954 * the ARM ARM CPSRWriteByInstr pseudocode). 8955 */ 8956 8957 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8958 if (write_type == CPSRWriteByInstr && 8959 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8960 mode == ARM_CPU_MODE_HYP)) { 8961 return 1; 8962 } 8963 8964 switch (mode) { 8965 case ARM_CPU_MODE_USR: 8966 return 0; 8967 case ARM_CPU_MODE_SYS: 8968 case ARM_CPU_MODE_SVC: 8969 case ARM_CPU_MODE_ABT: 8970 case ARM_CPU_MODE_UND: 8971 case ARM_CPU_MODE_IRQ: 8972 case ARM_CPU_MODE_FIQ: 8973 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8974 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8975 */ 8976 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8977 * and CPS are treated as illegal mode changes. 8978 */ 8979 if (write_type == CPSRWriteByInstr && 8980 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8981 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8982 return 1; 8983 } 8984 return 0; 8985 case ARM_CPU_MODE_HYP: 8986 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 8987 case ARM_CPU_MODE_MON: 8988 return arm_current_el(env) < 3; 8989 default: 8990 return 1; 8991 } 8992 } 8993 8994 uint32_t cpsr_read(CPUARMState *env) 8995 { 8996 int ZF; 8997 ZF = (env->ZF == 0); 8998 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 8999 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9000 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9001 | ((env->condexec_bits & 0xfc) << 8) 9002 | (env->GE << 16) | (env->daif & CPSR_AIF); 9003 } 9004 9005 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9006 CPSRWriteType write_type) 9007 { 9008 uint32_t changed_daif; 9009 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9010 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9011 9012 if (mask & CPSR_NZCV) { 9013 env->ZF = (~val) & CPSR_Z; 9014 env->NF = val; 9015 env->CF = (val >> 29) & 1; 9016 env->VF = (val << 3) & 0x80000000; 9017 } 9018 if (mask & CPSR_Q) 9019 env->QF = ((val & CPSR_Q) != 0); 9020 if (mask & CPSR_T) 9021 env->thumb = ((val & CPSR_T) != 0); 9022 if (mask & CPSR_IT_0_1) { 9023 env->condexec_bits &= ~3; 9024 env->condexec_bits |= (val >> 25) & 3; 9025 } 9026 if (mask & CPSR_IT_2_7) { 9027 env->condexec_bits &= 3; 9028 env->condexec_bits |= (val >> 8) & 0xfc; 9029 } 9030 if (mask & CPSR_GE) { 9031 env->GE = (val >> 16) & 0xf; 9032 } 9033 9034 /* In a V7 implementation that includes the security extensions but does 9035 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9036 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9037 * bits respectively. 9038 * 9039 * In a V8 implementation, it is permitted for privileged software to 9040 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9041 */ 9042 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9043 arm_feature(env, ARM_FEATURE_EL3) && 9044 !arm_feature(env, ARM_FEATURE_EL2) && 9045 !arm_is_secure(env)) { 9046 9047 changed_daif = (env->daif ^ val) & mask; 9048 9049 if (changed_daif & CPSR_A) { 9050 /* Check to see if we are allowed to change the masking of async 9051 * abort exceptions from a non-secure state. 9052 */ 9053 if (!(env->cp15.scr_el3 & SCR_AW)) { 9054 qemu_log_mask(LOG_GUEST_ERROR, 9055 "Ignoring attempt to switch CPSR_A flag from " 9056 "non-secure world with SCR.AW bit clear\n"); 9057 mask &= ~CPSR_A; 9058 } 9059 } 9060 9061 if (changed_daif & CPSR_F) { 9062 /* Check to see if we are allowed to change the masking of FIQ 9063 * exceptions from a non-secure state. 9064 */ 9065 if (!(env->cp15.scr_el3 & SCR_FW)) { 9066 qemu_log_mask(LOG_GUEST_ERROR, 9067 "Ignoring attempt to switch CPSR_F flag from " 9068 "non-secure world with SCR.FW bit clear\n"); 9069 mask &= ~CPSR_F; 9070 } 9071 9072 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9073 * If this bit is set software is not allowed to mask 9074 * FIQs, but is allowed to set CPSR_F to 0. 9075 */ 9076 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9077 (val & CPSR_F)) { 9078 qemu_log_mask(LOG_GUEST_ERROR, 9079 "Ignoring attempt to enable CPSR_F flag " 9080 "(non-maskable FIQ [NMFI] support enabled)\n"); 9081 mask &= ~CPSR_F; 9082 } 9083 } 9084 } 9085 9086 env->daif &= ~(CPSR_AIF & mask); 9087 env->daif |= val & CPSR_AIF & mask; 9088 9089 if (write_type != CPSRWriteRaw && 9090 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9091 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9092 /* Note that we can only get here in USR mode if this is a 9093 * gdb stub write; for this case we follow the architectural 9094 * behaviour for guest writes in USR mode of ignoring an attempt 9095 * to switch mode. (Those are caught by translate.c for writes 9096 * triggered by guest instructions.) 9097 */ 9098 mask &= ~CPSR_M; 9099 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9100 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9101 * v7, and has defined behaviour in v8: 9102 * + leave CPSR.M untouched 9103 * + allow changes to the other CPSR fields 9104 * + set PSTATE.IL 9105 * For user changes via the GDB stub, we don't set PSTATE.IL, 9106 * as this would be unnecessarily harsh for a user error. 9107 */ 9108 mask &= ~CPSR_M; 9109 if (write_type != CPSRWriteByGDBStub && 9110 arm_feature(env, ARM_FEATURE_V8)) { 9111 mask |= CPSR_IL; 9112 val |= CPSR_IL; 9113 } 9114 qemu_log_mask(LOG_GUEST_ERROR, 9115 "Illegal AArch32 mode switch attempt from %s to %s\n", 9116 aarch32_mode_name(env->uncached_cpsr), 9117 aarch32_mode_name(val)); 9118 } else { 9119 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9120 write_type == CPSRWriteExceptionReturn ? 9121 "Exception return from AArch32" : 9122 "AArch32 mode switch from", 9123 aarch32_mode_name(env->uncached_cpsr), 9124 aarch32_mode_name(val), env->regs[15]); 9125 switch_mode(env, val & CPSR_M); 9126 } 9127 } 9128 mask &= ~CACHED_CPSR_BITS; 9129 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9130 if (rebuild_hflags) { 9131 arm_rebuild_hflags(env); 9132 } 9133 } 9134 9135 /* Sign/zero extend */ 9136 uint32_t HELPER(sxtb16)(uint32_t x) 9137 { 9138 uint32_t res; 9139 res = (uint16_t)(int8_t)x; 9140 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9141 return res; 9142 } 9143 9144 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9145 { 9146 /* 9147 * Take a division-by-zero exception if necessary; otherwise return 9148 * to get the usual non-trapping division behaviour (result of 0) 9149 */ 9150 if (arm_feature(env, ARM_FEATURE_M) 9151 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9152 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9153 } 9154 } 9155 9156 uint32_t HELPER(uxtb16)(uint32_t x) 9157 { 9158 uint32_t res; 9159 res = (uint16_t)(uint8_t)x; 9160 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9161 return res; 9162 } 9163 9164 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9165 { 9166 if (den == 0) { 9167 handle_possible_div0_trap(env, GETPC()); 9168 return 0; 9169 } 9170 if (num == INT_MIN && den == -1) { 9171 return INT_MIN; 9172 } 9173 return num / den; 9174 } 9175 9176 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9177 { 9178 if (den == 0) { 9179 handle_possible_div0_trap(env, GETPC()); 9180 return 0; 9181 } 9182 return num / den; 9183 } 9184 9185 uint32_t HELPER(rbit)(uint32_t x) 9186 { 9187 return revbit32(x); 9188 } 9189 9190 #ifdef CONFIG_USER_ONLY 9191 9192 static void switch_mode(CPUARMState *env, int mode) 9193 { 9194 ARMCPU *cpu = env_archcpu(env); 9195 9196 if (mode != ARM_CPU_MODE_USR) { 9197 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9198 } 9199 } 9200 9201 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9202 uint32_t cur_el, bool secure) 9203 { 9204 return 1; 9205 } 9206 9207 void aarch64_sync_64_to_32(CPUARMState *env) 9208 { 9209 g_assert_not_reached(); 9210 } 9211 9212 #else 9213 9214 static void switch_mode(CPUARMState *env, int mode) 9215 { 9216 int old_mode; 9217 int i; 9218 9219 old_mode = env->uncached_cpsr & CPSR_M; 9220 if (mode == old_mode) 9221 return; 9222 9223 if (old_mode == ARM_CPU_MODE_FIQ) { 9224 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9225 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9226 } else if (mode == ARM_CPU_MODE_FIQ) { 9227 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9228 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9229 } 9230 9231 i = bank_number(old_mode); 9232 env->banked_r13[i] = env->regs[13]; 9233 env->banked_spsr[i] = env->spsr; 9234 9235 i = bank_number(mode); 9236 env->regs[13] = env->banked_r13[i]; 9237 env->spsr = env->banked_spsr[i]; 9238 9239 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9240 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9241 } 9242 9243 /* Physical Interrupt Target EL Lookup Table 9244 * 9245 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9246 * 9247 * The below multi-dimensional table is used for looking up the target 9248 * exception level given numerous condition criteria. Specifically, the 9249 * target EL is based on SCR and HCR routing controls as well as the 9250 * currently executing EL and secure state. 9251 * 9252 * Dimensions: 9253 * target_el_table[2][2][2][2][2][4] 9254 * | | | | | +--- Current EL 9255 * | | | | +------ Non-secure(0)/Secure(1) 9256 * | | | +--------- HCR mask override 9257 * | | +------------ SCR exec state control 9258 * | +--------------- SCR mask override 9259 * +------------------ 32-bit(0)/64-bit(1) EL3 9260 * 9261 * The table values are as such: 9262 * 0-3 = EL0-EL3 9263 * -1 = Cannot occur 9264 * 9265 * The ARM ARM target EL table includes entries indicating that an "exception 9266 * is not taken". The two cases where this is applicable are: 9267 * 1) An exception is taken from EL3 but the SCR does not have the exception 9268 * routed to EL3. 9269 * 2) An exception is taken from EL2 but the HCR does not have the exception 9270 * routed to EL2. 