1 #include "qemu/osdep.h" 2 #include "trace.h" 3 #include "cpu.h" 4 #include "internals.h" 5 #include "exec/gdbstub.h" 6 #include "exec/helper-proto.h" 7 #include "qemu/host-utils.h" 8 #include "sysemu/arch_init.h" 9 #include "sysemu/sysemu.h" 10 #include "qemu/bitops.h" 11 #include "qemu/crc32c.h" 12 #include "exec/exec-all.h" 13 #include "exec/cpu_ldst.h" 14 #include "arm_ldst.h" 15 #include <zlib.h> /* For crc32 */ 16 #include "exec/semihost.h" 17 #include "sysemu/kvm.h" 18 19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 20 21 #ifndef CONFIG_USER_ONLY 22 /* Cacheability and shareability attributes for a memory access */ 23 typedef struct ARMCacheAttrs { 24 unsigned int attrs:8; /* as in the MAIR register encoding */ 25 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 26 } ARMCacheAttrs; 27 28 static bool get_phys_addr(CPUARMState *env, target_ulong address, 29 MMUAccessType access_type, ARMMMUIdx mmu_idx, 30 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 31 target_ulong *page_size, uint32_t *fsr, 32 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 33 34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 35 MMUAccessType access_type, ARMMMUIdx mmu_idx, 36 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 37 target_ulong *page_size_ptr, uint32_t *fsr, 38 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 39 40 /* Security attributes for an address, as returned by v8m_security_lookup. */ 41 typedef struct V8M_SAttributes { 42 bool ns; 43 bool nsc; 44 uint8_t sregion; 45 bool srvalid; 46 uint8_t iregion; 47 bool irvalid; 48 } V8M_SAttributes; 49 50 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 51 MMUAccessType access_type, ARMMMUIdx mmu_idx, 52 V8M_SAttributes *sattrs); 53 54 /* Definitions for the PMCCNTR and PMCR registers */ 55 #define PMCRD 0x8 56 #define PMCRC 0x4 57 #define PMCRE 0x1 58 #endif 59 60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 61 { 62 int nregs; 63 64 /* VFP data registers are always little-endian. */ 65 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 66 if (reg < nregs) { 67 stfq_le_p(buf, env->vfp.regs[reg]); 68 return 8; 69 } 70 if (arm_feature(env, ARM_FEATURE_NEON)) { 71 /* Aliases for Q regs. */ 72 nregs += 16; 73 if (reg < nregs) { 74 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]); 75 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]); 76 return 16; 77 } 78 } 79 switch (reg - nregs) { 80 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 81 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 82 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 83 } 84 return 0; 85 } 86 87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 88 { 89 int nregs; 90 91 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 92 if (reg < nregs) { 93 env->vfp.regs[reg] = ldfq_le_p(buf); 94 return 8; 95 } 96 if (arm_feature(env, ARM_FEATURE_NEON)) { 97 nregs += 16; 98 if (reg < nregs) { 99 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf); 100 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8); 101 return 16; 102 } 103 } 104 switch (reg - nregs) { 105 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 106 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 107 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 108 } 109 return 0; 110 } 111 112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 113 { 114 switch (reg) { 115 case 0 ... 31: 116 /* 128 bit FP register */ 117 stfq_le_p(buf, env->vfp.regs[reg * 2]); 118 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]); 119 return 16; 120 case 32: 121 /* FPSR */ 122 stl_p(buf, vfp_get_fpsr(env)); 123 return 4; 124 case 33: 125 /* FPCR */ 126 stl_p(buf, vfp_get_fpcr(env)); 127 return 4; 128 default: 129 return 0; 130 } 131 } 132 133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 134 { 135 switch (reg) { 136 case 0 ... 31: 137 /* 128 bit FP register */ 138 env->vfp.regs[reg * 2] = ldfq_le_p(buf); 139 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8); 140 return 16; 141 case 32: 142 /* FPSR */ 143 vfp_set_fpsr(env, ldl_p(buf)); 144 return 4; 145 case 33: 146 /* FPCR */ 147 vfp_set_fpcr(env, ldl_p(buf)); 148 return 4; 149 default: 150 return 0; 151 } 152 } 153 154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 155 { 156 assert(ri->fieldoffset); 157 if (cpreg_field_is_64bit(ri)) { 158 return CPREG_FIELD64(env, ri); 159 } else { 160 return CPREG_FIELD32(env, ri); 161 } 162 } 163 164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 165 uint64_t value) 166 { 167 assert(ri->fieldoffset); 168 if (cpreg_field_is_64bit(ri)) { 169 CPREG_FIELD64(env, ri) = value; 170 } else { 171 CPREG_FIELD32(env, ri) = value; 172 } 173 } 174 175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 176 { 177 return (char *)env + ri->fieldoffset; 178 } 179 180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 181 { 182 /* Raw read of a coprocessor register (as needed for migration, etc). */ 183 if (ri->type & ARM_CP_CONST) { 184 return ri->resetvalue; 185 } else if (ri->raw_readfn) { 186 return ri->raw_readfn(env, ri); 187 } else if (ri->readfn) { 188 return ri->readfn(env, ri); 189 } else { 190 return raw_read(env, ri); 191 } 192 } 193 194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 195 uint64_t v) 196 { 197 /* Raw write of a coprocessor register (as needed for migration, etc). 198 * Note that constant registers are treated as write-ignored; the 199 * caller should check for success by whether a readback gives the 200 * value written. 201 */ 202 if (ri->type & ARM_CP_CONST) { 203 return; 204 } else if (ri->raw_writefn) { 205 ri->raw_writefn(env, ri, v); 206 } else if (ri->writefn) { 207 ri->writefn(env, ri, v); 208 } else { 209 raw_write(env, ri, v); 210 } 211 } 212 213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 214 { 215 /* Return true if the regdef would cause an assertion if you called 216 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 217 * program bug for it not to have the NO_RAW flag). 218 * NB that returning false here doesn't necessarily mean that calling 219 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 220 * read/write access functions which are safe for raw use" from "has 221 * read/write access functions which have side effects but has forgotten 222 * to provide raw access functions". 223 * The tests here line up with the conditions in read/write_raw_cp_reg() 224 * and assertions in raw_read()/raw_write(). 225 */ 226 if ((ri->type & ARM_CP_CONST) || 227 ri->fieldoffset || 228 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 229 return false; 230 } 231 return true; 232 } 233 234 bool write_cpustate_to_list(ARMCPU *cpu) 235 { 236 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 237 int i; 238 bool ok = true; 239 240 for (i = 0; i < cpu->cpreg_array_len; i++) { 241 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 242 const ARMCPRegInfo *ri; 243 244 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 245 if (!ri) { 246 ok = false; 247 continue; 248 } 249 if (ri->type & ARM_CP_NO_RAW) { 250 continue; 251 } 252 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 253 } 254 return ok; 255 } 256 257 bool write_list_to_cpustate(ARMCPU *cpu) 258 { 259 int i; 260 bool ok = true; 261 262 for (i = 0; i < cpu->cpreg_array_len; i++) { 263 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 264 uint64_t v = cpu->cpreg_values[i]; 265 const ARMCPRegInfo *ri; 266 267 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 268 if (!ri) { 269 ok = false; 270 continue; 271 } 272 if (ri->type & ARM_CP_NO_RAW) { 273 continue; 274 } 275 /* Write value and confirm it reads back as written 276 * (to catch read-only registers and partially read-only 277 * registers where the incoming migration value doesn't match) 278 */ 279 write_raw_cp_reg(&cpu->env, ri, v); 280 if (read_raw_cp_reg(&cpu->env, ri) != v) { 281 ok = false; 282 } 283 } 284 return ok; 285 } 286 287 static void add_cpreg_to_list(gpointer key, gpointer opaque) 288 { 289 ARMCPU *cpu = opaque; 290 uint64_t regidx; 291 const ARMCPRegInfo *ri; 292 293 regidx = *(uint32_t *)key; 294 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 295 296 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 297 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 298 /* The value array need not be initialized at this point */ 299 cpu->cpreg_array_len++; 300 } 301 } 302 303 static void count_cpreg(gpointer key, gpointer opaque) 304 { 305 ARMCPU *cpu = opaque; 306 uint64_t regidx; 307 const ARMCPRegInfo *ri; 308 309 regidx = *(uint32_t *)key; 310 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 311 312 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 313 cpu->cpreg_array_len++; 314 } 315 } 316 317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 318 { 319 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 320 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 321 322 if (aidx > bidx) { 323 return 1; 324 } 325 if (aidx < bidx) { 326 return -1; 327 } 328 return 0; 329 } 330 331 void init_cpreg_list(ARMCPU *cpu) 332 { 333 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 334 * Note that we require cpreg_tuples[] to be sorted by key ID. 335 */ 336 GList *keys; 337 int arraylen; 338 339 keys = g_hash_table_get_keys(cpu->cp_regs); 340 keys = g_list_sort(keys, cpreg_key_compare); 341 342 cpu->cpreg_array_len = 0; 343 344 g_list_foreach(keys, count_cpreg, cpu); 345 346 arraylen = cpu->cpreg_array_len; 347 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 348 cpu->cpreg_values = g_new(uint64_t, arraylen); 349 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 350 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 351 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 352 cpu->cpreg_array_len = 0; 353 354 g_list_foreach(keys, add_cpreg_to_list, cpu); 355 356 assert(cpu->cpreg_array_len == arraylen); 357 358 g_list_free(keys); 359 } 360 361 /* 362 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 363 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 364 * 365 * access_el3_aa32ns: Used to check AArch32 register views. 366 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 367 */ 368 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 369 const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 bool secure = arm_is_secure_below_el3(env); 373 374 assert(!arm_el_is_aa64(env, 3)); 375 if (secure) { 376 return CP_ACCESS_TRAP_UNCATEGORIZED; 377 } 378 return CP_ACCESS_OK; 379 } 380 381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 382 const ARMCPRegInfo *ri, 383 bool isread) 384 { 385 if (!arm_el_is_aa64(env, 3)) { 386 return access_el3_aa32ns(env, ri, isread); 387 } 388 return CP_ACCESS_OK; 389 } 390 391 /* Some secure-only AArch32 registers trap to EL3 if used from 392 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 393 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 394 * We assume that the .access field is set to PL1_RW. 395 */ 396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 397 const ARMCPRegInfo *ri, 398 bool isread) 399 { 400 if (arm_current_el(env) == 3) { 401 return CP_ACCESS_OK; 402 } 403 if (arm_is_secure_below_el3(env)) { 404 return CP_ACCESS_TRAP_EL3; 405 } 406 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 407 return CP_ACCESS_TRAP_UNCATEGORIZED; 408 } 409 410 /* Check for traps to "powerdown debug" registers, which are controlled 411 * by MDCR.TDOSA 412 */ 413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 414 bool isread) 415 { 416 int el = arm_current_el(env); 417 418 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 419 && !arm_is_secure_below_el3(env)) { 420 return CP_ACCESS_TRAP_EL2; 421 } 422 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 423 return CP_ACCESS_TRAP_EL3; 424 } 425 return CP_ACCESS_OK; 426 } 427 428 /* Check for traps to "debug ROM" registers, which are controlled 429 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 430 */ 431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 int el = arm_current_el(env); 435 436 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 437 && !arm_is_secure_below_el3(env)) { 438 return CP_ACCESS_TRAP_EL2; 439 } 440 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 441 return CP_ACCESS_TRAP_EL3; 442 } 443 return CP_ACCESS_OK; 444 } 445 446 /* Check for traps to general debug registers, which are controlled 447 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 448 */ 449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 450 bool isread) 451 { 452 int el = arm_current_el(env); 453 454 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 455 && !arm_is_secure_below_el3(env)) { 456 return CP_ACCESS_TRAP_EL2; 457 } 458 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 459 return CP_ACCESS_TRAP_EL3; 460 } 461 return CP_ACCESS_OK; 462 } 463 464 /* Check for traps to performance monitor registers, which are controlled 465 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 466 */ 467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 468 bool isread) 469 { 470 int el = arm_current_el(env); 471 472 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 473 && !arm_is_secure_below_el3(env)) { 474 return CP_ACCESS_TRAP_EL2; 475 } 476 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 477 return CP_ACCESS_TRAP_EL3; 478 } 479 return CP_ACCESS_OK; 480 } 481 482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 483 { 484 ARMCPU *cpu = arm_env_get_cpu(env); 485 486 raw_write(env, ri, value); 487 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 488 } 489 490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 491 { 492 ARMCPU *cpu = arm_env_get_cpu(env); 493 494 if (raw_read(env, ri) != value) { 495 /* Unlike real hardware the qemu TLB uses virtual addresses, 496 * not modified virtual addresses, so this causes a TLB flush. 497 */ 498 tlb_flush(CPU(cpu)); 499 raw_write(env, ri, value); 500 } 501 } 502 503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 504 uint64_t value) 505 { 506 ARMCPU *cpu = arm_env_get_cpu(env); 507 508 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 509 && !extended_addresses_enabled(env)) { 510 /* For VMSA (when not using the LPAE long descriptor page table 511 * format) this register includes the ASID, so do a TLB flush. 512 * For PMSA it is purely a process ID and no action is needed. 513 */ 514 tlb_flush(CPU(cpu)); 515 } 516 raw_write(env, ri, value); 517 } 518 519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 520 uint64_t value) 521 { 522 /* Invalidate all (TLBIALL) */ 523 ARMCPU *cpu = arm_env_get_cpu(env); 524 525 tlb_flush(CPU(cpu)); 526 } 527 528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 529 uint64_t value) 530 { 531 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 532 ARMCPU *cpu = arm_env_get_cpu(env); 533 534 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 535 } 536 537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 /* Invalidate by ASID (TLBIASID) */ 541 ARMCPU *cpu = arm_env_get_cpu(env); 542 543 tlb_flush(CPU(cpu)); 544 } 545 546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 547 uint64_t value) 548 { 549 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 550 ARMCPU *cpu = arm_env_get_cpu(env); 551 552 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 553 } 554 555 /* IS variants of TLB operations must affect all cores */ 556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 557 uint64_t value) 558 { 559 CPUState *cs = ENV_GET_CPU(env); 560 561 tlb_flush_all_cpus_synced(cs); 562 } 563 564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 565 uint64_t value) 566 { 567 CPUState *cs = ENV_GET_CPU(env); 568 569 tlb_flush_all_cpus_synced(cs); 570 } 571 572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 573 uint64_t value) 574 { 575 CPUState *cs = ENV_GET_CPU(env); 576 577 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 578 } 579 580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 CPUState *cs = ENV_GET_CPU(env); 584 585 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 586 } 587 588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 589 uint64_t value) 590 { 591 CPUState *cs = ENV_GET_CPU(env); 592 593 tlb_flush_by_mmuidx(cs, 594 ARMMMUIdxBit_S12NSE1 | 595 ARMMMUIdxBit_S12NSE0 | 596 ARMMMUIdxBit_S2NS); 597 } 598 599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 600 uint64_t value) 601 { 602 CPUState *cs = ENV_GET_CPU(env); 603 604 tlb_flush_by_mmuidx_all_cpus_synced(cs, 605 ARMMMUIdxBit_S12NSE1 | 606 ARMMMUIdxBit_S12NSE0 | 607 ARMMMUIdxBit_S2NS); 608 } 609 610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 611 uint64_t value) 612 { 613 /* Invalidate by IPA. This has to invalidate any structures that 614 * contain only stage 2 translation information, but does not need 615 * to apply to structures that contain combined stage 1 and stage 2 616 * translation information. 617 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 618 */ 619 CPUState *cs = ENV_GET_CPU(env); 620 uint64_t pageaddr; 621 622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 623 return; 624 } 625 626 pageaddr = sextract64(value << 12, 0, 40); 627 628 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 629 } 630 631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 632 uint64_t value) 633 { 634 CPUState *cs = ENV_GET_CPU(env); 635 uint64_t pageaddr; 636 637 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 638 return; 639 } 640 641 pageaddr = sextract64(value << 12, 0, 40); 642 643 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 644 ARMMMUIdxBit_S2NS); 645 } 646 647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 648 uint64_t value) 649 { 650 CPUState *cs = ENV_GET_CPU(env); 651 652 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 653 } 654 655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 656 uint64_t value) 657 { 658 CPUState *cs = ENV_GET_CPU(env); 659 660 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 661 } 662 663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 664 uint64_t value) 665 { 666 CPUState *cs = ENV_GET_CPU(env); 667 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 668 669 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 670 } 671 672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 673 uint64_t value) 674 { 675 CPUState *cs = ENV_GET_CPU(env); 676 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 677 678 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 679 ARMMMUIdxBit_S1E2); 680 } 681 682 static const ARMCPRegInfo cp_reginfo[] = { 683 /* Define the secure and non-secure FCSE identifier CP registers 684 * separately because there is no secure bank in V8 (no _EL3). This allows 685 * the secure register to be properly reset and migrated. There is also no 686 * v8 EL1 version of the register so the non-secure instance stands alone. 687 */ 688 { .name = "FCSEIDR(NS)", 689 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 690 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 691 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 692 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 693 { .name = "FCSEIDR(S)", 694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 698 /* Define the secure and non-secure context identifier CP registers 699 * separately because there is no secure bank in V8 (no _EL3). This allows 700 * the secure register to be properly reset and migrated. In the 701 * non-secure case, the 32-bit register will have reset and migration 702 * disabled during registration as it is handled by the 64-bit instance. 703 */ 704 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 705 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 706 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 707 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 708 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 709 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 710 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 718 /* NB: Some of these registers exist in v8 but with more precise 719 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 720 */ 721 /* MMU Domain access control / MPU write buffer control */ 722 { .name = "DACR", 723 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 724 .access = PL1_RW, .resetvalue = 0, 725 .writefn = dacr_write, .raw_writefn = raw_write, 726 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 727 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 728 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 729 * For v6 and v5, these mappings are overly broad. 730 */ 731 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 732 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 733 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 734 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 735 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 736 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 737 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 738 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 739 /* Cache maintenance ops; some of this space may be overridden later. */ 740 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 741 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 742 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 743 REGINFO_SENTINEL 744 }; 745 746 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 747 /* Not all pre-v6 cores implemented this WFI, so this is slightly 748 * over-broad. 749 */ 750 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 751 .access = PL1_W, .type = ARM_CP_WFI }, 752 REGINFO_SENTINEL 753 }; 754 755 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 756 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 757 * is UNPREDICTABLE; we choose to NOP as most implementations do). 758 */ 759 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 760 .access = PL1_W, .type = ARM_CP_WFI }, 761 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 762 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 763 * OMAPCP will override this space. 764 */ 765 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 766 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 767 .resetvalue = 0 }, 768 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 769 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 770 .resetvalue = 0 }, 771 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 772 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 773 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 774 .resetvalue = 0 }, 775 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 776 * implementing it as RAZ means the "debug architecture version" bits 777 * will read as a reserved value, which should cause Linux to not try 778 * to use the debug hardware. 779 */ 780 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 781 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 782 /* MMU TLB control. Note that the wildcarding means we cover not just 783 * the unified TLB ops but also the dside/iside/inner-shareable variants. 784 */ 785 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 786 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 787 .type = ARM_CP_NO_RAW }, 788 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 789 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 790 .type = ARM_CP_NO_RAW }, 791 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 792 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 793 .type = ARM_CP_NO_RAW }, 794 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 795 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 796 .type = ARM_CP_NO_RAW }, 797 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 798 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 799 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 800 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 801 REGINFO_SENTINEL 802 }; 803 804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 805 uint64_t value) 806 { 807 uint32_t mask = 0; 808 809 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 810 if (!arm_feature(env, ARM_FEATURE_V8)) { 811 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 812 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 813 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 814 */ 815 if (arm_feature(env, ARM_FEATURE_VFP)) { 816 /* VFP coprocessor: cp10 & cp11 [23:20] */ 817 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 818 819 if (!arm_feature(env, ARM_FEATURE_NEON)) { 820 /* ASEDIS [31] bit is RAO/WI */ 821 value |= (1 << 31); 822 } 823 824 /* VFPv3 and upwards with NEON implement 32 double precision 825 * registers (D0-D31). 826 */ 827 if (!arm_feature(env, ARM_FEATURE_NEON) || 828 !arm_feature(env, ARM_FEATURE_VFP3)) { 829 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 830 value |= (1 << 30); 831 } 832 } 833 value &= mask; 834 } 835 env->cp15.cpacr_el1 = value; 836 } 837 838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 839 bool isread) 840 { 841 if (arm_feature(env, ARM_FEATURE_V8)) { 842 /* Check if CPACR accesses are to be trapped to EL2 */ 843 if (arm_current_el(env) == 1 && 844 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 845 return CP_ACCESS_TRAP_EL2; 846 /* Check if CPACR accesses are to be trapped to EL3 */ 847 } else if (arm_current_el(env) < 3 && 848 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 849 return CP_ACCESS_TRAP_EL3; 850 } 851 } 852 853 return CP_ACCESS_OK; 854 } 855 856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 857 bool isread) 858 { 859 /* Check if CPTR accesses are set to trap to EL3 */ 860 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 861 return CP_ACCESS_TRAP_EL3; 862 } 863 864 return CP_ACCESS_OK; 865 } 866 867 static const ARMCPRegInfo v6_cp_reginfo[] = { 868 /* prefetch by MVA in v6, NOP in v7 */ 869 { .name = "MVA_prefetch", 870 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 871 .access = PL1_W, .type = ARM_CP_NOP }, 872 /* We need to break the TB after ISB to execute self-modifying code 873 * correctly and also to take any pending interrupts immediately. 874 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 875 */ 876 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 877 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 878 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 879 .access = PL0_W, .type = ARM_CP_NOP }, 880 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 881 .access = PL0_W, .type = ARM_CP_NOP }, 882 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 883 .access = PL1_RW, 884 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 885 offsetof(CPUARMState, cp15.ifar_ns) }, 886 .resetvalue = 0, }, 887 /* Watchpoint Fault Address Register : should actually only be present 888 * for 1136, 1176, 11MPCore. 889 */ 890 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 891 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 892 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 893 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 894 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 895 .resetvalue = 0, .writefn = cpacr_write }, 896 REGINFO_SENTINEL 897 }; 898 899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 900 bool isread) 901 { 902 /* Performance monitor registers user accessibility is controlled 903 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 904 * trapping to EL2 or EL3 for other accesses. 905 */ 906 int el = arm_current_el(env); 907 908 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 909 return CP_ACCESS_TRAP; 910 } 911 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 912 && !arm_is_secure_below_el3(env)) { 913 return CP_ACCESS_TRAP_EL2; 914 } 915 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 916 return CP_ACCESS_TRAP_EL3; 917 } 918 919 return CP_ACCESS_OK; 920 } 921 922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 923 const ARMCPRegInfo *ri, 924 bool isread) 925 { 926 /* ER: event counter read trap control */ 927 if (arm_feature(env, ARM_FEATURE_V8) 928 && arm_current_el(env) == 0 929 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 930 && isread) { 931 return CP_ACCESS_OK; 932 } 933 934 return pmreg_access(env, ri, isread); 935 } 936 937 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 938 const ARMCPRegInfo *ri, 939 bool isread) 940 { 941 /* SW: software increment write trap control */ 942 if (arm_feature(env, ARM_FEATURE_V8) 943 && arm_current_el(env) == 0 944 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 945 && !isread) { 946 return CP_ACCESS_OK; 947 } 948 949 return pmreg_access(env, ri, isread); 950 } 951 952 #ifndef CONFIG_USER_ONLY 953 954 static CPAccessResult pmreg_access_selr(CPUARMState *env, 955 const ARMCPRegInfo *ri, 956 bool isread) 957 { 958 /* ER: event counter read trap control */ 959 if (arm_feature(env, ARM_FEATURE_V8) 960 && arm_current_el(env) == 0 961 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 962 return CP_ACCESS_OK; 963 } 964 965 return pmreg_access(env, ri, isread); 966 } 967 968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 969 const ARMCPRegInfo *ri, 970 bool isread) 971 { 972 /* CR: cycle counter read trap control */ 973 if (arm_feature(env, ARM_FEATURE_V8) 974 && arm_current_el(env) == 0 975 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 976 && isread) { 977 return CP_ACCESS_OK; 978 } 979 980 return pmreg_access(env, ri, isread); 981 } 982 983 static inline bool arm_ccnt_enabled(CPUARMState *env) 984 { 985 /* This does not support checking PMCCFILTR_EL0 register */ 986 987 if (!(env->cp15.c9_pmcr & PMCRE)) { 988 return false; 989 } 990 991 return true; 992 } 993 994 void pmccntr_sync(CPUARMState *env) 995 { 996 uint64_t temp_ticks; 997 998 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 999 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1000 1001 if (env->cp15.c9_pmcr & PMCRD) { 1002 /* Increment once every 64 processor clock cycles */ 1003 temp_ticks /= 64; 1004 } 1005 1006 if (arm_ccnt_enabled(env)) { 1007 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1008 } 1009 } 1010 1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1012 uint64_t value) 1013 { 1014 pmccntr_sync(env); 1015 1016 if (value & PMCRC) { 1017 /* The counter has been reset */ 1018 env->cp15.c15_ccnt = 0; 1019 } 1020 1021 /* only the DP, X, D and E bits are writable */ 1022 env->cp15.c9_pmcr &= ~0x39; 1023 env->cp15.c9_pmcr |= (value & 0x39); 1024 1025 pmccntr_sync(env); 1026 } 1027 1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1029 { 1030 uint64_t total_ticks; 1031 1032 if (!arm_ccnt_enabled(env)) { 1033 /* Counter is disabled, do not change value */ 1034 return env->cp15.c15_ccnt; 1035 } 1036 1037 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1038 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1039 1040 if (env->cp15.c9_pmcr & PMCRD) { 1041 /* Increment once every 64 processor clock cycles */ 1042 total_ticks /= 64; 1043 } 1044 return total_ticks - env->cp15.c15_ccnt; 1045 } 1046 1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1048 uint64_t value) 1049 { 1050 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1051 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1052 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1053 * accessed. 1054 */ 1055 env->cp15.c9_pmselr = value & 0x1f; 1056 } 1057 1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1059 uint64_t value) 1060 { 1061 uint64_t total_ticks; 1062 1063 if (!arm_ccnt_enabled(env)) { 1064 /* Counter is disabled, set the absolute value */ 1065 env->cp15.c15_ccnt = value; 1066 return; 1067 } 1068 1069 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1070 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1071 1072 if (env->cp15.c9_pmcr & PMCRD) { 1073 /* Increment once every 64 processor clock cycles */ 1074 total_ticks /= 64; 1075 } 1076 env->cp15.c15_ccnt = total_ticks - value; 1077 } 1078 1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1080 uint64_t value) 1081 { 1082 uint64_t cur_val = pmccntr_read(env, NULL); 1083 1084 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1085 } 1086 1087 #else /* CONFIG_USER_ONLY */ 1088 1089 void pmccntr_sync(CPUARMState *env) 1090 { 1091 } 1092 1093 #endif 1094 1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1096 uint64_t value) 1097 { 1098 pmccntr_sync(env); 1099 env->cp15.pmccfiltr_el0 = value & 0x7E000000; 1100 pmccntr_sync(env); 1101 } 1102 1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1104 uint64_t value) 1105 { 1106 value &= (1 << 31); 1107 env->cp15.c9_pmcnten |= value; 1108 } 1109 1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1111 uint64_t value) 1112 { 1113 value &= (1 << 31); 1114 env->cp15.c9_pmcnten &= ~value; 1115 } 1116 1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1118 uint64_t value) 1119 { 1120 env->cp15.c9_pmovsr &= ~value; 1121 } 1122 1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1124 uint64_t value) 1125 { 1126 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1127 * PMSELR value is equal to or greater than the number of implemented 1128 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1129 */ 1130 if (env->cp15.c9_pmselr == 0x1f) { 1131 pmccfiltr_write(env, ri, value); 1132 } 1133 } 1134 1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1136 { 1137 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1138 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1139 */ 1140 if (env->cp15.c9_pmselr == 0x1f) { 1141 return env->cp15.pmccfiltr_el0; 1142 } else { 1143 return 0; 1144 } 1145 } 1146 1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1148 uint64_t value) 1149 { 1150 if (arm_feature(env, ARM_FEATURE_V8)) { 1151 env->cp15.c9_pmuserenr = value & 0xf; 1152 } else { 1153 env->cp15.c9_pmuserenr = value & 1; 1154 } 1155 } 1156 1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1158 uint64_t value) 1159 { 1160 /* We have no event counters so only the C bit can be changed */ 1161 value &= (1 << 31); 1162 env->cp15.c9_pminten |= value; 1163 } 1164 1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1166 uint64_t value) 1167 { 1168 value &= (1 << 31); 1169 env->cp15.c9_pminten &= ~value; 1170 } 1171 1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1173 uint64_t value) 1174 { 1175 /* Note that even though the AArch64 view of this register has bits 1176 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1177 * architectural requirements for bits which are RES0 only in some 1178 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1179 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1180 */ 1181 raw_write(env, ri, value & ~0x1FULL); 1182 } 1183 1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1185 { 1186 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1187 * For bits that vary between AArch32/64, code needs to check the 1188 * current execution mode before directly using the feature bit. 1189 */ 1190 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1191 1192 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1193 valid_mask &= ~SCR_HCE; 1194 1195 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1196 * supported if EL2 exists. The bit is UNK/SBZP when 1197 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1198 * when EL2 is unavailable. 1199 * On ARMv8, this bit is always available. 1200 */ 1201 if (arm_feature(env, ARM_FEATURE_V7) && 1202 !arm_feature(env, ARM_FEATURE_V8)) { 1203 valid_mask &= ~SCR_SMD; 1204 } 1205 } 1206 1207 /* Clear all-context RES0 bits. */ 1208 value &= valid_mask; 1209 raw_write(env, ri, value); 1210 } 1211 1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1213 { 1214 ARMCPU *cpu = arm_env_get_cpu(env); 1215 1216 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1217 * bank 1218 */ 1219 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1220 ri->secure & ARM_CP_SECSTATE_S); 1221 1222 return cpu->ccsidr[index]; 1223 } 1224 1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1226 uint64_t value) 1227 { 1228 raw_write(env, ri, value & 0xf); 1229 } 1230 1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1232 { 1233 CPUState *cs = ENV_GET_CPU(env); 1234 uint64_t ret = 0; 1235 1236 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1237 ret |= CPSR_I; 1238 } 1239 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1240 ret |= CPSR_F; 1241 } 1242 /* External aborts are not possible in QEMU so A bit is always clear */ 1243 return ret; 1244 } 1245 1246 static const ARMCPRegInfo v7_cp_reginfo[] = { 1247 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1248 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1249 .access = PL1_W, .type = ARM_CP_NOP }, 1250 /* Performance monitors are implementation defined in v7, 1251 * but with an ARM recommended set of registers, which we 1252 * follow (although we don't actually implement any counters) 1253 * 1254 * Performance registers fall into three categories: 1255 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1256 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1257 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1258 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1259 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1260 */ 1261 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1262 .access = PL0_RW, .type = ARM_CP_ALIAS, 1263 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1264 .writefn = pmcntenset_write, 1265 .accessfn = pmreg_access, 1266 .raw_writefn = raw_write }, 1267 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1268 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1269 .access = PL0_RW, .accessfn = pmreg_access, 1270 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1271 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1272 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1273 .access = PL0_RW, 1274 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1275 .accessfn = pmreg_access, 1276 .writefn = pmcntenclr_write, 1277 .type = ARM_CP_ALIAS }, 1278 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1279 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1280 .access = PL0_RW, .accessfn = pmreg_access, 1281 .type = ARM_CP_ALIAS, 1282 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1283 .writefn = pmcntenclr_write }, 1284 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1285 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1286 .accessfn = pmreg_access, 1287 .writefn = pmovsr_write, 1288 .raw_writefn = raw_write }, 1289 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1290 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1291 .access = PL0_RW, .accessfn = pmreg_access, 1292 .type = ARM_CP_ALIAS, 1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1294 .writefn = pmovsr_write, 1295 .raw_writefn = raw_write }, 1296 /* Unimplemented so WI. */ 1297 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1298 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1299 #ifndef CONFIG_USER_ONLY 1300 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1301 .access = PL0_RW, .type = ARM_CP_ALIAS, 1302 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1303 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1304 .raw_writefn = raw_write}, 1305 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1306 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1307 .access = PL0_RW, .accessfn = pmreg_access_selr, 1308 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1309 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1310 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1311 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO, 1312 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1313 .accessfn = pmreg_access_ccntr }, 1314 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1315 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1316 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1317 .type = ARM_CP_IO, 1318 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1319 #endif 1320 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1321 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1322 .writefn = pmccfiltr_write, 1323 .access = PL0_RW, .accessfn = pmreg_access, 1324 .type = ARM_CP_IO, 1325 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1326 .resetvalue = 0, }, 1327 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1328 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1329 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1330 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1331 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1332 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1333 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1334 /* Unimplemented, RAZ/WI. */ 1335 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1336 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1337 .accessfn = pmreg_access_xevcntr }, 1338 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1339 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1340 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1341 .resetvalue = 0, 1342 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1343 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1344 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1345 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1346 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1347 .resetvalue = 0, 1348 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1349 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1350 .access = PL1_RW, .accessfn = access_tpm, 1351 .type = ARM_CP_ALIAS, 1352 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1353 .resetvalue = 0, 1354 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1355 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1356 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1357 .access = PL1_RW, .accessfn = access_tpm, 1358 .type = ARM_CP_IO, 1359 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1360 .writefn = pmintenset_write, .raw_writefn = raw_write, 1361 .resetvalue = 0x0 }, 1362 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1363 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1364 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1365 .writefn = pmintenclr_write, }, 1366 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1367 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1368 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1369 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1370 .writefn = pmintenclr_write }, 1371 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1372 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1373 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1374 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1375 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1376 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1377 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1378 offsetof(CPUARMState, cp15.csselr_ns) } }, 1379 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1380 * just RAZ for all cores: 1381 */ 1382 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1383 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1384 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1385 /* Auxiliary fault status registers: these also are IMPDEF, and we 1386 * choose to RAZ/WI for all cores. 