1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* For crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 * 448 * For AArch32 this is only used for TLBIALLNSNH and VTTBR 449 * writes, so only needs to apply to NS PL1&0, not S PL1&0. 450 */ 451 return (ARMMMUIdxBit_E10_1 | 452 ARMMMUIdxBit_E10_1_PAN | 453 ARMMMUIdxBit_E10_0 | 454 ARMMMUIdxBit_Stage2 | 455 ARMMMUIdxBit_Stage2_S); 456 } 457 458 459 /* IS variants of TLB operations must affect all cores */ 460 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_all_cpus_synced(cs); 466 } 467 468 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_all_cpus_synced(cs); 474 } 475 476 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 477 uint64_t value) 478 { 479 CPUState *cs = env_cpu(env); 480 481 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 482 } 483 484 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 485 uint64_t value) 486 { 487 CPUState *cs = env_cpu(env); 488 489 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 490 } 491 492 /* 493 * Non-IS variants of TLB operations are upgraded to 494 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 495 * force broadcast of these operations. 496 */ 497 static bool tlb_force_broadcast(CPUARMState *env) 498 { 499 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 500 } 501 502 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 503 uint64_t value) 504 { 505 /* Invalidate all (TLBIALL) */ 506 CPUState *cs = env_cpu(env); 507 508 if (tlb_force_broadcast(env)) { 509 tlb_flush_all_cpus_synced(cs); 510 } else { 511 tlb_flush(cs); 512 } 513 } 514 515 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 516 uint64_t value) 517 { 518 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 519 CPUState *cs = env_cpu(env); 520 521 value &= TARGET_PAGE_MASK; 522 if (tlb_force_broadcast(env)) { 523 tlb_flush_page_all_cpus_synced(cs, value); 524 } else { 525 tlb_flush_page(cs, value); 526 } 527 } 528 529 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 530 uint64_t value) 531 { 532 /* Invalidate by ASID (TLBIASID) */ 533 CPUState *cs = env_cpu(env); 534 535 if (tlb_force_broadcast(env)) { 536 tlb_flush_all_cpus_synced(cs); 537 } else { 538 tlb_flush(cs); 539 } 540 } 541 542 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 546 CPUState *cs = env_cpu(env); 547 548 value &= TARGET_PAGE_MASK; 549 if (tlb_force_broadcast(env)) { 550 tlb_flush_page_all_cpus_synced(cs, value); 551 } else { 552 tlb_flush_page(cs, value); 553 } 554 } 555 556 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = env_cpu(env); 560 561 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 562 } 563 564 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = env_cpu(env); 568 569 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 570 } 571 572 573 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 578 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 579 } 580 581 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 CPUState *cs = env_cpu(env); 585 586 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 587 } 588 589 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 590 uint64_t value) 591 { 592 CPUState *cs = env_cpu(env); 593 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 594 595 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 596 } 597 598 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 599 uint64_t value) 600 { 601 CPUState *cs = env_cpu(env); 602 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 603 604 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 605 ARMMMUIdxBit_E2); 606 } 607 608 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 609 uint64_t value) 610 { 611 CPUState *cs = env_cpu(env); 612 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 613 614 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 615 } 616 617 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 618 uint64_t value) 619 { 620 CPUState *cs = env_cpu(env); 621 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 622 623 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 624 } 625 626 static const ARMCPRegInfo cp_reginfo[] = { 627 /* 628 * Define the secure and non-secure FCSE identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. There is also no 631 * v8 EL1 version of the register so the non-secure instance stands alone. 632 */ 633 { .name = "FCSEIDR", 634 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 635 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 636 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 637 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 638 { .name = "FCSEIDR_S", 639 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 640 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 641 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 642 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 643 /* 644 * Define the secure and non-secure context identifier CP registers 645 * separately because there is no secure bank in V8 (no _EL3). This allows 646 * the secure register to be properly reset and migrated. In the 647 * non-secure case, the 32-bit register will have reset and migration 648 * disabled during registration as it is handled by the 64-bit instance. 649 */ 650 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 651 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 652 .access = PL1_RW, .accessfn = access_tvm_trvm, 653 .fgt = FGT_CONTEXTIDR_EL1, 654 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 655 .secure = ARM_CP_SECSTATE_NS, 656 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 657 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 658 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 659 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 660 .access = PL1_RW, .accessfn = access_tvm_trvm, 661 .secure = ARM_CP_SECSTATE_S, 662 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 663 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 664 }; 665 666 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 667 /* 668 * NB: Some of these registers exist in v8 but with more precise 669 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 670 */ 671 /* MMU Domain access control / MPU write buffer control */ 672 { .name = "DACR", 673 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 674 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 675 .writefn = dacr_write, .raw_writefn = raw_write, 676 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 677 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 678 /* 679 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 680 * For v6 and v5, these mappings are overly broad. 681 */ 682 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 683 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 684 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 685 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 686 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 687 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 688 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 689 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 690 /* Cache maintenance ops; some of this space may be overridden later. */ 691 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 692 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 693 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 694 }; 695 696 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 697 /* 698 * Not all pre-v6 cores implemented this WFI, so this is slightly 699 * over-broad. 700 */ 701 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 702 .access = PL1_W, .type = ARM_CP_WFI }, 703 }; 704 705 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 706 /* 707 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 708 * is UNPREDICTABLE; we choose to NOP as most implementations do). 709 */ 710 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 711 .access = PL1_W, .type = ARM_CP_WFI }, 712 /* 713 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 714 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 715 * OMAPCP will override this space. 716 */ 717 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 719 .resetvalue = 0 }, 720 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 721 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 722 .resetvalue = 0 }, 723 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 724 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 725 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 726 .resetvalue = 0 }, 727 /* 728 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 729 * implementing it as RAZ means the "debug architecture version" bits 730 * will read as a reserved value, which should cause Linux to not try 731 * to use the debug hardware. 732 */ 733 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 734 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 735 /* 736 * MMU TLB control. Note that the wildcarding means we cover not just 737 * the unified TLB ops but also the dside/iside/inner-shareable variants. 738 */ 739 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 749 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 750 .type = ARM_CP_NO_RAW }, 751 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 752 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 753 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 754 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 755 }; 756 757 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 758 uint64_t value) 759 { 760 uint32_t mask = 0; 761 762 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 763 if (!arm_feature(env, ARM_FEATURE_V8)) { 764 /* 765 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 766 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 767 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 768 */ 769 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 770 /* VFP coprocessor: cp10 & cp11 [23:20] */ 771 mask |= R_CPACR_ASEDIS_MASK | 772 R_CPACR_D32DIS_MASK | 773 R_CPACR_CP11_MASK | 774 R_CPACR_CP10_MASK; 775 776 if (!arm_feature(env, ARM_FEATURE_NEON)) { 777 /* ASEDIS [31] bit is RAO/WI */ 778 value |= R_CPACR_ASEDIS_MASK; 779 } 780 781 /* 782 * VFPv3 and upwards with NEON implement 32 double precision 783 * registers (D0-D31). 784 */ 785 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 786 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 787 value |= R_CPACR_D32DIS_MASK; 788 } 789 } 790 value &= mask; 791 } 792 793 /* 794 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 795 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 796 */ 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 800 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 801 } 802 803 env->cp15.cpacr_el1 = value; 804 } 805 806 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 807 { 808 /* 809 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 810 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 811 */ 812 uint64_t value = env->cp15.cpacr_el1; 813 814 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 815 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 816 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 817 } 818 return value; 819 } 820 821 822 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 823 { 824 /* 825 * Call cpacr_write() so that we reset with the correct RAO bits set 826 * for our CPU features. 827 */ 828 cpacr_write(env, ri, 0); 829 } 830 831 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 832 bool isread) 833 { 834 if (arm_feature(env, ARM_FEATURE_V8)) { 835 /* Check if CPACR accesses are to be trapped to EL2 */ 836 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 837 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 838 return CP_ACCESS_TRAP_EL2; 839 /* Check if CPACR accesses are to be trapped to EL3 */ 840 } else if (arm_current_el(env) < 3 && 841 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 842 return CP_ACCESS_TRAP_EL3; 843 } 844 } 845 846 return CP_ACCESS_OK; 847 } 848 849 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 850 bool isread) 851 { 852 /* Check if CPTR accesses are set to trap to EL3 */ 853 if (arm_current_el(env) == 2 && 854 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 855 return CP_ACCESS_TRAP_EL3; 856 } 857 858 return CP_ACCESS_OK; 859 } 860 861 static const ARMCPRegInfo v6_cp_reginfo[] = { 862 /* prefetch by MVA in v6, NOP in v7 */ 863 { .name = "MVA_prefetch", 864 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 865 .access = PL1_W, .type = ARM_CP_NOP }, 866 /* 867 * We need to break the TB after ISB to execute self-modifying code 868 * correctly and also to take any pending interrupts immediately. 869 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 870 */ 871 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 872 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 873 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 874 .access = PL0_W, .type = ARM_CP_NOP }, 875 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 876 .access = PL0_W, .type = ARM_CP_NOP }, 877 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 878 .access = PL1_RW, .accessfn = access_tvm_trvm, 879 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 880 offsetof(CPUARMState, cp15.ifar_ns) }, 881 .resetvalue = 0, }, 882 /* 883 * Watchpoint Fault Address Register : should actually only be present 884 * for 1136, 1176, 11MPCore. 885 */ 886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 890 .fgt = FGT_CPACR_EL1, 891 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 892 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 893 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 894 }; 895 896 typedef struct pm_event { 897 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 898 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 899 bool (*supported)(CPUARMState *); 900 /* 901 * Retrieve the current count of the underlying event. The programmed 902 * counters hold a difference from the return value from this function 903 */ 904 uint64_t (*get_count)(CPUARMState *); 905 /* 906 * Return how many nanoseconds it will take (at a minimum) for count events 907 * to occur. A negative value indicates the counter will never overflow, or 908 * that the counter has otherwise arranged for the overflow bit to be set 909 * and the PMU interrupt to be raised on overflow. 910 */ 911 int64_t (*ns_per_count)(uint64_t); 912 } pm_event; 913 914 static bool event_always_supported(CPUARMState *env) 915 { 916 return true; 917 } 918 919 static uint64_t swinc_get_count(CPUARMState *env) 920 { 921 /* 922 * SW_INCR events are written directly to the pmevcntr's by writes to 923 * PMSWINC, so there is no underlying count maintained by the PMU itself 924 */ 925 return 0; 926 } 927 928 static int64_t swinc_ns_per(uint64_t ignored) 929 { 930 return -1; 931 } 932 933 /* 934 * Return the underlying cycle count for the PMU cycle counters. If we're in 935 * usermode, simply return 0. 936 */ 937 static uint64_t cycles_get_count(CPUARMState *env) 938 { 939 #ifndef CONFIG_USER_ONLY 940 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 941 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 942 #else 943 return cpu_get_host_ticks(); 944 #endif 945 } 946 947 #ifndef CONFIG_USER_ONLY 948 static int64_t cycles_ns_per(uint64_t cycles) 949 { 950 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 951 } 952 953 static bool instructions_supported(CPUARMState *env) 954 { 955 /* Precise instruction counting */ 956 return icount_enabled() == ICOUNT_PRECISE; 957 } 958 959 static uint64_t instructions_get_count(CPUARMState *env) 960 { 961 assert(icount_enabled() == ICOUNT_PRECISE); 962 return (uint64_t)icount_get_raw(); 963 } 964 965 static int64_t instructions_ns_per(uint64_t icount) 966 { 967 assert(icount_enabled() == ICOUNT_PRECISE); 968 return icount_to_ns((int64_t)icount); 969 } 970 #endif 971 972 static bool pmuv3p1_events_supported(CPUARMState *env) 973 { 974 /* For events which are supported in any v8.1 PMU */ 975 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 976 } 977 978 static bool pmuv3p4_events_supported(CPUARMState *env) 979 { 980 /* For events which are supported in any v8.1 PMU */ 981 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 982 } 983 984 static uint64_t zero_event_get_count(CPUARMState *env) 985 { 986 /* For events which on QEMU never fire, so their count is always zero */ 987 return 0; 988 } 989 990 static int64_t zero_event_ns_per(uint64_t cycles) 991 { 992 /* An event which never fires can never overflow */ 993 return -1; 994 } 995 996 static const pm_event pm_events[] = { 997 { .number = 0x000, /* SW_INCR */ 998 .supported = event_always_supported, 999 .get_count = swinc_get_count, 1000 .ns_per_count = swinc_ns_per, 1001 }, 1002 #ifndef CONFIG_USER_ONLY 1003 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1004 .supported = instructions_supported, 1005 .get_count = instructions_get_count, 1006 .ns_per_count = instructions_ns_per, 1007 }, 1008 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1009 .supported = event_always_supported, 1010 .get_count = cycles_get_count, 1011 .ns_per_count = cycles_ns_per, 1012 }, 1013 #endif 1014 { .number = 0x023, /* STALL_FRONTEND */ 1015 .supported = pmuv3p1_events_supported, 1016 .get_count = zero_event_get_count, 1017 .ns_per_count = zero_event_ns_per, 1018 }, 1019 { .number = 0x024, /* STALL_BACKEND */ 1020 .supported = pmuv3p1_events_supported, 1021 .get_count = zero_event_get_count, 1022 .ns_per_count = zero_event_ns_per, 1023 }, 1024 { .number = 0x03c, /* STALL */ 1025 .supported = pmuv3p4_events_supported, 1026 .get_count = zero_event_get_count, 1027 .ns_per_count = zero_event_ns_per, 1028 }, 1029 }; 1030 1031 /* 1032 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1033 * events (i.e. the statistical profiling extension), this implementation 1034 * should first be updated to something sparse instead of the current 1035 * supported_event_map[] array. 1036 */ 1037 #define MAX_EVENT_ID 0x3c 1038 #define UNSUPPORTED_EVENT UINT16_MAX 1039 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1040 1041 /* 1042 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1043 * of ARM event numbers to indices in our pm_events array. 1044 * 1045 * Note: Events in the 0x40XX range are not currently supported. 1046 */ 1047 void pmu_init(ARMCPU *cpu) 1048 { 1049 unsigned int i; 1050 1051 /* 1052 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1053 * events to them 1054 */ 1055 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1056 supported_event_map[i] = UNSUPPORTED_EVENT; 1057 } 1058 cpu->pmceid0 = 0; 1059 cpu->pmceid1 = 0; 1060 1061 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1062 const pm_event *cnt = &pm_events[i]; 1063 assert(cnt->number <= MAX_EVENT_ID); 1064 /* We do not currently support events in the 0x40xx range */ 1065 assert(cnt->number <= 0x3f); 1066 1067 if (cnt->supported(&cpu->env)) { 1068 supported_event_map[cnt->number] = i; 1069 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1070 if (cnt->number & 0x20) { 1071 cpu->pmceid1 |= event_mask; 1072 } else { 1073 cpu->pmceid0 |= event_mask; 1074 } 1075 } 1076 } 1077 } 1078 1079 /* 1080 * Check at runtime whether a PMU event is supported for the current machine 1081 */ 1082 static bool event_supported(uint16_t number) 1083 { 1084 if (number > MAX_EVENT_ID) { 1085 return false; 1086 } 1087 return supported_event_map[number] != UNSUPPORTED_EVENT; 1088 } 1089 1090 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1091 bool isread) 1092 { 1093 /* 1094 * Performance monitor registers user accessibility is controlled 1095 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1096 * trapping to EL2 or EL3 for other accesses. 1097 */ 1098 int el = arm_current_el(env); 1099 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1100 1101 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1102 return CP_ACCESS_TRAP; 1103 } 1104 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL2; 1106 } 1107 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1108 return CP_ACCESS_TRAP_EL3; 1109 } 1110 1111 return CP_ACCESS_OK; 1112 } 1113 1114 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1115 const ARMCPRegInfo *ri, 1116 bool isread) 1117 { 1118 /* ER: event counter read trap control */ 1119 if (arm_feature(env, ARM_FEATURE_V8) 1120 && arm_current_el(env) == 0 1121 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1122 && isread) { 1123 return CP_ACCESS_OK; 1124 } 1125 1126 return pmreg_access(env, ri, isread); 1127 } 1128 1129 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1130 const ARMCPRegInfo *ri, 1131 bool isread) 1132 { 1133 /* SW: software increment write trap control */ 1134 if (arm_feature(env, ARM_FEATURE_V8) 1135 && arm_current_el(env) == 0 1136 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1137 && !isread) { 1138 return CP_ACCESS_OK; 1139 } 1140 1141 return pmreg_access(env, ri, isread); 1142 } 1143 1144 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1145 const ARMCPRegInfo *ri, 1146 bool isread) 1147 { 1148 /* ER: event counter read trap control */ 1149 if (arm_feature(env, ARM_FEATURE_V8) 1150 && arm_current_el(env) == 0 1151 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1152 return CP_ACCESS_OK; 1153 } 1154 1155 return pmreg_access(env, ri, isread); 1156 } 1157 1158 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1159 const ARMCPRegInfo *ri, 1160 bool isread) 1161 { 1162 /* CR: cycle counter read trap control */ 1163 if (arm_feature(env, ARM_FEATURE_V8) 1164 && arm_current_el(env) == 0 1165 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1166 && isread) { 1167 return CP_ACCESS_OK; 1168 } 1169 1170 return pmreg_access(env, ri, isread); 1171 } 1172 1173 /* 1174 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1175 * We use these to decide whether we need to wrap a write to MDCR_EL2 1176 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1177 */ 1178 #define MDCR_EL2_PMU_ENABLE_BITS \ 1179 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1180 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1181 1182 /* 1183 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1184 * the current EL, security state, and register configuration. 1185 */ 1186 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1187 { 1188 uint64_t filter; 1189 bool e, p, u, nsk, nsu, nsh, m; 1190 bool enabled, prohibited = false, filtered; 1191 bool secure = arm_is_secure(env); 1192 int el = arm_current_el(env); 1193 uint64_t mdcr_el2; 1194 uint8_t hpmn; 1195 1196 /* 1197 * We might be called for M-profile cores where MDCR_EL2 doesn't 1198 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1199 * must be before we read that value. 1200 */ 1201 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1202 return false; 1203 } 1204 1205 mdcr_el2 = arm_mdcr_el2_eff(env); 1206 hpmn = mdcr_el2 & MDCR_HPMN; 1207 1208 if (!arm_feature(env, ARM_FEATURE_EL2) || 1209 (counter < hpmn || counter == 31)) { 1210 e = env->cp15.c9_pmcr & PMCRE; 1211 } else { 1212 e = mdcr_el2 & MDCR_HPME; 1213 } 1214 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1215 1216 /* Is event counting prohibited? */ 1217 if (el == 2 && (counter < hpmn || counter == 31)) { 1218 prohibited = mdcr_el2 & MDCR_HPMD; 1219 } 1220 if (secure) { 1221 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1222 } 1223 1224 if (counter == 31) { 1225 /* 1226 * The cycle counter defaults to running. PMCR.DP says "disable 1227 * the cycle counter when event counting is prohibited". 1228 * Some MDCR bits disable the cycle counter specifically. 1229 */ 1230 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1231 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1232 if (secure) { 1233 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1234 } 1235 if (el == 2) { 1236 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1237 } 1238 } 1239 } 1240 1241 if (counter == 31) { 1242 filter = env->cp15.pmccfiltr_el0; 1243 } else { 1244 filter = env->cp15.c14_pmevtyper[counter]; 1245 } 1246 1247 p = filter & PMXEVTYPER_P; 1248 u = filter & PMXEVTYPER_U; 1249 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1250 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1251 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1252 m = arm_el_is_aa64(env, 1) && 1253 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1254 1255 if (el == 0) { 1256 filtered = secure ? u : u != nsu; 1257 } else if (el == 1) { 1258 filtered = secure ? p : p != nsk; 1259 } else if (el == 2) { 1260 filtered = !nsh; 1261 } else { /* EL3 */ 1262 filtered = m != p; 1263 } 1264 1265 if (counter != 31) { 1266 /* 1267 * If not checking PMCCNTR, ensure the counter is setup to an event we 1268 * support 1269 */ 1270 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1271 if (!event_supported(event)) { 1272 return false; 1273 } 1274 } 1275 1276 return enabled && !prohibited && !filtered; 1277 } 1278 1279 static void pmu_update_irq(CPUARMState *env) 1280 { 1281 ARMCPU *cpu = env_archcpu(env); 1282 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1283 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1284 } 1285 1286 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1287 { 1288 /* 1289 * Return true if the clock divider is enabled and the cycle counter 1290 * is supposed to tick only once every 64 clock cycles. This is 1291 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1292 * (64-bit) cycle counter PMCR.D has no effect. 1293 */ 1294 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1295 } 1296 1297 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1298 { 1299 /* Return true if the specified event counter is configured to be 64 bit */ 1300 1301 /* This isn't intended to be used with the cycle counter */ 1302 assert(counter < 31); 1303 1304 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1305 return false; 1306 } 1307 1308 if (arm_feature(env, ARM_FEATURE_EL2)) { 1309 /* 1310 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1311 * current security state, so we don't use arm_mdcr_el2_eff() here. 1312 */ 1313 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1314 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1315 1316 if (counter >= hpmn) { 1317 return hlp; 1318 } 1319 } 1320 return env->cp15.c9_pmcr & PMCRLP; 1321 } 1322 1323 /* 1324 * Ensure c15_ccnt is the guest-visible count so that operations such as 1325 * enabling/disabling the counter or filtering, modifying the count itself, 1326 * etc. can be done logically. This is essentially a no-op if the counter is 1327 * not enabled at the time of the call. 1328 */ 1329 static void pmccntr_op_start(CPUARMState *env) 1330 { 1331 uint64_t cycles = cycles_get_count(env); 1332 1333 if (pmu_counter_enabled(env, 31)) { 1334 uint64_t eff_cycles = cycles; 1335 if (pmccntr_clockdiv_enabled(env)) { 1336 eff_cycles /= 64; 1337 } 1338 1339 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1340 1341 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1342 1ull << 63 : 1ull << 31; 1343 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1344 env->cp15.c9_pmovsr |= (1ULL << 31); 1345 pmu_update_irq(env); 1346 } 1347 1348 env->cp15.c15_ccnt = new_pmccntr; 1349 } 1350 env->cp15.c15_ccnt_delta = cycles; 1351 } 1352 1353 /* 1354 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1355 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1356 * pmccntr_op_start. 1357 */ 1358 static void pmccntr_op_finish(CPUARMState *env) 1359 { 1360 if (pmu_counter_enabled(env, 31)) { 1361 #ifndef CONFIG_USER_ONLY 1362 /* Calculate when the counter will next overflow */ 1363 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1364 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1365 remaining_cycles = (uint32_t)remaining_cycles; 1366 } 1367 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1368 1369 if (overflow_in > 0) { 1370 int64_t overflow_at; 1371 1372 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1373 overflow_in, &overflow_at)) { 1374 ARMCPU *cpu = env_archcpu(env); 1375 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1376 } 1377 } 1378 #endif 1379 1380 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1381 if (pmccntr_clockdiv_enabled(env)) { 1382 prev_cycles /= 64; 1383 } 1384 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1385 } 1386 } 1387 1388 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1389 { 1390 1391 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1392 uint64_t count = 0; 1393 if (event_supported(event)) { 1394 uint16_t event_idx = supported_event_map[event]; 1395 count = pm_events[event_idx].get_count(env); 1396 } 1397 1398 if (pmu_counter_enabled(env, counter)) { 1399 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1400 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1401 1ULL << 63 : 1ULL << 31; 1402 1403 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1404 env->cp15.c9_pmovsr |= (1 << counter); 1405 pmu_update_irq(env); 1406 } 1407 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1408 } 1409 env->cp15.c14_pmevcntr_delta[counter] = count; 1410 } 1411 1412 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1413 { 1414 if (pmu_counter_enabled(env, counter)) { 1415 #ifndef CONFIG_USER_ONLY 1416 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1417 uint16_t event_idx = supported_event_map[event]; 1418 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1419 int64_t overflow_in; 1420 1421 if (!pmevcntr_is_64_bit(env, counter)) { 1422 delta = (uint32_t)delta; 1423 } 1424 overflow_in = pm_events[event_idx].ns_per_count(delta); 1425 1426 if (overflow_in > 0) { 1427 int64_t overflow_at; 1428 1429 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1430 overflow_in, &overflow_at)) { 1431 ARMCPU *cpu = env_archcpu(env); 1432 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1433 } 1434 } 1435 #endif 1436 1437 env->cp15.c14_pmevcntr_delta[counter] -= 1438 env->cp15.c14_pmevcntr[counter]; 1439 } 1440 } 1441 1442 void pmu_op_start(CPUARMState *env) 1443 { 1444 unsigned int i; 1445 pmccntr_op_start(env); 1446 for (i = 0; i < pmu_num_counters(env); i++) { 1447 pmevcntr_op_start(env, i); 1448 } 1449 } 1450 1451 void pmu_op_finish(CPUARMState *env) 1452 { 1453 unsigned int i; 1454 pmccntr_op_finish(env); 1455 for (i = 0; i < pmu_num_counters(env); i++) { 1456 pmevcntr_op_finish(env, i); 1457 } 1458 } 1459 1460 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1461 { 1462 pmu_op_start(&cpu->env); 1463 } 1464 1465 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1466 { 1467 pmu_op_finish(&cpu->env); 1468 } 1469 1470 void arm_pmu_timer_cb(void *opaque) 1471 { 1472 ARMCPU *cpu = opaque; 1473 1474 /* 1475 * Update all the counter values based on the current underlying counts, 1476 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1477 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1478 * counter may expire. 1479 */ 1480 pmu_op_start(&cpu->env); 1481 pmu_op_finish(&cpu->env); 1482 } 1483 1484 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1485 uint64_t value) 1486 { 1487 pmu_op_start(env); 1488 1489 if (value & PMCRC) { 1490 /* The counter has been reset */ 1491 env->cp15.c15_ccnt = 0; 1492 } 1493 1494 if (value & PMCRP) { 1495 unsigned int i; 1496 for (i = 0; i < pmu_num_counters(env); i++) { 1497 env->cp15.c14_pmevcntr[i] = 0; 1498 } 1499 } 1500 1501 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1502 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1503 1504 pmu_op_finish(env); 1505 } 1506 1507 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1508 { 1509 uint64_t pmcr = env->cp15.c9_pmcr; 1510 1511 /* 1512 * If EL2 is implemented and enabled for the current security state, reads 1513 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1514 */ 1515 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1516 pmcr &= ~PMCRN_MASK; 1517 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1518 } 1519 1520 return pmcr; 1521 } 1522 1523 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 unsigned int i; 1527 uint64_t overflow_mask, new_pmswinc; 1528 1529 for (i = 0; i < pmu_num_counters(env); i++) { 1530 /* Increment a counter's count iff: */ 1531 if ((value & (1 << i)) && /* counter's bit is set */ 1532 /* counter is enabled and not filtered */ 1533 pmu_counter_enabled(env, i) && 1534 /* counter is SW_INCR */ 1535 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1536 pmevcntr_op_start(env, i); 1537 1538 /* 1539 * Detect if this write causes an overflow since we can't predict 1540 * PMSWINC overflows like we can for other events 1541 */ 1542 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1543 1544 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1545 1ULL << 63 : 1ULL << 31; 1546 1547 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1548 env->cp15.c9_pmovsr |= (1 << i); 1549 pmu_update_irq(env); 1550 } 1551 1552 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1553 1554 pmevcntr_op_finish(env, i); 1555 } 1556 } 1557 } 1558 1559 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1560 { 1561 uint64_t ret; 1562 pmccntr_op_start(env); 1563 ret = env->cp15.c15_ccnt; 1564 pmccntr_op_finish(env); 1565 return ret; 1566 } 1567 1568 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1569 uint64_t value) 1570 { 1571 /* 1572 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1573 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1574 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1575 * accessed. 1576 */ 1577 env->cp15.c9_pmselr = value & 0x1f; 1578 } 1579 1580 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1581 uint64_t value) 1582 { 1583 pmccntr_op_start(env); 1584 env->cp15.c15_ccnt = value; 1585 pmccntr_op_finish(env); 1586 } 1587 1588 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1589 uint64_t value) 1590 { 1591 uint64_t cur_val = pmccntr_read(env, NULL); 1592 1593 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1594 } 1595 1596 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1597 uint64_t value) 1598 { 1599 pmccntr_op_start(env); 1600 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1601 pmccntr_op_finish(env); 1602 } 1603 1604 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 pmccntr_op_start(env); 1608 /* M is not accessible from AArch32 */ 1609 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1610 (value & PMCCFILTR); 1611 pmccntr_op_finish(env); 1612 } 1613 1614 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1615 { 1616 /* M is not visible in AArch32 */ 1617 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1618 } 1619 1620 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1621 uint64_t value) 1622 { 1623 pmu_op_start(env); 1624 value &= pmu_counter_mask(env); 1625 env->cp15.c9_pmcnten |= value; 1626 pmu_op_finish(env); 1627 } 1628 1629 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1630 uint64_t value) 1631 { 1632 pmu_op_start(env); 1633 value &= pmu_counter_mask(env); 1634 env->cp15.c9_pmcnten &= ~value; 1635 pmu_op_finish(env); 1636 } 1637 1638 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1639 uint64_t value) 1640 { 1641 value &= pmu_counter_mask(env); 1642 env->cp15.c9_pmovsr &= ~value; 1643 pmu_update_irq(env); 1644 } 1645 1646 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value) 1648 { 1649 value &= pmu_counter_mask(env); 1650 env->cp15.c9_pmovsr |= value; 1651 pmu_update_irq(env); 1652 } 1653 1654 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1655 uint64_t value, const uint8_t counter) 1656 { 1657 if (counter == 31) { 1658 pmccfiltr_write(env, ri, value); 1659 } else if (counter < pmu_num_counters(env)) { 1660 pmevcntr_op_start(env, counter); 1661 1662 /* 1663 * If this counter's event type is changing, store the current 1664 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1665 * pmevcntr_op_finish has the correct baseline when it converts back to 1666 * a delta. 1667 */ 1668 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1669 PMXEVTYPER_EVTCOUNT; 1670 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1671 if (old_event != new_event) { 1672 uint64_t count = 0; 1673 if (event_supported(new_event)) { 1674 uint16_t event_idx = supported_event_map[new_event]; 1675 count = pm_events[event_idx].get_count(env); 1676 } 1677 env->cp15.c14_pmevcntr_delta[counter] = count; 1678 } 1679 1680 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1681 pmevcntr_op_finish(env, counter); 1682 } 1683 /* 1684 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1685 * PMSELR value is equal to or greater than the number of implemented 1686 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1687 */ 1688 } 1689 1690 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1691 const uint8_t counter) 1692 { 1693 if (counter == 31) { 1694 return env->cp15.pmccfiltr_el0; 1695 } else if (counter < pmu_num_counters(env)) { 1696 return env->cp15.c14_pmevtyper[counter]; 1697 } else { 1698 /* 1699 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1700 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1701 */ 1702 return 0; 1703 } 1704 } 1705 1706 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1707 uint64_t value) 1708 { 1709 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1710 pmevtyper_write(env, ri, value, counter); 1711 } 1712 1713 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1714 uint64_t value) 1715 { 1716 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1717 env->cp15.c14_pmevtyper[counter] = value; 1718 1719 /* 1720 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1721 * pmu_op_finish calls when loading saved state for a migration. Because 1722 * we're potentially updating the type of event here, the value written to 1723 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1724 * different counter type. Therefore, we need to set this value to the 1725 * current count for the counter type we're writing so that pmu_op_finish 1726 * has the correct count for its calculation. 1727 */ 1728 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1729 if (event_supported(event)) { 1730 uint16_t event_idx = supported_event_map[event]; 1731 env->cp15.c14_pmevcntr_delta[counter] = 1732 pm_events[event_idx].get_count(env); 1733 } 1734 } 1735 1736 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1737 { 1738 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1739 return pmevtyper_read(env, ri, counter); 1740 } 1741 1742 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1743 uint64_t value) 1744 { 1745 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1746 } 1747 1748 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1749 { 1750 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1751 } 1752 1753 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1754 uint64_t value, uint8_t counter) 1755 { 1756 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1757 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1758 value &= MAKE_64BIT_MASK(0, 32); 1759 } 1760 if (counter < pmu_num_counters(env)) { 1761 pmevcntr_op_start(env, counter); 1762 env->cp15.c14_pmevcntr[counter] = value; 1763 pmevcntr_op_finish(env, counter); 1764 } 1765 /* 1766 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1767 * are CONSTRAINED UNPREDICTABLE. 1768 */ 1769 } 1770 1771 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1772 uint8_t counter) 1773 { 1774 if (counter < pmu_num_counters(env)) { 1775 uint64_t ret; 1776 pmevcntr_op_start(env, counter); 1777 ret = env->cp15.c14_pmevcntr[counter]; 1778 pmevcntr_op_finish(env, counter); 1779 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1780 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1781 ret &= MAKE_64BIT_MASK(0, 32); 1782 } 1783 return ret; 1784 } else { 1785 /* 1786 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1787 * are CONSTRAINED UNPREDICTABLE. 1788 */ 1789 return 0; 1790 } 1791 } 1792 1793 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1794 uint64_t value) 1795 { 1796 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1797 pmevcntr_write(env, ri, value, counter); 1798 } 1799 1800 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1801 { 1802 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1803 return pmevcntr_read(env, ri, counter); 1804 } 1805 1806 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1807 uint64_t value) 1808 { 1809 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1810 assert(counter < pmu_num_counters(env)); 1811 env->cp15.c14_pmevcntr[counter] = value; 1812 pmevcntr_write(env, ri, value, counter); 1813 } 1814 1815 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1816 { 1817 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1818 assert(counter < pmu_num_counters(env)); 1819 return env->cp15.c14_pmevcntr[counter]; 1820 } 1821 1822 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1823 uint64_t value) 1824 { 1825 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1826 } 1827 1828 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1829 { 1830 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1831 } 1832 1833 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1834 uint64_t value) 1835 { 1836 if (arm_feature(env, ARM_FEATURE_V8)) { 1837 env->cp15.c9_pmuserenr = value & 0xf; 1838 } else { 1839 env->cp15.c9_pmuserenr = value & 1; 1840 } 1841 } 1842 1843 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1844 uint64_t value) 1845 { 1846 /* We have no event counters so only the C bit can be changed */ 1847 value &= pmu_counter_mask(env); 1848 env->cp15.c9_pminten |= value; 1849 pmu_update_irq(env); 1850 } 1851 1852 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 value &= pmu_counter_mask(env); 1856 env->cp15.c9_pminten &= ~value; 1857 pmu_update_irq(env); 1858 } 1859 1860 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 /* 1864 * Note that even though the AArch64 view of this register has bits 1865 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1866 * architectural requirements for bits which are RES0 only in some 1867 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1868 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1869 */ 1870 raw_write(env, ri, value & ~0x1FULL); 1871 } 1872 1873 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1874 { 1875 /* Begin with base v8.0 state. */ 1876 uint64_t valid_mask = 0x3fff; 1877 ARMCPU *cpu = env_archcpu(env); 1878 uint64_t changed; 1879 1880 /* 1881 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1882 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1883 * Instead, choose the format based on the mode of EL3. 1884 */ 1885 if (arm_el_is_aa64(env, 3)) { 1886 value |= SCR_FW | SCR_AW; /* RES1 */ 1887 valid_mask &= ~SCR_NET; /* RES0 */ 1888 1889 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1890 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1891 value |= SCR_RW; /* RAO/WI */ 1892 } 1893 if (cpu_isar_feature(aa64_ras, cpu)) { 1894 valid_mask |= SCR_TERR; 1895 } 1896 if (cpu_isar_feature(aa64_lor, cpu)) { 1897 valid_mask |= SCR_TLOR; 1898 } 1899 if (cpu_isar_feature(aa64_pauth, cpu)) { 1900 valid_mask |= SCR_API | SCR_APK; 1901 } 1902 if (cpu_isar_feature(aa64_sel2, cpu)) { 1903 valid_mask |= SCR_EEL2; 1904 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1905 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1906 value |= SCR_NS; 1907 } 1908 if (cpu_isar_feature(aa64_mte, cpu)) { 1909 valid_mask |= SCR_ATA; 1910 } 1911 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1912 valid_mask |= SCR_ENSCXT; 1913 } 1914 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1915 valid_mask |= SCR_EASE | SCR_NMEA; 1916 } 1917 if (cpu_isar_feature(aa64_sme, cpu)) { 1918 valid_mask |= SCR_ENTP2; 1919 } 1920 if (cpu_isar_feature(aa64_hcx, cpu)) { 1921 valid_mask |= SCR_HXEN; 1922 } 1923 if (cpu_isar_feature(aa64_fgt, cpu)) { 1924 valid_mask |= SCR_FGTEN; 1925 } 1926 if (cpu_isar_feature(aa64_rme, cpu)) { 1927 valid_mask |= SCR_NSE | SCR_GPF; 1928 } 1929 if (cpu_isar_feature(aa64_ecv, cpu)) { 1930 valid_mask |= SCR_ECVEN; 1931 } 1932 } else { 1933 valid_mask &= ~(SCR_RW | SCR_ST); 1934 if (cpu_isar_feature(aa32_ras, cpu)) { 1935 valid_mask |= SCR_TERR; 1936 } 1937 } 1938 1939 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1940 valid_mask &= ~SCR_HCE; 1941 1942 /* 1943 * On ARMv7, SMD (or SCD as it is called in v7) is only 1944 * supported if EL2 exists. The bit is UNK/SBZP when 1945 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1946 * when EL2 is unavailable. 1947 * On ARMv8, this bit is always available. 1948 */ 1949 if (arm_feature(env, ARM_FEATURE_V7) && 1950 !arm_feature(env, ARM_FEATURE_V8)) { 1951 valid_mask &= ~SCR_SMD; 1952 } 1953 } 1954 1955 /* Clear all-context RES0 bits. */ 1956 value &= valid_mask; 1957 changed = env->cp15.scr_el3 ^ value; 1958 env->cp15.scr_el3 = value; 1959 1960 /* 1961 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1962 * we must invalidate all TLBs below EL3. 1963 */ 1964 if (changed & (SCR_NS | SCR_NSE)) { 1965 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1966 ARMMMUIdxBit_E20_0 | 1967 ARMMMUIdxBit_E10_1 | 1968 ARMMMUIdxBit_E20_2 | 1969 ARMMMUIdxBit_E10_1_PAN | 1970 ARMMMUIdxBit_E20_2_PAN | 1971 ARMMMUIdxBit_E2)); 1972 } 1973 } 1974 1975 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1976 { 1977 /* 1978 * scr_write will set the RES1 bits on an AArch64-only CPU. 1979 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1980 */ 1981 scr_write(env, ri, 0); 1982 } 1983 1984 static CPAccessResult access_tid4(CPUARMState *env, 1985 const ARMCPRegInfo *ri, 1986 bool isread) 1987 { 1988 if (arm_current_el(env) == 1 && 1989 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1990 return CP_ACCESS_TRAP_EL2; 1991 } 1992 1993 return CP_ACCESS_OK; 1994 } 1995 1996 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1997 { 1998 ARMCPU *cpu = env_archcpu(env); 1999 2000 /* 2001 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 2002 * bank 2003 */ 2004 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2005 ri->secure & ARM_CP_SECSTATE_S); 2006 2007 return cpu->ccsidr[index]; 2008 } 2009 2010 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2011 uint64_t value) 2012 { 2013 raw_write(env, ri, value & 0xf); 2014 } 2015 2016 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2017 { 2018 CPUState *cs = env_cpu(env); 2019 bool el1 = arm_current_el(env) == 1; 2020 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2021 uint64_t ret = 0; 2022 2023 if (hcr_el2 & HCR_IMO) { 2024 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2025 ret |= CPSR_I; 2026 } 2027 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 2028 ret |= ISR_IS; 2029 ret |= CPSR_I; 2030 } 2031 } else { 2032 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2033 ret |= CPSR_I; 2034 } 2035 2036 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 2037 ret |= ISR_IS; 2038 ret |= CPSR_I; 2039 } 2040 } 2041 2042 if (hcr_el2 & HCR_FMO) { 2043 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2044 ret |= CPSR_F; 2045 } 2046 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 2047 ret |= ISR_FS; 2048 ret |= CPSR_F; 2049 } 2050 } else { 2051 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2052 ret |= CPSR_F; 2053 } 2054 } 2055 2056 if (hcr_el2 & HCR_AMO) { 2057 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2058 ret |= CPSR_A; 2059 } 2060 } 2061 2062 return ret; 2063 } 2064 2065 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2066 bool isread) 2067 { 2068 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2069 return CP_ACCESS_TRAP_EL2; 2070 } 2071 2072 return CP_ACCESS_OK; 2073 } 2074 2075 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2076 bool isread) 2077 { 2078 if (arm_feature(env, ARM_FEATURE_V8)) { 2079 return access_aa64_tid1(env, ri, isread); 2080 } 2081 2082 return CP_ACCESS_OK; 2083 } 2084 2085 static const ARMCPRegInfo v7_cp_reginfo[] = { 2086 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2087 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2088 .access = PL1_W, .type = ARM_CP_NOP }, 2089 /* 2090 * Performance monitors are implementation defined in v7, 2091 * but with an ARM recommended set of registers, which we 2092 * follow. 