9271 * In these two cases, the below table contain a target of EL1. This value is 9272 * returned as it is expected that the consumer of the table data will check 9273 * for "target EL >= current EL" to ensure the exception is not taken. 9274 * 9275 * SCR HCR 9276 * 64 EA AMO From 9277 * BIT IRQ IMO Non-secure Secure 9278 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9279 */ 9280 static const int8_t target_el_table[2][2][2][2][2][4] = { 9281 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9282 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9283 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9284 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9285 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9286 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9287 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9288 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9289 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9290 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9291 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9292 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9293 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9294 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9295 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9296 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9297 }; 9298 9299 /* 9300 * Determine the target EL for physical exceptions 9301 */ 9302 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9303 uint32_t cur_el, bool secure) 9304 { 9305 CPUARMState *env = cs->env_ptr; 9306 bool rw; 9307 bool scr; 9308 bool hcr; 9309 int target_el; 9310 /* Is the highest EL AArch64? */ 9311 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9312 uint64_t hcr_el2; 9313 9314 if (arm_feature(env, ARM_FEATURE_EL3)) { 9315 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9316 } else { 9317 /* Either EL2 is the highest EL (and so the EL2 register width 9318 * is given by is64); or there is no EL2 or EL3, in which case 9319 * the value of 'rw' does not affect the table lookup anyway. 9320 */ 9321 rw = is64; 9322 } 9323 9324 hcr_el2 = arm_hcr_el2_eff(env); 9325 switch (excp_idx) { 9326 case EXCP_IRQ: 9327 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9328 hcr = hcr_el2 & HCR_IMO; 9329 break; 9330 case EXCP_FIQ: 9331 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9332 hcr = hcr_el2 & HCR_FMO; 9333 break; 9334 default: 9335 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9336 hcr = hcr_el2 & HCR_AMO; 9337 break; 9338 }; 9339 9340 /* 9341 * For these purposes, TGE and AMO/IMO/FMO both force the 9342 * interrupt to EL2. Fold TGE into the bit extracted above. 9343 */ 9344 hcr |= (hcr_el2 & HCR_TGE) != 0; 9345 9346 /* Perform a table-lookup for the target EL given the current state */ 9347 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9348 9349 assert(target_el > 0); 9350 9351 return target_el; 9352 } 9353 9354 void arm_log_exception(CPUState *cs) 9355 { 9356 int idx = cs->exception_index; 9357 9358 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9359 const char *exc = NULL; 9360 static const char * const excnames[] = { 9361 [EXCP_UDEF] = "Undefined Instruction", 9362 [EXCP_SWI] = "SVC", 9363 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9364 [EXCP_DATA_ABORT] = "Data Abort", 9365 [EXCP_IRQ] = "IRQ", 9366 [EXCP_FIQ] = "FIQ", 9367 [EXCP_BKPT] = "Breakpoint", 9368 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9369 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9370 [EXCP_HVC] = "Hypervisor Call", 9371 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9372 [EXCP_SMC] = "Secure Monitor Call", 9373 [EXCP_VIRQ] = "Virtual IRQ", 9374 [EXCP_VFIQ] = "Virtual FIQ", 9375 [EXCP_SEMIHOST] = "Semihosting call", 9376 [EXCP_NOCP] = "v7M NOCP UsageFault", 9377 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9378 [EXCP_STKOF] = "v8M STKOF UsageFault", 9379 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9380 [EXCP_LSERR] = "v8M LSERR UsageFault", 9381 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9382 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9383 [EXCP_VSERR] = "Virtual SERR", 9384 }; 9385 9386 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9387 exc = excnames[idx]; 9388 } 9389 if (!exc) { 9390 exc = "unknown"; 9391 } 9392 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9393 idx, exc, cs->cpu_index); 9394 } 9395 } 9396 9397 /* 9398 * Function used to synchronize QEMU's AArch64 register set with AArch32 9399 * register set. This is necessary when switching between AArch32 and AArch64 9400 * execution state. 9401 */ 9402 void aarch64_sync_32_to_64(CPUARMState *env) 9403 { 9404 int i; 9405 uint32_t mode = env->uncached_cpsr & CPSR_M; 9406 9407 /* We can blanket copy R[0:7] to X[0:7] */ 9408 for (i = 0; i < 8; i++) { 9409 env->xregs[i] = env->regs[i]; 9410 } 9411 9412 /* 9413 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9414 * Otherwise, they come from the banked user regs. 9415 */ 9416 if (mode == ARM_CPU_MODE_FIQ) { 9417 for (i = 8; i < 13; i++) { 9418 env->xregs[i] = env->usr_regs[i - 8]; 9419 } 9420 } else { 9421 for (i = 8; i < 13; i++) { 9422 env->xregs[i] = env->regs[i]; 9423 } 9424 } 9425 9426 /* 9427 * Registers x13-x23 are the various mode SP and FP registers. Registers 9428 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9429 * from the mode banked register. 9430 */ 9431 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9432 env->xregs[13] = env->regs[13]; 9433 env->xregs[14] = env->regs[14]; 9434 } else { 9435 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9436 /* HYP is an exception in that it is copied from r14 */ 9437 if (mode == ARM_CPU_MODE_HYP) { 9438 env->xregs[14] = env->regs[14]; 9439 } else { 9440 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9441 } 9442 } 9443 9444 if (mode == ARM_CPU_MODE_HYP) { 9445 env->xregs[15] = env->regs[13]; 9446 } else { 9447 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9448 } 9449 9450 if (mode == ARM_CPU_MODE_IRQ) { 9451 env->xregs[16] = env->regs[14]; 9452 env->xregs[17] = env->regs[13]; 9453 } else { 9454 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9455 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9456 } 9457 9458 if (mode == ARM_CPU_MODE_SVC) { 9459 env->xregs[18] = env->regs[14]; 9460 env->xregs[19] = env->regs[13]; 9461 } else { 9462 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9463 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9464 } 9465 9466 if (mode == ARM_CPU_MODE_ABT) { 9467 env->xregs[20] = env->regs[14]; 9468 env->xregs[21] = env->regs[13]; 9469 } else { 9470 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9471 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9472 } 9473 9474 if (mode == ARM_CPU_MODE_UND) { 9475 env->xregs[22] = env->regs[14]; 9476 env->xregs[23] = env->regs[13]; 9477 } else { 9478 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9479 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9480 } 9481 9482 /* 9483 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9484 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9485 * FIQ bank for r8-r14. 9486 */ 9487 if (mode == ARM_CPU_MODE_FIQ) { 9488 for (i = 24; i < 31; i++) { 9489 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9490 } 9491 } else { 9492 for (i = 24; i < 29; i++) { 9493 env->xregs[i] = env->fiq_regs[i - 24]; 9494 } 9495 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9496 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9497 } 9498 9499 env->pc = env->regs[15]; 9500 } 9501 9502 /* 9503 * Function used to synchronize QEMU's AArch32 register set with AArch64 9504 * register set. This is necessary when switching between AArch32 and AArch64 9505 * execution state. 9506 */ 9507 void aarch64_sync_64_to_32(CPUARMState *env) 9508 { 9509 int i; 9510 uint32_t mode = env->uncached_cpsr & CPSR_M; 9511 9512 /* We can blanket copy X[0:7] to R[0:7] */ 9513 for (i = 0; i < 8; i++) { 9514 env->regs[i] = env->xregs[i]; 9515 } 9516 9517 /* 9518 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9519 * Otherwise, we copy x8-x12 into the banked user regs. 9520 */ 9521 if (mode == ARM_CPU_MODE_FIQ) { 9522 for (i = 8; i < 13; i++) { 9523 env->usr_regs[i - 8] = env->xregs[i]; 9524 } 9525 } else { 9526 for (i = 8; i < 13; i++) { 9527 env->regs[i] = env->xregs[i]; 9528 } 9529 } 9530 9531 /* 9532 * Registers r13 & r14 depend on the current mode. 9533 * If we are in a given mode, we copy the corresponding x registers to r13 9534 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9535 * for the mode. 9536 */ 9537 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9538 env->regs[13] = env->xregs[13]; 9539 env->regs[14] = env->xregs[14]; 9540 } else { 9541 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9542 9543 /* 9544 * HYP is an exception in that it does not have its own banked r14 but 9545 * shares the USR r14 9546 */ 9547 if (mode == ARM_CPU_MODE_HYP) { 9548 env->regs[14] = env->xregs[14]; 9549 } else { 9550 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9551 } 9552 } 9553 9554 if (mode == ARM_CPU_MODE_HYP) { 9555 env->regs[13] = env->xregs[15]; 9556 } else { 9557 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9558 } 9559 9560 if (mode == ARM_CPU_MODE_IRQ) { 9561 env->regs[14] = env->xregs[16]; 9562 env->regs[13] = env->xregs[17]; 9563 } else { 9564 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9565 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9566 } 9567 9568 if (mode == ARM_CPU_MODE_SVC) { 9569 env->regs[14] = env->xregs[18]; 9570 env->regs[13] = env->xregs[19]; 9571 } else { 9572 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9573 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9574 } 9575 9576 if (mode == ARM_CPU_MODE_ABT) { 9577 env->regs[14] = env->xregs[20]; 9578 env->regs[13] = env->xregs[21]; 9579 } else { 9580 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9581 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9582 } 9583 9584 if (mode == ARM_CPU_MODE_UND) { 9585 env->regs[14] = env->xregs[22]; 9586 env->regs[13] = env->xregs[23]; 9587 } else { 9588 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9589 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9590 } 9591 9592 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9593 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9594 * FIQ bank for r8-r14. 