1387 */ 1388 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1389 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1390 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1391 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1392 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1393 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1394 /* MAIR can just read-as-written because we don't implement caches 1395 * and so don't need to care about memory attributes. 1396 */ 1397 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1398 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1399 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1400 .resetvalue = 0 }, 1401 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1402 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1403 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1404 .resetvalue = 0 }, 1405 /* For non-long-descriptor page tables these are PRRR and NMRR; 1406 * regardless they still act as reads-as-written for QEMU. 1407 */ 1408 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1409 * allows them to assign the correct fieldoffset based on the endianness 1410 * handled in the field definitions. 1411 */ 1412 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1413 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1414 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1415 offsetof(CPUARMState, cp15.mair0_ns) }, 1416 .resetfn = arm_cp_reset_ignore }, 1417 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1418 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1419 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1420 offsetof(CPUARMState, cp15.mair1_ns) }, 1421 .resetfn = arm_cp_reset_ignore }, 1422 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1424 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1425 /* 32 bit ITLB invalidates */ 1426 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1427 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1428 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1429 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1430 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1431 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1432 /* 32 bit DTLB invalidates */ 1433 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1434 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1435 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1436 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1437 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1438 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1439 /* 32 bit TLB invalidates */ 1440 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1441 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1442 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1443 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1444 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1445 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1446 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1447 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1448 REGINFO_SENTINEL 1449 }; 1450 1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1452 /* 32 bit TLB invalidates, Inner Shareable */ 1453 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1454 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1455 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1456 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1457 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1458 .type = ARM_CP_NO_RAW, .access = PL1_W, 1459 .writefn = tlbiasid_is_write }, 1460 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1461 .type = ARM_CP_NO_RAW, .access = PL1_W, 1462 .writefn = tlbimvaa_is_write }, 1463 REGINFO_SENTINEL 1464 }; 1465 1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1467 uint64_t value) 1468 { 1469 value &= 1; 1470 env->teecr = value; 1471 } 1472 1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1474 bool isread) 1475 { 1476 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1477 return CP_ACCESS_TRAP; 1478 } 1479 return CP_ACCESS_OK; 1480 } 1481 1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1483 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1484 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1485 .resetvalue = 0, 1486 .writefn = teecr_write }, 1487 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1488 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1489 .accessfn = teehbr_access, .resetvalue = 0 }, 1490 REGINFO_SENTINEL 1491 }; 1492 1493 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1494 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1495 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1496 .access = PL0_RW, 1497 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1498 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1499 .access = PL0_RW, 1500 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1501 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1502 .resetfn = arm_cp_reset_ignore }, 1503 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1504 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1505 .access = PL0_R|PL1_W, 1506 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1507 .resetvalue = 0}, 1508 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1509 .access = PL0_R|PL1_W, 1510 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1511 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1512 .resetfn = arm_cp_reset_ignore }, 1513 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1514 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1515 .access = PL1_RW, 1516 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1517 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1518 .access = PL1_RW, 1519 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1520 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1521 .resetvalue = 0 }, 1522 REGINFO_SENTINEL 1523 }; 1524 1525 #ifndef CONFIG_USER_ONLY 1526 1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1528 bool isread) 1529 { 1530 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1531 * Writable only at the highest implemented exception level. 1532 */ 1533 int el = arm_current_el(env); 1534 1535 switch (el) { 1536 case 0: 1537 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1538 return CP_ACCESS_TRAP; 1539 } 1540 break; 1541 case 1: 1542 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1543 arm_is_secure_below_el3(env)) { 1544 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1545 return CP_ACCESS_TRAP_UNCATEGORIZED; 1546 } 1547 break; 1548 case 2: 1549 case 3: 1550 break; 1551 } 1552 1553 if (!isread && el < arm_highest_el(env)) { 1554 return CP_ACCESS_TRAP_UNCATEGORIZED; 1555 } 1556 1557 return CP_ACCESS_OK; 1558 } 1559 1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1561 bool isread) 1562 { 1563 unsigned int cur_el = arm_current_el(env); 1564 bool secure = arm_is_secure(env); 1565 1566 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1567 if (cur_el == 0 && 1568 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1569 return CP_ACCESS_TRAP; 1570 } 1571 1572 if (arm_feature(env, ARM_FEATURE_EL2) && 1573 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1574 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1575 return CP_ACCESS_TRAP_EL2; 1576 } 1577 return CP_ACCESS_OK; 1578 } 1579 1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1581 bool isread) 1582 { 1583 unsigned int cur_el = arm_current_el(env); 1584 bool secure = arm_is_secure(env); 1585 1586 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1587 * EL0[PV]TEN is zero. 1588 */ 1589 if (cur_el == 0 && 1590 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1591 return CP_ACCESS_TRAP; 1592 } 1593 1594 if (arm_feature(env, ARM_FEATURE_EL2) && 1595 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1596 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1597 return CP_ACCESS_TRAP_EL2; 1598 } 1599 return CP_ACCESS_OK; 1600 } 1601 1602 static CPAccessResult gt_pct_access(CPUARMState *env, 1603 const ARMCPRegInfo *ri, 1604 bool isread) 1605 { 1606 return gt_counter_access(env, GTIMER_PHYS, isread); 1607 } 1608 1609 static CPAccessResult gt_vct_access(CPUARMState *env, 1610 const ARMCPRegInfo *ri, 1611 bool isread) 1612 { 1613 return gt_counter_access(env, GTIMER_VIRT, isread); 1614 } 1615 1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1617 bool isread) 1618 { 1619 return gt_timer_access(env, GTIMER_PHYS, isread); 1620 } 1621 1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1623 bool isread) 1624 { 1625 return gt_timer_access(env, GTIMER_VIRT, isread); 1626 } 1627 1628 static CPAccessResult gt_stimer_access(CPUARMState *env, 1629 const ARMCPRegInfo *ri, 1630 bool isread) 1631 { 1632 /* The AArch64 register view of the secure physical timer is 1633 * always accessible from EL3, and configurably accessible from 1634 * Secure EL1. 1635 */ 1636 switch (arm_current_el(env)) { 1637 case 1: 1638 if (!arm_is_secure(env)) { 1639 return CP_ACCESS_TRAP; 1640 } 1641 if (!(env->cp15.scr_el3 & SCR_ST)) { 1642 return CP_ACCESS_TRAP_EL3; 1643 } 1644 return CP_ACCESS_OK; 1645 case 0: 1646 case 2: 1647 return CP_ACCESS_TRAP; 1648 case 3: 1649 return CP_ACCESS_OK; 1650 default: 1651 g_assert_not_reached(); 1652 } 1653 } 1654 1655 static uint64_t gt_get_countervalue(CPUARMState *env) 1656 { 1657 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1658 } 1659 1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1661 { 1662 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1663 1664 if (gt->ctl & 1) { 1665 /* Timer enabled: calculate and set current ISTATUS, irq, and 1666 * reset timer to when ISTATUS next has to change 1667 */ 1668 uint64_t offset = timeridx == GTIMER_VIRT ? 1669 cpu->env.cp15.cntvoff_el2 : 0; 1670 uint64_t count = gt_get_countervalue(&cpu->env); 1671 /* Note that this must be unsigned 64 bit arithmetic: */ 1672 int istatus = count - offset >= gt->cval; 1673 uint64_t nexttick; 1674 int irqstate; 1675 1676 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1677 1678 irqstate = (istatus && !(gt->ctl & 2)); 1679 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1680 1681 if (istatus) { 1682 /* Next transition is when count rolls back over to zero */ 1683 nexttick = UINT64_MAX; 1684 } else { 1685 /* Next transition is when we hit cval */ 1686 nexttick = gt->cval + offset; 1687 } 1688 /* Note that the desired next expiry time might be beyond the 1689 * signed-64-bit range of a QEMUTimer -- in this case we just 1690 * set the timer for as far in the future as possible. When the 1691 * timer expires we will reset the timer for any remaining period. 1692 */ 1693 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1694 nexttick = INT64_MAX / GTIMER_SCALE; 1695 } 1696 timer_mod(cpu->gt_timer[timeridx], nexttick); 1697 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1698 } else { 1699 /* Timer disabled: ISTATUS and timer output always clear */ 1700 gt->ctl &= ~4; 1701 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1702 timer_del(cpu->gt_timer[timeridx]); 1703 trace_arm_gt_recalc_disabled(timeridx); 1704 } 1705 } 1706 1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1708 int timeridx) 1709 { 1710 ARMCPU *cpu = arm_env_get_cpu(env); 1711 1712 timer_del(cpu->gt_timer[timeridx]); 1713 } 1714 1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1716 { 1717 return gt_get_countervalue(env); 1718 } 1719 1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1721 { 1722 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1723 } 1724 1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1726 int timeridx, 1727 uint64_t value) 1728 { 1729 trace_arm_gt_cval_write(timeridx, value); 1730 env->cp15.c14_timer[timeridx].cval = value; 1731 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1732 } 1733 1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1735 int timeridx) 1736 { 1737 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1738 1739 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1740 (gt_get_countervalue(env) - offset)); 1741 } 1742 1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 int timeridx, 1745 uint64_t value) 1746 { 1747 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1748 1749 trace_arm_gt_tval_write(timeridx, value); 1750 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1751 sextract64(value, 0, 32); 1752 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1753 } 1754 1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 int timeridx, 1757 uint64_t value) 1758 { 1759 ARMCPU *cpu = arm_env_get_cpu(env); 1760 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1761 1762 trace_arm_gt_ctl_write(timeridx, value); 1763 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1764 if ((oldval ^ value) & 1) { 1765 /* Enable toggled */ 1766 gt_recalc_timer(cpu, timeridx); 1767 } else if ((oldval ^ value) & 2) { 1768 /* IMASK toggled: don't need to recalculate, 1769 * just set the interrupt line based on ISTATUS 1770 */ 1771 int irqstate = (oldval & 4) && !(value & 2); 1772 1773 trace_arm_gt_imask_toggle(timeridx, irqstate); 1774 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1775 } 1776 } 1777 1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1779 { 1780 gt_timer_reset(env, ri, GTIMER_PHYS); 1781 } 1782 1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1784 uint64_t value) 1785 { 1786 gt_cval_write(env, ri, GTIMER_PHYS, value); 1787 } 1788 1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1790 { 1791 return gt_tval_read(env, ri, GTIMER_PHYS); 1792 } 1793 1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 gt_tval_write(env, ri, GTIMER_PHYS, value); 1798 } 1799 1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1801 uint64_t value) 1802 { 1803 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1804 } 1805 1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1807 { 1808 gt_timer_reset(env, ri, GTIMER_VIRT); 1809 } 1810 1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1812 uint64_t value) 1813 { 1814 gt_cval_write(env, ri, GTIMER_VIRT, value); 1815 } 1816 1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 return gt_tval_read(env, ri, GTIMER_VIRT); 1820 } 1821 1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1823 uint64_t value) 1824 { 1825 gt_tval_write(env, ri, GTIMER_VIRT, value); 1826 } 1827 1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1829 uint64_t value) 1830 { 1831 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1832 } 1833 1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1835 uint64_t value) 1836 { 1837 ARMCPU *cpu = arm_env_get_cpu(env); 1838 1839 trace_arm_gt_cntvoff_write(value); 1840 raw_write(env, ri, value); 1841 gt_recalc_timer(cpu, GTIMER_VIRT); 1842 } 1843 1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1845 { 1846 gt_timer_reset(env, ri, GTIMER_HYP); 1847 } 1848 1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 gt_cval_write(env, ri, GTIMER_HYP, value); 1853 } 1854 1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1856 { 1857 return gt_tval_read(env, ri, GTIMER_HYP); 1858 } 1859 1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1861 uint64_t value) 1862 { 1863 gt_tval_write(env, ri, GTIMER_HYP, value); 1864 } 1865 1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1867 uint64_t value) 1868 { 1869 gt_ctl_write(env, ri, GTIMER_HYP, value); 1870 } 1871 1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1873 { 1874 gt_timer_reset(env, ri, GTIMER_SEC); 1875 } 1876 1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1878 uint64_t value) 1879 { 1880 gt_cval_write(env, ri, GTIMER_SEC, value); 1881 } 1882 1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1884 { 1885 return gt_tval_read(env, ri, GTIMER_SEC); 1886 } 1887 1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1889 uint64_t value) 1890 { 1891 gt_tval_write(env, ri, GTIMER_SEC, value); 1892 } 1893 1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1895 uint64_t value) 1896 { 1897 gt_ctl_write(env, ri, GTIMER_SEC, value); 1898 } 1899 1900 void arm_gt_ptimer_cb(void *opaque) 1901 { 1902 ARMCPU *cpu = opaque; 1903 1904 gt_recalc_timer(cpu, GTIMER_PHYS); 1905 } 1906 1907 void arm_gt_vtimer_cb(void *opaque) 1908 { 1909 ARMCPU *cpu = opaque; 1910 1911 gt_recalc_timer(cpu, GTIMER_VIRT); 1912 } 1913 1914 void arm_gt_htimer_cb(void *opaque) 1915 { 1916 ARMCPU *cpu = opaque; 1917 1918 gt_recalc_timer(cpu, GTIMER_HYP); 1919 } 1920 1921 void arm_gt_stimer_cb(void *opaque) 1922 { 1923 ARMCPU *cpu = opaque; 1924 1925 gt_recalc_timer(cpu, GTIMER_SEC); 1926 } 1927 1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1929 /* Note that CNTFRQ is purely reads-as-written for the benefit 1930 * of software; writing it doesn't actually change the timer frequency. 1931 * Our reset value matches the fixed frequency we implement the timer at. 1932 */ 1933 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1934 .type = ARM_CP_ALIAS, 1935 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1936 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1937 }, 1938 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1940 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1941 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1942 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1943 }, 1944 /* overall control: mostly access permissions */ 1945 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1946 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1947 .access = PL1_RW, 1948 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1949 .resetvalue = 0, 1950 }, 1951 /* per-timer control */ 1952 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1953 .secure = ARM_CP_SECSTATE_NS, 1954 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1955 .accessfn = gt_ptimer_access, 1956 .fieldoffset = offsetoflow32(CPUARMState, 1957 cp15.c14_timer[GTIMER_PHYS].ctl), 1958 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1959 }, 1960 { .name = "CNTP_CTL(S)", 1961 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1962 .secure = ARM_CP_SECSTATE_S, 1963 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1964 .accessfn = gt_ptimer_access, 1965 .fieldoffset = offsetoflow32(CPUARMState, 1966 cp15.c14_timer[GTIMER_SEC].ctl), 1967 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1968 }, 1969 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1970 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1971 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1972 .accessfn = gt_ptimer_access, 1973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1974 .resetvalue = 0, 1975 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1976 }, 1977 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1979 .accessfn = gt_vtimer_access, 1980 .fieldoffset = offsetoflow32(CPUARMState, 1981 cp15.c14_timer[GTIMER_VIRT].ctl), 1982 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1983 }, 1984 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 1985 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 1986 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1987 .accessfn = gt_vtimer_access, 1988 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 1989 .resetvalue = 0, 1990 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 1991 }, 1992 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 1993 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 1994 .secure = ARM_CP_SECSTATE_NS, 1995 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 1996 .accessfn = gt_ptimer_access, 1997 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 1998 }, 1999 { .name = "CNTP_TVAL(S)", 2000 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2001 .secure = ARM_CP_SECSTATE_S, 2002 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2003 .accessfn = gt_ptimer_access, 2004 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2005 }, 2006 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2007 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2008 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2009 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2010 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2011 }, 2012 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2013 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2014 .accessfn = gt_vtimer_access, 2015 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2016 }, 2017 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2018 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2020 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2021 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2022 }, 2023 /* The counter itself */ 2024 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2025 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2026 .accessfn = gt_pct_access, 2027 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2028 }, 2029 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2030 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2031 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2032 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2033 }, 2034 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2035 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2036 .accessfn = gt_vct_access, 2037 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2038 }, 2039 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2040 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2041 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2042 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2043 }, 2044 /* Comparison value, indicating when the timer goes off */ 2045 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2046 .secure = ARM_CP_SECSTATE_NS, 2047 .access = PL1_RW | PL0_R, 2048 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2049 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2050 .accessfn = gt_ptimer_access, 2051 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2052 }, 2053 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2054 .secure = ARM_CP_SECSTATE_S, 2055 .access = PL1_RW | PL0_R, 2056 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2057 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2058 .accessfn = gt_ptimer_access, 2059 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2060 }, 2061 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2062 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2063 .access = PL1_RW | PL0_R, 2064 .type = ARM_CP_IO, 2065 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2066 .resetvalue = 0, .accessfn = gt_ptimer_access, 2067 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2068 }, 2069 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2070 .access = PL1_RW | PL0_R, 2071 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2072 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2073 .accessfn = gt_vtimer_access, 2074 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2075 }, 2076 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2077 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2078 .access = PL1_RW | PL0_R, 2079 .type = ARM_CP_IO, 2080 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2081 .resetvalue = 0, .accessfn = gt_vtimer_access, 2082 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2083 }, 2084 /* Secure timer -- this is actually restricted to only EL3 2085 * and configurably Secure-EL1 via the accessfn. 2086 */ 2087 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2089 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2090 .accessfn = gt_stimer_access, 2091 .readfn = gt_sec_tval_read, 2092 .writefn = gt_sec_tval_write, 2093 .resetfn = gt_sec_timer_reset, 2094 }, 2095 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2096 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2097 .type = ARM_CP_IO, .access = PL1_RW, 2098 .accessfn = gt_stimer_access, 2099 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2100 .resetvalue = 0, 2101 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2102 }, 2103 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2104 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2105 .type = ARM_CP_IO, .access = PL1_RW, 2106 .accessfn = gt_stimer_access, 2107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2108 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2109 }, 2110 REGINFO_SENTINEL 2111 }; 2112 2113 #else 2114 /* In user-mode none of the generic timer registers are accessible, 2115 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2116 * so instead just don't register any of them. 2117 */ 2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2119 REGINFO_SENTINEL 2120 }; 2121 2122 #endif 2123 2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2125 { 2126 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2127 raw_write(env, ri, value); 2128 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2129 raw_write(env, ri, value & 0xfffff6ff); 2130 } else { 2131 raw_write(env, ri, value & 0xfffff1ff); 2132 } 2133 } 2134 2135 #ifndef CONFIG_USER_ONLY 2136 /* get_phys_addr() isn't present for user-mode-only targets */ 2137 2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2139 bool isread) 2140 { 2141 if (ri->opc2 & 4) { 2142 /* The ATS12NSO* operations must trap to EL3 if executed in 2143 * Secure EL1 (which can only happen if EL3 is AArch64). 2144 * They are simply UNDEF if executed from NS EL1. 2145 * They function normally from EL2 or EL3. 2146 */ 2147 if (arm_current_el(env) == 1) { 2148 if (arm_is_secure_below_el3(env)) { 2149 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2150 } 2151 return CP_ACCESS_TRAP_UNCATEGORIZED; 2152 } 2153 } 2154 return CP_ACCESS_OK; 2155 } 2156 2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2158 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2159 { 2160 hwaddr phys_addr; 2161 target_ulong page_size; 2162 int prot; 2163 uint32_t fsr; 2164 bool ret; 2165 uint64_t par64; 2166 MemTxAttrs attrs = {}; 2167 ARMMMUFaultInfo fi = {}; 2168 ARMCacheAttrs cacheattrs = {}; 2169 2170 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2171 &prot, &page_size, &fsr, &fi, &cacheattrs); 2172 if (arm_s1_regime_using_lpae_format(env, mmu_idx)) { 2173 /* fsr is a DFSR/IFSR value for the long descriptor 2174 * translation table format, but with WnR always clear. 2175 * Convert it to a 64-bit PAR. 2176 */ 2177 par64 = (1 << 11); /* LPAE bit always set */ 2178 if (!ret) { 2179 par64 |= phys_addr & ~0xfffULL; 2180 if (!attrs.secure) { 2181 par64 |= (1 << 9); /* NS */ 2182 } 2183 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2184 par64 |= cacheattrs.shareability << 7; /* SH */ 2185 } else { 2186 par64 |= 1; /* F */ 2187 par64 |= (fsr & 0x3f) << 1; /* FS */ 2188 /* Note that S2WLK and FSTAGE are always zero, because we don't 2189 * implement virtualization and therefore there can't be a stage 2 2190 * fault. 2191 */ 2192 } 2193 } else { 2194 /* fsr is a DFSR/IFSR value for the short descriptor 2195 * translation table format (with WnR always clear). 2196 * Convert it to a 32-bit PAR. 2197 */ 2198 if (!ret) { 2199 /* We do not set any attribute bits in the PAR */ 2200 if (page_size == (1 << 24) 2201 && arm_feature(env, ARM_FEATURE_V7)) { 2202 par64 = (phys_addr & 0xff000000) | (1 << 1); 2203 } else { 2204 par64 = phys_addr & 0xfffff000; 2205 } 2206 if (!attrs.secure) { 2207 par64 |= (1 << 9); /* NS */ 2208 } 2209 } else { 2210 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2211 ((fsr & 0xf) << 1) | 1; 2212 } 2213 } 2214 return par64; 2215 } 2216 2217 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2218 { 2219 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2220 uint64_t par64; 2221 ARMMMUIdx mmu_idx; 2222 int el = arm_current_el(env); 2223 bool secure = arm_is_secure_below_el3(env); 2224 2225 switch (ri->opc2 & 6) { 2226 case 0: 2227 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2228 switch (el) { 2229 case 3: 2230 mmu_idx = ARMMMUIdx_S1E3; 2231 break; 2232 case 2: 2233 mmu_idx = ARMMMUIdx_S1NSE1; 2234 break; 2235 case 1: 2236 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2237 break; 2238 default: 2239 g_assert_not_reached(); 2240 } 2241 break; 2242 case 2: 2243 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2244 switch (el) { 2245 case 3: 2246 mmu_idx = ARMMMUIdx_S1SE0; 2247 break; 2248 case 2: 2249 mmu_idx = ARMMMUIdx_S1NSE0; 2250 break; 2251 case 1: 2252 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2253 break; 2254 default: 2255 g_assert_not_reached(); 2256 } 2257 break; 2258 case 4: 2259 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2260 mmu_idx = ARMMMUIdx_S12NSE1; 2261 break; 2262 case 6: 2263 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2264 mmu_idx = ARMMMUIdx_S12NSE0; 2265 break; 2266 default: 2267 g_assert_not_reached(); 2268 } 2269 2270 par64 = do_ats_write(env, value, access_type, mmu_idx); 2271 2272 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2273 } 2274 2275 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2276 uint64_t value) 2277 { 2278 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2279 uint64_t par64; 2280 2281 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2282 2283 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2284 } 2285 2286 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2287 bool isread) 2288 { 2289 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2290 return CP_ACCESS_TRAP; 2291 } 2292 return CP_ACCESS_OK; 2293 } 2294 2295 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2296 uint64_t value) 2297 { 2298 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2299 ARMMMUIdx mmu_idx; 2300 int secure = arm_is_secure_below_el3(env); 2301 2302 switch (ri->opc2 & 6) { 2303 case 0: 2304 switch (ri->opc1) { 2305 case 0: /* AT S1E1R, AT S1E1W */ 2306 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2307 break; 2308 case 4: /* AT S1E2R, AT S1E2W */ 2309 mmu_idx = ARMMMUIdx_S1E2; 2310 break; 2311 case 6: /* AT S1E3R, AT S1E3W */ 2312 mmu_idx = ARMMMUIdx_S1E3; 2313 break; 2314 default: 2315 g_assert_not_reached(); 2316 } 2317 break; 2318 case 2: /* AT S1E0R, AT S1E0W */ 2319 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2320 break; 2321 case 4: /* AT S12E1R, AT S12E1W */ 2322 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2323 break; 2324 case 6: /* AT S12E0R, AT S12E0W */ 2325 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2326 break; 2327 default: 2328 g_assert_not_reached(); 2329 } 2330 2331 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2332 } 2333 #endif 2334 2335 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2336 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2337 .access = PL1_RW, .resetvalue = 0, 2338 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2339 offsetoflow32(CPUARMState, cp15.par_ns) }, 2340 .writefn = par_write }, 2341 #ifndef CONFIG_USER_ONLY 2342 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2343 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2344 .access = PL1_W, .accessfn = ats_access, 2345 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2346 #endif 2347 REGINFO_SENTINEL 2348 }; 2349 2350 /* Return basic MPU access permission bits. */ 2351 static uint32_t simple_mpu_ap_bits(uint32_t val) 2352 { 2353 uint32_t ret; 2354 uint32_t mask; 2355 int i; 2356 ret = 0; 2357 mask = 3; 2358 for (i = 0; i < 16; i += 2) { 2359 ret |= (val >> i) & mask; 2360 mask <<= 2; 2361 } 2362 return ret; 2363 } 2364 2365 /* Pad basic MPU access permission bits to extended format. */ 2366 static uint32_t extended_mpu_ap_bits(uint32_t val) 2367 { 2368 uint32_t ret; 2369 uint32_t mask; 2370 int i; 2371 ret = 0; 2372 mask = 3; 2373 for (i = 0; i < 16; i += 2) { 2374 ret |= (val & mask) << i; 2375 mask <<= 2; 2376 } 2377 return ret; 2378 } 2379 2380 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2381 uint64_t value) 2382 { 2383 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2384 } 2385 2386 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2387 { 2388 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2389 } 2390 2391 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2392 uint64_t value) 2393 { 2394 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2395 } 2396 2397 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2398 { 2399 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2400 } 2401 2402 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2403 { 2404 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2405 2406 if (!u32p) { 2407 return 0; 2408 } 2409 2410 u32p += env->pmsav7.rnr[M_REG_NS]; 2411 return *u32p; 2412 } 2413 2414 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2415 uint64_t value) 2416 { 2417 ARMCPU *cpu = arm_env_get_cpu(env); 2418 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2419 2420 if (!u32p) { 2421 return; 2422 } 2423 2424 u32p += env->pmsav7.rnr[M_REG_NS]; 2425 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2426 *u32p = value; 2427 } 2428 2429 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2430 uint64_t value) 2431 { 2432 ARMCPU *cpu = arm_env_get_cpu(env); 2433 uint32_t nrgs = cpu->pmsav7_dregion; 2434 2435 if (value >= nrgs) { 2436 qemu_log_mask(LOG_GUEST_ERROR, 2437 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2438 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2439 return; 2440 } 2441 2442 raw_write(env, ri, value); 2443 } 2444 2445 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2446 /* Reset for all these registers is handled in arm_cpu_reset(), 2447 * because the PMSAv7 is also used by M-profile CPUs, which do 2448 * not register cpregs but still need the state to be reset. 2449 */ 2450 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2451 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2452 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2453 .readfn = pmsav7_read, .writefn = pmsav7_write, 2454 .resetfn = arm_cp_reset_ignore }, 2455 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2456 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2457 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2458 .readfn = pmsav7_read, .writefn = pmsav7_write, 2459 .resetfn = arm_cp_reset_ignore }, 2460 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2461 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2462 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2463 .readfn = pmsav7_read, .writefn = pmsav7_write, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2466 .access = PL1_RW, 2467 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2468 .writefn = pmsav7_rgnr_write, 2469 .resetfn = arm_cp_reset_ignore }, 2470 REGINFO_SENTINEL 2471 }; 2472 2473 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2474 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2475 .access = PL1_RW, .type = ARM_CP_ALIAS, 2476 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2477 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2478 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2479 .access = PL1_RW, .type = ARM_CP_ALIAS, 2480 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2481 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2482 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2483 .access = PL1_RW, 2484 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2485 .resetvalue = 0, }, 2486 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2487 .access = PL1_RW, 2488 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2489 .resetvalue = 0, }, 2490 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2491 .access = PL1_RW, 2492 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2493 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2494 .access = PL1_RW, 2495 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2496 /* Protection region base and size registers */ 2497 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2498 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2499 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2500 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2501 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2502 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2503 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2504 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2505 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2506 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2507 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2508 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2509 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2510 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2511 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2512 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2513 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2514 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2515 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2516 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2517 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2518 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2519 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2520 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2521 REGINFO_SENTINEL 2522 }; 2523 2524 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2525 uint64_t value) 2526 { 2527 TCR *tcr = raw_ptr(env, ri); 2528 int maskshift = extract32(value, 0, 3); 2529 2530 if (!arm_feature(env, ARM_FEATURE_V8)) { 2531 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2532 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2533 * using Long-desciptor translation table format */ 2534 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2535 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2536 /* In an implementation that includes the Security Extensions 2537 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2538 * Short-descriptor translation table format. 2539 */ 2540 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2541 } else { 2542 value &= TTBCR_N; 2543 } 2544 } 2545 2546 /* Update the masks corresponding to the TCR bank being written 2547 * Note that we always calculate mask and base_mask, but 2548 * they are only used for short-descriptor tables (ie if EAE is 0); 2549 * for long-descriptor tables the TCR fields are used differently 2550 * and the mask and base_mask values are meaningless. 2551 */ 2552 tcr->raw_tcr = value; 2553 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2554 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2555 } 2556 2557 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2558 uint64_t value) 2559 { 2560 ARMCPU *cpu = arm_env_get_cpu(env); 2561 2562 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2563 /* With LPAE the TTBCR could result in a change of ASID 2564 * via the TTBCR.A1 bit, so do a TLB flush. 2565 */ 2566 tlb_flush(CPU(cpu)); 2567 } 2568 vmsa_ttbcr_raw_write(env, ri, value); 2569 } 2570 2571 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2572 { 2573 TCR *tcr = raw_ptr(env, ri); 2574 2575 /* Reset both the TCR as well as the masks corresponding to the bank of 2576 * the TCR being reset. 