2093 * 2094 * Performance registers fall into three categories: 2095 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2096 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2097 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2098 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2099 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2100 */ 2101 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2102 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2103 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2104 .writefn = pmcntenset_write, 2105 .accessfn = pmreg_access, 2106 .fgt = FGT_PMCNTEN, 2107 .raw_writefn = raw_write }, 2108 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2109 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2110 .access = PL0_RW, .accessfn = pmreg_access, 2111 .fgt = FGT_PMCNTEN, 2112 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2113 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2114 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2115 .access = PL0_RW, 2116 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2117 .accessfn = pmreg_access, 2118 .fgt = FGT_PMCNTEN, 2119 .writefn = pmcntenclr_write, 2120 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2121 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2122 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2123 .access = PL0_RW, .accessfn = pmreg_access, 2124 .fgt = FGT_PMCNTEN, 2125 .type = ARM_CP_ALIAS | ARM_CP_IO, 2126 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2127 .writefn = pmcntenclr_write }, 2128 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2129 .access = PL0_RW, .type = ARM_CP_IO, 2130 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2131 .accessfn = pmreg_access, 2132 .fgt = FGT_PMOVS, 2133 .writefn = pmovsr_write, 2134 .raw_writefn = raw_write }, 2135 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2136 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2137 .access = PL0_RW, .accessfn = pmreg_access, 2138 .fgt = FGT_PMOVS, 2139 .type = ARM_CP_ALIAS | ARM_CP_IO, 2140 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2141 .writefn = pmovsr_write, 2142 .raw_writefn = raw_write }, 2143 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2144 .access = PL0_W, .accessfn = pmreg_access_swinc, 2145 .fgt = FGT_PMSWINC_EL0, 2146 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2147 .writefn = pmswinc_write }, 2148 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2149 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2150 .access = PL0_W, .accessfn = pmreg_access_swinc, 2151 .fgt = FGT_PMSWINC_EL0, 2152 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2153 .writefn = pmswinc_write }, 2154 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2155 .access = PL0_RW, .type = ARM_CP_ALIAS, 2156 .fgt = FGT_PMSELR_EL0, 2157 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2158 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2159 .raw_writefn = raw_write}, 2160 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2161 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2162 .access = PL0_RW, .accessfn = pmreg_access_selr, 2163 .fgt = FGT_PMSELR_EL0, 2164 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2165 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2166 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2167 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2168 .fgt = FGT_PMCCNTR_EL0, 2169 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2170 .accessfn = pmreg_access_ccntr }, 2171 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2172 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2173 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2174 .fgt = FGT_PMCCNTR_EL0, 2175 .type = ARM_CP_IO, 2176 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2177 .readfn = pmccntr_read, .writefn = pmccntr_write, 2178 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2179 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2180 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2181 .access = PL0_RW, .accessfn = pmreg_access, 2182 .fgt = FGT_PMCCFILTR_EL0, 2183 .type = ARM_CP_ALIAS | ARM_CP_IO, 2184 .resetvalue = 0, }, 2185 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2187 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2188 .access = PL0_RW, .accessfn = pmreg_access, 2189 .fgt = FGT_PMCCFILTR_EL0, 2190 .type = ARM_CP_IO, 2191 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2192 .resetvalue = 0, }, 2193 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2194 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2195 .accessfn = pmreg_access, 2196 .fgt = FGT_PMEVTYPERN_EL0, 2197 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2198 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2199 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2200 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2201 .accessfn = pmreg_access, 2202 .fgt = FGT_PMEVTYPERN_EL0, 2203 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2204 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2205 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2206 .accessfn = pmreg_access_xevcntr, 2207 .fgt = FGT_PMEVCNTRN_EL0, 2208 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2209 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2210 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2211 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2212 .accessfn = pmreg_access_xevcntr, 2213 .fgt = FGT_PMEVCNTRN_EL0, 2214 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2215 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2216 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2217 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2218 .resetvalue = 0, 2219 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2220 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2221 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2222 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2223 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2224 .resetvalue = 0, 2225 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2226 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2227 .access = PL1_RW, .accessfn = access_tpm, 2228 .fgt = FGT_PMINTEN, 2229 .type = ARM_CP_ALIAS | ARM_CP_IO, 2230 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2231 .resetvalue = 0, 2232 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2233 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2234 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2235 .access = PL1_RW, .accessfn = access_tpm, 2236 .fgt = FGT_PMINTEN, 2237 .type = ARM_CP_IO, 2238 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2239 .writefn = pmintenset_write, .raw_writefn = raw_write, 2240 .resetvalue = 0x0 }, 2241 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2242 .access = PL1_RW, .accessfn = access_tpm, 2243 .fgt = FGT_PMINTEN, 2244 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2245 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2246 .writefn = pmintenclr_write, }, 2247 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2248 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2249 .access = PL1_RW, .accessfn = access_tpm, 2250 .fgt = FGT_PMINTEN, 2251 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2252 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2253 .writefn = pmintenclr_write }, 2254 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2255 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2256 .access = PL1_R, 2257 .accessfn = access_tid4, 2258 .fgt = FGT_CCSIDR_EL1, 2259 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2260 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2261 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2262 .access = PL1_RW, 2263 .accessfn = access_tid4, 2264 .fgt = FGT_CSSELR_EL1, 2265 .writefn = csselr_write, .resetvalue = 0, 2266 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2267 offsetof(CPUARMState, cp15.csselr_ns) } }, 2268 /* 2269 * Auxiliary ID register: this actually has an IMPDEF value but for now 2270 * just RAZ for all cores: 2271 */ 2272 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2274 .access = PL1_R, .type = ARM_CP_CONST, 2275 .accessfn = access_aa64_tid1, 2276 .fgt = FGT_AIDR_EL1, 2277 .resetvalue = 0 }, 2278 /* 2279 * Auxiliary fault status registers: these also are IMPDEF, and we 2280 * choose to RAZ/WI for all cores. 2281 */ 2282 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2284 .access = PL1_RW, .accessfn = access_tvm_trvm, 2285 .fgt = FGT_AFSR0_EL1, 2286 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2287 .type = ARM_CP_CONST, .resetvalue = 0 }, 2288 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2289 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2290 .access = PL1_RW, .accessfn = access_tvm_trvm, 2291 .fgt = FGT_AFSR1_EL1, 2292 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2293 .type = ARM_CP_CONST, .resetvalue = 0 }, 2294 /* 2295 * MAIR can just read-as-written because we don't implement caches 2296 * and so don't need to care about memory attributes. 2297 */ 2298 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2299 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2300 .access = PL1_RW, .accessfn = access_tvm_trvm, 2301 .fgt = FGT_MAIR_EL1, 2302 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2303 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2304 .resetvalue = 0 }, 2305 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2306 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2307 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2308 .resetvalue = 0 }, 2309 /* 2310 * For non-long-descriptor page tables these are PRRR and NMRR; 2311 * regardless they still act as reads-as-written for QEMU. 2312 */ 2313 /* 2314 * MAIR0/1 are defined separately from their 64-bit counterpart which 2315 * allows them to assign the correct fieldoffset based on the endianness 2316 * handled in the field definitions. 2317 */ 2318 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2319 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2320 .access = PL1_RW, .accessfn = access_tvm_trvm, 2321 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2322 offsetof(CPUARMState, cp15.mair0_ns) }, 2323 .resetfn = arm_cp_reset_ignore }, 2324 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2325 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2326 .access = PL1_RW, .accessfn = access_tvm_trvm, 2327 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2328 offsetof(CPUARMState, cp15.mair1_ns) }, 2329 .resetfn = arm_cp_reset_ignore }, 2330 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2331 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2332 .fgt = FGT_ISR_EL1, 2333 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2334 /* 32 bit ITLB invalidates */ 2335 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2337 .writefn = tlbiall_write }, 2338 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2340 .writefn = tlbimva_write }, 2341 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2342 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2343 .writefn = tlbiasid_write }, 2344 /* 32 bit DTLB invalidates */ 2345 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbiall_write }, 2348 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbimva_write }, 2351 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2352 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2353 .writefn = tlbiasid_write }, 2354 /* 32 bit TLB invalidates */ 2355 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2357 .writefn = tlbiall_write }, 2358 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbimva_write }, 2361 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2363 .writefn = tlbiasid_write }, 2364 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2365 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2366 .writefn = tlbimvaa_write }, 2367 }; 2368 2369 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2370 /* 32 bit TLB invalidates, Inner Shareable */ 2371 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2373 .writefn = tlbiall_is_write }, 2374 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2376 .writefn = tlbimva_is_write }, 2377 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2379 .writefn = tlbiasid_is_write }, 2380 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2381 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2382 .writefn = tlbimvaa_is_write }, 2383 }; 2384 2385 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2386 /* PMOVSSET is not implemented in v7 before v7ve */ 2387 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2388 .access = PL0_RW, .accessfn = pmreg_access, 2389 .fgt = FGT_PMOVS, 2390 .type = ARM_CP_ALIAS | ARM_CP_IO, 2391 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2392 .writefn = pmovsset_write, 2393 .raw_writefn = raw_write }, 2394 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2395 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2396 .access = PL0_RW, .accessfn = pmreg_access, 2397 .fgt = FGT_PMOVS, 2398 .type = ARM_CP_ALIAS | ARM_CP_IO, 2399 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2400 .writefn = pmovsset_write, 2401 .raw_writefn = raw_write }, 2402 }; 2403 2404 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2405 uint64_t value) 2406 { 2407 value &= 1; 2408 env->teecr = value; 2409 } 2410 2411 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2412 bool isread) 2413 { 2414 /* 2415 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2416 * at all, so we don't need to check whether we're v8A. 2417 */ 2418 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2419 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2420 return CP_ACCESS_TRAP_EL2; 2421 } 2422 return CP_ACCESS_OK; 2423 } 2424 2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2426 bool isread) 2427 { 2428 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2429 return CP_ACCESS_TRAP; 2430 } 2431 return teecr_access(env, ri, isread); 2432 } 2433 2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2435 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2436 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2437 .resetvalue = 0, 2438 .writefn = teecr_write, .accessfn = teecr_access }, 2439 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2440 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2441 .accessfn = teehbr_access, .resetvalue = 0 }, 2442 }; 2443 2444 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2445 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2446 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2447 .access = PL0_RW, 2448 .fgt = FGT_TPIDR_EL0, 2449 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2450 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2451 .access = PL0_RW, 2452 .fgt = FGT_TPIDR_EL0, 2453 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2454 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2455 .resetfn = arm_cp_reset_ignore }, 2456 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2457 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2458 .access = PL0_R | PL1_W, 2459 .fgt = FGT_TPIDRRO_EL0, 2460 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2461 .resetvalue = 0}, 2462 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2463 .access = PL0_R | PL1_W, 2464 .fgt = FGT_TPIDRRO_EL0, 2465 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2466 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2467 .resetfn = arm_cp_reset_ignore }, 2468 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2469 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2470 .access = PL1_RW, 2471 .fgt = FGT_TPIDR_EL1, 2472 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2473 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2474 .access = PL1_RW, 2475 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2476 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2477 .resetvalue = 0 }, 2478 }; 2479 2480 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2481 { 2482 ARMCPU *cpu = env_archcpu(env); 2483 2484 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2485 } 2486 2487 #ifndef CONFIG_USER_ONLY 2488 2489 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2490 bool isread) 2491 { 2492 /* 2493 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2494 * Writable only at the highest implemented exception level. 2495 */ 2496 int el = arm_current_el(env); 2497 uint64_t hcr; 2498 uint32_t cntkctl; 2499 2500 switch (el) { 2501 case 0: 2502 hcr = arm_hcr_el2_eff(env); 2503 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2504 cntkctl = env->cp15.cnthctl_el2; 2505 } else { 2506 cntkctl = env->cp15.c14_cntkctl; 2507 } 2508 if (!extract32(cntkctl, 0, 2)) { 2509 return CP_ACCESS_TRAP; 2510 } 2511 break; 2512 case 1: 2513 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2514 arm_is_secure_below_el3(env)) { 2515 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2516 return CP_ACCESS_TRAP_UNCATEGORIZED; 2517 } 2518 break; 2519 case 2: 2520 case 3: 2521 break; 2522 } 2523 2524 if (!isread && el < arm_highest_el(env)) { 2525 return CP_ACCESS_TRAP_UNCATEGORIZED; 2526 } 2527 2528 return CP_ACCESS_OK; 2529 } 2530 2531 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2532 bool isread) 2533 { 2534 unsigned int cur_el = arm_current_el(env); 2535 bool has_el2 = arm_is_el2_enabled(env); 2536 uint64_t hcr = arm_hcr_el2_eff(env); 2537 2538 switch (cur_el) { 2539 case 0: 2540 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2541 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2542 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2543 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2544 } 2545 2546 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2547 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2548 return CP_ACCESS_TRAP; 2549 } 2550 /* fall through */ 2551 case 1: 2552 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2553 if (has_el2 && timeridx == GTIMER_PHYS && 2554 (hcr & HCR_E2H 2555 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2556 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2557 return CP_ACCESS_TRAP_EL2; 2558 } 2559 if (has_el2 && timeridx == GTIMER_VIRT) { 2560 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2561 return CP_ACCESS_TRAP_EL2; 2562 } 2563 } 2564 break; 2565 } 2566 return CP_ACCESS_OK; 2567 } 2568 2569 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2570 bool isread) 2571 { 2572 unsigned int cur_el = arm_current_el(env); 2573 bool has_el2 = arm_is_el2_enabled(env); 2574 uint64_t hcr = arm_hcr_el2_eff(env); 2575 2576 switch (cur_el) { 2577 case 0: 2578 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2579 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2580 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2581 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2582 } 2583 2584 /* 2585 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2586 * EL0 if EL0[PV]TEN is zero. 2587 */ 2588 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2589 return CP_ACCESS_TRAP; 2590 } 2591 /* fall through */ 2592 2593 case 1: 2594 if (has_el2 && timeridx == GTIMER_PHYS) { 2595 if (hcr & HCR_E2H) { 2596 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2597 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2598 return CP_ACCESS_TRAP_EL2; 2599 } 2600 } else { 2601 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2602 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2603 return CP_ACCESS_TRAP_EL2; 2604 } 2605 } 2606 } 2607 if (has_el2 && timeridx == GTIMER_VIRT) { 2608 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2609 return CP_ACCESS_TRAP_EL2; 2610 } 2611 } 2612 break; 2613 } 2614 return CP_ACCESS_OK; 2615 } 2616 2617 static CPAccessResult gt_pct_access(CPUARMState *env, 2618 const ARMCPRegInfo *ri, 2619 bool isread) 2620 { 2621 return gt_counter_access(env, GTIMER_PHYS, isread); 2622 } 2623 2624 static CPAccessResult gt_vct_access(CPUARMState *env, 2625 const ARMCPRegInfo *ri, 2626 bool isread) 2627 { 2628 return gt_counter_access(env, GTIMER_VIRT, isread); 2629 } 2630 2631 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2632 bool isread) 2633 { 2634 return gt_timer_access(env, GTIMER_PHYS, isread); 2635 } 2636 2637 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2638 bool isread) 2639 { 2640 return gt_timer_access(env, GTIMER_VIRT, isread); 2641 } 2642 2643 static CPAccessResult gt_stimer_access(CPUARMState *env, 2644 const ARMCPRegInfo *ri, 2645 bool isread) 2646 { 2647 /* 2648 * The AArch64 register view of the secure physical timer is 2649 * always accessible from EL3, and configurably accessible from 2650 * Secure EL1. 2651 */ 2652 switch (arm_current_el(env)) { 2653 case 1: 2654 if (!arm_is_secure(env)) { 2655 return CP_ACCESS_TRAP; 2656 } 2657 if (!(env->cp15.scr_el3 & SCR_ST)) { 2658 return CP_ACCESS_TRAP_EL3; 2659 } 2660 return CP_ACCESS_OK; 2661 case 0: 2662 case 2: 2663 return CP_ACCESS_TRAP; 2664 case 3: 2665 return CP_ACCESS_OK; 2666 default: 2667 g_assert_not_reached(); 2668 } 2669 } 2670 2671 uint64_t gt_get_countervalue(CPUARMState *env) 2672 { 2673 ARMCPU *cpu = env_archcpu(env); 2674 2675 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2676 } 2677 2678 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2679 { 2680 CPUARMState *env = &cpu->env; 2681 uint64_t cnthctl = env->cp15.cnthctl_el2; 2682 ARMSecuritySpace ss = arm_security_space(env); 2683 /* ISTATUS && !IMASK */ 2684 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2685 2686 /* 2687 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2688 * It is RES0 in Secure and NonSecure state. 2689 */ 2690 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2691 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2692 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2693 irqstate = 0; 2694 } 2695 2696 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2697 trace_arm_gt_update_irq(timeridx, irqstate); 2698 } 2699 2700 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2701 { 2702 /* 2703 * Changing security state between Root and Secure/NonSecure, which may 2704 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2705 * mask bits. Update the IRQ state accordingly. 2706 */ 2707 gt_update_irq(cpu, GTIMER_VIRT); 2708 gt_update_irq(cpu, GTIMER_PHYS); 2709 } 2710 2711 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2712 { 2713 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2714 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2715 arm_is_el2_enabled(env) && 2716 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2717 return env->cp15.cntpoff_el2; 2718 } 2719 return 0; 2720 } 2721 2722 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2723 { 2724 if (arm_current_el(env) >= 2) { 2725 return 0; 2726 } 2727 return gt_phys_raw_cnt_offset(env); 2728 } 2729 2730 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2731 { 2732 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2733 2734 if (gt->ctl & 1) { 2735 /* 2736 * Timer enabled: calculate and set current ISTATUS, irq, and 2737 * reset timer to when ISTATUS next has to change 2738 */ 2739 uint64_t offset = timeridx == GTIMER_VIRT ? 2740 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2741 uint64_t count = gt_get_countervalue(&cpu->env); 2742 /* Note that this must be unsigned 64 bit arithmetic: */ 2743 int istatus = count - offset >= gt->cval; 2744 uint64_t nexttick; 2745 2746 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2747 2748 if (istatus) { 2749 /* 2750 * Next transition is when (count - offset) rolls back over to 0. 2751 * If offset > count then this is when count == offset; 2752 * if offset <= count then this is when count == offset + 2^64 2753 * For the latter case we set nexttick to an "as far in future 2754 * as possible" value and let the code below handle it. 2755 */ 2756 if (offset > count) { 2757 nexttick = offset; 2758 } else { 2759 nexttick = UINT64_MAX; 2760 } 2761 } else { 2762 /* 2763 * Next transition is when (count - offset) == cval, i.e. 2764 * when count == (cval + offset). 2765 * If that would overflow, then again we set up the next interrupt 2766 * for "as far in the future as possible" for the code below. 2767 */ 2768 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2769 nexttick = UINT64_MAX; 2770 } 2771 } 2772 /* 2773 * Note that the desired next expiry time might be beyond the 2774 * signed-64-bit range of a QEMUTimer -- in this case we just 2775 * set the timer for as far in the future as possible. When the 2776 * timer expires we will reset the timer for any remaining period. 2777 */ 2778 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2779 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2780 } else { 2781 timer_mod(cpu->gt_timer[timeridx], nexttick); 2782 } 2783 trace_arm_gt_recalc(timeridx, nexttick); 2784 } else { 2785 /* Timer disabled: ISTATUS and timer output always clear */ 2786 gt->ctl &= ~4; 2787 timer_del(cpu->gt_timer[timeridx]); 2788 trace_arm_gt_recalc_disabled(timeridx); 2789 } 2790 gt_update_irq(cpu, timeridx); 2791 } 2792 2793 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2794 int timeridx) 2795 { 2796 ARMCPU *cpu = env_archcpu(env); 2797 2798 timer_del(cpu->gt_timer[timeridx]); 2799 } 2800 2801 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2802 { 2803 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2804 } 2805 2806 uint64_t gt_virt_cnt_offset(CPUARMState *env) 2807 { 2808 uint64_t hcr; 2809 2810 switch (arm_current_el(env)) { 2811 case 2: 2812 hcr = arm_hcr_el2_eff(env); 2813 if (hcr & HCR_E2H) { 2814 return 0; 2815 } 2816 break; 2817 case 0: 2818 hcr = arm_hcr_el2_eff(env); 2819 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2820 return 0; 2821 } 2822 break; 2823 } 2824 2825 return env->cp15.cntvoff_el2; 2826 } 2827 2828 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2829 { 2830 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2831 } 2832 2833 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2834 int timeridx, 2835 uint64_t value) 2836 { 2837 trace_arm_gt_cval_write(timeridx, value); 2838 env->cp15.c14_timer[timeridx].cval = value; 2839 gt_recalc_timer(env_archcpu(env), timeridx); 2840 } 2841 2842 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2843 int timeridx) 2844 { 2845 uint64_t offset = 0; 2846 2847 switch (timeridx) { 2848 case GTIMER_VIRT: 2849 case GTIMER_HYPVIRT: 2850 offset = gt_virt_cnt_offset(env); 2851 break; 2852 case GTIMER_PHYS: 2853 offset = gt_phys_cnt_offset(env); 2854 break; 2855 } 2856 2857 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2858 (gt_get_countervalue(env) - offset)); 2859 } 2860 2861 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2862 int timeridx, 2863 uint64_t value) 2864 { 2865 uint64_t offset = 0; 2866 2867 switch (timeridx) { 2868 case GTIMER_VIRT: 2869 case GTIMER_HYPVIRT: 2870 offset = gt_virt_cnt_offset(env); 2871 break; 2872 case GTIMER_PHYS: 2873 offset = gt_phys_cnt_offset(env); 2874 break; 2875 } 2876 2877 trace_arm_gt_tval_write(timeridx, value); 2878 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2879 sextract64(value, 0, 32); 2880 gt_recalc_timer(env_archcpu(env), timeridx); 2881 } 2882 2883 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2884 int timeridx, 2885 uint64_t value) 2886 { 2887 ARMCPU *cpu = env_archcpu(env); 2888 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2889 2890 trace_arm_gt_ctl_write(timeridx, value); 2891 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2892 if ((oldval ^ value) & 1) { 2893 /* Enable toggled */ 2894 gt_recalc_timer(cpu, timeridx); 2895 } else if ((oldval ^ value) & 2) { 2896 /* 2897 * IMASK toggled: don't need to recalculate, 2898 * just set the interrupt line based on ISTATUS 2899 */ 2900 trace_arm_gt_imask_toggle(timeridx); 2901 gt_update_irq(cpu, timeridx); 2902 } 2903 } 2904 2905 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2906 { 2907 gt_timer_reset(env, ri, GTIMER_PHYS); 2908 } 2909 2910 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2911 uint64_t value) 2912 { 2913 gt_cval_write(env, ri, GTIMER_PHYS, value); 2914 } 2915 2916 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2917 { 2918 return gt_tval_read(env, ri, GTIMER_PHYS); 2919 } 2920 2921 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2922 uint64_t value) 2923 { 2924 gt_tval_write(env, ri, GTIMER_PHYS, value); 2925 } 2926 2927 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2928 uint64_t value) 2929 { 2930 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2931 } 2932 2933 static int gt_phys_redir_timeridx(CPUARMState *env) 2934 { 2935 switch (arm_mmu_idx(env)) { 2936 case ARMMMUIdx_E20_0: 2937 case ARMMMUIdx_E20_2: 2938 case ARMMMUIdx_E20_2_PAN: 2939 return GTIMER_HYP; 2940 default: 2941 return GTIMER_PHYS; 2942 } 2943 } 2944 2945 static int gt_virt_redir_timeridx(CPUARMState *env) 2946 { 2947 switch (arm_mmu_idx(env)) { 2948 case ARMMMUIdx_E20_0: 2949 case ARMMMUIdx_E20_2: 2950 case ARMMMUIdx_E20_2_PAN: 2951 return GTIMER_HYPVIRT; 2952 default: 2953 return GTIMER_VIRT; 2954 } 2955 } 2956 2957 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2958 const ARMCPRegInfo *ri) 2959 { 2960 int timeridx = gt_phys_redir_timeridx(env); 2961 return env->cp15.c14_timer[timeridx].cval; 2962 } 2963 2964 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2965 uint64_t value) 2966 { 2967 int timeridx = gt_phys_redir_timeridx(env); 2968 gt_cval_write(env, ri, timeridx, value); 2969 } 2970 2971 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2972 const ARMCPRegInfo *ri) 2973 { 2974 int timeridx = gt_phys_redir_timeridx(env); 2975 return gt_tval_read(env, ri, timeridx); 2976 } 2977 2978 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2979 uint64_t value) 2980 { 2981 int timeridx = gt_phys_redir_timeridx(env); 2982 gt_tval_write(env, ri, timeridx, value); 2983 } 2984 2985 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2986 const ARMCPRegInfo *ri) 2987 { 2988 int timeridx = gt_phys_redir_timeridx(env); 2989 return env->cp15.c14_timer[timeridx].ctl; 2990 } 2991 2992 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2993 uint64_t value) 2994 { 2995 int timeridx = gt_phys_redir_timeridx(env); 2996 gt_ctl_write(env, ri, timeridx, value); 2997 } 2998 2999 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3000 { 3001 gt_timer_reset(env, ri, GTIMER_VIRT); 3002 } 3003 3004 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 gt_cval_write(env, ri, GTIMER_VIRT, value); 3008 } 3009 3010 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3011 { 3012 return gt_tval_read(env, ri, GTIMER_VIRT); 3013 } 3014 3015 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3016 uint64_t value) 3017 { 3018 gt_tval_write(env, ri, GTIMER_VIRT, value); 3019 } 3020 3021 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3022 uint64_t value) 3023 { 3024 gt_ctl_write(env, ri, GTIMER_VIRT, value); 3025 } 3026 3027 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3028 uint64_t value) 3029 { 3030 ARMCPU *cpu = env_archcpu(env); 3031 uint32_t oldval = env->cp15.cnthctl_el2; 3032 uint32_t valid_mask = 3033 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 3034 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 3035 R_CNTHCTL_EVNTEN_MASK | 3036 R_CNTHCTL_EVNTDIR_MASK | 3037 R_CNTHCTL_EVNTI_MASK | 3038 R_CNTHCTL_EL0VTEN_MASK | 3039 R_CNTHCTL_EL0PTEN_MASK | 3040 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 3041 R_CNTHCTL_EL1PTEN_MASK; 3042 3043 if (cpu_isar_feature(aa64_rme, cpu)) { 3044 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 3045 } 3046 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 3047 valid_mask |= 3048 R_CNTHCTL_EL1TVT_MASK | 3049 R_CNTHCTL_EL1TVCT_MASK | 3050 R_CNTHCTL_EL1NVPCT_MASK | 3051 R_CNTHCTL_EL1NVVCT_MASK | 3052 R_CNTHCTL_EVNTIS_MASK; 3053 } 3054 if (cpu_isar_feature(aa64_ecv, cpu)) { 3055 valid_mask |= R_CNTHCTL_ECV_MASK; 3056 } 3057 3058 /* Clear RES0 bits */ 3059 value &= valid_mask; 3060 3061 raw_write(env, ri, value); 3062 3063 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 3064 gt_update_irq(cpu, GTIMER_VIRT); 3065 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 3066 gt_update_irq(cpu, GTIMER_PHYS); 3067 } 3068 } 3069 3070 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3071 uint64_t value) 3072 { 3073 ARMCPU *cpu = env_archcpu(env); 3074 3075 trace_arm_gt_cntvoff_write(value); 3076 raw_write(env, ri, value); 3077 gt_recalc_timer(cpu, GTIMER_VIRT); 3078 } 3079 3080 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3081 const ARMCPRegInfo *ri) 3082 { 3083 int timeridx = gt_virt_redir_timeridx(env); 3084 return env->cp15.c14_timer[timeridx].cval; 3085 } 3086 3087 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3088 uint64_t value) 3089 { 3090 int timeridx = gt_virt_redir_timeridx(env); 3091 gt_cval_write(env, ri, timeridx, value); 3092 } 3093 3094 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3095 const ARMCPRegInfo *ri) 3096 { 3097 int timeridx = gt_virt_redir_timeridx(env); 3098 return gt_tval_read(env, ri, timeridx); 3099 } 3100 3101 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3102 uint64_t value) 3103 { 3104 int timeridx = gt_virt_redir_timeridx(env); 3105 gt_tval_write(env, ri, timeridx, value); 3106 } 3107 3108 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3109 const ARMCPRegInfo *ri) 3110 { 3111 int timeridx = gt_virt_redir_timeridx(env); 3112 return env->cp15.c14_timer[timeridx].ctl; 3113 } 3114 3115 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3116 uint64_t value) 3117 { 3118 int timeridx = gt_virt_redir_timeridx(env); 3119 gt_ctl_write(env, ri, timeridx, value); 3120 } 3121 3122 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3123 { 3124 gt_timer_reset(env, ri, GTIMER_HYP); 3125 } 3126 3127 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3128 uint64_t value) 3129 { 3130 gt_cval_write(env, ri, GTIMER_HYP, value); 3131 } 3132 3133 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3134 { 3135 return gt_tval_read(env, ri, GTIMER_HYP); 3136 } 3137 3138 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3139 uint64_t value) 3140 { 3141 gt_tval_write(env, ri, GTIMER_HYP, value); 3142 } 3143 3144 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 gt_ctl_write(env, ri, GTIMER_HYP, value); 3148 } 3149 3150 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3151 { 3152 gt_timer_reset(env, ri, GTIMER_SEC); 3153 } 3154 3155 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3156 uint64_t value) 3157 { 3158 gt_cval_write(env, ri, GTIMER_SEC, value); 3159 } 3160 3161 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3162 { 3163 return gt_tval_read(env, ri, GTIMER_SEC); 3164 } 3165 3166 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3167 uint64_t value) 3168 { 3169 gt_tval_write(env, ri, GTIMER_SEC, value); 3170 } 3171 3172 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3173 uint64_t value) 3174 { 3175 gt_ctl_write(env, ri, GTIMER_SEC, value); 3176 } 3177 3178 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3179 { 3180 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3181 } 3182 3183 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3184 uint64_t value) 3185 { 3186 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3187 } 3188 3189 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3190 { 3191 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3192 } 3193 3194 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3195 uint64_t value) 3196 { 3197 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3198 } 3199 3200 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3201 uint64_t value) 3202 { 3203 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3204 } 3205 3206 void arm_gt_ptimer_cb(void *opaque) 3207 { 3208 ARMCPU *cpu = opaque; 3209 3210 gt_recalc_timer(cpu, GTIMER_PHYS); 3211 } 3212 3213 void arm_gt_vtimer_cb(void *opaque) 3214 { 3215 ARMCPU *cpu = opaque; 3216 3217 gt_recalc_timer(cpu, GTIMER_VIRT); 3218 } 3219 3220 void arm_gt_htimer_cb(void *opaque) 3221 { 3222 ARMCPU *cpu = opaque; 3223 3224 gt_recalc_timer(cpu, GTIMER_HYP); 3225 } 3226 3227 void arm_gt_stimer_cb(void *opaque) 3228 { 3229 ARMCPU *cpu = opaque; 3230 3231 gt_recalc_timer(cpu, GTIMER_SEC); 3232 } 3233 3234 void arm_gt_hvtimer_cb(void *opaque) 3235 { 3236 ARMCPU *cpu = opaque; 3237 3238 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3239 } 3240 3241 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3242 /* 3243 * Note that CNTFRQ is purely reads-as-written for the benefit 3244 * of software; writing it doesn't actually change the timer frequency. 3245 * Our reset value matches the fixed frequency we implement the timer at. 3246 */ 3247 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3248 .type = ARM_CP_ALIAS, 3249 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3250 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3251 }, 3252 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3253 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3254 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3255 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3256 .resetfn = arm_gt_cntfrq_reset, 3257 }, 3258 /* overall control: mostly access permissions */ 3259 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3260 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3261 .access = PL1_RW, 3262 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3263 .resetvalue = 0, 3264 }, 3265 /* per-timer control */ 3266 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3267 .secure = ARM_CP_SECSTATE_NS, 3268 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3269 .accessfn = gt_ptimer_access, 3270 .fieldoffset = offsetoflow32(CPUARMState, 3271 cp15.c14_timer[GTIMER_PHYS].ctl), 3272 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3273 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3274 }, 3275 { .name = "CNTP_CTL_S", 3276 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3277 .secure = ARM_CP_SECSTATE_S, 3278 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3279 .accessfn = gt_ptimer_access, 3280 .fieldoffset = offsetoflow32(CPUARMState, 3281 cp15.c14_timer[GTIMER_SEC].ctl), 3282 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3283 }, 3284 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3285 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3286 .type = ARM_CP_IO, .access = PL0_RW, 3287 .accessfn = gt_ptimer_access, 3288 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3289 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3290 .resetvalue = 0, 3291 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3292 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3293 }, 3294 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3295 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3296 .accessfn = gt_vtimer_access, 3297 .fieldoffset = offsetoflow32(CPUARMState, 3298 cp15.c14_timer[GTIMER_VIRT].ctl), 3299 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3300 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3301 }, 3302 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3303 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3304 .type = ARM_CP_IO, .access = PL0_RW, 3305 .accessfn = gt_vtimer_access, 3306 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3307 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3308 .resetvalue = 0, 3309 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3310 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3311 }, 3312 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3313 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3314 .secure = ARM_CP_SECSTATE_NS, 3315 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3316 .accessfn = gt_ptimer_access, 3317 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3318 }, 3319 { .name = "CNTP_TVAL_S", 3320 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3321 .secure = ARM_CP_SECSTATE_S, 3322 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3323 .accessfn = gt_ptimer_access, 3324 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3325 }, 3326 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3327 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3328 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3329 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3330 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3331 }, 3332 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3333 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3334 .accessfn = gt_vtimer_access, 3335 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3336 }, 3337 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3338 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3339 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3340 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3341 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3342 }, 3343 /* The counter itself */ 3344 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3345 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3346 .accessfn = gt_pct_access, 3347 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3348 }, 3349 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3351 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3352 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3353 }, 3354 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3355 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3356 .accessfn = gt_vct_access, 3357 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3358 }, 3359 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3361 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3362 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3363 }, 3364 /* Comparison value, indicating when the timer goes off */ 3365 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3366 .secure = ARM_CP_SECSTATE_NS, 3367 .access = PL0_RW, 3368 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3369 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3370 .accessfn = gt_ptimer_access, 3371 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3372 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3373 }, 3374 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3375 .secure = ARM_CP_SECSTATE_S, 3376 .access = PL0_RW, 3377 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3378 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3379 .accessfn = gt_ptimer_access, 3380 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3381 }, 3382 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3384 .access = PL0_RW, 3385 .type = ARM_CP_IO, 3386 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3387 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3388 .resetvalue = 0, .accessfn = gt_ptimer_access, 3389 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3390 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3391 }, 3392 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3393 .access = PL0_RW, 3394 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3395 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3396 .accessfn = gt_vtimer_access, 3397 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3398 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3399 }, 3400 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3401 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3402 .access = PL0_RW, 3403 .type = ARM_CP_IO, 3404 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3405 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3406 .resetvalue = 0, .accessfn = gt_vtimer_access, 3407 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3408 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3409 }, 3410 /* 3411 * Secure timer -- this is actually restricted to only EL3 3412 * and configurably Secure-EL1 via the accessfn. 3413 */ 3414 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3416 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3417 .accessfn = gt_stimer_access, 3418 .readfn = gt_sec_tval_read, 3419 .writefn = gt_sec_tval_write, 3420 .resetfn = gt_sec_timer_reset, 3421 }, 3422 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3424 .type = ARM_CP_IO, .access = PL1_RW, 3425 .accessfn = gt_stimer_access, 3426 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3427 .resetvalue = 0, 3428 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3429 }, 3430 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3432 .type = ARM_CP_IO, .access = PL1_RW, 3433 .accessfn = gt_stimer_access, 3434 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3435 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3436 }, 3437 }; 3438 3439 /* 3440 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3441 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3442 * so our implementations here are identical to the normal registers. 3443 */ 3444 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3445 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3446 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3447 .accessfn = gt_vct_access, 3448 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3449 }, 3450 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3452 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3453 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3454 }, 3455 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3456 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3457 .accessfn = gt_pct_access, 3458 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3459 }, 3460 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3462 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3463 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3464 }, 3465 }; 3466 3467 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3468 const ARMCPRegInfo *ri, 3469 bool isread) 3470 { 3471 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3472 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3473 return CP_ACCESS_TRAP_EL3; 3474 } 3475 return CP_ACCESS_OK; 3476 } 3477 3478 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3479 uint64_t value) 3480 { 3481 ARMCPU *cpu = env_archcpu(env); 3482 3483 trace_arm_gt_cntpoff_write(value); 3484 raw_write(env, ri, value); 3485 gt_recalc_timer(cpu, GTIMER_PHYS); 3486 } 3487 3488 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3489 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3490 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3491 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3492 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3493 .nv2_redirect_offset = 0x1a8, 3494 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3495 }; 3496 #else 3497 3498 /* 3499 * In user-mode most of the generic timer registers are inaccessible 3500 * however modern kernels (4.12+) allow access to cntvct_el0 3501 */ 3502 3503 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3504 { 3505 ARMCPU *cpu = env_archcpu(env); 3506 3507 /* 3508 * Currently we have no support for QEMUTimer in linux-user so we 3509 * can't call gt_get_countervalue(env), instead we directly 3510 * call the lower level functions. 3511 */ 3512 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3513 } 3514 3515 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3516 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3517 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3518 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3519 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3520 .resetfn = arm_gt_cntfrq_reset, 3521 }, 3522 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3523 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3524 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3525 .readfn = gt_virt_cnt_read, 3526 }, 3527 }; 3528 3529 /* 3530 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3531 * is exposed to userspace by Linux. 3532 */ 3533 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3534 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3535 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3536 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3537 .readfn = gt_virt_cnt_read, 3538 }, 3539 }; 3540 3541 #endif 3542 3543 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3544 { 3545 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3546 raw_write(env, ri, value); 3547 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3548 raw_write(env, ri, value & 0xfffff6ff); 3549 } else { 3550 raw_write(env, ri, value & 0xfffff1ff); 3551 } 3552 } 3553 3554 #ifndef CONFIG_USER_ONLY 3555 /* get_phys_addr() isn't present for user-mode-only targets */ 3556 3557 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3558 bool isread) 3559 { 3560 if (ri->opc2 & 4) { 3561 /* 3562 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3563 * Secure EL1 (which can only happen if EL3 is AArch64). 3564 * They are simply UNDEF if executed from NS EL1. 3565 * They function normally from EL2 or EL3. 3566 */ 3567 if (arm_current_el(env) == 1) { 3568 if (arm_is_secure_below_el3(env)) { 3569 if (env->cp15.scr_el3 & SCR_EEL2) { 3570 return CP_ACCESS_TRAP_EL2; 3571 } 3572 return CP_ACCESS_TRAP_EL3; 3573 } 3574 return CP_ACCESS_TRAP_UNCATEGORIZED; 3575 } 3576 } 3577 return CP_ACCESS_OK; 3578 } 3579 3580 #ifdef CONFIG_TCG 3581 static int par_el1_shareability(GetPhysAddrResult *res) 3582 { 3583 /* 3584 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3585 * memory -- see pseudocode PAREncodeShareability(). 3586 */ 3587 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3588 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3589 return 2; 3590 } 3591 return res->cacheattrs.shareability; 3592 } 3593 3594 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3595 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3596 ARMSecuritySpace ss) 3597 { 3598 bool ret; 3599 uint64_t par64; 3600 bool format64 = false; 3601 ARMMMUFaultInfo fi = {}; 3602 GetPhysAddrResult res = {}; 3603 3604 /* 3605 * I_MXTJT: Granule protection checks are not performed on the final address 3606 * of a successful translation. 3607 */ 3608 ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss, 3609 &res, &fi); 3610 3611 /* 3612 * ATS operations only do S1 or S1+S2 translations, so we never 3613 * have to deal with the ARMCacheAttrs format for S2 only. 3614 */ 3615 assert(!res.cacheattrs.is_s2_format); 3616 3617 if (ret) { 3618 /* 3619 * Some kinds of translation fault must cause exceptions rather 3620 * than being reported in the PAR. 3621 */ 3622 int current_el = arm_current_el(env); 3623 int target_el; 3624 uint32_t syn, fsr, fsc; 3625 bool take_exc = false; 3626 3627 if (fi.s1ptw && current_el == 1 3628 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3629 /* 3630 * Synchronous stage 2 fault on an access made as part of the 3631 * translation table walk for AT S1E0* or AT S1E1* insn 3632 * executed from NS EL1. If this is a synchronous external abort 3633 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3634 * to EL3. Otherwise the fault is taken as an exception to EL2, 3635 * and HPFAR_EL2 holds the faulting IPA. 3636 */ 3637 if (fi.type == ARMFault_SyncExternalOnWalk && 3638 (env->cp15.scr_el3 & SCR_EA)) { 3639 target_el = 3; 3640 } else { 3641 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3642 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3643 env->cp15.hpfar_el2 |= HPFAR_NS; 3644 } 3645 target_el = 2; 3646 } 3647 take_exc = true; 3648 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3649 /* 3650 * Synchronous external aborts during a translation table walk 3651 * are taken as Data Abort exceptions. 3652 */ 3653 if (fi.stage2) { 3654 if (current_el == 3) { 3655 target_el = 3; 3656 } else { 3657 target_el = 2; 3658 } 3659 } else { 3660 target_el = exception_target_el(env); 3661 } 3662 take_exc = true; 3663 } 3664 3665 if (take_exc) { 3666 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3667 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3668 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3669 fsr = arm_fi_to_lfsc(&fi); 3670 fsc = extract32(fsr, 0, 6); 3671 } else { 3672 fsr = arm_fi_to_sfsc(&fi); 3673 fsc = 0x3f; 3674 } 3675 /* 3676 * Report exception with ESR indicating a fault due to a 3677 * translation table walk for a cache maintenance instruction. 3678 */ 3679 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3680 fi.ea, 1, fi.s1ptw, 1, fsc); 3681 env->exception.vaddress = value; 3682 env->exception.fsr = fsr; 3683 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3684 } 3685 } 3686 3687 if (is_a64(env)) { 3688 format64 = true; 3689 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3690 /* 3691 * ATS1Cxx: 3692 * * TTBCR.EAE determines whether the result is returned using the 3693 * 32-bit or the 64-bit PAR format 3694 * * Instructions executed in Hyp mode always use the 64bit format 3695 * 3696 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3697 * * The Non-secure TTBCR.EAE bit is set to 1 3698 * * The implementation includes EL2, and the value of HCR.VM is 1 3699 * 3700 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3701 * 3702 * ATS1Hx always uses the 64bit format. 3703 */ 3704 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3705 3706 if (arm_feature(env, ARM_FEATURE_EL2)) { 3707 if (mmu_idx == ARMMMUIdx_E10_0 || 3708 mmu_idx == ARMMMUIdx_E10_1 || 3709 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3710 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3711 } else { 3712 format64 |= arm_current_el(env) == 2; 3713 } 3714 } 3715 } 3716 3717 if (format64) { 3718 /* Create a 64-bit PAR */ 3719 par64 = (1 << 11); /* LPAE bit always set */ 3720 if (!ret) { 3721 par64 |= res.f.phys_addr & ~0xfffULL; 3722 if (!res.f.attrs.secure) { 3723 par64 |= (1 << 9); /* NS */ 3724 } 3725 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3726 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3727 } else { 3728 uint32_t fsr = arm_fi_to_lfsc(&fi); 3729 3730 par64 |= 1; /* F */ 3731 par64 |= (fsr & 0x3f) << 1; /* FS */ 3732 if (fi.stage2) { 3733 par64 |= (1 << 9); /* S */ 3734 } 3735 if (fi.s1ptw) { 3736 par64 |= (1 << 8); /* PTW */ 3737 } 3738 } 3739 } else { 3740 /* 3741 * fsr is a DFSR/IFSR value for the short descriptor 3742 * translation table format (with WnR always clear). 3743 * Convert it to a 32-bit PAR. 3744 */ 3745 if (!ret) { 3746 /* We do not set any attribute bits in the PAR */ 3747 if (res.f.lg_page_size == 24 3748 && arm_feature(env, ARM_FEATURE_V7)) { 3749 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3750 } else { 3751 par64 = res.f.phys_addr & 0xfffff000; 3752 } 3753 if (!res.f.attrs.secure) { 3754 par64 |= (1 << 9); /* NS */ 3755 } 3756 } else { 3757 uint32_t fsr = arm_fi_to_sfsc(&fi); 3758 3759 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3760 ((fsr & 0xf) << 1) | 1; 3761 } 3762 } 3763 return par64; 3764 } 3765 #endif /* CONFIG_TCG */ 3766 3767 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3768 { 3769 #ifdef CONFIG_TCG 3770 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3771 uint64_t par64; 3772 ARMMMUIdx mmu_idx; 3773 int el = arm_current_el(env); 3774 ARMSecuritySpace ss = arm_security_space(env); 3775 3776 switch (ri->opc2 & 6) { 3777 case 0: 3778 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3779 switch (el) { 3780 case 3: 3781 if (ri->crm == 9 && arm_pan_enabled(env)) { 3782 mmu_idx = ARMMMUIdx_E30_3_PAN; 3783 } else { 3784 mmu_idx = ARMMMUIdx_E3; 3785 } 3786 break; 3787 case 2: 3788 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3789 /* fall through */ 3790 case 1: 3791 if (ri->crm == 9 && arm_pan_enabled(env)) { 3792 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3793 } else { 3794 mmu_idx = ARMMMUIdx_Stage1_E1; 3795 } 3796 break; 3797 default: 3798 g_assert_not_reached(); 3799 } 3800 break; 3801 case 2: 3802 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3803 switch (el) { 3804 case 3: 3805 mmu_idx = ARMMMUIdx_E30_0; 3806 break; 3807 case 2: 3808 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3809 mmu_idx = ARMMMUIdx_Stage1_E0; 3810 break; 3811 case 1: 3812 mmu_idx = ARMMMUIdx_Stage1_E0; 3813 break; 3814 default: 3815 g_assert_not_reached(); 3816 } 3817 break; 3818 case 4: 3819 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3820 mmu_idx = ARMMMUIdx_E10_1; 3821 ss = ARMSS_NonSecure; 3822 break; 3823 case 6: 3824 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3825 mmu_idx = ARMMMUIdx_E10_0; 3826 ss = ARMSS_NonSecure; 3827 break; 3828 default: 3829 g_assert_not_reached(); 3830 } 3831 3832 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3833 3834 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3835 #else 3836 /* Handled by hardware accelerator. */ 3837 g_assert_not_reached(); 3838 #endif /* CONFIG_TCG */ 3839 } 3840 3841 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3842 uint64_t value) 3843 { 3844 #ifdef CONFIG_TCG 3845 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3846 uint64_t par64; 3847 3848 /* There is no SecureEL2 for AArch32. */ 3849 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3850 ARMSS_NonSecure); 3851 3852 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3853 #else 3854 /* Handled by hardware accelerator. */ 3855 g_assert_not_reached(); 3856 #endif /* CONFIG_TCG */ 3857 } 3858 3859 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3860 bool isread) 3861 { 3862 /* 3863 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3864 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3865 * only happen when executing at EL3 because that combination also causes an 3866 * illegal exception return. We don't need to check FEAT_RME either, because 3867 * scr_write() ensures that the NSE bit is not set otherwise. 