9595 */ 9596 if (mode == ARM_CPU_MODE_FIQ) { 9597 for (i = 24; i < 31; i++) { 9598 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9599 } 9600 } else { 9601 for (i = 24; i < 29; i++) { 9602 env->fiq_regs[i - 24] = env->xregs[i]; 9603 } 9604 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9605 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9606 } 9607 9608 env->regs[15] = env->pc; 9609 } 9610 9611 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9612 uint32_t mask, uint32_t offset, 9613 uint32_t newpc) 9614 { 9615 int new_el; 9616 9617 /* Change the CPU state so as to actually take the exception. */ 9618 switch_mode(env, new_mode); 9619 9620 /* 9621 * For exceptions taken to AArch32 we must clear the SS bit in both 9622 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9623 */ 9624 env->pstate &= ~PSTATE_SS; 9625 env->spsr = cpsr_read(env); 9626 /* Clear IT bits. */ 9627 env->condexec_bits = 0; 9628 /* Switch to the new mode, and to the correct instruction set. */ 9629 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9630 9631 /* This must be after mode switching. */ 9632 new_el = arm_current_el(env); 9633 9634 /* Set new mode endianness */ 9635 env->uncached_cpsr &= ~CPSR_E; 9636 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9637 env->uncached_cpsr |= CPSR_E; 9638 } 9639 /* J and IL must always be cleared for exception entry */ 9640 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9641 env->daif |= mask; 9642 9643 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9644 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9645 env->uncached_cpsr |= CPSR_SSBS; 9646 } else { 9647 env->uncached_cpsr &= ~CPSR_SSBS; 9648 } 9649 } 9650 9651 if (new_mode == ARM_CPU_MODE_HYP) { 9652 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9653 env->elr_el[2] = env->regs[15]; 9654 } else { 9655 /* CPSR.PAN is normally preserved preserved unless... */ 9656 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9657 switch (new_el) { 9658 case 3: 9659 if (!arm_is_secure_below_el3(env)) { 9660 /* ... the target is EL3, from non-secure state. */ 9661 env->uncached_cpsr &= ~CPSR_PAN; 9662 break; 9663 } 9664 /* ... the target is EL3, from secure state ... */ 9665 /* fall through */ 9666 case 1: 9667 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9668 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9669 env->uncached_cpsr |= CPSR_PAN; 9670 } 9671 break; 9672 } 9673 } 9674 /* 9675 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9676 * and we should just guard the thumb mode on V4 9677 */ 9678 if (arm_feature(env, ARM_FEATURE_V4T)) { 9679 env->thumb = 9680 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9681 } 9682 env->regs[14] = env->regs[15] + offset; 9683 } 9684 env->regs[15] = newpc; 9685 arm_rebuild_hflags(env); 9686 } 9687 9688 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9689 { 9690 /* 9691 * Handle exception entry to Hyp mode; this is sufficiently 9692 * different to entry to other AArch32 modes that we handle it 9693 * separately here. 9694 * 9695 * The vector table entry used is always the 0x14 Hyp mode entry point, 9696 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9697 * The offset applied to the preferred return address is always zero 9698 * (see DDI0487C.a section G1.12.3). 9699 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9700 */ 9701 uint32_t addr, mask; 9702 ARMCPU *cpu = ARM_CPU(cs); 9703 CPUARMState *env = &cpu->env; 9704 9705 switch (cs->exception_index) { 9706 case EXCP_UDEF: 9707 addr = 0x04; 9708 break; 9709 case EXCP_SWI: 9710 addr = 0x08; 9711 break; 9712 case EXCP_BKPT: 9713 /* Fall through to prefetch abort. */ 9714 case EXCP_PREFETCH_ABORT: 9715 env->cp15.ifar_s = env->exception.vaddress; 9716 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9717 (uint32_t)env->exception.vaddress); 9718 addr = 0x0c; 9719 break; 9720 case EXCP_DATA_ABORT: 9721 env->cp15.dfar_s = env->exception.vaddress; 9722 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9723 (uint32_t)env->exception.vaddress); 9724 addr = 0x10; 9725 break; 9726 case EXCP_IRQ: 9727 addr = 0x18; 9728 break; 9729 case EXCP_FIQ: 9730 addr = 0x1c; 9731 break; 9732 case EXCP_HVC: 9733 addr = 0x08; 9734 break; 9735 case EXCP_HYP_TRAP: 9736 addr = 0x14; 9737 break; 9738 default: 9739 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9740 } 9741 9742 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9743 if (!arm_feature(env, ARM_FEATURE_V8)) { 9744 /* 9745 * QEMU syndrome values are v8-style. v7 has the IL bit 9746 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9747 * If this is a v7 CPU, squash the IL bit in those cases. 9748 */ 9749 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9750 (cs->exception_index == EXCP_DATA_ABORT && 9751 !(env->exception.syndrome & ARM_EL_ISV)) || 9752 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9753 env->exception.syndrome &= ~ARM_EL_IL; 9754 } 9755 } 9756 env->cp15.esr_el[2] = env->exception.syndrome; 9757 } 9758 9759 if (arm_current_el(env) != 2 && addr < 0x14) { 9760 addr = 0x14; 9761 } 9762 9763 mask = 0; 9764 if (!(env->cp15.scr_el3 & SCR_EA)) { 9765 mask |= CPSR_A; 9766 } 9767 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9768 mask |= CPSR_I; 9769 } 9770 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9771 mask |= CPSR_F; 9772 } 9773 9774 addr += env->cp15.hvbar; 9775 9776 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9777 } 9778 9779 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9780 { 9781 ARMCPU *cpu = ARM_CPU(cs); 9782 CPUARMState *env = &cpu->env; 9783 uint32_t addr; 9784 uint32_t mask; 9785 int new_mode; 9786 uint32_t offset; 9787 uint32_t moe; 9788 9789 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9790 switch (syn_get_ec(env->exception.syndrome)) { 9791 case EC_BREAKPOINT: 9792 case EC_BREAKPOINT_SAME_EL: 9793 moe = 1; 9794 break; 9795 case EC_WATCHPOINT: 9796 case EC_WATCHPOINT_SAME_EL: 9797 moe = 10; 9798 break; 9799 case EC_AA32_BKPT: 9800 moe = 3; 9801 break; 9802 case EC_VECTORCATCH: 9803 moe = 5; 9804 break; 9805 default: 9806 moe = 0; 9807 break; 9808 } 9809 9810 if (moe) { 9811 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9812 } 9813 9814 if (env->exception.target_el == 2) { 9815 arm_cpu_do_interrupt_aarch32_hyp(cs); 9816 return; 9817 } 9818 9819 switch (cs->exception_index) { 9820 case EXCP_UDEF: 9821 new_mode = ARM_CPU_MODE_UND; 9822 addr = 0x04; 9823 mask = CPSR_I; 9824 if (env->thumb) 9825 offset = 2; 9826 else 9827 offset = 4; 9828 break; 9829 case EXCP_SWI: 9830 new_mode = ARM_CPU_MODE_SVC; 9831 addr = 0x08; 9832 mask = CPSR_I; 9833 /* The PC already points to the next instruction. */ 9834 offset = 0; 9835 break; 9836 case EXCP_BKPT: 9837 /* Fall through to prefetch abort. */ 9838 case EXCP_PREFETCH_ABORT: 9839 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9840 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9841 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9842 env->exception.fsr, (uint32_t)env->exception.vaddress); 9843 new_mode = ARM_CPU_MODE_ABT; 9844 addr = 0x0c; 9845 mask = CPSR_A | CPSR_I; 9846 offset = 4; 9847 break; 9848 case EXCP_DATA_ABORT: 9849 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9850 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9851 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9852 env->exception.fsr, 9853 (uint32_t)env->exception.vaddress); 9854 new_mode = ARM_CPU_MODE_ABT; 9855 addr = 0x10; 9856 mask = CPSR_A | CPSR_I; 9857 offset = 8; 9858 break; 9859 case EXCP_IRQ: 9860 new_mode = ARM_CPU_MODE_IRQ; 9861 addr = 0x18; 9862 /* Disable IRQ and imprecise data aborts. */ 9863 mask = CPSR_A | CPSR_I; 9864 offset = 4; 9865 if (env->cp15.scr_el3 & SCR_IRQ) { 9866 /* IRQ routed to monitor mode */ 9867 new_mode = ARM_CPU_MODE_MON; 9868 mask |= CPSR_F; 9869 } 9870 break; 9871 case EXCP_FIQ: 9872 new_mode = ARM_CPU_MODE_FIQ; 9873 addr = 0x1c; 9874 /* Disable FIQ, IRQ and imprecise data aborts. */ 9875 mask = CPSR_A | CPSR_I | CPSR_F; 9876 if (env->cp15.scr_el3 & SCR_FIQ) { 9877 /* FIQ routed to monitor mode */ 9878 new_mode = ARM_CPU_MODE_MON; 9879 } 9880 offset = 4; 9881 break; 9882 case EXCP_VIRQ: 9883 new_mode = ARM_CPU_MODE_IRQ; 9884 addr = 0x18; 9885 /* Disable IRQ and imprecise data aborts. */ 9886 mask = CPSR_A | CPSR_I; 9887 offset = 4; 9888 break; 9889 case EXCP_VFIQ: 9890 new_mode = ARM_CPU_MODE_FIQ; 9891 addr = 0x1c; 9892 /* Disable FIQ, IRQ and imprecise data aborts. */ 9893 mask = CPSR_A | CPSR_I | CPSR_F; 9894 offset = 4; 9895 break; 9896 case EXCP_VSERR: 9897 { 9898 /* 9899 * Note that this is reported as a data abort, but the DFAR 9900 * has an UNKNOWN value. Construct the SError syndrome from 9901 * AET and ExT fields. 9902 */ 9903 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 9904 9905 if (extended_addresses_enabled(env)) { 9906 env->exception.fsr = arm_fi_to_lfsc(&fi); 9907 } else { 9908 env->exception.fsr = arm_fi_to_sfsc(&fi); 9909 } 9910 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 9911 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9912 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 9913 env->exception.fsr); 9914 9915 new_mode = ARM_CPU_MODE_ABT; 9916 addr = 0x10; 9917 mask = CPSR_A | CPSR_I; 9918 offset = 8; 9919 } 9920 break; 9921 case EXCP_SMC: 9922 new_mode = ARM_CPU_MODE_MON; 9923 addr = 0x08; 9924 mask = CPSR_A | CPSR_I | CPSR_F; 9925 offset = 0; 9926 break; 9927 default: 9928 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9929 return; /* Never happens. Keep compiler happy. */ 9930 } 9931 9932 if (new_mode == ARM_CPU_MODE_MON) { 9933 addr += env->cp15.mvbar; 9934 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9935 /* High vectors. When enabled, base address cannot be remapped. */ 9936 addr += 0xffff0000; 9937 } else { 9938 /* ARM v7 architectures provide a vector base address register to remap 9939 * the interrupt vector table. 