2577 */ 2578 tcr->raw_tcr = 0; 2579 tcr->mask = 0; 2580 tcr->base_mask = 0xffffc000u; 2581 } 2582 2583 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2584 uint64_t value) 2585 { 2586 ARMCPU *cpu = arm_env_get_cpu(env); 2587 TCR *tcr = raw_ptr(env, ri); 2588 2589 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2590 tlb_flush(CPU(cpu)); 2591 tcr->raw_tcr = value; 2592 } 2593 2594 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 uint64_t value) 2596 { 2597 /* 64 bit accesses to the TTBRs can change the ASID and so we 2598 * must flush the TLB. 2599 */ 2600 if (cpreg_field_is_64bit(ri)) { 2601 ARMCPU *cpu = arm_env_get_cpu(env); 2602 2603 tlb_flush(CPU(cpu)); 2604 } 2605 raw_write(env, ri, value); 2606 } 2607 2608 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2609 uint64_t value) 2610 { 2611 ARMCPU *cpu = arm_env_get_cpu(env); 2612 CPUState *cs = CPU(cpu); 2613 2614 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2615 if (raw_read(env, ri) != value) { 2616 tlb_flush_by_mmuidx(cs, 2617 ARMMMUIdxBit_S12NSE1 | 2618 ARMMMUIdxBit_S12NSE0 | 2619 ARMMMUIdxBit_S2NS); 2620 raw_write(env, ri, value); 2621 } 2622 } 2623 2624 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2625 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2626 .access = PL1_RW, .type = ARM_CP_ALIAS, 2627 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2628 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2629 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2630 .access = PL1_RW, .resetvalue = 0, 2631 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2632 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2633 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2634 .access = PL1_RW, .resetvalue = 0, 2635 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2636 offsetof(CPUARMState, cp15.dfar_ns) } }, 2637 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2638 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2639 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2640 .resetvalue = 0, }, 2641 REGINFO_SENTINEL 2642 }; 2643 2644 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2645 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2646 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2647 .access = PL1_RW, 2648 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2649 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2650 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2651 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2652 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2653 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2654 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2655 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2656 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2657 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2658 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2659 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2660 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2661 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2662 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2663 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2664 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2665 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2666 .raw_writefn = vmsa_ttbcr_raw_write, 2667 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2668 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2669 REGINFO_SENTINEL 2670 }; 2671 2672 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2673 uint64_t value) 2674 { 2675 env->cp15.c15_ticonfig = value & 0xe7; 2676 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2677 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2678 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2679 } 2680 2681 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2682 uint64_t value) 2683 { 2684 env->cp15.c15_threadid = value & 0xffff; 2685 } 2686 2687 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2688 uint64_t value) 2689 { 2690 /* Wait-for-interrupt (deprecated) */ 2691 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2692 } 2693 2694 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2695 uint64_t value) 2696 { 2697 /* On OMAP there are registers indicating the max/min index of dcache lines 2698 * containing a dirty line; cache flush operations have to reset these. 2699 */ 2700 env->cp15.c15_i_max = 0x000; 2701 env->cp15.c15_i_min = 0xff0; 2702 } 2703 2704 static const ARMCPRegInfo omap_cp_reginfo[] = { 2705 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2706 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2707 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2708 .resetvalue = 0, }, 2709 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2710 .access = PL1_RW, .type = ARM_CP_NOP }, 2711 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2712 .access = PL1_RW, 2713 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2714 .writefn = omap_ticonfig_write }, 2715 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2716 .access = PL1_RW, 2717 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2718 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2719 .access = PL1_RW, .resetvalue = 0xff0, 2720 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2721 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2722 .access = PL1_RW, 2723 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2724 .writefn = omap_threadid_write }, 2725 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2726 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2727 .type = ARM_CP_NO_RAW, 2728 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2729 /* TODO: Peripheral port remap register: 2730 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2731 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2732 * when MMU is off. 2733 */ 2734 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2735 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2736 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2737 .writefn = omap_cachemaint_write }, 2738 { .name = "C9", .cp = 15, .crn = 9, 2739 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2740 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2741 REGINFO_SENTINEL 2742 }; 2743 2744 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2745 uint64_t value) 2746 { 2747 env->cp15.c15_cpar = value & 0x3fff; 2748 } 2749 2750 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2751 { .name = "XSCALE_CPAR", 2752 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2753 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2754 .writefn = xscale_cpar_write, }, 2755 { .name = "XSCALE_AUXCR", 2756 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2757 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2758 .resetvalue = 0, }, 2759 /* XScale specific cache-lockdown: since we have no cache we NOP these 2760 * and hope the guest does not really rely on cache behaviour. 2761 */ 2762 { .name = "XSCALE_LOCK_ICACHE_LINE", 2763 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2764 .access = PL1_W, .type = ARM_CP_NOP }, 2765 { .name = "XSCALE_UNLOCK_ICACHE", 2766 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2767 .access = PL1_W, .type = ARM_CP_NOP }, 2768 { .name = "XSCALE_DCACHE_LOCK", 2769 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2770 .access = PL1_RW, .type = ARM_CP_NOP }, 2771 { .name = "XSCALE_UNLOCK_DCACHE", 2772 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2773 .access = PL1_W, .type = ARM_CP_NOP }, 2774 REGINFO_SENTINEL 2775 }; 2776 2777 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2778 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2779 * implementation of this implementation-defined space. 2780 * Ideally this should eventually disappear in favour of actually 2781 * implementing the correct behaviour for all cores. 2782 */ 2783 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2784 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2785 .access = PL1_RW, 2786 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2787 .resetvalue = 0 }, 2788 REGINFO_SENTINEL 2789 }; 2790 2791 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2792 /* Cache status: RAZ because we have no cache so it's always clean */ 2793 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2794 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2795 .resetvalue = 0 }, 2796 REGINFO_SENTINEL 2797 }; 2798 2799 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2800 /* We never have a a block transfer operation in progress */ 2801 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2802 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2803 .resetvalue = 0 }, 2804 /* The cache ops themselves: these all NOP for QEMU */ 2805 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2806 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2807 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2808 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2809 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2810 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2811 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2812 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2813 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2814 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2815 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2816 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2817 REGINFO_SENTINEL 2818 }; 2819 2820 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2821 /* The cache test-and-clean instructions always return (1 << 30) 2822 * to indicate that there are no dirty cache lines. 2823 */ 2824 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2825 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2826 .resetvalue = (1 << 30) }, 2827 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2828 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2829 .resetvalue = (1 << 30) }, 2830 REGINFO_SENTINEL 2831 }; 2832 2833 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2834 /* Ignore ReadBuffer accesses */ 2835 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2836 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2837 .access = PL1_RW, .resetvalue = 0, 2838 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2839 REGINFO_SENTINEL 2840 }; 2841 2842 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2843 { 2844 ARMCPU *cpu = arm_env_get_cpu(env); 2845 unsigned int cur_el = arm_current_el(env); 2846 bool secure = arm_is_secure(env); 2847 2848 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2849 return env->cp15.vpidr_el2; 2850 } 2851 return raw_read(env, ri); 2852 } 2853 2854 static uint64_t mpidr_read_val(CPUARMState *env) 2855 { 2856 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2857 uint64_t mpidr = cpu->mp_affinity; 2858 2859 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2860 mpidr |= (1U << 31); 2861 /* Cores which are uniprocessor (non-coherent) 2862 * but still implement the MP extensions set 2863 * bit 30. (For instance, Cortex-R5). 2864 */ 2865 if (cpu->mp_is_up) { 2866 mpidr |= (1u << 30); 2867 } 2868 } 2869 return mpidr; 2870 } 2871 2872 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2873 { 2874 unsigned int cur_el = arm_current_el(env); 2875 bool secure = arm_is_secure(env); 2876 2877 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2878 return env->cp15.vmpidr_el2; 2879 } 2880 return mpidr_read_val(env); 2881 } 2882 2883 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2884 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2885 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2886 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2887 REGINFO_SENTINEL 2888 }; 2889 2890 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2891 /* NOP AMAIR0/1 */ 2892 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2893 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2894 .access = PL1_RW, .type = ARM_CP_CONST, 2895 .resetvalue = 0 }, 2896 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2897 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2898 .access = PL1_RW, .type = ARM_CP_CONST, 2899 .resetvalue = 0 }, 2900 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2901 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2902 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2903 offsetof(CPUARMState, cp15.par_ns)} }, 2904 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2905 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2906 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2907 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2908 .writefn = vmsa_ttbr_write, }, 2909 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2910 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2911 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2912 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2913 .writefn = vmsa_ttbr_write, }, 2914 REGINFO_SENTINEL 2915 }; 2916 2917 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2918 { 2919 return vfp_get_fpcr(env); 2920 } 2921 2922 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2923 uint64_t value) 2924 { 2925 vfp_set_fpcr(env, value); 2926 } 2927 2928 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2929 { 2930 return vfp_get_fpsr(env); 2931 } 2932 2933 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2934 uint64_t value) 2935 { 2936 vfp_set_fpsr(env, value); 2937 } 2938 2939 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2940 bool isread) 2941 { 2942 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2943 return CP_ACCESS_TRAP; 2944 } 2945 return CP_ACCESS_OK; 2946 } 2947 2948 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 2949 uint64_t value) 2950 { 2951 env->daif = value & PSTATE_DAIF; 2952 } 2953 2954 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 2955 const ARMCPRegInfo *ri, 2956 bool isread) 2957 { 2958 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 2959 * SCTLR_EL1.UCI is set. 2960 */ 2961 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 2962 return CP_ACCESS_TRAP; 2963 } 2964 return CP_ACCESS_OK; 2965 } 2966 2967 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 2968 * Page D4-1736 (DDI0487A.b) 2969 */ 2970 2971 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2972 uint64_t value) 2973 { 2974 CPUState *cs = ENV_GET_CPU(env); 2975 2976 if (arm_is_secure_below_el3(env)) { 2977 tlb_flush_by_mmuidx(cs, 2978 ARMMMUIdxBit_S1SE1 | 2979 ARMMMUIdxBit_S1SE0); 2980 } else { 2981 tlb_flush_by_mmuidx(cs, 2982 ARMMMUIdxBit_S12NSE1 | 2983 ARMMMUIdxBit_S12NSE0); 2984 } 2985 } 2986 2987 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 2988 uint64_t value) 2989 { 2990 CPUState *cs = ENV_GET_CPU(env); 2991 bool sec = arm_is_secure_below_el3(env); 2992 2993 if (sec) { 2994 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2995 ARMMMUIdxBit_S1SE1 | 2996 ARMMMUIdxBit_S1SE0); 2997 } else { 2998 tlb_flush_by_mmuidx_all_cpus_synced(cs, 2999 ARMMMUIdxBit_S12NSE1 | 3000 ARMMMUIdxBit_S12NSE0); 3001 } 3002 } 3003 3004 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3005 uint64_t value) 3006 { 3007 /* Note that the 'ALL' scope must invalidate both stage 1 and 3008 * stage 2 translations, whereas most other scopes only invalidate 3009 * stage 1 translations. 3010 */ 3011 ARMCPU *cpu = arm_env_get_cpu(env); 3012 CPUState *cs = CPU(cpu); 3013 3014 if (arm_is_secure_below_el3(env)) { 3015 tlb_flush_by_mmuidx(cs, 3016 ARMMMUIdxBit_S1SE1 | 3017 ARMMMUIdxBit_S1SE0); 3018 } else { 3019 if (arm_feature(env, ARM_FEATURE_EL2)) { 3020 tlb_flush_by_mmuidx(cs, 3021 ARMMMUIdxBit_S12NSE1 | 3022 ARMMMUIdxBit_S12NSE0 | 3023 ARMMMUIdxBit_S2NS); 3024 } else { 3025 tlb_flush_by_mmuidx(cs, 3026 ARMMMUIdxBit_S12NSE1 | 3027 ARMMMUIdxBit_S12NSE0); 3028 } 3029 } 3030 } 3031 3032 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3033 uint64_t value) 3034 { 3035 ARMCPU *cpu = arm_env_get_cpu(env); 3036 CPUState *cs = CPU(cpu); 3037 3038 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3039 } 3040 3041 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3042 uint64_t value) 3043 { 3044 ARMCPU *cpu = arm_env_get_cpu(env); 3045 CPUState *cs = CPU(cpu); 3046 3047 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3048 } 3049 3050 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3051 uint64_t value) 3052 { 3053 /* Note that the 'ALL' scope must invalidate both stage 1 and 3054 * stage 2 translations, whereas most other scopes only invalidate 3055 * stage 1 translations. 3056 */ 3057 CPUState *cs = ENV_GET_CPU(env); 3058 bool sec = arm_is_secure_below_el3(env); 3059 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3060 3061 if (sec) { 3062 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3063 ARMMMUIdxBit_S1SE1 | 3064 ARMMMUIdxBit_S1SE0); 3065 } else if (has_el2) { 3066 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3067 ARMMMUIdxBit_S12NSE1 | 3068 ARMMMUIdxBit_S12NSE0 | 3069 ARMMMUIdxBit_S2NS); 3070 } else { 3071 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3072 ARMMMUIdxBit_S12NSE1 | 3073 ARMMMUIdxBit_S12NSE0); 3074 } 3075 } 3076 3077 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3078 uint64_t value) 3079 { 3080 CPUState *cs = ENV_GET_CPU(env); 3081 3082 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3083 } 3084 3085 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3086 uint64_t value) 3087 { 3088 CPUState *cs = ENV_GET_CPU(env); 3089 3090 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3091 } 3092 3093 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3094 uint64_t value) 3095 { 3096 /* Invalidate by VA, EL1&0 (AArch64 version). 3097 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3098 * since we don't support flush-for-specific-ASID-only or 3099 * flush-last-level-only. 3100 */ 3101 ARMCPU *cpu = arm_env_get_cpu(env); 3102 CPUState *cs = CPU(cpu); 3103 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3104 3105 if (arm_is_secure_below_el3(env)) { 3106 tlb_flush_page_by_mmuidx(cs, pageaddr, 3107 ARMMMUIdxBit_S1SE1 | 3108 ARMMMUIdxBit_S1SE0); 3109 } else { 3110 tlb_flush_page_by_mmuidx(cs, pageaddr, 3111 ARMMMUIdxBit_S12NSE1 | 3112 ARMMMUIdxBit_S12NSE0); 3113 } 3114 } 3115 3116 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3117 uint64_t value) 3118 { 3119 /* Invalidate by VA, EL2 3120 * Currently handles both VAE2 and VALE2, since we don't support 3121 * flush-last-level-only. 3122 */ 3123 ARMCPU *cpu = arm_env_get_cpu(env); 3124 CPUState *cs = CPU(cpu); 3125 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3126 3127 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3128 } 3129 3130 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3131 uint64_t value) 3132 { 3133 /* Invalidate by VA, EL3 3134 * Currently handles both VAE3 and VALE3, since we don't support 3135 * flush-last-level-only. 3136 */ 3137 ARMCPU *cpu = arm_env_get_cpu(env); 3138 CPUState *cs = CPU(cpu); 3139 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3140 3141 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3142 } 3143 3144 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3145 uint64_t value) 3146 { 3147 ARMCPU *cpu = arm_env_get_cpu(env); 3148 CPUState *cs = CPU(cpu); 3149 bool sec = arm_is_secure_below_el3(env); 3150 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3151 3152 if (sec) { 3153 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3154 ARMMMUIdxBit_S1SE1 | 3155 ARMMMUIdxBit_S1SE0); 3156 } else { 3157 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3158 ARMMMUIdxBit_S12NSE1 | 3159 ARMMMUIdxBit_S12NSE0); 3160 } 3161 } 3162 3163 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3164 uint64_t value) 3165 { 3166 CPUState *cs = ENV_GET_CPU(env); 3167 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3168 3169 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3170 ARMMMUIdxBit_S1E2); 3171 } 3172 3173 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3174 uint64_t value) 3175 { 3176 CPUState *cs = ENV_GET_CPU(env); 3177 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3178 3179 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3180 ARMMMUIdxBit_S1E3); 3181 } 3182 3183 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3184 uint64_t value) 3185 { 3186 /* Invalidate by IPA. This has to invalidate any structures that 3187 * contain only stage 2 translation information, but does not need 3188 * to apply to structures that contain combined stage 1 and stage 2 3189 * translation information. 3190 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3191 */ 3192 ARMCPU *cpu = arm_env_get_cpu(env); 3193 CPUState *cs = CPU(cpu); 3194 uint64_t pageaddr; 3195 3196 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3197 return; 3198 } 3199 3200 pageaddr = sextract64(value << 12, 0, 48); 3201 3202 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3203 } 3204 3205 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3206 uint64_t value) 3207 { 3208 CPUState *cs = ENV_GET_CPU(env); 3209 uint64_t pageaddr; 3210 3211 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3212 return; 3213 } 3214 3215 pageaddr = sextract64(value << 12, 0, 48); 3216 3217 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3218 ARMMMUIdxBit_S2NS); 3219 } 3220 3221 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3222 bool isread) 3223 { 3224 /* We don't implement EL2, so the only control on DC ZVA is the 3225 * bit in the SCTLR which can prohibit access for EL0. 3226 */ 3227 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3228 return CP_ACCESS_TRAP; 3229 } 3230 return CP_ACCESS_OK; 3231 } 3232 3233 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3234 { 3235 ARMCPU *cpu = arm_env_get_cpu(env); 3236 int dzp_bit = 1 << 4; 3237 3238 /* DZP indicates whether DC ZVA access is allowed */ 3239 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3240 dzp_bit = 0; 3241 } 3242 return cpu->dcz_blocksize | dzp_bit; 3243 } 3244 3245 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3246 bool isread) 3247 { 3248 if (!(env->pstate & PSTATE_SP)) { 3249 /* Access to SP_EL0 is undefined if it's being used as 3250 * the stack pointer. 3251 */ 3252 return CP_ACCESS_TRAP_UNCATEGORIZED; 3253 } 3254 return CP_ACCESS_OK; 3255 } 3256 3257 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3258 { 3259 return env->pstate & PSTATE_SP; 3260 } 3261 3262 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3263 { 3264 update_spsel(env, val); 3265 } 3266 3267 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3268 uint64_t value) 3269 { 3270 ARMCPU *cpu = arm_env_get_cpu(env); 3271 3272 if (raw_read(env, ri) == value) { 3273 /* Skip the TLB flush if nothing actually changed; Linux likes 3274 * to do a lot of pointless SCTLR writes. 3275 */ 3276 return; 3277 } 3278 3279 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3280 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3281 value &= ~SCTLR_M; 3282 } 3283 3284 raw_write(env, ri, value); 3285 /* ??? Lots of these bits are not implemented. */ 3286 /* This may enable/disable the MMU, so do a TLB flush. */ 3287 tlb_flush(CPU(cpu)); 3288 } 3289 3290 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3291 bool isread) 3292 { 3293 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3294 return CP_ACCESS_TRAP_FP_EL2; 3295 } 3296 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3297 return CP_ACCESS_TRAP_FP_EL3; 3298 } 3299 return CP_ACCESS_OK; 3300 } 3301 3302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3303 uint64_t value) 3304 { 3305 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3306 } 3307 3308 static const ARMCPRegInfo v8_cp_reginfo[] = { 3309 /* Minimal set of EL0-visible registers. This will need to be expanded 3310 * significantly for system emulation of AArch64 CPUs. 3311 */ 3312 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3313 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3314 .access = PL0_RW, .type = ARM_CP_NZCV }, 3315 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3316 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3317 .type = ARM_CP_NO_RAW, 3318 .access = PL0_RW, .accessfn = aa64_daif_access, 3319 .fieldoffset = offsetof(CPUARMState, daif), 3320 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3321 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3322 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3323 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3324 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3325 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3326 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3327 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3328 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3329 .access = PL0_R, .type = ARM_CP_NO_RAW, 3330 .readfn = aa64_dczid_read }, 3331 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3332 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3333 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3334 #ifndef CONFIG_USER_ONLY 3335 /* Avoid overhead of an access check that always passes in user-mode */ 3336 .accessfn = aa64_zva_access, 3337 #endif 3338 }, 3339 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3340 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3341 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3342 /* Cache ops: all NOPs since we don't emulate caches */ 3343 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3344 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3345 .access = PL1_W, .type = ARM_CP_NOP }, 3346 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3347 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3348 .access = PL1_W, .type = ARM_CP_NOP }, 3349 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3351 .access = PL0_W, .type = ARM_CP_NOP, 3352 .accessfn = aa64_cacheop_access }, 3353 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3354 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3355 .access = PL1_W, .type = ARM_CP_NOP }, 3356 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3357 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3358 .access = PL1_W, .type = ARM_CP_NOP }, 3359 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3360 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3361 .access = PL0_W, .type = ARM_CP_NOP, 3362 .accessfn = aa64_cacheop_access }, 3363 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3364 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3365 .access = PL1_W, .type = ARM_CP_NOP }, 3366 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3367 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3368 .access = PL0_W, .type = ARM_CP_NOP, 3369 .accessfn = aa64_cacheop_access }, 3370 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3371 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3372 .access = PL0_W, .type = ARM_CP_NOP, 3373 .accessfn = aa64_cacheop_access }, 3374 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3375 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3376 .access = PL1_W, .type = ARM_CP_NOP }, 3377 /* TLBI operations */ 3378 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3379 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3380 .access = PL1_W, .type = ARM_CP_NO_RAW, 3381 .writefn = tlbi_aa64_vmalle1is_write }, 3382 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3383 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3384 .access = PL1_W, .type = ARM_CP_NO_RAW, 3385 .writefn = tlbi_aa64_vae1is_write }, 3386 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3387 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3388 .access = PL1_W, .type = ARM_CP_NO_RAW, 3389 .writefn = tlbi_aa64_vmalle1is_write }, 3390 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3391 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3392 .access = PL1_W, .type = ARM_CP_NO_RAW, 3393 .writefn = tlbi_aa64_vae1is_write }, 3394 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3395 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3396 .access = PL1_W, .type = ARM_CP_NO_RAW, 3397 .writefn = tlbi_aa64_vae1is_write }, 3398 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3399 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3400 .access = PL1_W, .type = ARM_CP_NO_RAW, 3401 .writefn = tlbi_aa64_vae1is_write }, 3402 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3403 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3404 .access = PL1_W, .type = ARM_CP_NO_RAW, 3405 .writefn = tlbi_aa64_vmalle1_write }, 3406 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3407 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3408 .access = PL1_W, .type = ARM_CP_NO_RAW, 3409 .writefn = tlbi_aa64_vae1_write }, 3410 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3412 .access = PL1_W, .type = ARM_CP_NO_RAW, 3413 .writefn = tlbi_aa64_vmalle1_write }, 3414 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3415 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3416 .access = PL1_W, .type = ARM_CP_NO_RAW, 3417 .writefn = tlbi_aa64_vae1_write }, 3418 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3419 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3420 .access = PL1_W, .type = ARM_CP_NO_RAW, 3421 .writefn = tlbi_aa64_vae1_write }, 3422 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3423 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3424 .access = PL1_W, .type = ARM_CP_NO_RAW, 3425 .writefn = tlbi_aa64_vae1_write }, 3426 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3427 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3428 .access = PL2_W, .type = ARM_CP_NO_RAW, 3429 .writefn = tlbi_aa64_ipas2e1is_write }, 3430 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3431 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3432 .access = PL2_W, .type = ARM_CP_NO_RAW, 3433 .writefn = tlbi_aa64_ipas2e1is_write }, 3434 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3435 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3436 .access = PL2_W, .type = ARM_CP_NO_RAW, 3437 .writefn = tlbi_aa64_alle1is_write }, 3438 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3439 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3440 .access = PL2_W, .type = ARM_CP_NO_RAW, 3441 .writefn = tlbi_aa64_alle1is_write }, 3442 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3443 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3444 .access = PL2_W, .type = ARM_CP_NO_RAW, 3445 .writefn = tlbi_aa64_ipas2e1_write }, 3446 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3447 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3448 .access = PL2_W, .type = ARM_CP_NO_RAW, 3449 .writefn = tlbi_aa64_ipas2e1_write }, 3450 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3451 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3452 .access = PL2_W, .type = ARM_CP_NO_RAW, 3453 .writefn = tlbi_aa64_alle1_write }, 3454 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3455 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3456 .access = PL2_W, .type = ARM_CP_NO_RAW, 3457 .writefn = tlbi_aa64_alle1is_write }, 3458 #ifndef CONFIG_USER_ONLY 3459 /* 64 bit address translation operations */ 3460 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3462 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3463 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3464 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3465 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3466 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3467 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3468 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3469 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3470 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3471 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3472 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3473 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3474 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3475 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3476 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3477 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3478 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3479 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3480 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3481 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3482 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3483 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3484 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3485 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3486 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3487 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3488 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3489 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3490 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3491 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3492 .type = ARM_CP_ALIAS, 3493 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3494 .access = PL1_RW, .resetvalue = 0, 3495 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3496 .writefn = par_write }, 3497 #endif 3498 /* TLB invalidate last level of translation table walk */ 3499 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3500 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3501 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3502 .type = ARM_CP_NO_RAW, .access = PL1_W, 3503 .writefn = tlbimvaa_is_write }, 3504 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3505 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3506 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3507 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3508 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3509 .type = ARM_CP_NO_RAW, .access = PL2_W, 3510 .writefn = tlbimva_hyp_write }, 3511 { .name = "TLBIMVALHIS", 3512 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3513 .type = ARM_CP_NO_RAW, .access = PL2_W, 3514 .writefn = tlbimva_hyp_is_write }, 3515 { .name = "TLBIIPAS2", 3516 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3517 .type = ARM_CP_NO_RAW, .access = PL2_W, 3518 .writefn = tlbiipas2_write }, 3519 { .name = "TLBIIPAS2IS", 3520 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3521 .type = ARM_CP_NO_RAW, .access = PL2_W, 3522 .writefn = tlbiipas2_is_write }, 3523 { .name = "TLBIIPAS2L", 3524 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3525 .type = ARM_CP_NO_RAW, .access = PL2_W, 3526 .writefn = tlbiipas2_write }, 3527 { .name = "TLBIIPAS2LIS", 3528 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3529 .type = ARM_CP_NO_RAW, .access = PL2_W, 3530 .writefn = tlbiipas2_is_write }, 3531 /* 32 bit cache operations */ 3532 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3533 .type = ARM_CP_NOP, .access = PL1_W }, 3534 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3535 .type = ARM_CP_NOP, .access = PL1_W }, 3536 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3537 .type = ARM_CP_NOP, .access = PL1_W }, 3538 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3539 .type = ARM_CP_NOP, .access = PL1_W }, 3540 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3541 .type = ARM_CP_NOP, .access = PL1_W }, 3542 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3543 .type = ARM_CP_NOP, .access = PL1_W }, 3544 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3545 .type = ARM_CP_NOP, .access = PL1_W }, 3546 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3547 .type = ARM_CP_NOP, .access = PL1_W }, 3548 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3549 .type = ARM_CP_NOP, .access = PL1_W }, 3550 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3551 .type = ARM_CP_NOP, .access = PL1_W }, 3552 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3553 .type = ARM_CP_NOP, .access = PL1_W }, 3554 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3555 .type = ARM_CP_NOP, .access = PL1_W }, 3556 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3557 .type = ARM_CP_NOP, .access = PL1_W }, 3558 /* MMU Domain access control / MPU write buffer control */ 3559 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3560 .access = PL1_RW, .resetvalue = 0, 3561 .writefn = dacr_write, .raw_writefn = raw_write, 3562 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3563 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3564 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3565 .type = ARM_CP_ALIAS, 3566 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3567 .access = PL1_RW, 3568 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3569 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3570 .type = ARM_CP_ALIAS, 3571 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3572 .access = PL1_RW, 3573 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3574 /* We rely on the access checks not allowing the guest to write to the 3575 * state field when SPSel indicates that it's being used as the stack 3576 * pointer. 3577 */ 3578 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3579 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3580 .access = PL1_RW, .accessfn = sp_el0_access, 3581 .type = ARM_CP_ALIAS, 3582 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3583 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3584 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3585 .access = PL2_RW, .type = ARM_CP_ALIAS, 3586 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3587 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3588 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3589 .type = ARM_CP_NO_RAW, 3590 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3591 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3592 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3593 .type = ARM_CP_ALIAS, 3594 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3595 .access = PL2_RW, .accessfn = fpexc32_access }, 3596 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3597 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3598 .access = PL2_RW, .resetvalue = 0, 3599 .writefn = dacr_write, .raw_writefn = raw_write, 3600 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3601 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3602 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3603 .access = PL2_RW, .resetvalue = 0, 3604 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3605 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3606 .type = ARM_CP_ALIAS, 3607 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3608 .access = PL2_RW, 3609 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3610 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3611 .type = ARM_CP_ALIAS, 3612 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3613 .access = PL2_RW, 3614 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3615 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3616 .type = ARM_CP_ALIAS, 3617 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3618 .access = PL2_RW, 3619 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3620 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3621 .type = ARM_CP_ALIAS, 3622 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3623 .access = PL2_RW, 3624 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3625 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3626 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3627 .resetvalue = 0, 3628 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3629 { .name = "SDCR", .type = ARM_CP_ALIAS, 3630 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3631 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3632 .writefn = sdcr_write, 3633 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3634 REGINFO_SENTINEL 3635 }; 3636 3637 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3638 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3639 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3640 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3641 .access = PL2_RW, 3642 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3643 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3644 .type = ARM_CP_NO_RAW, 3645 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3646 .access = PL2_RW, 3647 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3648 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3649 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3650 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3651 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3652 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3653 .access = PL2_RW, .type = ARM_CP_CONST, 3654 .resetvalue = 0 }, 3655 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3656 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3657 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3658 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3659 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3660 .access = PL2_RW, .type = ARM_CP_CONST, 3661 .resetvalue = 0 }, 3662 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3663 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3664 .access = PL2_RW, .type = ARM_CP_CONST, 3665 .resetvalue = 0 }, 3666 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3667 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3668 .access = PL2_RW, .type = ARM_CP_CONST, 3669 .resetvalue = 0 }, 3670 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3671 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3672 .access = PL2_RW, .type = ARM_CP_CONST, 3673 .resetvalue = 0 }, 3674 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3675 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3676 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3677 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3678 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3679 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3680 .type = ARM_CP_CONST, .resetvalue = 0 }, 3681 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3682 .cp = 15, .opc1 = 6, .crm = 2, 3683 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3684 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3685 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3686 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3687 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3688 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3689 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3690 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3691 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3692 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3693 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3694 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3695 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3696 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3697 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3698 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3699 .resetvalue = 0 }, 3700 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3701 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3702 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3703 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3704 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3705 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3706 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3707 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3708 .resetvalue = 0 }, 3709 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3710 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3711 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3712 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3713 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3714 .resetvalue = 0 }, 3715 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3716 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3717 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3718 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3719 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3720 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3721 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3722 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3723 .access = PL2_RW, .accessfn = access_tda, 3724 .type = ARM_CP_CONST, .resetvalue = 0 }, 3725 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3726 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3727 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3728 .type = ARM_CP_CONST, .resetvalue = 0 }, 3729 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3730 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3731 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3732 REGINFO_SENTINEL 3733 }; 3734 3735 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3736 { 3737 ARMCPU *cpu = arm_env_get_cpu(env); 3738 uint64_t valid_mask = HCR_MASK; 3739 3740 if (arm_feature(env, ARM_FEATURE_EL3)) { 3741 valid_mask &= ~HCR_HCD; 3742 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3743 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3744 * However, if we're using the SMC PSCI conduit then QEMU is 3745 * effectively acting like EL3 firmware and so the guest at 3746 * EL2 should retain the ability to prevent EL1 from being 3747 * able to make SMC calls into the ersatz firmware, so in 3748 * that case HCR.TSC should be read/write. 