3868 */ 3869 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3870 return CP_ACCESS_TRAP; 3871 } 3872 return CP_ACCESS_OK; 3873 } 3874 3875 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3876 bool isread) 3877 { 3878 if (arm_current_el(env) == 3 && 3879 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3880 return CP_ACCESS_TRAP; 3881 } 3882 return at_e012_access(env, ri, isread); 3883 } 3884 3885 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3886 bool isread) 3887 { 3888 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3889 return CP_ACCESS_TRAP_EL2; 3890 } 3891 return at_e012_access(env, ri, isread); 3892 } 3893 3894 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3895 uint64_t value) 3896 { 3897 #ifdef CONFIG_TCG 3898 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3899 ARMMMUIdx mmu_idx; 3900 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3901 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3902 bool for_el3 = false; 3903 ARMSecuritySpace ss; 3904 3905 switch (ri->opc2 & 6) { 3906 case 0: 3907 switch (ri->opc1) { 3908 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3909 if (ri->crm == 9 && arm_pan_enabled(env)) { 3910 mmu_idx = regime_e20 ? 3911 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3912 } else { 3913 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3914 } 3915 break; 3916 case 4: /* AT S1E2R, AT S1E2W */ 3917 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3918 break; 3919 case 6: /* AT S1E3R, AT S1E3W */ 3920 mmu_idx = ARMMMUIdx_E3; 3921 for_el3 = true; 3922 break; 3923 default: 3924 g_assert_not_reached(); 3925 } 3926 break; 3927 case 2: /* AT S1E0R, AT S1E0W */ 3928 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3929 break; 3930 case 4: /* AT S12E1R, AT S12E1W */ 3931 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3932 break; 3933 case 6: /* AT S12E0R, AT S12E0W */ 3934 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3935 break; 3936 default: 3937 g_assert_not_reached(); 3938 } 3939 3940 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3941 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3942 #else 3943 /* Handled by hardware accelerator. */ 3944 g_assert_not_reached(); 3945 #endif /* CONFIG_TCG */ 3946 } 3947 #endif 3948 3949 /* Return basic MPU access permission bits. */ 3950 static uint32_t simple_mpu_ap_bits(uint32_t val) 3951 { 3952 uint32_t ret; 3953 uint32_t mask; 3954 int i; 3955 ret = 0; 3956 mask = 3; 3957 for (i = 0; i < 16; i += 2) { 3958 ret |= (val >> i) & mask; 3959 mask <<= 2; 3960 } 3961 return ret; 3962 } 3963 3964 /* Pad basic MPU access permission bits to extended format. */ 3965 static uint32_t extended_mpu_ap_bits(uint32_t val) 3966 { 3967 uint32_t ret; 3968 uint32_t mask; 3969 int i; 3970 ret = 0; 3971 mask = 3; 3972 for (i = 0; i < 16; i += 2) { 3973 ret |= (val & mask) << i; 3974 mask <<= 2; 3975 } 3976 return ret; 3977 } 3978 3979 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3980 uint64_t value) 3981 { 3982 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3983 } 3984 3985 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3986 { 3987 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3988 } 3989 3990 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3991 uint64_t value) 3992 { 3993 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3994 } 3995 3996 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3997 { 3998 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3999 } 4000 4001 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 4002 { 4003 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 4004 4005 if (!u32p) { 4006 return 0; 4007 } 4008 4009 u32p += env->pmsav7.rnr[M_REG_NS]; 4010 return *u32p; 4011 } 4012 4013 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 4014 uint64_t value) 4015 { 4016 ARMCPU *cpu = env_archcpu(env); 4017 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 4018 4019 if (!u32p) { 4020 return; 4021 } 4022 4023 u32p += env->pmsav7.rnr[M_REG_NS]; 4024 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4025 *u32p = value; 4026 } 4027 4028 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4029 uint64_t value) 4030 { 4031 ARMCPU *cpu = env_archcpu(env); 4032 uint32_t nrgs = cpu->pmsav7_dregion; 4033 4034 if (value >= nrgs) { 4035 qemu_log_mask(LOG_GUEST_ERROR, 4036 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 4037 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 4038 return; 4039 } 4040 4041 raw_write(env, ri, value); 4042 } 4043 4044 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4045 uint64_t value) 4046 { 4047 ARMCPU *cpu = env_archcpu(env); 4048 4049 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4050 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4051 } 4052 4053 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4054 { 4055 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4056 } 4057 4058 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4059 uint64_t value) 4060 { 4061 ARMCPU *cpu = env_archcpu(env); 4062 4063 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4064 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4065 } 4066 4067 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4068 { 4069 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4070 } 4071 4072 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4073 uint64_t value) 4074 { 4075 ARMCPU *cpu = env_archcpu(env); 4076 4077 /* 4078 * Ignore writes that would select not implemented region. 4079 * This is architecturally UNPREDICTABLE. 4080 */ 4081 if (value >= cpu->pmsav7_dregion) { 4082 return; 4083 } 4084 4085 env->pmsav7.rnr[M_REG_NS] = value; 4086 } 4087 4088 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4089 uint64_t value) 4090 { 4091 ARMCPU *cpu = env_archcpu(env); 4092 4093 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4094 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 4095 } 4096 4097 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4098 { 4099 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 4100 } 4101 4102 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4103 uint64_t value) 4104 { 4105 ARMCPU *cpu = env_archcpu(env); 4106 4107 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4108 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4109 } 4110 4111 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4112 { 4113 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4114 } 4115 4116 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4117 uint64_t value) 4118 { 4119 uint32_t n; 4120 uint32_t bit; 4121 ARMCPU *cpu = env_archcpu(env); 4122 4123 /* Ignore writes to unimplemented regions */ 4124 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4125 value &= MAKE_64BIT_MASK(0, rmax); 4126 4127 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4128 4129 /* Register alias is only valid for first 32 indexes */ 4130 for (n = 0; n < rmax; ++n) { 4131 bit = extract32(value, n, 1); 4132 env->pmsav8.hprlar[n] = deposit32( 4133 env->pmsav8.hprlar[n], 0, 1, bit); 4134 } 4135 } 4136 4137 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4138 { 4139 uint32_t n; 4140 uint32_t result = 0x0; 4141 ARMCPU *cpu = env_archcpu(env); 4142 4143 /* Register alias is only valid for first 32 indexes */ 4144 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4145 if (env->pmsav8.hprlar[n] & 0x1) { 4146 result |= (0x1 << n); 4147 } 4148 } 4149 return result; 4150 } 4151 4152 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4153 uint64_t value) 4154 { 4155 ARMCPU *cpu = env_archcpu(env); 4156 4157 /* 4158 * Ignore writes that would select not implemented region. 4159 * This is architecturally UNPREDICTABLE. 4160 */ 4161 if (value >= cpu->pmsav8r_hdregion) { 4162 return; 4163 } 4164 4165 env->pmsav8.hprselr = value; 4166 } 4167 4168 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4169 uint64_t value) 4170 { 4171 ARMCPU *cpu = env_archcpu(env); 4172 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4173 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4174 4175 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4176 4177 if (ri->opc1 & 4) { 4178 if (index >= cpu->pmsav8r_hdregion) { 4179 return; 4180 } 4181 if (ri->opc2 & 0x1) { 4182 env->pmsav8.hprlar[index] = value; 4183 } else { 4184 env->pmsav8.hprbar[index] = value; 4185 } 4186 } else { 4187 if (index >= cpu->pmsav7_dregion) { 4188 return; 4189 } 4190 if (ri->opc2 & 0x1) { 4191 env->pmsav8.rlar[M_REG_NS][index] = value; 4192 } else { 4193 env->pmsav8.rbar[M_REG_NS][index] = value; 4194 } 4195 } 4196 } 4197 4198 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4199 { 4200 ARMCPU *cpu = env_archcpu(env); 4201 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4202 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4203 4204 if (ri->opc1 & 4) { 4205 if (index >= cpu->pmsav8r_hdregion) { 4206 return 0x0; 4207 } 4208 if (ri->opc2 & 0x1) { 4209 return env->pmsav8.hprlar[index]; 4210 } else { 4211 return env->pmsav8.hprbar[index]; 4212 } 4213 } else { 4214 if (index >= cpu->pmsav7_dregion) { 4215 return 0x0; 4216 } 4217 if (ri->opc2 & 0x1) { 4218 return env->pmsav8.rlar[M_REG_NS][index]; 4219 } else { 4220 return env->pmsav8.rbar[M_REG_NS][index]; 4221 } 4222 } 4223 } 4224 4225 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4226 { .name = "PRBAR", 4227 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4228 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4229 .accessfn = access_tvm_trvm, 4230 .readfn = prbar_read, .writefn = prbar_write }, 4231 { .name = "PRLAR", 4232 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4233 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4234 .accessfn = access_tvm_trvm, 4235 .readfn = prlar_read, .writefn = prlar_write }, 4236 { .name = "PRSELR", .resetvalue = 0, 4237 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4238 .access = PL1_RW, .accessfn = access_tvm_trvm, 4239 .writefn = prselr_write, 4240 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4241 { .name = "HPRBAR", .resetvalue = 0, 4242 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4243 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4244 .readfn = hprbar_read, .writefn = hprbar_write }, 4245 { .name = "HPRLAR", 4246 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4247 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4248 .readfn = hprlar_read, .writefn = hprlar_write }, 4249 { .name = "HPRSELR", .resetvalue = 0, 4250 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4251 .access = PL2_RW, 4252 .writefn = hprselr_write, 4253 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4254 { .name = "HPRENR", 4255 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4256 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4257 .readfn = hprenr_read, .writefn = hprenr_write }, 4258 }; 4259 4260 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4261 /* 4262 * Reset for all these registers is handled in arm_cpu_reset(), 4263 * because the PMSAv7 is also used by M-profile CPUs, which do 4264 * not register cpregs but still need the state to be reset. 4265 */ 4266 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4267 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4268 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4269 .readfn = pmsav7_read, .writefn = pmsav7_write, 4270 .resetfn = arm_cp_reset_ignore }, 4271 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4272 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4273 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4274 .readfn = pmsav7_read, .writefn = pmsav7_write, 4275 .resetfn = arm_cp_reset_ignore }, 4276 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4277 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4278 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4279 .readfn = pmsav7_read, .writefn = pmsav7_write, 4280 .resetfn = arm_cp_reset_ignore }, 4281 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4282 .access = PL1_RW, 4283 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4284 .writefn = pmsav7_rgnr_write, 4285 .resetfn = arm_cp_reset_ignore }, 4286 }; 4287 4288 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4289 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4290 .access = PL1_RW, .type = ARM_CP_ALIAS, 4291 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4292 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4293 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4294 .access = PL1_RW, .type = ARM_CP_ALIAS, 4295 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4296 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4297 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4298 .access = PL1_RW, 4299 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4300 .resetvalue = 0, }, 4301 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4302 .access = PL1_RW, 4303 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4304 .resetvalue = 0, }, 4305 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4306 .access = PL1_RW, 4307 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4308 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4309 .access = PL1_RW, 4310 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4311 /* Protection region base and size registers */ 4312 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4313 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4314 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4315 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4316 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4317 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4318 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4319 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4320 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4321 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4322 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4323 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4324 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4325 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4326 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4327 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4328 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4329 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4330 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4331 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4332 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4333 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4334 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4335 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4336 }; 4337 4338 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4339 uint64_t value) 4340 { 4341 ARMCPU *cpu = env_archcpu(env); 4342 4343 if (!arm_feature(env, ARM_FEATURE_V8)) { 4344 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4345 /* 4346 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4347 * using Long-descriptor translation table format 4348 */ 4349 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4350 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4351 /* 4352 * In an implementation that includes the Security Extensions 4353 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4354 * Short-descriptor translation table format. 4355 */ 4356 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4357 } else { 4358 value &= TTBCR_N; 4359 } 4360 } 4361 4362 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4363 /* 4364 * With LPAE the TTBCR could result in a change of ASID 4365 * via the TTBCR.A1 bit, so do a TLB flush. 4366 */ 4367 tlb_flush(CPU(cpu)); 4368 } 4369 raw_write(env, ri, value); 4370 } 4371 4372 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4373 uint64_t value) 4374 { 4375 ARMCPU *cpu = env_archcpu(env); 4376 4377 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4378 tlb_flush(CPU(cpu)); 4379 raw_write(env, ri, value); 4380 } 4381 4382 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4383 uint64_t value) 4384 { 4385 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4386 if (cpreg_field_is_64bit(ri) && 4387 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4388 ARMCPU *cpu = env_archcpu(env); 4389 tlb_flush(CPU(cpu)); 4390 } 4391 raw_write(env, ri, value); 4392 } 4393 4394 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4395 uint64_t value) 4396 { 4397 /* 4398 * If we are running with E2&0 regime, then an ASID is active. 4399 * Flush if that might be changing. Note we're not checking 4400 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4401 * holds the active ASID, only checking the field that might. 4402 */ 4403 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4404 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4405 uint16_t mask = ARMMMUIdxBit_E20_2 | 4406 ARMMMUIdxBit_E20_2_PAN | 4407 ARMMMUIdxBit_E20_0; 4408 tlb_flush_by_mmuidx(env_cpu(env), mask); 4409 } 4410 raw_write(env, ri, value); 4411 } 4412 4413 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 ARMCPU *cpu = env_archcpu(env); 4417 CPUState *cs = CPU(cpu); 4418 4419 /* 4420 * A change in VMID to the stage2 page table (Stage2) invalidates 4421 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4422 */ 4423 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4424 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4425 } 4426 raw_write(env, ri, value); 4427 } 4428 4429 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4430 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4431 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4432 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4433 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4434 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4435 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4436 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4437 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4438 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4439 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4440 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4441 offsetof(CPUARMState, cp15.dfar_ns) } }, 4442 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4443 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4444 .access = PL1_RW, .accessfn = access_tvm_trvm, 4445 .fgt = FGT_FAR_EL1, 4446 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4447 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4448 .resetvalue = 0, }, 4449 }; 4450 4451 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4452 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4453 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4454 .access = PL1_RW, .accessfn = access_tvm_trvm, 4455 .fgt = FGT_ESR_EL1, 4456 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4457 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4458 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4459 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4460 .access = PL1_RW, .accessfn = access_tvm_trvm, 4461 .fgt = FGT_TTBR0_EL1, 4462 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4463 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4464 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4465 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4466 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4467 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4468 .access = PL1_RW, .accessfn = access_tvm_trvm, 4469 .fgt = FGT_TTBR1_EL1, 4470 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4471 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4472 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4473 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4474 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4475 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4476 .access = PL1_RW, .accessfn = access_tvm_trvm, 4477 .fgt = FGT_TCR_EL1, 4478 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4479 .writefn = vmsa_tcr_el12_write, 4480 .raw_writefn = raw_write, 4481 .resetvalue = 0, 4482 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4483 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4484 .access = PL1_RW, .accessfn = access_tvm_trvm, 4485 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4486 .raw_writefn = raw_write, 4487 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4488 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4489 }; 4490 4491 /* 4492 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4493 * qemu tlbs nor adjusting cached masks. 4494 */ 4495 static const ARMCPRegInfo ttbcr2_reginfo = { 4496 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4497 .access = PL1_RW, .accessfn = access_tvm_trvm, 4498 .type = ARM_CP_ALIAS, 4499 .bank_fieldoffsets = { 4500 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4501 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4502 }, 4503 }; 4504 4505 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4506 uint64_t value) 4507 { 4508 env->cp15.c15_ticonfig = value & 0xe7; 4509 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4510 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4511 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4512 } 4513 4514 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4515 uint64_t value) 4516 { 4517 env->cp15.c15_threadid = value & 0xffff; 4518 } 4519 4520 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4521 uint64_t value) 4522 { 4523 /* Wait-for-interrupt (deprecated) */ 4524 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4525 } 4526 4527 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4528 uint64_t value) 4529 { 4530 /* 4531 * On OMAP there are registers indicating the max/min index of dcache lines 4532 * containing a dirty line; cache flush operations have to reset these. 4533 */ 4534 env->cp15.c15_i_max = 0x000; 4535 env->cp15.c15_i_min = 0xff0; 4536 } 4537 4538 static const ARMCPRegInfo omap_cp_reginfo[] = { 4539 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4540 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4541 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4542 .resetvalue = 0, }, 4543 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4544 .access = PL1_RW, .type = ARM_CP_NOP }, 4545 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4546 .access = PL1_RW, 4547 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4548 .writefn = omap_ticonfig_write }, 4549 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4550 .access = PL1_RW, 4551 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4552 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4553 .access = PL1_RW, .resetvalue = 0xff0, 4554 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4555 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4556 .access = PL1_RW, 4557 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4558 .writefn = omap_threadid_write }, 4559 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4560 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4561 .type = ARM_CP_NO_RAW, 4562 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4563 /* 4564 * TODO: Peripheral port remap register: 4565 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4566 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4567 * when MMU is off. 4568 */ 4569 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4570 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4571 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4572 .writefn = omap_cachemaint_write }, 4573 { .name = "C9", .cp = 15, .crn = 9, 4574 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4575 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4576 }; 4577 4578 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4579 uint64_t value) 4580 { 4581 env->cp15.c15_cpar = value & 0x3fff; 4582 } 4583 4584 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4585 { .name = "XSCALE_CPAR", 4586 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4587 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4588 .writefn = xscale_cpar_write, }, 4589 { .name = "XSCALE_AUXCR", 4590 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4591 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4592 .resetvalue = 0, }, 4593 /* 4594 * XScale specific cache-lockdown: since we have no cache we NOP these 4595 * and hope the guest does not really rely on cache behaviour. 4596 */ 4597 { .name = "XSCALE_LOCK_ICACHE_LINE", 4598 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4599 .access = PL1_W, .type = ARM_CP_NOP }, 4600 { .name = "XSCALE_UNLOCK_ICACHE", 4601 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4602 .access = PL1_W, .type = ARM_CP_NOP }, 4603 { .name = "XSCALE_DCACHE_LOCK", 4604 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4605 .access = PL1_RW, .type = ARM_CP_NOP }, 4606 { .name = "XSCALE_UNLOCK_DCACHE", 4607 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4608 .access = PL1_W, .type = ARM_CP_NOP }, 4609 }; 4610 4611 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4612 /* 4613 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4614 * implementation of this implementation-defined space. 4615 * Ideally this should eventually disappear in favour of actually 4616 * implementing the correct behaviour for all cores. 4617 */ 4618 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4619 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4620 .access = PL1_RW, 4621 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4622 .resetvalue = 0 }, 4623 }; 4624 4625 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4626 /* Cache status: RAZ because we have no cache so it's always clean */ 4627 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4628 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4629 .resetvalue = 0 }, 4630 }; 4631 4632 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4633 /* We never have a block transfer operation in progress */ 4634 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4635 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4636 .resetvalue = 0 }, 4637 /* The cache ops themselves: these all NOP for QEMU */ 4638 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4639 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4640 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4641 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4642 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4643 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4644 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4645 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4646 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4647 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4648 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4649 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4650 }; 4651 4652 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4653 /* 4654 * The cache test-and-clean instructions always return (1 << 30) 4655 * to indicate that there are no dirty cache lines. 4656 */ 4657 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4658 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4659 .resetvalue = (1 << 30) }, 4660 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4661 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4662 .resetvalue = (1 << 30) }, 4663 }; 4664 4665 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4666 /* Ignore ReadBuffer accesses */ 4667 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4668 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4669 .access = PL1_RW, .resetvalue = 0, 4670 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4671 }; 4672 4673 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4674 { 4675 unsigned int cur_el = arm_current_el(env); 4676 4677 if (arm_is_el2_enabled(env) && cur_el == 1) { 4678 return env->cp15.vpidr_el2; 4679 } 4680 return raw_read(env, ri); 4681 } 4682 4683 static uint64_t mpidr_read_val(CPUARMState *env) 4684 { 4685 ARMCPU *cpu = env_archcpu(env); 4686 uint64_t mpidr = cpu->mp_affinity; 4687 4688 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4689 mpidr |= (1U << 31); 4690 /* 4691 * Cores which are uniprocessor (non-coherent) 4692 * but still implement the MP extensions set 4693 * bit 30. (For instance, Cortex-R5). 4694 */ 4695 if (cpu->mp_is_up) { 4696 mpidr |= (1u << 30); 4697 } 4698 } 4699 return mpidr; 4700 } 4701 4702 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4703 { 4704 unsigned int cur_el = arm_current_el(env); 4705 4706 if (arm_is_el2_enabled(env) && cur_el == 1) { 4707 return env->cp15.vmpidr_el2; 4708 } 4709 return mpidr_read_val(env); 4710 } 4711 4712 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4713 /* NOP AMAIR0/1 */ 4714 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4715 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4716 .access = PL1_RW, .accessfn = access_tvm_trvm, 4717 .fgt = FGT_AMAIR_EL1, 4718 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4719 .type = ARM_CP_CONST, .resetvalue = 0 }, 4720 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4721 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4722 .access = PL1_RW, .accessfn = access_tvm_trvm, 4723 .type = ARM_CP_CONST, .resetvalue = 0 }, 4724 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4725 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4726 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4727 offsetof(CPUARMState, cp15.par_ns)} }, 4728 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4729 .access = PL1_RW, .accessfn = access_tvm_trvm, 4730 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4731 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4732 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4733 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4734 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4735 .access = PL1_RW, .accessfn = access_tvm_trvm, 4736 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4737 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4738 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4739 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4740 }; 4741 4742 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4743 { 4744 return vfp_get_fpcr(env); 4745 } 4746 4747 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4748 uint64_t value) 4749 { 4750 vfp_set_fpcr(env, value); 4751 } 4752 4753 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4754 { 4755 return vfp_get_fpsr(env); 4756 } 4757 4758 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4759 uint64_t value) 4760 { 4761 vfp_set_fpsr(env, value); 4762 } 4763 4764 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4765 bool isread) 4766 { 4767 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4768 return CP_ACCESS_TRAP; 4769 } 4770 return CP_ACCESS_OK; 4771 } 4772 4773 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4774 uint64_t value) 4775 { 4776 env->daif = value & PSTATE_DAIF; 4777 } 4778 4779 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4780 { 4781 return env->pstate & PSTATE_PAN; 4782 } 4783 4784 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4785 uint64_t value) 4786 { 4787 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4788 } 4789 4790 static const ARMCPRegInfo pan_reginfo = { 4791 .name = "PAN", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4793 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4794 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4795 }; 4796 4797 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4798 { 4799 return env->pstate & PSTATE_UAO; 4800 } 4801 4802 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4803 uint64_t value) 4804 { 4805 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4806 } 4807 4808 static const ARMCPRegInfo uao_reginfo = { 4809 .name = "UAO", .state = ARM_CP_STATE_AA64, 4810 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4811 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4812 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4813 }; 4814 4815 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4816 { 4817 return env->pstate & PSTATE_DIT; 4818 } 4819 4820 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4821 uint64_t value) 4822 { 4823 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4824 } 4825 4826 static const ARMCPRegInfo dit_reginfo = { 4827 .name = "DIT", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4829 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4830 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4831 }; 4832 4833 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4834 { 4835 return env->pstate & PSTATE_SSBS; 4836 } 4837 4838 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4839 uint64_t value) 4840 { 4841 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4842 } 4843 4844 static const ARMCPRegInfo ssbs_reginfo = { 4845 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4846 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4847 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4848 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4849 }; 4850 4851 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4852 const ARMCPRegInfo *ri, 4853 bool isread) 4854 { 4855 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4856 switch (arm_current_el(env)) { 4857 case 0: 4858 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4859 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4860 return CP_ACCESS_TRAP; 4861 } 4862 /* fall through */ 4863 case 1: 4864 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4865 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4866 return CP_ACCESS_TRAP_EL2; 4867 } 4868 break; 4869 } 4870 return CP_ACCESS_OK; 4871 } 4872 4873 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4874 { 4875 /* Cache invalidate/clean to Point of Unification... */ 4876 switch (arm_current_el(env)) { 4877 case 0: 4878 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4879 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4880 return CP_ACCESS_TRAP; 4881 } 4882 /* fall through */ 4883 case 1: 4884 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4885 if (arm_hcr_el2_eff(env) & hcrflags) { 4886 return CP_ACCESS_TRAP_EL2; 4887 } 4888 break; 4889 } 4890 return CP_ACCESS_OK; 4891 } 4892 4893 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4894 bool isread) 4895 { 4896 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4897 } 4898 4899 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4900 bool isread) 4901 { 4902 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4903 } 4904 4905 /* 4906 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4907 * Page D4-1736 (DDI0487A.b) 4908 */ 4909 4910 static int vae1_tlbmask(CPUARMState *env) 4911 { 4912 uint64_t hcr = arm_hcr_el2_eff(env); 4913 uint16_t mask; 4914 4915 assert(arm_feature(env, ARM_FEATURE_AARCH64)); 4916 4917 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4918 mask = ARMMMUIdxBit_E20_2 | 4919 ARMMMUIdxBit_E20_2_PAN | 4920 ARMMMUIdxBit_E20_0; 4921 } else { 4922 /* This is AArch64 only, so we don't need to touch the EL30_x TLBs */ 4923 mask = ARMMMUIdxBit_E10_1 | 4924 ARMMMUIdxBit_E10_1_PAN | 4925 ARMMMUIdxBit_E10_0; 4926 } 4927 return mask; 4928 } 4929 4930 static int vae2_tlbmask(CPUARMState *env) 4931 { 4932 uint64_t hcr = arm_hcr_el2_eff(env); 4933 uint16_t mask; 4934 4935 if (hcr & HCR_E2H) { 4936 mask = ARMMMUIdxBit_E20_2 | 4937 ARMMMUIdxBit_E20_2_PAN | 4938 ARMMMUIdxBit_E20_0; 4939 } else { 4940 mask = ARMMMUIdxBit_E2; 4941 } 4942 return mask; 4943 } 4944 4945 /* Return 56 if TBI is enabled, 64 otherwise. */ 4946 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4947 uint64_t addr) 4948 { 4949 uint64_t tcr = regime_tcr(env, mmu_idx); 4950 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4951 int select = extract64(addr, 55, 1); 4952 4953 return (tbi >> select) & 1 ? 56 : 64; 4954 } 4955 4956 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4957 { 4958 uint64_t hcr = arm_hcr_el2_eff(env); 4959 ARMMMUIdx mmu_idx; 4960 4961 assert(arm_feature(env, ARM_FEATURE_AARCH64)); 4962 4963 /* Only the regime of the mmu_idx below is significant. */ 4964 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4965 mmu_idx = ARMMMUIdx_E20_0; 4966 } else { 4967 mmu_idx = ARMMMUIdx_E10_0; 4968 } 4969 4970 return tlbbits_for_regime(env, mmu_idx, addr); 4971 } 4972 4973 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4974 { 4975 uint64_t hcr = arm_hcr_el2_eff(env); 4976 ARMMMUIdx mmu_idx; 4977 4978 /* 4979 * Only the regime of the mmu_idx below is significant. 4980 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4981 * only has one. 4982 */ 4983 if (hcr & HCR_E2H) { 4984 mmu_idx = ARMMMUIdx_E20_2; 4985 } else { 4986 mmu_idx = ARMMMUIdx_E2; 4987 } 4988 4989 return tlbbits_for_regime(env, mmu_idx, addr); 4990 } 4991 4992 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4993 uint64_t value) 4994 { 4995 CPUState *cs = env_cpu(env); 4996 int mask = vae1_tlbmask(env); 4997 4998 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4999 } 5000 5001 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5002 uint64_t value) 5003 { 5004 CPUState *cs = env_cpu(env); 5005 int mask = vae1_tlbmask(env); 5006 5007 if (tlb_force_broadcast(env)) { 5008 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5009 } else { 5010 tlb_flush_by_mmuidx(cs, mask); 5011 } 5012 } 5013 5014 static int e2_tlbmask(CPUARMState *env) 5015 { 5016 return (ARMMMUIdxBit_E20_0 | 5017 ARMMMUIdxBit_E20_2 | 5018 ARMMMUIdxBit_E20_2_PAN | 5019 ARMMMUIdxBit_E2); 5020 } 5021 5022 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5023 uint64_t value) 5024 { 5025 CPUState *cs = env_cpu(env); 5026 int mask = alle1_tlbmask(env); 5027 5028 tlb_flush_by_mmuidx(cs, mask); 5029 } 5030 5031 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5032 uint64_t value) 5033 { 5034 CPUState *cs = env_cpu(env); 5035 int mask = e2_tlbmask(env); 5036 5037 tlb_flush_by_mmuidx(cs, mask); 5038 } 5039 5040 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5041 uint64_t value) 5042 { 5043 ARMCPU *cpu = env_archcpu(env); 5044 CPUState *cs = CPU(cpu); 5045 5046 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 5047 } 5048 5049 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5050 uint64_t value) 5051 { 5052 CPUState *cs = env_cpu(env); 5053 int mask = alle1_tlbmask(env); 5054 5055 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5056 } 5057 5058 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5059 uint64_t value) 5060 { 5061 CPUState *cs = env_cpu(env); 5062 int mask = e2_tlbmask(env); 5063 5064 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5065 } 5066 5067 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5068 uint64_t value) 5069 { 5070 CPUState *cs = env_cpu(env); 5071 5072 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 5073 } 5074 5075 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5076 uint64_t value) 5077 { 5078 /* 5079 * Invalidate by VA, EL2 5080 * Currently handles both VAE2 and VALE2, since we don't support 5081 * flush-last-level-only. 5082 */ 5083 CPUState *cs = env_cpu(env); 5084 int mask = vae2_tlbmask(env); 5085 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5086 int bits = vae2_tlbbits(env, pageaddr); 5087 5088 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5089 } 5090 5091 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5092 uint64_t value) 5093 { 5094 /* 5095 * Invalidate by VA, EL3 5096 * Currently handles both VAE3 and VALE3, since we don't support 5097 * flush-last-level-only. 5098 */ 5099 ARMCPU *cpu = env_archcpu(env); 5100 CPUState *cs = CPU(cpu); 5101 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5102 5103 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 5104 } 5105 5106 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5107 uint64_t value) 5108 { 5109 CPUState *cs = env_cpu(env); 5110 int mask = vae1_tlbmask(env); 5111 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5112 int bits = vae1_tlbbits(env, pageaddr); 5113 5114 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5115 } 5116 5117 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5118 uint64_t value) 5119 { 5120 /* 5121 * Invalidate by VA, EL1&0 (AArch64 version). 5122 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 5123 * since we don't support flush-for-specific-ASID-only or 5124 * flush-last-level-only. 5125 */ 5126 CPUState *cs = env_cpu(env); 5127 int mask = vae1_tlbmask(env); 5128 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5129 int bits = vae1_tlbbits(env, pageaddr); 5130 5131 if (tlb_force_broadcast(env)) { 5132 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5133 } else { 5134 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5135 } 5136 } 5137 5138 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5139 uint64_t value) 5140 { 5141 CPUState *cs = env_cpu(env); 5142 int mask = vae2_tlbmask(env); 5143 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5144 int bits = vae2_tlbbits(env, pageaddr); 5145 5146 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5147 } 5148 5149 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5150 uint64_t value) 5151 { 5152 CPUState *cs = env_cpu(env); 5153 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5154 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 5155 5156 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 5157 ARMMMUIdxBit_E3, bits); 5158 } 5159 5160 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5161 { 5162 /* 5163 * The MSB of value is the NS field, which only applies if SEL2 5164 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5165 */ 5166 return (value >= 0 5167 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5168 && arm_is_secure_below_el3(env) 5169 ? ARMMMUIdxBit_Stage2_S 5170 : ARMMMUIdxBit_Stage2); 5171 } 5172 5173 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5174 uint64_t value) 5175 { 5176 CPUState *cs = env_cpu(env); 5177 int mask = ipas2e1_tlbmask(env, value); 5178 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5179 5180 if (tlb_force_broadcast(env)) { 5181 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5182 } else { 5183 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5184 } 5185 } 5186 5187 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5188 uint64_t value) 5189 { 5190 CPUState *cs = env_cpu(env); 5191 int mask = ipas2e1_tlbmask(env, value); 5192 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5193 5194 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5195 } 5196 5197 #ifdef TARGET_AARCH64 5198 typedef struct { 5199 uint64_t base; 5200 uint64_t length; 5201 } TLBIRange; 5202 5203 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5204 { 5205 /* 5206 * Note that the TLBI range TG field encoding differs from both 5207 * TG0 and TG1 encodings. 5208 */ 5209 switch (tg) { 5210 case 1: 5211 return Gran4K; 5212 case 2: 5213 return Gran16K; 5214 case 3: 5215 return Gran64K; 5216 default: 5217 return GranInvalid; 5218 } 5219 } 5220 5221 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5222 uint64_t value) 5223 { 5224 unsigned int page_size_granule, page_shift, num, scale, exponent; 5225 /* Extract one bit to represent the va selector in use. */ 5226 uint64_t select = sextract64(value, 36, 1); 5227 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5228 TLBIRange ret = { }; 5229 ARMGranuleSize gran; 5230 5231 page_size_granule = extract64(value, 46, 2); 5232 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5233 5234 /* The granule encoded in value must match the granule in use. */ 5235 if (gran != param.gran) { 5236 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5237 page_size_granule); 5238 return ret; 5239 } 5240 5241 page_shift = arm_granule_bits(gran); 5242 num = extract64(value, 39, 5); 5243 scale = extract64(value, 44, 2); 5244 exponent = (5 * scale) + 1; 5245 5246 ret.length = (num + 1) << (exponent + page_shift); 5247 5248 if (param.select) { 5249 ret.base = sextract64(value, 0, 37); 5250 } else { 5251 ret.base = extract64(value, 0, 37); 5252 } 5253 if (param.ds) { 5254 /* 5255 * With DS=1, BaseADDR is always shifted 16 so that it is able 5256 * to address all 52 va bits. The input address is perforce 5257 * aligned on a 64k boundary regardless of translation granule. 5258 */ 5259 page_shift = 16; 5260 } 5261 ret.base <<= page_shift; 5262 5263 return ret; 5264 } 5265 5266 static void do_rvae_write(CPUARMState *env, uint64_t value, 5267 int idxmap, bool synced) 5268 { 5269 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5270 TLBIRange range; 5271 int bits; 5272 5273 range = tlbi_aa64_get_range(env, one_idx, value); 5274 bits = tlbbits_for_regime(env, one_idx, range.base); 5275 5276 if (synced) { 5277 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5278 range.base, 5279 range.length, 5280 idxmap, 5281 bits); 5282 } else { 5283 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5284 range.length, idxmap, bits); 5285 } 5286 } 5287 5288 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5289 const ARMCPRegInfo *ri, 5290 uint64_t value) 5291 { 5292 /* 5293 * Invalidate by VA range, EL1&0. 5294 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5295 * since we don't support flush-for-specific-ASID-only or 5296 * flush-last-level-only. 5297 */ 5298 5299 do_rvae_write(env, value, vae1_tlbmask(env), 5300 tlb_force_broadcast(env)); 5301 } 5302 5303 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5304 const ARMCPRegInfo *ri, 5305 uint64_t value) 5306 { 5307 /* 5308 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5309 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5310 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5311 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5312 * shareable specific flushes. 5313 */ 5314 5315 do_rvae_write(env, value, vae1_tlbmask(env), true); 5316 } 5317 5318 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5319 const ARMCPRegInfo *ri, 5320 uint64_t value) 5321 { 5322 /* 5323 * Invalidate by VA range, EL2. 5324 * Currently handles all of RVAE2 and RVALE2, 5325 * since we don't support flush-for-specific-ASID-only or 5326 * flush-last-level-only. 5327 */ 5328 5329 do_rvae_write(env, value, vae2_tlbmask(env), 5330 tlb_force_broadcast(env)); 5331 5332 5333 } 5334 5335 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5336 const ARMCPRegInfo *ri, 5337 uint64_t value) 5338 { 5339 /* 5340 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5341 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5342 * since we don't support flush-for-specific-ASID-only, 5343 * flush-last-level-only or inner/outer shareable specific flushes. 5344 */ 5345 5346 do_rvae_write(env, value, vae2_tlbmask(env), true); 5347 5348 } 5349 5350 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5351 const ARMCPRegInfo *ri, 5352 uint64_t value) 5353 { 5354 /* 5355 * Invalidate by VA range, EL3. 5356 * Currently handles all of RVAE3 and RVALE3, 5357 * since we don't support flush-for-specific-ASID-only or 5358 * flush-last-level-only. 5359 */ 5360 5361 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5362 } 5363 5364 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5365 const ARMCPRegInfo *ri, 5366 uint64_t value) 5367 { 5368 /* 5369 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5370 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5371 * since we don't support flush-for-specific-ASID-only, 5372 * flush-last-level-only or inner/outer specific flushes. 5373 */ 5374 5375 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5376 } 5377 5378 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5379 uint64_t value) 5380 { 5381 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5382 tlb_force_broadcast(env)); 5383 } 5384 5385 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5386 const ARMCPRegInfo *ri, 5387 uint64_t value) 5388 { 5389 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5390 } 5391 #endif 5392 5393 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5394 bool isread) 5395 { 5396 int cur_el = arm_current_el(env); 5397 5398 if (cur_el < 2) { 5399 uint64_t hcr = arm_hcr_el2_eff(env); 5400 5401 if (cur_el == 0) { 5402 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5403 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5404 return CP_ACCESS_TRAP_EL2; 5405 } 5406 } else { 5407 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5408 return CP_ACCESS_TRAP; 5409 } 5410 if (hcr & HCR_TDZ) { 5411 return CP_ACCESS_TRAP_EL2; 5412 } 5413 } 5414 } else if (hcr & HCR_TDZ) { 5415 return CP_ACCESS_TRAP_EL2; 5416 } 5417 } 5418 return CP_ACCESS_OK; 5419 } 5420 5421 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5422 { 5423 ARMCPU *cpu = env_archcpu(env); 5424 int dzp_bit = 1 << 4; 5425 5426 /* DZP indicates whether DC ZVA access is allowed */ 5427 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5428 dzp_bit = 0; 5429 } 5430 return cpu->dcz_blocksize | dzp_bit; 5431 } 5432 5433 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5434 bool isread) 5435 { 5436 if (!(env->pstate & PSTATE_SP)) { 5437 /* 5438 * Access to SP_EL0 is undefined if it's being used as 5439 * the stack pointer. 5440 */ 5441 return CP_ACCESS_TRAP_UNCATEGORIZED; 5442 } 5443 return CP_ACCESS_OK; 5444 } 5445 5446 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5447 { 5448 return env->pstate & PSTATE_SP; 5449 } 5450 5451 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5452 { 5453 update_spsel(env, val); 5454 } 5455 5456 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5457 uint64_t value) 5458 { 5459 ARMCPU *cpu = env_archcpu(env); 5460 5461 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5462 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5463 value &= ~SCTLR_M; 5464 } 5465 5466 /* ??? Lots of these bits are not implemented. */ 5467 5468 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5469 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5470 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5471 } else { 5472 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5473 SCTLR_ATA0 | SCTLR_ATA); 5474 } 5475 } 5476 5477 if (raw_read(env, ri) == value) { 5478 /* 5479 * Skip the TLB flush if nothing actually changed; Linux likes 5480 * to do a lot of pointless SCTLR writes. 5481 */ 5482 return; 5483 } 5484 5485 raw_write(env, ri, value); 5486 5487 /* This may enable/disable the MMU, so do a TLB flush. */ 5488 tlb_flush(CPU(cpu)); 5489 5490 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5491 /* 5492 * Normally we would always end the TB on an SCTLR write; see the 5493 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5494 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5495 * of hflags from the translator, so do it here. 5496 */ 5497 arm_rebuild_hflags(env); 5498 } 5499 } 5500 5501 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5502 uint64_t value) 5503 { 5504 /* 5505 * Some MDCR_EL3 bits affect whether PMU counters are running: 5506 * if we are trying to change any of those then we must 5507 * bracket this update with PMU start/finish calls. 