9940 * This register is only followed in non-monitor mode, and is banked. 9941 * Note: only bits 31:5 are valid. 9942 */ 9943 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9944 } 9945 9946 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9947 env->cp15.scr_el3 &= ~SCR_NS; 9948 } 9949 9950 take_aarch32_exception(env, new_mode, mask, offset, addr); 9951 } 9952 9953 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9954 { 9955 /* 9956 * Return the register number of the AArch64 view of the AArch32 9957 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9958 * be that of the AArch32 mode the exception came from. 9959 */ 9960 int mode = env->uncached_cpsr & CPSR_M; 9961 9962 switch (aarch32_reg) { 9963 case 0 ... 7: 9964 return aarch32_reg; 9965 case 8 ... 12: 9966 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9967 case 13: 9968 switch (mode) { 9969 case ARM_CPU_MODE_USR: 9970 case ARM_CPU_MODE_SYS: 9971 return 13; 9972 case ARM_CPU_MODE_HYP: 9973 return 15; 9974 case ARM_CPU_MODE_IRQ: 9975 return 17; 9976 case ARM_CPU_MODE_SVC: 9977 return 19; 9978 case ARM_CPU_MODE_ABT: 9979 return 21; 9980 case ARM_CPU_MODE_UND: 9981 return 23; 9982 case ARM_CPU_MODE_FIQ: 9983 return 29; 9984 default: 9985 g_assert_not_reached(); 9986 } 9987 case 14: 9988 switch (mode) { 9989 case ARM_CPU_MODE_USR: 9990 case ARM_CPU_MODE_SYS: 9991 case ARM_CPU_MODE_HYP: 9992 return 14; 9993 case ARM_CPU_MODE_IRQ: 9994 return 16; 9995 case ARM_CPU_MODE_SVC: 9996 return 18; 9997 case ARM_CPU_MODE_ABT: 9998 return 20; 9999 case ARM_CPU_MODE_UND: 10000 return 22; 10001 case ARM_CPU_MODE_FIQ: 10002 return 30; 10003 default: 10004 g_assert_not_reached(); 10005 } 10006 case 15: 10007 return 31; 10008 default: 10009 g_assert_not_reached(); 10010 } 10011 } 10012 10013 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10014 { 10015 uint32_t ret = cpsr_read(env); 10016 10017 /* Move DIT to the correct location for SPSR_ELx */ 10018 if (ret & CPSR_DIT) { 10019 ret &= ~CPSR_DIT; 10020 ret |= PSTATE_DIT; 10021 } 10022 /* Merge PSTATE.SS into SPSR_ELx */ 10023 ret |= env->pstate & PSTATE_SS; 10024 10025 return ret; 10026 } 10027 10028 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10029 { 10030 /* Return true if this syndrome value is a synchronous external abort */ 10031 switch (syn_get_ec(syndrome)) { 10032 case EC_INSNABORT: 10033 case EC_INSNABORT_SAME_EL: 10034 case EC_DATAABORT: 10035 case EC_DATAABORT_SAME_EL: 10036 /* Look at fault status code for all the synchronous ext abort cases */ 10037 switch (syndrome & 0x3f) { 10038 case 0x10: 10039 case 0x13: 10040 case 0x14: 10041 case 0x15: 10042 case 0x16: 10043 case 0x17: 10044 return true; 10045 default: 10046 return false; 10047 } 10048 default: 10049 return false; 10050 } 10051 } 10052 10053 /* Handle exception entry to a target EL which is using AArch64 */ 10054 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10055 { 10056 ARMCPU *cpu = ARM_CPU(cs); 10057 CPUARMState *env = &cpu->env; 10058 unsigned int new_el = env->exception.target_el; 10059 target_ulong addr = env->cp15.vbar_el[new_el]; 10060 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10061 unsigned int old_mode; 10062 unsigned int cur_el = arm_current_el(env); 10063 int rt; 10064 10065 /* 10066 * Note that new_el can never be 0. If cur_el is 0, then 10067 * el0_a64 is is_a64(), else el0_a64 is ignored. 10068 */ 10069 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10070 10071 if (cur_el < new_el) { 10072 /* Entry vector offset depends on whether the implemented EL 10073 * immediately lower than the target level is using AArch32 or AArch64 10074 */ 10075 bool is_aa64; 10076 uint64_t hcr; 10077 10078 switch (new_el) { 10079 case 3: 10080 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10081 break; 10082 case 2: 10083 hcr = arm_hcr_el2_eff(env); 10084 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10085 is_aa64 = (hcr & HCR_RW) != 0; 10086 break; 10087 } 10088 /* fall through */ 10089 case 1: 10090 is_aa64 = is_a64(env); 10091 break; 10092 default: 10093 g_assert_not_reached(); 10094 } 10095 10096 if (is_aa64) { 10097 addr += 0x400; 10098 } else { 10099 addr += 0x600; 10100 } 10101 } else if (pstate_read(env) & PSTATE_SP) { 10102 addr += 0x200; 10103 } 10104 10105 switch (cs->exception_index) { 10106 case EXCP_PREFETCH_ABORT: 10107 case EXCP_DATA_ABORT: 10108 /* 10109 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10110 * to be taken to the SError vector entrypoint. 10111 */ 10112 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10113 syndrome_is_sync_extabt(env->exception.syndrome)) { 10114 addr += 0x180; 10115 } 10116 env->cp15.far_el[new_el] = env->exception.vaddress; 10117 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10118 env->cp15.far_el[new_el]); 10119 /* fall through */ 10120 case EXCP_BKPT: 10121 case EXCP_UDEF: 10122 case EXCP_SWI: 10123 case EXCP_HVC: 10124 case EXCP_HYP_TRAP: 10125 case EXCP_SMC: 10126 switch (syn_get_ec(env->exception.syndrome)) { 10127 case EC_ADVSIMDFPACCESSTRAP: 10128 /* 10129 * QEMU internal FP/SIMD syndromes from AArch32 include the 10130 * TA and coproc fields which are only exposed if the exception 10131 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10132 * AArch64 format syndrome. 10133 */ 10134 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10135 break; 10136 case EC_CP14RTTRAP: 10137 case EC_CP15RTTRAP: 10138 case EC_CP14DTTRAP: 10139 /* 10140 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10141 * the raw register field from the insn; when taking this to 10142 * AArch64 we must convert it to the AArch64 view of the register 10143 * number. Notice that we read a 4-bit AArch32 register number and 10144 * write back a 5-bit AArch64 one. 10145 */ 10146 rt = extract32(env->exception.syndrome, 5, 4); 10147 rt = aarch64_regnum(env, rt); 10148 env->exception.syndrome = deposit32(env->exception.syndrome, 10149 5, 5, rt); 10150 break; 10151 case EC_CP15RRTTRAP: 10152 case EC_CP14RRTTRAP: 10153 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10154 rt = extract32(env->exception.syndrome, 5, 4); 10155 rt = aarch64_regnum(env, rt); 10156 env->exception.syndrome = deposit32(env->exception.syndrome, 10157 5, 5, rt); 10158 rt = extract32(env->exception.syndrome, 10, 4); 10159 rt = aarch64_regnum(env, rt); 10160 env->exception.syndrome = deposit32(env->exception.syndrome, 10161 10, 5, rt); 10162 break; 10163 } 10164 env->cp15.esr_el[new_el] = env->exception.syndrome; 10165 break; 10166 case EXCP_IRQ: 10167 case EXCP_VIRQ: 10168 addr += 0x80; 10169 break; 10170 case EXCP_FIQ: 10171 case EXCP_VFIQ: 10172 addr += 0x100; 10173 break; 10174 case EXCP_VSERR: 10175 addr += 0x180; 10176 /* Construct the SError syndrome from IDS and ISS fields. */ 10177 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10178 env->cp15.esr_el[new_el] = env->exception.syndrome; 10179 break; 10180 default: 10181 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10182 } 10183 10184 if (is_a64(env)) { 10185 old_mode = pstate_read(env); 10186 aarch64_save_sp(env, arm_current_el(env)); 10187 env->elr_el[new_el] = env->pc; 10188 } else { 10189 old_mode = cpsr_read_for_spsr_elx(env); 10190 env->elr_el[new_el] = env->regs[15]; 10191 10192 aarch64_sync_32_to_64(env); 10193 10194 env->condexec_bits = 0; 10195 } 10196 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10197 10198 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10199 env->elr_el[new_el]); 10200 10201 if (cpu_isar_feature(aa64_pan, cpu)) { 10202 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10203 new_mode |= old_mode & PSTATE_PAN; 10204 switch (new_el) { 10205 case 2: 10206 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10207 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10208 != (HCR_E2H | HCR_TGE)) { 10209 break; 10210 } 10211 /* fall through */ 10212 case 1: 10213 /* ... the target is EL1 ... */ 10214 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10215 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10216 new_mode |= PSTATE_PAN; 10217 } 10218 break; 10219 } 10220 } 10221 if (cpu_isar_feature(aa64_mte, cpu)) { 10222 new_mode |= PSTATE_TCO; 10223 } 10224 10225 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10226 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10227 new_mode |= PSTATE_SSBS; 10228 } else { 10229 new_mode &= ~PSTATE_SSBS; 10230 } 10231 } 10232 10233 pstate_write(env, PSTATE_DAIF | new_mode); 10234 env->aarch64 = true; 10235 aarch64_restore_sp(env, new_el); 10236 helper_rebuild_hflags_a64(env, new_el); 10237 10238 env->pc = addr; 10239 10240 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10241 new_el, env->pc, pstate_read(env)); 10242 } 10243 10244 /* 10245 * Do semihosting call and set the appropriate return value. All the 10246 * permission and validity checks have been done at translate time. 10247 * 10248 * We only see semihosting exceptions in TCG only as they are not 10249 * trapped to the hypervisor in KVM. 10250 */ 10251 #ifdef CONFIG_TCG 10252 static void handle_semihosting(CPUState *cs) 10253 { 10254 ARMCPU *cpu = ARM_CPU(cs); 10255 CPUARMState *env = &cpu->env; 10256 10257 if (is_a64(env)) { 10258 qemu_log_mask(CPU_LOG_INT, 10259 "...handling as semihosting call 0x%" PRIx64 "\n", 10260 env->xregs[0]); 10261 do_common_semihosting(cs); 10262 env->pc += 4; 10263 } else { 10264 qemu_log_mask(CPU_LOG_INT, 10265 "...handling as semihosting call 0x%x\n", 10266 env->regs[0]); 10267 do_common_semihosting(cs); 10268 env->regs[15] += env->thumb ? 