3749 */ 3750 valid_mask &= ~HCR_TSC; 3751 } 3752 3753 /* Clear RES0 bits. */ 3754 value &= valid_mask; 3755 3756 /* These bits change the MMU setup: 3757 * HCR_VM enables stage 2 translation 3758 * HCR_PTW forbids certain page-table setups 3759 * HCR_DC Disables stage1 and enables stage2 translation 3760 */ 3761 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3762 tlb_flush(CPU(cpu)); 3763 } 3764 raw_write(env, ri, value); 3765 } 3766 3767 static const ARMCPRegInfo el2_cp_reginfo[] = { 3768 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3769 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3770 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3771 .writefn = hcr_write }, 3772 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3773 .type = ARM_CP_ALIAS, 3774 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3775 .access = PL2_RW, 3776 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3777 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3778 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3779 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3780 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3781 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3782 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3783 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3784 .type = ARM_CP_ALIAS, 3785 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3786 .access = PL2_RW, 3787 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3788 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3789 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3790 .access = PL2_RW, .writefn = vbar_write, 3791 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3792 .resetvalue = 0 }, 3793 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3794 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3795 .access = PL3_RW, .type = ARM_CP_ALIAS, 3796 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3797 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3798 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3799 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3800 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3801 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3802 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3803 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3804 .resetvalue = 0 }, 3805 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3806 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3807 .access = PL2_RW, .type = ARM_CP_ALIAS, 3808 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3809 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3810 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3811 .access = PL2_RW, .type = ARM_CP_CONST, 3812 .resetvalue = 0 }, 3813 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3814 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3815 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3816 .access = PL2_RW, .type = ARM_CP_CONST, 3817 .resetvalue = 0 }, 3818 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3819 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3820 .access = PL2_RW, .type = ARM_CP_CONST, 3821 .resetvalue = 0 }, 3822 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3823 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3824 .access = PL2_RW, .type = ARM_CP_CONST, 3825 .resetvalue = 0 }, 3826 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3827 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3828 .access = PL2_RW, 3829 /* no .writefn needed as this can't cause an ASID change; 3830 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3831 */ 3832 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3833 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3834 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3835 .type = ARM_CP_ALIAS, 3836 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3837 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3838 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3839 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3840 .access = PL2_RW, 3841 /* no .writefn needed as this can't cause an ASID change; 3842 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3843 */ 3844 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3845 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3846 .cp = 15, .opc1 = 6, .crm = 2, 3847 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3848 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3849 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3850 .writefn = vttbr_write }, 3851 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3852 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3853 .access = PL2_RW, .writefn = vttbr_write, 3854 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3855 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3856 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3857 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3858 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3859 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3860 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3861 .access = PL2_RW, .resetvalue = 0, 3862 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3863 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3864 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3865 .access = PL2_RW, .resetvalue = 0, 3866 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3867 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3868 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3869 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3870 { .name = "TLBIALLNSNH", 3871 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3872 .type = ARM_CP_NO_RAW, .access = PL2_W, 3873 .writefn = tlbiall_nsnh_write }, 3874 { .name = "TLBIALLNSNHIS", 3875 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3876 .type = ARM_CP_NO_RAW, .access = PL2_W, 3877 .writefn = tlbiall_nsnh_is_write }, 3878 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3879 .type = ARM_CP_NO_RAW, .access = PL2_W, 3880 .writefn = tlbiall_hyp_write }, 3881 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3882 .type = ARM_CP_NO_RAW, .access = PL2_W, 3883 .writefn = tlbiall_hyp_is_write }, 3884 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3885 .type = ARM_CP_NO_RAW, .access = PL2_W, 3886 .writefn = tlbimva_hyp_write }, 3887 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3888 .type = ARM_CP_NO_RAW, .access = PL2_W, 3889 .writefn = tlbimva_hyp_is_write }, 3890 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3891 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3892 .type = ARM_CP_NO_RAW, .access = PL2_W, 3893 .writefn = tlbi_aa64_alle2_write }, 3894 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3895 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3896 .type = ARM_CP_NO_RAW, .access = PL2_W, 3897 .writefn = tlbi_aa64_vae2_write }, 3898 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3899 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3900 .access = PL2_W, .type = ARM_CP_NO_RAW, 3901 .writefn = tlbi_aa64_vae2_write }, 3902 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3903 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3904 .access = PL2_W, .type = ARM_CP_NO_RAW, 3905 .writefn = tlbi_aa64_alle2is_write }, 3906 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3907 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3908 .type = ARM_CP_NO_RAW, .access = PL2_W, 3909 .writefn = tlbi_aa64_vae2is_write }, 3910 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3911 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3912 .access = PL2_W, .type = ARM_CP_NO_RAW, 3913 .writefn = tlbi_aa64_vae2is_write }, 3914 #ifndef CONFIG_USER_ONLY 3915 /* Unlike the other EL2-related AT operations, these must 3916 * UNDEF from EL3 if EL2 is not implemented, which is why we 3917 * define them here rather than with the rest of the AT ops. 3918 */ 3919 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3920 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3921 .access = PL2_W, .accessfn = at_s1e2_access, 3922 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3923 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3924 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3925 .access = PL2_W, .accessfn = at_s1e2_access, 3926 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3927 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3928 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3929 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3930 * to behave as if SCR.NS was 1. 3931 */ 3932 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3933 .access = PL2_W, 3934 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3935 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3936 .access = PL2_W, 3937 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3938 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3939 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3940 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3941 * reset values as IMPDEF. We choose to reset to 3 to comply with 3942 * both ARMv7 and ARMv8. 3943 */ 3944 .access = PL2_RW, .resetvalue = 3, 3945 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 3946 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3947 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3948 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3949 .writefn = gt_cntvoff_write, 3950 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3951 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3952 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 3953 .writefn = gt_cntvoff_write, 3954 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 3955 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3956 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3958 .type = ARM_CP_IO, .access = PL2_RW, 3959 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3960 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 3962 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 3963 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 3964 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3965 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3966 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 3967 .resetfn = gt_hyp_timer_reset, 3968 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 3969 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3970 .type = ARM_CP_IO, 3971 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3972 .access = PL2_RW, 3973 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 3974 .resetvalue = 0, 3975 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 3976 #endif 3977 /* The only field of MDCR_EL2 that has a defined architectural reset value 3978 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 3979 * don't impelment any PMU event counters, so using zero as a reset 3980 * value for MDCR_EL2 is okay 3981 */ 3982 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3983 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3984 .access = PL2_RW, .resetvalue = 0, 3985 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 3986 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 3987 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3988 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3989 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3990 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 3991 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3992 .access = PL2_RW, 3993 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 3994 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3995 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3996 .access = PL2_RW, 3997 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 3998 REGINFO_SENTINEL 3999 }; 4000 4001 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4002 bool isread) 4003 { 4004 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4005 * At Secure EL1 it traps to EL3. 4006 */ 4007 if (arm_current_el(env) == 3) { 4008 return CP_ACCESS_OK; 4009 } 4010 if (arm_is_secure_below_el3(env)) { 4011 return CP_ACCESS_TRAP_EL3; 4012 } 4013 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4014 if (isread) { 4015 return CP_ACCESS_OK; 4016 } 4017 return CP_ACCESS_TRAP_UNCATEGORIZED; 4018 } 4019 4020 static const ARMCPRegInfo el3_cp_reginfo[] = { 4021 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4022 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4023 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4024 .resetvalue = 0, .writefn = scr_write }, 4025 { .name = "SCR", .type = ARM_CP_ALIAS, 4026 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4027 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4028 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4029 .writefn = scr_write }, 4030 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4031 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4032 .access = PL3_RW, .resetvalue = 0, 4033 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4034 { .name = "SDER", 4035 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4036 .access = PL3_RW, .resetvalue = 0, 4037 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4038 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4039 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4040 .writefn = vbar_write, .resetvalue = 0, 4041 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4042 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4043 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4044 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4045 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4046 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4047 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4048 .access = PL3_RW, 4049 /* no .writefn needed as this can't cause an ASID change; 4050 * we must provide a .raw_writefn and .resetfn because we handle 4051 * reset and migration for the AArch32 TTBCR(S), which might be 4052 * using mask and base_mask. 4053 */ 4054 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4055 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4056 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4057 .type = ARM_CP_ALIAS, 4058 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4059 .access = PL3_RW, 4060 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4061 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4062 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4063 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4064 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4065 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4066 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4067 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4068 .type = ARM_CP_ALIAS, 4069 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4070 .access = PL3_RW, 4071 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4072 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4073 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4074 .access = PL3_RW, .writefn = vbar_write, 4075 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4076 .resetvalue = 0 }, 4077 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4078 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4079 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4080 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4081 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4082 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4083 .access = PL3_RW, .resetvalue = 0, 4084 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4085 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4086 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4087 .access = PL3_RW, .type = ARM_CP_CONST, 4088 .resetvalue = 0 }, 4089 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4090 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4091 .access = PL3_RW, .type = ARM_CP_CONST, 4092 .resetvalue = 0 }, 4093 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4094 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4095 .access = PL3_RW, .type = ARM_CP_CONST, 4096 .resetvalue = 0 }, 4097 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4098 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4099 .access = PL3_W, .type = ARM_CP_NO_RAW, 4100 .writefn = tlbi_aa64_alle3is_write }, 4101 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4102 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4103 .access = PL3_W, .type = ARM_CP_NO_RAW, 4104 .writefn = tlbi_aa64_vae3is_write }, 4105 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4106 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4107 .access = PL3_W, .type = ARM_CP_NO_RAW, 4108 .writefn = tlbi_aa64_vae3is_write }, 4109 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4110 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4111 .access = PL3_W, .type = ARM_CP_NO_RAW, 4112 .writefn = tlbi_aa64_alle3_write }, 4113 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4114 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4115 .access = PL3_W, .type = ARM_CP_NO_RAW, 4116 .writefn = tlbi_aa64_vae3_write }, 4117 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4118 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4119 .access = PL3_W, .type = ARM_CP_NO_RAW, 4120 .writefn = tlbi_aa64_vae3_write }, 4121 REGINFO_SENTINEL 4122 }; 4123 4124 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4125 bool isread) 4126 { 4127 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4128 * but the AArch32 CTR has its own reginfo struct) 4129 */ 4130 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4131 return CP_ACCESS_TRAP; 4132 } 4133 return CP_ACCESS_OK; 4134 } 4135 4136 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4137 uint64_t value) 4138 { 4139 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4140 * read via a bit in OSLSR_EL1. 4141 */ 4142 int oslock; 4143 4144 if (ri->state == ARM_CP_STATE_AA32) { 4145 oslock = (value == 0xC5ACCE55); 4146 } else { 4147 oslock = value & 1; 4148 } 4149 4150 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4151 } 4152 4153 static const ARMCPRegInfo debug_cp_reginfo[] = { 4154 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4155 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4156 * unlike DBGDRAR it is never accessible from EL0. 4157 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4158 * accessor. 4159 */ 4160 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4161 .access = PL0_R, .accessfn = access_tdra, 4162 .type = ARM_CP_CONST, .resetvalue = 0 }, 4163 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4164 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4165 .access = PL1_R, .accessfn = access_tdra, 4166 .type = ARM_CP_CONST, .resetvalue = 0 }, 4167 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4168 .access = PL0_R, .accessfn = access_tdra, 4169 .type = ARM_CP_CONST, .resetvalue = 0 }, 4170 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4171 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4172 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4173 .access = PL1_RW, .accessfn = access_tda, 4174 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4175 .resetvalue = 0 }, 4176 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4177 * We don't implement the configurable EL0 access. 4178 */ 4179 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4180 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4181 .type = ARM_CP_ALIAS, 4182 .access = PL1_R, .accessfn = access_tda, 4183 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4184 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4185 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4186 .access = PL1_W, .type = ARM_CP_NO_RAW, 4187 .accessfn = access_tdosa, 4188 .writefn = oslar_write }, 4189 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4190 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4191 .access = PL1_R, .resetvalue = 10, 4192 .accessfn = access_tdosa, 4193 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4194 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4195 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4196 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4197 .access = PL1_RW, .accessfn = access_tdosa, 4198 .type = ARM_CP_NOP }, 4199 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4200 * implement vector catch debug events yet. 4201 */ 4202 { .name = "DBGVCR", 4203 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4204 .access = PL1_RW, .accessfn = access_tda, 4205 .type = ARM_CP_NOP }, 4206 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4207 * to save and restore a 32-bit guest's DBGVCR) 4208 */ 4209 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4210 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4211 .access = PL2_RW, .accessfn = access_tda, 4212 .type = ARM_CP_NOP }, 4213 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4214 * Channel but Linux may try to access this register. The 32-bit 4215 * alias is DBGDCCINT. 4216 */ 4217 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4218 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4219 .access = PL1_RW, .accessfn = access_tda, 4220 .type = ARM_CP_NOP }, 4221 REGINFO_SENTINEL 4222 }; 4223 4224 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4225 /* 64 bit access versions of the (dummy) debug registers */ 4226 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4227 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4228 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4229 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4230 REGINFO_SENTINEL 4231 }; 4232 4233 void hw_watchpoint_update(ARMCPU *cpu, int n) 4234 { 4235 CPUARMState *env = &cpu->env; 4236 vaddr len = 0; 4237 vaddr wvr = env->cp15.dbgwvr[n]; 4238 uint64_t wcr = env->cp15.dbgwcr[n]; 4239 int mask; 4240 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4241 4242 if (env->cpu_watchpoint[n]) { 4243 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4244 env->cpu_watchpoint[n] = NULL; 4245 } 4246 4247 if (!extract64(wcr, 0, 1)) { 4248 /* E bit clear : watchpoint disabled */ 4249 return; 4250 } 4251 4252 switch (extract64(wcr, 3, 2)) { 4253 case 0: 4254 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4255 return; 4256 case 1: 4257 flags |= BP_MEM_READ; 4258 break; 4259 case 2: 4260 flags |= BP_MEM_WRITE; 4261 break; 4262 case 3: 4263 flags |= BP_MEM_ACCESS; 4264 break; 4265 } 4266 4267 /* Attempts to use both MASK and BAS fields simultaneously are 4268 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4269 * thus generating a watchpoint for every byte in the masked region. 4270 */ 4271 mask = extract64(wcr, 24, 4); 4272 if (mask == 1 || mask == 2) { 4273 /* Reserved values of MASK; we must act as if the mask value was 4274 * some non-reserved value, or as if the watchpoint were disabled. 4275 * We choose the latter. 4276 */ 4277 return; 4278 } else if (mask) { 4279 /* Watchpoint covers an aligned area up to 2GB in size */ 4280 len = 1ULL << mask; 4281 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4282 * whether the watchpoint fires when the unmasked bits match; we opt 4283 * to generate the exceptions. 4284 */ 4285 wvr &= ~(len - 1); 4286 } else { 4287 /* Watchpoint covers bytes defined by the byte address select bits */ 4288 int bas = extract64(wcr, 5, 8); 4289 int basstart; 4290 4291 if (bas == 0) { 4292 /* This must act as if the watchpoint is disabled */ 4293 return; 4294 } 4295 4296 if (extract64(wvr, 2, 1)) { 4297 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4298 * ignored, and BAS[3:0] define which bytes to watch. 4299 */ 4300 bas &= 0xf; 4301 } 4302 /* The BAS bits are supposed to be programmed to indicate a contiguous 4303 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4304 * we fire for each byte in the word/doubleword addressed by the WVR. 4305 * We choose to ignore any non-zero bits after the first range of 1s. 4306 */ 4307 basstart = ctz32(bas); 4308 len = cto32(bas >> basstart); 4309 wvr += basstart; 4310 } 4311 4312 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4313 &env->cpu_watchpoint[n]); 4314 } 4315 4316 void hw_watchpoint_update_all(ARMCPU *cpu) 4317 { 4318 int i; 4319 CPUARMState *env = &cpu->env; 4320 4321 /* Completely clear out existing QEMU watchpoints and our array, to 4322 * avoid possible stale entries following migration load. 4323 */ 4324 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4325 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4326 4327 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4328 hw_watchpoint_update(cpu, i); 4329 } 4330 } 4331 4332 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4333 uint64_t value) 4334 { 4335 ARMCPU *cpu = arm_env_get_cpu(env); 4336 int i = ri->crm; 4337 4338 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4339 * register reads and behaves as if values written are sign extended. 4340 * Bits [1:0] are RES0. 4341 */ 4342 value = sextract64(value, 0, 49) & ~3ULL; 4343 4344 raw_write(env, ri, value); 4345 hw_watchpoint_update(cpu, i); 4346 } 4347 4348 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4349 uint64_t value) 4350 { 4351 ARMCPU *cpu = arm_env_get_cpu(env); 4352 int i = ri->crm; 4353 4354 raw_write(env, ri, value); 4355 hw_watchpoint_update(cpu, i); 4356 } 4357 4358 void hw_breakpoint_update(ARMCPU *cpu, int n) 4359 { 4360 CPUARMState *env = &cpu->env; 4361 uint64_t bvr = env->cp15.dbgbvr[n]; 4362 uint64_t bcr = env->cp15.dbgbcr[n]; 4363 vaddr addr; 4364 int bt; 4365 int flags = BP_CPU; 4366 4367 if (env->cpu_breakpoint[n]) { 4368 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4369 env->cpu_breakpoint[n] = NULL; 4370 } 4371 4372 if (!extract64(bcr, 0, 1)) { 4373 /* E bit clear : watchpoint disabled */ 4374 return; 4375 } 4376 4377 bt = extract64(bcr, 20, 4); 4378 4379 switch (bt) { 4380 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4381 case 5: /* linked address mismatch (reserved if AArch64) */ 4382 qemu_log_mask(LOG_UNIMP, 4383 "arm: address mismatch breakpoint types not implemented"); 4384 return; 4385 case 0: /* unlinked address match */ 4386 case 1: /* linked address match */ 4387 { 4388 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4389 * we behave as if the register was sign extended. Bits [1:0] are 4390 * RES0. The BAS field is used to allow setting breakpoints on 16 4391 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4392 * a bp will fire if the addresses covered by the bp and the addresses 4393 * covered by the insn overlap but the insn doesn't start at the 4394 * start of the bp address range. We choose to require the insn and 4395 * the bp to have the same address. The constraints on writing to 4396 * BAS enforced in dbgbcr_write mean we have only four cases: 4397 * 0b0000 => no breakpoint 4398 * 0b0011 => breakpoint on addr 4399 * 0b1100 => breakpoint on addr + 2 4400 * 0b1111 => breakpoint on addr 4401 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4402 */ 4403 int bas = extract64(bcr, 5, 4); 4404 addr = sextract64(bvr, 0, 49) & ~3ULL; 4405 if (bas == 0) { 4406 return; 4407 } 4408 if (bas == 0xc) { 4409 addr += 2; 4410 } 4411 break; 4412 } 4413 case 2: /* unlinked context ID match */ 4414 case 8: /* unlinked VMID match (reserved if no EL2) */ 4415 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4416 qemu_log_mask(LOG_UNIMP, 4417 "arm: unlinked context breakpoint types not implemented"); 4418 return; 4419 case 9: /* linked VMID match (reserved if no EL2) */ 4420 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4421 case 3: /* linked context ID match */ 4422 default: 4423 /* We must generate no events for Linked context matches (unless 4424 * they are linked to by some other bp/wp, which is handled in 4425 * updates for the linking bp/wp). We choose to also generate no events 4426 * for reserved values. 4427 */ 4428 return; 4429 } 4430 4431 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4432 } 4433 4434 void hw_breakpoint_update_all(ARMCPU *cpu) 4435 { 4436 int i; 4437 CPUARMState *env = &cpu->env; 4438 4439 /* Completely clear out existing QEMU breakpoints and our array, to 4440 * avoid possible stale entries following migration load. 4441 */ 4442 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4443 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4444 4445 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4446 hw_breakpoint_update(cpu, i); 4447 } 4448 } 4449 4450 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4451 uint64_t value) 4452 { 4453 ARMCPU *cpu = arm_env_get_cpu(env); 4454 int i = ri->crm; 4455 4456 raw_write(env, ri, value); 4457 hw_breakpoint_update(cpu, i); 4458 } 4459 4460 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4461 uint64_t value) 4462 { 4463 ARMCPU *cpu = arm_env_get_cpu(env); 4464 int i = ri->crm; 4465 4466 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4467 * copy of BAS[0]. 4468 */ 4469 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4470 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4471 4472 raw_write(env, ri, value); 4473 hw_breakpoint_update(cpu, i); 4474 } 4475 4476 static void define_debug_regs(ARMCPU *cpu) 4477 { 4478 /* Define v7 and v8 architectural debug registers. 4479 * These are just dummy implementations for now. 4480 */ 4481 int i; 4482 int wrps, brps, ctx_cmps; 4483 ARMCPRegInfo dbgdidr = { 4484 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4485 .access = PL0_R, .accessfn = access_tda, 4486 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4487 }; 4488 4489 /* Note that all these register fields hold "number of Xs minus 1". */ 4490 brps = extract32(cpu->dbgdidr, 24, 4); 4491 wrps = extract32(cpu->dbgdidr, 28, 4); 4492 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4493 4494 assert(ctx_cmps <= brps); 4495 4496 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4497 * of the debug registers such as number of breakpoints; 4498 * check that if they both exist then they agree. 4499 */ 4500 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4501 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4502 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4503 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4504 } 4505 4506 define_one_arm_cp_reg(cpu, &dbgdidr); 4507 define_arm_cp_regs(cpu, debug_cp_reginfo); 4508 4509 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4510 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4511 } 4512 4513 for (i = 0; i < brps + 1; i++) { 4514 ARMCPRegInfo dbgregs[] = { 4515 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4516 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4517 .access = PL1_RW, .accessfn = access_tda, 4518 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4519 .writefn = dbgbvr_write, .raw_writefn = raw_write 4520 }, 4521 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4522 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4523 .access = PL1_RW, .accessfn = access_tda, 4524 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4525 .writefn = dbgbcr_write, .raw_writefn = raw_write 4526 }, 4527 REGINFO_SENTINEL 4528 }; 4529 define_arm_cp_regs(cpu, dbgregs); 4530 } 4531 4532 for (i = 0; i < wrps + 1; i++) { 4533 ARMCPRegInfo dbgregs[] = { 4534 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4535 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4536 .access = PL1_RW, .accessfn = access_tda, 4537 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4538 .writefn = dbgwvr_write, .raw_writefn = raw_write 4539 }, 4540 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4541 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4542 .access = PL1_RW, .accessfn = access_tda, 4543 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4544 .writefn = dbgwcr_write, .raw_writefn = raw_write 4545 }, 4546 REGINFO_SENTINEL 4547 }; 4548 define_arm_cp_regs(cpu, dbgregs); 4549 } 4550 } 4551 4552 /* We don't know until after realize whether there's a GICv3 4553 * attached, and that is what registers the gicv3 sysregs. 4554 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4555 * at runtime. 4556 */ 4557 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4558 { 4559 ARMCPU *cpu = arm_env_get_cpu(env); 4560 uint64_t pfr1 = cpu->id_pfr1; 4561 4562 if (env->gicv3state) { 4563 pfr1 |= 1 << 28; 4564 } 4565 return pfr1; 4566 } 4567 4568 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4569 { 4570 ARMCPU *cpu = arm_env_get_cpu(env); 4571 uint64_t pfr0 = cpu->id_aa64pfr0; 4572 4573 if (env->gicv3state) { 4574 pfr0 |= 1 << 24; 4575 } 4576 return pfr0; 4577 } 4578 4579 void register_cp_regs_for_features(ARMCPU *cpu) 4580 { 4581 /* Register all the coprocessor registers based on feature bits */ 4582 CPUARMState *env = &cpu->env; 4583 if (arm_feature(env, ARM_FEATURE_M)) { 4584 /* M profile has no coprocessor registers */ 4585 return; 4586 } 4587 4588 define_arm_cp_regs(cpu, cp_reginfo); 4589 if (!arm_feature(env, ARM_FEATURE_V8)) { 4590 /* Must go early as it is full of wildcards that may be 4591 * overridden by later definitions. 4592 */ 4593 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4594 } 4595 4596 if (arm_feature(env, ARM_FEATURE_V6)) { 4597 /* The ID registers all have impdef reset values */ 4598 ARMCPRegInfo v6_idregs[] = { 4599 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4600 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4601 .access = PL1_R, .type = ARM_CP_CONST, 4602 .resetvalue = cpu->id_pfr0 }, 4603 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4604 * the value of the GIC field until after we define these regs. 4605 */ 4606 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4608 .access = PL1_R, .type = ARM_CP_NO_RAW, 4609 .readfn = id_pfr1_read, 4610 .writefn = arm_cp_write_ignore }, 4611 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4612 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4613 .access = PL1_R, .type = ARM_CP_CONST, 4614 .resetvalue = cpu->id_dfr0 }, 4615 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4616 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4617 .access = PL1_R, .type = ARM_CP_CONST, 4618 .resetvalue = cpu->id_afr0 }, 4619 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4620 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4621 .access = PL1_R, .type = ARM_CP_CONST, 4622 .resetvalue = cpu->id_mmfr0 }, 4623 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4624 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4625 .access = PL1_R, .type = ARM_CP_CONST, 4626 .resetvalue = cpu->id_mmfr1 }, 4627 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4629 .access = PL1_R, .type = ARM_CP_CONST, 4630 .resetvalue = cpu->id_mmfr2 }, 4631 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4632 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4633 .access = PL1_R, .type = ARM_CP_CONST, 4634 .resetvalue = cpu->id_mmfr3 }, 4635 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4636 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4637 .access = PL1_R, .type = ARM_CP_CONST, 4638 .resetvalue = cpu->id_isar0 }, 4639 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4640 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4641 .access = PL1_R, .type = ARM_CP_CONST, 4642 .resetvalue = cpu->id_isar1 }, 4643 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4644 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4645 .access = PL1_R, .type = ARM_CP_CONST, 4646 .resetvalue = cpu->id_isar2 }, 4647 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4649 .access = PL1_R, .type = ARM_CP_CONST, 4650 .resetvalue = cpu->id_isar3 }, 4651 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4652 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4653 .access = PL1_R, .type = ARM_CP_CONST, 4654 .resetvalue = cpu->id_isar4 }, 4655 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4656 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4657 .access = PL1_R, .type = ARM_CP_CONST, 4658 .resetvalue = cpu->id_isar5 }, 4659 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4660 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4661 .access = PL1_R, .type = ARM_CP_CONST, 4662 .resetvalue = cpu->id_mmfr4 }, 4663 /* 7 is as yet unallocated and must RAZ */ 4664 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4665 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4666 .access = PL1_R, .type = ARM_CP_CONST, 4667 .resetvalue = 0 }, 4668 REGINFO_SENTINEL 4669 }; 4670 define_arm_cp_regs(cpu, v6_idregs); 4671 define_arm_cp_regs(cpu, v6_cp_reginfo); 4672 } else { 4673 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4674 } 4675 if (arm_feature(env, ARM_FEATURE_V6K)) { 4676 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4677 } 4678 if (arm_feature(env, ARM_FEATURE_V7MP) && 4679 !arm_feature(env, ARM_FEATURE_PMSA)) { 4680 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4681 } 4682 if (arm_feature(env, ARM_FEATURE_V7)) { 4683 /* v7 performance monitor control register: same implementor 4684 * field as main ID register, and we implement only the cycle 4685 * count register. 4686 */ 4687 #ifndef CONFIG_USER_ONLY 4688 ARMCPRegInfo pmcr = { 4689 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4690 .access = PL0_RW, 4691 .type = ARM_CP_IO | ARM_CP_ALIAS, 4692 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4693 .accessfn = pmreg_access, .writefn = pmcr_write, 4694 .raw_writefn = raw_write, 4695 }; 4696 ARMCPRegInfo pmcr64 = { 4697 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4698 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4699 .access = PL0_RW, .accessfn = pmreg_access, 4700 .type = ARM_CP_IO, 4701 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4702 .resetvalue = cpu->midr & 0xff000000, 4703 .writefn = pmcr_write, .raw_writefn = raw_write, 4704 }; 4705 define_one_arm_cp_reg(cpu, &pmcr); 4706 define_one_arm_cp_reg(cpu, &pmcr64); 4707 #endif 4708 ARMCPRegInfo clidr = { 4709 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4710 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4711 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4712 }; 4713 define_one_arm_cp_reg(cpu, &clidr); 4714 define_arm_cp_regs(cpu, v7_cp_reginfo); 4715 define_debug_regs(cpu); 4716 } else { 4717 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4718 } 4719 if (arm_feature(env, ARM_FEATURE_V8)) { 4720 /* AArch64 ID registers, which all have impdef reset values. 