5508 */ 5509 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5510 5511 if (pmu_op) { 5512 pmu_op_start(env); 5513 } 5514 env->cp15.mdcr_el3 = value; 5515 if (pmu_op) { 5516 pmu_op_finish(env); 5517 } 5518 } 5519 5520 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5521 uint64_t value) 5522 { 5523 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5524 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5525 } 5526 5527 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5528 uint64_t value) 5529 { 5530 /* 5531 * Some MDCR_EL2 bits affect whether PMU counters are running: 5532 * if we are trying to change any of those then we must 5533 * bracket this update with PMU start/finish calls. 5534 */ 5535 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5536 5537 if (pmu_op) { 5538 pmu_op_start(env); 5539 } 5540 env->cp15.mdcr_el2 = value; 5541 if (pmu_op) { 5542 pmu_op_finish(env); 5543 } 5544 } 5545 5546 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5547 bool isread) 5548 { 5549 if (arm_current_el(env) == 1) { 5550 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5551 5552 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5553 return CP_ACCESS_TRAP_EL2; 5554 } 5555 } 5556 return CP_ACCESS_OK; 5557 } 5558 5559 #ifdef CONFIG_USER_ONLY 5560 /* 5561 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5562 * code to get around W^X restrictions, where one region is writable and the 5563 * other is executable. 5564 * 5565 * Since the executable region is never written to we cannot detect code 5566 * changes when running in user mode, and rely on the emulated JIT telling us 5567 * that the code has changed by executing this instruction. 5568 */ 5569 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5570 uint64_t value) 5571 { 5572 uint64_t icache_line_mask, start_address, end_address; 5573 const ARMCPU *cpu; 5574 5575 cpu = env_archcpu(env); 5576 5577 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5578 start_address = value & ~icache_line_mask; 5579 end_address = value | icache_line_mask; 5580 5581 mmap_lock(); 5582 5583 tb_invalidate_phys_range(start_address, end_address); 5584 5585 mmap_unlock(); 5586 } 5587 #endif 5588 5589 static const ARMCPRegInfo v8_cp_reginfo[] = { 5590 /* 5591 * Minimal set of EL0-visible registers. This will need to be expanded 5592 * significantly for system emulation of AArch64 CPUs. 5593 */ 5594 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5596 .access = PL0_RW, .type = ARM_CP_NZCV }, 5597 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5599 .type = ARM_CP_NO_RAW, 5600 .access = PL0_RW, .accessfn = aa64_daif_access, 5601 .fieldoffset = offsetof(CPUARMState, daif), 5602 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5603 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5605 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5606 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5607 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5608 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5609 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5610 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5611 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5612 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5613 .access = PL0_R, .type = ARM_CP_NO_RAW, 5614 .fgt = FGT_DCZID_EL0, 5615 .readfn = aa64_dczid_read }, 5616 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5617 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5618 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5619 #ifndef CONFIG_USER_ONLY 5620 /* Avoid overhead of an access check that always passes in user-mode */ 5621 .accessfn = aa64_zva_access, 5622 .fgt = FGT_DCZVA, 5623 #endif 5624 }, 5625 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5626 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5627 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5628 /* 5629 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5630 * don't emulate caches. 5631 */ 5632 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5633 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5634 .access = PL1_W, .type = ARM_CP_NOP, 5635 .fgt = FGT_ICIALLUIS, 5636 .accessfn = access_ticab }, 5637 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5638 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5639 .access = PL1_W, .type = ARM_CP_NOP, 5640 .fgt = FGT_ICIALLU, 5641 .accessfn = access_tocu }, 5642 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5644 .access = PL0_W, 5645 .fgt = FGT_ICIVAU, 5646 .accessfn = access_tocu, 5647 #ifdef CONFIG_USER_ONLY 5648 .type = ARM_CP_NO_RAW, 5649 .writefn = ic_ivau_write 5650 #else 5651 .type = ARM_CP_NOP 5652 #endif 5653 }, 5654 /* Cache ops: all NOPs since we don't emulate caches */ 5655 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5656 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5657 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5658 .fgt = FGT_DCIVAC, 5659 .type = ARM_CP_NOP }, 5660 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5661 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5662 .fgt = FGT_DCISW, 5663 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5664 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5665 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5666 .access = PL0_W, .type = ARM_CP_NOP, 5667 .fgt = FGT_DCCVAC, 5668 .accessfn = aa64_cacheop_poc_access }, 5669 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5670 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5671 .fgt = FGT_DCCSW, 5672 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5673 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5674 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5675 .access = PL0_W, .type = ARM_CP_NOP, 5676 .fgt = FGT_DCCVAU, 5677 .accessfn = access_tocu }, 5678 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5679 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5680 .access = PL0_W, .type = ARM_CP_NOP, 5681 .fgt = FGT_DCCIVAC, 5682 .accessfn = aa64_cacheop_poc_access }, 5683 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5684 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5685 .fgt = FGT_DCCISW, 5686 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5687 /* TLBI operations */ 5688 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5689 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5690 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5691 .fgt = FGT_TLBIVMALLE1IS, 5692 .writefn = tlbi_aa64_vmalle1is_write }, 5693 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5694 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5695 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5696 .fgt = FGT_TLBIVAE1IS, 5697 .writefn = tlbi_aa64_vae1is_write }, 5698 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5699 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5700 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5701 .fgt = FGT_TLBIASIDE1IS, 5702 .writefn = tlbi_aa64_vmalle1is_write }, 5703 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5704 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5705 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5706 .fgt = FGT_TLBIVAAE1IS, 5707 .writefn = tlbi_aa64_vae1is_write }, 5708 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5709 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5710 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5711 .fgt = FGT_TLBIVALE1IS, 5712 .writefn = tlbi_aa64_vae1is_write }, 5713 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5714 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5715 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5716 .fgt = FGT_TLBIVAALE1IS, 5717 .writefn = tlbi_aa64_vae1is_write }, 5718 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5720 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5721 .fgt = FGT_TLBIVMALLE1, 5722 .writefn = tlbi_aa64_vmalle1_write }, 5723 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5724 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5725 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5726 .fgt = FGT_TLBIVAE1, 5727 .writefn = tlbi_aa64_vae1_write }, 5728 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5729 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5730 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5731 .fgt = FGT_TLBIASIDE1, 5732 .writefn = tlbi_aa64_vmalle1_write }, 5733 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5734 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5735 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5736 .fgt = FGT_TLBIVAAE1, 5737 .writefn = tlbi_aa64_vae1_write }, 5738 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5739 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5740 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5741 .fgt = FGT_TLBIVALE1, 5742 .writefn = tlbi_aa64_vae1_write }, 5743 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5745 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5746 .fgt = FGT_TLBIVAALE1, 5747 .writefn = tlbi_aa64_vae1_write }, 5748 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5749 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5750 .access = PL2_W, .type = ARM_CP_NO_RAW, 5751 .writefn = tlbi_aa64_ipas2e1is_write }, 5752 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5754 .access = PL2_W, .type = ARM_CP_NO_RAW, 5755 .writefn = tlbi_aa64_ipas2e1is_write }, 5756 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5757 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5758 .access = PL2_W, .type = ARM_CP_NO_RAW, 5759 .writefn = tlbi_aa64_alle1is_write }, 5760 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5761 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5762 .access = PL2_W, .type = ARM_CP_NO_RAW, 5763 .writefn = tlbi_aa64_alle1is_write }, 5764 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5765 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5766 .access = PL2_W, .type = ARM_CP_NO_RAW, 5767 .writefn = tlbi_aa64_ipas2e1_write }, 5768 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5769 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5770 .access = PL2_W, .type = ARM_CP_NO_RAW, 5771 .writefn = tlbi_aa64_ipas2e1_write }, 5772 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5773 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5774 .access = PL2_W, .type = ARM_CP_NO_RAW, 5775 .writefn = tlbi_aa64_alle1_write }, 5776 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5777 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5778 .access = PL2_W, .type = ARM_CP_NO_RAW, 5779 .writefn = tlbi_aa64_alle1is_write }, 5780 #ifndef CONFIG_USER_ONLY 5781 /* 64 bit address translation operations */ 5782 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5783 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5784 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5785 .fgt = FGT_ATS1E1R, 5786 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5787 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5788 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5789 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5790 .fgt = FGT_ATS1E1W, 5791 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5792 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5794 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5795 .fgt = FGT_ATS1E0R, 5796 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5797 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5798 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5799 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5800 .fgt = FGT_ATS1E0W, 5801 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5802 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5803 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5804 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5805 .accessfn = at_e012_access, .writefn = ats_write64 }, 5806 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5807 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5808 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5809 .accessfn = at_e012_access, .writefn = ats_write64 }, 5810 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5812 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5813 .accessfn = at_e012_access, .writefn = ats_write64 }, 5814 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5815 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5816 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5817 .accessfn = at_e012_access, .writefn = ats_write64 }, 5818 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5819 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5820 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5821 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5822 .writefn = ats_write64 }, 5823 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5824 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5825 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5826 .writefn = ats_write64 }, 5827 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5828 .type = ARM_CP_ALIAS, 5829 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5830 .access = PL1_RW, .resetvalue = 0, 5831 .fgt = FGT_PAR_EL1, 5832 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5833 .writefn = par_write }, 5834 #endif 5835 /* TLB invalidate last level of translation table walk */ 5836 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5837 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5838 .writefn = tlbimva_is_write }, 5839 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5840 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5841 .writefn = tlbimvaa_is_write }, 5842 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5843 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5844 .writefn = tlbimva_write }, 5845 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5846 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5847 .writefn = tlbimvaa_write }, 5848 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5849 .type = ARM_CP_NO_RAW, .access = PL2_W, 5850 .writefn = tlbimva_hyp_write }, 5851 { .name = "TLBIMVALHIS", 5852 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5853 .type = ARM_CP_NO_RAW, .access = PL2_W, 5854 .writefn = tlbimva_hyp_is_write }, 5855 { .name = "TLBIIPAS2", 5856 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5857 .type = ARM_CP_NO_RAW, .access = PL2_W, 5858 .writefn = tlbiipas2_hyp_write }, 5859 { .name = "TLBIIPAS2IS", 5860 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5861 .type = ARM_CP_NO_RAW, .access = PL2_W, 5862 .writefn = tlbiipas2is_hyp_write }, 5863 { .name = "TLBIIPAS2L", 5864 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5865 .type = ARM_CP_NO_RAW, .access = PL2_W, 5866 .writefn = tlbiipas2_hyp_write }, 5867 { .name = "TLBIIPAS2LIS", 5868 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5869 .type = ARM_CP_NO_RAW, .access = PL2_W, 5870 .writefn = tlbiipas2is_hyp_write }, 5871 /* 32 bit cache operations */ 5872 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5873 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5874 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5875 .type = ARM_CP_NOP, .access = PL1_W }, 5876 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5877 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5878 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5879 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5880 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5881 .type = ARM_CP_NOP, .access = PL1_W }, 5882 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5883 .type = ARM_CP_NOP, .access = PL1_W }, 5884 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5885 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5886 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5887 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5888 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5889 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5890 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5891 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5892 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5893 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5894 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5895 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5896 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5897 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5898 /* MMU Domain access control / MPU write buffer control */ 5899 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5900 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5901 .writefn = dacr_write, .raw_writefn = raw_write, 5902 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5903 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5904 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5905 .type = ARM_CP_ALIAS, 5906 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5907 .access = PL1_RW, .accessfn = access_nv1, 5908 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5909 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5910 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5911 .type = ARM_CP_ALIAS, 5912 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5913 .access = PL1_RW, .accessfn = access_nv1, 5914 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5915 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5916 /* 5917 * We rely on the access checks not allowing the guest to write to the 5918 * state field when SPSel indicates that it's being used as the stack 5919 * pointer. 5920 */ 5921 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5922 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5923 .access = PL1_RW, .accessfn = sp_el0_access, 5924 .type = ARM_CP_ALIAS, 5925 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5926 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5927 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5928 .nv2_redirect_offset = 0x240, 5929 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5930 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5931 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5932 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5933 .type = ARM_CP_NO_RAW, 5934 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5935 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5936 .type = ARM_CP_ALIAS, 5937 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5938 .access = PL2_RW, 5939 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5940 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5941 .type = ARM_CP_ALIAS, 5942 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5943 .access = PL2_RW, 5944 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5945 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5946 .type = ARM_CP_ALIAS, 5947 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5948 .access = PL2_RW, 5949 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5950 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5951 .type = ARM_CP_ALIAS, 5952 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5953 .access = PL2_RW, 5954 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5955 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5956 .type = ARM_CP_IO, 5957 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5958 .resetvalue = 0, 5959 .access = PL3_RW, 5960 .writefn = mdcr_el3_write, 5961 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5962 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5963 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5964 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5965 .writefn = sdcr_write, 5966 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5967 }; 5968 5969 /* These are present only when EL1 supports AArch32 */ 5970 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5971 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5972 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5973 .access = PL2_RW, 5974 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5975 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5976 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5977 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5978 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5979 .writefn = dacr_write, .raw_writefn = raw_write, 5980 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5981 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5982 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5983 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5984 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5985 }; 5986 5987 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5988 { 5989 ARMCPU *cpu = env_archcpu(env); 5990 5991 if (arm_feature(env, ARM_FEATURE_V8)) { 5992 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5993 } else { 5994 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5995 } 5996 5997 if (arm_feature(env, ARM_FEATURE_EL3)) { 5998 valid_mask &= ~HCR_HCD; 5999 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 6000 /* 6001 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 6002 * However, if we're using the SMC PSCI conduit then QEMU is 6003 * effectively acting like EL3 firmware and so the guest at 6004 * EL2 should retain the ability to prevent EL1 from being 6005 * able to make SMC calls into the ersatz firmware, so in 6006 * that case HCR.TSC should be read/write. 6007 */ 6008 valid_mask &= ~HCR_TSC; 6009 } 6010 6011 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 6012 if (cpu_isar_feature(aa64_vh, cpu)) { 6013 valid_mask |= HCR_E2H; 6014 } 6015 if (cpu_isar_feature(aa64_ras, cpu)) { 6016 valid_mask |= HCR_TERR | HCR_TEA; 6017 } 6018 if (cpu_isar_feature(aa64_lor, cpu)) { 6019 valid_mask |= HCR_TLOR; 6020 } 6021 if (cpu_isar_feature(aa64_pauth, cpu)) { 6022 valid_mask |= HCR_API | HCR_APK; 6023 } 6024 if (cpu_isar_feature(aa64_mte, cpu)) { 6025 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 6026 } 6027 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 6028 valid_mask |= HCR_ENSCXT; 6029 } 6030 if (cpu_isar_feature(aa64_fwb, cpu)) { 6031 valid_mask |= HCR_FWB; 6032 } 6033 if (cpu_isar_feature(aa64_rme, cpu)) { 6034 valid_mask |= HCR_GPF; 6035 } 6036 if (cpu_isar_feature(aa64_nv, cpu)) { 6037 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 6038 } 6039 if (cpu_isar_feature(aa64_nv2, cpu)) { 6040 valid_mask |= HCR_NV2; 6041 } 6042 } 6043 6044 if (cpu_isar_feature(any_evt, cpu)) { 6045 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 6046 } else if (cpu_isar_feature(any_half_evt, cpu)) { 6047 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 6048 } 6049 6050 /* Clear RES0 bits. */ 6051 value &= valid_mask; 6052 6053 /* 6054 * These bits change the MMU setup: 6055 * HCR_VM enables stage 2 translation 6056 * HCR_PTW forbids certain page-table setups 6057 * HCR_DC disables stage1 and enables stage2 translation 6058 * HCR_DCT enables tagging on (disabled) stage1 translation 6059 * HCR_FWB changes the interpretation of stage2 descriptor bits 6060 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 6061 */ 6062 if ((env->cp15.hcr_el2 ^ value) & 6063 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 6064 tlb_flush(CPU(cpu)); 6065 } 6066 env->cp15.hcr_el2 = value; 6067 6068 /* 6069 * Updates to VI and VF require us to update the status of 6070 * virtual interrupts, which are the logical OR of these bits 6071 * and the state of the input lines from the GIC. (This requires 6072 * that we have the BQL, which is done by marking the 6073 * reginfo structs as ARM_CP_IO.) 6074 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 6075 * VFNMI, it is never possible for it to be taken immediately 6076 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 6077 * at EL0 or EL1, and HCR can only be written at EL2. 6078 */ 6079 g_assert(bql_locked()); 6080 arm_cpu_update_virq(cpu); 6081 arm_cpu_update_vfiq(cpu); 6082 arm_cpu_update_vserr(cpu); 6083 if (cpu_isar_feature(aa64_nmi, cpu)) { 6084 arm_cpu_update_vinmi(cpu); 6085 arm_cpu_update_vfnmi(cpu); 6086 } 6087 } 6088 6089 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 6090 { 6091 do_hcr_write(env, value, 0); 6092 } 6093 6094 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 6095 uint64_t value) 6096 { 6097 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 6098 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 6099 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 6100 } 6101 6102 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 6103 uint64_t value) 6104 { 6105 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 6106 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 6107 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 6108 } 6109 6110 /* 6111 * Return the effective value of HCR_EL2, at the given security state. 6112 * Bits that are not included here: 6113 * RW (read from SCR_EL3.RW as needed) 6114 */ 6115 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 6116 { 6117 uint64_t ret = env->cp15.hcr_el2; 6118 6119 assert(space != ARMSS_Root); 6120 6121 if (!arm_is_el2_enabled_secstate(env, space)) { 6122 /* 6123 * "This register has no effect if EL2 is not enabled in the 6124 * current Security state". This is ARMv8.4-SecEL2 speak for 6125 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 6126 * 6127 * Prior to that, the language was "In an implementation that 6128 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 6129 * as if this field is 0 for all purposes other than a direct 6130 * read or write access of HCR_EL2". With lots of enumeration 6131 * on a per-field basis. In current QEMU, this is condition 6132 * is arm_is_secure_below_el3. 6133 * 6134 * Since the v8.4 language applies to the entire register, and 6135 * appears to be backward compatible, use that. 6136 */ 6137 return 0; 6138 } 6139 6140 /* 6141 * For a cpu that supports both aarch64 and aarch32, we can set bits 6142 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 6143 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 6144 */ 6145 if (!arm_el_is_aa64(env, 2)) { 6146 uint64_t aa32_valid; 6147 6148 /* 6149 * These bits are up-to-date as of ARMv8.6. 6150 * For HCR, it's easiest to list just the 2 bits that are invalid. 6151 * For HCR2, list those that are valid. 6152 */ 6153 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 6154 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 6155 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 6156 ret &= aa32_valid; 6157 } 6158 6159 if (ret & HCR_TGE) { 6160 /* These bits are up-to-date as of ARMv8.6. */ 6161 if (ret & HCR_E2H) { 6162 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 6163 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 6164 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6165 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6166 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6167 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6168 } else { 6169 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6170 } 6171 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6172 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6173 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6174 HCR_TLOR); 6175 } 6176 6177 return ret; 6178 } 6179 6180 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6181 { 6182 if (arm_feature(env, ARM_FEATURE_M)) { 6183 return 0; 6184 } 6185 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6186 } 6187 6188 /* 6189 * Corresponds to ARM pseudocode function ELIsInHost(). 6190 */ 6191 bool el_is_in_host(CPUARMState *env, int el) 6192 { 6193 uint64_t mask; 6194 6195 /* 6196 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6197 * Perform the simplest bit tests first, and validate EL2 afterward. 6198 */ 6199 if (el & 1) { 6200 return false; /* EL1 or EL3 */ 6201 } 6202 6203 /* 6204 * Note that hcr_write() checks isar_feature_aa64_vh(), 6205 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6206 */ 6207 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6208 if ((env->cp15.hcr_el2 & mask) != mask) { 6209 return false; 6210 } 6211 6212 /* TGE and/or E2H set: double check those bits are currently legal. */ 6213 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6214 } 6215 6216 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6217 uint64_t value) 6218 { 6219 ARMCPU *cpu = env_archcpu(env); 6220 uint64_t valid_mask = 0; 6221 6222 /* FEAT_MOPS adds MSCEn and MCE2 */ 6223 if (cpu_isar_feature(aa64_mops, cpu)) { 6224 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6225 } 6226 6227 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 6228 if (cpu_isar_feature(aa64_nmi, cpu)) { 6229 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 6230 } 6231 6232 /* Clear RES0 bits. */ 6233 env->cp15.hcrx_el2 = value & valid_mask; 6234 6235 /* 6236 * Updates to VINMI and VFNMI require us to update the status of 6237 * virtual NMI, which are the logical OR of these bits 6238 * and the state of the input lines from the GIC. (This requires 6239 * that we have the BQL, which is done by marking the 6240 * reginfo structs as ARM_CP_IO.) 6241 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 6242 * possible for it to be taken immediately, because VINMI and 6243 * VFNMI are masked unless running at EL0 or EL1, and HCRX 6244 * can only be written at EL2. 6245 */ 6246 if (cpu_isar_feature(aa64_nmi, cpu)) { 6247 g_assert(bql_locked()); 6248 arm_cpu_update_vinmi(cpu); 6249 arm_cpu_update_vfnmi(cpu); 6250 } 6251 } 6252 6253 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6254 bool isread) 6255 { 6256 if (arm_current_el(env) == 2 6257 && arm_feature(env, ARM_FEATURE_EL3) 6258 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6259 return CP_ACCESS_TRAP_EL3; 6260 } 6261 return CP_ACCESS_OK; 6262 } 6263 6264 static const ARMCPRegInfo hcrx_el2_reginfo = { 6265 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6266 .type = ARM_CP_IO, 6267 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6268 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6269 .nv2_redirect_offset = 0xa0, 6270 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6271 }; 6272 6273 /* Return the effective value of HCRX_EL2. */ 6274 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6275 { 6276 /* 6277 * The bits in this register behave as 0 for all purposes other than 6278 * direct reads of the register if SCR_EL3.HXEn is 0. 6279 * If EL2 is not enabled in the current security state, then the 6280 * bit may behave as if 0, or as if 1, depending on the bit. 6281 * For the moment, we treat the EL2-disabled case as taking 6282 * priority over the HXEn-disabled case. This is true for the only 6283 * bit for a feature which we implement where the answer is different 6284 * for the two cases (MSCEn for FEAT_MOPS). 6285 * This may need to be revisited for future bits. 6286 */ 6287 if (!arm_is_el2_enabled(env)) { 6288 uint64_t hcrx = 0; 6289 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6290 /* MSCEn behaves as 1 if EL2 is not enabled */ 6291 hcrx |= HCRX_MSCEN; 6292 } 6293 return hcrx; 6294 } 6295 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6296 return 0; 6297 } 6298 return env->cp15.hcrx_el2; 6299 } 6300 6301 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6302 uint64_t value) 6303 { 6304 /* 6305 * For A-profile AArch32 EL3, if NSACR.CP10 6306 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6307 */ 6308 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6309 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6310 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6311 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6312 } 6313 env->cp15.cptr_el[2] = value; 6314 } 6315 6316 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6317 { 6318 /* 6319 * For A-profile AArch32 EL3, if NSACR.CP10 6320 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6321 */ 6322 uint64_t value = env->cp15.cptr_el[2]; 6323 6324 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6325 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6326 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6327 } 6328 return value; 6329 } 6330 6331 static const ARMCPRegInfo el2_cp_reginfo[] = { 6332 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6333 .type = ARM_CP_IO, 6334 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6335 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6336 .nv2_redirect_offset = 0x78, 6337 .writefn = hcr_write, .raw_writefn = raw_write }, 6338 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6339 .type = ARM_CP_ALIAS | ARM_CP_IO, 6340 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6341 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6342 .writefn = hcr_writelow }, 6343 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6344 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6345 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6346 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6347 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6348 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6349 .access = PL2_RW, 6350 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6351 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6352 .type = ARM_CP_NV2_REDIRECT, 6353 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6354 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6355 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6356 .type = ARM_CP_NV2_REDIRECT, 6357 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6358 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6359 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6360 .type = ARM_CP_ALIAS, 6361 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6362 .access = PL2_RW, 6363 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6364 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6365 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6366 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6367 .access = PL2_RW, 6368 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6369 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6370 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6371 .access = PL2_RW, .writefn = vbar_write, 6372 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6373 .resetvalue = 0 }, 6374 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6375 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6376 .access = PL3_RW, .type = ARM_CP_ALIAS, 6377 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6378 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6379 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6380 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6381 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6382 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6383 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6384 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6385 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6386 .resetvalue = 0 }, 6387 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6388 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6389 .access = PL2_RW, .type = ARM_CP_ALIAS, 6390 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6391 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6392 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6393 .access = PL2_RW, .type = ARM_CP_CONST, 6394 .resetvalue = 0 }, 6395 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6396 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6397 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6398 .access = PL2_RW, .type = ARM_CP_CONST, 6399 .resetvalue = 0 }, 6400 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6401 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6402 .access = PL2_RW, .type = ARM_CP_CONST, 6403 .resetvalue = 0 }, 6404 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6405 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6406 .access = PL2_RW, .type = ARM_CP_CONST, 6407 .resetvalue = 0 }, 6408 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6409 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6410 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6411 .raw_writefn = raw_write, 6412 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6413 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6414 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6415 .type = ARM_CP_ALIAS, 6416 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6417 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6418 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6419 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6420 .access = PL2_RW, 6421 .nv2_redirect_offset = 0x40, 6422 /* no .writefn needed as this can't cause an ASID change */ 6423 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6424 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6425 .cp = 15, .opc1 = 6, .crm = 2, 6426 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6427 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6428 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6429 .writefn = vttbr_write, .raw_writefn = raw_write }, 6430 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6431 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6432 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6433 .nv2_redirect_offset = 0x20, 6434 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6435 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6436 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6437 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6438 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6439 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6440 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6441 .access = PL2_RW, .resetvalue = 0, 6442 .nv2_redirect_offset = 0x90, 6443 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6444 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6445 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6446 .access = PL2_RW, .resetvalue = 0, 6447 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6448 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6449 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6450 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6451 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6452 { .name = "TLBIALLNSNH", 6453 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6454 .type = ARM_CP_NO_RAW, .access = PL2_W, 6455 .writefn = tlbiall_nsnh_write }, 6456 { .name = "TLBIALLNSNHIS", 6457 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6458 .type = ARM_CP_NO_RAW, .access = PL2_W, 6459 .writefn = tlbiall_nsnh_is_write }, 6460 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6461 .type = ARM_CP_NO_RAW, .access = PL2_W, 6462 .writefn = tlbiall_hyp_write }, 6463 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6464 .type = ARM_CP_NO_RAW, .access = PL2_W, 6465 .writefn = tlbiall_hyp_is_write }, 6466 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6467 .type = ARM_CP_NO_RAW, .access = PL2_W, 6468 .writefn = tlbimva_hyp_write }, 6469 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6470 .type = ARM_CP_NO_RAW, .access = PL2_W, 6471 .writefn = tlbimva_hyp_is_write }, 6472 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6473 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6474 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6475 .writefn = tlbi_aa64_alle2_write }, 6476 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6477 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6478 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6479 .writefn = tlbi_aa64_vae2_write }, 6480 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6482 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6483 .writefn = tlbi_aa64_vae2_write }, 6484 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6486 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6487 .writefn = tlbi_aa64_alle2is_write }, 6488 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6490 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6491 .writefn = tlbi_aa64_vae2is_write }, 6492 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6494 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6495 .writefn = tlbi_aa64_vae2is_write }, 6496 #ifndef CONFIG_USER_ONLY 6497 /* 6498 * Unlike the other EL2-related AT operations, these must 6499 * UNDEF from EL3 if EL2 is not implemented, which is why we 6500 * define them here rather than with the rest of the AT ops. 6501 */ 6502 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6503 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6504 .access = PL2_W, .accessfn = at_s1e2_access, 6505 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6506 .writefn = ats_write64 }, 6507 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6508 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6509 .access = PL2_W, .accessfn = at_s1e2_access, 6510 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6511 .writefn = ats_write64 }, 6512 /* 6513 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6514 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6515 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6516 * to behave as if SCR.NS was 1. 6517 */ 6518 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6519 .access = PL2_W, 6520 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6521 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6522 .access = PL2_W, 6523 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6524 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6525 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6526 /* 6527 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6528 * reset values as IMPDEF. We choose to reset to 3 to comply with 6529 * both ARMv7 and ARMv8. 6530 */ 6531 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6532 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6533 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6534 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6535 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6536 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6537 .writefn = gt_cntvoff_write, 6538 .nv2_redirect_offset = 0x60, 6539 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6540 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6541 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6542 .writefn = gt_cntvoff_write, 6543 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6544 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6545 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6546 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6547 .type = ARM_CP_IO, .access = PL2_RW, 6548 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6549 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6550 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6551 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6552 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6553 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6554 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6555 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6556 .resetfn = gt_hyp_timer_reset, 6557 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6558 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6559 .type = ARM_CP_IO, 6560 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6561 .access = PL2_RW, 6562 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6563 .resetvalue = 0, 6564 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6565 #endif 6566 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6567 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6568 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6569 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6570 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6571 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6572 .access = PL2_RW, 6573 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6574 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6575 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6576 .access = PL2_RW, 6577 .nv2_redirect_offset = 0x80, 6578 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6579 }; 6580 6581 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6582 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6583 .type = ARM_CP_ALIAS | ARM_CP_IO, 6584 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6585 .access = PL2_RW, 6586 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6587 .writefn = hcr_writehigh }, 6588 }; 6589 6590 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6591 bool isread) 6592 { 6593 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6594 return CP_ACCESS_OK; 6595 } 6596 return CP_ACCESS_TRAP_UNCATEGORIZED; 6597 } 6598 6599 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6600 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6601 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6602 .access = PL2_RW, .accessfn = sel2_access, 6603 .nv2_redirect_offset = 0x30, 6604 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6605 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6606 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6607 .access = PL2_RW, .accessfn = sel2_access, 6608 .nv2_redirect_offset = 0x48, 6609 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6610 }; 6611 6612 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6613 bool isread) 6614 { 6615 /* 6616 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6617 * At Secure EL1 it traps to EL3 or EL2. 6618 */ 6619 if (arm_current_el(env) == 3) { 6620 return CP_ACCESS_OK; 6621 } 6622 if (arm_is_secure_below_el3(env)) { 6623 if (env->cp15.scr_el3 & SCR_EEL2) { 6624 return CP_ACCESS_TRAP_EL2; 6625 } 6626 return CP_ACCESS_TRAP_EL3; 6627 } 6628 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6629 if (isread) { 6630 return CP_ACCESS_OK; 6631 } 6632 return CP_ACCESS_TRAP_UNCATEGORIZED; 6633 } 6634 6635 static const ARMCPRegInfo el3_cp_reginfo[] = { 6636 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6637 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6638 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6639 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6640 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6641 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6642 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6643 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6644 .writefn = scr_write, .raw_writefn = raw_write }, 6645 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6646 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6647 .access = PL3_RW, .resetvalue = 0, 6648 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6649 { .name = "SDER", 6650 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6651 .access = PL3_RW, .resetvalue = 0, 6652 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6653 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6654 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6655 .writefn = vbar_write, .resetvalue = 0, 6656 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6657 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6658 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6659 .access = PL3_RW, .resetvalue = 0, 6660 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6661 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6662 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6663 .access = PL3_RW, 6664 /* no .writefn needed as this can't cause an ASID change */ 6665 .resetvalue = 0, 6666 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6667 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6668 .type = ARM_CP_ALIAS, 6669 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6670 .access = PL3_RW, 6671 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6672 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6673 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6674 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6675 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6677 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6678 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6679 .type = ARM_CP_ALIAS, 6680 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6681 .access = PL3_RW, 6682 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6683 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6684 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6685 .access = PL3_RW, .writefn = vbar_write, 6686 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6687 .resetvalue = 0 }, 6688 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6689 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6690 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6691 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6692 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6693 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6694 .access = PL3_RW, .resetvalue = 0, 6695 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6696 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6697 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6698 .access = PL3_RW, .type = ARM_CP_CONST, 6699 .resetvalue = 0 }, 6700 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6701 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6702 .access = PL3_RW, .type = ARM_CP_CONST, 6703 .resetvalue = 0 }, 6704 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6705 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6706 .access = PL3_RW, .type = ARM_CP_CONST, 6707 .resetvalue = 0 }, 6708 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6709 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6710 .access = PL3_W, .type = ARM_CP_NO_RAW, 6711 .writefn = tlbi_aa64_alle3is_write }, 6712 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6713 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6714 .access = PL3_W, .type = ARM_CP_NO_RAW, 6715 .writefn = tlbi_aa64_vae3is_write }, 6716 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6717 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6718 .access = PL3_W, .type = ARM_CP_NO_RAW, 6719 .writefn = tlbi_aa64_vae3is_write }, 6720 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6721 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6722 .access = PL3_W, .type = ARM_CP_NO_RAW, 6723 .writefn = tlbi_aa64_alle3_write }, 6724 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6725 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6726 .access = PL3_W, .type = ARM_CP_NO_RAW, 6727 .writefn = tlbi_aa64_vae3_write }, 6728 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6729 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6730 .access = PL3_W, .type = ARM_CP_NO_RAW, 6731 .writefn = tlbi_aa64_vae3_write }, 6732 }; 6733 6734 #ifndef CONFIG_USER_ONLY 6735 6736 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6737 bool isread) 6738 { 6739 if (arm_current_el(env) == 1) { 6740 /* This must be a FEAT_NV access */ 6741 return CP_ACCESS_OK; 6742 } 6743 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6744 return CP_ACCESS_TRAP_UNCATEGORIZED; 6745 } 6746 return CP_ACCESS_OK; 6747 } 6748 6749 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6750 bool isread) 6751 { 6752 if (arm_current_el(env) == 1) { 6753 /* This must be a FEAT_NV access with NVx == 101 */ 6754 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6755 return CP_ACCESS_TRAP_EL2; 6756 } 6757 } 6758 return e2h_access(env, ri, isread); 6759 } 6760 6761 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6762 bool isread) 6763 { 6764 if (arm_current_el(env) == 1) { 6765 /* This must be a FEAT_NV access with NVx == 101 */ 6766 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6767 return CP_ACCESS_TRAP_EL2; 6768 } 6769 } 6770 return e2h_access(env, ri, isread); 6771 } 6772 6773 /* Test if system register redirection is to occur in the current state. */ 6774 static bool redirect_for_e2h(CPUARMState *env) 6775 { 6776 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6777 } 6778 6779 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6780 { 6781 CPReadFn *readfn; 6782 6783 if (redirect_for_e2h(env)) { 6784 /* Switch to the saved EL2 version of the register. */ 6785 ri = ri->opaque; 6786 readfn = ri->readfn; 6787 } else { 6788 readfn = ri->orig_readfn; 6789 } 6790 if (readfn == NULL) { 6791 readfn = raw_read; 6792 } 6793 return readfn(env, ri); 6794 } 6795 6796 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6797 uint64_t value) 6798 { 6799 CPWriteFn *writefn; 6800 6801 if (redirect_for_e2h(env)) { 6802 /* Switch to the saved EL2 version of the register. */ 6803 ri = ri->opaque; 6804 writefn = ri->writefn; 6805 } else { 6806 writefn = ri->orig_writefn; 6807 } 6808 if (writefn == NULL) { 6809 writefn = raw_write; 6810 } 6811 writefn(env, ri, value); 6812 } 6813 6814 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6815 { 6816 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6817 return ri->orig_readfn(env, ri->opaque); 6818 } 6819 6820 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6821 uint64_t value) 6822 { 6823 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6824 return ri->orig_writefn(env, ri->opaque, value); 6825 } 6826 6827 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6828 const ARMCPRegInfo *ri, 6829 bool isread) 6830 { 6831 if (arm_current_el(env) == 1) { 6832 /* 6833 * This must be a FEAT_NV access (will either trap or redirect 6834 * to memory). None of the registers with _EL12 aliases want to 6835 * apply their trap controls for this kind of access, so don't 6836 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6837 */ 6838 return CP_ACCESS_OK; 6839 } 6840 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6841 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6842 return CP_ACCESS_TRAP_UNCATEGORIZED; 6843 } 6844 if (ri->orig_accessfn) { 6845 return ri->orig_accessfn(env, ri->opaque, isread); 6846 } 6847 return CP_ACCESS_OK; 6848 } 6849 6850 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6851 { 6852 struct E2HAlias { 6853 uint32_t src_key, dst_key, new_key; 6854 const char *src_name, *dst_name, *new_name; 6855 bool (*feature)(const ARMISARegisters *id); 6856 }; 6857 6858 #define K(op0, op1, crn, crm, op2) \ 6859 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6860 6861 static const struct E2HAlias aliases[] = { 6862 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6863 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6864 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6865 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6866 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6867 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6868 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6869 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6870 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6871 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6872 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6873 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6874 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6875 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6876 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6877 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6878 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6879 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6880 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6881 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6882 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6883 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6884 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6885 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6886 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6887 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6888 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6889 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6890 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6891 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6892 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6893 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6894 6895 /* 6896 * Note that redirection of ZCR is mentioned in the description 6897 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6898 * not in the summary table. 