2 : 4; 10269 } 10270 } 10271 #endif 10272 10273 /* Handle a CPU exception for A and R profile CPUs. 10274 * Do any appropriate logging, handle PSCI calls, and then hand off 10275 * to the AArch64-entry or AArch32-entry function depending on the 10276 * target exception level's register width. 10277 * 10278 * Note: this is used for both TCG (as the do_interrupt tcg op), 10279 * and KVM to re-inject guest debug exceptions, and to 10280 * inject a Synchronous-External-Abort. 10281 */ 10282 void arm_cpu_do_interrupt(CPUState *cs) 10283 { 10284 ARMCPU *cpu = ARM_CPU(cs); 10285 CPUARMState *env = &cpu->env; 10286 unsigned int new_el = env->exception.target_el; 10287 10288 assert(!arm_feature(env, ARM_FEATURE_M)); 10289 10290 arm_log_exception(cs); 10291 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10292 new_el); 10293 if (qemu_loglevel_mask(CPU_LOG_INT) 10294 && !excp_is_internal(cs->exception_index)) { 10295 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10296 syn_get_ec(env->exception.syndrome), 10297 env->exception.syndrome); 10298 } 10299 10300 if (arm_is_psci_call(cpu, cs->exception_index)) { 10301 arm_handle_psci_call(cpu); 10302 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10303 return; 10304 } 10305 10306 /* 10307 * Semihosting semantics depend on the register width of the code 10308 * that caused the exception, not the target exception level, so 10309 * must be handled here. 10310 */ 10311 #ifdef CONFIG_TCG 10312 if (cs->exception_index == EXCP_SEMIHOST) { 10313 handle_semihosting(cs); 10314 return; 10315 } 10316 #endif 10317 10318 /* Hooks may change global state so BQL should be held, also the 10319 * BQL needs to be held for any modification of 10320 * cs->interrupt_request. 10321 */ 10322 g_assert(qemu_mutex_iothread_locked()); 10323 10324 arm_call_pre_el_change_hook(cpu); 10325 10326 assert(!excp_is_internal(cs->exception_index)); 10327 if (arm_el_is_aa64(env, new_el)) { 10328 arm_cpu_do_interrupt_aarch64(cs); 10329 } else { 10330 arm_cpu_do_interrupt_aarch32(cs); 10331 } 10332 10333 arm_call_el_change_hook(cpu); 10334 10335 if (!kvm_enabled()) { 10336 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10337 } 10338 } 10339 #endif /* !CONFIG_USER_ONLY */ 10340 10341 uint64_t arm_sctlr(CPUARMState *env, int el) 10342 { 10343 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10344 if (el == 0) { 10345 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10346 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 10347 } 10348 return env->cp15.sctlr_el[el]; 10349 } 10350 10351 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 10352 { 10353 if (regime_has_2_ranges(mmu_idx)) { 10354 return extract64(tcr, 37, 2); 10355 } else if (regime_is_stage2(mmu_idx)) { 10356 return 0; /* VTCR_EL2 */ 10357 } else { 10358 /* Replicate the single TBI bit so we always have 2 bits. */ 10359 return extract32(tcr, 20, 1) * 3; 10360 } 10361 } 10362 10363 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 10364 { 10365 if (regime_has_2_ranges(mmu_idx)) { 10366 return extract64(tcr, 51, 2); 10367 } else if (regime_is_stage2(mmu_idx)) { 10368 return 0; /* VTCR_EL2 */ 10369 } else { 10370 /* Replicate the single TBID bit so we always have 2 bits. */ 10371 return extract32(tcr, 29, 1) * 3; 10372 } 10373 } 10374 10375 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 10376 { 10377 if (regime_has_2_ranges(mmu_idx)) { 10378 return extract64(tcr, 57, 2); 10379 } else { 10380 /* Replicate the single TCMA bit so we always have 2 bits. */ 10381 return extract32(tcr, 30, 1) * 3; 10382 } 10383 } 10384 10385 static ARMGranuleSize tg0_to_gran_size(int tg) 10386 { 10387 switch (tg) { 10388 case 0: 10389 return Gran4K; 10390 case 1: 10391 return Gran64K; 10392 case 2: 10393 return Gran16K; 10394 default: 10395 return GranInvalid; 10396 } 10397 } 10398 10399 static ARMGranuleSize tg1_to_gran_size(int tg) 10400 { 10401 switch (tg) { 10402 case 1: 10403 return Gran16K; 10404 case 2: 10405 return Gran4K; 10406 case 3: 10407 return Gran64K; 10408 default: 10409 return GranInvalid; 10410 } 10411 } 10412 10413 static inline bool have4k(ARMCPU *cpu, bool stage2) 10414 { 10415 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 10416 : cpu_isar_feature(aa64_tgran4, cpu); 10417 } 10418 10419 static inline bool have16k(ARMCPU *cpu, bool stage2) 10420 { 10421 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 10422 : cpu_isar_feature(aa64_tgran16, cpu); 10423 } 10424 10425 static inline bool have64k(ARMCPU *cpu, bool stage2) 10426 { 10427 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 10428 : cpu_isar_feature(aa64_tgran64, cpu); 10429 } 10430 10431 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 10432 bool stage2) 10433 { 10434 switch (gran) { 10435 case Gran4K: 10436 if (have4k(cpu, stage2)) { 10437 return gran; 10438 } 10439 break; 10440 case Gran16K: 10441 if (have16k(cpu, stage2)) { 10442 return gran; 10443 } 10444 break; 10445 case Gran64K: 10446 if (have64k(cpu, stage2)) { 10447 return gran; 10448 } 10449 break; 10450 case GranInvalid: 10451 break; 10452 } 10453 /* 10454 * If the guest selects a granule size that isn't implemented, 10455 * the architecture requires that we behave as if it selected one 10456 * that is (with an IMPDEF choice of which one to pick). We choose 10457 * to implement the smallest supported granule size. 10458 */ 10459 if (have4k(cpu, stage2)) { 10460 return Gran4K; 10461 } 10462 if (have16k(cpu, stage2)) { 10463 return Gran16K; 10464 } 10465 assert(have64k(cpu, stage2)); 10466 return Gran64K; 10467 } 10468 10469 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 10470 ARMMMUIdx mmu_idx, bool data) 10471 { 10472 uint64_t tcr = regime_tcr(env, mmu_idx); 10473 bool epd, hpd, tsz_oob, ds, ha, hd; 10474 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 10475 ARMGranuleSize gran; 10476 ARMCPU *cpu = env_archcpu(env); 10477 bool stage2 = regime_is_stage2(mmu_idx); 10478 10479 if (!regime_has_2_ranges(mmu_idx)) { 10480 select = 0; 10481 tsz = extract32(tcr, 0, 6); 10482 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10483 if (stage2) { 10484 /* VTCR_EL2 */ 10485 hpd = false; 10486 } else { 10487 hpd = extract32(tcr, 24, 1); 10488 } 10489 epd = false; 10490 sh = extract32(tcr, 12, 2); 10491 ps = extract32(tcr, 16, 3); 10492 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 10493 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10494 ds = extract64(tcr, 32, 1); 10495 } else { 10496 bool e0pd; 10497 10498 /* 10499 * Bit 55 is always between the two regions, and is canonical for 10500 * determining if address tagging is enabled. 10501 */ 10502 select = extract64(va, 55, 1); 10503 if (!select) { 10504 tsz = extract32(tcr, 0, 6); 10505 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 10506 epd = extract32(tcr, 7, 1); 10507 sh = extract32(tcr, 12, 2); 10508 hpd = extract64(tcr, 41, 1); 10509 e0pd = extract64(tcr, 55, 1); 10510 } else { 10511 tsz = extract32(tcr, 16, 6); 10512 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 10513 epd = extract32(tcr, 23, 1); 10514 sh = extract32(tcr, 28, 2); 10515 hpd = extract64(tcr, 42, 1); 10516 e0pd = extract64(tcr, 56, 1); 10517 } 10518 ps = extract64(tcr, 32, 3); 10519 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 10520 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 10521 ds = extract64(tcr, 59, 1); 10522 10523 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 10524 regime_is_user(env, mmu_idx)) { 10525 epd = true; 10526 } 10527 } 10528 10529 gran = sanitize_gran_size(cpu, gran, stage2); 10530 10531 if (cpu_isar_feature(aa64_st, cpu)) { 10532 max_tsz = 48 - (gran == Gran64K); 10533 } else { 10534 max_tsz = 39; 10535 } 10536 10537 /* 10538 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 10539 * adjust the effective value of DS, as documented. 10540 */ 10541 min_tsz = 16; 10542 if (gran == Gran64K) { 10543 if (cpu_isar_feature(aa64_lva, cpu)) { 10544 min_tsz = 12; 10545 } 10546 ds = false; 10547 } else if (ds) { 10548 if (regime_is_stage2(mmu_idx)) { 10549 if (gran == Gran16K) { 10550 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 10551 } else { 10552 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 10553 } 10554 } else { 10555 if (gran == Gran16K) { 10556 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 10557 } else { 10558 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 10559 } 10560 } 10561 if (ds) { 10562 min_tsz = 12; 10563 } 10564 } 10565 10566 if (tsz > max_tsz) { 10567 tsz = max_tsz; 10568 tsz_oob = true; 10569 } else if (tsz < min_tsz) { 10570 tsz = min_tsz; 10571 tsz_oob = true; 10572 } else { 10573 tsz_oob = false; 10574 } 10575 10576 /* Present TBI as a composite with TBID. */ 10577 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 10578 if (!data) { 10579 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 10580 } 10581 tbi = (tbi >> select) & 1; 10582 10583 return (ARMVAParameters) { 10584 .tsz = tsz, 10585 .ps = ps, 10586 .sh = sh, 10587 .select = select, 10588 .tbi = tbi, 10589 .epd = epd, 10590 .hpd = hpd, 10591 .tsz_oob = tsz_oob, 10592 .ds = ds, 10593 .ha = ha, 10594 .hd = ha && hd, 10595 .gran = gran, 10596 }; 10597 } 10598 10599 /* Note that signed overflow is undefined in C. The following routines are 10600 careful to use unsigned types where modulo arithmetic is required. 