4721 * Note that within the ID register ranges the unused slots 4722 * must all RAZ, not UNDEF; future architecture versions may 4723 * define new registers here. 4724 */ 4725 ARMCPRegInfo v8_idregs[] = { 4726 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4727 * know the right value for the GIC field until after we 4728 * define these regs. 4729 */ 4730 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4732 .access = PL1_R, .type = ARM_CP_NO_RAW, 4733 .readfn = id_aa64pfr0_read, 4734 .writefn = arm_cp_write_ignore }, 4735 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4736 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4737 .access = PL1_R, .type = ARM_CP_CONST, 4738 .resetvalue = cpu->id_aa64pfr1}, 4739 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4741 .access = PL1_R, .type = ARM_CP_CONST, 4742 .resetvalue = 0 }, 4743 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4744 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4745 .access = PL1_R, .type = ARM_CP_CONST, 4746 .resetvalue = 0 }, 4747 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4748 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4749 .access = PL1_R, .type = ARM_CP_CONST, 4750 .resetvalue = 0 }, 4751 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4752 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4753 .access = PL1_R, .type = ARM_CP_CONST, 4754 .resetvalue = 0 }, 4755 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4756 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4757 .access = PL1_R, .type = ARM_CP_CONST, 4758 .resetvalue = 0 }, 4759 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4761 .access = PL1_R, .type = ARM_CP_CONST, 4762 .resetvalue = 0 }, 4763 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4764 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4765 .access = PL1_R, .type = ARM_CP_CONST, 4766 .resetvalue = cpu->id_aa64dfr0 }, 4767 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4768 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4769 .access = PL1_R, .type = ARM_CP_CONST, 4770 .resetvalue = cpu->id_aa64dfr1 }, 4771 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4772 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4773 .access = PL1_R, .type = ARM_CP_CONST, 4774 .resetvalue = 0 }, 4775 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4776 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4777 .access = PL1_R, .type = ARM_CP_CONST, 4778 .resetvalue = 0 }, 4779 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4781 .access = PL1_R, .type = ARM_CP_CONST, 4782 .resetvalue = cpu->id_aa64afr0 }, 4783 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4785 .access = PL1_R, .type = ARM_CP_CONST, 4786 .resetvalue = cpu->id_aa64afr1 }, 4787 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4788 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4789 .access = PL1_R, .type = ARM_CP_CONST, 4790 .resetvalue = 0 }, 4791 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4792 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4793 .access = PL1_R, .type = ARM_CP_CONST, 4794 .resetvalue = 0 }, 4795 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4796 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4797 .access = PL1_R, .type = ARM_CP_CONST, 4798 .resetvalue = cpu->id_aa64isar0 }, 4799 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4801 .access = PL1_R, .type = ARM_CP_CONST, 4802 .resetvalue = cpu->id_aa64isar1 }, 4803 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4804 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4805 .access = PL1_R, .type = ARM_CP_CONST, 4806 .resetvalue = 0 }, 4807 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4808 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4809 .access = PL1_R, .type = ARM_CP_CONST, 4810 .resetvalue = 0 }, 4811 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4812 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4813 .access = PL1_R, .type = ARM_CP_CONST, 4814 .resetvalue = 0 }, 4815 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4816 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4817 .access = PL1_R, .type = ARM_CP_CONST, 4818 .resetvalue = 0 }, 4819 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4821 .access = PL1_R, .type = ARM_CP_CONST, 4822 .resetvalue = 0 }, 4823 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = 0 }, 4827 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4829 .access = PL1_R, .type = ARM_CP_CONST, 4830 .resetvalue = cpu->id_aa64mmfr0 }, 4831 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4833 .access = PL1_R, .type = ARM_CP_CONST, 4834 .resetvalue = cpu->id_aa64mmfr1 }, 4835 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4836 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4837 .access = PL1_R, .type = ARM_CP_CONST, 4838 .resetvalue = 0 }, 4839 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 4841 .access = PL1_R, .type = ARM_CP_CONST, 4842 .resetvalue = 0 }, 4843 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 4845 .access = PL1_R, .type = ARM_CP_CONST, 4846 .resetvalue = 0 }, 4847 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 4849 .access = PL1_R, .type = ARM_CP_CONST, 4850 .resetvalue = 0 }, 4851 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 4853 .access = PL1_R, .type = ARM_CP_CONST, 4854 .resetvalue = 0 }, 4855 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 4857 .access = PL1_R, .type = ARM_CP_CONST, 4858 .resetvalue = 0 }, 4859 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 4861 .access = PL1_R, .type = ARM_CP_CONST, 4862 .resetvalue = cpu->mvfr0 }, 4863 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 4864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 4865 .access = PL1_R, .type = ARM_CP_CONST, 4866 .resetvalue = cpu->mvfr1 }, 4867 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 4868 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 4869 .access = PL1_R, .type = ARM_CP_CONST, 4870 .resetvalue = cpu->mvfr2 }, 4871 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4872 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 4873 .access = PL1_R, .type = ARM_CP_CONST, 4874 .resetvalue = 0 }, 4875 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4876 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 4877 .access = PL1_R, .type = ARM_CP_CONST, 4878 .resetvalue = 0 }, 4879 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 4881 .access = PL1_R, .type = ARM_CP_CONST, 4882 .resetvalue = 0 }, 4883 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4884 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 4885 .access = PL1_R, .type = ARM_CP_CONST, 4886 .resetvalue = 0 }, 4887 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4888 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 4889 .access = PL1_R, .type = ARM_CP_CONST, 4890 .resetvalue = 0 }, 4891 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 4892 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 4893 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4894 .resetvalue = cpu->pmceid0 }, 4895 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 4896 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 4897 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4898 .resetvalue = cpu->pmceid0 }, 4899 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 4900 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 4901 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4902 .resetvalue = cpu->pmceid1 }, 4903 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 4904 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 4905 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 4906 .resetvalue = cpu->pmceid1 }, 4907 REGINFO_SENTINEL 4908 }; 4909 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 4910 if (!arm_feature(env, ARM_FEATURE_EL3) && 4911 !arm_feature(env, ARM_FEATURE_EL2)) { 4912 ARMCPRegInfo rvbar = { 4913 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4915 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 4916 }; 4917 define_one_arm_cp_reg(cpu, &rvbar); 4918 } 4919 define_arm_cp_regs(cpu, v8_idregs); 4920 define_arm_cp_regs(cpu, v8_cp_reginfo); 4921 } 4922 if (arm_feature(env, ARM_FEATURE_EL2)) { 4923 uint64_t vmpidr_def = mpidr_read_val(env); 4924 ARMCPRegInfo vpidr_regs[] = { 4925 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 4926 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4927 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4928 .resetvalue = cpu->midr, 4929 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4930 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4932 .access = PL2_RW, .resetvalue = cpu->midr, 4933 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4934 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 4935 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4936 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4937 .resetvalue = vmpidr_def, 4938 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4939 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4941 .access = PL2_RW, 4942 .resetvalue = vmpidr_def, 4943 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 4944 REGINFO_SENTINEL 4945 }; 4946 define_arm_cp_regs(cpu, vpidr_regs); 4947 define_arm_cp_regs(cpu, el2_cp_reginfo); 4948 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 4949 if (!arm_feature(env, ARM_FEATURE_EL3)) { 4950 ARMCPRegInfo rvbar = { 4951 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 4952 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 4953 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 4954 }; 4955 define_one_arm_cp_reg(cpu, &rvbar); 4956 } 4957 } else { 4958 /* If EL2 is missing but higher ELs are enabled, we need to 4959 * register the no_el2 reginfos. 4960 */ 4961 if (arm_feature(env, ARM_FEATURE_EL3)) { 4962 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 4963 * of MIDR_EL1 and MPIDR_EL1. 4964 */ 4965 ARMCPRegInfo vpidr_regs[] = { 4966 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4967 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 4968 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4969 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 4970 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 4971 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 4972 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 4973 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 4974 .type = ARM_CP_NO_RAW, 4975 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 4976 REGINFO_SENTINEL 4977 }; 4978 define_arm_cp_regs(cpu, vpidr_regs); 4979 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 4980 } 4981 } 4982 if (arm_feature(env, ARM_FEATURE_EL3)) { 4983 define_arm_cp_regs(cpu, el3_cp_reginfo); 4984 ARMCPRegInfo el3_regs[] = { 4985 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 4986 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 4987 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 4988 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 4989 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 4990 .access = PL3_RW, 4991 .raw_writefn = raw_write, .writefn = sctlr_write, 4992 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 4993 .resetvalue = cpu->reset_sctlr }, 4994 REGINFO_SENTINEL 4995 }; 4996 4997 define_arm_cp_regs(cpu, el3_regs); 4998 } 4999 /* The behaviour of NSACR is sufficiently various that we don't 5000 * try to describe it in a single reginfo: 5001 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5002 * reads as constant 0xc00 from NS EL1 and NS EL2 5003 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5004 * if v7 without EL3, register doesn't exist 5005 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5006 */ 5007 if (arm_feature(env, ARM_FEATURE_EL3)) { 5008 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5009 ARMCPRegInfo nsacr = { 5010 .name = "NSACR", .type = ARM_CP_CONST, 5011 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5012 .access = PL1_RW, .accessfn = nsacr_access, 5013 .resetvalue = 0xc00 5014 }; 5015 define_one_arm_cp_reg(cpu, &nsacr); 5016 } else { 5017 ARMCPRegInfo nsacr = { 5018 .name = "NSACR", 5019 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5020 .access = PL3_RW | PL1_R, 5021 .resetvalue = 0, 5022 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5023 }; 5024 define_one_arm_cp_reg(cpu, &nsacr); 5025 } 5026 } else { 5027 if (arm_feature(env, ARM_FEATURE_V8)) { 5028 ARMCPRegInfo nsacr = { 5029 .name = "NSACR", .type = ARM_CP_CONST, 5030 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5031 .access = PL1_R, 5032 .resetvalue = 0xc00 5033 }; 5034 define_one_arm_cp_reg(cpu, &nsacr); 5035 } 5036 } 5037 5038 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5039 if (arm_feature(env, ARM_FEATURE_V6)) { 5040 /* PMSAv6 not implemented */ 5041 assert(arm_feature(env, ARM_FEATURE_V7)); 5042 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5043 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5044 } else { 5045 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5046 } 5047 } else { 5048 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5049 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5050 } 5051 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5052 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5053 } 5054 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5055 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5056 } 5057 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5058 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5059 } 5060 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5061 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5062 } 5063 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5064 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5065 } 5066 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5067 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5068 } 5069 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5070 define_arm_cp_regs(cpu, omap_cp_reginfo); 5071 } 5072 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5073 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5074 } 5075 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5076 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5077 } 5078 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5079 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5080 } 5081 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5082 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5083 } 5084 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5085 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5086 * be read-only (ie write causes UNDEF exception). 5087 */ 5088 { 5089 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5090 /* Pre-v8 MIDR space. 5091 * Note that the MIDR isn't a simple constant register because 5092 * of the TI925 behaviour where writes to another register can 5093 * cause the MIDR value to change. 5094 * 5095 * Unimplemented registers in the c15 0 0 0 space default to 5096 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5097 * and friends override accordingly. 5098 */ 5099 { .name = "MIDR", 5100 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5101 .access = PL1_R, .resetvalue = cpu->midr, 5102 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5103 .readfn = midr_read, 5104 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5105 .type = ARM_CP_OVERRIDE }, 5106 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5107 { .name = "DUMMY", 5108 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5109 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5110 { .name = "DUMMY", 5111 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5112 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5113 { .name = "DUMMY", 5114 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5115 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5116 { .name = "DUMMY", 5117 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5118 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5119 { .name = "DUMMY", 5120 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5121 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5122 REGINFO_SENTINEL 5123 }; 5124 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5125 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5126 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5127 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5128 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5129 .readfn = midr_read }, 5130 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5131 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5132 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5133 .access = PL1_R, .resetvalue = cpu->midr }, 5134 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5135 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5136 .access = PL1_R, .resetvalue = cpu->midr }, 5137 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5138 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5139 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5140 REGINFO_SENTINEL 5141 }; 5142 ARMCPRegInfo id_cp_reginfo[] = { 5143 /* These are common to v8 and pre-v8 */ 5144 { .name = "CTR", 5145 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5146 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5147 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5148 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5149 .access = PL0_R, .accessfn = ctr_el0_access, 5150 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5151 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5152 { .name = "TCMTR", 5153 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5154 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5155 REGINFO_SENTINEL 5156 }; 5157 /* TLBTR is specific to VMSA */ 5158 ARMCPRegInfo id_tlbtr_reginfo = { 5159 .name = "TLBTR", 5160 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5161 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5162 }; 5163 /* MPUIR is specific to PMSA V6+ */ 5164 ARMCPRegInfo id_mpuir_reginfo = { 5165 .name = "MPUIR", 5166 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5167 .access = PL1_R, .type = ARM_CP_CONST, 5168 .resetvalue = cpu->pmsav7_dregion << 8 5169 }; 5170 ARMCPRegInfo crn0_wi_reginfo = { 5171 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5172 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5173 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5174 }; 5175 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5176 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5177 ARMCPRegInfo *r; 5178 /* Register the blanket "writes ignored" value first to cover the 5179 * whole space. Then update the specific ID registers to allow write 5180 * access, so that they ignore writes rather than causing them to 5181 * UNDEF. 5182 */ 5183 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5184 for (r = id_pre_v8_midr_cp_reginfo; 5185 r->type != ARM_CP_SENTINEL; r++) { 5186 r->access = PL1_RW; 5187 } 5188 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5189 r->access = PL1_RW; 5190 } 5191 id_tlbtr_reginfo.access = PL1_RW; 5192 id_tlbtr_reginfo.access = PL1_RW; 5193 } 5194 if (arm_feature(env, ARM_FEATURE_V8)) { 5195 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5196 } else { 5197 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5198 } 5199 define_arm_cp_regs(cpu, id_cp_reginfo); 5200 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5201 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5202 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5203 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5204 } 5205 } 5206 5207 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5208 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5209 } 5210 5211 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5212 ARMCPRegInfo auxcr_reginfo[] = { 5213 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5214 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5215 .access = PL1_RW, .type = ARM_CP_CONST, 5216 .resetvalue = cpu->reset_auxcr }, 5217 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5218 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5219 .access = PL2_RW, .type = ARM_CP_CONST, 5220 .resetvalue = 0 }, 5221 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5222 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5223 .access = PL3_RW, .type = ARM_CP_CONST, 5224 .resetvalue = 0 }, 5225 REGINFO_SENTINEL 5226 }; 5227 define_arm_cp_regs(cpu, auxcr_reginfo); 5228 } 5229 5230 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5231 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5232 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5233 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5234 | extract64(cpu->reset_cbar, 32, 12); 5235 ARMCPRegInfo cbar_reginfo[] = { 5236 { .name = "CBAR", 5237 .type = ARM_CP_CONST, 5238 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5239 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5240 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5241 .type = ARM_CP_CONST, 5242 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5243 .access = PL1_R, .resetvalue = cbar32 }, 5244 REGINFO_SENTINEL 5245 }; 5246 /* We don't implement a r/w 64 bit CBAR currently */ 5247 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5248 define_arm_cp_regs(cpu, cbar_reginfo); 5249 } else { 5250 ARMCPRegInfo cbar = { 5251 .name = "CBAR", 5252 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5253 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5254 .fieldoffset = offsetof(CPUARMState, 5255 cp15.c15_config_base_address) 5256 }; 5257 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5258 cbar.access = PL1_R; 5259 cbar.fieldoffset = 0; 5260 cbar.type = ARM_CP_CONST; 5261 } 5262 define_one_arm_cp_reg(cpu, &cbar); 5263 } 5264 } 5265 5266 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5267 ARMCPRegInfo vbar_cp_reginfo[] = { 5268 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5269 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5270 .access = PL1_RW, .writefn = vbar_write, 5271 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5272 offsetof(CPUARMState, cp15.vbar_ns) }, 5273 .resetvalue = 0 }, 5274 REGINFO_SENTINEL 5275 }; 5276 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5277 } 5278 5279 /* Generic registers whose values depend on the implementation */ 5280 { 5281 ARMCPRegInfo sctlr = { 5282 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5283 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5284 .access = PL1_RW, 5285 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5286 offsetof(CPUARMState, cp15.sctlr_ns) }, 5287 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5288 .raw_writefn = raw_write, 5289 }; 5290 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5291 /* Normally we would always end the TB on an SCTLR write, but Linux 5292 * arch/arm/mach-pxa/sleep.S expects two instructions following 5293 * an MMU enable to execute from cache. Imitate this behaviour. 5294 */ 5295 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5296 } 5297 define_one_arm_cp_reg(cpu, &sctlr); 5298 } 5299 } 5300 5301 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5302 { 5303 CPUState *cs = CPU(cpu); 5304 CPUARMState *env = &cpu->env; 5305 5306 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5307 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5308 aarch64_fpu_gdb_set_reg, 5309 34, "aarch64-fpu.xml", 0); 5310 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5311 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5312 51, "arm-neon.xml", 0); 5313 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5314 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5315 35, "arm-vfp3.xml", 0); 5316 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5317 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5318 19, "arm-vfp.xml", 0); 5319 } 5320 } 5321 5322 /* Sort alphabetically by type name, except for "any". */ 5323 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5324 { 5325 ObjectClass *class_a = (ObjectClass *)a; 5326 ObjectClass *class_b = (ObjectClass *)b; 5327 const char *name_a, *name_b; 5328 5329 name_a = object_class_get_name(class_a); 5330 name_b = object_class_get_name(class_b); 5331 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5332 return 1; 5333 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5334 return -1; 5335 } else { 5336 return strcmp(name_a, name_b); 5337 } 5338 } 5339 5340 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5341 { 5342 ObjectClass *oc = data; 5343 CPUListState *s = user_data; 5344 const char *typename; 5345 char *name; 5346 5347 typename = object_class_get_name(oc); 5348 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5349 (*s->cpu_fprintf)(s->file, " %s\n", 5350 name); 5351 g_free(name); 5352 } 5353 5354 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5355 { 5356 CPUListState s = { 5357 .file = f, 5358 .cpu_fprintf = cpu_fprintf, 5359 }; 5360 GSList *list; 5361 5362 list = object_class_get_list(TYPE_ARM_CPU, false); 5363 list = g_slist_sort(list, arm_cpu_list_compare); 5364 (*cpu_fprintf)(f, "Available CPUs:\n"); 5365 g_slist_foreach(list, arm_cpu_list_entry, &s); 5366 g_slist_free(list); 5367 #ifdef CONFIG_KVM 5368 /* The 'host' CPU type is dynamically registered only if KVM is 5369 * enabled, so we have to special-case it here: 5370 */ 5371 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5372 #endif 5373 } 5374 5375 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5376 { 5377 ObjectClass *oc = data; 5378 CpuDefinitionInfoList **cpu_list = user_data; 5379 CpuDefinitionInfoList *entry; 5380 CpuDefinitionInfo *info; 5381 const char *typename; 5382 5383 typename = object_class_get_name(oc); 5384 info = g_malloc0(sizeof(*info)); 5385 info->name = g_strndup(typename, 5386 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5387 info->q_typename = g_strdup(typename); 5388 5389 entry = g_malloc0(sizeof(*entry)); 5390 entry->value = info; 5391 entry->next = *cpu_list; 5392 *cpu_list = entry; 5393 } 5394 5395 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5396 { 5397 CpuDefinitionInfoList *cpu_list = NULL; 5398 GSList *list; 5399 5400 list = object_class_get_list(TYPE_ARM_CPU, false); 5401 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5402 g_slist_free(list); 5403 5404 return cpu_list; 5405 } 5406 5407 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5408 void *opaque, int state, int secstate, 5409 int crm, int opc1, int opc2) 5410 { 5411 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5412 * add a single reginfo struct to the hash table. 5413 */ 5414 uint32_t *key = g_new(uint32_t, 1); 5415 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5416 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5417 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5418 5419 /* Reset the secure state to the specific incoming state. This is 5420 * necessary as the register may have been defined with both states. 5421 */ 5422 r2->secure = secstate; 5423 5424 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5425 /* Register is banked (using both entries in array). 5426 * Overwriting fieldoffset as the array is only used to define 5427 * banked registers but later only fieldoffset is used. 5428 */ 5429 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5430 } 5431 5432 if (state == ARM_CP_STATE_AA32) { 5433 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5434 /* If the register is banked then we don't need to migrate or 5435 * reset the 32-bit instance in certain cases: 5436 * 5437 * 1) If the register has both 32-bit and 64-bit instances then we 5438 * can count on the 64-bit instance taking care of the 5439 * non-secure bank. 5440 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5441 * taking care of the secure bank. This requires that separate 5442 * 32 and 64-bit definitions are provided. 5443 */ 5444 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5445 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5446 r2->type |= ARM_CP_ALIAS; 5447 } 5448 } else if ((secstate != r->secure) && !ns) { 5449 /* The register is not banked so we only want to allow migration of 5450 * the non-secure instance. 5451 */ 5452 r2->type |= ARM_CP_ALIAS; 5453 } 5454 5455 if (r->state == ARM_CP_STATE_BOTH) { 5456 /* We assume it is a cp15 register if the .cp field is left unset. 5457 */ 5458 if (r2->cp == 0) { 5459 r2->cp = 15; 5460 } 5461 5462 #ifdef HOST_WORDS_BIGENDIAN 5463 if (r2->fieldoffset) { 5464 r2->fieldoffset += sizeof(uint32_t); 5465 } 5466 #endif 5467 } 5468 } 5469 if (state == ARM_CP_STATE_AA64) { 5470 /* To allow abbreviation of ARMCPRegInfo 5471 * definitions, we treat cp == 0 as equivalent to 5472 * the value for "standard guest-visible sysreg". 5473 * STATE_BOTH definitions are also always "standard 5474 * sysreg" in their AArch64 view (the .cp value may 5475 * be non-zero for the benefit of the AArch32 view). 5476 */ 5477 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5478 r2->cp = CP_REG_ARM64_SYSREG_CP; 5479 } 5480 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5481 r2->opc0, opc1, opc2); 5482 } else { 5483 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5484 } 5485 if (opaque) { 5486 r2->opaque = opaque; 5487 } 5488 /* reginfo passed to helpers is correct for the actual access, 5489 * and is never ARM_CP_STATE_BOTH: 5490 */ 5491 r2->state = state; 5492 /* Make sure reginfo passed to helpers for wildcarded regs 5493 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5494 */ 5495 r2->crm = crm; 5496 r2->opc1 = opc1; 5497 r2->opc2 = opc2; 5498 /* By convention, for wildcarded registers only the first 5499 * entry is used for migration; the others are marked as 5500 * ALIAS so we don't try to transfer the register 5501 * multiple times. Special registers (ie NOP/WFI) are 5502 * never migratable and not even raw-accessible. 5503 */ 5504 if ((r->type & ARM_CP_SPECIAL)) { 5505 r2->type |= ARM_CP_NO_RAW; 5506 } 5507 if (((r->crm == CP_ANY) && crm != 0) || 5508 ((r->opc1 == CP_ANY) && opc1 != 0) || 5509 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5510 r2->type |= ARM_CP_ALIAS; 5511 } 5512 5513 /* Check that raw accesses are either forbidden or handled. Note that 5514 * we can't assert this earlier because the setup of fieldoffset for 5515 * banked registers has to be done first. 5516 */ 5517 if (!(r2->type & ARM_CP_NO_RAW)) { 5518 assert(!raw_accessors_invalid(r2)); 5519 } 5520 5521 /* Overriding of an existing definition must be explicitly 5522 * requested. 5523 */ 5524 if (!(r->type & ARM_CP_OVERRIDE)) { 5525 ARMCPRegInfo *oldreg; 5526 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5527 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5528 fprintf(stderr, "Register redefined: cp=%d %d bit " 5529 "crn=%d crm=%d opc1=%d opc2=%d, " 5530 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5531 r2->crn, r2->crm, r2->opc1, r2->opc2, 5532 oldreg->name, r2->name); 5533 g_assert_not_reached(); 5534 } 5535 } 5536 g_hash_table_insert(cpu->cp_regs, key, r2); 5537 } 5538 5539 5540 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5541 const ARMCPRegInfo *r, void *opaque) 5542 { 5543 /* Define implementations of coprocessor registers. 5544 * We store these in a hashtable because typically 5545 * there are less than 150 registers in a space which 5546 * is 16*16*16*8*8 = 262144 in size. 5547 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5548 * If a register is defined twice then the second definition is 5549 * used, so this can be used to define some generic registers and 5550 * then override them with implementation specific variations. 5551 * At least one of the original and the second definition should 5552 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5553 * against accidental use. 5554 * 5555 * The state field defines whether the register is to be 5556 * visible in the AArch32 or AArch64 execution state. If the 5557 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5558 * reginfo structure for the AArch32 view, which sees the lower 5559 * 32 bits of the 64 bit register. 5560 * 5561 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5562 * be wildcarded. AArch64 registers are always considered to be 64 5563 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5564 * the register, if any. 5565 */ 5566 int crm, opc1, opc2, state; 5567 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5568 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5569 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5570 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5571 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5572 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5573 /* 64 bit registers have only CRm and Opc1 fields */ 5574 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5575 /* op0 only exists in the AArch64 encodings */ 5576 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5577 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5578 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5579 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5580 * encodes a minimum access level for the register. We roll this 5581 * runtime check into our general permission check code, so check 5582 * here that the reginfo's specified permissions are strict enough 5583 * to encompass the generic architectural permission check. 5584 */ 5585 if (r->state != ARM_CP_STATE_AA32) { 5586 int mask = 0; 5587 switch (r->opc1) { 5588 case 0: case 1: case 2: 5589 /* min_EL EL1 */ 5590 mask = PL1_RW; 5591 break; 5592 case 3: 5593 /* min_EL EL0 */ 5594 mask = PL0_RW; 5595 break; 5596 case 4: 5597 /* min_EL EL2 */ 5598 mask = PL2_RW; 5599 break; 5600 case 5: 5601 /* unallocated encoding, so not possible */ 5602 assert(false); 5603 break; 5604 case 6: 5605 /* min_EL EL3 */ 5606 mask = PL3_RW; 5607 break; 5608 case 7: 5609 /* min_EL EL1, secure mode only (we don't check the latter) */ 5610 mask = PL1_RW; 5611 break; 5612 default: 5613 /* broken reginfo with out-of-range opc1 */ 5614 assert(false); 5615 break; 5616 } 5617 /* assert our permissions are not too lax (stricter is fine) */ 5618 assert((r->access & ~mask) == 0); 5619 } 5620 5621 /* Check that the register definition has enough info to handle 5622 * reads and writes if they are permitted. 5623 */ 5624 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5625 if (r->access & PL3_R) { 5626 assert((r->fieldoffset || 5627 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5628 r->readfn); 5629 } 5630 if (r->access & PL3_W) { 5631 assert((r->fieldoffset || 5632 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5633 r->writefn); 5634 } 5635 } 5636 /* Bad type field probably means missing sentinel at end of reg list */ 5637 assert(cptype_valid(r->type)); 5638 for (crm = crmmin; crm <= crmmax; crm++) { 5639 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5640 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5641 for (state = ARM_CP_STATE_AA32; 5642 state <= ARM_CP_STATE_AA64; state++) { 5643 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5644 continue; 5645 } 5646 if (state == ARM_CP_STATE_AA32) { 5647 /* Under AArch32 CP registers can be common 5648 * (same for secure and non-secure world) or banked. 5649 */ 5650 switch (r->secure) { 5651 case ARM_CP_SECSTATE_S: 5652 case ARM_CP_SECSTATE_NS: 5653 add_cpreg_to_hashtable(cpu, r, opaque, state, 5654 r->secure, crm, opc1, opc2); 5655 break; 5656 default: 5657 add_cpreg_to_hashtable(cpu, r, opaque, state, 5658 ARM_CP_SECSTATE_S, 5659 crm, opc1, opc2); 5660 add_cpreg_to_hashtable(cpu, r, opaque, state, 5661 ARM_CP_SECSTATE_NS, 5662 crm, opc1, opc2); 5663 break; 5664 } 5665 } else { 5666 /* AArch64 registers get mapped to non-secure instance 5667 * of AArch32 */ 5668 add_cpreg_to_hashtable(cpu, r, opaque, state, 5669 ARM_CP_SECSTATE_NS, 5670 crm, opc1, opc2); 5671 } 5672 } 5673 } 5674 } 5675 } 5676 } 5677 5678 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5679 const ARMCPRegInfo *regs, void *opaque) 5680 { 5681 /* Define a whole list of registers */ 5682 const ARMCPRegInfo *r; 5683 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5684 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5685 } 5686 } 5687 5688 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5689 { 5690 return g_hash_table_lookup(cpregs, &encoded_cp); 5691 } 5692 5693 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5694 uint64_t value) 5695 { 5696 /* Helper coprocessor write function for write-ignore registers */ 5697 } 5698 5699 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5700 { 5701 /* Helper coprocessor write function for read-as-zero registers */ 5702 return 0; 5703 } 5704 5705 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5706 { 5707 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5708 } 5709 5710 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5711 { 5712 /* Return true if it is not valid for us to switch to 5713 * this CPU mode (ie all the UNPREDICTABLE cases in 5714 * the ARM ARM CPSRWriteByInstr pseudocode). 5715 */ 5716 5717 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5718 if (write_type == CPSRWriteByInstr && 5719 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5720 mode == ARM_CPU_MODE_HYP)) { 5721 return 1; 5722 } 5723 5724 switch (mode) { 5725 case ARM_CPU_MODE_USR: 5726 return 0; 5727 case ARM_CPU_MODE_SYS: 5728 case ARM_CPU_MODE_SVC: 5729 case ARM_CPU_MODE_ABT: 5730 case ARM_CPU_MODE_UND: 5731 case ARM_CPU_MODE_IRQ: 5732 case ARM_CPU_MODE_FIQ: 5733 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5734 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5735 */ 5736 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5737 * and CPS are treated as illegal mode changes. 5738 */ 5739 if (write_type == CPSRWriteByInstr && 5740 (env->cp15.hcr_el2 & HCR_TGE) && 5741 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5742 !arm_is_secure_below_el3(env)) { 5743 return 1; 5744 } 5745 return 0; 5746 case ARM_CPU_MODE_HYP: 5747 return !arm_feature(env, ARM_FEATURE_EL2) 5748 || arm_current_el(env) < 2 || arm_is_secure(env); 5749 case ARM_CPU_MODE_MON: 5750 return arm_current_el(env) < 3; 5751 default: 5752 return 1; 5753 } 5754 } 5755 5756 uint32_t cpsr_read(CPUARMState *env) 5757 { 5758 int ZF; 5759 ZF = (env->ZF == 0); 5760 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5761 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5762 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5763 | ((env->condexec_bits & 0xfc) << 8) 5764 | (env->GE << 16) | (env->daif & CPSR_AIF); 5765 } 5766 5767 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5768 CPSRWriteType write_type) 5769 { 5770 uint32_t changed_daif; 5771 5772 if (mask & CPSR_NZCV) { 5773 env->ZF = (~val) & CPSR_Z; 5774 env->NF = val; 5775 env->CF = (val >> 29) & 1; 5776 env->VF = (val << 3) & 0x80000000; 5777 } 5778 if (mask & CPSR_Q) 5779 env->QF = ((val & CPSR_Q) != 0); 5780 if (mask & CPSR_T) 5781 env->thumb = ((val & CPSR_T) != 0); 5782 if (mask & CPSR_IT_0_1) { 5783 env->condexec_bits &= ~3; 5784 env->condexec_bits |= (val >> 25) & 3; 5785 } 5786 if (mask & CPSR_IT_2_7) { 5787 env->condexec_bits &= 3; 5788 env->condexec_bits |= (val >> 8) & 0xfc; 5789 } 5790 if (mask & CPSR_GE) { 5791 env->GE = (val >> 16) & 0xf; 5792 } 5793 5794 /* In a V7 implementation that includes the security extensions but does 5795 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5796 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5797 * bits respectively. 5798 * 5799 * In a V8 implementation, it is permitted for privileged software to 5800 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5801 */ 5802 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5803 arm_feature(env, ARM_FEATURE_EL3) && 5804 !arm_feature(env, ARM_FEATURE_EL2) && 5805 !arm_is_secure(env)) { 5806 5807 changed_daif = (env->daif ^ val) & mask; 5808 5809 if (changed_daif & CPSR_A) { 5810 /* Check to see if we are allowed to change the masking of async 5811 * abort exceptions from a non-secure state. 5812 */ 5813 if (!(env->cp15.scr_el3 & SCR_AW)) { 5814 qemu_log_mask(LOG_GUEST_ERROR, 5815 "Ignoring attempt to switch CPSR_A flag from " 5816 "non-secure world with SCR.AW bit clear\n"); 5817 mask &= ~CPSR_A; 5818 } 5819 } 5820 5821 if (changed_daif & CPSR_F) { 5822 /* Check to see if we are allowed to change the masking of FIQ 5823 * exceptions from a non-secure state. 5824 */ 5825 if (!(env->cp15.scr_el3 & SCR_FW)) { 5826 qemu_log_mask(LOG_GUEST_ERROR, 5827 "Ignoring attempt to switch CPSR_F flag from " 5828 "non-secure world with SCR.FW bit clear\n"); 5829 mask &= ~CPSR_F; 5830 } 5831 5832 /* Check whether non-maskable FIQ (NMFI) support is enabled. 5833 * If this bit is set software is not allowed to mask 5834 * FIQs, but is allowed to set CPSR_F to 0. 5835 */ 5836 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 5837 (val & CPSR_F)) { 5838 qemu_log_mask(LOG_GUEST_ERROR, 5839 "Ignoring attempt to enable CPSR_F flag " 5840 "(non-maskable FIQ [NMFI] support enabled)\n"); 5841 mask &= ~CPSR_F; 5842 } 5843 } 5844 } 5845 5846 env->daif &= ~(CPSR_AIF & mask); 5847 env->daif |= val & CPSR_AIF & mask; 5848 5849 if (write_type != CPSRWriteRaw && 5850 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 5851 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 5852 /* Note that we can only get here in USR mode if this is a 5853 * gdb stub write; for this case we follow the architectural 5854 * behaviour for guest writes in USR mode of ignoring an attempt 5855 * to switch mode. (Those are caught by translate.c for writes 5856 * triggered by guest instructions.) 