6899 */ 6900 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6901 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6902 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6903 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6904 6905 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6906 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6907 6908 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6909 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6910 isar_feature_aa64_scxtnum }, 6911 6912 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6913 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6914 }; 6915 #undef K 6916 6917 size_t i; 6918 6919 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6920 const struct E2HAlias *a = &aliases[i]; 6921 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6922 bool ok; 6923 6924 if (a->feature && !a->feature(&cpu->isar)) { 6925 continue; 6926 } 6927 6928 src_reg = g_hash_table_lookup(cpu->cp_regs, 6929 (gpointer)(uintptr_t)a->src_key); 6930 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6931 (gpointer)(uintptr_t)a->dst_key); 6932 g_assert(src_reg != NULL); 6933 g_assert(dst_reg != NULL); 6934 6935 /* Cross-compare names to detect typos in the keys. */ 6936 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6937 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6938 6939 /* None of the core system registers use opaque; we will. */ 6940 g_assert(src_reg->opaque == NULL); 6941 6942 /* Create alias before redirection so we dup the right data. */ 6943 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6944 6945 new_reg->name = a->new_name; 6946 new_reg->type |= ARM_CP_ALIAS; 6947 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6948 new_reg->access &= PL2_RW | PL3_RW; 6949 /* The new_reg op fields are as per new_key, not the target reg */ 6950 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6951 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6952 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6953 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6954 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6955 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6956 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6957 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6958 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6959 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6960 new_reg->opaque = src_reg; 6961 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6962 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6963 new_reg->orig_accessfn = src_reg->accessfn; 6964 if (!new_reg->raw_readfn) { 6965 new_reg->raw_readfn = raw_read; 6966 } 6967 if (!new_reg->raw_writefn) { 6968 new_reg->raw_writefn = raw_write; 6969 } 6970 new_reg->readfn = el2_e2h_e12_read; 6971 new_reg->writefn = el2_e2h_e12_write; 6972 new_reg->accessfn = el2_e2h_e12_access; 6973 6974 /* 6975 * If the _EL1 register is redirected to memory by FEAT_NV2, 6976 * then it shares the offset with the _EL12 register, 6977 * and which one is redirected depends on HCR_EL2.NV1. 6978 */ 6979 if (new_reg->nv2_redirect_offset) { 6980 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6981 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6982 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6983 } 6984 6985 ok = g_hash_table_insert(cpu->cp_regs, 6986 (gpointer)(uintptr_t)a->new_key, new_reg); 6987 g_assert(ok); 6988 6989 src_reg->opaque = dst_reg; 6990 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6991 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6992 if (!src_reg->raw_readfn) { 6993 src_reg->raw_readfn = raw_read; 6994 } 6995 if (!src_reg->raw_writefn) { 6996 src_reg->raw_writefn = raw_write; 6997 } 6998 src_reg->readfn = el2_e2h_read; 6999 src_reg->writefn = el2_e2h_write; 7000 } 7001 } 7002 #endif 7003 7004 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 7005 bool isread) 7006 { 7007 int cur_el = arm_current_el(env); 7008 7009 if (cur_el < 2) { 7010 uint64_t hcr = arm_hcr_el2_eff(env); 7011 7012 if (cur_el == 0) { 7013 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 7014 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 7015 return CP_ACCESS_TRAP_EL2; 7016 } 7017 } else { 7018 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 7019 return CP_ACCESS_TRAP; 7020 } 7021 if (hcr & HCR_TID2) { 7022 return CP_ACCESS_TRAP_EL2; 7023 } 7024 } 7025 } else if (hcr & HCR_TID2) { 7026 return CP_ACCESS_TRAP_EL2; 7027 } 7028 } 7029 7030 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 7031 return CP_ACCESS_TRAP_EL2; 7032 } 7033 7034 return CP_ACCESS_OK; 7035 } 7036 7037 /* 7038 * Check for traps to RAS registers, which are controlled 7039 * by HCR_EL2.TERR and SCR_EL3.TERR. 7040 */ 7041 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 7042 bool isread) 7043 { 7044 int el = arm_current_el(env); 7045 7046 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 7047 return CP_ACCESS_TRAP_EL2; 7048 } 7049 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 7050 return CP_ACCESS_TRAP_EL3; 7051 } 7052 return CP_ACCESS_OK; 7053 } 7054 7055 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 7056 { 7057 int el = arm_current_el(env); 7058 7059 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7060 return env->cp15.vdisr_el2; 7061 } 7062 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7063 return 0; /* RAZ/WI */ 7064 } 7065 return env->cp15.disr_el1; 7066 } 7067 7068 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7069 { 7070 int el = arm_current_el(env); 7071 7072 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7073 env->cp15.vdisr_el2 = val; 7074 return; 7075 } 7076 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7077 return; /* RAZ/WI */ 7078 } 7079 env->cp15.disr_el1 = val; 7080 } 7081 7082 /* 7083 * Minimal RAS implementation with no Error Records. 7084 * Which means that all of the Error Record registers: 7085 * ERXADDR_EL1 7086 * ERXCTLR_EL1 7087 * ERXFR_EL1 7088 * ERXMISC0_EL1 7089 * ERXMISC1_EL1 7090 * ERXMISC2_EL1 7091 * ERXMISC3_EL1 7092 * ERXPFGCDN_EL1 (RASv1p1) 7093 * ERXPFGCTL_EL1 (RASv1p1) 7094 * ERXPFGF_EL1 (RASv1p1) 7095 * ERXSTATUS_EL1 7096 * and 7097 * ERRSELR_EL1 7098 * may generate UNDEFINED, which is the effect we get by not 7099 * listing them at all. 7100 * 7101 * These registers have fine-grained trap bits, but UNDEF-to-EL1 7102 * is higher priority than FGT-to-EL2 so we do not need to list them 7103 * in order to check for an FGT. 7104 */ 7105 static const ARMCPRegInfo minimal_ras_reginfo[] = { 7106 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 7107 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 7108 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 7109 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 7110 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 7111 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 7112 .access = PL1_R, .accessfn = access_terr, 7113 .fgt = FGT_ERRIDR_EL1, 7114 .type = ARM_CP_CONST, .resetvalue = 0 }, 7115 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 7116 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 7117 .nv2_redirect_offset = 0x500, 7118 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 7119 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 7120 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 7121 .nv2_redirect_offset = 0x508, 7122 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 7123 }; 7124 7125 /* 7126 * Return the exception level to which exceptions should be taken 7127 * via SVEAccessTrap. This excludes the check for whether the exception 7128 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 7129 * be found by testing 0 < fp_exception_el < sve_exception_el. 7130 * 7131 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 7132 * pseudocode does *not* separate out the FP trap checks, but has them 7133 * all in one function. 7134 */ 7135 int sve_exception_el(CPUARMState *env, int el) 7136 { 7137 #ifndef CONFIG_USER_ONLY 7138 if (el <= 1 && !el_is_in_host(env, el)) { 7139 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 7140 case 1: 7141 if (el != 0) { 7142 break; 7143 } 7144 /* fall through */ 7145 case 0: 7146 case 2: 7147 return 1; 7148 } 7149 } 7150 7151 if (el <= 2 && arm_is_el2_enabled(env)) { 7152 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7153 if (env->cp15.hcr_el2 & HCR_E2H) { 7154 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 7155 case 1: 7156 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7157 break; 7158 } 7159 /* fall through */ 7160 case 0: 7161 case 2: 7162 return 2; 7163 } 7164 } else { 7165 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 7166 return 2; 7167 } 7168 } 7169 } 7170 7171 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 7172 if (arm_feature(env, ARM_FEATURE_EL3) 7173 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 7174 return 3; 7175 } 7176 #endif 7177 return 0; 7178 } 7179 7180 /* 7181 * Return the exception level to which exceptions should be taken for SME. 7182 * C.f. the ARM pseudocode function CheckSMEAccess. 7183 */ 7184 int sme_exception_el(CPUARMState *env, int el) 7185 { 7186 #ifndef CONFIG_USER_ONLY 7187 if (el <= 1 && !el_is_in_host(env, el)) { 7188 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 7189 case 1: 7190 if (el != 0) { 7191 break; 7192 } 7193 /* fall through */ 7194 case 0: 7195 case 2: 7196 return 1; 7197 } 7198 } 7199 7200 if (el <= 2 && arm_is_el2_enabled(env)) { 7201 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7202 if (env->cp15.hcr_el2 & HCR_E2H) { 7203 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 7204 case 1: 7205 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7206 break; 7207 } 7208 /* fall through */ 7209 case 0: 7210 case 2: 7211 return 2; 7212 } 7213 } else { 7214 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7215 return 2; 7216 } 7217 } 7218 } 7219 7220 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7221 if (arm_feature(env, ARM_FEATURE_EL3) 7222 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7223 return 3; 7224 } 7225 #endif 7226 return 0; 7227 } 7228 7229 /* 7230 * Given that SVE is enabled, return the vector length for EL. 7231 */ 7232 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7233 { 7234 ARMCPU *cpu = env_archcpu(env); 7235 uint64_t *cr = env->vfp.zcr_el; 7236 uint32_t map = cpu->sve_vq.map; 7237 uint32_t len = ARM_MAX_VQ - 1; 7238 7239 if (sm) { 7240 cr = env->vfp.smcr_el; 7241 map = cpu->sme_vq.map; 7242 } 7243 7244 if (el <= 1 && !el_is_in_host(env, el)) { 7245 len = MIN(len, 0xf & (uint32_t)cr[1]); 7246 } 7247 if (el <= 2 && arm_is_el2_enabled(env)) { 7248 len = MIN(len, 0xf & (uint32_t)cr[2]); 7249 } 7250 if (arm_feature(env, ARM_FEATURE_EL3)) { 7251 len = MIN(len, 0xf & (uint32_t)cr[3]); 7252 } 7253 7254 map &= MAKE_64BIT_MASK(0, len + 1); 7255 if (map != 0) { 7256 return 31 - clz32(map); 7257 } 7258 7259 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7260 assert(sm); 7261 return ctz32(cpu->sme_vq.map); 7262 } 7263 7264 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7265 { 7266 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7267 } 7268 7269 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7270 uint64_t value) 7271 { 7272 int cur_el = arm_current_el(env); 7273 int old_len = sve_vqm1_for_el(env, cur_el); 7274 int new_len; 7275 7276 /* Bits other than [3:0] are RAZ/WI. */ 7277 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7278 raw_write(env, ri, value & 0xf); 7279 7280 /* 7281 * Because we arrived here, we know both FP and SVE are enabled; 7282 * otherwise we would have trapped access to the ZCR_ELn register. 7283 */ 7284 new_len = sve_vqm1_for_el(env, cur_el); 7285 if (new_len < old_len) { 7286 aarch64_sve_narrow_vq(env, new_len + 1); 7287 } 7288 } 7289 7290 static const ARMCPRegInfo zcr_reginfo[] = { 7291 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7293 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7294 .access = PL1_RW, .type = ARM_CP_SVE, 7295 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7296 .writefn = zcr_write, .raw_writefn = raw_write }, 7297 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7299 .access = PL2_RW, .type = ARM_CP_SVE, 7300 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7301 .writefn = zcr_write, .raw_writefn = raw_write }, 7302 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7303 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7304 .access = PL3_RW, .type = ARM_CP_SVE, 7305 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7306 .writefn = zcr_write, .raw_writefn = raw_write }, 7307 }; 7308 7309 #ifdef TARGET_AARCH64 7310 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7311 bool isread) 7312 { 7313 int el = arm_current_el(env); 7314 7315 if (el == 0) { 7316 uint64_t sctlr = arm_sctlr(env, el); 7317 if (!(sctlr & SCTLR_EnTP2)) { 7318 return CP_ACCESS_TRAP; 7319 } 7320 } 7321 /* TODO: FEAT_FGT */ 7322 if (el < 3 7323 && arm_feature(env, ARM_FEATURE_EL3) 7324 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7325 return CP_ACCESS_TRAP_EL3; 7326 } 7327 return CP_ACCESS_OK; 7328 } 7329 7330 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7331 bool isread) 7332 { 7333 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7334 if (arm_current_el(env) == 2 7335 && arm_feature(env, ARM_FEATURE_EL3) 7336 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7337 return CP_ACCESS_TRAP_EL3; 7338 } 7339 return CP_ACCESS_OK; 7340 } 7341 7342 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7343 bool isread) 7344 { 7345 if (arm_current_el(env) < 3 7346 && arm_feature(env, ARM_FEATURE_EL3) 7347 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7348 return CP_ACCESS_TRAP_EL3; 7349 } 7350 return CP_ACCESS_OK; 7351 } 7352 7353 /* ResetSVEState */ 7354 static void arm_reset_sve_state(CPUARMState *env) 7355 { 7356 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7357 /* Recall that FFR is stored as pregs[16]. */ 7358 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7359 vfp_set_fpcr(env, 0x0800009f); 7360 } 7361 7362 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7363 { 7364 uint64_t change = (env->svcr ^ new) & mask; 7365 7366 if (change == 0) { 7367 return; 7368 } 7369 env->svcr ^= change; 7370 7371 if (change & R_SVCR_SM_MASK) { 7372 arm_reset_sve_state(env); 7373 } 7374 7375 /* 7376 * ResetSMEState. 7377 * 7378 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7379 * on enable: while disabled, the storage is inaccessible and the 7380 * value does not matter. We're not saving the storage in vmstate 7381 * when disabled either. 7382 */ 7383 if (change & new & R_SVCR_ZA_MASK) { 7384 memset(env->zarray, 0, sizeof(env->zarray)); 7385 } 7386 7387 if (tcg_enabled()) { 7388 arm_rebuild_hflags(env); 7389 } 7390 } 7391 7392 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7393 uint64_t value) 7394 { 7395 aarch64_set_svcr(env, value, -1); 7396 } 7397 7398 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7399 uint64_t value) 7400 { 7401 int cur_el = arm_current_el(env); 7402 int old_len = sve_vqm1_for_el(env, cur_el); 7403 int new_len; 7404 7405 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7406 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7407 raw_write(env, ri, value); 7408 7409 /* 7410 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7411 * when SVL is widened (old values kept, or zeros). Choose to keep the 7412 * current values for simplicity. But for QEMU internals, we must still 7413 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7414 * above aarch64_sve_narrow_vq. 7415 */ 7416 new_len = sve_vqm1_for_el(env, cur_el); 7417 if (new_len < old_len) { 7418 aarch64_sve_narrow_vq(env, new_len + 1); 7419 } 7420 } 7421 7422 static const ARMCPRegInfo sme_reginfo[] = { 7423 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7424 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7425 .access = PL0_RW, .accessfn = access_tpidr2, 7426 .fgt = FGT_NTPIDR2_EL0, 7427 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7428 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7429 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7430 .access = PL0_RW, .type = ARM_CP_SME, 7431 .fieldoffset = offsetof(CPUARMState, svcr), 7432 .writefn = svcr_write, .raw_writefn = raw_write }, 7433 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7434 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7435 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7436 .access = PL1_RW, .type = ARM_CP_SME, 7437 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7438 .writefn = smcr_write, .raw_writefn = raw_write }, 7439 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7440 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7441 .access = PL2_RW, .type = ARM_CP_SME, 7442 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7443 .writefn = smcr_write, .raw_writefn = raw_write }, 7444 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7445 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7446 .access = PL3_RW, .type = ARM_CP_SME, 7447 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7448 .writefn = smcr_write, .raw_writefn = raw_write }, 7449 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7450 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7451 .access = PL1_R, .accessfn = access_aa64_tid1, 7452 /* 7453 * IMPLEMENTOR = 0 (software) 7454 * REVISION = 0 (implementation defined) 7455 * SMPS = 0 (no streaming execution priority in QEMU) 7456 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7457 */ 7458 .type = ARM_CP_CONST, .resetvalue = 0, }, 7459 /* 7460 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7461 */ 7462 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7463 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7464 .access = PL1_RW, .accessfn = access_smpri, 7465 .fgt = FGT_NSMPRI_EL1, 7466 .type = ARM_CP_CONST, .resetvalue = 0 }, 7467 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7468 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7469 .nv2_redirect_offset = 0x1f8, 7470 .access = PL2_RW, .accessfn = access_smprimap, 7471 .type = ARM_CP_CONST, .resetvalue = 0 }, 7472 }; 7473 7474 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7475 uint64_t value) 7476 { 7477 CPUState *cs = env_cpu(env); 7478 7479 tlb_flush(cs); 7480 } 7481 7482 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7483 uint64_t value) 7484 { 7485 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7486 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7487 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7488 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7489 7490 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7491 } 7492 7493 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7494 { 7495 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7496 env_archcpu(env)->reset_l0gptsz); 7497 } 7498 7499 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7500 uint64_t value) 7501 { 7502 CPUState *cs = env_cpu(env); 7503 7504 tlb_flush_all_cpus_synced(cs); 7505 } 7506 7507 static const ARMCPRegInfo rme_reginfo[] = { 7508 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7509 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7510 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7511 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7512 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7513 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7514 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7515 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7516 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7517 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7518 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7519 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7520 .access = PL3_W, .type = ARM_CP_NO_RAW, 7521 .writefn = tlbi_aa64_paall_write }, 7522 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7523 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7524 .access = PL3_W, .type = ARM_CP_NO_RAW, 7525 .writefn = tlbi_aa64_paallos_write }, 7526 /* 7527 * QEMU does not have a way to invalidate by physical address, thus 7528 * invalidating a range of physical addresses is accomplished by 7529 * flushing all tlb entries in the outer shareable domain, 7530 * just like PAALLOS. 7531 */ 7532 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7533 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7534 .access = PL3_W, .type = ARM_CP_NO_RAW, 7535 .writefn = tlbi_aa64_paallos_write }, 7536 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7537 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7538 .access = PL3_W, .type = ARM_CP_NO_RAW, 7539 .writefn = tlbi_aa64_paallos_write }, 7540 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7541 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7542 .access = PL3_W, .type = ARM_CP_NOP }, 7543 }; 7544 7545 static const ARMCPRegInfo rme_mte_reginfo[] = { 7546 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7547 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7548 .access = PL3_W, .type = ARM_CP_NOP }, 7549 }; 7550 7551 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 7552 uint64_t value) 7553 { 7554 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 7555 } 7556 7557 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 7558 { 7559 return env->pstate & PSTATE_ALLINT; 7560 } 7561 7562 static CPAccessResult aa64_allint_access(CPUARMState *env, 7563 const ARMCPRegInfo *ri, bool isread) 7564 { 7565 if (!isread && arm_current_el(env) == 1 && 7566 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 7567 return CP_ACCESS_TRAP_EL2; 7568 } 7569 return CP_ACCESS_OK; 7570 } 7571 7572 static const ARMCPRegInfo nmi_reginfo[] = { 7573 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 7574 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 7575 .type = ARM_CP_NO_RAW, 7576 .access = PL1_RW, .accessfn = aa64_allint_access, 7577 .fieldoffset = offsetof(CPUARMState, pstate), 7578 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 7579 .resetfn = arm_cp_reset_ignore }, 7580 }; 7581 #endif /* TARGET_AARCH64 */ 7582 7583 static void define_pmu_regs(ARMCPU *cpu) 7584 { 7585 /* 7586 * v7 performance monitor control register: same implementor 7587 * field as main ID register, and we implement four counters in 7588 * addition to the cycle count register. 7589 */ 7590 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7591 ARMCPRegInfo pmcr = { 7592 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7593 .access = PL0_RW, 7594 .fgt = FGT_PMCR_EL0, 7595 .type = ARM_CP_IO | ARM_CP_ALIAS, 7596 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7597 .accessfn = pmreg_access, 7598 .readfn = pmcr_read, .raw_readfn = raw_read, 7599 .writefn = pmcr_write, .raw_writefn = raw_write, 7600 }; 7601 ARMCPRegInfo pmcr64 = { 7602 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7603 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7604 .access = PL0_RW, .accessfn = pmreg_access, 7605 .fgt = FGT_PMCR_EL0, 7606 .type = ARM_CP_IO, 7607 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7608 .resetvalue = cpu->isar.reset_pmcr_el0, 7609 .readfn = pmcr_read, .raw_readfn = raw_read, 7610 .writefn = pmcr_write, .raw_writefn = raw_write, 7611 }; 7612 7613 define_one_arm_cp_reg(cpu, &pmcr); 7614 define_one_arm_cp_reg(cpu, &pmcr64); 7615 for (i = 0; i < pmcrn; i++) { 7616 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7617 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7618 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7619 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7620 ARMCPRegInfo pmev_regs[] = { 7621 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7622 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7623 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7624 .fgt = FGT_PMEVCNTRN_EL0, 7625 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7626 .accessfn = pmreg_access_xevcntr }, 7627 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7628 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7629 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7630 .type = ARM_CP_IO, 7631 .fgt = FGT_PMEVCNTRN_EL0, 7632 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7633 .raw_readfn = pmevcntr_rawread, 7634 .raw_writefn = pmevcntr_rawwrite }, 7635 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7636 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7637 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7638 .fgt = FGT_PMEVTYPERN_EL0, 7639 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7640 .accessfn = pmreg_access }, 7641 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7642 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7643 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7644 .fgt = FGT_PMEVTYPERN_EL0, 7645 .type = ARM_CP_IO, 7646 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7647 .raw_writefn = pmevtyper_rawwrite }, 7648 }; 7649 define_arm_cp_regs(cpu, pmev_regs); 7650 g_free(pmevcntr_name); 7651 g_free(pmevcntr_el0_name); 7652 g_free(pmevtyper_name); 7653 g_free(pmevtyper_el0_name); 7654 } 7655 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7656 ARMCPRegInfo v81_pmu_regs[] = { 7657 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7658 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7659 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7660 .fgt = FGT_PMCEIDN_EL0, 7661 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7662 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7663 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7664 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7665 .fgt = FGT_PMCEIDN_EL0, 7666 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7667 }; 7668 define_arm_cp_regs(cpu, v81_pmu_regs); 7669 } 7670 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7671 static const ARMCPRegInfo v84_pmmir = { 7672 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7673 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7674 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7675 .fgt = FGT_PMMIR_EL1, 7676 .resetvalue = 0 7677 }; 7678 define_one_arm_cp_reg(cpu, &v84_pmmir); 7679 } 7680 } 7681 7682 #ifndef CONFIG_USER_ONLY 7683 /* 7684 * We don't know until after realize whether there's a GICv3 7685 * attached, and that is what registers the gicv3 sysregs. 7686 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7687 * at runtime. 7688 */ 7689 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7690 { 7691 ARMCPU *cpu = env_archcpu(env); 7692 uint64_t pfr1 = cpu->isar.id_pfr1; 7693 7694 if (env->gicv3state) { 7695 pfr1 |= 1 << 28; 7696 } 7697 return pfr1; 7698 } 7699 7700 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7701 { 7702 ARMCPU *cpu = env_archcpu(env); 7703 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7704 7705 if (env->gicv3state) { 7706 pfr0 |= 1 << 24; 7707 } 7708 return pfr0; 7709 } 7710 #endif 7711 7712 /* 7713 * Shared logic between LORID and the rest of the LOR* registers. 7714 * Secure state exclusion has already been dealt with. 7715 */ 7716 static CPAccessResult access_lor_ns(CPUARMState *env, 7717 const ARMCPRegInfo *ri, bool isread) 7718 { 7719 int el = arm_current_el(env); 7720 7721 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7722 return CP_ACCESS_TRAP_EL2; 7723 } 7724 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7725 return CP_ACCESS_TRAP_EL3; 7726 } 7727 return CP_ACCESS_OK; 7728 } 7729 7730 static CPAccessResult access_lor_other(CPUARMState *env, 7731 const ARMCPRegInfo *ri, bool isread) 7732 { 7733 if (arm_is_secure_below_el3(env)) { 7734 /* Access denied in secure mode. */ 7735 return CP_ACCESS_TRAP; 7736 } 7737 return access_lor_ns(env, ri, isread); 7738 } 7739 7740 /* 7741 * A trivial implementation of ARMv8.1-LOR leaves all of these 7742 * registers fixed at 0, which indicates that there are zero 7743 * supported Limited Ordering regions. 7744 */ 7745 static const ARMCPRegInfo lor_reginfo[] = { 7746 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7747 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7748 .access = PL1_RW, .accessfn = access_lor_other, 7749 .fgt = FGT_LORSA_EL1, 7750 .type = ARM_CP_CONST, .resetvalue = 0 }, 7751 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7752 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7753 .access = PL1_RW, .accessfn = access_lor_other, 7754 .fgt = FGT_LOREA_EL1, 7755 .type = ARM_CP_CONST, .resetvalue = 0 }, 7756 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7757 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7758 .access = PL1_RW, .accessfn = access_lor_other, 7759 .fgt = FGT_LORN_EL1, 7760 .type = ARM_CP_CONST, .resetvalue = 0 }, 7761 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7762 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7763 .access = PL1_RW, .accessfn = access_lor_other, 7764 .fgt = FGT_LORC_EL1, 7765 .type = ARM_CP_CONST, .resetvalue = 0 }, 7766 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7767 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7768 .access = PL1_R, .accessfn = access_lor_ns, 7769 .fgt = FGT_LORID_EL1, 7770 .type = ARM_CP_CONST, .resetvalue = 0 }, 7771 }; 7772 7773 #ifdef TARGET_AARCH64 7774 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7775 bool isread) 7776 { 7777 int el = arm_current_el(env); 7778 7779 if (el < 2 && 7780 arm_is_el2_enabled(env) && 7781 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7782 return CP_ACCESS_TRAP_EL2; 7783 } 7784 if (el < 3 && 7785 arm_feature(env, ARM_FEATURE_EL3) && 7786 !(env->cp15.scr_el3 & SCR_APK)) { 7787 return CP_ACCESS_TRAP_EL3; 7788 } 7789 return CP_ACCESS_OK; 7790 } 7791 7792 static const ARMCPRegInfo pauth_reginfo[] = { 7793 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7794 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7795 .access = PL1_RW, .accessfn = access_pauth, 7796 .fgt = FGT_APDAKEY, 7797 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7798 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7799 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7800 .access = PL1_RW, .accessfn = access_pauth, 7801 .fgt = FGT_APDAKEY, 7802 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7803 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7804 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7805 .access = PL1_RW, .accessfn = access_pauth, 7806 .fgt = FGT_APDBKEY, 7807 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7808 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7809 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7810 .access = PL1_RW, .accessfn = access_pauth, 7811 .fgt = FGT_APDBKEY, 7812 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7813 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7814 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7815 .access = PL1_RW, .accessfn = access_pauth, 7816 .fgt = FGT_APGAKEY, 7817 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7818 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7819 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7820 .access = PL1_RW, .accessfn = access_pauth, 7821 .fgt = FGT_APGAKEY, 7822 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7823 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7824 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7825 .access = PL1_RW, .accessfn = access_pauth, 7826 .fgt = FGT_APIAKEY, 7827 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7828 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7829 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7830 .access = PL1_RW, .accessfn = access_pauth, 7831 .fgt = FGT_APIAKEY, 7832 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7833 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7835 .access = PL1_RW, .accessfn = access_pauth, 7836 .fgt = FGT_APIBKEY, 7837 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7838 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7840 .access = PL1_RW, .accessfn = access_pauth, 7841 .fgt = FGT_APIBKEY, 7842 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7843 }; 7844 7845 static const ARMCPRegInfo tlbirange_reginfo[] = { 7846 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7847 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7848 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7849 .fgt = FGT_TLBIRVAE1IS, 7850 .writefn = tlbi_aa64_rvae1is_write }, 7851 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7852 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7853 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7854 .fgt = FGT_TLBIRVAAE1IS, 7855 .writefn = tlbi_aa64_rvae1is_write }, 7856 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7857 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7858 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7859 .fgt = FGT_TLBIRVALE1IS, 7860 .writefn = tlbi_aa64_rvae1is_write }, 7861 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7862 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7863 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7864 .fgt = FGT_TLBIRVAALE1IS, 7865 .writefn = tlbi_aa64_rvae1is_write }, 7866 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7867 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7868 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7869 .fgt = FGT_TLBIRVAE1OS, 7870 .writefn = tlbi_aa64_rvae1is_write }, 7871 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7872 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7873 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7874 .fgt = FGT_TLBIRVAAE1OS, 7875 .writefn = tlbi_aa64_rvae1is_write }, 7876 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7877 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7878 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7879 .fgt = FGT_TLBIRVALE1OS, 7880 .writefn = tlbi_aa64_rvae1is_write }, 7881 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7883 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7884 .fgt = FGT_TLBIRVAALE1OS, 7885 .writefn = tlbi_aa64_rvae1is_write }, 7886 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7887 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7888 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7889 .fgt = FGT_TLBIRVAE1, 7890 .writefn = tlbi_aa64_rvae1_write }, 7891 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7892 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7893 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7894 .fgt = FGT_TLBIRVAAE1, 7895 .writefn = tlbi_aa64_rvae1_write }, 7896 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7897 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7898 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7899 .fgt = FGT_TLBIRVALE1, 7900 .writefn = tlbi_aa64_rvae1_write }, 7901 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7904 .fgt = FGT_TLBIRVAALE1, 7905 .writefn = tlbi_aa64_rvae1_write }, 7906 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7908 .access = PL2_W, .type = ARM_CP_NO_RAW, 7909 .writefn = tlbi_aa64_ripas2e1is_write }, 7910 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7912 .access = PL2_W, .type = ARM_CP_NO_RAW, 7913 .writefn = tlbi_aa64_ripas2e1is_write }, 7914 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7915 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7916 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7917 .writefn = tlbi_aa64_rvae2is_write }, 7918 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7920 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7921 .writefn = tlbi_aa64_rvae2is_write }, 7922 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7923 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7924 .access = PL2_W, .type = ARM_CP_NO_RAW, 7925 .writefn = tlbi_aa64_ripas2e1_write }, 7926 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7928 .access = PL2_W, .type = ARM_CP_NO_RAW, 7929 .writefn = tlbi_aa64_ripas2e1_write }, 7930 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7931 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7932 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7933 .writefn = tlbi_aa64_rvae2is_write }, 7934 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7935 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7936 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7937 .writefn = tlbi_aa64_rvae2is_write }, 7938 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7939 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7940 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7941 .writefn = tlbi_aa64_rvae2_write }, 7942 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7943 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7944 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7945 .writefn = tlbi_aa64_rvae2_write }, 7946 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7947 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7948 .access = PL3_W, .type = ARM_CP_NO_RAW, 7949 .writefn = tlbi_aa64_rvae3is_write }, 7950 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7951 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7952 .access = PL3_W, .type = ARM_CP_NO_RAW, 7953 .writefn = tlbi_aa64_rvae3is_write }, 7954 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7955 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7956 .access = PL3_W, .type = ARM_CP_NO_RAW, 7957 .writefn = tlbi_aa64_rvae3is_write }, 7958 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7959 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7960 .access = PL3_W, .type = ARM_CP_NO_RAW, 7961 .writefn = tlbi_aa64_rvae3is_write }, 7962 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7964 .access = PL3_W, .type = ARM_CP_NO_RAW, 7965 .writefn = tlbi_aa64_rvae3_write }, 7966 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7968 .access = PL3_W, .type = ARM_CP_NO_RAW, 7969 .writefn = tlbi_aa64_rvae3_write }, 7970 }; 7971 7972 static const ARMCPRegInfo tlbios_reginfo[] = { 7973 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7974 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7975 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7976 .fgt = FGT_TLBIVMALLE1OS, 7977 .writefn = tlbi_aa64_vmalle1is_write }, 7978 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7979 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7980 .fgt = FGT_TLBIVAE1OS, 7981 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7982 .writefn = tlbi_aa64_vae1is_write }, 7983 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7984 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7985 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7986 .fgt = FGT_TLBIASIDE1OS, 7987 .writefn = tlbi_aa64_vmalle1is_write }, 7988 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7989 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7990 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7991 .fgt = FGT_TLBIVAAE1OS, 7992 .writefn = tlbi_aa64_vae1is_write }, 7993 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7994 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7995 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7996 .fgt = FGT_TLBIVALE1OS, 7997 .writefn = tlbi_aa64_vae1is_write }, 7998 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 8000 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 8001 .fgt = FGT_TLBIVAALE1OS, 8002 .writefn = tlbi_aa64_vae1is_write }, 8003 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 8004 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 8005 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 8006 .writefn = tlbi_aa64_alle2is_write }, 8007 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 8008 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 8009 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 8010 .writefn = tlbi_aa64_vae2is_write }, 8011 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 8012 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 8013 .access = PL2_W, .type = ARM_CP_NO_RAW, 8014 .writefn = tlbi_aa64_alle1is_write }, 8015 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 8016 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 8017 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 8018 .writefn = tlbi_aa64_vae2is_write }, 8019 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 8020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 8021 .access = PL2_W, .type = ARM_CP_NO_RAW, 8022 .writefn = tlbi_aa64_alle1is_write }, 8023 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 8024 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 8025 .access = PL2_W, .type = ARM_CP_NOP }, 8026 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 8027 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 8028 .access = PL2_W, .type = ARM_CP_NOP }, 8029 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8030 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 8031 .access = PL2_W, .type = ARM_CP_NOP }, 8032 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8033 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 8034 .access = PL2_W, .type = ARM_CP_NOP }, 8035 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 8036 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 8037 .access = PL3_W, .type = ARM_CP_NO_RAW, 8038 .writefn = tlbi_aa64_alle3is_write }, 8039 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 8040 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 8041 .access = PL3_W, .type = ARM_CP_NO_RAW, 8042 .writefn = tlbi_aa64_vae3is_write }, 8043 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 8044 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 8045 .access = PL3_W, .type = ARM_CP_NO_RAW, 8046 .writefn = tlbi_aa64_vae3is_write }, 8047 }; 8048 8049 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 8050 { 8051 Error *err = NULL; 8052 uint64_t ret; 8053 8054 /* Success sets NZCV = 0000. */ 8055 env->NF = env->CF = env->VF = 0, env->ZF = 1; 8056 8057 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 8058 /* 8059 * ??? Failed, for unknown reasons in the crypto subsystem. 8060 * The best we can do is log the reason and return the 8061 * timed-out indication to the guest. There is no reason 8062 * we know to expect this failure to be transitory, so the 8063 * guest may well hang retrying the operation. 8064 */ 8065 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 8066 ri->name, error_get_pretty(err)); 8067 error_free(err); 8068 8069 env->ZF = 0; /* NZCF = 0100 */ 8070 return 0; 8071 } 8072 return ret; 8073 } 8074 8075 /* We do not support re-seeding, so the two registers operate the same. */ 8076 static const ARMCPRegInfo rndr_reginfo[] = { 8077 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 8078 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8079 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 8080 .access = PL0_R, .readfn = rndr_readfn }, 8081 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 8082 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8083 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 8084 .access = PL0_R, .readfn = rndr_readfn }, 8085 }; 8086 8087 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 8088 uint64_t value) 8089 { 8090 #ifdef CONFIG_TCG 8091 ARMCPU *cpu = env_archcpu(env); 8092 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 8093 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 8094 uint64_t vaddr_in = (uint64_t) value; 8095 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 8096 void *haddr; 8097 int mem_idx = arm_env_mmu_index(env); 8098 8099 /* This won't be crossing page boundaries */ 8100 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 8101 if (haddr) { 8102 #ifndef CONFIG_USER_ONLY 8103 8104 ram_addr_t offset; 8105 MemoryRegion *mr; 8106 8107 /* RCU lock is already being held */ 8108 mr = memory_region_from_host(haddr, &offset); 8109 8110 if (mr) { 8111 memory_region_writeback(mr, offset, dline_size); 8112 } 8113 #endif /*CONFIG_USER_ONLY*/ 8114 } 8115 #else 8116 /* Handled by hardware accelerator. */ 8117 g_assert_not_reached(); 8118 #endif /* CONFIG_TCG */ 8119 } 8120 8121 static const ARMCPRegInfo dcpop_reg[] = { 8122 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 8123 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 8124 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8125 .fgt = FGT_DCCVAP, 8126 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8127 }; 8128 8129 static const ARMCPRegInfo dcpodp_reg[] = { 8130 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 8131 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 8132 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8133 .fgt = FGT_DCCVADP, 8134 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8135 }; 8136 8137 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 8138 bool isread) 8139 { 8140 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 8141 return CP_ACCESS_TRAP_EL2; 8142 } 8143 8144 return CP_ACCESS_OK; 8145 } 8146 8147 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 8148 bool isread) 8149 { 8150 int el = arm_current_el(env); 8151 if (el < 2 && arm_is_el2_enabled(env)) { 8152 uint64_t hcr = arm_hcr_el2_eff(env); 8153 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8154 return CP_ACCESS_TRAP_EL2; 8155 } 8156 } 8157 if (el < 3 && 8158 arm_feature(env, ARM_FEATURE_EL3) && 8159 !(env->cp15.scr_el3 & SCR_ATA)) { 8160 return CP_ACCESS_TRAP_EL3; 8161 } 8162 return CP_ACCESS_OK; 8163 } 8164 8165 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 8166 bool isread) 8167 { 8168 CPAccessResult nv1 = access_nv1(env, ri, isread); 8169 8170 if (nv1 != CP_ACCESS_OK) { 8171 return nv1; 8172 } 8173 return access_mte(env, ri, isread); 8174 } 8175 8176 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 8177 bool isread) 8178 { 8179 /* 8180 * TFSR_EL2: similar to generic access_mte(), but we need to 8181 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 8182 * if NV2 is enabled then we will redirect this to TFSR_EL1 8183 * after doing the HCR and SCR ATA traps; otherwise this will 8184 * be a trap to EL2 and the HCR/SCR traps do not apply. 8185 */ 8186 int el = arm_current_el(env); 8187 8188 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 8189 return CP_ACCESS_OK; 8190 } 8191 if (el < 2 && arm_is_el2_enabled(env)) { 8192 uint64_t hcr = arm_hcr_el2_eff(env); 8193 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8194 return CP_ACCESS_TRAP_EL2; 8195 } 8196 } 8197 if (el < 3 && 8198 arm_feature(env, ARM_FEATURE_EL3) && 8199 !