10601 Failure to do so _will_ break on newer gcc. */ 10602 10603 /* Signed saturating arithmetic. */ 10604 10605 /* Perform 16-bit signed saturating addition. */ 10606 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10607 { 10608 uint16_t res; 10609 10610 res = a + b; 10611 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10612 if (a & 0x8000) 10613 res = 0x8000; 10614 else 10615 res = 0x7fff; 10616 } 10617 return res; 10618 } 10619 10620 /* Perform 8-bit signed saturating addition. */ 10621 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10622 { 10623 uint8_t res; 10624 10625 res = a + b; 10626 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10627 if (a & 0x80) 10628 res = 0x80; 10629 else 10630 res = 0x7f; 10631 } 10632 return res; 10633 } 10634 10635 /* Perform 16-bit signed saturating subtraction. */ 10636 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10637 { 10638 uint16_t res; 10639 10640 res = a - b; 10641 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10642 if (a & 0x8000) 10643 res = 0x8000; 10644 else 10645 res = 0x7fff; 10646 } 10647 return res; 10648 } 10649 10650 /* Perform 8-bit signed saturating subtraction. */ 10651 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10652 { 10653 uint8_t res; 10654 10655 res = a - b; 10656 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10657 if (a & 0x80) 10658 res = 0x80; 10659 else 10660 res = 0x7f; 10661 } 10662 return res; 10663 } 10664 10665 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10666 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10667 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10668 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10669 #define PFX q 10670 10671 #include "op_addsub.h" 10672 10673 /* Unsigned saturating arithmetic. */ 10674 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10675 { 10676 uint16_t res; 10677 res = a + b; 10678 if (res < a) 10679 res = 0xffff; 10680 return res; 10681 } 10682 10683 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10684 { 10685 if (a > b) 10686 return a - b; 10687 else 10688 return 0; 10689 } 10690 10691 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10692 { 10693 uint8_t res; 10694 res = a + b; 10695 if (res < a) 10696 res = 0xff; 10697 return res; 10698 } 10699 10700 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10701 { 10702 if (a > b) 10703 return a - b; 10704 else 10705 return 0; 10706 } 10707 10708 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10709 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10710 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10711 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10712 #define PFX uq 10713 10714 #include "op_addsub.h" 10715 10716 /* Signed modulo arithmetic. */ 10717 #define SARITH16(a, b, n, op) do { \ 10718 int32_t sum; \ 10719 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10720 RESULT(sum, n, 16); \ 10721 if (sum >= 0) \ 10722 ge |= 3 << (n * 2); \ 10723 } while(0) 10724 10725 #define SARITH8(a, b, n, op) do { \ 10726 int32_t sum; \ 10727 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10728 RESULT(sum, n, 8); \ 10729 if (sum >= 0) \ 10730 ge |= 1 << n; \ 10731 } while(0) 10732 10733 10734 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10735 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10736 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10737 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10738 #define PFX s 10739 #define ARITH_GE 10740 10741 #include "op_addsub.h" 10742 10743 /* Unsigned modulo arithmetic. */ 10744 #define ADD16(a, b, n) do { \ 10745 uint32_t sum; \ 10746 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10747 RESULT(sum, n, 16); \ 10748 if ((sum >> 16) == 1) \ 10749 ge |= 3 << (n * 2); \ 10750 } while(0) 10751 10752 #define ADD8(a, b, n) do { \ 10753 uint32_t sum; \ 10754 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10755 RESULT(sum, n, 8); \ 10756 if ((sum >> 8) == 1) \ 10757 ge |= 1 << n; \ 10758 } while(0) 10759 10760 #define SUB16(a, b, n) do { \ 10761 uint32_t sum; \ 10762 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10763 RESULT(sum, n, 16); \ 10764 if ((sum >> 16) == 0) \ 10765 ge |= 3 << (n * 2); \ 10766 } while(0) 10767 10768 #define SUB8(a, b, n) do { \ 10769 uint32_t sum; \ 10770 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10771 RESULT(sum, n, 8); \ 10772 if ((sum >> 8) == 0) \ 10773 ge |= 1 << n; \ 10774 } while(0) 10775 10776 #define PFX u 10777 #define ARITH_GE 10778 10779 #include "op_addsub.h" 10780 10781 /* Halved signed arithmetic. */ 10782 #define ADD16(a, b, n) \ 10783 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10784 #define SUB16(a, b, n) \ 10785 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10786 #define ADD8(a, b, n) \ 10787 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10788 #define SUB8(a, b, n) \ 10789 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10790 #define PFX sh 10791 10792 #include "op_addsub.h" 10793 10794 /* Halved unsigned arithmetic. */ 10795 #define ADD16(a, b, n) \ 10796 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10797 #define SUB16(a, b, n) \ 10798 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10799 #define ADD8(a, b, n) \ 10800 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10801 #define SUB8(a, b, n) \ 10802 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10803 #define PFX uh 10804 10805 #include "op_addsub.h" 10806 10807 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10808 { 10809 if (a > b) 10810 return a - b; 10811 else 10812 return b - a; 10813 } 10814 10815 /* Unsigned sum of absolute byte differences. */ 10816 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10817 { 10818 uint32_t sum; 10819 sum = do_usad(a, b); 10820 sum += do_usad(a >> 8, b >> 8); 10821 sum += do_usad(a >> 16, b >> 16); 10822 sum += do_usad(a >> 24, b >> 24); 10823 return sum; 10824 } 10825 10826 /* For ARMv6 SEL instruction. */ 10827 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10828 { 10829 uint32_t mask; 10830 10831 mask = 0; 10832 if (flags & 1) 10833 mask |= 0xff; 10834 if (flags & 2) 10835 mask |= 0xff00; 10836 if (flags & 4) 10837 mask |= 0xff0000; 10838 if (flags & 8) 10839 mask |= 0xff000000; 10840 return (a & mask) | (b & ~mask); 10841 } 10842 10843 /* CRC helpers. 10844 * The upper bytes of val (above the number specified by 'bytes') must have 10845 * been zeroed out by the caller. 10846 */ 10847 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 10848 { 10849 uint8_t buf[4]; 10850 10851 stl_le_p(buf, val); 10852 10853 /* zlib crc32 converts the accumulator and output to one's complement. */ 10854 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 10855 } 10856 10857 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 10858 { 10859 uint8_t buf[4]; 10860 10861 stl_le_p(buf, val); 10862 10863 /* Linux crc32c converts the output to one's complement. */ 10864 return crc32c(acc, buf, bytes) ^ 0xffffffff; 10865 } 10866 10867 /* Return the exception level to which FP-disabled exceptions should 10868 * be taken, or 0 if FP is enabled. 10869 */ 10870 int fp_exception_el(CPUARMState *env, int cur_el) 10871 { 10872 #ifndef CONFIG_USER_ONLY 10873 uint64_t hcr_el2; 10874 10875 /* CPACR and the CPTR registers don't exist before v6, so FP is 10876 * always accessible 10877 */ 10878 if (!arm_feature(env, ARM_FEATURE_V6)) { 10879 return 0; 10880 } 10881 10882 if (arm_feature(env, ARM_FEATURE_M)) { 10883 /* CPACR can cause a NOCP UsageFault taken to current security state */ 10884 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 10885 return 1; 10886 } 10887 10888 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 10889 if (!extract32(env->v7m.nsacr, 10, 1)) { 10890 /* FP insns cause a NOCP UsageFault taken to Secure */ 10891 return 3; 10892 } 10893 } 10894 10895 return 0; 10896 } 10897 10898 hcr_el2 = arm_hcr_el2_eff(env); 10899 10900 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 10901 * 0, 2 : trap EL0 and EL1/PL1 accesses 10902 * 1 : trap only EL0 accesses 10903 * 3 : trap no accesses 10904 * This register is ignored if E2H+TGE are both set. 10905 */ 10906 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10907 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 10908 10909 switch (fpen) { 10910 case 1: 10911 if (cur_el != 0) { 10912 break; 10913 } 10914 /* fall through */ 10915 case 0: 10916 case 2: 10917 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 10918 if (!arm_el_is_aa64(env, 3) 10919 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 10920 return 3; 10921 } 10922 if (cur_el <= 1) { 10923 return 1; 10924 } 10925 break; 10926 } 10927 } 10928 10929 /* 10930 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 10931 * to control non-secure access to the FPU. It doesn't have any 10932 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 10933 */ 10934 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 10935 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 10936 if (!extract32(env->cp15.nsacr, 10, 1)) { 10937 /* FP insns act as UNDEF */ 10938 return cur_el == 2 ? 2 : 1; 10939 } 10940 } 10941 10942 /* 10943 * CPTR_EL2 is present in v7VE or v8, and changes format 10944 * with HCR_EL2.E2H (regardless of TGE). 