5857 */ 5858 mask &= ~CPSR_M; 5859 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 5860 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 5861 * v7, and has defined behaviour in v8: 5862 * + leave CPSR.M untouched 5863 * + allow changes to the other CPSR fields 5864 * + set PSTATE.IL 5865 * For user changes via the GDB stub, we don't set PSTATE.IL, 5866 * as this would be unnecessarily harsh for a user error. 5867 */ 5868 mask &= ~CPSR_M; 5869 if (write_type != CPSRWriteByGDBStub && 5870 arm_feature(env, ARM_FEATURE_V8)) { 5871 mask |= CPSR_IL; 5872 val |= CPSR_IL; 5873 } 5874 } else { 5875 switch_mode(env, val & CPSR_M); 5876 } 5877 } 5878 mask &= ~CACHED_CPSR_BITS; 5879 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 5880 } 5881 5882 /* Sign/zero extend */ 5883 uint32_t HELPER(sxtb16)(uint32_t x) 5884 { 5885 uint32_t res; 5886 res = (uint16_t)(int8_t)x; 5887 res |= (uint32_t)(int8_t)(x >> 16) << 16; 5888 return res; 5889 } 5890 5891 uint32_t HELPER(uxtb16)(uint32_t x) 5892 { 5893 uint32_t res; 5894 res = (uint16_t)(uint8_t)x; 5895 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 5896 return res; 5897 } 5898 5899 int32_t HELPER(sdiv)(int32_t num, int32_t den) 5900 { 5901 if (den == 0) 5902 return 0; 5903 if (num == INT_MIN && den == -1) 5904 return INT_MIN; 5905 return num / den; 5906 } 5907 5908 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 5909 { 5910 if (den == 0) 5911 return 0; 5912 return num / den; 5913 } 5914 5915 uint32_t HELPER(rbit)(uint32_t x) 5916 { 5917 return revbit32(x); 5918 } 5919 5920 #if defined(CONFIG_USER_ONLY) 5921 5922 /* These should probably raise undefined insn exceptions. */ 5923 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 5924 { 5925 ARMCPU *cpu = arm_env_get_cpu(env); 5926 5927 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 5928 } 5929 5930 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 5931 { 5932 ARMCPU *cpu = arm_env_get_cpu(env); 5933 5934 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 5935 return 0; 5936 } 5937 5938 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 5939 { 5940 /* translate.c should never generate calls here in user-only mode */ 5941 g_assert_not_reached(); 5942 } 5943 5944 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 5945 { 5946 /* translate.c should never generate calls here in user-only mode */ 5947 g_assert_not_reached(); 5948 } 5949 5950 void switch_mode(CPUARMState *env, int mode) 5951 { 5952 ARMCPU *cpu = arm_env_get_cpu(env); 5953 5954 if (mode != ARM_CPU_MODE_USR) { 5955 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 5956 } 5957 } 5958 5959 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 5960 uint32_t cur_el, bool secure) 5961 { 5962 return 1; 5963 } 5964 5965 void aarch64_sync_64_to_32(CPUARMState *env) 5966 { 5967 g_assert_not_reached(); 5968 } 5969 5970 #else 5971 5972 void switch_mode(CPUARMState *env, int mode) 5973 { 5974 int old_mode; 5975 int i; 5976 5977 old_mode = env->uncached_cpsr & CPSR_M; 5978 if (mode == old_mode) 5979 return; 5980 5981 if (old_mode == ARM_CPU_MODE_FIQ) { 5982 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5983 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 5984 } else if (mode == ARM_CPU_MODE_FIQ) { 5985 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 5986 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 5987 } 5988 5989 i = bank_number(old_mode); 5990 env->banked_r13[i] = env->regs[13]; 5991 env->banked_r14[i] = env->regs[14]; 5992 env->banked_spsr[i] = env->spsr; 5993 5994 i = bank_number(mode); 5995 env->regs[13] = env->banked_r13[i]; 5996 env->regs[14] = env->banked_r14[i]; 5997 env->spsr = env->banked_spsr[i]; 5998 } 5999 6000 /* Physical Interrupt Target EL Lookup Table 6001 * 6002 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6003 * 6004 * The below multi-dimensional table is used for looking up the target 6005 * exception level given numerous condition criteria. Specifically, the 6006 * target EL is based on SCR and HCR routing controls as well as the 6007 * currently executing EL and secure state. 6008 * 6009 * Dimensions: 6010 * target_el_table[2][2][2][2][2][4] 6011 * | | | | | +--- Current EL 6012 * | | | | +------ Non-secure(0)/Secure(1) 6013 * | | | +--------- HCR mask override 6014 * | | +------------ SCR exec state control 6015 * | +--------------- SCR mask override 6016 * +------------------ 32-bit(0)/64-bit(1) EL3 6017 * 6018 * The table values are as such: 6019 * 0-3 = EL0-EL3 6020 * -1 = Cannot occur 6021 * 6022 * The ARM ARM target EL table includes entries indicating that an "exception 6023 * is not taken". The two cases where this is applicable are: 6024 * 1) An exception is taken from EL3 but the SCR does not have the exception 6025 * routed to EL3. 6026 * 2) An exception is taken from EL2 but the HCR does not have the exception 6027 * routed to EL2. 6028 * In these two cases, the below table contain a target of EL1. This value is 6029 * returned as it is expected that the consumer of the table data will check 6030 * for "target EL >= current EL" to ensure the exception is not taken. 6031 * 6032 * SCR HCR 6033 * 64 EA AMO From 6034 * BIT IRQ IMO Non-secure Secure 6035 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6036 */ 6037 static const int8_t target_el_table[2][2][2][2][2][4] = { 6038 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6039 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6040 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6041 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6042 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6043 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6044 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6045 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6046 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6047 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6048 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6049 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6050 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6051 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6052 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6053 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6054 }; 6055 6056 /* 6057 * Determine the target EL for physical exceptions 6058 */ 6059 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6060 uint32_t cur_el, bool secure) 6061 { 6062 CPUARMState *env = cs->env_ptr; 6063 int rw; 6064 int scr; 6065 int hcr; 6066 int target_el; 6067 /* Is the highest EL AArch64? */ 6068 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6069 6070 if (arm_feature(env, ARM_FEATURE_EL3)) { 6071 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6072 } else { 6073 /* Either EL2 is the highest EL (and so the EL2 register width 6074 * is given by is64); or there is no EL2 or EL3, in which case 6075 * the value of 'rw' does not affect the table lookup anyway. 6076 */ 6077 rw = is64; 6078 } 6079 6080 switch (excp_idx) { 6081 case EXCP_IRQ: 6082 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6083 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6084 break; 6085 case EXCP_FIQ: 6086 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6087 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6088 break; 6089 default: 6090 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6091 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6092 break; 6093 }; 6094 6095 /* If HCR.TGE is set then HCR is treated as being 1 */ 6096 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6097 6098 /* Perform a table-lookup for the target EL given the current state */ 6099 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6100 6101 assert(target_el > 0); 6102 6103 return target_el; 6104 } 6105 6106 static void v7m_push(CPUARMState *env, uint32_t val) 6107 { 6108 CPUState *cs = CPU(arm_env_get_cpu(env)); 6109 6110 env->regs[13] -= 4; 6111 stl_phys(cs->as, env->regs[13], val); 6112 } 6113 6114 /* Return true if we're using the process stack pointer (not the MSP) */ 6115 static bool v7m_using_psp(CPUARMState *env) 6116 { 6117 /* Handler mode always uses the main stack; for thread mode 6118 * the CONTROL.SPSEL bit determines the answer. 6119 * Note that in v7M it is not possible to be in Handler mode with 6120 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6121 */ 6122 return !arm_v7m_is_handler_mode(env) && 6123 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6124 } 6125 6126 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6127 * This may change the current stack pointer between Main and Process 6128 * stack pointers if it is done for the CONTROL register for the current 6129 * security state. 6130 */ 6131 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6132 bool new_spsel, 6133 bool secstate) 6134 { 6135 bool old_is_psp = v7m_using_psp(env); 6136 6137 env->v7m.control[secstate] = 6138 deposit32(env->v7m.control[secstate], 6139 R_V7M_CONTROL_SPSEL_SHIFT, 6140 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6141 6142 if (secstate == env->v7m.secure) { 6143 bool new_is_psp = v7m_using_psp(env); 6144 uint32_t tmp; 6145 6146 if (old_is_psp != new_is_psp) { 6147 tmp = env->v7m.other_sp; 6148 env->v7m.other_sp = env->regs[13]; 6149 env->regs[13] = tmp; 6150 } 6151 } 6152 } 6153 6154 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6155 * stack pointer between Main and Process stack pointers. 6156 */ 6157 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6158 { 6159 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6160 } 6161 6162 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6163 { 6164 /* Write a new value to v7m.exception, thus transitioning into or out 6165 * of Handler mode; this may result in a change of active stack pointer. 6166 */ 6167 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6168 uint32_t tmp; 6169 6170 env->v7m.exception = new_exc; 6171 6172 new_is_psp = v7m_using_psp(env); 6173 6174 if (old_is_psp != new_is_psp) { 6175 tmp = env->v7m.other_sp; 6176 env->v7m.other_sp = env->regs[13]; 6177 env->regs[13] = tmp; 6178 } 6179 } 6180 6181 /* Switch M profile security state between NS and S */ 6182 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6183 { 6184 uint32_t new_ss_msp, new_ss_psp; 6185 6186 if (env->v7m.secure == new_secstate) { 6187 return; 6188 } 6189 6190 /* All the banked state is accessed by looking at env->v7m.secure 6191 * except for the stack pointer; rearrange the SP appropriately. 6192 */ 6193 new_ss_msp = env->v7m.other_ss_msp; 6194 new_ss_psp = env->v7m.other_ss_psp; 6195 6196 if (v7m_using_psp(env)) { 6197 env->v7m.other_ss_psp = env->regs[13]; 6198 env->v7m.other_ss_msp = env->v7m.other_sp; 6199 } else { 6200 env->v7m.other_ss_msp = env->regs[13]; 6201 env->v7m.other_ss_psp = env->v7m.other_sp; 6202 } 6203 6204 env->v7m.secure = new_secstate; 6205 6206 if (v7m_using_psp(env)) { 6207 env->regs[13] = new_ss_psp; 6208 env->v7m.other_sp = new_ss_msp; 6209 } else { 6210 env->regs[13] = new_ss_msp; 6211 env->v7m.other_sp = new_ss_psp; 6212 } 6213 } 6214 6215 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6216 { 6217 /* Handle v7M BXNS: 6218 * - if the return value is a magic value, do exception return (like BX) 6219 * - otherwise bit 0 of the return value is the target security state 6220 */ 6221 uint32_t min_magic; 6222 6223 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6224 /* Covers FNC_RETURN and EXC_RETURN magic */ 6225 min_magic = FNC_RETURN_MIN_MAGIC; 6226 } else { 6227 /* EXC_RETURN magic only */ 6228 min_magic = EXC_RETURN_MIN_MAGIC; 6229 } 6230 6231 if (dest >= min_magic) { 6232 /* This is an exception return magic value; put it where 6233 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6234 * Note that if we ever add gen_ss_advance() singlestep support to 6235 * M profile this should count as an "instruction execution complete" 6236 * event (compare gen_bx_excret_final_code()). 6237 */ 6238 env->regs[15] = dest & ~1; 6239 env->thumb = dest & 1; 6240 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6241 /* notreached */ 6242 } 6243 6244 /* translate.c should have made BXNS UNDEF unless we're secure */ 6245 assert(env->v7m.secure); 6246 6247 switch_v7m_security_state(env, dest & 1); 6248 env->thumb = 1; 6249 env->regs[15] = dest & ~1; 6250 } 6251 6252 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6253 { 6254 /* Handle v7M BLXNS: 6255 * - bit 0 of the destination address is the target security state 6256 */ 6257 6258 /* At this point regs[15] is the address just after the BLXNS */ 6259 uint32_t nextinst = env->regs[15] | 1; 6260 uint32_t sp = env->regs[13] - 8; 6261 uint32_t saved_psr; 6262 6263 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6264 assert(env->v7m.secure); 6265 6266 if (dest & 1) { 6267 /* target is Secure, so this is just a normal BLX, 6268 * except that the low bit doesn't indicate Thumb/not. 6269 */ 6270 env->regs[14] = nextinst; 6271 env->thumb = 1; 6272 env->regs[15] = dest & ~1; 6273 return; 6274 } 6275 6276 /* Target is non-secure: first push a stack frame */ 6277 if (!QEMU_IS_ALIGNED(sp, 8)) { 6278 qemu_log_mask(LOG_GUEST_ERROR, 6279 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6280 } 6281 6282 saved_psr = env->v7m.exception; 6283 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6284 saved_psr |= XPSR_SFPA; 6285 } 6286 6287 /* Note that these stores can throw exceptions on MPU faults */ 6288 cpu_stl_data(env, sp, nextinst); 6289 cpu_stl_data(env, sp + 4, saved_psr); 6290 6291 env->regs[13] = sp; 6292 env->regs[14] = 0xfeffffff; 6293 if (arm_v7m_is_handler_mode(env)) { 6294 /* Write a dummy value to IPSR, to avoid leaking the current secure 6295 * exception number to non-secure code. This is guaranteed not 6296 * to cause write_v7m_exception() to actually change stacks. 6297 */ 6298 write_v7m_exception(env, 1); 6299 } 6300 switch_v7m_security_state(env, 0); 6301 env->thumb = 1; 6302 env->regs[15] = dest; 6303 } 6304 6305 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6306 bool spsel) 6307 { 6308 /* Return a pointer to the location where we currently store the 6309 * stack pointer for the requested security state and thread mode. 6310 * This pointer will become invalid if the CPU state is updated 6311 * such that the stack pointers are switched around (eg changing 6312 * the SPSEL control bit). 6313 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6314 * Unlike that pseudocode, we require the caller to pass us in the 6315 * SPSEL control bit value; this is because we also use this 6316 * function in handling of pushing of the callee-saves registers 6317 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6318 * and in the tailchain codepath the SPSEL bit comes from the exception 6319 * return magic LR value from the previous exception. The pseudocode 6320 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6321 * to make this utility function generic enough to do the job. 6322 */ 6323 bool want_psp = threadmode && spsel; 6324 6325 if (secure == env->v7m.secure) { 6326 if (want_psp == v7m_using_psp(env)) { 6327 return &env->regs[13]; 6328 } else { 6329 return &env->v7m.other_sp; 6330 } 6331 } else { 6332 if (want_psp) { 6333 return &env->v7m.other_ss_psp; 6334 } else { 6335 return &env->v7m.other_ss_msp; 6336 } 6337 } 6338 } 6339 6340 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure) 6341 { 6342 CPUState *cs = CPU(cpu); 6343 CPUARMState *env = &cpu->env; 6344 MemTxResult result; 6345 hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4; 6346 uint32_t addr; 6347 6348 addr = address_space_ldl(cs->as, vec, 6349 MEMTXATTRS_UNSPECIFIED, &result); 6350 if (result != MEMTX_OK) { 6351 /* Architecturally this should cause a HardFault setting HSFR.VECTTBL, 6352 * which would then be immediately followed by our failing to load 6353 * the entry vector for that HardFault, which is a Lockup case. 6354 * Since we don't model Lockup, we just report this guest error 6355 * via cpu_abort(). 6356 */ 6357 cpu_abort(cs, "Failed to read from %s exception vector table " 6358 "entry %08x\n", targets_secure ? "secure" : "nonsecure", 6359 (unsigned)vec); 6360 } 6361 return addr; 6362 } 6363 6364 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6365 { 6366 /* For v8M, push the callee-saves register part of the stack frame. 6367 * Compare the v8M pseudocode PushCalleeStack(). 6368 * In the tailchaining case this may not be the current stack. 6369 */ 6370 CPUARMState *env = &cpu->env; 6371 CPUState *cs = CPU(cpu); 6372 uint32_t *frame_sp_p; 6373 uint32_t frameptr; 6374 6375 if (dotailchain) { 6376 frame_sp_p = get_v7m_sp_ptr(env, true, 6377 lr & R_V7M_EXCRET_MODE_MASK, 6378 lr & R_V7M_EXCRET_SPSEL_MASK); 6379 } else { 6380 frame_sp_p = &env->regs[13]; 6381 } 6382 6383 frameptr = *frame_sp_p - 0x28; 6384 6385 stl_phys(cs->as, frameptr, 0xfefa125b); 6386 stl_phys(cs->as, frameptr + 0x8, env->regs[4]); 6387 stl_phys(cs->as, frameptr + 0xc, env->regs[5]); 6388 stl_phys(cs->as, frameptr + 0x10, env->regs[6]); 6389 stl_phys(cs->as, frameptr + 0x14, env->regs[7]); 6390 stl_phys(cs->as, frameptr + 0x18, env->regs[8]); 6391 stl_phys(cs->as, frameptr + 0x1c, env->regs[9]); 6392 stl_phys(cs->as, frameptr + 0x20, env->regs[10]); 6393 stl_phys(cs->as, frameptr + 0x24, env->regs[11]); 6394 6395 *frame_sp_p = frameptr; 6396 } 6397 6398 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain) 6399 { 6400 /* Do the "take the exception" parts of exception entry, 6401 * but not the pushing of state to the stack. This is 6402 * similar to the pseudocode ExceptionTaken() function. 6403 */ 6404 CPUARMState *env = &cpu->env; 6405 uint32_t addr; 6406 bool targets_secure; 6407 6408 targets_secure = armv7m_nvic_acknowledge_irq(env->nvic); 6409 6410 if (arm_feature(env, ARM_FEATURE_V8)) { 6411 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6412 (lr & R_V7M_EXCRET_S_MASK)) { 6413 /* The background code (the owner of the registers in the 6414 * exception frame) is Secure. This means it may either already 6415 * have or now needs to push callee-saves registers. 6416 */ 6417 if (targets_secure) { 6418 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6419 /* We took an exception from Secure to NonSecure 6420 * (which means the callee-saved registers got stacked) 6421 * and are now tailchaining to a Secure exception. 6422 * Clear DCRS so eventual return from this Secure 6423 * exception unstacks the callee-saved registers. 6424 */ 6425 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6426 } 6427 } else { 6428 /* We're going to a non-secure exception; push the 6429 * callee-saves registers to the stack now, if they're 6430 * not already saved. 6431 */ 6432 if (lr & R_V7M_EXCRET_DCRS_MASK && 6433 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6434 v7m_push_callee_stack(cpu, lr, dotailchain); 6435 } 6436 lr |= R_V7M_EXCRET_DCRS_MASK; 6437 } 6438 } 6439 6440 lr &= ~R_V7M_EXCRET_ES_MASK; 6441 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6442 lr |= R_V7M_EXCRET_ES_MASK; 6443 } 6444 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6445 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6446 lr |= R_V7M_EXCRET_SPSEL_MASK; 6447 } 6448 6449 /* Clear registers if necessary to prevent non-secure exception 6450 * code being able to see register values from secure code. 6451 * Where register values become architecturally UNKNOWN we leave 6452 * them with their previous values. 6453 */ 6454 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6455 if (!targets_secure) { 6456 /* Always clear the caller-saved registers (they have been 6457 * pushed to the stack earlier in v7m_push_stack()). 6458 * Clear callee-saved registers if the background code is 6459 * Secure (in which case these regs were saved in 6460 * v7m_push_callee_stack()). 6461 */ 6462 int i; 6463 6464 for (i = 0; i < 13; i++) { 6465 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6466 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6467 env->regs[i] = 0; 6468 } 6469 } 6470 /* Clear EAPSR */ 6471 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6472 } 6473 } 6474 } 6475 6476 /* Switch to target security state -- must do this before writing SPSEL */ 6477 switch_v7m_security_state(env, targets_secure); 6478 write_v7m_control_spsel(env, 0); 6479 arm_clear_exclusive(env); 6480 /* Clear IT bits */ 6481 env->condexec_bits = 0; 6482 env->regs[14] = lr; 6483 addr = arm_v7m_load_vector(cpu, targets_secure); 6484 env->regs[15] = addr & 0xfffffffe; 6485 env->thumb = addr & 1; 6486 } 6487 6488 static void v7m_push_stack(ARMCPU *cpu) 6489 { 6490 /* Do the "set up stack frame" part of exception entry, 6491 * similar to pseudocode PushStack(). 6492 */ 6493 CPUARMState *env = &cpu->env; 6494 uint32_t xpsr = xpsr_read(env); 6495 6496 /* Align stack pointer if the guest wants that */ 6497 if ((env->regs[13] & 4) && 6498 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6499 env->regs[13] -= 4; 6500 xpsr |= XPSR_SPREALIGN; 6501 } 6502 /* Switch to the handler mode. */ 6503 v7m_push(env, xpsr); 6504 v7m_push(env, env->regs[15]); 6505 v7m_push(env, env->regs[14]); 6506 v7m_push(env, env->regs[12]); 6507 v7m_push(env, env->regs[3]); 6508 v7m_push(env, env->regs[2]); 6509 v7m_push(env, env->regs[1]); 6510 v7m_push(env, env->regs[0]); 6511 } 6512 6513 static void do_v7m_exception_exit(ARMCPU *cpu) 6514 { 6515 CPUARMState *env = &cpu->env; 6516 CPUState *cs = CPU(cpu); 6517 uint32_t excret; 6518 uint32_t xpsr; 6519 bool ufault = false; 6520 bool sfault = false; 6521 bool return_to_sp_process; 6522 bool return_to_handler; 6523 bool rettobase = false; 6524 bool exc_secure = false; 6525 bool return_to_secure; 6526 6527 /* If we're not in Handler mode then jumps to magic exception-exit 6528 * addresses don't have magic behaviour. However for the v8M 6529 * security extensions the magic secure-function-return has to 6530 * work in thread mode too, so to avoid doing an extra check in 6531 * the generated code we allow exception-exit magic to also cause the 6532 * internal exception and bring us here in thread mode. Correct code 6533 * will never try to do this (the following insn fetch will always 6534 * fault) so we the overhead of having taken an unnecessary exception 6535 * doesn't matter. 6536 */ 6537 if (!arm_v7m_is_handler_mode(env)) { 6538 return; 6539 } 6540 6541 /* In the spec pseudocode ExceptionReturn() is called directly 6542 * from BXWritePC() and gets the full target PC value including 6543 * bit zero. In QEMU's implementation we treat it as a normal 6544 * jump-to-register (which is then caught later on), and so split 6545 * the target value up between env->regs[15] and env->thumb in 6546 * gen_bx(). Reconstitute it. 6547 */ 6548 excret = env->regs[15]; 6549 if (env->thumb) { 6550 excret |= 1; 6551 } 6552 6553 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6554 " previous exception %d\n", 6555 excret, env->v7m.exception); 6556 6557 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6558 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6559 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6560 excret); 6561 } 6562 6563 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6564 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6565 * we pick which FAULTMASK to clear. 6566 */ 6567 if (!env->v7m.secure && 6568 ((excret & R_V7M_EXCRET_ES_MASK) || 6569 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6570 sfault = 1; 6571 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6572 excret &= ~R_V7M_EXCRET_ES_MASK; 6573 } 6574 } 6575 6576 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6577 /* Auto-clear FAULTMASK on return from other than NMI. 6578 * If the security extension is implemented then this only 6579 * happens if the raw execution priority is >= 0; the 6580 * value of the ES bit in the exception return value indicates 6581 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6582 */ 6583 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6584 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6585 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6586 env->v7m.faultmask[exc_secure] = 0; 6587 } 6588 } else { 6589 env->v7m.faultmask[M_REG_NS] = 0; 6590 } 6591 } 6592 6593 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 6594 exc_secure)) { 6595 case -1: 6596 /* attempt to exit an exception that isn't active */ 6597 ufault = true; 6598 break; 6599 case 0: 6600 /* still an irq active now */ 6601 break; 6602 case 1: 6603 /* we returned to base exception level, no nesting. 6604 * (In the pseudocode this is written using "NestedActivation != 1" 6605 * where we have 'rettobase == false'.) 6606 */ 6607 rettobase = true; 6608 break; 6609 default: 6610 g_assert_not_reached(); 6611 } 6612 6613 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 6614 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 6615 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 6616 (excret & R_V7M_EXCRET_S_MASK); 6617 6618 if (arm_feature(env, ARM_FEATURE_V8)) { 6619 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6620 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 6621 * we choose to take the UsageFault. 6622 */ 6623 if ((excret & R_V7M_EXCRET_S_MASK) || 6624 (excret & R_V7M_EXCRET_ES_MASK) || 6625 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 6626 ufault = true; 6627 } 6628 } 6629 if (excret & R_V7M_EXCRET_RES0_MASK) { 6630 ufault = true; 6631 } 6632 } else { 6633 /* For v7M we only recognize certain combinations of the low bits */ 6634 switch (excret & 0xf) { 6635 case 1: /* Return to Handler */ 6636 break; 6637 case 13: /* Return to Thread using Process stack */ 6638 case 9: /* Return to Thread using Main stack */ 6639 /* We only need to check NONBASETHRDENA for v7M, because in 6640 * v8M this bit does not exist (it is RES1). 6641 */ 6642 if (!rettobase && 6643 !(env->v7m.ccr[env->v7m.secure] & 6644 R_V7M_CCR_NONBASETHRDENA_MASK)) { 6645 ufault = true; 6646 } 6647 break; 6648 default: 6649 ufault = true; 6650 } 6651 } 6652 6653 if (sfault) { 6654 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 6655 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6656 v7m_exception_taken(cpu, excret, true); 6657 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6658 "stackframe: failed EXC_RETURN.ES validity check\n"); 6659 return; 6660 } 6661 6662 if (ufault) { 6663 /* Bad exception return: instead of popping the exception 6664 * stack, directly take a usage fault on the current stack. 6665 */ 6666 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6667 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 6668 v7m_exception_taken(cpu, excret, true); 6669 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6670 "stackframe: failed exception return integrity check\n"); 6671 return; 6672 } 6673 6674 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 6675 * Handler mode (and will be until we write the new XPSR.Interrupt 6676 * field) this does not switch around the current stack pointer. 6677 */ 6678 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 6679 6680 switch_v7m_security_state(env, return_to_secure); 6681 6682 { 6683 /* The stack pointer we should be reading the exception frame from 6684 * depends on bits in the magic exception return type value (and 6685 * for v8M isn't necessarily the stack pointer we will eventually 6686 * end up resuming execution with). Get a pointer to the location 6687 * in the CPU state struct where the SP we need is currently being 6688 * stored; we will use and modify it in place. 6689 * We use this limited C variable scope so we don't accidentally 6690 * use 'frame_sp_p' after we do something that makes it invalid. 6691 */ 6692 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 6693 return_to_secure, 6694 !return_to_handler, 6695 return_to_sp_process); 6696 uint32_t frameptr = *frame_sp_p; 6697 6698 if (!QEMU_IS_ALIGNED(frameptr, 8) && 6699 arm_feature(env, ARM_FEATURE_V8)) { 6700 qemu_log_mask(LOG_GUEST_ERROR, 6701 "M profile exception return with non-8-aligned SP " 6702 "for destination state is UNPREDICTABLE\n"); 6703 } 6704 6705 /* Do we need to pop callee-saved registers? */ 6706 if (return_to_secure && 6707 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 6708 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 6709 uint32_t expected_sig = 0xfefa125b; 6710 uint32_t actual_sig = ldl_phys(cs->as, frameptr); 6711 6712 if (expected_sig != actual_sig) { 6713 /* Take a SecureFault on the current stack */ 6714 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 6715 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6716 v7m_exception_taken(cpu, excret, true); 6717 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 6718 "stackframe: failed exception return integrity " 6719 "signature check\n"); 6720 return; 6721 } 6722 6723 env->regs[4] = ldl_phys(cs->as, frameptr + 0x8); 6724 env->regs[5] = ldl_phys(cs->as, frameptr + 0xc); 6725 env->regs[6] = ldl_phys(cs->as, frameptr + 0x10); 6726 env->regs[7] = ldl_phys(cs->as, frameptr + 0x14); 6727 env->regs[8] = ldl_phys(cs->as, frameptr + 0x18); 6728 env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c); 6729 env->regs[10] = ldl_phys(cs->as, frameptr + 0x20); 6730 env->regs[11] = ldl_phys(cs->as, frameptr + 0x24); 6731 6732 frameptr += 0x28; 6733 } 6734 6735 /* Pop registers. TODO: make these accesses use the correct 6736 * attributes and address space (S/NS, priv/unpriv) and handle 6737 * memory transaction failures. 6738 */ 6739 env->regs[0] = ldl_phys(cs->as, frameptr); 6740 env->regs[1] = ldl_phys(cs->as, frameptr + 0x4); 6741 env->regs[2] = ldl_phys(cs->as, frameptr + 0x8); 6742 env->regs[3] = ldl_phys(cs->as, frameptr + 0xc); 6743 env->regs[12] = ldl_phys(cs->as, frameptr + 0x10); 6744 env->regs[14] = ldl_phys(cs->as, frameptr + 0x14); 6745 env->regs[15] = ldl_phys(cs->as, frameptr + 0x18); 6746 6747 /* Returning from an exception with a PC with bit 0 set is defined 6748 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 6749 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 6750 * the lsbit, and there are several RTOSes out there which incorrectly 6751 * assume the r15 in the stack frame should be a Thumb-style "lsbit 6752 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 6753 * complain about the badly behaved guest. 6754 */ 6755 if (env->regs[15] & 1) { 6756 env->regs[15] &= ~1U; 6757 if (!arm_feature(env, ARM_FEATURE_V8)) { 6758 qemu_log_mask(LOG_GUEST_ERROR, 6759 "M profile return from interrupt with misaligned " 6760 "PC is UNPREDICTABLE on v7M\n"); 6761 } 6762 } 6763 6764 xpsr = ldl_phys(cs->as, frameptr + 0x1c); 6765 6766 if (arm_feature(env, ARM_FEATURE_V8)) { 6767 /* For v8M we have to check whether the xPSR exception field 6768 * matches the EXCRET value for return to handler/thread 6769 * before we commit to changing the SP and xPSR. 6770 */ 6771 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 6772 if (return_to_handler != will_be_handler) { 6773 /* Take an INVPC UsageFault on the current stack. 6774 * By this point we will have switched to the security state 6775 * for the background state, so this UsageFault will target 6776 * that state. 6777 */ 6778 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6779 env->v7m.secure); 6780 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6781 v7m_exception_taken(cpu, excret, true); 6782 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 6783 "stackframe: failed exception return integrity " 6784 "check\n"); 6785 return; 6786 } 6787 } 6788 6789 /* Commit to consuming the stack frame */ 6790 frameptr += 0x20; 6791 /* Undo stack alignment (the SPREALIGN bit indicates that the original 6792 * pre-exception SP was not 8-aligned and we added a padding word to 6793 * align it, so we undo this by ORing in the bit that increases it 6794 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 6795 * would work too but a logical OR is how the pseudocode specifies it.) 6796 */ 6797 if (xpsr & XPSR_SPREALIGN) { 6798 frameptr |= 4; 6799 } 6800 *frame_sp_p = frameptr; 6801 } 6802 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 6803 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 6804 6805 /* The restored xPSR exception field will be zero if we're 6806 * resuming in Thread mode. If that doesn't match what the 6807 * exception return excret specified then this is a UsageFault. 6808 * v7M requires we make this check here; v8M did it earlier. 6809 */ 6810 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 6811 /* Take an INVPC UsageFault by pushing the stack again; 6812 * we know we're v7M so this is never a Secure UsageFault. 6813 */ 6814 assert(!arm_feature(env, ARM_FEATURE_V8)); 6815 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 6816 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6817 v7m_push_stack(cpu); 6818 v7m_exception_taken(cpu, excret, false); 6819 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 6820 "failed exception return integrity check\n"); 6821 return; 6822 } 6823 6824 /* Otherwise, we have a successful exception exit. */ 6825 arm_clear_exclusive(env); 6826 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 6827 } 6828 6829 static bool do_v7m_function_return(ARMCPU *cpu) 6830 { 6831 /* v8M security extensions magic function return. 6832 * We may either: 6833 * (1) throw an exception (longjump) 6834 * (2) return true if we successfully handled the function return 6835 * (3) return false if we failed a consistency check and have 6836 * pended a UsageFault that needs to be taken now 6837 * 6838 * At this point the magic return value is split between env->regs[15] 6839 * and env->thumb. We don't bother to reconstitute it because we don't 6840 * need it (all values are handled the same way). 6841 */ 6842 CPUARMState *env = &cpu->env; 6843 uint32_t newpc, newpsr, newpsr_exc; 6844 6845 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 6846 6847 { 6848 bool threadmode, spsel; 6849 TCGMemOpIdx oi; 6850 ARMMMUIdx mmu_idx; 6851 uint32_t *frame_sp_p; 6852 uint32_t frameptr; 6853 6854 /* Pull the return address and IPSR from the Secure stack */ 6855 threadmode = !arm_v7m_is_handler_mode(env); 6856 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 6857 6858 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 6859 frameptr = *frame_sp_p; 6860 6861 /* These loads may throw an exception (for MPU faults). We want to 6862 * do them as secure, so work out what MMU index that is. 6863 */ 6864 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 6865 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 6866 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 6867 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 6868 6869 /* Consistency checks on new IPSR */ 6870 newpsr_exc = newpsr & XPSR_EXCP; 6871 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 6872 (env->v7m.exception == 1 && newpsr_exc != 0))) { 6873 /* Pend the fault and tell our caller to take it */ 6874 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 6875 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 6876 env->v7m.secure); 6877 qemu_log_mask(CPU_LOG_INT, 6878 "...taking INVPC UsageFault: " 6879 "IPSR consistency check failed\n"); 6880 return false; 6881 } 6882 6883 *frame_sp_p = frameptr + 8; 6884 } 6885 6886 /* This invalidates frame_sp_p */ 6887 switch_v7m_security_state(env, true); 6888 env->v7m.exception = newpsr_exc; 6889 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 6890 if (newpsr & XPSR_SFPA) { 6891 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 6892 } 6893 xpsr_write(env, 0, XPSR_IT); 6894 env->thumb = newpc & 1; 6895 env->regs[15] = newpc & ~1; 6896 6897 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 6898 return true; 6899 } 6900 6901 static void arm_log_exception(int idx) 6902 { 6903 if (qemu_loglevel_mask(CPU_LOG_INT)) { 6904 const char *exc = NULL; 6905 static const char * const excnames[] = { 6906 [EXCP_UDEF] = "Undefined Instruction", 6907 [EXCP_SWI] = "SVC", 6908 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 6909 [EXCP_DATA_ABORT] = "Data Abort", 6910 [EXCP_IRQ] = "IRQ", 6911 [EXCP_FIQ] = "FIQ", 6912 [EXCP_BKPT] = "Breakpoint", 6913 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 6914 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 6915 [EXCP_HVC] = "Hypervisor Call", 6916 [EXCP_HYP_TRAP] = "Hypervisor Trap", 6917 [EXCP_SMC] = "Secure Monitor Call", 6918 [EXCP_VIRQ] = "Virtual IRQ", 6919 [EXCP_VFIQ] = "Virtual FIQ", 6920 [EXCP_SEMIHOST] = "Semihosting call", 6921 [EXCP_NOCP] = "v7M NOCP UsageFault", 6922 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 6923 }; 6924 6925 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 6926 exc = excnames[idx]; 6927 } 6928 if (!exc) { 6929 exc = "unknown"; 6930 } 6931 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 6932 } 6933 } 6934 6935 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 6936 uint32_t addr, uint16_t *insn) 6937 { 6938 /* Load a 16-bit portion of a v7M instruction, returning true on success, 6939 * or false on failure (in which case we will have pended the appropriate 6940 * exception). 6941 * We need to do the instruction fetch's MPU and SAU checks 6942 * like this because there is no MMU index that would allow 6943 * doing the load with a single function call. Instead we must 6944 * first check that the security attributes permit the load 6945 * and that they don't mismatch on the two halves of the instruction, 6946 * and then we do the load as a secure load (ie using the security 6947 * attributes of the address, not the CPU, as architecturally required). 6948 */ 6949 CPUState *cs = CPU(cpu); 6950 CPUARMState *env = &cpu->env; 6951 V8M_SAttributes sattrs = {}; 6952 MemTxAttrs attrs = {}; 6953 ARMMMUFaultInfo fi = {}; 6954 MemTxResult txres; 6955 target_ulong page_size; 6956 hwaddr physaddr; 6957 int prot; 6958 uint32_t fsr; 6959 6960 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 6961 if (!sattrs.nsc || sattrs.ns) { 6962 /* This must be the second half of the insn, and it straddles a 6963 * region boundary with the second half not being S&NSC. 6964 */ 6965 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 6966 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 6967 qemu_log_mask(CPU_LOG_INT, 6968 "...really SecureFault with SFSR.INVEP\n"); 6969 return false; 6970 } 6971 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 6972 &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) { 6973 /* the MPU lookup failed */ 6974 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 6975 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 6976 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 6977 return false; 6978 } 6979 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 6980 attrs, &txres); 6981 if (txres != MEMTX_OK) { 6982 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 6983 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 6984 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 6985 return false; 6986 } 6987 return true; 6988 } 6989 6990 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 6991 { 6992 /* Check whether this attempt to execute code in a Secure & NS-Callable 6993 * memory region is for an SG instruction; if so, then emulate the 6994 * effect of the SG instruction and return true. Otherwise pend 6995 * the correct kind of exception and return false. 6996 */ 6997 CPUARMState *env = &cpu->env; 6998 ARMMMUIdx mmu_idx; 6999 uint16_t insn; 7000 7001 /* We should never get here unless get_phys_addr_pmsav8() caused 7002 * an exception for NS executing in S&NSC memory. 7003 */ 7004 assert(!env->v7m.secure); 7005 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7006 7007 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7008 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7009 7010 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7011 return false; 7012 } 7013 7014 if (!env->thumb) { 7015 goto gen_invep; 7016 } 7017 7018 if (insn != 0xe97f) { 7019 /* Not an SG instruction first half (we choose the IMPDEF 7020 * early-SG-check option). 7021 */ 7022 goto gen_invep; 7023 } 7024 7025 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7026 return false; 7027 } 7028 7029 if (insn != 0xe97f) { 7030 /* Not an SG instruction second half (yes, both halves of the SG 7031 * insn have the same hex value) 7032 */ 7033 goto gen_invep; 7034 } 7035 7036 /* OK, we have confirmed that we really have an SG instruction. 7037 * We know we're NS in S memory so don't need to repeat those checks. 