(env->cp15.scr_el3 & SCR_ATA)) { 8200 return CP_ACCESS_TRAP_EL3; 8201 } 8202 return CP_ACCESS_OK; 8203 } 8204 8205 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 8206 { 8207 return env->pstate & PSTATE_TCO; 8208 } 8209 8210 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 8211 { 8212 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 8213 } 8214 8215 static const ARMCPRegInfo mte_reginfo[] = { 8216 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 8217 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 8218 .access = PL1_RW, .accessfn = access_mte, 8219 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 8220 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 8221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 8222 .access = PL1_RW, .accessfn = access_tfsr_el1, 8223 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 8224 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 8225 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 8226 .type = ARM_CP_NV2_REDIRECT, 8227 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 8228 .access = PL2_RW, .accessfn = access_tfsr_el2, 8229 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 8230 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 8231 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 8232 .access = PL3_RW, 8233 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 8234 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 8235 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 8236 .access = PL1_RW, .accessfn = access_mte, 8237 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 8238 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 8239 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 8240 .access = PL1_RW, .accessfn = access_mte, 8241 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 8242 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8243 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8244 .type = ARM_CP_NO_RAW, 8245 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8246 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8247 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8248 .type = ARM_CP_NOP, .access = PL1_W, 8249 .fgt = FGT_DCIVAC, 8250 .accessfn = aa64_cacheop_poc_access }, 8251 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8252 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8253 .fgt = FGT_DCISW, 8254 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8255 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8257 .type = ARM_CP_NOP, .access = PL1_W, 8258 .fgt = FGT_DCIVAC, 8259 .accessfn = aa64_cacheop_poc_access }, 8260 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8261 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8262 .fgt = FGT_DCISW, 8263 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8264 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8265 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8266 .fgt = FGT_DCCSW, 8267 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8268 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8269 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8270 .fgt = FGT_DCCSW, 8271 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8272 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8273 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8274 .fgt = FGT_DCCISW, 8275 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8276 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8277 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8278 .fgt = FGT_DCCISW, 8279 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8280 }; 8281 8282 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8283 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8284 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8285 .type = ARM_CP_CONST, .access = PL0_RW, }, 8286 }; 8287 8288 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8289 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8290 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8291 .type = ARM_CP_NOP, .access = PL0_W, 8292 .fgt = FGT_DCCVAC, 8293 .accessfn = aa64_cacheop_poc_access }, 8294 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8295 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8296 .type = ARM_CP_NOP, .access = PL0_W, 8297 .fgt = FGT_DCCVAC, 8298 .accessfn = aa64_cacheop_poc_access }, 8299 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8300 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8301 .type = ARM_CP_NOP, .access = PL0_W, 8302 .fgt = FGT_DCCVAP, 8303 .accessfn = aa64_cacheop_poc_access }, 8304 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8305 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8306 .type = ARM_CP_NOP, .access = PL0_W, 8307 .fgt = FGT_DCCVAP, 8308 .accessfn = aa64_cacheop_poc_access }, 8309 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8310 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8311 .type = ARM_CP_NOP, .access = PL0_W, 8312 .fgt = FGT_DCCVADP, 8313 .accessfn = aa64_cacheop_poc_access }, 8314 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8315 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8316 .type = ARM_CP_NOP, .access = PL0_W, 8317 .fgt = FGT_DCCVADP, 8318 .accessfn = aa64_cacheop_poc_access }, 8319 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8320 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8321 .type = ARM_CP_NOP, .access = PL0_W, 8322 .fgt = FGT_DCCIVAC, 8323 .accessfn = aa64_cacheop_poc_access }, 8324 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8325 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8326 .type = ARM_CP_NOP, .access = PL0_W, 8327 .fgt = FGT_DCCIVAC, 8328 .accessfn = aa64_cacheop_poc_access }, 8329 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8330 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8331 .access = PL0_W, .type = ARM_CP_DC_GVA, 8332 #ifndef CONFIG_USER_ONLY 8333 /* Avoid overhead of an access check that always passes in user-mode */ 8334 .accessfn = aa64_zva_access, 8335 .fgt = FGT_DCZVA, 8336 #endif 8337 }, 8338 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8339 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8340 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8341 #ifndef CONFIG_USER_ONLY 8342 /* Avoid overhead of an access check that always passes in user-mode */ 8343 .accessfn = aa64_zva_access, 8344 .fgt = FGT_DCZVA, 8345 #endif 8346 }, 8347 }; 8348 8349 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8350 bool isread) 8351 { 8352 uint64_t hcr = arm_hcr_el2_eff(env); 8353 int el = arm_current_el(env); 8354 8355 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8356 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8357 if (hcr & HCR_TGE) { 8358 return CP_ACCESS_TRAP_EL2; 8359 } 8360 return CP_ACCESS_TRAP; 8361 } 8362 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8363 return CP_ACCESS_TRAP_EL2; 8364 } 8365 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8366 return CP_ACCESS_TRAP_EL2; 8367 } 8368 if (el < 3 8369 && arm_feature(env, ARM_FEATURE_EL3) 8370 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8371 return CP_ACCESS_TRAP_EL3; 8372 } 8373 return CP_ACCESS_OK; 8374 } 8375 8376 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8377 const ARMCPRegInfo *ri, 8378 bool isread) 8379 { 8380 CPAccessResult nv1 = access_nv1(env, ri, isread); 8381 8382 if (nv1 != CP_ACCESS_OK) { 8383 return nv1; 8384 } 8385 return access_scxtnum(env, ri, isread); 8386 } 8387 8388 static const ARMCPRegInfo scxtnum_reginfo[] = { 8389 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8390 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8391 .access = PL0_RW, .accessfn = access_scxtnum, 8392 .fgt = FGT_SCXTNUM_EL0, 8393 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8394 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8395 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8396 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8397 .fgt = FGT_SCXTNUM_EL1, 8398 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8399 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8400 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8401 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8402 .access = PL2_RW, .accessfn = access_scxtnum, 8403 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8404 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8405 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8406 .access = PL3_RW, 8407 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8408 }; 8409 8410 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8411 bool isread) 8412 { 8413 if (arm_current_el(env) == 2 && 8414 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8415 return CP_ACCESS_TRAP_EL3; 8416 } 8417 return CP_ACCESS_OK; 8418 } 8419 8420 static const ARMCPRegInfo fgt_reginfo[] = { 8421 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8422 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8423 .nv2_redirect_offset = 0x1b8, 8424 .access = PL2_RW, .accessfn = access_fgt, 8425 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8426 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8427 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8428 .nv2_redirect_offset = 0x1c0, 8429 .access = PL2_RW, .accessfn = access_fgt, 8430 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8431 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8432 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8433 .nv2_redirect_offset = 0x1d0, 8434 .access = PL2_RW, .accessfn = access_fgt, 8435 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8436 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8437 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8438 .nv2_redirect_offset = 0x1d8, 8439 .access = PL2_RW, .accessfn = access_fgt, 8440 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8441 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8442 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8443 .nv2_redirect_offset = 0x1c8, 8444 .access = PL2_RW, .accessfn = access_fgt, 8445 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8446 }; 8447 8448 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8449 uint64_t value) 8450 { 8451 /* 8452 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8453 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8454 * about the RESS bits at the top -- we choose the "generate an EL2 8455 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8456 * the ptw.c code detect the resulting invalid address). 8457 */ 8458 env->cp15.vncr_el2 = value & ~0xfffULL; 8459 } 8460 8461 static const ARMCPRegInfo nv2_reginfo[] = { 8462 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8463 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8464 .access = PL2_RW, 8465 .writefn = vncr_write, 8466 .nv2_redirect_offset = 0xb0, 8467 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8468 }; 8469 8470 #endif /* TARGET_AARCH64 */ 8471 8472 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8473 bool isread) 8474 { 8475 int el = arm_current_el(env); 8476 8477 if (el == 0) { 8478 uint64_t sctlr = arm_sctlr(env, el); 8479 if (!(sctlr & SCTLR_EnRCTX)) { 8480 return CP_ACCESS_TRAP; 8481 } 8482 } else if (el == 1) { 8483 uint64_t hcr = arm_hcr_el2_eff(env); 8484 if (hcr & HCR_NV) { 8485 return CP_ACCESS_TRAP_EL2; 8486 } 8487 } 8488 return CP_ACCESS_OK; 8489 } 8490 8491 static const ARMCPRegInfo predinv_reginfo[] = { 8492 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8493 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8494 .fgt = FGT_CFPRCTX, 8495 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8496 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8497 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8498 .fgt = FGT_DVPRCTX, 8499 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8500 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8501 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8502 .fgt = FGT_CPPRCTX, 8503 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8504 /* 8505 * Note the AArch32 opcodes have a different OPC1. 8506 */ 8507 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8508 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8509 .fgt = FGT_CFPRCTX, 8510 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8511 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8512 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8513 .fgt = FGT_DVPRCTX, 8514 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8515 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8516 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8517 .fgt = FGT_CPPRCTX, 8518 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8519 }; 8520 8521 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8522 { 8523 /* Read the high 32 bits of the current CCSIDR */ 8524 return extract64(ccsidr_read(env, ri), 32, 32); 8525 } 8526 8527 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8528 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8529 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8530 .access = PL1_R, 8531 .accessfn = access_tid4, 8532 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8533 }; 8534 8535 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8536 bool isread) 8537 { 8538 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8539 return CP_ACCESS_TRAP_EL2; 8540 } 8541 8542 return CP_ACCESS_OK; 8543 } 8544 8545 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8546 bool isread) 8547 { 8548 if (arm_feature(env, ARM_FEATURE_V8)) { 8549 return access_aa64_tid3(env, ri, isread); 8550 } 8551 8552 return CP_ACCESS_OK; 8553 } 8554 8555 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8556 bool isread) 8557 { 8558 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8559 return CP_ACCESS_TRAP_EL2; 8560 } 8561 8562 return CP_ACCESS_OK; 8563 } 8564 8565 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8566 const ARMCPRegInfo *ri, bool isread) 8567 { 8568 /* 8569 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8570 * in v7A, not in v8A. 8571 */ 8572 if (!arm_feature(env, ARM_FEATURE_V8) && 8573 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8574 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8575 return CP_ACCESS_TRAP_EL2; 8576 } 8577 return CP_ACCESS_OK; 8578 } 8579 8580 static const ARMCPRegInfo jazelle_regs[] = { 8581 { .name = "JIDR", 8582 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8583 .access = PL1_R, .accessfn = access_jazelle, 8584 .type = ARM_CP_CONST, .resetvalue = 0 }, 8585 { .name = "JOSCR", 8586 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8587 .accessfn = access_joscr_jmcr, 8588 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8589 { .name = "JMCR", 8590 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8591 .accessfn = access_joscr_jmcr, 8592 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8593 }; 8594 8595 static const ARMCPRegInfo contextidr_el2 = { 8596 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8597 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8598 .access = PL2_RW, 8599 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8600 }; 8601 8602 static const ARMCPRegInfo vhe_reginfo[] = { 8603 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8604 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8605 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8606 .raw_writefn = raw_write, 8607 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8608 #ifndef CONFIG_USER_ONLY 8609 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8610 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8611 .fieldoffset = 8612 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8613 .type = ARM_CP_IO, .access = PL2_RW, 8614 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8615 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8616 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8617 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8618 .resetfn = gt_hv_timer_reset, 8619 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8620 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8621 .type = ARM_CP_IO, 8622 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8623 .access = PL2_RW, 8624 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8625 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8626 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8627 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8628 .type = ARM_CP_IO | ARM_CP_ALIAS, 8629 .access = PL2_RW, .accessfn = access_el1nvpct, 8630 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8631 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8632 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8633 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8634 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8635 .type = ARM_CP_IO | ARM_CP_ALIAS, 8636 .access = PL2_RW, .accessfn = access_el1nvvct, 8637 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8638 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8639 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8640 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8641 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8642 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8643 .access = PL2_RW, .accessfn = e2h_access, 8644 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8645 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8646 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8647 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8648 .access = PL2_RW, .accessfn = e2h_access, 8649 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8650 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8651 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8652 .type = ARM_CP_IO | ARM_CP_ALIAS, 8653 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8654 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8655 .access = PL2_RW, .accessfn = access_el1nvpct, 8656 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8657 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8658 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8659 .type = ARM_CP_IO | ARM_CP_ALIAS, 8660 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8661 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8662 .access = PL2_RW, .accessfn = access_el1nvvct, 8663 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8664 #endif 8665 }; 8666 8667 #ifndef CONFIG_USER_ONLY 8668 static const ARMCPRegInfo ats1e1_reginfo[] = { 8669 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8670 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8671 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8672 .fgt = FGT_ATS1E1RP, 8673 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8674 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8675 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8676 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8677 .fgt = FGT_ATS1E1WP, 8678 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8679 }; 8680 8681 static const ARMCPRegInfo ats1cp_reginfo[] = { 8682 { .name = "ATS1CPRP", 8683 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8684 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8685 .writefn = ats_write }, 8686 { .name = "ATS1CPWP", 8687 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8688 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8689 .writefn = ats_write }, 8690 }; 8691 #endif 8692 8693 /* 8694 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8695 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8696 * is non-zero, which is never for ARMv7, optionally in ARMv8 8697 * and mandatorily for ARMv8.2 and up. 8698 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8699 * implementation is RAZ/WI we can ignore this detail, as we 8700 * do for ACTLR. 8701 */ 8702 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8703 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8704 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8705 .access = PL1_RW, .accessfn = access_tacr, 8706 .type = ARM_CP_CONST, .resetvalue = 0 }, 8707 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8708 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8709 .access = PL2_RW, .type = ARM_CP_CONST, 8710 .resetvalue = 0 }, 8711 }; 8712 8713 void register_cp_regs_for_features(ARMCPU *cpu) 8714 { 8715 /* Register all the coprocessor registers based on feature bits */ 8716 CPUARMState *env = &cpu->env; 8717 if (arm_feature(env, ARM_FEATURE_M)) { 8718 /* M profile has no coprocessor registers */ 8719 return; 8720 } 8721 8722 define_arm_cp_regs(cpu, cp_reginfo); 8723 if (!arm_feature(env, ARM_FEATURE_V8)) { 8724 /* 8725 * Must go early as it is full of wildcards that may be 8726 * overridden by later definitions. 8727 */ 8728 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8729 } 8730 8731 if (arm_feature(env, ARM_FEATURE_V6)) { 8732 /* The ID registers all have impdef reset values */ 8733 ARMCPRegInfo v6_idregs[] = { 8734 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8736 .access = PL1_R, .type = ARM_CP_CONST, 8737 .accessfn = access_aa32_tid3, 8738 .resetvalue = cpu->isar.id_pfr0 }, 8739 /* 8740 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8741 * the value of the GIC field until after we define these regs. 8742 */ 8743 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8745 .access = PL1_R, .type = ARM_CP_NO_RAW, 8746 .accessfn = access_aa32_tid3, 8747 #ifdef CONFIG_USER_ONLY 8748 .type = ARM_CP_CONST, 8749 .resetvalue = cpu->isar.id_pfr1, 8750 #else 8751 .type = ARM_CP_NO_RAW, 8752 .accessfn = access_aa32_tid3, 8753 .readfn = id_pfr1_read, 8754 .writefn = arm_cp_write_ignore 8755 #endif 8756 }, 8757 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8758 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8759 .access = PL1_R, .type = ARM_CP_CONST, 8760 .accessfn = access_aa32_tid3, 8761 .resetvalue = cpu->isar.id_dfr0 }, 8762 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8763 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8764 .access = PL1_R, .type = ARM_CP_CONST, 8765 .accessfn = access_aa32_tid3, 8766 .resetvalue = cpu->id_afr0 }, 8767 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8769 .access = PL1_R, .type = ARM_CP_CONST, 8770 .accessfn = access_aa32_tid3, 8771 .resetvalue = cpu->isar.id_mmfr0 }, 8772 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8773 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8774 .access = PL1_R, .type = ARM_CP_CONST, 8775 .accessfn = access_aa32_tid3, 8776 .resetvalue = cpu->isar.id_mmfr1 }, 8777 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8778 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8779 .access = PL1_R, .type = ARM_CP_CONST, 8780 .accessfn = access_aa32_tid3, 8781 .resetvalue = cpu->isar.id_mmfr2 }, 8782 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8784 .access = PL1_R, .type = ARM_CP_CONST, 8785 .accessfn = access_aa32_tid3, 8786 .resetvalue = cpu->isar.id_mmfr3 }, 8787 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8789 .access = PL1_R, .type = ARM_CP_CONST, 8790 .accessfn = access_aa32_tid3, 8791 .resetvalue = cpu->isar.id_isar0 }, 8792 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8793 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8794 .access = PL1_R, .type = ARM_CP_CONST, 8795 .accessfn = access_aa32_tid3, 8796 .resetvalue = cpu->isar.id_isar1 }, 8797 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8798 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8799 .access = PL1_R, .type = ARM_CP_CONST, 8800 .accessfn = access_aa32_tid3, 8801 .resetvalue = cpu->isar.id_isar2 }, 8802 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8804 .access = PL1_R, .type = ARM_CP_CONST, 8805 .accessfn = access_aa32_tid3, 8806 .resetvalue = cpu->isar.id_isar3 }, 8807 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8809 .access = PL1_R, .type = ARM_CP_CONST, 8810 .accessfn = access_aa32_tid3, 8811 .resetvalue = cpu->isar.id_isar4 }, 8812 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8813 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8814 .access = PL1_R, .type = ARM_CP_CONST, 8815 .accessfn = access_aa32_tid3, 8816 .resetvalue = cpu->isar.id_isar5 }, 8817 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8818 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8819 .access = PL1_R, .type = ARM_CP_CONST, 8820 .accessfn = access_aa32_tid3, 8821 .resetvalue = cpu->isar.id_mmfr4 }, 8822 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8823 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8824 .access = PL1_R, .type = ARM_CP_CONST, 8825 .accessfn = access_aa32_tid3, 8826 .resetvalue = cpu->isar.id_isar6 }, 8827 }; 8828 define_arm_cp_regs(cpu, v6_idregs); 8829 define_arm_cp_regs(cpu, v6_cp_reginfo); 8830 } else { 8831 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8832 } 8833 if (arm_feature(env, ARM_FEATURE_V6K)) { 8834 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8835 } 8836 if (arm_feature(env, ARM_FEATURE_V7MP) && 8837 !arm_feature(env, ARM_FEATURE_PMSA)) { 8838 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8839 } 8840 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8841 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8842 } 8843 if (arm_feature(env, ARM_FEATURE_V7)) { 8844 ARMCPRegInfo clidr = { 8845 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8846 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8847 .access = PL1_R, .type = ARM_CP_CONST, 8848 .accessfn = access_tid4, 8849 .fgt = FGT_CLIDR_EL1, 8850 .resetvalue = cpu->clidr 8851 }; 8852 define_one_arm_cp_reg(cpu, &clidr); 8853 define_arm_cp_regs(cpu, v7_cp_reginfo); 8854 define_debug_regs(cpu); 8855 define_pmu_regs(cpu); 8856 } else { 8857 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8858 } 8859 if (arm_feature(env, ARM_FEATURE_V8)) { 8860 /* 8861 * v8 ID registers, which all have impdef reset values. 8862 * Note that within the ID register ranges the unused slots 8863 * must all RAZ, not UNDEF; future architecture versions may 8864 * define new registers here. 8865 * ID registers which are AArch64 views of the AArch32 ID registers 8866 * which already existed in v6 and v7 are handled elsewhere, 8867 * in v6_idregs[]. 8868 */ 8869 int i; 8870 ARMCPRegInfo v8_idregs[] = { 8871 /* 8872 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8873 * emulation because we don't know the right value for the 8874 * GIC field until after we define these regs. 8875 */ 8876 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8878 .access = PL1_R, 8879 #ifdef CONFIG_USER_ONLY 8880 .type = ARM_CP_CONST, 8881 .resetvalue = cpu->isar.id_aa64pfr0 8882 #else 8883 .type = ARM_CP_NO_RAW, 8884 .accessfn = access_aa64_tid3, 8885 .readfn = id_aa64pfr0_read, 8886 .writefn = arm_cp_write_ignore 8887 #endif 8888 }, 8889 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8891 .access = PL1_R, .type = ARM_CP_CONST, 8892 .accessfn = access_aa64_tid3, 8893 .resetvalue = cpu->isar.id_aa64pfr1}, 8894 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8895 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8896 .access = PL1_R, .type = ARM_CP_CONST, 8897 .accessfn = access_aa64_tid3, 8898 .resetvalue = 0 }, 8899 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8901 .access = PL1_R, .type = ARM_CP_CONST, 8902 .accessfn = access_aa64_tid3, 8903 .resetvalue = 0 }, 8904 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8906 .access = PL1_R, .type = ARM_CP_CONST, 8907 .accessfn = access_aa64_tid3, 8908 .resetvalue = cpu->isar.id_aa64zfr0 }, 8909 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8911 .access = PL1_R, .type = ARM_CP_CONST, 8912 .accessfn = access_aa64_tid3, 8913 .resetvalue = cpu->isar.id_aa64smfr0 }, 8914 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8916 .access = PL1_R, .type = ARM_CP_CONST, 8917 .accessfn = access_aa64_tid3, 8918 .resetvalue = 0 }, 8919 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8920 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8921 .access = PL1_R, .type = ARM_CP_CONST, 8922 .accessfn = access_aa64_tid3, 8923 .resetvalue = 0 }, 8924 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8925 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8926 .access = PL1_R, .type = ARM_CP_CONST, 8927 .accessfn = access_aa64_tid3, 8928 .resetvalue = cpu->isar.id_aa64dfr0 }, 8929 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8930 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8931 .access = PL1_R, .type = ARM_CP_CONST, 8932 .accessfn = access_aa64_tid3, 8933 .resetvalue = cpu->isar.id_aa64dfr1 }, 8934 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8936 .access = PL1_R, .type = ARM_CP_CONST, 8937 .accessfn = access_aa64_tid3, 8938 .resetvalue = 0 }, 8939 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8940 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8941 .access = PL1_R, .type = ARM_CP_CONST, 8942 .accessfn = access_aa64_tid3, 8943 .resetvalue = 0 }, 8944 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8945 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8946 .access = PL1_R, .type = ARM_CP_CONST, 8947 .accessfn = access_aa64_tid3, 8948 .resetvalue = cpu->id_aa64afr0 }, 8949 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8950 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8951 .access = PL1_R, .type = ARM_CP_CONST, 8952 .accessfn = access_aa64_tid3, 8953 .resetvalue = cpu->id_aa64afr1 }, 8954 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8956 .access = PL1_R, .type = ARM_CP_CONST, 8957 .accessfn = access_aa64_tid3, 8958 .resetvalue = 0 }, 8959 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8960 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8961 .access = PL1_R, .type = ARM_CP_CONST, 8962 .accessfn = access_aa64_tid3, 8963 .resetvalue = 0 }, 8964 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8965 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8966 .access = PL1_R, .type = ARM_CP_CONST, 8967 .accessfn = access_aa64_tid3, 8968 .resetvalue = cpu->isar.id_aa64isar0 }, 8969 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8970 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8971 .access = PL1_R, .type = ARM_CP_CONST, 8972 .accessfn = access_aa64_tid3, 8973 .resetvalue = cpu->isar.id_aa64isar1 }, 8974 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8976 .access = PL1_R, .type = ARM_CP_CONST, 8977 .accessfn = access_aa64_tid3, 8978 .resetvalue = cpu->isar.id_aa64isar2 }, 8979 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8980 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8981 .access = PL1_R, .type = ARM_CP_CONST, 8982 .accessfn = access_aa64_tid3, 8983 .resetvalue = 0 }, 8984 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8985 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8986 .access = PL1_R, .type = ARM_CP_CONST, 8987 .accessfn = access_aa64_tid3, 8988 .resetvalue = 0 }, 8989 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8990 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8991 .access = PL1_R, .type = ARM_CP_CONST, 8992 .accessfn = access_aa64_tid3, 8993 .resetvalue = 0 }, 8994 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8996 .access = PL1_R, .type = ARM_CP_CONST, 8997 .accessfn = access_aa64_tid3, 8998 .resetvalue = 0 }, 8999 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9000 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 9001 .access = PL1_R, .type = ARM_CP_CONST, 9002 .accessfn = access_aa64_tid3, 9003 .resetvalue = 0 }, 9004 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 9005 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 9006 .access = PL1_R, .type = ARM_CP_CONST, 9007 .accessfn = access_aa64_tid3, 9008 .resetvalue = cpu->isar.id_aa64mmfr0 }, 9009 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 9010 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 9011 .access = PL1_R, .type = ARM_CP_CONST, 9012 .accessfn = access_aa64_tid3, 9013 .resetvalue = cpu->isar.id_aa64mmfr1 }, 9014 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 9015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 9016 .access = PL1_R, .type = ARM_CP_CONST, 9017 .accessfn = access_aa64_tid3, 9018 .resetvalue = cpu->isar.id_aa64mmfr2 }, 9019 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 9020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 9021 .access = PL1_R, .type = ARM_CP_CONST, 9022 .accessfn = access_aa64_tid3, 9023 .resetvalue = cpu->isar.id_aa64mmfr3 }, 9024 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 9026 .access = PL1_R, .type = ARM_CP_CONST, 9027 .accessfn = access_aa64_tid3, 9028 .resetvalue = 0 }, 9029 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 9031 .access = PL1_R, .type = ARM_CP_CONST, 9032 .accessfn = access_aa64_tid3, 9033 .resetvalue = 0 }, 9034 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 9036 .access = PL1_R, .type = ARM_CP_CONST, 9037 .accessfn = access_aa64_tid3, 9038 .resetvalue = 0 }, 9039 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 9041 .access = PL1_R, .type = ARM_CP_CONST, 9042 .accessfn = access_aa64_tid3, 9043 .resetvalue = 0 }, 9044 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 9045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9046 .access = PL1_R, .type = ARM_CP_CONST, 9047 .accessfn = access_aa64_tid3, 9048 .resetvalue = cpu->isar.mvfr0 }, 9049 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 9050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9051 .access = PL1_R, .type = ARM_CP_CONST, 9052 .accessfn = access_aa64_tid3, 9053 .resetvalue = cpu->isar.mvfr1 }, 9054 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 9055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9056 .access = PL1_R, .type = ARM_CP_CONST, 9057 .accessfn = access_aa64_tid3, 9058 .resetvalue = cpu->isar.mvfr2 }, 9059 /* 9060 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 9061 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 9062 * as RAZ, since it is in the "reserved for future ID 9063 * registers, RAZ" part of the AArch32 encoding space. 9064 */ 9065 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 9066 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9067 .access = PL1_R, .type = ARM_CP_CONST, 9068 .accessfn = access_aa64_tid3, 9069 .resetvalue = 0 }, 9070 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 9071 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9072 .access = PL1_R, .type = ARM_CP_CONST, 9073 .accessfn = access_aa64_tid3, 9074 .resetvalue = 0 }, 9075 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 9076 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9077 .access = PL1_R, .type = ARM_CP_CONST, 9078 .accessfn = access_aa64_tid3, 9079 .resetvalue = 0 }, 9080 /* 9081 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 9082 * they're also RAZ for AArch64, and in v8 are gradually 9083 * being filled with AArch64-view-of-AArch32-ID-register 9084 * for new ID registers. 9085 */ 9086 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 9087 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 9088 .access = PL1_R, .type = ARM_CP_CONST, 9089 .accessfn = access_aa64_tid3, 9090 .resetvalue = 0 }, 9091 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 9092 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 9093 .access = PL1_R, .type = ARM_CP_CONST, 9094 .accessfn = access_aa64_tid3, 9095 .resetvalue = cpu->isar.id_pfr2 }, 9096 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 9097 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 9098 .access = PL1_R, .type = ARM_CP_CONST, 9099 .accessfn = access_aa64_tid3, 9100 .resetvalue = cpu->isar.id_dfr1 }, 9101 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 9102 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 9103 .access = PL1_R, .type = ARM_CP_CONST, 9104 .accessfn = access_aa64_tid3, 9105 .resetvalue = cpu->isar.id_mmfr5 }, 9106 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 9107 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 9108 .access = PL1_R, .type = ARM_CP_CONST, 9109 .accessfn = access_aa64_tid3, 9110 .resetvalue = 0 }, 9111 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 9112 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 9113 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9114 .fgt = FGT_PMCEIDN_EL0, 9115 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 9116 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 9117 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 9118 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9119 .fgt = FGT_PMCEIDN_EL0, 9120 .resetvalue = cpu->pmceid0 }, 9121 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 9122 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 9123 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9124 .fgt = FGT_PMCEIDN_EL0, 9125 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 9126 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 9127 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 9128 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9129 .fgt = FGT_PMCEIDN_EL0, 9130 .resetvalue = cpu->pmceid1 }, 9131 }; 9132 #ifdef CONFIG_USER_ONLY 9133 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 9134 { .name = "ID_AA64PFR0_EL1", 9135 .exported_bits = R_ID_AA64PFR0_FP_MASK | 9136 R_ID_AA64PFR0_ADVSIMD_MASK | 9137 R_ID_AA64PFR0_SVE_MASK | 9138 R_ID_AA64PFR0_DIT_MASK, 9139 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 9140 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 9141 { .name = "ID_AA64PFR1_EL1", 9142 .exported_bits = R_ID_AA64PFR1_BT_MASK | 9143 R_ID_AA64PFR1_SSBS_MASK | 9144 R_ID_AA64PFR1_MTE_MASK | 9145 R_ID_AA64PFR1_SME_MASK }, 9146 { .name = "ID_AA64PFR*_EL1_RESERVED", 9147 .is_glob = true }, 9148 { .name = "ID_AA64ZFR0_EL1", 9149 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 9150 R_ID_AA64ZFR0_AES_MASK | 9151 R_ID_AA64ZFR0_BITPERM_MASK | 9152 R_ID_AA64ZFR0_BFLOAT16_MASK | 9153 R_ID_AA64ZFR0_B16B16_MASK | 9154 R_ID_AA64ZFR0_SHA3_MASK | 9155 R_ID_AA64ZFR0_SM4_MASK | 9156 R_ID_AA64ZFR0_I8MM_MASK | 9157 R_ID_AA64ZFR0_F32MM_MASK | 9158 R_ID_AA64ZFR0_F64MM_MASK }, 9159 { .name = "ID_AA64SMFR0_EL1", 9160 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 9161 R_ID_AA64SMFR0_BI32I32_MASK | 9162 R_ID_AA64SMFR0_B16F32_MASK | 9163 R_ID_AA64SMFR0_F16F32_MASK | 9164 R_ID_AA64SMFR0_I8I32_MASK | 9165 R_ID_AA64SMFR0_F16F16_MASK | 9166 R_ID_AA64SMFR0_B16B16_MASK | 9167 R_ID_AA64SMFR0_I16I32_MASK | 9168 R_ID_AA64SMFR0_F64F64_MASK | 9169 R_ID_AA64SMFR0_I16I64_MASK | 9170 R_ID_AA64SMFR0_SMEVER_MASK | 9171 R_ID_AA64SMFR0_FA64_MASK }, 9172 { .name = "ID_AA64MMFR0_EL1", 9173 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 9174 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 9175 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 9176 { .name = "ID_AA64MMFR1_EL1", 9177 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 9178 { .name = "ID_AA64MMFR2_EL1", 9179 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 9180 { .name = "ID_AA64MMFR3_EL1", 9181 .exported_bits = 0 }, 9182 { .name = "ID_AA64MMFR*_EL1_RESERVED", 9183 .is_glob = true }, 9184 { .name = "ID_AA64DFR0_EL1", 9185 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 9186 { .name = "ID_AA64DFR1_EL1" }, 9187 { .name = "ID_AA64DFR*_EL1_RESERVED", 9188 .is_glob = true }, 9189 { .name = "ID_AA64AFR*", 9190 .is_glob = true }, 9191 { .name = "ID_AA64ISAR0_EL1", 9192 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 9193 R_ID_AA64ISAR0_SHA1_MASK | 9194 R_ID_AA64ISAR0_SHA2_MASK | 9195 R_ID_AA64ISAR0_CRC32_MASK | 9196 R_ID_AA64ISAR0_ATOMIC_MASK | 9197 R_ID_AA64ISAR0_RDM_MASK | 9198 R_ID_AA64ISAR0_SHA3_MASK | 9199 R_ID_AA64ISAR0_SM3_MASK | 9200 R_ID_AA64ISAR0_SM4_MASK | 9201 R_ID_AA64ISAR0_DP_MASK | 9202 R_ID_AA64ISAR0_FHM_MASK | 9203 R_ID_AA64ISAR0_TS_MASK | 9204 R_ID_AA64ISAR0_RNDR_MASK }, 9205 { .name = "ID_AA64ISAR1_EL1", 9206 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 9207 R_ID_AA64ISAR1_APA_MASK | 9208 R_ID_AA64ISAR1_API_MASK | 9209 R_ID_AA64ISAR1_JSCVT_MASK | 9210 R_ID_AA64ISAR1_FCMA_MASK | 9211 R_ID_AA64ISAR1_LRCPC_MASK | 9212 R_ID_AA64ISAR1_GPA_MASK | 9213 R_ID_AA64ISAR1_GPI_MASK | 9214 R_ID_AA64ISAR1_FRINTTS_MASK | 9215 R_ID_AA64ISAR1_SB_MASK | 9216 R_ID_AA64ISAR1_BF16_MASK | 9217 R_ID_AA64ISAR1_DGH_MASK | 9218 R_ID_AA64ISAR1_I8MM_MASK }, 9219 { .name = "ID_AA64ISAR2_EL1", 9220 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 9221 R_ID_AA64ISAR2_RPRES_MASK | 9222 R_ID_AA64ISAR2_GPA3_MASK | 9223 R_ID_AA64ISAR2_APA3_MASK | 9224 R_ID_AA64ISAR2_MOPS_MASK | 9225 R_ID_AA64ISAR2_BC_MASK | 9226 R_ID_AA64ISAR2_RPRFM_MASK | 9227 R_ID_AA64ISAR2_CSSC_MASK }, 9228 { .name = "ID_AA64ISAR*_EL1_RESERVED", 9229 .is_glob = true }, 9230 }; 9231 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 9232 #endif 9233 /* 9234 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 9235 * TODO: For RMR, a write with bit 1 set should do something with 9236 * cpu_reset(). In the meantime, "the bit is strictly a request", 9237 * so we are in spec just ignoring writes. 9238 */ 9239 if (!arm_feature(env, ARM_FEATURE_EL3) && 9240 !arm_feature(env, ARM_FEATURE_EL2)) { 9241 ARMCPRegInfo el1_reset_regs[] = { 9242 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 9243 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9244 .access = PL1_R, 9245 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9246 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9247 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9248 .access = PL1_RW, .type = ARM_CP_CONST, 9249 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9250 }; 9251 define_arm_cp_regs(cpu, el1_reset_regs); 9252 } 9253 define_arm_cp_regs(cpu, v8_idregs); 9254 define_arm_cp_regs(cpu, v8_cp_reginfo); 9255 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9256 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9257 } 9258 9259 for (i = 4; i < 16; i++) { 9260 /* 9261 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9262 * For pre-v8 cores there are RAZ patterns for these in 9263 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9264 * v8 extends the "must RAZ" part of the ID register space 9265 * to also cover c0, 0, c{8-15}, {0-7}. 9266 * These are STATE_AA32 because in the AArch64 sysreg space 9267 * c4-c7 is where the AArch64 ID registers live (and we've 9268 * already defined those in v8_idregs[]), and c8-c15 are not 9269 * "must RAZ" for AArch64. 9270 */ 9271 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9272 ARMCPRegInfo v8_aa32_raz_idregs = { 9273 .name = name, 9274 .state = ARM_CP_STATE_AA32, 9275 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9276 .access = PL1_R, .type = ARM_CP_CONST, 9277 .accessfn = access_aa64_tid3, 9278 .resetvalue = 0 }; 9279 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9280 } 9281 } 9282 9283 /* 9284 * Register the base EL2 cpregs. 9285 * Pre v8, these registers are implemented only as part of the 9286 * Virtualization Extensions (EL2 present). Beginning with v8, 9287 * if EL2 is missing but EL3 is enabled, mostly these become 9288 * RES0 from EL3, with some specific exceptions. 9289 */ 9290 if (arm_feature(env, ARM_FEATURE_EL2) 9291 || (arm_feature(env, ARM_FEATURE_EL3) 9292 && arm_feature(env, ARM_FEATURE_V8))) { 9293 uint64_t vmpidr_def = mpidr_read_val(env); 9294 ARMCPRegInfo vpidr_regs[] = { 9295 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9296 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9297 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9298 .resetvalue = cpu->midr, 9299 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9300 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9301 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9302 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9303 .access = PL2_RW, .resetvalue = cpu->midr, 9304 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9305 .nv2_redirect_offset = 0x88, 9306 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9307 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9308 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9309 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9310 .resetvalue = vmpidr_def, 9311 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9312 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9313 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9314 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9315 .access = PL2_RW, .resetvalue = vmpidr_def, 9316 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9317 .nv2_redirect_offset = 0x50, 9318 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9319 }; 9320 /* 9321 * The only field of MDCR_EL2 that has a defined architectural reset 9322 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9323 */ 9324 ARMCPRegInfo mdcr_el2 = { 9325 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9326 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9327 .writefn = mdcr_el2_write, 9328 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9329 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9330 }; 9331 define_one_arm_cp_reg(cpu, &mdcr_el2); 9332 define_arm_cp_regs(cpu, vpidr_regs); 9333 define_arm_cp_regs(cpu, el2_cp_reginfo); 9334 if (arm_feature(env, ARM_FEATURE_V8)) { 9335 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9336 } 9337 if (cpu_isar_feature(aa64_sel2, cpu)) { 9338 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9339 } 9340 /* 9341 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9342 * See commentary near RMR_EL1. 9343 */ 9344 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9345 static const ARMCPRegInfo el2_reset_regs[] = { 9346 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9347 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9348 .access = PL2_R, 9349 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9350 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9351 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9352 .access = PL2_R, 9353 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9354 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9355 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9356 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9357 }; 9358 define_arm_cp_regs(cpu, el2_reset_regs); 9359 } 9360 } 9361 9362 /* Register the base EL3 cpregs. */ 9363 if (arm_feature(env, ARM_FEATURE_EL3)) { 9364 define_arm_cp_regs(cpu, el3_cp_reginfo); 9365 ARMCPRegInfo el3_regs[] = { 9366 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9367 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9368 .access = PL3_R, 9369 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9370 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9371 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9372 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9373 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9374 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9375 .access = PL3_RW, .type = ARM_CP_CONST, 9376 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9377 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9378 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9379 .access = PL3_RW, 9380 .raw_writefn = raw_write, .writefn = sctlr_write, 9381 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9382 .resetvalue = cpu->reset_sctlr }, 9383 }; 9384 9385 define_arm_cp_regs(cpu, el3_regs); 9386 } 9387 /* 9388 * The behaviour of NSACR is sufficiently various that we don't 9389 * try to describe it in a single reginfo: 9390 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9391 * reads as constant 0xc00 from NS EL1 and NS EL2 9392 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9393 * if v7 without EL3, register doesn't exist 9394 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9395 */ 9396 if (arm_feature(env, ARM_FEATURE_EL3)) { 9397 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9398 static const ARMCPRegInfo nsacr = { 9399 .name = "NSACR", .type = ARM_CP_CONST, 9400 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9401 .access = PL1_RW, .accessfn = nsacr_access, 9402 .resetvalue = 0xc00 9403 }; 9404 define_one_arm_cp_reg(cpu, &nsacr); 9405 } else { 9406 static const ARMCPRegInfo nsacr = { 9407 .name = "NSACR", 9408 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9409 .access = PL3_RW | PL1_R, 9410 .resetvalue = 0, 9411 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9412 }; 9413 define_one_arm_cp_reg(cpu, &nsacr); 9414 } 9415 } else { 9416 if (arm_feature(env, ARM_FEATURE_V8)) { 9417 static const ARMCPRegInfo nsacr = { 9418 .name = "NSACR", .type = ARM_CP_CONST, 9419 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9420 .access = PL1_R, 9421 .resetvalue = 0xc00 9422 }; 9423 define_one_arm_cp_reg(cpu, &nsacr); 9424 } 9425 } 9426 9427 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9428 if (arm_feature(env, ARM_FEATURE_V6)) { 9429 /* PMSAv6 not implemented */ 9430 assert(arm_feature(env, ARM_FEATURE_V7)); 9431 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9432 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9433 } else { 9434 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9435 } 9436 } else { 9437 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9438 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9439 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9440 if (cpu_isar_feature(aa32_hpd, cpu)) { 9441 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9442 } 9443 } 9444 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9445 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9446 } 9447 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9448 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9449 } 9450 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 9451 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 9452 } 9453 #ifndef CONFIG_USER_ONLY 9454 if (cpu_isar_feature(aa64_ecv, cpu)) { 9455 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 9456 } 9457 #endif 9458 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9459 ARMCPRegInfo vapa_cp_reginfo[] = { 9460 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9461 .access = PL1_RW, .resetvalue = 0, 9462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9463 offsetoflow32(CPUARMState, cp15.par_ns) }, 9464 .writefn = par_write}, 9465 #ifndef CONFIG_USER_ONLY 9466 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9467 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9468 .access = PL1_W, .accessfn = ats_access, 9469 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9470 #endif 9471 }; 9472 9473 /* 9474 * When LPAE exists this 32-bit PAR register is an alias of the 9475 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9476 */ 9477 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9478 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9479 } 9480 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9481 } 9482 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9483 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9484 } 9485 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9486 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9487 } 9488 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9489 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9490 } 9491 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9492 define_arm_cp_regs(cpu, omap_cp_reginfo); 9493 } 9494 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9495 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9496 } 9497 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9498 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9499 } 9500 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9501 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9502 } 9503 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9504 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9505 } 9506 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9507 define_arm_cp_regs(cpu, jazelle_regs); 9508 } 9509 /* 9510 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9511 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9512 * be read-only (ie write causes UNDEF exception). 9513 */ 9514 { 9515 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9516 /* 9517 * Pre-v8 MIDR space. 9518 * Note that the MIDR isn't a simple constant register because 9519 * of the TI925 behaviour where writes to another register can 9520 * cause the MIDR value to change. 9521 * 9522 * Unimplemented registers in the c15 0 0 0 space default to 9523 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9524 * and friends override accordingly. 