10945 */ 10946 if (cur_el <= 2) { 10947 if (hcr_el2 & HCR_E2H) { 10948 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 10949 case 1: 10950 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 10951 break; 10952 } 10953 /* fall through */ 10954 case 0: 10955 case 2: 10956 return 2; 10957 } 10958 } else if (arm_is_el2_enabled(env)) { 10959 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 10960 return 2; 10961 } 10962 } 10963 } 10964 10965 /* CPTR_EL3 : present in v8 */ 10966 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 10967 /* Trap all FP ops to EL3 */ 10968 return 3; 10969 } 10970 #endif 10971 return 0; 10972 } 10973 10974 /* Return the exception level we're running at if this is our mmu_idx */ 10975 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 10976 { 10977 if (mmu_idx & ARM_MMU_IDX_M) { 10978 return mmu_idx & ARM_MMU_IDX_M_PRIV; 10979 } 10980 10981 switch (mmu_idx) { 10982 case ARMMMUIdx_E10_0: 10983 case ARMMMUIdx_E20_0: 10984 return 0; 10985 case ARMMMUIdx_E10_1: 10986 case ARMMMUIdx_E10_1_PAN: 10987 return 1; 10988 case ARMMMUIdx_E2: 10989 case ARMMMUIdx_E20_2: 10990 case ARMMMUIdx_E20_2_PAN: 10991 return 2; 10992 case ARMMMUIdx_E3: 10993 return 3; 10994 default: 10995 g_assert_not_reached(); 10996 } 10997 } 10998 10999 #ifndef CONFIG_TCG 11000 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11001 { 11002 g_assert_not_reached(); 11003 } 11004 #endif 11005 11006 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11007 { 11008 ARMMMUIdx idx; 11009 uint64_t hcr; 11010 11011 if (arm_feature(env, ARM_FEATURE_M)) { 11012 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11013 } 11014 11015 /* See ARM pseudo-function ELIsInHost. */ 11016 switch (el) { 11017 case 0: 11018 hcr = arm_hcr_el2_eff(env); 11019 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11020 idx = ARMMMUIdx_E20_0; 11021 } else { 11022 idx = ARMMMUIdx_E10_0; 11023 } 11024 break; 11025 case 1: 11026 if (env->pstate & PSTATE_PAN) { 11027 idx = ARMMMUIdx_E10_1_PAN; 11028 } else { 11029 idx = ARMMMUIdx_E10_1; 11030 } 11031 break; 11032 case 2: 11033 /* Note that TGE does not apply at EL2. */ 11034 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11035 if (env->pstate & PSTATE_PAN) { 11036 idx = ARMMMUIdx_E20_2_PAN; 11037 } else { 11038 idx = ARMMMUIdx_E20_2; 11039 } 11040 } else { 11041 idx = ARMMMUIdx_E2; 11042 } 11043 break; 11044 case 3: 11045 return ARMMMUIdx_E3; 11046 default: 11047 g_assert_not_reached(); 11048 } 11049 11050 return idx; 11051 } 11052 11053 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11054 { 11055 return arm_mmu_idx_el(env, arm_current_el(env)); 11056 } 11057 11058 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11059 ARMMMUIdx mmu_idx, 11060 CPUARMTBFlags flags) 11061 { 11062 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11063 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11064 11065 if (arm_singlestep_active(env)) { 11066 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11067 } 11068 return flags; 11069 } 11070 11071 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11072 ARMMMUIdx mmu_idx, 11073 CPUARMTBFlags flags) 11074 { 11075 bool sctlr_b = arm_sctlr_b(env); 11076 11077 if (sctlr_b) { 11078 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11079 } 11080 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11081 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11082 } 11083 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11084 11085 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11086 } 11087 11088 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11089 ARMMMUIdx mmu_idx) 11090 { 11091 CPUARMTBFlags flags = {}; 11092 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11093 11094 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11095 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11096 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11097 } 11098 11099 if (arm_v7m_is_handler_mode(env)) { 11100 DP_TBFLAG_M32(flags, HANDLER, 1); 11101 } 11102 11103 /* 11104 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11105 * is suppressing them because the requested execution priority 11106 * is less than 0. 11107 */ 11108 if (arm_feature(env, ARM_FEATURE_V8) && 11109 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11110 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11111 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11112 } 11113 11114 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11115 DP_TBFLAG_M32(flags, SECURE, 1); 11116 } 11117 11118 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11119 } 11120 11121 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11122 ARMMMUIdx mmu_idx) 11123 { 11124 CPUARMTBFlags flags = {}; 11125 int el = arm_current_el(env); 11126 11127 if (arm_sctlr(env, el) & SCTLR_A) { 11128 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11129 } 11130 11131 if (arm_el_is_aa64(env, 1)) { 11132 DP_TBFLAG_A32(flags, VFPEN, 1); 11133 } 11134 11135 if (el < 2 && env->cp15.hstr_el2 && 11136 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11137 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11138 } 11139 11140 if (env->uncached_cpsr & CPSR_IL) { 11141 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11142 } 11143 11144 /* 11145 * The SME exception we are testing for is raised via 11146 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11147 * AArch32.CheckAdvSIMDOrFPEnabled(). 11148 */ 11149 if (el == 0 11150 && FIELD_EX64(env->svcr, SVCR, SM) 11151 && (!arm_is_el2_enabled(env) 11152 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11153 && arm_el_is_aa64(env, 1) 11154 && !sme_fa64(env, el)) { 11155 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11156 } 11157 11158 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11159 } 11160 11161 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11162 ARMMMUIdx mmu_idx) 11163 { 11164 CPUARMTBFlags flags = {}; 11165 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11166 uint64_t tcr = regime_tcr(env, mmu_idx); 11167 uint64_t sctlr; 11168 int tbii, tbid; 11169 11170 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11171 11172 /* Get control bits for tagged addresses. */ 11173 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 11174 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 11175 11176 DP_TBFLAG_A64(flags, TBII, tbii); 11177 DP_TBFLAG_A64(flags, TBID, tbid); 11178 11179 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 11180 int sve_el = sve_exception_el(env, el); 11181 11182 /* 11183 * If either FP or SVE are disabled, translator does not need len. 11184 * If SVE EL > FP EL, FP exception has precedence, and translator 11185 * does not need SVE EL. Save potential re-translations by forcing 11186 * the unneeded data to zero. 11187 */ 11188 if (fp_el != 0) { 11189 if (sve_el > fp_el) { 11190 sve_el = 0; 11191 } 11192 } else if (sve_el == 0) { 11193 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 11194 } 11195 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 11196 } 11197 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 11198 int sme_el = sme_exception_el(env, el); 11199 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 11200 11201 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 11202 if (sme_el == 0) { 11203 /* Similarly, do not compute SVL if SME is disabled. */ 11204 int svl = sve_vqm1_for_el_sm(env, el, true); 11205 DP_TBFLAG_A64(flags, SVL, svl); 11206 if (sm) { 11207 /* If SVE is disabled, we will not have set VL above. */ 11208 DP_TBFLAG_A64(flags, VL, svl); 11209 } 11210 } 11211 if (sm) { 11212 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 11213 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 11214 } 11215 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 11216 } 11217 11218 sctlr = regime_sctlr(env, stage1); 11219 11220 if (sctlr & SCTLR_A) { 11221 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11222 } 11223 11224 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 11225 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11226 } 11227 11228 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 11229 /* 11230 * In order to save space in flags, we record only whether 11231 * pauth is "inactive", meaning all insns are implemented as 11232 * a nop, or "active" when some action must be performed. 11233 * The decision of which action to take is left to a helper. 11234 */ 11235 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 11236 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 11237 } 11238 } 11239 11240 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11241 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 11242 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 11243 DP_TBFLAG_A64(flags, BT, 1); 11244 } 11245 } 11246 11247 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 11248 if (!(env->pstate & PSTATE_UAO)) { 11249 switch (mmu_idx) { 11250 case ARMMMUIdx_E10_1: 11251 case ARMMMUIdx_E10_1_PAN: 11252 /* TODO: ARMv8.3-NV */ 11253 DP_TBFLAG_A64(flags, UNPRIV, 1); 11254 break; 11255 case ARMMMUIdx_E20_2: 11256 case ARMMMUIdx_E20_2_PAN: 11257 /* 11258 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 11259 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 11260 */ 11261 if (env->cp15.hcr_el2 & HCR_TGE) { 11262 DP_TBFLAG_A64(flags, UNPRIV, 1); 11263 } 11264 break; 11265 default: 11266 break; 11267 } 11268 } 11269 11270 if (env->pstate & PSTATE_IL) { 11271 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11272 } 11273 11274 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 11275 /* 11276 * Set MTE_ACTIVE if any access may be Checked, and leave clear 11277 * if all accesses must be Unchecked: 11278 * 1) If no TBI, then there are no tags in the address to check, 11279 * 2) If Tag Check Override, then all accesses are Unchecked, 11280 * 3) If Tag Check Fail == 0, then Checked access have no effect, 11281 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 11282 */ 11283 if (allocation_tag_access_enabled(env, el, sctlr)) { 11284 DP_TBFLAG_A64(flags, ATA, 1); 11285 if (tbid 11286 && !(env->pstate & PSTATE_TCO) 11287 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 11288 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 11289 } 11290 } 11291 /* And again for unprivileged accesses, if required. */ 11292 if (EX_TBFLAG_A64(flags, UNPRIV) 11293 && tbid 11294 && !(env->pstate & PSTATE_TCO) 11295 && (sctlr & SCTLR_TCF0) 11296 && allocation_tag_access_enabled(env, 0, sctlr)) { 11297 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 11298 } 11299 /* Cache TCMA as well as TBI. */ 11300 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 11301 } 11302 11303 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11304 } 11305 11306 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 11307 { 11308 int el = arm_current_el(env); 11309 int fp_el = fp_exception_el(env, el); 11310 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11311 11312 if (is_a64(env)) { 11313 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11314 } else if (arm_feature(env, ARM_FEATURE_M)) { 11315 return rebuild_hflags_m32(env, fp_el, mmu_idx); 11316 } else { 11317 return rebuild_hflags_a32(env, fp_el, mmu_idx); 11318 } 11319 } 11320 11321 void arm_rebuild_hflags(CPUARMState *env) 11322 { 11323 env->hflags = rebuild_hflags_internal(env); 11324 } 11325 11326 /* 11327 * If we have triggered a EL state change we can't rely on the 11328 * translator having passed it to us, we need to recompute. 