7038 */ 7039 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7040 ", executing it\n", env->regs[15]); 7041 env->regs[14] &= ~1; 7042 switch_v7m_security_state(env, true); 7043 xpsr_write(env, 0, XPSR_IT); 7044 env->regs[15] += 4; 7045 return true; 7046 7047 gen_invep: 7048 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7049 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7050 qemu_log_mask(CPU_LOG_INT, 7051 "...really SecureFault with SFSR.INVEP\n"); 7052 return false; 7053 } 7054 7055 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7056 { 7057 ARMCPU *cpu = ARM_CPU(cs); 7058 CPUARMState *env = &cpu->env; 7059 uint32_t lr; 7060 7061 arm_log_exception(cs->exception_index); 7062 7063 /* For exceptions we just mark as pending on the NVIC, and let that 7064 handle it. */ 7065 switch (cs->exception_index) { 7066 case EXCP_UDEF: 7067 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7068 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7069 break; 7070 case EXCP_NOCP: 7071 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7072 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7073 break; 7074 case EXCP_INVSTATE: 7075 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7076 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7077 break; 7078 case EXCP_SWI: 7079 /* The PC already points to the next instruction. */ 7080 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7081 break; 7082 case EXCP_PREFETCH_ABORT: 7083 case EXCP_DATA_ABORT: 7084 /* Note that for M profile we don't have a guest facing FSR, but 7085 * the env->exception.fsr will be populated by the code that 7086 * raises the fault, in the A profile short-descriptor format. 7087 */ 7088 switch (env->exception.fsr & 0xf) { 7089 case M_FAKE_FSR_NSC_EXEC: 7090 /* Exception generated when we try to execute code at an address 7091 * which is marked as Secure & Non-Secure Callable and the CPU 7092 * is in the Non-Secure state. The only instruction which can 7093 * be executed like this is SG (and that only if both halves of 7094 * the SG instruction have the same security attributes.) 7095 * Everything else must generate an INVEP SecureFault, so we 7096 * emulate the SG instruction here. 7097 */ 7098 if (v7m_handle_execute_nsc(cpu)) { 7099 return; 7100 } 7101 break; 7102 case M_FAKE_FSR_SFAULT: 7103 /* Various flavours of SecureFault for attempts to execute or 7104 * access data in the wrong security state. 7105 */ 7106 switch (cs->exception_index) { 7107 case EXCP_PREFETCH_ABORT: 7108 if (env->v7m.secure) { 7109 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7110 qemu_log_mask(CPU_LOG_INT, 7111 "...really SecureFault with SFSR.INVTRAN\n"); 7112 } else { 7113 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7114 qemu_log_mask(CPU_LOG_INT, 7115 "...really SecureFault with SFSR.INVEP\n"); 7116 } 7117 break; 7118 case EXCP_DATA_ABORT: 7119 /* This must be an NS access to S memory */ 7120 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7121 qemu_log_mask(CPU_LOG_INT, 7122 "...really SecureFault with SFSR.AUVIOL\n"); 7123 break; 7124 } 7125 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7126 break; 7127 case 0x8: /* External Abort */ 7128 switch (cs->exception_index) { 7129 case EXCP_PREFETCH_ABORT: 7130 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7131 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7132 break; 7133 case EXCP_DATA_ABORT: 7134 env->v7m.cfsr[M_REG_NS] |= 7135 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7136 env->v7m.bfar = env->exception.vaddress; 7137 qemu_log_mask(CPU_LOG_INT, 7138 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7139 env->v7m.bfar); 7140 break; 7141 } 7142 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7143 break; 7144 default: 7145 /* All other FSR values are either MPU faults or "can't happen 7146 * for M profile" cases. 7147 */ 7148 switch (cs->exception_index) { 7149 case EXCP_PREFETCH_ABORT: 7150 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7151 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7152 break; 7153 case EXCP_DATA_ABORT: 7154 env->v7m.cfsr[env->v7m.secure] |= 7155 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7156 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7157 qemu_log_mask(CPU_LOG_INT, 7158 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7159 env->v7m.mmfar[env->v7m.secure]); 7160 break; 7161 } 7162 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7163 env->v7m.secure); 7164 break; 7165 } 7166 break; 7167 case EXCP_BKPT: 7168 if (semihosting_enabled()) { 7169 int nr; 7170 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7171 if (nr == 0xab) { 7172 env->regs[15] += 2; 7173 qemu_log_mask(CPU_LOG_INT, 7174 "...handling as semihosting call 0x%x\n", 7175 env->regs[0]); 7176 env->regs[0] = do_arm_semihosting(env); 7177 return; 7178 } 7179 } 7180 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7181 break; 7182 case EXCP_IRQ: 7183 break; 7184 case EXCP_EXCEPTION_EXIT: 7185 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7186 /* Must be v8M security extension function return */ 7187 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7188 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7189 if (do_v7m_function_return(cpu)) { 7190 return; 7191 } 7192 } else { 7193 do_v7m_exception_exit(cpu); 7194 return; 7195 } 7196 break; 7197 default: 7198 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7199 return; /* Never happens. Keep compiler happy. */ 7200 } 7201 7202 if (arm_feature(env, ARM_FEATURE_V8)) { 7203 lr = R_V7M_EXCRET_RES1_MASK | 7204 R_V7M_EXCRET_DCRS_MASK | 7205 R_V7M_EXCRET_FTYPE_MASK; 7206 /* The S bit indicates whether we should return to Secure 7207 * or NonSecure (ie our current state). 7208 * The ES bit indicates whether we're taking this exception 7209 * to Secure or NonSecure (ie our target state). We set it 7210 * later, in v7m_exception_taken(). 7211 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7212 * This corresponds to the ARM ARM pseudocode for v8M setting 7213 * some LR bits in PushStack() and some in ExceptionTaken(); 7214 * the distinction matters for the tailchain cases where we 7215 * can take an exception without pushing the stack. 7216 */ 7217 if (env->v7m.secure) { 7218 lr |= R_V7M_EXCRET_S_MASK; 7219 } 7220 } else { 7221 lr = R_V7M_EXCRET_RES1_MASK | 7222 R_V7M_EXCRET_S_MASK | 7223 R_V7M_EXCRET_DCRS_MASK | 7224 R_V7M_EXCRET_FTYPE_MASK | 7225 R_V7M_EXCRET_ES_MASK; 7226 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7227 lr |= R_V7M_EXCRET_SPSEL_MASK; 7228 } 7229 } 7230 if (!arm_v7m_is_handler_mode(env)) { 7231 lr |= R_V7M_EXCRET_MODE_MASK; 7232 } 7233 7234 v7m_push_stack(cpu); 7235 v7m_exception_taken(cpu, lr, false); 7236 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7237 } 7238 7239 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7240 * register set. This is necessary when switching between AArch32 and AArch64 7241 * execution state. 7242 */ 7243 void aarch64_sync_32_to_64(CPUARMState *env) 7244 { 7245 int i; 7246 uint32_t mode = env->uncached_cpsr & CPSR_M; 7247 7248 /* We can blanket copy R[0:7] to X[0:7] */ 7249 for (i = 0; i < 8; i++) { 7250 env->xregs[i] = env->regs[i]; 7251 } 7252 7253 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7254 * Otherwise, they come from the banked user regs. 7255 */ 7256 if (mode == ARM_CPU_MODE_FIQ) { 7257 for (i = 8; i < 13; i++) { 7258 env->xregs[i] = env->usr_regs[i - 8]; 7259 } 7260 } else { 7261 for (i = 8; i < 13; i++) { 7262 env->xregs[i] = env->regs[i]; 7263 } 7264 } 7265 7266 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7267 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7268 * from the mode banked register. 7269 */ 7270 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7271 env->xregs[13] = env->regs[13]; 7272 env->xregs[14] = env->regs[14]; 7273 } else { 7274 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7275 /* HYP is an exception in that it is copied from r14 */ 7276 if (mode == ARM_CPU_MODE_HYP) { 7277 env->xregs[14] = env->regs[14]; 7278 } else { 7279 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7280 } 7281 } 7282 7283 if (mode == ARM_CPU_MODE_HYP) { 7284 env->xregs[15] = env->regs[13]; 7285 } else { 7286 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7287 } 7288 7289 if (mode == ARM_CPU_MODE_IRQ) { 7290 env->xregs[16] = env->regs[14]; 7291 env->xregs[17] = env->regs[13]; 7292 } else { 7293 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7294 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7295 } 7296 7297 if (mode == ARM_CPU_MODE_SVC) { 7298 env->xregs[18] = env->regs[14]; 7299 env->xregs[19] = env->regs[13]; 7300 } else { 7301 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7302 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7303 } 7304 7305 if (mode == ARM_CPU_MODE_ABT) { 7306 env->xregs[20] = env->regs[14]; 7307 env->xregs[21] = env->regs[13]; 7308 } else { 7309 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7310 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7311 } 7312 7313 if (mode == ARM_CPU_MODE_UND) { 7314 env->xregs[22] = env->regs[14]; 7315 env->xregs[23] = env->regs[13]; 7316 } else { 7317 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7318 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7319 } 7320 7321 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7322 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7323 * FIQ bank for r8-r14. 7324 */ 7325 if (mode == ARM_CPU_MODE_FIQ) { 7326 for (i = 24; i < 31; i++) { 7327 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7328 } 7329 } else { 7330 for (i = 24; i < 29; i++) { 7331 env->xregs[i] = env->fiq_regs[i - 24]; 7332 } 7333 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7334 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7335 } 7336 7337 env->pc = env->regs[15]; 7338 } 7339 7340 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7341 * register set. This is necessary when switching between AArch32 and AArch64 7342 * execution state. 7343 */ 7344 void aarch64_sync_64_to_32(CPUARMState *env) 7345 { 7346 int i; 7347 uint32_t mode = env->uncached_cpsr & CPSR_M; 7348 7349 /* We can blanket copy X[0:7] to R[0:7] */ 7350 for (i = 0; i < 8; i++) { 7351 env->regs[i] = env->xregs[i]; 7352 } 7353 7354 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7355 * Otherwise, we copy x8-x12 into the banked user regs. 7356 */ 7357 if (mode == ARM_CPU_MODE_FIQ) { 7358 for (i = 8; i < 13; i++) { 7359 env->usr_regs[i - 8] = env->xregs[i]; 7360 } 7361 } else { 7362 for (i = 8; i < 13; i++) { 7363 env->regs[i] = env->xregs[i]; 7364 } 7365 } 7366 7367 /* Registers r13 & r14 depend on the current mode. 7368 * If we are in a given mode, we copy the corresponding x registers to r13 7369 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7370 * for the mode. 7371 */ 7372 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7373 env->regs[13] = env->xregs[13]; 7374 env->regs[14] = env->xregs[14]; 7375 } else { 7376 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7377 7378 /* HYP is an exception in that it does not have its own banked r14 but 7379 * shares the USR r14 7380 */ 7381 if (mode == ARM_CPU_MODE_HYP) { 7382 env->regs[14] = env->xregs[14]; 7383 } else { 7384 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7385 } 7386 } 7387 7388 if (mode == ARM_CPU_MODE_HYP) { 7389 env->regs[13] = env->xregs[15]; 7390 } else { 7391 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7392 } 7393 7394 if (mode == ARM_CPU_MODE_IRQ) { 7395 env->regs[14] = env->xregs[16]; 7396 env->regs[13] = env->xregs[17]; 7397 } else { 7398 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7399 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7400 } 7401 7402 if (mode == ARM_CPU_MODE_SVC) { 7403 env->regs[14] = env->xregs[18]; 7404 env->regs[13] = env->xregs[19]; 7405 } else { 7406 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7407 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7408 } 7409 7410 if (mode == ARM_CPU_MODE_ABT) { 7411 env->regs[14] = env->xregs[20]; 7412 env->regs[13] = env->xregs[21]; 7413 } else { 7414 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7415 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7416 } 7417 7418 if (mode == ARM_CPU_MODE_UND) { 7419 env->regs[14] = env->xregs[22]; 7420 env->regs[13] = env->xregs[23]; 7421 } else { 7422 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7423 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7424 } 7425 7426 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7427 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7428 * FIQ bank for r8-r14. 7429 */ 7430 if (mode == ARM_CPU_MODE_FIQ) { 7431 for (i = 24; i < 31; i++) { 7432 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7433 } 7434 } else { 7435 for (i = 24; i < 29; i++) { 7436 env->fiq_regs[i - 24] = env->xregs[i]; 7437 } 7438 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7439 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7440 } 7441 7442 env->regs[15] = env->pc; 7443 } 7444 7445 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7446 { 7447 ARMCPU *cpu = ARM_CPU(cs); 7448 CPUARMState *env = &cpu->env; 7449 uint32_t addr; 7450 uint32_t mask; 7451 int new_mode; 7452 uint32_t offset; 7453 uint32_t moe; 7454 7455 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7456 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7457 case EC_BREAKPOINT: 7458 case EC_BREAKPOINT_SAME_EL: 7459 moe = 1; 7460 break; 7461 case EC_WATCHPOINT: 7462 case EC_WATCHPOINT_SAME_EL: 7463 moe = 10; 7464 break; 7465 case EC_AA32_BKPT: 7466 moe = 3; 7467 break; 7468 case EC_VECTORCATCH: 7469 moe = 5; 7470 break; 7471 default: 7472 moe = 0; 7473 break; 7474 } 7475 7476 if (moe) { 7477 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7478 } 7479 7480 /* TODO: Vectored interrupt controller. */ 7481 switch (cs->exception_index) { 7482 case EXCP_UDEF: 7483 new_mode = ARM_CPU_MODE_UND; 7484 addr = 0x04; 7485 mask = CPSR_I; 7486 if (env->thumb) 7487 offset = 2; 7488 else 7489 offset = 4; 7490 break; 7491 case EXCP_SWI: 7492 new_mode = ARM_CPU_MODE_SVC; 7493 addr = 0x08; 7494 mask = CPSR_I; 7495 /* The PC already points to the next instruction. */ 7496 offset = 0; 7497 break; 7498 case EXCP_BKPT: 7499 env->exception.fsr = 2; 7500 /* Fall through to prefetch abort. */ 7501 case EXCP_PREFETCH_ABORT: 7502 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7503 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7504 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7505 env->exception.fsr, (uint32_t)env->exception.vaddress); 7506 new_mode = ARM_CPU_MODE_ABT; 7507 addr = 0x0c; 7508 mask = CPSR_A | CPSR_I; 7509 offset = 4; 7510 break; 7511 case EXCP_DATA_ABORT: 7512 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7513 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7514 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7515 env->exception.fsr, 7516 (uint32_t)env->exception.vaddress); 7517 new_mode = ARM_CPU_MODE_ABT; 7518 addr = 0x10; 7519 mask = CPSR_A | CPSR_I; 7520 offset = 8; 7521 break; 7522 case EXCP_IRQ: 7523 new_mode = ARM_CPU_MODE_IRQ; 7524 addr = 0x18; 7525 /* Disable IRQ and imprecise data aborts. */ 7526 mask = CPSR_A | CPSR_I; 7527 offset = 4; 7528 if (env->cp15.scr_el3 & SCR_IRQ) { 7529 /* IRQ routed to monitor mode */ 7530 new_mode = ARM_CPU_MODE_MON; 7531 mask |= CPSR_F; 7532 } 7533 break; 7534 case EXCP_FIQ: 7535 new_mode = ARM_CPU_MODE_FIQ; 7536 addr = 0x1c; 7537 /* Disable FIQ, IRQ and imprecise data aborts. */ 7538 mask = CPSR_A | CPSR_I | CPSR_F; 7539 if (env->cp15.scr_el3 & SCR_FIQ) { 7540 /* FIQ routed to monitor mode */ 7541 new_mode = ARM_CPU_MODE_MON; 7542 } 7543 offset = 4; 7544 break; 7545 case EXCP_VIRQ: 7546 new_mode = ARM_CPU_MODE_IRQ; 7547 addr = 0x18; 7548 /* Disable IRQ and imprecise data aborts. */ 7549 mask = CPSR_A | CPSR_I; 7550 offset = 4; 7551 break; 7552 case EXCP_VFIQ: 7553 new_mode = ARM_CPU_MODE_FIQ; 7554 addr = 0x1c; 7555 /* Disable FIQ, IRQ and imprecise data aborts. */ 7556 mask = CPSR_A | CPSR_I | CPSR_F; 7557 offset = 4; 7558 break; 7559 case EXCP_SMC: 7560 new_mode = ARM_CPU_MODE_MON; 7561 addr = 0x08; 7562 mask = CPSR_A | CPSR_I | CPSR_F; 7563 offset = 0; 7564 break; 7565 default: 7566 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7567 return; /* Never happens. Keep compiler happy. */ 7568 } 7569 7570 if (new_mode == ARM_CPU_MODE_MON) { 7571 addr += env->cp15.mvbar; 7572 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 7573 /* High vectors. When enabled, base address cannot be remapped. */ 7574 addr += 0xffff0000; 7575 } else { 7576 /* ARM v7 architectures provide a vector base address register to remap 7577 * the interrupt vector table. 7578 * This register is only followed in non-monitor mode, and is banked. 7579 * Note: only bits 31:5 are valid. 7580 */ 7581 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 7582 } 7583 7584 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 7585 env->cp15.scr_el3 &= ~SCR_NS; 7586 } 7587 7588 switch_mode (env, new_mode); 7589 /* For exceptions taken to AArch32 we must clear the SS bit in both 7590 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 7591 */ 7592 env->uncached_cpsr &= ~PSTATE_SS; 7593 env->spsr = cpsr_read(env); 7594 /* Clear IT bits. */ 7595 env->condexec_bits = 0; 7596 /* Switch to the new mode, and to the correct instruction set. */ 7597 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 7598 /* Set new mode endianness */ 7599 env->uncached_cpsr &= ~CPSR_E; 7600 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 7601 env->uncached_cpsr |= CPSR_E; 7602 } 7603 env->daif |= mask; 7604 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 7605 * and we should just guard the thumb mode on V4 */ 7606 if (arm_feature(env, ARM_FEATURE_V4T)) { 7607 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 7608 } 7609 env->regs[14] = env->regs[15] + offset; 7610 env->regs[15] = addr; 7611 } 7612 7613 /* Handle exception entry to a target EL which is using AArch64 */ 7614 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 7615 { 7616 ARMCPU *cpu = ARM_CPU(cs); 7617 CPUARMState *env = &cpu->env; 7618 unsigned int new_el = env->exception.target_el; 7619 target_ulong addr = env->cp15.vbar_el[new_el]; 7620 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 7621 7622 if (arm_current_el(env) < new_el) { 7623 /* Entry vector offset depends on whether the implemented EL 7624 * immediately lower than the target level is using AArch32 or AArch64 7625 */ 7626 bool is_aa64; 7627 7628 switch (new_el) { 7629 case 3: 7630 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 7631 break; 7632 case 2: 7633 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 7634 break; 7635 case 1: 7636 is_aa64 = is_a64(env); 7637 break; 7638 default: 7639 g_assert_not_reached(); 7640 } 7641 7642 if (is_aa64) { 7643 addr += 0x400; 7644 } else { 7645 addr += 0x600; 7646 } 7647 } else if (pstate_read(env) & PSTATE_SP) { 7648 addr += 0x200; 7649 } 7650 7651 switch (cs->exception_index) { 7652 case EXCP_PREFETCH_ABORT: 7653 case EXCP_DATA_ABORT: 7654 env->cp15.far_el[new_el] = env->exception.vaddress; 7655 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 7656 env->cp15.far_el[new_el]); 7657 /* fall through */ 7658 case EXCP_BKPT: 7659 case EXCP_UDEF: 7660 case EXCP_SWI: 7661 case EXCP_HVC: 7662 case EXCP_HYP_TRAP: 7663 case EXCP_SMC: 7664 env->cp15.esr_el[new_el] = env->exception.syndrome; 7665 break; 7666 case EXCP_IRQ: 7667 case EXCP_VIRQ: 7668 addr += 0x80; 7669 break; 7670 case EXCP_FIQ: 7671 case EXCP_VFIQ: 7672 addr += 0x100; 7673 break; 7674 case EXCP_SEMIHOST: 7675 qemu_log_mask(CPU_LOG_INT, 7676 "...handling as semihosting call 0x%" PRIx64 "\n", 7677 env->xregs[0]); 7678 env->xregs[0] = do_arm_semihosting(env); 7679 return; 7680 default: 7681 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7682 } 7683 7684 if (is_a64(env)) { 7685 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 7686 aarch64_save_sp(env, arm_current_el(env)); 7687 env->elr_el[new_el] = env->pc; 7688 } else { 7689 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 7690 env->elr_el[new_el] = env->regs[15]; 7691 7692 aarch64_sync_32_to_64(env); 7693 7694 env->condexec_bits = 0; 7695 } 7696 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 7697 env->elr_el[new_el]); 7698 7699 pstate_write(env, PSTATE_DAIF | new_mode); 7700 env->aarch64 = 1; 7701 aarch64_restore_sp(env, new_el); 7702 7703 env->pc = addr; 7704 7705 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 7706 new_el, env->pc, pstate_read(env)); 7707 } 7708 7709 static inline bool check_for_semihosting(CPUState *cs) 7710 { 7711 /* Check whether this exception is a semihosting call; if so 7712 * then handle it and return true; otherwise return false. 7713 */ 7714 ARMCPU *cpu = ARM_CPU(cs); 7715 CPUARMState *env = &cpu->env; 7716 7717 if (is_a64(env)) { 7718 if (cs->exception_index == EXCP_SEMIHOST) { 7719 /* This is always the 64-bit semihosting exception. 7720 * The "is this usermode" and "is semihosting enabled" 7721 * checks have been done at translate time. 7722 */ 7723 qemu_log_mask(CPU_LOG_INT, 7724 "...handling as semihosting call 0x%" PRIx64 "\n", 7725 env->xregs[0]); 7726 env->xregs[0] = do_arm_semihosting(env); 7727 return true; 7728 } 7729 return false; 7730 } else { 7731 uint32_t imm; 7732 7733 /* Only intercept calls from privileged modes, to provide some 7734 * semblance of security. 7735 */ 7736 if (cs->exception_index != EXCP_SEMIHOST && 7737 (!semihosting_enabled() || 7738 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 7739 return false; 7740 } 7741 7742 switch (cs->exception_index) { 7743 case EXCP_SEMIHOST: 7744 /* This is always a semihosting call; the "is this usermode" 7745 * and "is semihosting enabled" checks have been done at 7746 * translate time. 7747 */ 7748 break; 7749 case EXCP_SWI: 7750 /* Check for semihosting interrupt. */ 7751 if (env->thumb) { 7752 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 7753 & 0xff; 7754 if (imm == 0xab) { 7755 break; 7756 } 7757 } else { 7758 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 7759 & 0xffffff; 7760 if (imm == 0x123456) { 7761 break; 7762 } 7763 } 7764 return false; 7765 case EXCP_BKPT: 7766 /* See if this is a semihosting syscall. */ 7767 if (env->thumb) { 7768 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 7769 & 0xff; 7770 if (imm == 0xab) { 7771 env->regs[15] += 2; 7772 break; 7773 } 7774 } 7775 return false; 7776 default: 7777 return false; 7778 } 7779 7780 qemu_log_mask(CPU_LOG_INT, 7781 "...handling as semihosting call 0x%x\n", 7782 env->regs[0]); 7783 env->regs[0] = do_arm_semihosting(env); 7784 return true; 7785 } 7786 } 7787 7788 /* Handle a CPU exception for A and R profile CPUs. 7789 * Do any appropriate logging, handle PSCI calls, and then hand off 7790 * to the AArch64-entry or AArch32-entry function depending on the 7791 * target exception level's register width. 7792 */ 7793 void arm_cpu_do_interrupt(CPUState *cs) 7794 { 7795 ARMCPU *cpu = ARM_CPU(cs); 7796 CPUARMState *env = &cpu->env; 7797 unsigned int new_el = env->exception.target_el; 7798 7799 assert(!arm_feature(env, ARM_FEATURE_M)); 7800 7801 arm_log_exception(cs->exception_index); 7802 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 7803 new_el); 7804 if (qemu_loglevel_mask(CPU_LOG_INT) 7805 && !excp_is_internal(cs->exception_index)) { 7806 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 7807 env->exception.syndrome >> ARM_EL_EC_SHIFT, 7808 env->exception.syndrome); 7809 } 7810 7811 if (arm_is_psci_call(cpu, cs->exception_index)) { 7812 arm_handle_psci_call(cpu); 7813 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 7814 return; 7815 } 7816 7817 /* Semihosting semantics depend on the register width of the 7818 * code that caused the exception, not the target exception level, 7819 * so must be handled here. 7820 */ 7821 if (check_for_semihosting(cs)) { 7822 return; 7823 } 7824 7825 assert(!excp_is_internal(cs->exception_index)); 7826 if (arm_el_is_aa64(env, new_el)) { 7827 arm_cpu_do_interrupt_aarch64(cs); 7828 } else { 7829 arm_cpu_do_interrupt_aarch32(cs); 7830 } 7831 7832 /* Hooks may change global state so BQL should be held, also the 7833 * BQL needs to be held for any modification of 7834 * cs->interrupt_request. 7835 */ 7836 g_assert(qemu_mutex_iothread_locked()); 7837 7838 arm_call_el_change_hook(cpu); 7839 7840 if (!kvm_enabled()) { 7841 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 7842 } 7843 } 7844 7845 /* Return the exception level which controls this address translation regime */ 7846 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 7847 { 7848 switch (mmu_idx) { 7849 case ARMMMUIdx_S2NS: 7850 case ARMMMUIdx_S1E2: 7851 return 2; 7852 case ARMMMUIdx_S1E3: 7853 return 3; 7854 case ARMMMUIdx_S1SE0: 7855 return arm_el_is_aa64(env, 3) ? 1 : 3; 7856 case ARMMMUIdx_S1SE1: 7857 case ARMMMUIdx_S1NSE0: 7858 case ARMMMUIdx_S1NSE1: 7859 case ARMMMUIdx_MPriv: 7860 case ARMMMUIdx_MNegPri: 7861 case ARMMMUIdx_MUser: 7862 case ARMMMUIdx_MSPriv: 7863 case ARMMMUIdx_MSNegPri: 7864 case ARMMMUIdx_MSUser: 7865 return 1; 7866 default: 7867 g_assert_not_reached(); 7868 } 7869 } 7870 7871 /* Return the SCTLR value which controls this address translation regime */ 7872 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 7873 { 7874 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 7875 } 7876 7877 /* Return true if the specified stage of address translation is disabled */ 7878 static inline bool regime_translation_disabled(CPUARMState *env, 7879 ARMMMUIdx mmu_idx) 7880 { 7881 if (arm_feature(env, ARM_FEATURE_M)) { 7882 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 7883 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 7884 case R_V7M_MPU_CTRL_ENABLE_MASK: 7885 /* Enabled, but not for HardFault and NMI */ 7886 return mmu_idx == ARMMMUIdx_MNegPri || 7887 mmu_idx == ARMMMUIdx_MSNegPri; 7888 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 7889 /* Enabled for all cases */ 7890 return false; 7891 case 0: 7892 default: 7893 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 7894 * we warned about that in armv7m_nvic.c when the guest set it. 7895 */ 7896 return true; 7897 } 7898 } 7899 7900 if (mmu_idx == ARMMMUIdx_S2NS) { 7901 return (env->cp15.hcr_el2 & HCR_VM) == 0; 7902 } 7903 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 7904 } 7905 7906 static inline bool regime_translation_big_endian(CPUARMState *env, 7907 ARMMMUIdx mmu_idx) 7908 { 7909 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 7910 } 7911 7912 /* Return the TCR controlling this translation regime */ 7913 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 7914 { 7915 if (mmu_idx == ARMMMUIdx_S2NS) { 7916 return &env->cp15.vtcr_el2; 7917 } 7918 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 7919 } 7920 7921 /* Convert a possible stage1+2 MMU index into the appropriate 7922 * stage 1 MMU index 7923 */ 7924 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 7925 { 7926 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 7927 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 7928 } 7929 return mmu_idx; 7930 } 7931 7932 /* Returns TBI0 value for current regime el */ 7933 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 7934 { 7935 TCR *tcr; 7936 uint32_t el; 7937 7938 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7939 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7940 */ 7941 mmu_idx = stage_1_mmu_idx(mmu_idx); 7942 7943 tcr = regime_tcr(env, mmu_idx); 7944 el = regime_el(env, mmu_idx); 7945 7946 if (el > 1) { 7947 return extract64(tcr->raw_tcr, 20, 1); 7948 } else { 7949 return extract64(tcr->raw_tcr, 37, 1); 7950 } 7951 } 7952 7953 /* Returns TBI1 value for current regime el */ 7954 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 7955 { 7956 TCR *tcr; 7957 uint32_t el; 7958 7959 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 7960 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 7961 */ 7962 mmu_idx = stage_1_mmu_idx(mmu_idx); 7963 7964 tcr = regime_tcr(env, mmu_idx); 7965 el = regime_el(env, mmu_idx); 7966 7967 if (el > 1) { 7968 return 0; 7969 } else { 7970 return extract64(tcr->raw_tcr, 38, 1); 7971 } 7972 } 7973 7974 /* Return the TTBR associated with this translation regime */ 7975 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 7976 int ttbrn) 7977 { 7978 if (mmu_idx == ARMMMUIdx_S2NS) { 7979 return env->cp15.vttbr_el2; 7980 } 7981 if (ttbrn == 0) { 7982 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 7983 } else { 7984 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 7985 } 7986 } 7987 7988 /* Return true if the translation regime is using LPAE format page tables */ 7989 static inline bool regime_using_lpae_format(CPUARMState *env, 7990 ARMMMUIdx mmu_idx) 7991 { 7992 int el = regime_el(env, mmu_idx); 7993 if (el == 2 || arm_el_is_aa64(env, el)) { 7994 return true; 7995 } 7996 if (arm_feature(env, ARM_FEATURE_LPAE) 7997 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 7998 return true; 7999 } 8000 return false; 8001 } 8002 8003 /* Returns true if the stage 1 translation regime is using LPAE format page 8004 * tables. Used when raising alignment exceptions, whose FSR changes depending 8005 * on whether the long or short descriptor format is in use. */ 8006 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8007 { 8008 mmu_idx = stage_1_mmu_idx(mmu_idx); 8009 8010 return regime_using_lpae_format(env, mmu_idx); 8011 } 8012 8013 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8014 { 8015 switch (mmu_idx) { 8016 case ARMMMUIdx_S1SE0: 8017 case ARMMMUIdx_S1NSE0: 8018 case ARMMMUIdx_MUser: 8019 return true; 8020 default: 8021 return false; 8022 case ARMMMUIdx_S12NSE0: 8023 case ARMMMUIdx_S12NSE1: 8024 g_assert_not_reached(); 8025 } 8026 } 8027 8028 /* Translate section/page access permissions to page 8029 * R/W protection flags 8030 * 8031 * @env: CPUARMState 8032 * @mmu_idx: MMU index indicating required translation regime 8033 * @ap: The 3-bit access permissions (AP[2:0]) 8034 * @domain_prot: The 2-bit domain access permissions 8035 */ 8036 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8037 int ap, int domain_prot) 8038 { 8039 bool is_user = regime_is_user(env, mmu_idx); 8040 8041 if (domain_prot == 3) { 8042 return PAGE_READ | PAGE_WRITE; 8043 } 8044 8045 switch (ap) { 8046 case 0: 8047 if (arm_feature(env, ARM_FEATURE_V7)) { 8048 return 0; 8049 } 8050 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8051 case SCTLR_S: 8052 return is_user ? 0 : PAGE_READ; 8053 case SCTLR_R: 8054 return PAGE_READ; 8055 default: 8056 return 0; 8057 } 8058 case 1: 8059 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8060 case 2: 8061 if (is_user) { 8062 return PAGE_READ; 8063 } else { 8064 return PAGE_READ | PAGE_WRITE; 8065 } 8066 case 3: 8067 return PAGE_READ | PAGE_WRITE; 8068 case 4: /* Reserved. */ 8069 return 0; 8070 case 5: 8071 return is_user ? 0 : PAGE_READ; 8072 case 6: 8073 return PAGE_READ; 8074 case 7: 8075 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8076 return 0; 8077 } 8078 return PAGE_READ; 8079 default: 8080 g_assert_not_reached(); 8081 } 8082 } 8083 8084 /* Translate section/page access permissions to page 8085 * R/W protection flags. 8086 * 8087 * @ap: The 2-bit simple AP (AP[2:1]) 8088 * @is_user: TRUE if accessing from PL0 8089 */ 8090 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8091 { 8092 switch (ap) { 8093 case 0: 8094 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8095 case 1: 8096 return PAGE_READ | PAGE_WRITE; 8097 case 2: 8098 return is_user ? 0 : PAGE_READ; 8099 case 3: 8100 return PAGE_READ; 8101 default: 8102 g_assert_not_reached(); 8103 } 8104 } 8105 8106 static inline int 8107 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8108 { 8109 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8110 } 8111 8112 /* Translate S2 section/page access permissions to protection flags 8113 * 8114 * @env: CPUARMState 8115 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8116 * @xn: XN (execute-never) bit 8117 */ 8118 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8119 { 8120 int prot = 0; 8121 8122 if (s2ap & 1) { 8123 prot |= PAGE_READ; 8124 } 8125 if (s2ap & 2) { 8126 prot |= PAGE_WRITE; 8127 } 8128 if (!xn) { 8129 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8130 prot |= PAGE_EXEC; 8131 } 8132 } 8133 return prot; 8134 } 8135 8136 /* Translate section/page access permissions to protection flags 8137 * 8138 * @env: CPUARMState 8139 * @mmu_idx: MMU index indicating required translation regime 8140 * @is_aa64: TRUE if AArch64 8141 * @ap: The 2-bit simple AP (AP[2:1]) 8142 * @ns: NS (non-secure) bit 8143 * @xn: XN (execute-never) bit 8144 * @pxn: PXN (privileged execute-never) bit 8145 */ 8146 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8147 int ap, int ns, int xn, int pxn) 8148 { 8149 bool is_user = regime_is_user(env, mmu_idx); 8150 int prot_rw, user_rw; 8151 bool have_wxn; 8152 int wxn = 0; 8153 8154 assert(mmu_idx != ARMMMUIdx_S2NS); 8155 8156 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8157 if (is_user) { 8158 prot_rw = user_rw; 8159 } else { 8160 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8161 } 8162 8163 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8164 return prot_rw; 8165 } 8166 8167 /* TODO have_wxn should be replaced with 8168 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8169 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8170 * compatible processors have EL2, which is required for [U]WXN. 8171 */ 8172 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8173 8174 if (have_wxn) { 8175 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8176 } 8177 8178 if (is_aa64) { 8179 switch (regime_el(env, mmu_idx)) { 8180 case 1: 8181 if (!is_user) { 8182 xn = pxn || (user_rw & PAGE_WRITE); 8183 } 8184 break; 8185 case 2: 8186 case 3: 8187 break; 8188 } 8189 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8190 switch (regime_el(env, mmu_idx)) { 8191 case 1: 8192 case 3: 8193 if (is_user) { 8194 xn = xn || !(user_rw & PAGE_READ); 8195 } else { 8196 int uwxn = 0; 8197 if (have_wxn) { 8198 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8199 } 8200 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8201 (uwxn && (user_rw & PAGE_WRITE)); 8202 } 8203 break; 8204 case 2: 8205 break; 8206 } 8207 } else { 8208 xn = wxn = 0; 8209 } 8210 8211 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8212 return prot_rw; 8213 } 8214 return prot_rw | PAGE_EXEC; 8215 } 8216 8217 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8218 uint32_t *table, uint32_t address) 8219 { 8220 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8221 TCR *tcr = regime_tcr(env, mmu_idx); 8222 8223 if (address & tcr->mask) { 8224 if (tcr->raw_tcr & TTBCR_PD1) { 8225 /* Translation table walk disabled for TTBR1 */ 8226 return false; 8227 } 8228 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8229 } else { 8230 if (tcr->raw_tcr & TTBCR_PD0) { 8231 /* Translation table walk disabled for TTBR0 */ 8232 return false; 8233 } 8234 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8235 } 8236 *table |= (address >> 18) & 0x3ffc; 8237 return true; 8238 } 8239 8240 /* Translate a S1 pagetable walk through S2 if needed. */ 8241 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8242 hwaddr addr, MemTxAttrs txattrs, 8243 uint32_t *fsr, 8244 ARMMMUFaultInfo *fi) 8245 { 8246 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8247 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8248 target_ulong s2size; 8249 hwaddr s2pa; 8250 int s2prot; 8251 int ret; 8252 8253 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8254 &txattrs, &s2prot, &s2size, fsr, fi, NULL); 8255 if (ret) { 8256 fi->s2addr = addr; 8257 fi->stage2 = true; 8258 fi->s1ptw = true; 8259 return ~0; 8260 } 8261 addr = s2pa; 8262 } 8263 return addr; 8264 } 8265 8266 /* All loads done in the course of a page table walk go through here. 8267 * TODO: rather than ignoring errors from physical memory reads (which 8268 * are external aborts in ARM terminology) we should propagate this 8269 * error out so that we can turn it into a Data Abort if this walk 8270 * was being done for a CPU load/store or an address translation instruction 8271 * (but not if it was for a debug access). 8272 */ 8273 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8274 ARMMMUIdx mmu_idx, uint32_t *fsr, 8275 ARMMMUFaultInfo *fi) 8276 { 8277 ARMCPU *cpu = ARM_CPU(cs); 8278 CPUARMState *env = &cpu->env; 8279 MemTxAttrs attrs = {}; 8280 AddressSpace *as; 8281 8282 attrs.secure = is_secure; 8283 as = arm_addressspace(cs, attrs); 8284 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 8285 if (fi->s1ptw) { 8286 return 0; 8287 } 8288 if (regime_translation_big_endian(env, mmu_idx)) { 8289 return address_space_ldl_be(as, addr, attrs, NULL); 8290 } else { 8291 return address_space_ldl_le(as, addr, attrs, NULL); 8292 } 8293 } 8294 8295 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8296 ARMMMUIdx mmu_idx, uint32_t *fsr, 8297 ARMMMUFaultInfo *fi) 8298 { 8299 ARMCPU *cpu = ARM_CPU(cs); 8300 CPUARMState *env = &cpu->env; 8301 MemTxAttrs attrs = {}; 8302 AddressSpace *as; 8303 8304 attrs.secure = is_secure; 8305 as = arm_addressspace(cs, attrs); 8306 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi); 8307 if (fi->s1ptw) { 8308 return 0; 8309 } 8310 if (regime_translation_big_endian(env, mmu_idx)) { 8311 return address_space_ldq_be(as, addr, attrs, NULL); 8312 } else { 8313 return address_space_ldq_le(as, addr, attrs, NULL); 8314 } 8315 } 8316 8317 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8318 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8319 hwaddr *phys_ptr, int *prot, 8320 target_ulong *page_size, uint32_t *fsr, 8321 ARMMMUFaultInfo *fi) 8322 { 8323 CPUState *cs = CPU(arm_env_get_cpu(env)); 8324 int code; 8325 uint32_t table; 8326 uint32_t desc; 8327 int type; 8328 int ap; 8329 int domain = 0; 8330 int domain_prot; 8331 hwaddr phys_addr; 8332 uint32_t dacr; 8333 8334 /* Pagetable walk. */ 8335 /* Lookup l1 descriptor. */ 8336 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8337 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8338 code = 5; 8339 goto do_fault; 8340 } 8341 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8342 mmu_idx, fsr, fi); 8343 type = (desc & 3); 8344 domain = (desc >> 5) & 0x0f; 8345 if (regime_el(env, mmu_idx) == 1) { 8346 dacr = env->cp15.dacr_ns; 8347 } else { 8348 dacr = env->cp15.dacr_s; 8349 } 8350 domain_prot = (dacr >> (domain * 2)) & 3; 8351 if (type == 0) { 8352 /* Section translation fault. */ 8353 code = 5; 8354 goto do_fault; 8355 } 8356 if (domain_prot == 0 || domain_prot == 2) { 8357 if (type == 2) 8358 code = 9; /* Section domain fault. */ 8359 else 8360 code = 11; /* Page domain fault. */ 8361 goto do_fault; 8362 } 8363 if (type == 2) { 8364 /* 1Mb section. */ 8365 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8366 ap = (desc >> 10) & 3; 8367 code = 13; 8368 *page_size = 1024 * 1024; 8369 } else { 8370 /* Lookup l2 entry. */ 8371 if (type == 1) { 8372 /* Coarse pagetable. */ 8373 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8374 } else { 8375 /* Fine pagetable. */ 8376 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8377 } 8378 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8379 mmu_idx, fsr, fi); 8380 switch (desc & 3) { 8381 case 0: /* Page translation fault. */ 8382 code = 7; 8383 goto do_fault; 8384 case 1: /* 64k page. */ 8385 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8386 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8387 *page_size = 0x10000; 8388 break; 8389 case 2: /* 4k page. */ 8390 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8391 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8392 *page_size = 0x1000; 8393 break; 8394 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8395 if (type == 1) { 8396 /* ARMv6/XScale extended small page format */ 8397 if (arm_feature(env, ARM_FEATURE_XSCALE) 8398 || arm_feature(env, ARM_FEATURE_V6)) { 8399 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8400 *page_size = 0x1000; 8401 } else { 8402 /* UNPREDICTABLE in ARMv5; we choose to take a 8403 * page translation fault. 8404 */ 8405 code = 7; 8406 goto do_fault; 8407 } 8408 } else { 8409 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8410 *page_size = 0x400; 8411 } 8412 ap = (desc >> 4) & 3; 8413 break; 8414 default: 8415 /* Never happens, but compiler isn't smart enough to tell. */ 8416 abort(); 8417 } 8418 code = 15; 8419 } 8420 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8421 *prot |= *prot ? PAGE_EXEC : 0; 8422 if (!(*prot & (1 << access_type))) { 8423 /* Access permission fault. */ 8424 goto do_fault; 8425 } 8426 *phys_ptr = phys_addr; 8427 return false; 8428 do_fault: 8429 *fsr = code | (domain << 4); 8430 return true; 8431 } 8432 8433 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8434 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8435 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8436 target_ulong *page_size, uint32_t *fsr, 8437 ARMMMUFaultInfo *fi) 8438 { 8439 CPUState *cs = CPU(arm_env_get_cpu(env)); 8440 int code; 8441 uint32_t table; 8442 uint32_t desc; 8443 uint32_t xn; 8444 uint32_t pxn = 0; 8445 int type; 8446 int ap; 8447 int domain = 0; 8448 int domain_prot; 8449 hwaddr phys_addr; 8450 uint32_t dacr; 8451 bool ns; 8452 8453 /* Pagetable walk. */ 8454 /* Lookup l1 descriptor. */ 8455 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8456 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8457 code = 5; 8458 goto do_fault; 8459 } 8460 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8461 mmu_idx, fsr, fi); 8462 type = (desc & 3); 8463 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8464 /* Section translation fault, or attempt to use the encoding 8465 * which is Reserved on implementations without PXN. 8466 */ 8467 code = 5; 8468 goto do_fault; 8469 } 8470 if ((type == 1) || !