9525 */ 9526 { .name = "MIDR", 9527 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9528 .access = PL1_R, .resetvalue = cpu->midr, 9529 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9530 .readfn = midr_read, 9531 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9532 .type = ARM_CP_OVERRIDE }, 9533 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9534 { .name = "DUMMY", 9535 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9536 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9537 { .name = "DUMMY", 9538 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9539 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9540 { .name = "DUMMY", 9541 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9542 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9543 { .name = "DUMMY", 9544 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9545 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9546 { .name = "DUMMY", 9547 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9548 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9549 }; 9550 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9551 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9552 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9553 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9554 .fgt = FGT_MIDR_EL1, 9555 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9556 .readfn = midr_read }, 9557 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9558 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9559 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9560 .access = PL1_R, .resetvalue = cpu->midr }, 9561 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9563 .access = PL1_R, 9564 .accessfn = access_aa64_tid1, 9565 .fgt = FGT_REVIDR_EL1, 9566 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9567 }; 9568 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9569 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9570 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9571 .access = PL1_R, .resetvalue = cpu->midr 9572 }; 9573 ARMCPRegInfo id_cp_reginfo[] = { 9574 /* These are common to v8 and pre-v8 */ 9575 { .name = "CTR", 9576 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9577 .access = PL1_R, .accessfn = ctr_el0_access, 9578 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9579 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9580 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9581 .access = PL0_R, .accessfn = ctr_el0_access, 9582 .fgt = FGT_CTR_EL0, 9583 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9584 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9585 { .name = "TCMTR", 9586 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9587 .access = PL1_R, 9588 .accessfn = access_aa32_tid1, 9589 .type = ARM_CP_CONST, .resetvalue = 0 }, 9590 }; 9591 /* TLBTR is specific to VMSA */ 9592 ARMCPRegInfo id_tlbtr_reginfo = { 9593 .name = "TLBTR", 9594 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9595 .access = PL1_R, 9596 .accessfn = access_aa32_tid1, 9597 .type = ARM_CP_CONST, .resetvalue = 0, 9598 }; 9599 /* MPUIR is specific to PMSA V6+ */ 9600 ARMCPRegInfo id_mpuir_reginfo = { 9601 .name = "MPUIR", 9602 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9603 .access = PL1_R, .type = ARM_CP_CONST, 9604 .resetvalue = cpu->pmsav7_dregion << 8 9605 }; 9606 /* HMPUIR is specific to PMSA V8 */ 9607 ARMCPRegInfo id_hmpuir_reginfo = { 9608 .name = "HMPUIR", 9609 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9610 .access = PL2_R, .type = ARM_CP_CONST, 9611 .resetvalue = cpu->pmsav8r_hdregion 9612 }; 9613 static const ARMCPRegInfo crn0_wi_reginfo = { 9614 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9615 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9616 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9617 }; 9618 #ifdef CONFIG_USER_ONLY 9619 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9620 { .name = "MIDR_EL1", 9621 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9622 R_MIDR_EL1_PARTNUM_MASK | 9623 R_MIDR_EL1_ARCHITECTURE_MASK | 9624 R_MIDR_EL1_VARIANT_MASK | 9625 R_MIDR_EL1_IMPLEMENTER_MASK }, 9626 { .name = "REVIDR_EL1" }, 9627 }; 9628 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9629 #endif 9630 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9631 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9632 size_t i; 9633 /* 9634 * Register the blanket "writes ignored" value first to cover the 9635 * whole space. Then update the specific ID registers to allow write 9636 * access, so that they ignore writes rather than causing them to 9637 * UNDEF. 9638 */ 9639 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9640 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9641 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9642 } 9643 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9644 id_cp_reginfo[i].access = PL1_RW; 9645 } 9646 id_mpuir_reginfo.access = PL1_RW; 9647 id_tlbtr_reginfo.access = PL1_RW; 9648 } 9649 if (arm_feature(env, ARM_FEATURE_V8)) { 9650 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9651 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9652 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9653 } 9654 } else { 9655 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9656 } 9657 define_arm_cp_regs(cpu, id_cp_reginfo); 9658 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9659 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9660 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9661 arm_feature(env, ARM_FEATURE_V8)) { 9662 uint32_t i = 0; 9663 char *tmp_string; 9664 9665 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9666 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9667 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9668 9669 /* Register alias is only valid for first 32 indexes */ 9670 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9671 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9672 uint8_t opc1 = extract32(i, 4, 1); 9673 uint8_t opc2 = extract32(i, 0, 1) << 2; 9674 9675 tmp_string = g_strdup_printf("PRBAR%u", i); 9676 ARMCPRegInfo tmp_prbarn_reginfo = { 9677 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9678 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9679 .access = PL1_RW, .resetvalue = 0, 9680 .accessfn = access_tvm_trvm, 9681 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9682 }; 9683 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9684 g_free(tmp_string); 9685 9686 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9687 tmp_string = g_strdup_printf("PRLAR%u", i); 9688 ARMCPRegInfo tmp_prlarn_reginfo = { 9689 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9690 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9691 .access = PL1_RW, .resetvalue = 0, 9692 .accessfn = access_tvm_trvm, 9693 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9694 }; 9695 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9696 g_free(tmp_string); 9697 } 9698 9699 /* Register alias is only valid for first 32 indexes */ 9700 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9701 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9702 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9703 uint8_t opc2 = extract32(i, 0, 1) << 2; 9704 9705 tmp_string = g_strdup_printf("HPRBAR%u", i); 9706 ARMCPRegInfo tmp_hprbarn_reginfo = { 9707 .name = tmp_string, 9708 .type = ARM_CP_NO_RAW, 9709 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9710 .access = PL2_RW, .resetvalue = 0, 9711 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9712 }; 9713 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9714 g_free(tmp_string); 9715 9716 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9717 tmp_string = g_strdup_printf("HPRLAR%u", i); 9718 ARMCPRegInfo tmp_hprlarn_reginfo = { 9719 .name = tmp_string, 9720 .type = ARM_CP_NO_RAW, 9721 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9722 .access = PL2_RW, .resetvalue = 0, 9723 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9724 }; 9725 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9726 g_free(tmp_string); 9727 } 9728 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9729 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9730 } 9731 } 9732 9733 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9734 ARMCPRegInfo mpidr_cp_reginfo[] = { 9735 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9736 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9737 .fgt = FGT_MPIDR_EL1, 9738 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9739 }; 9740 #ifdef CONFIG_USER_ONLY 9741 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9742 { .name = "MPIDR_EL1", 9743 .fixed_bits = 0x0000000080000000 }, 9744 }; 9745 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9746 #endif 9747 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9748 } 9749 9750 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9751 ARMCPRegInfo auxcr_reginfo[] = { 9752 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9753 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9754 .access = PL1_RW, .accessfn = access_tacr, 9755 .nv2_redirect_offset = 0x118, 9756 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9757 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9758 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9759 .access = PL2_RW, .type = ARM_CP_CONST, 9760 .resetvalue = 0 }, 9761 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9762 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9763 .access = PL3_RW, .type = ARM_CP_CONST, 9764 .resetvalue = 0 }, 9765 }; 9766 define_arm_cp_regs(cpu, auxcr_reginfo); 9767 if (cpu_isar_feature(aa32_ac2, cpu)) { 9768 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9769 } 9770 } 9771 9772 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9773 /* 9774 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9775 * There are two flavours: 9776 * (1) older 32-bit only cores have a simple 32-bit CBAR 9777 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9778 * 32-bit register visible to AArch32 at a different encoding 9779 * to the "flavour 1" register and with the bits rearranged to 9780 * be able to squash a 64-bit address into the 32-bit view. 9781 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9782 * in future if we support AArch32-only configs of some of the 9783 * AArch64 cores we might need to add a specific feature flag 9784 * to indicate cores with "flavour 2" CBAR. 9785 */ 9786 if (arm_feature(env, ARM_FEATURE_V8)) { 9787 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9788 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9789 | extract64(cpu->reset_cbar, 32, 12); 9790 ARMCPRegInfo cbar_reginfo[] = { 9791 { .name = "CBAR", 9792 .type = ARM_CP_CONST, 9793 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9794 .access = PL1_R, .resetvalue = cbar32 }, 9795 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9796 .type = ARM_CP_CONST, 9797 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9798 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9799 }; 9800 /* We don't implement a r/w 64 bit CBAR currently */ 9801 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9802 define_arm_cp_regs(cpu, cbar_reginfo); 9803 } else { 9804 ARMCPRegInfo cbar = { 9805 .name = "CBAR", 9806 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9807 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9808 .fieldoffset = offsetof(CPUARMState, 9809 cp15.c15_config_base_address) 9810 }; 9811 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9812 cbar.access = PL1_R; 9813 cbar.fieldoffset = 0; 9814 cbar.type = ARM_CP_CONST; 9815 } 9816 define_one_arm_cp_reg(cpu, &cbar); 9817 } 9818 } 9819 9820 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9821 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9822 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9823 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9824 .access = PL1_RW, .writefn = vbar_write, 9825 .accessfn = access_nv1, 9826 .fgt = FGT_VBAR_EL1, 9827 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9828 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9829 offsetof(CPUARMState, cp15.vbar_ns) }, 9830 .resetvalue = 0 }, 9831 }; 9832 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9833 } 9834 9835 /* Generic registers whose values depend on the implementation */ 9836 { 9837 ARMCPRegInfo sctlr = { 9838 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9839 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9840 .access = PL1_RW, .accessfn = access_tvm_trvm, 9841 .fgt = FGT_SCTLR_EL1, 9842 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9843 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9844 offsetof(CPUARMState, cp15.sctlr_ns) }, 9845 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9846 .raw_writefn = raw_write, 9847 }; 9848 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9849 /* 9850 * Normally we would always end the TB on an SCTLR write, but Linux 9851 * arch/arm/mach-pxa/sleep.S expects two instructions following 9852 * an MMU enable to execute from cache. Imitate this behaviour. 9853 */ 9854 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9855 } 9856 define_one_arm_cp_reg(cpu, &sctlr); 9857 9858 if (arm_feature(env, ARM_FEATURE_PMSA) && 9859 arm_feature(env, ARM_FEATURE_V8)) { 9860 ARMCPRegInfo vsctlr = { 9861 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9862 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9863 .access = PL2_RW, .resetvalue = 0x0, 9864 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9865 }; 9866 define_one_arm_cp_reg(cpu, &vsctlr); 9867 } 9868 } 9869 9870 if (cpu_isar_feature(aa64_lor, cpu)) { 9871 define_arm_cp_regs(cpu, lor_reginfo); 9872 } 9873 if (cpu_isar_feature(aa64_pan, cpu)) { 9874 define_one_arm_cp_reg(cpu, &pan_reginfo); 9875 } 9876 #ifndef CONFIG_USER_ONLY 9877 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9878 define_arm_cp_regs(cpu, ats1e1_reginfo); 9879 } 9880 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9881 define_arm_cp_regs(cpu, ats1cp_reginfo); 9882 } 9883 #endif 9884 if (cpu_isar_feature(aa64_uao, cpu)) { 9885 define_one_arm_cp_reg(cpu, &uao_reginfo); 9886 } 9887 9888 if (cpu_isar_feature(aa64_dit, cpu)) { 9889 define_one_arm_cp_reg(cpu, &dit_reginfo); 9890 } 9891 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9892 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9893 } 9894 if (cpu_isar_feature(any_ras, cpu)) { 9895 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9896 } 9897 9898 if (cpu_isar_feature(aa64_vh, cpu) || 9899 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9900 define_one_arm_cp_reg(cpu, &contextidr_el2); 9901 } 9902 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9903 define_arm_cp_regs(cpu, vhe_reginfo); 9904 } 9905 9906 if (cpu_isar_feature(aa64_sve, cpu)) { 9907 define_arm_cp_regs(cpu, zcr_reginfo); 9908 } 9909 9910 if (cpu_isar_feature(aa64_hcx, cpu)) { 9911 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9912 } 9913 9914 #ifdef TARGET_AARCH64 9915 if (cpu_isar_feature(aa64_sme, cpu)) { 9916 define_arm_cp_regs(cpu, sme_reginfo); 9917 } 9918 if (cpu_isar_feature(aa64_pauth, cpu)) { 9919 define_arm_cp_regs(cpu, pauth_reginfo); 9920 } 9921 if (cpu_isar_feature(aa64_rndr, cpu)) { 9922 define_arm_cp_regs(cpu, rndr_reginfo); 9923 } 9924 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9925 define_arm_cp_regs(cpu, tlbirange_reginfo); 9926 } 9927 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9928 define_arm_cp_regs(cpu, tlbios_reginfo); 9929 } 9930 /* Data Cache clean instructions up to PoP */ 9931 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9932 define_one_arm_cp_reg(cpu, dcpop_reg); 9933 9934 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9935 define_one_arm_cp_reg(cpu, dcpodp_reg); 9936 } 9937 } 9938 9939 /* 9940 * If full MTE is enabled, add all of the system registers. 9941 * If only "instructions available at EL0" are enabled, 9942 * then define only a RAZ/WI version of PSTATE.TCO. 9943 */ 9944 if (cpu_isar_feature(aa64_mte, cpu)) { 9945 ARMCPRegInfo gmid_reginfo = { 9946 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9947 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9948 .access = PL1_R, .accessfn = access_aa64_tid5, 9949 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9950 }; 9951 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9952 define_arm_cp_regs(cpu, mte_reginfo); 9953 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9954 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9955 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9956 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9957 } 9958 9959 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9960 define_arm_cp_regs(cpu, scxtnum_reginfo); 9961 } 9962 9963 if (cpu_isar_feature(aa64_fgt, cpu)) { 9964 define_arm_cp_regs(cpu, fgt_reginfo); 9965 } 9966 9967 if (cpu_isar_feature(aa64_rme, cpu)) { 9968 define_arm_cp_regs(cpu, rme_reginfo); 9969 if (cpu_isar_feature(aa64_mte, cpu)) { 9970 define_arm_cp_regs(cpu, rme_mte_reginfo); 9971 } 9972 } 9973 9974 if (cpu_isar_feature(aa64_nv2, cpu)) { 9975 define_arm_cp_regs(cpu, nv2_reginfo); 9976 } 9977 9978 if (cpu_isar_feature(aa64_nmi, cpu)) { 9979 define_arm_cp_regs(cpu, nmi_reginfo); 9980 } 9981 #endif 9982 9983 if (cpu_isar_feature(any_predinv, cpu)) { 9984 define_arm_cp_regs(cpu, predinv_reginfo); 9985 } 9986 9987 if (cpu_isar_feature(any_ccidx, cpu)) { 9988 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9989 } 9990 9991 #ifndef CONFIG_USER_ONLY 9992 /* 9993 * Register redirections and aliases must be done last, 9994 * after the registers from the other extensions have been defined. 9995 */ 9996 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9997 define_arm_vh_e2h_redirects_aliases(cpu); 9998 } 9999 #endif 10000 } 10001 10002 /* 10003 * Private utility function for define_one_arm_cp_reg_with_opaque(): 10004 * add a single reginfo struct to the hash table. 10005 */ 10006 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 10007 void *opaque, CPState state, 10008 CPSecureState secstate, 10009 int crm, int opc1, int opc2, 10010 const char *name) 10011 { 10012 CPUARMState *env = &cpu->env; 10013 uint32_t key; 10014 ARMCPRegInfo *r2; 10015 bool is64 = r->type & ARM_CP_64BIT; 10016 bool ns = secstate & ARM_CP_SECSTATE_NS; 10017 int cp = r->cp; 10018 size_t name_len; 10019 bool make_const; 10020 10021 switch (state) { 10022 case ARM_CP_STATE_AA32: 10023 /* We assume it is a cp15 register if the .cp field is left unset. */ 10024 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 10025 cp = 15; 10026 } 10027 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 10028 break; 10029 case ARM_CP_STATE_AA64: 10030 /* 10031 * To allow abbreviation of ARMCPRegInfo definitions, we treat 10032 * cp == 0 as equivalent to the value for "standard guest-visible 10033 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 10034 * in their AArch64 view (the .cp value may be non-zero for the 10035 * benefit of the AArch32 view). 10036 */ 10037 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 10038 cp = CP_REG_ARM64_SYSREG_CP; 10039 } 10040 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 10041 break; 10042 default: 10043 g_assert_not_reached(); 10044 } 10045 10046 /* Overriding of an existing definition must be explicitly requested. */ 10047 if (!(r->type & ARM_CP_OVERRIDE)) { 10048 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 10049 if (oldreg) { 10050 assert(oldreg->type & ARM_CP_OVERRIDE); 10051 } 10052 } 10053 10054 /* 10055 * Eliminate registers that are not present because the EL is missing. 10056 * Doing this here makes it easier to put all registers for a given 10057 * feature into the same ARMCPRegInfo array and define them all at once. 10058 */ 10059 make_const = false; 10060 if (arm_feature(env, ARM_FEATURE_EL3)) { 10061 /* 10062 * An EL2 register without EL2 but with EL3 is (usually) RES0. 10063 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 10064 */ 10065 int min_el = ctz32(r->access) / 2; 10066 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 10067 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 10068 return; 10069 } 10070 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 10071 } 10072 } else { 10073 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 10074 ? PL2_RW : PL1_RW); 10075 if ((r->access & max_el) == 0) { 10076 return; 10077 } 10078 } 10079 10080 /* Combine cpreg and name into one allocation. */ 10081 name_len = strlen(name) + 1; 10082 r2 = g_malloc(sizeof(*r2) + name_len); 10083 *r2 = *r; 10084 r2->name = memcpy(r2 + 1, name, name_len); 10085 10086 /* 10087 * Update fields to match the instantiation, overwiting wildcards 10088 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 10089 */ 10090 r2->cp = cp; 10091 r2->crm = crm; 10092 r2->opc1 = opc1; 10093 r2->opc2 = opc2; 10094 r2->state = state; 10095 r2->secure = secstate; 10096 if (opaque) { 10097 r2->opaque = opaque; 10098 } 10099 10100 if (make_const) { 10101 /* This should not have been a very special register to begin. */ 10102 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 10103 assert(old_special == 0 || old_special == ARM_CP_NOP); 10104 /* 10105 * Set the special function to CONST, retaining the other flags. 10106 * This is important for e.g. ARM_CP_SVE so that we still 10107 * take the SVE trap if CPTR_EL3.EZ == 0. 10108 */ 10109 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 10110 /* 10111 * Usually, these registers become RES0, but there are a few 10112 * special cases like VPIDR_EL2 which have a constant non-zero 10113 * value with writes ignored. 10114 */ 10115 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 10116 r2->resetvalue = 0; 10117 } 10118 /* 10119 * ARM_CP_CONST has precedence, so removing the callbacks and 10120 * offsets are not strictly necessary, but it is potentially 10121 * less confusing to debug later. 10122 */ 10123 r2->readfn = NULL; 10124 r2->writefn = NULL; 10125 r2->raw_readfn = NULL; 10126 r2->raw_writefn = NULL; 10127 r2->resetfn = NULL; 10128 r2->fieldoffset = 0; 10129 r2->bank_fieldoffsets[0] = 0; 10130 r2->bank_fieldoffsets[1] = 0; 10131 } else { 10132 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 10133 10134 if (isbanked) { 10135 /* 10136 * Register is banked (using both entries in array). 10137 * Overwriting fieldoffset as the array is only used to define 10138 * banked registers but later only fieldoffset is used. 10139 */ 10140 r2->fieldoffset = r->bank_fieldoffsets[ns]; 10141 } 10142 if (state == ARM_CP_STATE_AA32) { 10143 if (isbanked) { 10144 /* 10145 * If the register is banked then we don't need to migrate or 10146 * reset the 32-bit instance in certain cases: 10147 * 10148 * 1) If the register has both 32-bit and 64-bit instances 10149 * then we can count on the 64-bit instance taking care 10150 * of the non-secure bank. 10151 * 2) If ARMv8 is enabled then we can count on a 64-bit 10152 * version taking care of the secure bank. This requires 10153 * that separate 32 and 64-bit definitions are provided. 10154 */ 10155 if ((r->state == ARM_CP_STATE_BOTH && ns) || 10156 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 10157 r2->type |= ARM_CP_ALIAS; 10158 } 10159 } else if ((secstate != r->secure) && !ns) { 10160 /* 10161 * The register is not banked so we only want to allow 10162 * migration of the non-secure instance. 10163 */ 10164 r2->type |= ARM_CP_ALIAS; 10165 } 10166 10167 if (HOST_BIG_ENDIAN && 10168 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 10169 r2->fieldoffset += sizeof(uint32_t); 10170 } 10171 } 10172 } 10173 10174 /* 10175 * By convention, for wildcarded registers only the first 10176 * entry is used for migration; the others are marked as 10177 * ALIAS so we don't try to transfer the register 10178 * multiple times. Special registers (ie NOP/WFI) are 10179 * never migratable and not even raw-accessible. 10180 */ 10181 if (r2->type & ARM_CP_SPECIAL_MASK) { 10182 r2->type |= ARM_CP_NO_RAW; 10183 } 10184 if (((r->crm == CP_ANY) && crm != 0) || 10185 ((r->opc1 == CP_ANY) && opc1 != 0) || 10186 ((r->opc2 == CP_ANY) && opc2 != 0)) { 10187 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 10188 } 10189 10190 /* 10191 * Check that raw accesses are either forbidden or handled. Note that 10192 * we can't assert this earlier because the setup of fieldoffset for 10193 * banked registers has to be done first. 10194 */ 10195 if (!(r2->type & ARM_CP_NO_RAW)) { 10196 assert(!raw_accessors_invalid(r2)); 10197 } 10198 10199 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 10200 } 10201 10202 10203 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 10204 const ARMCPRegInfo *r, void *opaque) 10205 { 10206 /* 10207 * Define implementations of coprocessor registers. 10208 * We store these in a hashtable because typically 10209 * there are less than 150 registers in a space which 10210 * is 16*16*16*8*8 = 262144 in size. 10211 * Wildcarding is supported for the crm, opc1 and opc2 fields. 10212 * If a register is defined twice then the second definition is 10213 * used, so this can be used to define some generic registers and 10214 * then override them with implementation specific variations. 10215 * At least one of the original and the second definition should 10216 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 10217 * against accidental use. 10218 * 10219 * The state field defines whether the register is to be 10220 * visible in the AArch32 or AArch64 execution state. If the 10221 * state is set to ARM_CP_STATE_BOTH then we synthesise a 10222 * reginfo structure for the AArch32 view, which sees the lower 10223 * 32 bits of the 64 bit register. 10224 * 10225 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 10226 * be wildcarded. AArch64 registers are always considered to be 64 10227 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 10228 * the register, if any. 10229 */ 10230 int crm, opc1, opc2; 10231 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 10232 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 10233 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 10234 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 10235 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 10236 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 10237 CPState state; 10238 10239 /* 64 bit registers have only CRm and Opc1 fields */ 10240 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 10241 /* op0 only exists in the AArch64 encodings */ 10242 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 10243 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 10244 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 10245 /* 10246 * This API is only for Arm's system coprocessors (14 and 15) or 10247 * (M-profile or v7A-and-earlier only) for implementation defined 10248 * coprocessors in the range 0..7. Our decode assumes this, since 10249 * 8..13 can be used for other insns including VFP and Neon. See 10250 * valid_cp() in translate.c. Assert here that we haven't tried 10251 * to use an invalid coprocessor number. 10252 */ 10253 switch (r->state) { 10254 case ARM_CP_STATE_BOTH: 10255 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 10256 if (r->cp == 0) { 10257 break; 10258 } 10259 /* fall through */ 10260 case ARM_CP_STATE_AA32: 10261 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10262 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10263 assert(r->cp >= 14 && r->cp <= 15); 10264 } else { 10265 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10266 } 10267 break; 10268 case ARM_CP_STATE_AA64: 10269 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10270 break; 10271 default: 10272 g_assert_not_reached(); 10273 } 10274 /* 10275 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10276 * encodes a minimum access level for the register. We roll this 10277 * runtime check into our general permission check code, so check 10278 * here that the reginfo's specified permissions are strict enough 10279 * to encompass the generic architectural permission check. 10280 */ 10281 if (r->state != ARM_CP_STATE_AA32) { 10282 CPAccessRights mask; 10283 switch (r->opc1) { 10284 case 0: 10285 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10286 mask = PL0U_R | PL1_RW; 10287 break; 10288 case 1: case 2: 10289 /* min_EL EL1 */ 10290 mask = PL1_RW; 10291 break; 10292 case 3: 10293 /* min_EL EL0 */ 10294 mask = PL0_RW; 10295 break; 10296 case 4: 10297 case 5: 10298 /* min_EL EL2 */ 10299 mask = PL2_RW; 10300 break; 10301 case 6: 10302 /* min_EL EL3 */ 10303 mask = PL3_RW; 10304 break; 10305 case 7: 10306 /* min_EL EL1, secure mode only (we don't check the latter) */ 10307 mask = PL1_RW; 10308 break; 10309 default: 10310 /* broken reginfo with out-of-range opc1 */ 10311 g_assert_not_reached(); 10312 } 10313 /* assert our permissions are not too lax (stricter is fine) */ 10314 assert((r->access & ~mask) == 0); 10315 } 10316 10317 /* 10318 * Check that the register definition has enough info to handle 10319 * reads and writes if they are permitted. 10320 */ 10321 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10322 if (r->access & PL3_R) { 10323 assert((r->fieldoffset || 10324 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10325 r->readfn); 10326 } 10327 if (r->access & PL3_W) { 10328 assert((r->fieldoffset || 10329 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10330 r->writefn); 10331 } 10332 } 10333 10334 for (crm = crmmin; crm <= crmmax; crm++) { 10335 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10336 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10337 for (state = ARM_CP_STATE_AA32; 10338 state <= ARM_CP_STATE_AA64; state++) { 10339 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10340 continue; 10341 } 10342 if (state == ARM_CP_STATE_AA32) { 10343 /* 10344 * Under AArch32 CP registers can be common 10345 * (same for secure and non-secure world) or banked. 10346 */ 10347 char *name; 10348 10349 switch (r->secure) { 10350 case ARM_CP_SECSTATE_S: 10351 case ARM_CP_SECSTATE_NS: 10352 add_cpreg_to_hashtable(cpu, r, opaque, state, 10353 r->secure, crm, opc1, opc2, 10354 r->name); 10355 break; 10356 case ARM_CP_SECSTATE_BOTH: 10357 name = g_strdup_printf("%s_S", r->name); 10358 add_cpreg_to_hashtable(cpu, r, opaque, state, 10359 ARM_CP_SECSTATE_S, 10360 crm, opc1, opc2, name); 10361 g_free(name); 10362 add_cpreg_to_hashtable(cpu, r, opaque, state, 10363 ARM_CP_SECSTATE_NS, 10364 crm, opc1, opc2, r->name); 10365 break; 10366 default: 10367 g_assert_not_reached(); 10368 } 10369 } else { 10370 /* 10371 * AArch64 registers get mapped to non-secure instance 10372 * of AArch32 10373 */ 10374 add_cpreg_to_hashtable(cpu, r, opaque, state, 10375 ARM_CP_SECSTATE_NS, 10376 crm, opc1, opc2, r->name); 10377 } 10378 } 10379 } 10380 } 10381 } 10382 } 10383 10384 /* Define a whole list of registers */ 10385 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10386 void *opaque, size_t len) 10387 { 10388 size_t i; 10389 for (i = 0; i < len; ++i) { 10390 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10391 } 10392 } 10393 10394 /* 10395 * Modify ARMCPRegInfo for access from userspace. 10396 * 10397 * This is a data driven modification directed by 10398 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10399 * user-space cannot alter any values and dynamic values pertaining to 10400 * execution state are hidden from user space view anyway. 10401 */ 10402 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10403 const ARMCPRegUserSpaceInfo *mods, 10404 size_t mods_len) 10405 { 10406 for (size_t mi = 0; mi < mods_len; ++mi) { 10407 const ARMCPRegUserSpaceInfo *m = mods + mi; 10408 GPatternSpec *pat = NULL; 10409 10410 if (m->is_glob) { 10411 pat = g_pattern_spec_new(m->name); 10412 } 10413 for (size_t ri = 0; ri < regs_len; ++ri) { 10414 ARMCPRegInfo *r = regs + ri; 10415 10416 if (pat && g_pattern_match_string(pat, r->name)) { 10417 r->type = ARM_CP_CONST; 10418 r->access = PL0U_R; 10419 r->resetvalue = 0; 10420 /* continue */ 10421 } else if (strcmp(r->name, m->name) == 0) { 10422 r->type = ARM_CP_CONST; 10423 r->access = PL0U_R; 10424 r->resetvalue &= m->exported_bits; 10425 r->resetvalue |= m->fixed_bits; 10426 break; 10427 } 10428 } 10429 if (pat) { 10430 g_pattern_spec_free(pat); 10431 } 10432 } 10433 } 10434 10435 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10436 { 10437 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10438 } 10439 10440 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10441 uint64_t value) 10442 { 10443 /* Helper coprocessor write function for write-ignore registers */ 10444 } 10445 10446 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10447 { 10448 /* Helper coprocessor write function for read-as-zero registers */ 10449 return 0; 10450 } 10451 10452 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10453 { 10454 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10455 } 10456 10457 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10458 { 10459 /* 10460 * Return true if it is not valid for us to switch to 10461 * this CPU mode (ie all the UNPREDICTABLE cases in 10462 * the ARM ARM CPSRWriteByInstr pseudocode). 10463 */ 10464 10465 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10466 if (write_type == CPSRWriteByInstr && 10467 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10468 mode == ARM_CPU_MODE_HYP)) { 10469 return 1; 10470 } 10471 10472 switch (mode) { 10473 case ARM_CPU_MODE_USR: 10474 return 0; 10475 case ARM_CPU_MODE_SYS: 10476 case ARM_CPU_MODE_SVC: 10477 case ARM_CPU_MODE_ABT: 10478 case ARM_CPU_MODE_UND: 10479 case ARM_CPU_MODE_IRQ: 10480 case ARM_CPU_MODE_FIQ: 10481 /* 10482 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10483 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10484 */ 10485 /* 10486 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10487 * and CPS are treated as illegal mode changes. 10488 */ 10489 if (write_type == CPSRWriteByInstr && 10490 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10491 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10492 return 1; 10493 } 10494 return 0; 10495 case ARM_CPU_MODE_HYP: 10496 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10497 case ARM_CPU_MODE_MON: 10498 return arm_current_el(env) < 3; 10499 default: 10500 return 1; 10501 } 10502 } 10503 10504 uint32_t cpsr_read(CPUARMState *env) 10505 { 10506 int ZF; 10507 ZF = (env->ZF == 0); 10508 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10509 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10510 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10511 | ((env->condexec_bits & 0xfc) << 8) 10512 | (env->GE << 16) | (env->daif & CPSR_AIF); 10513 } 10514 10515 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10516 CPSRWriteType write_type) 10517 { 10518 uint32_t changed_daif; 10519 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10520 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10521 10522 if (mask & CPSR_NZCV) { 10523 env->ZF = (~val) & CPSR_Z; 10524 env->NF = val; 10525 env->CF = (val >> 29) & 1; 10526 env->VF = (val << 3) & 0x80000000; 10527 } 10528 if (mask & CPSR_Q) { 10529 env->QF = ((val & CPSR_Q) != 0); 10530 } 10531 if (mask & CPSR_T) { 10532 env->thumb = ((val & CPSR_T) != 0); 10533 } 10534 if (mask & CPSR_IT_0_1) { 10535 env->condexec_bits &= ~3; 10536 env->condexec_bits |= (val >> 25) & 3; 10537 } 10538 if (mask & CPSR_IT_2_7) { 10539 env->condexec_bits &= 3; 10540 env->condexec_bits |= (val >> 8) & 0xfc; 10541 } 10542 if (mask & CPSR_GE) { 10543 env->GE = (val >> 16) & 0xf; 10544 } 10545 10546 /* 10547 * In a V7 implementation that includes the security extensions but does 10548 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10549 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10550 * bits respectively. 10551 * 10552 * In a V8 implementation, it is permitted for privileged software to 10553 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10554 */ 10555 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10556 arm_feature(env, ARM_FEATURE_EL3) && 10557 !arm_feature(env, ARM_FEATURE_EL2) && 10558 !arm_is_secure(env)) { 10559 10560 changed_daif = (env->daif ^ val) & mask; 10561 10562 if (changed_daif & CPSR_A) { 10563 /* 10564 * Check to see if we are allowed to change the masking of async 10565 * abort exceptions from a non-secure state. 10566 */ 10567 if (!(env->cp15.scr_el3 & SCR_AW)) { 10568 qemu_log_mask(LOG_GUEST_ERROR, 10569 "Ignoring attempt to switch CPSR_A flag from " 10570 "non-secure world with SCR.AW bit clear\n"); 10571 mask &= ~CPSR_A; 10572 } 10573 } 10574 10575 if (changed_daif & CPSR_F) { 10576 /* 10577 * Check to see if we are allowed to change the masking of FIQ 10578 * exceptions from a non-secure state. 10579 */ 10580 if (!(env->cp15.scr_el3 & SCR_FW)) { 10581 qemu_log_mask(LOG_GUEST_ERROR, 10582 "Ignoring attempt to switch CPSR_F flag from " 10583 "non-secure world with SCR.FW bit clear\n"); 10584 mask &= ~CPSR_F; 10585 } 10586 10587 /* 10588 * Check whether non-maskable FIQ (NMFI) support is enabled. 10589 * If this bit is set software is not allowed to mask 10590 * FIQs, but is allowed to set CPSR_F to 0. 10591 */ 10592 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10593 (val & CPSR_F)) { 10594 qemu_log_mask(LOG_GUEST_ERROR, 10595 "Ignoring attempt to enable CPSR_F flag " 10596 "(non-maskable FIQ [NMFI] support enabled)\n"); 10597 mask &= ~CPSR_F; 10598 } 10599 } 10600 } 10601 10602 env->daif &= ~(CPSR_AIF & mask); 10603 env->daif |= val & CPSR_AIF & mask; 10604 10605 if (write_type != CPSRWriteRaw && 10606 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10607 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10608 /* 10609 * Note that we can only get here in USR mode if this is a 10610 * gdb stub write; for this case we follow the architectural 10611 * behaviour for guest writes in USR mode of ignoring an attempt 10612 * to switch mode. (Those are caught by translate.c for writes 10613 * triggered by guest instructions.) 10614 */ 10615 mask &= ~CPSR_M; 10616 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10617 /* 10618 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10619 * v7, and has defined behaviour in v8: 10620 * + leave CPSR.M untouched 10621 * + allow changes to the other CPSR fields 10622 * + set PSTATE.IL 10623 * For user changes via the GDB stub, we don't set PSTATE.IL, 10624 * as this would be unnecessarily harsh for a user error. 10625 */ 10626 mask &= ~CPSR_M; 10627 if (write_type != CPSRWriteByGDBStub && 10628 arm_feature(env, ARM_FEATURE_V8)) { 10629 mask |= CPSR_IL; 10630 val |= CPSR_IL; 10631 } 10632 qemu_log_mask(LOG_GUEST_ERROR, 10633 "Illegal AArch32 mode switch attempt from %s to %s\n", 10634 aarch32_mode_name(env->uncached_cpsr), 10635 aarch32_mode_name(val)); 10636 } else { 10637 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10638 write_type == CPSRWriteExceptionReturn ? 10639 "Exception return from AArch32" : 10640 "AArch32 mode switch from", 10641 aarch32_mode_name(env->uncached_cpsr), 10642 aarch32_mode_name(val), env->regs[15]); 10643 switch_mode(env, val & CPSR_M); 10644 } 10645 } 10646 mask &= ~CACHED_CPSR_BITS; 10647 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10648 if (tcg_enabled() && rebuild_hflags) { 10649 arm_rebuild_hflags(env); 10650 } 10651 } 10652 10653 #ifdef CONFIG_USER_ONLY 10654 10655 static void switch_mode(CPUARMState *env, int mode) 10656 { 10657 ARMCPU *cpu = env_archcpu(env); 10658 10659 if (mode != ARM_CPU_MODE_USR) { 10660 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10661 } 10662 } 10663 10664 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10665 uint32_t cur_el, bool secure) 10666 { 10667 return 1; 10668 } 10669 10670 void aarch64_sync_64_to_32(CPUARMState *env) 10671 { 10672 g_assert_not_reached(); 10673 } 10674 10675 #else 10676 10677 static void switch_mode(CPUARMState *env, int mode) 10678 { 10679 int old_mode; 10680 int i; 10681 10682 old_mode = env->uncached_cpsr & CPSR_M; 10683 if (mode == old_mode) { 10684 return; 10685 } 10686 10687 if (old_mode == ARM_CPU_MODE_FIQ) { 10688 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10689 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10690 } else if (mode == ARM_CPU_MODE_FIQ) { 10691 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10692 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10693 } 10694 10695 i = bank_number(old_mode); 10696 env->banked_r13[i] = env->regs[13]; 10697 env->banked_spsr[i] = env->spsr; 10698 10699 i = bank_number(mode); 10700 env->regs[13] = env->banked_r13[i]; 10701 env->spsr = env->banked_spsr[i]; 10702 10703 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10704 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10705 } 10706 10707 /* 10708 * Physical Interrupt Target EL Lookup Table 10709 * 10710 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10711 * 10712 * The below multi-dimensional table is used for looking up the target 10713 * exception level given numerous condition criteria. Specifically, the 10714 * target EL is based on SCR and HCR routing controls as well as the 10715 * currently executing EL and secure state. 10716 * 10717 * Dimensions: 10718 * target_el_table[2][2][2][2][2][4] 10719 * | | | | | +--- Current EL 10720 * | | | | +------ Non-secure(0)/Secure(1) 10721 * | | | +--------- HCR mask override 10722 * | | +------------ SCR exec state control 10723 * | +--------------- SCR mask override 10724 * +------------------ 32-bit(0)/64-bit(1) EL3 10725 * 10726 * The table values are as such: 10727 * 0-3 = EL0-EL3 10728 * -1 = Cannot occur 10729 * 10730 * The ARM ARM target EL table includes entries indicating that an "exception 10731 * is not taken". The two cases where this is applicable are: 10732 * 1) An exception is taken from EL3 but the SCR does not have the exception 10733 * routed to EL3. 10734 * 2) An exception is taken from EL2 but the HCR does not have the exception 10735 * routed to EL2. 10736 * In these two cases, the below table contain a target of EL1. This value is 10737 * returned as it is expected that the consumer of the table data will check 10738 * for "target EL >= current EL" to ensure the exception is not taken. 10739 * 10740 * SCR HCR 10741 * 64 EA AMO From 10742 * BIT IRQ IMO Non-secure Secure 10743 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10744 */ 10745 static const int8_t target_el_table[2][2][2][2][2][4] = { 10746 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10747 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10748 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10749 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10750 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10751 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10752 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10753 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10754 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10755 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10756 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10757 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10758 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10759 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10760 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10761 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10762 }; 10763 10764 /* 10765 * Determine the target EL for physical exceptions 10766 */ 10767 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10768 uint32_t cur_el, bool secure) 10769 { 10770 CPUARMState *env = cpu_env(cs); 10771 bool rw; 10772 bool scr; 10773 bool hcr; 10774 int target_el; 10775 /* Is the highest EL AArch64? */ 10776 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10777 uint64_t hcr_el2; 10778 10779 if (arm_feature(env, ARM_FEATURE_EL3)) { 10780 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10781 } else { 10782 /* 10783 * Either EL2 is the highest EL (and so the EL2 register width 10784 * is given by is64); or there is no EL2 or EL3, in which case 10785 * the value of 'rw' does not affect the table lookup anyway. 10786 */ 10787 rw = is64; 10788 } 10789 10790 hcr_el2 = arm_hcr_el2_eff(env); 10791 switch (excp_idx) { 10792 case EXCP_IRQ: 10793 case EXCP_NMI: 10794 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10795 hcr = hcr_el2 & HCR_IMO; 10796 break; 10797 case EXCP_FIQ: 10798 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10799 hcr = hcr_el2 & HCR_FMO; 10800 break; 10801 default: 10802 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10803 hcr = hcr_el2 & HCR_AMO; 10804 break; 10805 }; 10806 10807 /* 10808 * For these purposes, TGE and AMO/IMO/FMO both force the 10809 * interrupt to EL2. Fold TGE into the bit extracted above. 10810 */ 10811 hcr |= (hcr_el2 & HCR_TGE) != 0; 10812 10813 /* Perform a table-lookup for the target EL given the current state */ 10814 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10815 10816 assert(target_el > 0); 10817 10818 return target_el; 10819 } 10820 10821 void arm_log_exception(CPUState *cs) 10822 { 10823 int idx = cs->exception_index; 10824 10825 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10826 const char *exc = NULL; 10827 static const char * const excnames[] = { 10828 [EXCP_UDEF] = "Undefined Instruction", 10829 [EXCP_SWI] = "SVC", 10830 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10831 [EXCP_DATA_ABORT] = "Data Abort", 10832 [EXCP_IRQ] = "IRQ", 10833 [EXCP_FIQ] = "FIQ", 10834 [EXCP_BKPT] = "Breakpoint", 10835 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10836 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10837 [EXCP_HVC] = "Hypervisor Call", 10838 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10839 [EXCP_SMC] = "Secure Monitor Call", 10840 [EXCP_VIRQ] = "Virtual IRQ", 10841 [EXCP_VFIQ] = "Virtual FIQ", 10842 [EXCP_SEMIHOST] = "Semihosting call", 10843 [EXCP_NOCP] = "v7M NOCP UsageFault", 10844 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10845 [EXCP_STKOF] = "v8M STKOF UsageFault", 10846 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10847 [EXCP_LSERR] = "v8M LSERR UsageFault", 10848 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10849 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10850 [EXCP_VSERR] = "Virtual SERR", 10851 [EXCP_GPC] = "Granule Protection Check", 10852 [EXCP_NMI] = "NMI", 10853 [EXCP_VINMI] = "Virtual IRQ NMI", 10854 [EXCP_VFNMI] = "Virtual FIQ NMI", 10855 }; 10856 10857 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10858 exc = excnames[idx]; 10859 } 10860 if (!exc) { 10861 exc = "unknown"; 10862 } 10863 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10864 idx, exc, cs->cpu_index); 10865 } 10866 } 10867 10868 /* 10869 * Function used to synchronize QEMU's AArch64 register set with AArch32 10870 * register set. This is necessary when switching between AArch32 and AArch64 10871 * execution state. 10872 */ 10873 void aarch64_sync_32_to_64(CPUARMState *env) 10874 { 10875 int i; 10876 uint32_t mode = env->uncached_cpsr & CPSR_M; 10877 10878 /* We can blanket copy R[0:7] to X[0:7] */ 10879 for (i = 0; i < 8; i++) { 10880 env->xregs[i] = env->regs[i]; 10881 } 10882 10883 /* 10884 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10885 * Otherwise, they come from the banked user regs. 10886 */ 10887 if (mode == ARM_CPU_MODE_FIQ) { 10888 for (i = 8; i < 13; i++) { 10889 env->xregs[i] = env->usr_regs[i - 8]; 10890 } 10891 } else { 10892 for (i = 8; i < 13; i++) { 10893 env->xregs[i] = env->regs[i]; 10894 } 10895 } 10896 10897 /* 10898 * Registers x13-x23 are the various mode SP and FP registers. Registers 10899 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10900 * from the mode banked register. 10901 */ 10902 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10903 env->xregs[13] = env->regs[13]; 10904 env->xregs[14] = env->regs[14]; 10905 } else { 10906 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10907 /* HYP is an exception in that it is copied from r14 */ 10908 if (mode == ARM_CPU_MODE_HYP) { 10909 env->xregs[14] = env->regs[14]; 10910 } else { 10911 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10912 } 10913 } 10914 10915 if (mode == ARM_CPU_MODE_HYP) { 10916 env->xregs[15] = env->regs[13]; 10917 } else { 10918 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10919 } 10920 10921 if (mode == ARM_CPU_MODE_IRQ) { 10922 env->xregs[16] = env->regs[14]; 10923 env->xregs[17] = env->regs[13]; 10924 } else { 10925 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10926 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10927 } 10928 10929 if (mode == ARM_CPU_MODE_SVC) { 10930 env->xregs[18] = env->regs[14]; 10931 env->xregs[19] = env->regs[13]; 10932 } else { 10933 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10934 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10935 } 10936 10937 if (mode == ARM_CPU_MODE_ABT) { 10938 env->xregs[20] = env->regs[14]; 10939 env->xregs[21] = env->regs[13]; 10940 } else { 10941 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10942 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10943 } 10944 10945 if (mode == ARM_CPU_MODE_UND) { 10946 env->xregs[22] = env->regs[14]; 10947 env->xregs[23] = env->regs[13]; 10948 } else { 10949 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10950 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10951 } 10952 10953 /* 10954 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10955 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10956 * FIQ bank for r8-r14. 10957 */ 10958 if (mode == ARM_CPU_MODE_FIQ) { 10959 for (i = 24; i < 31; i++) { 10960 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10961 } 10962 } else { 10963 for (i = 24; i < 29; i++) { 10964 env->xregs[i] = env->fiq_regs[i - 24]; 10965 } 10966 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10967 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10968 } 10969 10970 env->pc = env->regs[15]; 10971 } 10972 10973 /* 10974 * Function used to synchronize QEMU's AArch32 register set with AArch64 10975 * register set. This is necessary when switching between AArch32 and AArch64 10976 * execution state. 10977 */ 10978 void aarch64_sync_64_to_32(CPUARMState *env) 10979 { 10980 int i; 10981 uint32_t mode = env->uncached_cpsr & CPSR_M; 10982 10983 /* We can blanket copy X[0:7] to R[0:7] */ 10984 for (i = 0; i < 8; i++) { 10985 env->regs[i] = env->xregs[i]; 10986 } 10987 10988 /* 10989 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10990 * Otherwise, we copy x8-x12 into the banked user regs. 10991 */ 10992 if (mode == ARM_CPU_MODE_FIQ) { 10993 for (i = 8; i < 13; i++) { 10994 env->usr_regs[i - 8] = env->xregs[i]; 10995 } 10996 } else { 10997 for (i = 8; i < 13; i++) { 10998 env->regs[i] = env->xregs[i]; 10999 } 11000 } 11001 11002 /* 11003 * Registers r13 & r14 depend on the current mode. 11004 * If we are in a given mode, we copy the corresponding x registers to r13 11005 * and r14. Otherwise, we copy the x register to the banked r13 and r14 11006 * for the mode. 11007 */ 11008 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 11009 env->regs[13] = env->xregs[13]; 11010 env->regs[14] = env->xregs[14]; 11011 } else { 11012 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 11013 11014 /* 11015 * HYP is an exception in that it does not have its own banked r14 but 11016 * shares the USR r14 11017 */ 11018 if (mode == ARM_CPU_MODE_HYP) { 11019 env->regs[14] = env->xregs[14]; 11020 } else { 11021 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 11022 } 11023 } 11024 11025 if (mode == ARM_CPU_MODE_HYP) { 11026 env->regs[13] = env->xregs[15]; 11027 } else { 11028 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 11029 } 11030 11031 if (mode == ARM_CPU_MODE_IRQ) { 11032 env->regs[14] = env->xregs[16]; 11033 env->regs[13] = env->xregs[17]; 11034 } else { 11035 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 11036 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 11037 } 11038 11039 if (mode == ARM_CPU_MODE_SVC) { 11040 env->regs[14] = env->xregs[18]; 11041 env->regs[13] = env->xregs[19]; 11042 } else { 11043 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 11044 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 11045 } 11046 11047 if (mode == ARM_CPU_MODE_ABT) { 11048 env->regs[14] = env->xregs[20]; 11049 env->regs[13] = env->xregs[21]; 11050 } else { 11051 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 11052 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 11053 } 11054 11055 if (mode == ARM_CPU_MODE_UND) { 11056 env->regs[14] = env->xregs[22]; 11057 env->regs[13] = env->xregs[23]; 11058 } else { 11059 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 11060 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 11061 } 11062 11063 /* 11064 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 11065 * mode, then we can copy to r8-r14. Otherwise, we copy to the 11066 * FIQ bank for r8-r14. 