11329 */ 11330 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 11331 { 11332 int el = arm_current_el(env); 11333 int fp_el = fp_exception_el(env, el); 11334 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11335 11336 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11337 } 11338 11339 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 11340 { 11341 int fp_el = fp_exception_el(env, el); 11342 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11343 11344 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 11345 } 11346 11347 /* 11348 * If we have triggered a EL state change we can't rely on the 11349 * translator having passed it to us, we need to recompute. 11350 */ 11351 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 11352 { 11353 int el = arm_current_el(env); 11354 int fp_el = fp_exception_el(env, el); 11355 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11356 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11357 } 11358 11359 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 11360 { 11361 int fp_el = fp_exception_el(env, el); 11362 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11363 11364 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 11365 } 11366 11367 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 11368 { 11369 int fp_el = fp_exception_el(env, el); 11370 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 11371 11372 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 11373 } 11374 11375 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 11376 { 11377 #ifdef CONFIG_DEBUG_TCG 11378 CPUARMTBFlags c = env->hflags; 11379 CPUARMTBFlags r = rebuild_hflags_internal(env); 11380 11381 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 11382 fprintf(stderr, "TCG hflags mismatch " 11383 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 11384 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 11385 c.flags, c.flags2, r.flags, r.flags2); 11386 abort(); 11387 } 11388 #endif 11389 } 11390 11391 static bool mve_no_pred(CPUARMState *env) 11392 { 11393 /* 11394 * Return true if there is definitely no predication of MVE 11395 * instructions by VPR or LTPSIZE. (Returning false even if there 11396 * isn't any predication is OK; generated code will just be 11397 * a little worse.) 11398 * If the CPU does not implement MVE then this TB flag is always 0. 11399 * 11400 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 11401 * logic in gen_update_fp_context() needs to be updated to match. 11402 * 11403 * We do not include the effect of the ECI bits here -- they are 11404 * tracked in other TB flags. This simplifies the logic for 11405 * "when did we emit code that changes the MVE_NO_PRED TB flag 11406 * and thus need to end the TB?". 11407 */ 11408 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 11409 return false; 11410 } 11411 if (env->v7m.vpr) { 11412 return false; 11413 } 11414 if (env->v7m.ltpsize < 4) { 11415 return false; 11416 } 11417 return true; 11418 } 11419 11420 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 11421 target_ulong *cs_base, uint32_t *pflags) 11422 { 11423 CPUARMTBFlags flags; 11424 11425 assert_hflags_rebuild_correctly(env); 11426 flags = env->hflags; 11427 11428 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 11429 *pc = env->pc; 11430 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 11431 DP_TBFLAG_A64(flags, BTYPE, env->btype); 11432 } 11433 } else { 11434 *pc = env->regs[15]; 11435 11436 if (arm_feature(env, ARM_FEATURE_M)) { 11437 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 11438 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 11439 != env->v7m.secure) { 11440 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 11441 } 11442 11443 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 11444 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 11445 (env->v7m.secure && 11446 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 11447 /* 11448 * ASPEN is set, but FPCA/SFPA indicate that there is no 11449 * active FP context; we must create a new FP context before 11450 * executing any FP insn. 11451 */ 11452 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 11453 } 11454 11455 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 11456 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 11457 DP_TBFLAG_M32(flags, LSPACT, 1); 11458 } 11459 11460 if (mve_no_pred(env)) { 11461 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 11462 } 11463 } else { 11464 /* 11465 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 11466 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 11467 */ 11468 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 11469 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 11470 } else { 11471 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 11472 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 11473 } 11474 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 11475 DP_TBFLAG_A32(flags, VFPEN, 1); 11476 } 11477 } 11478 11479 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 11480 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 11481 } 11482 11483 /* 11484 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 11485 * states defined in the ARM ARM for software singlestep: 11486 * SS_ACTIVE PSTATE.SS State 11487 * 0 x Inactive (the TB flag for SS is always 0) 11488 * 1 0 Active-pending 11489 * 1 1 Active-not-pending 11490 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 11491 */ 11492 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 11493 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 11494 } 11495 11496 *pflags = flags.flags; 11497 *cs_base = flags.flags2; 11498 } 11499 11500 #ifdef TARGET_AARCH64 11501 /* 11502 * The manual says that when SVE is enabled and VQ is widened the 11503 * implementation is allowed to zero the previously inaccessible 11504 * portion of the registers. The corollary to that is that when 11505 * SVE is enabled and VQ is narrowed we are also allowed to zero 11506 * the now inaccessible portion of the registers. 11507 * 11508 * The intent of this is that no predicate bit beyond VQ is ever set. 11509 * Which means that some operations on predicate registers themselves 11510 * may operate on full uint64_t or even unrolled across the maximum 11511 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 11512 * may well be cheaper than conditionals to restrict the operation 11513 * to the relevant portion of a uint16_t[16]. 11514 */ 11515 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 11516 { 11517 int i, j; 11518 uint64_t pmask; 11519 11520 assert(vq >= 1 && vq <= ARM_MAX_VQ); 11521 assert(vq <= env_archcpu(env)->sve_max_vq); 11522 11523 /* Zap the high bits of the zregs. */ 11524 for (i = 0; i < 32; i++) { 11525 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 11526 } 11527 11528 /* Zap the high bits of the pregs and ffr. */ 11529 pmask = 0; 11530 if (vq & 3) { 11531 pmask = ~(-1ULL << (16 * (vq & 3))); 11532 } 11533 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 11534 for (i = 0; i < 17; ++i) { 11535 env->vfp.pregs[i].p[j] &= pmask; 11536 } 11537 pmask = 0; 11538 } 11539 } 11540 11541 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 11542 { 11543 int exc_el; 11544 11545 if (sm) { 11546 exc_el = sme_exception_el(env, el); 11547 } else { 11548 exc_el = sve_exception_el(env, el); 11549 } 11550 if (exc_el) { 11551 return 0; /* disabled */ 11552 } 11553 return sve_vqm1_for_el_sm(env, el, sm); 11554 } 11555 11556 /* 11557 * Notice a change in SVE vector size when changing EL. 11558 */ 11559 void aarch64_sve_change_el(CPUARMState *env, int old_el, 11560 int new_el, bool el0_a64) 11561 { 11562 ARMCPU *cpu = env_archcpu(env); 11563 int old_len, new_len; 11564 bool old_a64, new_a64, sm; 11565 11566 /* Nothing to do if no SVE. */ 11567 if (!cpu_isar_feature(aa64_sve, cpu)) { 11568 return; 11569 } 11570 11571 /* Nothing to do if FP is disabled in either EL. */ 11572 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 11573 return; 11574 } 11575 11576 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 11577 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 11578 11579 /* 11580 * Both AArch64.TakeException and AArch64.ExceptionReturn 11581 * invoke ResetSVEState when taking an exception from, or 11582 * returning to, AArch32 state when PSTATE.SM is enabled. 11583 */ 11584 sm = FIELD_EX64(env->svcr, SVCR, SM); 11585 if (old_a64 != new_a64 && sm) { 11586 arm_reset_sve_state(env); 11587 return; 11588 } 11589 11590 /* 11591 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 11592 * at ELx, or not available because the EL is in AArch32 state, then 11593 * for all purposes other than a direct read, the ZCR_ELx.LEN field 11594 * has an effective value of 0". 11595 * 11596 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 11597 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 11598 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 11599 * we already have the correct register contents when encountering the 11600 * vq0->vq0 transition between EL0->EL1. 11601 */ 11602 old_len = new_len = 0; 11603 if (old_a64) { 11604 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 11605 } 11606 if (new_a64) { 11607 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 11608 } 11609 11610 /* When changing vector length, clear inaccessible state. */ 11611 if (new_len < old_len) { 11612 aarch64_sve_narrow_vq(env, new_len + 1); 11613 } 11614 } 11615 #endif 11616