11067 */ 11068 if (mode == ARM_CPU_MODE_FIQ) { 11069 for (i = 24; i < 31; i++) { 11070 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 11071 } 11072 } else { 11073 for (i = 24; i < 29; i++) { 11074 env->fiq_regs[i - 24] = env->xregs[i]; 11075 } 11076 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 11077 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 11078 } 11079 11080 env->regs[15] = env->pc; 11081 } 11082 11083 static void take_aarch32_exception(CPUARMState *env, int new_mode, 11084 uint32_t mask, uint32_t offset, 11085 uint32_t newpc) 11086 { 11087 int new_el; 11088 11089 /* Change the CPU state so as to actually take the exception. */ 11090 switch_mode(env, new_mode); 11091 11092 /* 11093 * For exceptions taken to AArch32 we must clear the SS bit in both 11094 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 11095 */ 11096 env->pstate &= ~PSTATE_SS; 11097 env->spsr = cpsr_read(env); 11098 /* Clear IT bits. */ 11099 env->condexec_bits = 0; 11100 /* Switch to the new mode, and to the correct instruction set. */ 11101 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 11102 11103 /* This must be after mode switching. */ 11104 new_el = arm_current_el(env); 11105 11106 /* Set new mode endianness */ 11107 env->uncached_cpsr &= ~CPSR_E; 11108 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 11109 env->uncached_cpsr |= CPSR_E; 11110 } 11111 /* J and IL must always be cleared for exception entry */ 11112 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 11113 env->daif |= mask; 11114 11115 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 11116 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 11117 env->uncached_cpsr |= CPSR_SSBS; 11118 } else { 11119 env->uncached_cpsr &= ~CPSR_SSBS; 11120 } 11121 } 11122 11123 if (new_mode == ARM_CPU_MODE_HYP) { 11124 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 11125 env->elr_el[2] = env->regs[15]; 11126 } else { 11127 /* CPSR.PAN is normally preserved preserved unless... */ 11128 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 11129 switch (new_el) { 11130 case 3: 11131 if (!arm_is_secure_below_el3(env)) { 11132 /* ... the target is EL3, from non-secure state. */ 11133 env->uncached_cpsr &= ~CPSR_PAN; 11134 break; 11135 } 11136 /* ... the target is EL3, from secure state ... */ 11137 /* fall through */ 11138 case 1: 11139 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 11140 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 11141 env->uncached_cpsr |= CPSR_PAN; 11142 } 11143 break; 11144 } 11145 } 11146 /* 11147 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 11148 * and we should just guard the thumb mode on V4 11149 */ 11150 if (arm_feature(env, ARM_FEATURE_V4T)) { 11151 env->thumb = 11152 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 11153 } 11154 env->regs[14] = env->regs[15] + offset; 11155 } 11156 env->regs[15] = newpc; 11157 11158 if (tcg_enabled()) { 11159 arm_rebuild_hflags(env); 11160 } 11161 } 11162 11163 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 11164 { 11165 /* 11166 * Handle exception entry to Hyp mode; this is sufficiently 11167 * different to entry to other AArch32 modes that we handle it 11168 * separately here. 11169 * 11170 * The vector table entry used is always the 0x14 Hyp mode entry point, 11171 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 11172 * The offset applied to the preferred return address is always zero 11173 * (see DDI0487C.a section G1.12.3). 11174 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 11175 */ 11176 uint32_t addr, mask; 11177 ARMCPU *cpu = ARM_CPU(cs); 11178 CPUARMState *env = &cpu->env; 11179 11180 switch (cs->exception_index) { 11181 case EXCP_UDEF: 11182 addr = 0x04; 11183 break; 11184 case EXCP_SWI: 11185 addr = 0x08; 11186 break; 11187 case EXCP_BKPT: 11188 /* Fall through to prefetch abort. */ 11189 case EXCP_PREFETCH_ABORT: 11190 env->cp15.ifar_s = env->exception.vaddress; 11191 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 11192 (uint32_t)env->exception.vaddress); 11193 addr = 0x0c; 11194 break; 11195 case EXCP_DATA_ABORT: 11196 env->cp15.dfar_s = env->exception.vaddress; 11197 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 11198 (uint32_t)env->exception.vaddress); 11199 addr = 0x10; 11200 break; 11201 case EXCP_IRQ: 11202 addr = 0x18; 11203 break; 11204 case EXCP_FIQ: 11205 addr = 0x1c; 11206 break; 11207 case EXCP_HVC: 11208 addr = 0x08; 11209 break; 11210 case EXCP_HYP_TRAP: 11211 addr = 0x14; 11212 break; 11213 default: 11214 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11215 } 11216 11217 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 11218 if (!arm_feature(env, ARM_FEATURE_V8)) { 11219 /* 11220 * QEMU syndrome values are v8-style. v7 has the IL bit 11221 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 11222 * If this is a v7 CPU, squash the IL bit in those cases. 11223 */ 11224 if (cs->exception_index == EXCP_PREFETCH_ABORT || 11225 (cs->exception_index == EXCP_DATA_ABORT && 11226 !(env->exception.syndrome & ARM_EL_ISV)) || 11227 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 11228 env->exception.syndrome &= ~ARM_EL_IL; 11229 } 11230 } 11231 env->cp15.esr_el[2] = env->exception.syndrome; 11232 } 11233 11234 if (arm_current_el(env) != 2 && addr < 0x14) { 11235 addr = 0x14; 11236 } 11237 11238 mask = 0; 11239 if (!(env->cp15.scr_el3 & SCR_EA)) { 11240 mask |= CPSR_A; 11241 } 11242 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 11243 mask |= CPSR_I; 11244 } 11245 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 11246 mask |= CPSR_F; 11247 } 11248 11249 addr += env->cp15.hvbar; 11250 11251 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 11252 } 11253 11254 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 11255 { 11256 ARMCPU *cpu = ARM_CPU(cs); 11257 CPUARMState *env = &cpu->env; 11258 uint32_t addr; 11259 uint32_t mask; 11260 int new_mode; 11261 uint32_t offset; 11262 uint32_t moe; 11263 11264 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11265 switch (syn_get_ec(env->exception.syndrome)) { 11266 case EC_BREAKPOINT: 11267 case EC_BREAKPOINT_SAME_EL: 11268 moe = 1; 11269 break; 11270 case EC_WATCHPOINT: 11271 case EC_WATCHPOINT_SAME_EL: 11272 moe = 10; 11273 break; 11274 case EC_AA32_BKPT: 11275 moe = 3; 11276 break; 11277 case EC_VECTORCATCH: 11278 moe = 5; 11279 break; 11280 default: 11281 moe = 0; 11282 break; 11283 } 11284 11285 if (moe) { 11286 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11287 } 11288 11289 if (env->exception.target_el == 2) { 11290 /* Debug exceptions are reported differently on AArch32 */ 11291 switch (syn_get_ec(env->exception.syndrome)) { 11292 case EC_BREAKPOINT: 11293 case EC_BREAKPOINT_SAME_EL: 11294 case EC_AA32_BKPT: 11295 case EC_VECTORCATCH: 11296 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11297 0, 0, 0x22); 11298 break; 11299 case EC_WATCHPOINT: 11300 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11301 EC_DATAABORT); 11302 break; 11303 case EC_WATCHPOINT_SAME_EL: 11304 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11305 EC_DATAABORT_SAME_EL); 11306 break; 11307 } 11308 arm_cpu_do_interrupt_aarch32_hyp(cs); 11309 return; 11310 } 11311 11312 switch (cs->exception_index) { 11313 case EXCP_UDEF: 11314 new_mode = ARM_CPU_MODE_UND; 11315 addr = 0x04; 11316 mask = CPSR_I; 11317 if (env->thumb) { 11318 offset = 2; 11319 } else { 11320 offset = 4; 11321 } 11322 break; 11323 case EXCP_SWI: 11324 new_mode = ARM_CPU_MODE_SVC; 11325 addr = 0x08; 11326 mask = CPSR_I; 11327 /* The PC already points to the next instruction. */ 11328 offset = 0; 11329 break; 11330 case EXCP_BKPT: 11331 /* Fall through to prefetch abort. */ 11332 case EXCP_PREFETCH_ABORT: 11333 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11334 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11335 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11336 env->exception.fsr, (uint32_t)env->exception.vaddress); 11337 new_mode = ARM_CPU_MODE_ABT; 11338 addr = 0x0c; 11339 mask = CPSR_A | CPSR_I; 11340 offset = 4; 11341 break; 11342 case EXCP_DATA_ABORT: 11343 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11344 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11345 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11346 env->exception.fsr, 11347 (uint32_t)env->exception.vaddress); 11348 new_mode = ARM_CPU_MODE_ABT; 11349 addr = 0x10; 11350 mask = CPSR_A | CPSR_I; 11351 offset = 8; 11352 break; 11353 case EXCP_IRQ: 11354 new_mode = ARM_CPU_MODE_IRQ; 11355 addr = 0x18; 11356 /* Disable IRQ and imprecise data aborts. */ 11357 mask = CPSR_A | CPSR_I; 11358 offset = 4; 11359 if (env->cp15.scr_el3 & SCR_IRQ) { 11360 /* IRQ routed to monitor mode */ 11361 new_mode = ARM_CPU_MODE_MON; 11362 mask |= CPSR_F; 11363 } 11364 break; 11365 case EXCP_FIQ: 11366 new_mode = ARM_CPU_MODE_FIQ; 11367 addr = 0x1c; 11368 /* Disable FIQ, IRQ and imprecise data aborts. */ 11369 mask = CPSR_A | CPSR_I | CPSR_F; 11370 if (env->cp15.scr_el3 & SCR_FIQ) { 11371 /* FIQ routed to monitor mode */ 11372 new_mode = ARM_CPU_MODE_MON; 11373 } 11374 offset = 4; 11375 break; 11376 case EXCP_VIRQ: 11377 new_mode = ARM_CPU_MODE_IRQ; 11378 addr = 0x18; 11379 /* Disable IRQ and imprecise data aborts. */ 11380 mask = CPSR_A | CPSR_I; 11381 offset = 4; 11382 break; 11383 case EXCP_VFIQ: 11384 new_mode = ARM_CPU_MODE_FIQ; 11385 addr = 0x1c; 11386 /* Disable FIQ, IRQ and imprecise data aborts. */ 11387 mask = CPSR_A | CPSR_I | CPSR_F; 11388 offset = 4; 11389 break; 11390 case EXCP_VSERR: 11391 { 11392 /* 11393 * Note that this is reported as a data abort, but the DFAR 11394 * has an UNKNOWN value. Construct the SError syndrome from 11395 * AET and ExT fields. 11396 */ 11397 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11398 11399 if (extended_addresses_enabled(env)) { 11400 env->exception.fsr = arm_fi_to_lfsc(&fi); 11401 } else { 11402 env->exception.fsr = arm_fi_to_sfsc(&fi); 11403 } 11404 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11405 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11406 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11407 env->exception.fsr); 11408 11409 new_mode = ARM_CPU_MODE_ABT; 11410 addr = 0x10; 11411 mask = CPSR_A | CPSR_I; 11412 offset = 8; 11413 } 11414 break; 11415 case EXCP_SMC: 11416 new_mode = ARM_CPU_MODE_MON; 11417 addr = 0x08; 11418 mask = CPSR_A | CPSR_I | CPSR_F; 11419 offset = 0; 11420 break; 11421 default: 11422 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11423 return; /* Never happens. Keep compiler happy. */ 11424 } 11425 11426 if (new_mode == ARM_CPU_MODE_MON) { 11427 addr += env->cp15.mvbar; 11428 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11429 /* High vectors. When enabled, base address cannot be remapped. */ 11430 addr += 0xffff0000; 11431 } else { 11432 /* 11433 * ARM v7 architectures provide a vector base address register to remap 11434 * the interrupt vector table. 11435 * This register is only followed in non-monitor mode, and is banked. 11436 * Note: only bits 31:5 are valid. 11437 */ 11438 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11439 } 11440 11441 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11442 env->cp15.scr_el3 &= ~SCR_NS; 11443 } 11444 11445 take_aarch32_exception(env, new_mode, mask, offset, addr); 11446 } 11447 11448 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11449 { 11450 /* 11451 * Return the register number of the AArch64 view of the AArch32 11452 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11453 * be that of the AArch32 mode the exception came from. 11454 */ 11455 int mode = env->uncached_cpsr & CPSR_M; 11456 11457 switch (aarch32_reg) { 11458 case 0 ... 7: 11459 return aarch32_reg; 11460 case 8 ... 12: 11461 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11462 case 13: 11463 switch (mode) { 11464 case ARM_CPU_MODE_USR: 11465 case ARM_CPU_MODE_SYS: 11466 return 13; 11467 case ARM_CPU_MODE_HYP: 11468 return 15; 11469 case ARM_CPU_MODE_IRQ: 11470 return 17; 11471 case ARM_CPU_MODE_SVC: 11472 return 19; 11473 case ARM_CPU_MODE_ABT: 11474 return 21; 11475 case ARM_CPU_MODE_UND: 11476 return 23; 11477 case ARM_CPU_MODE_FIQ: 11478 return 29; 11479 default: 11480 g_assert_not_reached(); 11481 } 11482 case 14: 11483 switch (mode) { 11484 case ARM_CPU_MODE_USR: 11485 case ARM_CPU_MODE_SYS: 11486 case ARM_CPU_MODE_HYP: 11487 return 14; 11488 case ARM_CPU_MODE_IRQ: 11489 return 16; 11490 case ARM_CPU_MODE_SVC: 11491 return 18; 11492 case ARM_CPU_MODE_ABT: 11493 return 20; 11494 case ARM_CPU_MODE_UND: 11495 return 22; 11496 case ARM_CPU_MODE_FIQ: 11497 return 30; 11498 default: 11499 g_assert_not_reached(); 11500 } 11501 case 15: 11502 return 31; 11503 default: 11504 g_assert_not_reached(); 11505 } 11506 } 11507 11508 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11509 { 11510 uint32_t ret = cpsr_read(env); 11511 11512 /* Move DIT to the correct location for SPSR_ELx */ 11513 if (ret & CPSR_DIT) { 11514 ret &= ~CPSR_DIT; 11515 ret |= PSTATE_DIT; 11516 } 11517 /* Merge PSTATE.SS into SPSR_ELx */ 11518 ret |= env->pstate & PSTATE_SS; 11519 11520 return ret; 11521 } 11522 11523 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11524 { 11525 /* Return true if this syndrome value is a synchronous external abort */ 11526 switch (syn_get_ec(syndrome)) { 11527 case EC_INSNABORT: 11528 case EC_INSNABORT_SAME_EL: 11529 case EC_DATAABORT: 11530 case EC_DATAABORT_SAME_EL: 11531 /* Look at fault status code for all the synchronous ext abort cases */ 11532 switch (syndrome & 0x3f) { 11533 case 0x10: 11534 case 0x13: 11535 case 0x14: 11536 case 0x15: 11537 case 0x16: 11538 case 0x17: 11539 return true; 11540 default: 11541 return false; 11542 } 11543 default: 11544 return false; 11545 } 11546 } 11547 11548 /* Handle exception entry to a target EL which is using AArch64 */ 11549 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11550 { 11551 ARMCPU *cpu = ARM_CPU(cs); 11552 CPUARMState *env = &cpu->env; 11553 unsigned int new_el = env->exception.target_el; 11554 target_ulong addr = env->cp15.vbar_el[new_el]; 11555 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11556 unsigned int old_mode; 11557 unsigned int cur_el = arm_current_el(env); 11558 int rt; 11559 11560 if (tcg_enabled()) { 11561 /* 11562 * Note that new_el can never be 0. If cur_el is 0, then 11563 * el0_a64 is is_a64(), else el0_a64 is ignored. 11564 */ 11565 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11566 } 11567 11568 if (cur_el < new_el) { 11569 /* 11570 * Entry vector offset depends on whether the implemented EL 11571 * immediately lower than the target level is using AArch32 or AArch64 11572 */ 11573 bool is_aa64; 11574 uint64_t hcr; 11575 11576 switch (new_el) { 11577 case 3: 11578 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11579 break; 11580 case 2: 11581 hcr = arm_hcr_el2_eff(env); 11582 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11583 is_aa64 = (hcr & HCR_RW) != 0; 11584 break; 11585 } 11586 /* fall through */ 11587 case 1: 11588 is_aa64 = is_a64(env); 11589 break; 11590 default: 11591 g_assert_not_reached(); 11592 } 11593 11594 if (is_aa64) { 11595 addr += 0x400; 11596 } else { 11597 addr += 0x600; 11598 } 11599 } else if (pstate_read(env) & PSTATE_SP) { 11600 addr += 0x200; 11601 } 11602 11603 switch (cs->exception_index) { 11604 case EXCP_GPC: 11605 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11606 env->cp15.mfar_el3); 11607 /* fall through */ 11608 case EXCP_PREFETCH_ABORT: 11609 case EXCP_DATA_ABORT: 11610 /* 11611 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11612 * to be taken to the SError vector entrypoint. 11613 */ 11614 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11615 syndrome_is_sync_extabt(env->exception.syndrome)) { 11616 addr += 0x180; 11617 } 11618 env->cp15.far_el[new_el] = env->exception.vaddress; 11619 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11620 env->cp15.far_el[new_el]); 11621 /* fall through */ 11622 case EXCP_BKPT: 11623 case EXCP_UDEF: 11624 case EXCP_SWI: 11625 case EXCP_HVC: 11626 case EXCP_HYP_TRAP: 11627 case EXCP_SMC: 11628 switch (syn_get_ec(env->exception.syndrome)) { 11629 case EC_ADVSIMDFPACCESSTRAP: 11630 /* 11631 * QEMU internal FP/SIMD syndromes from AArch32 include the 11632 * TA and coproc fields which are only exposed if the exception 11633 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11634 * AArch64 format syndrome. 11635 */ 11636 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11637 break; 11638 case EC_CP14RTTRAP: 11639 case EC_CP15RTTRAP: 11640 case EC_CP14DTTRAP: 11641 /* 11642 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11643 * the raw register field from the insn; when taking this to 11644 * AArch64 we must convert it to the AArch64 view of the register 11645 * number. Notice that we read a 4-bit AArch32 register number and 11646 * write back a 5-bit AArch64 one. 11647 */ 11648 rt = extract32(env->exception.syndrome, 5, 4); 11649 rt = aarch64_regnum(env, rt); 11650 env->exception.syndrome = deposit32(env->exception.syndrome, 11651 5, 5, rt); 11652 break; 11653 case EC_CP15RRTTRAP: 11654 case EC_CP14RRTTRAP: 11655 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11656 rt = extract32(env->exception.syndrome, 5, 4); 11657 rt = aarch64_regnum(env, rt); 11658 env->exception.syndrome = deposit32(env->exception.syndrome, 11659 5, 5, rt); 11660 rt = extract32(env->exception.syndrome, 10, 4); 11661 rt = aarch64_regnum(env, rt); 11662 env->exception.syndrome = deposit32(env->exception.syndrome, 11663 10, 5, rt); 11664 break; 11665 } 11666 env->cp15.esr_el[new_el] = env->exception.syndrome; 11667 break; 11668 case EXCP_IRQ: 11669 case EXCP_VIRQ: 11670 case EXCP_NMI: 11671 case EXCP_VINMI: 11672 addr += 0x80; 11673 break; 11674 case EXCP_FIQ: 11675 case EXCP_VFIQ: 11676 case EXCP_VFNMI: 11677 addr += 0x100; 11678 break; 11679 case EXCP_VSERR: 11680 addr += 0x180; 11681 /* Construct the SError syndrome from IDS and ISS fields. */ 11682 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11683 env->cp15.esr_el[new_el] = env->exception.syndrome; 11684 break; 11685 default: 11686 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11687 } 11688 11689 if (is_a64(env)) { 11690 old_mode = pstate_read(env); 11691 aarch64_save_sp(env, arm_current_el(env)); 11692 env->elr_el[new_el] = env->pc; 11693 11694 if (cur_el == 1 && new_el == 1) { 11695 uint64_t hcr = arm_hcr_el2_eff(env); 11696 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11697 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11698 /* 11699 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11700 * by setting M[3:2] to 0b10. 11701 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11702 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11703 */ 11704 old_mode = deposit32(old_mode, 2, 2, 2); 11705 } 11706 } 11707 } else { 11708 old_mode = cpsr_read_for_spsr_elx(env); 11709 env->elr_el[new_el] = env->regs[15]; 11710 11711 aarch64_sync_32_to_64(env); 11712 11713 env->condexec_bits = 0; 11714 } 11715 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11716 11717 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11718 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11719 env->elr_el[new_el]); 11720 11721 if (cpu_isar_feature(aa64_pan, cpu)) { 11722 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11723 new_mode |= old_mode & PSTATE_PAN; 11724 switch (new_el) { 11725 case 2: 11726 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11727 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11728 != (HCR_E2H | HCR_TGE)) { 11729 break; 11730 } 11731 /* fall through */ 11732 case 1: 11733 /* ... the target is EL1 ... */ 11734 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11735 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11736 new_mode |= PSTATE_PAN; 11737 } 11738 break; 11739 } 11740 } 11741 if (cpu_isar_feature(aa64_mte, cpu)) { 11742 new_mode |= PSTATE_TCO; 11743 } 11744 11745 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11746 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11747 new_mode |= PSTATE_SSBS; 11748 } else { 11749 new_mode &= ~PSTATE_SSBS; 11750 } 11751 } 11752 11753 if (cpu_isar_feature(aa64_nmi, cpu)) { 11754 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 11755 new_mode |= PSTATE_ALLINT; 11756 } else { 11757 new_mode &= ~PSTATE_ALLINT; 11758 } 11759 } 11760 11761 pstate_write(env, PSTATE_DAIF | new_mode); 11762 env->aarch64 = true; 11763 aarch64_restore_sp(env, new_el); 11764 11765 if (tcg_enabled()) { 11766 helper_rebuild_hflags_a64(env, new_el); 11767 } 11768 11769 env->pc = addr; 11770 11771 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11772 new_el, env->pc, pstate_read(env)); 11773 } 11774 11775 /* 11776 * Do semihosting call and set the appropriate return value. All the 11777 * permission and validity checks have been done at translate time. 11778 * 11779 * We only see semihosting exceptions in TCG only as they are not 11780 * trapped to the hypervisor in KVM. 11781 */ 11782 #ifdef CONFIG_TCG 11783 static void tcg_handle_semihosting(CPUState *cs) 11784 { 11785 ARMCPU *cpu = ARM_CPU(cs); 11786 CPUARMState *env = &cpu->env; 11787 11788 if (is_a64(env)) { 11789 qemu_log_mask(CPU_LOG_INT, 11790 "...handling as semihosting call 0x%" PRIx64 "\n", 11791 env->xregs[0]); 11792 do_common_semihosting(cs); 11793 env->pc += 4; 11794 } else { 11795 qemu_log_mask(CPU_LOG_INT, 11796 "...handling as semihosting call 0x%x\n", 11797 env->regs[0]); 11798 do_common_semihosting(cs); 11799 env->regs[15] += env->thumb ? 2 : 4; 11800 } 11801 } 11802 #endif 11803 11804 /* 11805 * Handle a CPU exception for A and R profile CPUs. 11806 * Do any appropriate logging, handle PSCI calls, and then hand off 11807 * to the AArch64-entry or AArch32-entry function depending on the 11808 * target exception level's register width. 11809 * 11810 * Note: this is used for both TCG (as the do_interrupt tcg op), 11811 * and KVM to re-inject guest debug exceptions, and to 11812 * inject a Synchronous-External-Abort. 11813 */ 11814 void arm_cpu_do_interrupt(CPUState *cs) 11815 { 11816 ARMCPU *cpu = ARM_CPU(cs); 11817 CPUARMState *env = &cpu->env; 11818 unsigned int new_el = env->exception.target_el; 11819 11820 assert(!arm_feature(env, ARM_FEATURE_M)); 11821 11822 arm_log_exception(cs); 11823 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11824 new_el); 11825 if (qemu_loglevel_mask(CPU_LOG_INT) 11826 && !excp_is_internal(cs->exception_index)) { 11827 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11828 syn_get_ec(env->exception.syndrome), 11829 env->exception.syndrome); 11830 } 11831 11832 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11833 arm_handle_psci_call(cpu); 11834 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11835 return; 11836 } 11837 11838 /* 11839 * Semihosting semantics depend on the register width of the code 11840 * that caused the exception, not the target exception level, so 11841 * must be handled here. 11842 */ 11843 #ifdef CONFIG_TCG 11844 if (cs->exception_index == EXCP_SEMIHOST) { 11845 tcg_handle_semihosting(cs); 11846 return; 11847 } 11848 #endif 11849 11850 /* 11851 * Hooks may change global state so BQL should be held, also the 11852 * BQL needs to be held for any modification of 11853 * cs->interrupt_request. 11854 */ 11855 g_assert(bql_locked()); 11856 11857 arm_call_pre_el_change_hook(cpu); 11858 11859 assert(!excp_is_internal(cs->exception_index)); 11860 if (arm_el_is_aa64(env, new_el)) { 11861 arm_cpu_do_interrupt_aarch64(cs); 11862 } else { 11863 arm_cpu_do_interrupt_aarch32(cs); 11864 } 11865 11866 arm_call_el_change_hook(cpu); 11867 11868 if (!kvm_enabled()) { 11869 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11870 } 11871 } 11872 #endif /* !CONFIG_USER_ONLY */ 11873 11874 uint64_t arm_sctlr(CPUARMState *env, int el) 11875 { 11876 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0 or EL3&0 */ 11877 if (el == 0) { 11878 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11879 switch (mmu_idx) { 11880 case ARMMMUIdx_E20_0: 11881 el = 2; 11882 break; 11883 case ARMMMUIdx_E30_0: 11884 el = 3; 11885 break; 11886 default: 11887 el = 1; 11888 break; 11889 } 11890 } 11891 return env->cp15.sctlr_el[el]; 11892 } 11893 11894 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11895 { 11896 if (regime_has_2_ranges(mmu_idx)) { 11897 return extract64(tcr, 37, 2); 11898 } else if (regime_is_stage2(mmu_idx)) { 11899 return 0; /* VTCR_EL2 */ 11900 } else { 11901 /* Replicate the single TBI bit so we always have 2 bits. */ 11902 return extract32(tcr, 20, 1) * 3; 11903 } 11904 } 11905 11906 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11907 { 11908 if (regime_has_2_ranges(mmu_idx)) { 11909 return extract64(tcr, 51, 2); 11910 } else if (regime_is_stage2(mmu_idx)) { 11911 return 0; /* VTCR_EL2 */ 11912 } else { 11913 /* Replicate the single TBID bit so we always have 2 bits. */ 11914 return extract32(tcr, 29, 1) * 3; 11915 } 11916 } 11917 11918 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11919 { 11920 if (regime_has_2_ranges(mmu_idx)) { 11921 return extract64(tcr, 57, 2); 11922 } else { 11923 /* Replicate the single TCMA bit so we always have 2 bits. */ 11924 return extract32(tcr, 30, 1) * 3; 11925 } 11926 } 11927 11928 static ARMGranuleSize tg0_to_gran_size(int tg) 11929 { 11930 switch (tg) { 11931 case 0: 11932 return Gran4K; 11933 case 1: 11934 return Gran64K; 11935 case 2: 11936 return Gran16K; 11937 default: 11938 return GranInvalid; 11939 } 11940 } 11941 11942 static ARMGranuleSize tg1_to_gran_size(int tg) 11943 { 11944 switch (tg) { 11945 case 1: 11946 return Gran16K; 11947 case 2: 11948 return Gran4K; 11949 case 3: 11950 return Gran64K; 11951 default: 11952 return GranInvalid; 11953 } 11954 } 11955 11956 static inline bool have4k(ARMCPU *cpu, bool stage2) 11957 { 11958 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11959 : cpu_isar_feature(aa64_tgran4, cpu); 11960 } 11961 11962 static inline bool have16k(ARMCPU *cpu, bool stage2) 11963 { 11964 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11965 : cpu_isar_feature(aa64_tgran16, cpu); 11966 } 11967 11968 static inline bool have64k(ARMCPU *cpu, bool stage2) 11969 { 11970 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11971 : cpu_isar_feature(aa64_tgran64, cpu); 11972 } 11973 11974 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11975 bool stage2) 11976 { 11977 switch (gran) { 11978 case Gran4K: 11979 if (have4k(cpu, stage2)) { 11980 return gran; 11981 } 11982 break; 11983 case Gran16K: 11984 if (have16k(cpu, stage2)) { 11985 return gran; 11986 } 11987 break; 11988 case Gran64K: 11989 if (have64k(cpu, stage2)) { 11990 return gran; 11991 } 11992 break; 11993 case GranInvalid: 11994 break; 11995 } 11996 /* 11997 * If the guest selects a granule size that isn't implemented, 11998 * the architecture requires that we behave as if it selected one 11999 * that is (with an IMPDEF choice of which one to pick). We choose 12000 * to implement the smallest supported granule size. 12001 */ 12002 if (have4k(cpu, stage2)) { 12003 return Gran4K; 12004 } 12005 if (have16k(cpu, stage2)) { 12006 return Gran16K; 12007 } 12008 assert(have64k(cpu, stage2)); 12009 return Gran64K; 12010 } 12011 12012 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 12013 ARMMMUIdx mmu_idx, bool data, 12014 bool el1_is_aa32) 12015 { 12016 uint64_t tcr = regime_tcr(env, mmu_idx); 12017 bool epd, hpd, tsz_oob, ds, ha, hd; 12018 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 12019 ARMGranuleSize gran; 12020 ARMCPU *cpu = env_archcpu(env); 12021 bool stage2 = regime_is_stage2(mmu_idx); 12022 12023 if (!regime_has_2_ranges(mmu_idx)) { 12024 select = 0; 12025 tsz = extract32(tcr, 0, 6); 12026 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12027 if (stage2) { 12028 /* VTCR_EL2 */ 12029 hpd = false; 12030 } else { 12031 hpd = extract32(tcr, 24, 1); 12032 } 12033 epd = false; 12034 sh = extract32(tcr, 12, 2); 12035 ps = extract32(tcr, 16, 3); 12036 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 12037 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12038 ds = extract64(tcr, 32, 1); 12039 } else { 12040 bool e0pd; 12041 12042 /* 12043 * Bit 55 is always between the two regions, and is canonical for 12044 * determining if address tagging is enabled. 12045 */ 12046 select = extract64(va, 55, 1); 12047 if (!select) { 12048 tsz = extract32(tcr, 0, 6); 12049 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12050 epd = extract32(tcr, 7, 1); 12051 sh = extract32(tcr, 12, 2); 12052 hpd = extract64(tcr, 41, 1); 12053 e0pd = extract64(tcr, 55, 1); 12054 } else { 12055 tsz = extract32(tcr, 16, 6); 12056 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 12057 epd = extract32(tcr, 23, 1); 12058 sh = extract32(tcr, 28, 2); 12059 hpd = extract64(tcr, 42, 1); 12060 e0pd = extract64(tcr, 56, 1); 12061 } 12062 ps = extract64(tcr, 32, 3); 12063 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 12064 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12065 ds = extract64(tcr, 59, 1); 12066 12067 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 12068 regime_is_user(env, mmu_idx)) { 12069 epd = true; 12070 } 12071 } 12072 12073 gran = sanitize_gran_size(cpu, gran, stage2); 12074 12075 if (cpu_isar_feature(aa64_st, cpu)) { 12076 max_tsz = 48 - (gran == Gran64K); 12077 } else { 12078 max_tsz = 39; 12079 } 12080 12081 /* 12082 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 12083 * adjust the effective value of DS, as documented. 12084 */ 12085 min_tsz = 16; 12086 if (gran == Gran64K) { 12087 if (cpu_isar_feature(aa64_lva, cpu)) { 12088 min_tsz = 12; 12089 } 12090 ds = false; 12091 } else if (ds) { 12092 if (regime_is_stage2(mmu_idx)) { 12093 if (gran == Gran16K) { 12094 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 12095 } else { 12096 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 12097 } 12098 } else { 12099 if (gran == Gran16K) { 12100 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 12101 } else { 12102 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 12103 } 12104 } 12105 if (ds) { 12106 min_tsz = 12; 12107 } 12108 } 12109 12110 if (stage2 && el1_is_aa32) { 12111 /* 12112 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 12113 * are loosened: a configured IPA of 40 bits is permitted even if 12114 * the implemented PA is less than that (and so a 40 bit IPA would 12115 * fault for an AArch64 EL1). See R_DTLMN. 12116 */ 12117 min_tsz = MIN(min_tsz, 24); 12118 } 12119 12120 if (tsz > max_tsz) { 12121 tsz = max_tsz; 12122 tsz_oob = true; 12123 } else if (tsz < min_tsz) { 12124 tsz = min_tsz; 12125 tsz_oob = true; 12126 } else { 12127 tsz_oob = false; 12128 } 12129 12130 /* Present TBI as a composite with TBID. */ 12131 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12132 if (!data) { 12133 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12134 } 12135 tbi = (tbi >> select) & 1; 12136 12137 return (ARMVAParameters) { 12138 .tsz = tsz, 12139 .ps = ps, 12140 .sh = sh, 12141 .select = select, 12142 .tbi = tbi, 12143 .epd = epd, 12144 .hpd = hpd, 12145 .tsz_oob = tsz_oob, 12146 .ds = ds, 12147 .ha = ha, 12148 .hd = ha && hd, 12149 .gran = gran, 12150 }; 12151 } 12152 12153 /* 12154 * Note that signed overflow is undefined in C. The following routines are 12155 * careful to use unsigned types where modulo arithmetic is required. 12156 * Failure to do so _will_ break on newer gcc. 12157 */ 12158 12159 /* Signed saturating arithmetic. */ 12160 12161 /* Perform 16-bit signed saturating addition. */ 12162 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12163 { 12164 uint16_t res; 12165 12166 res = a + b; 12167 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12168 if (a & 0x8000) { 12169 res = 0x8000; 12170 } else { 12171 res = 0x7fff; 12172 } 12173 } 12174 return res; 12175 } 12176 12177 /* Perform 8-bit signed saturating addition. */ 12178 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12179 { 12180 uint8_t res; 12181 12182 res = a + b; 12183 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12184 if (a & 0x80) { 12185 res = 0x80; 12186 } else { 12187 res = 0x7f; 12188 } 12189 } 12190 return res; 12191 } 12192 12193 /* Perform 16-bit signed saturating subtraction. */ 12194 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12195 { 12196 uint16_t res; 12197 12198 res = a - b; 12199 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12200 if (a & 0x8000) { 12201 res = 0x8000; 12202 } else { 12203 res = 0x7fff; 12204 } 12205 } 12206 return res; 12207 } 12208 12209 /* Perform 8-bit signed saturating subtraction. */ 12210 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12211 { 12212 uint8_t res; 12213 12214 res = a - b; 12215 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12216 if (a & 0x80) { 12217 res = 0x80; 12218 } else { 12219 res = 0x7f; 12220 } 12221 } 12222 return res; 12223 } 12224 12225 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12226 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12227 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12228 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12229 #define PFX q 12230 12231 #include "op_addsub.h" 12232 12233 /* Unsigned saturating arithmetic. */ 12234 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12235 { 12236 uint16_t res; 12237 res = a + b; 12238 if (res < a) { 12239 res = 0xffff; 12240 } 12241 return res; 12242 } 12243 12244 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12245 { 12246 if (a > b) { 12247 return a - b; 12248 } else { 12249 return 0; 12250 } 12251 } 12252 12253 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12254 { 12255 uint8_t res; 12256 res = a + b; 12257 if (res < a) { 12258 res = 0xff; 12259 } 12260 return res; 12261 } 12262 12263 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12264 { 12265 if (a > b) { 12266 return a - b; 12267 } else { 12268 return 0; 12269 } 12270 } 12271 12272 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12273 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12274 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12275 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12276 #define PFX uq 12277 12278 #include "op_addsub.h" 12279 12280 /* Signed modulo arithmetic. */ 12281 #define SARITH16(a, b, n, op) do { \ 12282 int32_t sum; \ 12283 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12284 RESULT(sum, n, 16); \ 12285 if (sum >= 0) \ 12286 ge |= 3 << (n * 2); \ 12287 } while (0) 12288 12289 #define SARITH8(a, b, n, op) do { \ 12290 int32_t sum; \ 12291 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12292 RESULT(sum, n, 8); \ 12293 if (sum >= 0) \ 12294 ge |= 1 << n; \ 12295 } while (0) 12296 12297 12298 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12299 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12300 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12301 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12302 #define PFX s 12303 #define ARITH_GE 12304 12305 #include "op_addsub.h" 12306 12307 /* Unsigned modulo arithmetic. */ 12308 #define ADD16(a, b, n) do { \ 12309 uint32_t sum; \ 12310 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12311 RESULT(sum, n, 16); \ 12312 if ((sum >> 16) == 1) \ 12313 ge |= 3 << (n * 2); \ 12314 } while (0) 12315 12316 #define ADD8(a, b, n) do { \ 12317 uint32_t sum; \ 12318 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12319 RESULT(sum, n, 8); \ 12320 if ((sum >> 8) == 1) \ 12321 ge |= 1 << n; \ 12322 } while (0) 12323 12324 #define SUB16(a, b, n) do { \ 12325 uint32_t sum; \ 12326 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12327 RESULT(sum, n, 16); \ 12328 if ((sum >> 16) == 0) \ 12329 ge |= 3 << (n * 2); \ 12330 } while (0) 12331 12332 #define SUB8(a, b, n) do { \ 12333 uint32_t sum; \ 12334 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12335 RESULT(sum, n, 8); \ 12336 if ((sum >> 8) == 0) \ 12337 ge |= 1 << n; \ 12338 } while (0) 12339 12340 #define PFX u 12341 #define ARITH_GE 12342 12343 #include "op_addsub.h" 12344 12345 /* Halved signed arithmetic. */ 12346 #define ADD16(a, b, n) \ 12347 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12348 #define SUB16(a, b, n) \ 12349 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12350 #define ADD8(a, b, n) \ 12351 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12352 #define SUB8(a, b, n) \ 12353 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12354 #define PFX sh 12355 12356 #include "op_addsub.h" 12357 12358 /* Halved unsigned arithmetic. */ 12359 #define ADD16(a, b, n) \ 12360 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12361 #define SUB16(a, b, n) \ 12362 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12363 #define ADD8(a, b, n) \ 12364 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12365 #define SUB8(a, b, n) \ 12366 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12367 #define PFX uh 12368 12369 #include "op_addsub.h" 12370 12371 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12372 { 12373 if (a > b) { 12374 return a - b; 12375 } else { 12376 return b - a; 12377 } 12378 } 12379 12380 /* Unsigned sum of absolute byte differences. */ 12381 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12382 { 12383 uint32_t sum; 12384 sum = do_usad(a, b); 12385 sum += do_usad(a >> 8, b >> 8); 12386 sum += do_usad(a >> 16, b >> 16); 12387 sum += do_usad(a >> 24, b >> 24); 12388 return sum; 12389 } 12390 12391 /* For ARMv6 SEL instruction. */ 12392 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12393 { 12394 uint32_t mask; 12395 12396 mask = 0; 12397 if (flags & 1) { 12398 mask |= 0xff; 12399 } 12400 if (flags & 2) { 12401 mask |= 0xff00; 12402 } 12403 if (flags & 4) { 12404 mask |= 0xff0000; 12405 } 12406 if (flags & 8) { 12407 mask |= 0xff000000; 12408 } 12409 return (a & mask) | (b & ~mask); 12410 } 12411 12412 /* 12413 * CRC helpers. 12414 * The upper bytes of val (above the number specified by 'bytes') must have 12415 * been zeroed out by the caller. 12416 */ 12417 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12418 { 12419 uint8_t buf[4]; 12420 12421 stl_le_p(buf, val); 12422 12423 /* zlib crc32 converts the accumulator and output to one's complement. */ 12424 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12425 } 12426 12427 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12428 { 12429 uint8_t buf[4]; 12430 12431 stl_le_p(buf, val); 12432 12433 /* Linux crc32c converts the output to one's complement. */ 12434 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12435 } 12436 12437 /* 12438 * Return the exception level to which FP-disabled exceptions should 12439 * be taken, or 0 if FP is enabled. 12440 */ 12441 int fp_exception_el(CPUARMState *env, int cur_el) 12442 { 12443 #ifndef CONFIG_USER_ONLY 12444 uint64_t hcr_el2; 12445 12446 /* 12447 * CPACR and the CPTR registers don't exist before v6, so FP is 12448 * always accessible 12449 */ 12450 if (!arm_feature(env, ARM_FEATURE_V6)) { 12451 return 0; 12452 } 12453 12454 if (arm_feature(env, ARM_FEATURE_M)) { 12455 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12456 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12457 return 1; 12458 } 12459 12460 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12461 if (!extract32(env->v7m.nsacr, 10, 1)) { 12462 /* FP insns cause a NOCP UsageFault taken to Secure */ 12463 return 3; 12464 } 12465 } 12466 12467 return 0; 12468 } 12469 12470 hcr_el2 = arm_hcr_el2_eff(env); 12471 12472 /* 12473 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12474 * 0, 2 : trap EL0 and EL1/PL1 accesses 12475 * 1 : trap only EL0 accesses 12476 * 3 : trap no accesses 12477 * This register is ignored if E2H+TGE are both set. 12478 */ 12479 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12480 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12481 12482 switch (fpen) { 12483 case 1: 12484 if (cur_el != 0) { 12485 break; 12486 } 12487 /* fall through */ 12488 case 0: 12489 case 2: 12490 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12491 if (!arm_el_is_aa64(env, 3) 12492 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12493 return 3; 12494 } 12495 if (cur_el <= 1) { 12496 return 1; 12497 } 12498 break; 12499 } 12500 } 12501 12502 /* 12503 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12504 * to control non-secure access to the FPU. It doesn't have any 12505 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12506 */ 12507 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12508 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12509 if (!extract32(env->cp15.nsacr, 10, 1)) { 12510 /* FP insns act as UNDEF */ 12511 return cur_el == 2 ? 2 : 1; 12512 } 12513 } 12514 12515 /* 12516 * CPTR_EL2 is present in v7VE or v8, and changes format 12517 * with HCR_EL2.E2H (regardless of TGE). 12518 */ 12519 if (cur_el <= 2) { 12520 if (hcr_el2 & HCR_E2H) { 12521 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12522 case 1: 12523 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12524 break; 12525 } 12526 /* fall through */ 12527 case 0: 12528 case 2: 12529 return 2; 12530 } 12531 } else if (arm_is_el2_enabled(env)) { 12532 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12533 return 2; 12534 } 12535 } 12536 } 12537 12538 /* CPTR_EL3 : present in v8 */ 12539 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12540 /* Trap all FP ops to EL3 */ 12541 return 3; 12542 } 12543 #endif 12544 return 0; 12545 } 12546 12547 /* Return the exception level we're running at if this is our mmu_idx */ 12548 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 12549 { 12550 if (mmu_idx & ARM_MMU_IDX_M) { 12551 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12552 } 12553 12554 switch (mmu_idx) { 12555 case ARMMMUIdx_E10_0: 12556 case ARMMMUIdx_E20_0: 12557 case ARMMMUIdx_E30_0: 12558 return 0; 12559 case ARMMMUIdx_E10_1: 12560 case ARMMMUIdx_E10_1_PAN: 12561 return 1; 12562 case ARMMMUIdx_E2: 12563 case ARMMMUIdx_E20_2: 12564 case ARMMMUIdx_E20_2_PAN: 12565 return 2; 12566 case ARMMMUIdx_E3: 12567 case ARMMMUIdx_E30_3_PAN: 12568 return 3; 12569 default: 12570 g_assert_not_reached(); 12571 } 12572 } 12573 12574 #ifndef CONFIG_TCG 12575 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12576 { 12577 g_assert_not_reached(); 12578 } 12579 #endif 12580 12581 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12582 { 12583 ARMMMUIdx idx; 12584 uint64_t hcr; 12585 12586 if (arm_feature(env, ARM_FEATURE_M)) { 12587 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12588 } 12589 12590 /* See ARM pseudo-function ELIsInHost. */ 12591 switch (el) { 12592 case 0: 12593 hcr = arm_hcr_el2_eff(env); 12594 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12595 idx = ARMMMUIdx_E20_0; 12596 } else if (arm_is_secure_below_el3(env) && 12597 !arm_el_is_aa64(env, 3)) { 12598 idx = ARMMMUIdx_E30_0; 12599 } else { 12600 idx = ARMMMUIdx_E10_0; 12601 } 12602 break; 12603 case 1: 12604 if (arm_pan_enabled(env)) { 12605 idx = ARMMMUIdx_E10_1_PAN; 12606 } else { 12607 idx = ARMMMUIdx_E10_1; 12608 } 12609 break; 12610 case 2: 12611 /* Note that TGE does not apply at EL2. */ 12612 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12613 if (arm_pan_enabled(env)) { 12614 idx = ARMMMUIdx_E20_2_PAN; 12615 } else { 12616 idx = ARMMMUIdx_E20_2; 12617 } 12618 } else { 12619 idx = ARMMMUIdx_E2; 12620 } 12621 break; 12622 case 3: 12623 if (!arm_el_is_aa64(env, 3) && arm_pan_enabled(env)) { 12624 return ARMMMUIdx_E30_3_PAN; 12625 } 12626 return ARMMMUIdx_E3; 12627 default: 12628 g_assert_not_reached(); 12629 } 12630 12631 return idx; 12632 } 12633 12634 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12635 { 12636 return arm_mmu_idx_el(env, arm_current_el(env)); 12637 } 12638 12639 static bool mve_no_pred(CPUARMState *env) 12640 { 12641 /* 12642 * Return true if there is definitely no predication of MVE 12643 * instructions by VPR or LTPSIZE. (Returning false even if there 12644 * isn't any predication is OK; generated code will just be 12645 * a little worse.) 12646 * If the CPU does not implement MVE then this TB flag is always 0. 12647 * 12648 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12649 * logic in gen_update_fp_context() needs to be updated to match. 12650 * 12651 * We do not include the effect of the ECI bits here -- they are 12652 * tracked in other TB flags. This simplifies the logic for 12653 * "when did we emit code that changes the MVE_NO_PRED TB flag 12654 * and thus need to end the TB?". 12655 */ 12656 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12657 return false; 12658 } 12659 if (env->v7m.vpr) { 12660 return false; 12661 } 12662 if (env->v7m.ltpsize < 4) { 12663 return false; 12664 } 12665 return true; 12666 } 12667 12668 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12669 uint64_t *cs_base, uint32_t *pflags) 12670 { 12671 CPUARMTBFlags flags; 12672 12673 assert_hflags_rebuild_correctly(env); 12674 flags = env->hflags; 12675 12676 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12677 *pc = env->pc; 12678 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12679 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12680 } 12681 } else { 12682 *pc = env->regs[15]; 12683 12684 if (arm_feature(env, ARM_FEATURE_M)) { 12685 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12686 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12687 != env->v7m.secure) { 12688 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12689 } 12690 12691 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12692 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12693 (env->v7m.secure && 12694 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12695 /* 12696 * ASPEN is set, but FPCA/SFPA indicate that there is no 12697 * active FP context; we must create a new FP context before 12698 * executing any FP insn. 12699 */ 12700 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12701 } 12702 12703 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12704 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12705 DP_TBFLAG_M32(flags, LSPACT, 1); 12706 } 12707 12708 if (mve_no_pred(env)) { 12709 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12710 } 12711 } else { 12712 /* 12713 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12714 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12715 */ 12716 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12717 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12718 } else { 12719 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12720 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12721 } 12722 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12723 DP_TBFLAG_A32(flags, VFPEN, 1); 12724 } 12725 } 12726 12727 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12728 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12729 } 12730 12731 /* 12732 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12733 * states defined in the ARM ARM for software singlestep: 12734 * SS_ACTIVE PSTATE.SS State 12735 * 0 x Inactive (the TB flag for SS is always 0) 12736 * 1 0 Active-pending 12737 * 1 1 Active-not-pending 12738 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12739 */ 12740 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12741 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12742 } 12743 12744 *pflags = flags.flags; 12745 *cs_base = flags.flags2; 12746 } 12747 12748 #ifdef TARGET_AARCH64 12749 /* 12750 * The manual says that when SVE is enabled and VQ is widened the 12751 * implementation is allowed to zero the previously inaccessible 12752 * portion of the registers. The corollary to that is that when 12753 * SVE is enabled and VQ is narrowed we are also allowed to zero 12754 * the now inaccessible portion of the registers. 12755 * 12756 * The intent of this is that no predicate bit beyond VQ is ever set. 12757 * Which means that some operations on predicate registers themselves 12758 * may operate on full uint64_t or even unrolled across the maximum 12759 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12760 * may well be cheaper than conditionals to restrict the operation 12761 * to the relevant portion of a uint16_t[16]. 12762 */ 12763 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12764 { 12765 int i, j; 12766 uint64_t pmask; 12767 12768 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12769 assert(vq <= env_archcpu(env)->sve_max_vq); 12770 12771 /* Zap the high bits of the zregs. */ 12772 for (i = 0; i < 32; i++) { 12773 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12774 } 12775 12776 /* Zap the high bits of the pregs and ffr. */ 12777 pmask = 0; 12778 if (vq & 3) { 12779 pmask = ~(-1ULL << (16 * (vq & 3))); 12780 } 12781 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12782 for (i = 0; i < 17; ++i) { 12783 env->vfp.pregs[i].p[j] &= pmask; 12784 } 12785 pmask = 0; 12786 } 12787 } 12788 12789 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12790 { 12791 int exc_el; 12792 12793 if (sm) { 12794 exc_el = sme_exception_el(env, el); 12795 } else { 12796 exc_el = sve_exception_el(env, el); 12797 } 12798 if (exc_el) { 12799 return 0; /* disabled */ 12800 } 12801 return sve_vqm1_for_el_sm(env, el, sm); 12802 } 12803 12804 /* 12805 * Notice a change in SVE vector size when changing EL. 12806 */ 12807 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12808 int new_el, bool el0_a64) 12809 { 12810 ARMCPU *cpu = env_archcpu(env); 12811 int old_len, new_len; 12812 bool old_a64, new_a64, sm; 12813 12814 /* Nothing to do if no SVE. */ 12815 if (!cpu_isar_feature(aa64_sve, cpu)) { 12816 return; 12817 } 12818 12819 /* Nothing to do if FP is disabled in either EL. */ 12820 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12821 return; 12822 } 12823 12824 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12825 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12826 12827 /* 12828 * Both AArch64.TakeException and AArch64.ExceptionReturn 12829 * invoke ResetSVEState when taking an exception from, or 12830 * returning to, AArch32 state when PSTATE.SM is enabled. 12831 */ 12832 sm = FIELD_EX64(env->svcr, SVCR, SM); 12833 if (old_a64 != new_a64 && sm) { 12834 arm_reset_sve_state(env); 12835 return; 12836 } 12837 12838 /* 12839 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12840 * at ELx, or not available because the EL is in AArch32 state, then 12841 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12842 * has an effective value of 0". 12843 * 12844 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12845 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12846 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12847 * we already have the correct register contents when encountering the 12848 * vq0->vq0 transition between EL0->EL1. 12849 */ 12850 old_len = new_len = 0; 12851 if (old_a64) { 12852 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12853 } 12854 if (new_a64) { 12855 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12856 } 12857 12858 /* When changing vector length, clear inaccessible state. */ 12859 if (new_len < old_len) { 12860 aarch64_sve_narrow_vq(env, new_len + 1); 12861 } 12862 } 12863 #endif 12864 12865 #ifndef CONFIG_USER_ONLY 12866 ARMSecuritySpace arm_security_space(CPUARMState *env) 12867 { 12868 if (arm_feature(env, ARM_FEATURE_M)) { 12869 return arm_secure_to_space(env->v7m.secure); 12870 } 12871 12872 /* 12873 * If EL3 is not supported then the secure state is implementation 12874 * defined, in which case QEMU defaults to non-secure. 12875 */ 12876 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12877 return ARMSS_NonSecure; 12878 } 12879 12880 /* Check for AArch64 EL3 or AArch32 Mon. */ 12881 if (is_a64(env)) { 12882 if (extract32(env->pstate, 2, 2) == 3) { 12883 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12884 return ARMSS_Root; 12885 } else { 12886 return ARMSS_Secure; 12887 } 12888 } 12889 } else { 12890 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12891 return ARMSS_Secure; 12892 } 12893 } 12894 12895 return arm_security_space_below_el3(env); 12896 } 12897 12898 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12899 { 12900 assert(!arm_feature(env, ARM_FEATURE_M)); 12901 12902 /* 12903 * If EL3 is not supported then the secure state is implementation 12904 * defined, in which case QEMU defaults to non-secure. 12905 */ 12906 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12907 return ARMSS_NonSecure; 12908 } 12909 12910 /* 12911 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12912 * Ignoring NSE when !NS retains consistency without having to 12913 * modify other predicates. 12914 */ 12915 if (!(env->cp15.scr_el3 & SCR_NS)) { 12916 return ARMSS_Secure; 12917 } else if (env->cp15.scr_el3 & SCR_NSE) { 12918 return ARMSS_Realm; 12919 } else { 12920 return ARMSS_NonSecure; 12921 } 12922 } 12923 #endif /* !CONFIG_USER_ONLY */ 12924