(desc & (1 << 18))) { 8471 /* Page or Section. */ 8472 domain = (desc >> 5) & 0x0f; 8473 } 8474 if (regime_el(env, mmu_idx) == 1) { 8475 dacr = env->cp15.dacr_ns; 8476 } else { 8477 dacr = env->cp15.dacr_s; 8478 } 8479 domain_prot = (dacr >> (domain * 2)) & 3; 8480 if (domain_prot == 0 || domain_prot == 2) { 8481 if (type != 1) { 8482 code = 9; /* Section domain fault. */ 8483 } else { 8484 code = 11; /* Page domain fault. */ 8485 } 8486 goto do_fault; 8487 } 8488 if (type != 1) { 8489 if (desc & (1 << 18)) { 8490 /* Supersection. */ 8491 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8492 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8493 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8494 *page_size = 0x1000000; 8495 } else { 8496 /* Section. */ 8497 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8498 *page_size = 0x100000; 8499 } 8500 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8501 xn = desc & (1 << 4); 8502 pxn = desc & 1; 8503 code = 13; 8504 ns = extract32(desc, 19, 1); 8505 } else { 8506 if (arm_feature(env, ARM_FEATURE_PXN)) { 8507 pxn = (desc >> 2) & 1; 8508 } 8509 ns = extract32(desc, 3, 1); 8510 /* Lookup l2 entry. */ 8511 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8512 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8513 mmu_idx, fsr, fi); 8514 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8515 switch (desc & 3) { 8516 case 0: /* Page translation fault. */ 8517 code = 7; 8518 goto do_fault; 8519 case 1: /* 64k page. */ 8520 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8521 xn = desc & (1 << 15); 8522 *page_size = 0x10000; 8523 break; 8524 case 2: case 3: /* 4k page. */ 8525 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8526 xn = desc & 1; 8527 *page_size = 0x1000; 8528 break; 8529 default: 8530 /* Never happens, but compiler isn't smart enough to tell. */ 8531 abort(); 8532 } 8533 code = 15; 8534 } 8535 if (domain_prot == 3) { 8536 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8537 } else { 8538 if (pxn && !regime_is_user(env, mmu_idx)) { 8539 xn = 1; 8540 } 8541 if (xn && access_type == MMU_INST_FETCH) 8542 goto do_fault; 8543 8544 if (arm_feature(env, ARM_FEATURE_V6K) && 8545 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8546 /* The simplified model uses AP[0] as an access control bit. */ 8547 if ((ap & 1) == 0) { 8548 /* Access flag fault. */ 8549 code = (code == 15) ? 6 : 3; 8550 goto do_fault; 8551 } 8552 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 8553 } else { 8554 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8555 } 8556 if (*prot && !xn) { 8557 *prot |= PAGE_EXEC; 8558 } 8559 if (!(*prot & (1 << access_type))) { 8560 /* Access permission fault. */ 8561 goto do_fault; 8562 } 8563 } 8564 if (ns) { 8565 /* The NS bit will (as required by the architecture) have no effect if 8566 * the CPU doesn't support TZ or this is a non-secure translation 8567 * regime, because the attribute will already be non-secure. 8568 */ 8569 attrs->secure = false; 8570 } 8571 *phys_ptr = phys_addr; 8572 return false; 8573 do_fault: 8574 *fsr = code | (domain << 4); 8575 return true; 8576 } 8577 8578 /* Fault type for long-descriptor MMU fault reporting; this corresponds 8579 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR. 8580 */ 8581 typedef enum { 8582 translation_fault = 1, 8583 access_fault = 2, 8584 permission_fault = 3, 8585 } MMUFaultType; 8586 8587 /* 8588 * check_s2_mmu_setup 8589 * @cpu: ARMCPU 8590 * @is_aa64: True if the translation regime is in AArch64 state 8591 * @startlevel: Suggested starting level 8592 * @inputsize: Bitsize of IPAs 8593 * @stride: Page-table stride (See the ARM ARM) 8594 * 8595 * Returns true if the suggested S2 translation parameters are OK and 8596 * false otherwise. 8597 */ 8598 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 8599 int inputsize, int stride) 8600 { 8601 const int grainsize = stride + 3; 8602 int startsizecheck; 8603 8604 /* Negative levels are never allowed. */ 8605 if (level < 0) { 8606 return false; 8607 } 8608 8609 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 8610 if (startsizecheck < 1 || startsizecheck > stride + 4) { 8611 return false; 8612 } 8613 8614 if (is_aa64) { 8615 CPUARMState *env = &cpu->env; 8616 unsigned int pamax = arm_pamax(cpu); 8617 8618 switch (stride) { 8619 case 13: /* 64KB Pages. */ 8620 if (level == 0 || (level == 1 && pamax <= 42)) { 8621 return false; 8622 } 8623 break; 8624 case 11: /* 16KB Pages. */ 8625 if (level == 0 || (level == 1 && pamax <= 40)) { 8626 return false; 8627 } 8628 break; 8629 case 9: /* 4KB Pages. */ 8630 if (level == 0 && pamax <= 42) { 8631 return false; 8632 } 8633 break; 8634 default: 8635 g_assert_not_reached(); 8636 } 8637 8638 /* Inputsize checks. */ 8639 if (inputsize > pamax && 8640 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 8641 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 8642 return false; 8643 } 8644 } else { 8645 /* AArch32 only supports 4KB pages. Assert on that. */ 8646 assert(stride == 9); 8647 8648 if (level == 0) { 8649 return false; 8650 } 8651 } 8652 return true; 8653 } 8654 8655 /* Translate from the 4-bit stage 2 representation of 8656 * memory attributes (without cache-allocation hints) to 8657 * the 8-bit representation of the stage 1 MAIR registers 8658 * (which includes allocation hints). 8659 * 8660 * ref: shared/translation/attrs/S2AttrDecode() 8661 * .../S2ConvertAttrsHints() 8662 */ 8663 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 8664 { 8665 uint8_t hiattr = extract32(s2attrs, 2, 2); 8666 uint8_t loattr = extract32(s2attrs, 0, 2); 8667 uint8_t hihint = 0, lohint = 0; 8668 8669 if (hiattr != 0) { /* normal memory */ 8670 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 8671 hiattr = loattr = 1; /* non-cacheable */ 8672 } else { 8673 if (hiattr != 1) { /* Write-through or write-back */ 8674 hihint = 3; /* RW allocate */ 8675 } 8676 if (loattr != 1) { /* Write-through or write-back */ 8677 lohint = 3; /* RW allocate */ 8678 } 8679 } 8680 } 8681 8682 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 8683 } 8684 8685 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 8686 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8687 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 8688 target_ulong *page_size_ptr, uint32_t *fsr, 8689 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 8690 { 8691 ARMCPU *cpu = arm_env_get_cpu(env); 8692 CPUState *cs = CPU(cpu); 8693 /* Read an LPAE long-descriptor translation table. */ 8694 MMUFaultType fault_type = translation_fault; 8695 uint32_t level; 8696 uint32_t epd = 0; 8697 int32_t t0sz, t1sz; 8698 uint32_t tg; 8699 uint64_t ttbr; 8700 int ttbr_select; 8701 hwaddr descaddr, indexmask, indexmask_grainsize; 8702 uint32_t tableattrs; 8703 target_ulong page_size; 8704 uint32_t attrs; 8705 int32_t stride = 9; 8706 int32_t addrsize; 8707 int inputsize; 8708 int32_t tbi = 0; 8709 TCR *tcr = regime_tcr(env, mmu_idx); 8710 int ap, ns, xn, pxn; 8711 uint32_t el = regime_el(env, mmu_idx); 8712 bool ttbr1_valid = true; 8713 uint64_t descaddrmask; 8714 bool aarch64 = arm_el_is_aa64(env, el); 8715 8716 /* TODO: 8717 * This code does not handle the different format TCR for VTCR_EL2. 8718 * This code also does not support shareability levels. 8719 * Attribute and permission bit handling should also be checked when adding 8720 * support for those page table walks. 8721 */ 8722 if (aarch64) { 8723 level = 0; 8724 addrsize = 64; 8725 if (el > 1) { 8726 if (mmu_idx != ARMMMUIdx_S2NS) { 8727 tbi = extract64(tcr->raw_tcr, 20, 1); 8728 } 8729 } else { 8730 if (extract64(address, 55, 1)) { 8731 tbi = extract64(tcr->raw_tcr, 38, 1); 8732 } else { 8733 tbi = extract64(tcr->raw_tcr, 37, 1); 8734 } 8735 } 8736 tbi *= 8; 8737 8738 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 8739 * invalid. 8740 */ 8741 if (el > 1) { 8742 ttbr1_valid = false; 8743 } 8744 } else { 8745 level = 1; 8746 addrsize = 32; 8747 /* There is no TTBR1 for EL2 */ 8748 if (el == 2) { 8749 ttbr1_valid = false; 8750 } 8751 } 8752 8753 /* Determine whether this address is in the region controlled by 8754 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 8755 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 8756 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 8757 */ 8758 if (aarch64) { 8759 /* AArch64 translation. */ 8760 t0sz = extract32(tcr->raw_tcr, 0, 6); 8761 t0sz = MIN(t0sz, 39); 8762 t0sz = MAX(t0sz, 16); 8763 } else if (mmu_idx != ARMMMUIdx_S2NS) { 8764 /* AArch32 stage 1 translation. */ 8765 t0sz = extract32(tcr->raw_tcr, 0, 3); 8766 } else { 8767 /* AArch32 stage 2 translation. */ 8768 bool sext = extract32(tcr->raw_tcr, 4, 1); 8769 bool sign = extract32(tcr->raw_tcr, 3, 1); 8770 /* Address size is 40-bit for a stage 2 translation, 8771 * and t0sz can be negative (from -8 to 7), 8772 * so we need to adjust it to use the TTBR selecting logic below. 8773 */ 8774 addrsize = 40; 8775 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 8776 8777 /* If the sign-extend bit is not the same as t0sz[3], the result 8778 * is unpredictable. Flag this as a guest error. */ 8779 if (sign != sext) { 8780 qemu_log_mask(LOG_GUEST_ERROR, 8781 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 8782 } 8783 } 8784 t1sz = extract32(tcr->raw_tcr, 16, 6); 8785 if (aarch64) { 8786 t1sz = MIN(t1sz, 39); 8787 t1sz = MAX(t1sz, 16); 8788 } 8789 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 8790 /* there is a ttbr0 region and we are in it (high bits all zero) */ 8791 ttbr_select = 0; 8792 } else if (ttbr1_valid && t1sz && 8793 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 8794 /* there is a ttbr1 region and we are in it (high bits all one) */ 8795 ttbr_select = 1; 8796 } else if (!t0sz) { 8797 /* ttbr0 region is "everything not in the ttbr1 region" */ 8798 ttbr_select = 0; 8799 } else if (!t1sz && ttbr1_valid) { 8800 /* ttbr1 region is "everything not in the ttbr0 region" */ 8801 ttbr_select = 1; 8802 } else { 8803 /* in the gap between the two regions, this is a Translation fault */ 8804 fault_type = translation_fault; 8805 goto do_fault; 8806 } 8807 8808 /* Note that QEMU ignores shareability and cacheability attributes, 8809 * so we don't need to do anything with the SH, ORGN, IRGN fields 8810 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 8811 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 8812 * implement any ASID-like capability so we can ignore it (instead 8813 * we will always flush the TLB any time the ASID is changed). 8814 */ 8815 if (ttbr_select == 0) { 8816 ttbr = regime_ttbr(env, mmu_idx, 0); 8817 if (el < 2) { 8818 epd = extract32(tcr->raw_tcr, 7, 1); 8819 } 8820 inputsize = addrsize - t0sz; 8821 8822 tg = extract32(tcr->raw_tcr, 14, 2); 8823 if (tg == 1) { /* 64KB pages */ 8824 stride = 13; 8825 } 8826 if (tg == 2) { /* 16KB pages */ 8827 stride = 11; 8828 } 8829 } else { 8830 /* We should only be here if TTBR1 is valid */ 8831 assert(ttbr1_valid); 8832 8833 ttbr = regime_ttbr(env, mmu_idx, 1); 8834 epd = extract32(tcr->raw_tcr, 23, 1); 8835 inputsize = addrsize - t1sz; 8836 8837 tg = extract32(tcr->raw_tcr, 30, 2); 8838 if (tg == 3) { /* 64KB pages */ 8839 stride = 13; 8840 } 8841 if (tg == 1) { /* 16KB pages */ 8842 stride = 11; 8843 } 8844 } 8845 8846 /* Here we should have set up all the parameters for the translation: 8847 * inputsize, ttbr, epd, stride, tbi 8848 */ 8849 8850 if (epd) { 8851 /* Translation table walk disabled => Translation fault on TLB miss 8852 * Note: This is always 0 on 64-bit EL2 and EL3. 8853 */ 8854 goto do_fault; 8855 } 8856 8857 if (mmu_idx != ARMMMUIdx_S2NS) { 8858 /* The starting level depends on the virtual address size (which can 8859 * be up to 48 bits) and the translation granule size. It indicates 8860 * the number of strides (stride bits at a time) needed to 8861 * consume the bits of the input address. In the pseudocode this is: 8862 * level = 4 - RoundUp((inputsize - grainsize) / stride) 8863 * where their 'inputsize' is our 'inputsize', 'grainsize' is 8864 * our 'stride + 3' and 'stride' is our 'stride'. 8865 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 8866 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 8867 * = 4 - (inputsize - 4) / stride; 8868 */ 8869 level = 4 - (inputsize - 4) / stride; 8870 } else { 8871 /* For stage 2 translations the starting level is specified by the 8872 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 8873 */ 8874 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 8875 uint32_t startlevel; 8876 bool ok; 8877 8878 if (!aarch64 || stride == 9) { 8879 /* AArch32 or 4KB pages */ 8880 startlevel = 2 - sl0; 8881 } else { 8882 /* 16KB or 64KB pages */ 8883 startlevel = 3 - sl0; 8884 } 8885 8886 /* Check that the starting level is valid. */ 8887 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 8888 inputsize, stride); 8889 if (!ok) { 8890 fault_type = translation_fault; 8891 goto do_fault; 8892 } 8893 level = startlevel; 8894 } 8895 8896 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 8897 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 8898 8899 /* Now we can extract the actual base address from the TTBR */ 8900 descaddr = extract64(ttbr, 0, 48); 8901 descaddr &= ~indexmask; 8902 8903 /* The address field in the descriptor goes up to bit 39 for ARMv7 8904 * but up to bit 47 for ARMv8, but we use the descaddrmask 8905 * up to bit 39 for AArch32, because we don't need other bits in that case 8906 * to construct next descriptor address (anyway they should be all zeroes). 8907 */ 8908 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 8909 ~indexmask_grainsize; 8910 8911 /* Secure accesses start with the page table in secure memory and 8912 * can be downgraded to non-secure at any step. Non-secure accesses 8913 * remain non-secure. We implement this by just ORing in the NSTable/NS 8914 * bits at each step. 8915 */ 8916 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 8917 for (;;) { 8918 uint64_t descriptor; 8919 bool nstable; 8920 8921 descaddr |= (address >> (stride * (4 - level))) & indexmask; 8922 descaddr &= ~7ULL; 8923 nstable = extract32(tableattrs, 4, 1); 8924 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi); 8925 if (fi->s1ptw) { 8926 goto do_fault; 8927 } 8928 8929 if (!(descriptor & 1) || 8930 (!(descriptor & 2) && (level == 3))) { 8931 /* Invalid, or the Reserved level 3 encoding */ 8932 goto do_fault; 8933 } 8934 descaddr = descriptor & descaddrmask; 8935 8936 if ((descriptor & 2) && (level < 3)) { 8937 /* Table entry. The top five bits are attributes which may 8938 * propagate down through lower levels of the table (and 8939 * which are all arranged so that 0 means "no effect", so 8940 * we can gather them up by ORing in the bits at each level). 8941 */ 8942 tableattrs |= extract64(descriptor, 59, 5); 8943 level++; 8944 indexmask = indexmask_grainsize; 8945 continue; 8946 } 8947 /* Block entry at level 1 or 2, or page entry at level 3. 8948 * These are basically the same thing, although the number 8949 * of bits we pull in from the vaddr varies. 8950 */ 8951 page_size = (1ULL << ((stride * (4 - level)) + 3)); 8952 descaddr |= (address & (page_size - 1)); 8953 /* Extract attributes from the descriptor */ 8954 attrs = extract64(descriptor, 2, 10) 8955 | (extract64(descriptor, 52, 12) << 10); 8956 8957 if (mmu_idx == ARMMMUIdx_S2NS) { 8958 /* Stage 2 table descriptors do not include any attribute fields */ 8959 break; 8960 } 8961 /* Merge in attributes from table descriptors */ 8962 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 8963 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 8964 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 8965 * means "force PL1 access only", which means forcing AP[1] to 0. 8966 */ 8967 if (extract32(tableattrs, 2, 1)) { 8968 attrs &= ~(1 << 4); 8969 } 8970 attrs |= nstable << 3; /* NS */ 8971 break; 8972 } 8973 /* Here descaddr is the final physical address, and attributes 8974 * are all in attrs. 8975 */ 8976 fault_type = access_fault; 8977 if ((attrs & (1 << 8)) == 0) { 8978 /* Access flag */ 8979 goto do_fault; 8980 } 8981 8982 ap = extract32(attrs, 4, 2); 8983 xn = extract32(attrs, 12, 1); 8984 8985 if (mmu_idx == ARMMMUIdx_S2NS) { 8986 ns = true; 8987 *prot = get_S2prot(env, ap, xn); 8988 } else { 8989 ns = extract32(attrs, 3, 1); 8990 pxn = extract32(attrs, 11, 1); 8991 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 8992 } 8993 8994 fault_type = permission_fault; 8995 if (!(*prot & (1 << access_type))) { 8996 goto do_fault; 8997 } 8998 8999 if (ns) { 9000 /* The NS bit will (as required by the architecture) have no effect if 9001 * the CPU doesn't support TZ or this is a non-secure translation 9002 * regime, because the attribute will already be non-secure. 9003 */ 9004 txattrs->secure = false; 9005 } 9006 9007 if (cacheattrs != NULL) { 9008 if (mmu_idx == ARMMMUIdx_S2NS) { 9009 cacheattrs->attrs = convert_stage2_attrs(env, 9010 extract32(attrs, 0, 4)); 9011 } else { 9012 /* Index into MAIR registers for cache attributes */ 9013 uint8_t attrindx = extract32(attrs, 0, 3); 9014 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9015 assert(attrindx <= 7); 9016 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9017 } 9018 cacheattrs->shareability = extract32(attrs, 6, 2); 9019 } 9020 9021 *phys_ptr = descaddr; 9022 *page_size_ptr = page_size; 9023 return false; 9024 9025 do_fault: 9026 /* Long-descriptor format IFSR/DFSR value */ 9027 *fsr = (1 << 9) | (fault_type << 2) | level; 9028 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9029 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9030 return true; 9031 } 9032 9033 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9034 ARMMMUIdx mmu_idx, 9035 int32_t address, int *prot) 9036 { 9037 if (!arm_feature(env, ARM_FEATURE_M)) { 9038 *prot = PAGE_READ | PAGE_WRITE; 9039 switch (address) { 9040 case 0xF0000000 ... 0xFFFFFFFF: 9041 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9042 /* hivecs execing is ok */ 9043 *prot |= PAGE_EXEC; 9044 } 9045 break; 9046 case 0x00000000 ... 0x7FFFFFFF: 9047 *prot |= PAGE_EXEC; 9048 break; 9049 } 9050 } else { 9051 /* Default system address map for M profile cores. 9052 * The architecture specifies which regions are execute-never; 9053 * at the MPU level no other checks are defined. 9054 */ 9055 switch (address) { 9056 case 0x00000000 ... 0x1fffffff: /* ROM */ 9057 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9058 case 0x60000000 ... 0x7fffffff: /* RAM */ 9059 case 0x80000000 ... 0x9fffffff: /* RAM */ 9060 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9061 break; 9062 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9063 case 0xa0000000 ... 0xbfffffff: /* Device */ 9064 case 0xc0000000 ... 0xdfffffff: /* Device */ 9065 case 0xe0000000 ... 0xffffffff: /* System */ 9066 *prot = PAGE_READ | PAGE_WRITE; 9067 break; 9068 default: 9069 g_assert_not_reached(); 9070 } 9071 } 9072 } 9073 9074 static bool pmsav7_use_background_region(ARMCPU *cpu, 9075 ARMMMUIdx mmu_idx, bool is_user) 9076 { 9077 /* Return true if we should use the default memory map as a 9078 * "background" region if there are no hits against any MPU regions. 9079 */ 9080 CPUARMState *env = &cpu->env; 9081 9082 if (is_user) { 9083 return false; 9084 } 9085 9086 if (arm_feature(env, ARM_FEATURE_M)) { 9087 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9088 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9089 } else { 9090 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9091 } 9092 } 9093 9094 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9095 { 9096 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9097 return arm_feature(env, ARM_FEATURE_M) && 9098 extract32(address, 20, 12) == 0xe00; 9099 } 9100 9101 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9102 { 9103 /* True if address is in the M profile system region 9104 * 0xe0000000 - 0xffffffff 9105 */ 9106 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9107 } 9108 9109 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9110 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9111 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 9112 { 9113 ARMCPU *cpu = arm_env_get_cpu(env); 9114 int n; 9115 bool is_user = regime_is_user(env, mmu_idx); 9116 9117 *phys_ptr = address; 9118 *prot = 0; 9119 9120 if (regime_translation_disabled(env, mmu_idx) || 9121 m_is_ppb_region(env, address)) { 9122 /* MPU disabled or M profile PPB access: use default memory map. 9123 * The other case which uses the default memory map in the 9124 * v7M ARM ARM pseudocode is exception vector reads from the vector 9125 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9126 * which always does a direct read using address_space_ldl(), rather 9127 * than going via this function, so we don't need to check that here. 9128 */ 9129 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9130 } else { /* MPU enabled */ 9131 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9132 /* region search */ 9133 uint32_t base = env->pmsav7.drbar[n]; 9134 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9135 uint32_t rmask; 9136 bool srdis = false; 9137 9138 if (!(env->pmsav7.drsr[n] & 0x1)) { 9139 continue; 9140 } 9141 9142 if (!rsize) { 9143 qemu_log_mask(LOG_GUEST_ERROR, 9144 "DRSR[%d]: Rsize field cannot be 0\n", n); 9145 continue; 9146 } 9147 rsize++; 9148 rmask = (1ull << rsize) - 1; 9149 9150 if (base & rmask) { 9151 qemu_log_mask(LOG_GUEST_ERROR, 9152 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9153 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9154 n, base, rmask); 9155 continue; 9156 } 9157 9158 if (address < base || address > base + rmask) { 9159 continue; 9160 } 9161 9162 /* Region matched */ 9163 9164 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9165 int i, snd; 9166 uint32_t srdis_mask; 9167 9168 rsize -= 3; /* sub region size (power of 2) */ 9169 snd = ((address - base) >> rsize) & 0x7; 9170 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9171 9172 srdis_mask = srdis ? 0x3 : 0x0; 9173 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9174 /* This will check in groups of 2, 4 and then 8, whether 9175 * the subregion bits are consistent. rsize is incremented 9176 * back up to give the region size, considering consistent 9177 * adjacent subregions as one region. Stop testing if rsize 9178 * is already big enough for an entire QEMU page. 9179 */ 9180 int snd_rounded = snd & ~(i - 1); 9181 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9182 snd_rounded + 8, i); 9183 if (srdis_mask ^ srdis_multi) { 9184 break; 9185 } 9186 srdis_mask = (srdis_mask << i) | srdis_mask; 9187 rsize++; 9188 } 9189 } 9190 if (rsize < TARGET_PAGE_BITS) { 9191 qemu_log_mask(LOG_UNIMP, 9192 "DRSR[%d]: No support for MPU (sub)region " 9193 "alignment of %" PRIu32 " bits. Minimum is %d\n", 9194 n, rsize, TARGET_PAGE_BITS); 9195 continue; 9196 } 9197 if (srdis) { 9198 continue; 9199 } 9200 break; 9201 } 9202 9203 if (n == -1) { /* no hits */ 9204 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9205 /* background fault */ 9206 *fsr = 0; 9207 return true; 9208 } 9209 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9210 } else { /* a MPU hit! */ 9211 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9212 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9213 9214 if (m_is_system_region(env, address)) { 9215 /* System space is always execute never */ 9216 xn = 1; 9217 } 9218 9219 if (is_user) { /* User mode AP bit decoding */ 9220 switch (ap) { 9221 case 0: 9222 case 1: 9223 case 5: 9224 break; /* no access */ 9225 case 3: 9226 *prot |= PAGE_WRITE; 9227 /* fall through */ 9228 case 2: 9229 case 6: 9230 *prot |= PAGE_READ | PAGE_EXEC; 9231 break; 9232 default: 9233 qemu_log_mask(LOG_GUEST_ERROR, 9234 "DRACR[%d]: Bad value for AP bits: 0x%" 9235 PRIx32 "\n", n, ap); 9236 } 9237 } else { /* Priv. mode AP bits decoding */ 9238 switch (ap) { 9239 case 0: 9240 break; /* no access */ 9241 case 1: 9242 case 2: 9243 case 3: 9244 *prot |= PAGE_WRITE; 9245 /* fall through */ 9246 case 5: 9247 case 6: 9248 *prot |= PAGE_READ | PAGE_EXEC; 9249 break; 9250 default: 9251 qemu_log_mask(LOG_GUEST_ERROR, 9252 "DRACR[%d]: Bad value for AP bits: 0x%" 9253 PRIx32 "\n", n, ap); 9254 } 9255 } 9256 9257 /* execute never */ 9258 if (xn) { 9259 *prot &= ~PAGE_EXEC; 9260 } 9261 } 9262 } 9263 9264 *fsr = 0x00d; /* Permission fault */ 9265 return !(*prot & (1 << access_type)); 9266 } 9267 9268 static bool v8m_is_sau_exempt(CPUARMState *env, 9269 uint32_t address, MMUAccessType access_type) 9270 { 9271 /* The architecture specifies that certain address ranges are 9272 * exempt from v8M SAU/IDAU checks. 9273 */ 9274 return 9275 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9276 (address >= 0xe0000000 && address <= 0xe0002fff) || 9277 (address >= 0xe000e000 && address <= 0xe000efff) || 9278 (address >= 0xe002e000 && address <= 0xe002efff) || 9279 (address >= 0xe0040000 && address <= 0xe0041fff) || 9280 (address >= 0xe00ff000 && address <= 0xe00fffff); 9281 } 9282 9283 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9284 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9285 V8M_SAttributes *sattrs) 9286 { 9287 /* Look up the security attributes for this address. Compare the 9288 * pseudocode SecurityCheck() function. 9289 * We assume the caller has zero-initialized *sattrs. 9290 */ 9291 ARMCPU *cpu = arm_env_get_cpu(env); 9292 int r; 9293 9294 /* TODO: implement IDAU */ 9295 9296 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9297 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9298 return; 9299 } 9300 9301 if (v8m_is_sau_exempt(env, address, access_type)) { 9302 sattrs->ns = !regime_is_secure(env, mmu_idx); 9303 return; 9304 } 9305 9306 switch (env->sau.ctrl & 3) { 9307 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9308 break; 9309 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9310 sattrs->ns = true; 9311 break; 9312 default: /* SAU.ENABLE == 1 */ 9313 for (r = 0; r < cpu->sau_sregion; r++) { 9314 if (env->sau.rlar[r] & 1) { 9315 uint32_t base = env->sau.rbar[r] & ~0x1f; 9316 uint32_t limit = env->sau.rlar[r] | 0x1f; 9317 9318 if (base <= address && limit >= address) { 9319 if (sattrs->srvalid) { 9320 /* If we hit in more than one region then we must report 9321 * as Secure, not NS-Callable, with no valid region 9322 * number info. 9323 */ 9324 sattrs->ns = false; 9325 sattrs->nsc = false; 9326 sattrs->sregion = 0; 9327 sattrs->srvalid = false; 9328 break; 9329 } else { 9330 if (env->sau.rlar[r] & 2) { 9331 sattrs->nsc = true; 9332 } else { 9333 sattrs->ns = true; 9334 } 9335 sattrs->srvalid = true; 9336 sattrs->sregion = r; 9337 } 9338 } 9339 } 9340 } 9341 9342 /* TODO when we support the IDAU then it may override the result here */ 9343 break; 9344 } 9345 } 9346 9347 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9348 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9349 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9350 int *prot, uint32_t *fsr) 9351 { 9352 ARMCPU *cpu = arm_env_get_cpu(env); 9353 bool is_user = regime_is_user(env, mmu_idx); 9354 uint32_t secure = regime_is_secure(env, mmu_idx); 9355 int n; 9356 int matchregion = -1; 9357 bool hit = false; 9358 V8M_SAttributes sattrs = {}; 9359 9360 *phys_ptr = address; 9361 *prot = 0; 9362 9363 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9364 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9365 if (access_type == MMU_INST_FETCH) { 9366 /* Instruction fetches always use the MMU bank and the 9367 * transaction attribute determined by the fetch address, 9368 * regardless of CPU state. This is painful for QEMU 9369 * to handle, because it would mean we need to encode 9370 * into the mmu_idx not just the (user, negpri) information 9371 * for the current security state but also that for the 9372 * other security state, which would balloon the number 9373 * of mmu_idx values needed alarmingly. 9374 * Fortunately we can avoid this because it's not actually 9375 * possible to arbitrarily execute code from memory with 9376 * the wrong security attribute: it will always generate 9377 * an exception of some kind or another, apart from the 9378 * special case of an NS CPU executing an SG instruction 9379 * in S&NSC memory. So we always just fail the translation 9380 * here and sort things out in the exception handler 9381 * (including possibly emulating an SG instruction). 9382 */ 9383 if (sattrs.ns != !secure) { 9384 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT; 9385 return true; 9386 } 9387 } else { 9388 /* For data accesses we always use the MMU bank indicated 9389 * by the current CPU state, but the security attributes 9390 * might downgrade a secure access to nonsecure. 9391 */ 9392 if (sattrs.ns) { 9393 txattrs->secure = false; 9394 } else if (!secure) { 9395 /* NS access to S memory must fault. 9396 * Architecturally we should first check whether the 9397 * MPU information for this address indicates that we 9398 * are doing an unaligned access to Device memory, which 9399 * should generate a UsageFault instead. QEMU does not 9400 * currently check for that kind of unaligned access though. 9401 * If we added it we would need to do so as a special case 9402 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 9403 */ 9404 *fsr = M_FAKE_FSR_SFAULT; 9405 return true; 9406 } 9407 } 9408 } 9409 9410 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9411 * was an exception vector read from the vector table (which is always 9412 * done using the default system address map), because those accesses 9413 * are done in arm_v7m_load_vector(), which always does a direct 9414 * read using address_space_ldl(), rather than going via this function. 9415 */ 9416 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9417 hit = true; 9418 } else if (m_is_ppb_region(env, address)) { 9419 hit = true; 9420 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9421 hit = true; 9422 } else { 9423 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9424 /* region search */ 9425 /* Note that the base address is bits [31:5] from the register 9426 * with bits [4:0] all zeroes, but the limit address is bits 9427 * [31:5] from the register with bits [4:0] all ones. 9428 */ 9429 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9430 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9431 9432 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9433 /* Region disabled */ 9434 continue; 9435 } 9436 9437 if (address < base || address > limit) { 9438 continue; 9439 } 9440 9441 if (hit) { 9442 /* Multiple regions match -- always a failure (unlike 9443 * PMSAv7 where highest-numbered-region wins) 9444 */ 9445 *fsr = 0x00d; /* permission fault */ 9446 return true; 9447 } 9448 9449 matchregion = n; 9450 hit = true; 9451 9452 if (base & ~TARGET_PAGE_MASK) { 9453 qemu_log_mask(LOG_UNIMP, 9454 "MPU_RBAR[%d]: No support for MPU region base" 9455 "address of 0x%" PRIx32 ". Minimum alignment is " 9456 "%d\n", 9457 n, base, TARGET_PAGE_BITS); 9458 continue; 9459 } 9460 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9461 qemu_log_mask(LOG_UNIMP, 9462 "MPU_RBAR[%d]: No support for MPU region limit" 9463 "address of 0x%" PRIx32 ". Minimum alignment is " 9464 "%d\n", 9465 n, limit, TARGET_PAGE_BITS); 9466 continue; 9467 } 9468 } 9469 } 9470 9471 if (!hit) { 9472 /* background fault */ 9473 *fsr = 0; 9474 return true; 9475 } 9476 9477 if (matchregion == -1) { 9478 /* hit using the background region */ 9479 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9480 } else { 9481 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9482 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9483 9484 if (m_is_system_region(env, address)) { 9485 /* System space is always execute never */ 9486 xn = 1; 9487 } 9488 9489 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9490 if (*prot && !xn) { 9491 *prot |= PAGE_EXEC; 9492 } 9493 /* We don't need to look the attribute up in the MAIR0/MAIR1 9494 * registers because that only tells us about cacheability. 9495 */ 9496 } 9497 9498 *fsr = 0x00d; /* Permission fault */ 9499 return !(*prot & (1 << access_type)); 9500 } 9501 9502 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 9503 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9504 hwaddr *phys_ptr, int *prot, uint32_t *fsr) 9505 { 9506 int n; 9507 uint32_t mask; 9508 uint32_t base; 9509 bool is_user = regime_is_user(env, mmu_idx); 9510 9511 if (regime_translation_disabled(env, mmu_idx)) { 9512 /* MPU disabled. */ 9513 *phys_ptr = address; 9514 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9515 return false; 9516 } 9517 9518 *phys_ptr = address; 9519 for (n = 7; n >= 0; n--) { 9520 base = env->cp15.c6_region[n]; 9521 if ((base & 1) == 0) { 9522 continue; 9523 } 9524 mask = 1 << ((base >> 1) & 0x1f); 9525 /* Keep this shift separate from the above to avoid an 9526 (undefined) << 32. */ 9527 mask = (mask << 1) - 1; 9528 if (((base ^ address) & ~mask) == 0) { 9529 break; 9530 } 9531 } 9532 if (n < 0) { 9533 *fsr = 2; 9534 return true; 9535 } 9536 9537 if (access_type == MMU_INST_FETCH) { 9538 mask = env->cp15.pmsav5_insn_ap; 9539 } else { 9540 mask = env->cp15.pmsav5_data_ap; 9541 } 9542 mask = (mask >> (n * 4)) & 0xf; 9543 switch (mask) { 9544 case 0: 9545 *fsr = 1; 9546 return true; 9547 case 1: 9548 if (is_user) { 9549 *fsr = 1; 9550 return true; 9551 } 9552 *prot = PAGE_READ | PAGE_WRITE; 9553 break; 9554 case 2: 9555 *prot = PAGE_READ; 9556 if (!is_user) { 9557 *prot |= PAGE_WRITE; 9558 } 9559 break; 9560 case 3: 9561 *prot = PAGE_READ | PAGE_WRITE; 9562 break; 9563 case 5: 9564 if (is_user) { 9565 *fsr = 1; 9566 return true; 9567 } 9568 *prot = PAGE_READ; 9569 break; 9570 case 6: 9571 *prot = PAGE_READ; 9572 break; 9573 default: 9574 /* Bad permission. */ 9575 *fsr = 1; 9576 return true; 9577 } 9578 *prot |= PAGE_EXEC; 9579 return false; 9580 } 9581 9582 /* Combine either inner or outer cacheability attributes for normal 9583 * memory, according to table D4-42 and pseudocode procedure 9584 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 9585 * 9586 * NB: only stage 1 includes allocation hints (RW bits), leading to 9587 * some asymmetry. 9588 */ 9589 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 9590 { 9591 if (s1 == 4 || s2 == 4) { 9592 /* non-cacheable has precedence */ 9593 return 4; 9594 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 9595 /* stage 1 write-through takes precedence */ 9596 return s1; 9597 } else if (extract32(s2, 2, 2) == 2) { 9598 /* stage 2 write-through takes precedence, but the allocation hint 9599 * is still taken from stage 1 9600 */ 9601 return (2 << 2) | extract32(s1, 0, 2); 9602 } else { /* write-back */ 9603 return s1; 9604 } 9605 } 9606 9607 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 9608 * and CombineS1S2Desc() 9609 * 9610 * @s1: Attributes from stage 1 walk 9611 * @s2: Attributes from stage 2 walk 9612 */ 9613 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 9614 { 9615 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 9616 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 9617 ARMCacheAttrs ret; 9618 9619 /* Combine shareability attributes (table D4-43) */ 9620 if (s1.shareability == 2 || s2.shareability == 2) { 9621 /* if either are outer-shareable, the result is outer-shareable */ 9622 ret.shareability = 2; 9623 } else if (s1.shareability == 3 || s2.shareability == 3) { 9624 /* if either are inner-shareable, the result is inner-shareable */ 9625 ret.shareability = 3; 9626 } else { 9627 /* both non-shareable */ 9628 ret.shareability = 0; 9629 } 9630 9631 /* Combine memory type and cacheability attributes */ 9632 if (s1hi == 0 || s2hi == 0) { 9633 /* Device has precedence over normal */ 9634 if (s1lo == 0 || s2lo == 0) { 9635 /* nGnRnE has precedence over anything */ 9636 ret.attrs = 0; 9637 } else if (s1lo == 4 || s2lo == 4) { 9638 /* non-Reordering has precedence over Reordering */ 9639 ret.attrs = 4; /* nGnRE */ 9640 } else if (s1lo == 8 || s2lo == 8) { 9641 /* non-Gathering has precedence over Gathering */ 9642 ret.attrs = 8; /* nGRE */ 9643 } else { 9644 ret.attrs = 0xc; /* GRE */ 9645 } 9646 9647 /* Any location for which the resultant memory type is any 9648 * type of Device memory is always treated as Outer Shareable. 9649 */ 9650 ret.shareability = 2; 9651 } else { /* Normal memory */ 9652 /* Outer/inner cacheability combine independently */ 9653 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 9654 | combine_cacheattr_nibble(s1lo, s2lo); 9655 9656 if (ret.attrs == 0x44) { 9657 /* Any location for which the resultant memory type is Normal 9658 * Inner Non-cacheable, Outer Non-cacheable is always treated 9659 * as Outer Shareable. 9660 */ 9661 ret.shareability = 2; 9662 } 9663 } 9664 9665 return ret; 9666 } 9667 9668 9669 /* get_phys_addr - get the physical address for this virtual address 9670 * 9671 * Find the physical address corresponding to the given virtual address, 9672 * by doing a translation table walk on MMU based systems or using the 9673 * MPU state on MPU based systems. 9674 * 9675 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 9676 * prot and page_size may not be filled in, and the populated fsr value provides 9677 * information on why the translation aborted, in the format of a 9678 * DFSR/IFSR fault register, with the following caveats: 9679 * * we honour the short vs long DFSR format differences. 9680 * * the WnR bit is never set (the caller must do this). 9681 * * for PSMAv5 based systems we don't bother to return a full FSR format 9682 * value. 9683 * 9684 * @env: CPUARMState 9685 * @address: virtual address to get physical address for 9686 * @access_type: 0 for read, 1 for write, 2 for execute 9687 * @mmu_idx: MMU index indicating required translation regime 9688 * @phys_ptr: set to the physical address corresponding to the virtual address 9689 * @attrs: set to the memory transaction attributes to use 9690 * @prot: set to the permissions for the page containing phys_ptr 9691 * @page_size: set to the size of the page containing phys_ptr 9692 * @fsr: set to the DFSR/IFSR value on failure 9693 * @fi: set to fault info if the translation fails 9694 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 9695 */ 9696 static bool get_phys_addr(CPUARMState *env, target_ulong address, 9697 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9698 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 9699 target_ulong *page_size, uint32_t *fsr, 9700 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9701 { 9702 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 9703 /* Call ourselves recursively to do the stage 1 and then stage 2 9704 * translations. 9705 */ 9706 if (arm_feature(env, ARM_FEATURE_EL2)) { 9707 hwaddr ipa; 9708 int s2_prot; 9709 int ret; 9710 ARMCacheAttrs cacheattrs2 = {}; 9711 9712 ret = get_phys_addr(env, address, access_type, 9713 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 9714 prot, page_size, fsr, fi, cacheattrs); 9715 9716 /* If S1 fails or S2 is disabled, return early. */ 9717 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 9718 *phys_ptr = ipa; 9719 return ret; 9720 } 9721 9722 /* S1 is done. Now do S2 translation. */ 9723 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 9724 phys_ptr, attrs, &s2_prot, 9725 page_size, fsr, fi, 9726 cacheattrs != NULL ? &cacheattrs2 : NULL); 9727 fi->s2addr = ipa; 9728 /* Combine the S1 and S2 perms. */ 9729 *prot &= s2_prot; 9730 9731 /* Combine the S1 and S2 cache attributes, if needed */ 9732 if (!ret && cacheattrs != NULL) { 9733 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 9734 } 9735 9736 return ret; 9737 } else { 9738 /* 9739 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 9740 */ 9741 mmu_idx = stage_1_mmu_idx(mmu_idx); 9742 } 9743 } 9744 9745 /* The page table entries may downgrade secure to non-secure, but 9746 * cannot upgrade an non-secure translation regime's attributes 9747 * to secure. 9748 */ 9749 attrs->secure = regime_is_secure(env, mmu_idx); 9750 attrs->user = regime_is_user(env, mmu_idx); 9751 9752 /* Fast Context Switch Extension. This doesn't exist at all in v8. 9753 * In v7 and earlier it affects all stage 1 translations. 9754 */ 9755 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 9756 && !arm_feature(env, ARM_FEATURE_V8)) { 9757 if (regime_el(env, mmu_idx) == 3) { 9758 address += env->cp15.fcseidr_s; 9759 } else { 9760 address += env->cp15.fcseidr_ns; 9761 } 9762 } 9763 9764 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9765 bool ret; 9766 *page_size = TARGET_PAGE_SIZE; 9767 9768 if (arm_feature(env, ARM_FEATURE_V8)) { 9769 /* PMSAv8 */ 9770 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 9771 phys_ptr, attrs, prot, fsr); 9772 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9773 /* PMSAv7 */ 9774 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 9775 phys_ptr, prot, fsr); 9776 } else { 9777 /* Pre-v7 MPU */ 9778 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 9779 phys_ptr, prot, fsr); 9780 } 9781 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 9782 " mmu_idx %u -> %s (prot %c%c%c)\n", 9783 access_type == MMU_DATA_LOAD ? "reading" : 9784 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 9785 (uint32_t)address, mmu_idx, 9786 ret ? "Miss" : "Hit", 9787 *prot & PAGE_READ ? 'r' : '-', 9788 *prot & PAGE_WRITE ? 'w' : '-', 9789 *prot & PAGE_EXEC ? 'x' : '-'); 9790 9791 return ret; 9792 } 9793 9794 /* Definitely a real MMU, not an MPU */ 9795 9796 if (regime_translation_disabled(env, mmu_idx)) { 9797 /* MMU disabled. */ 9798 *phys_ptr = address; 9799 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9800 *page_size = TARGET_PAGE_SIZE; 9801 return 0; 9802 } 9803 9804 if (regime_using_lpae_format(env, mmu_idx)) { 9805 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr, 9806 attrs, prot, page_size, fsr, fi, cacheattrs); 9807 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 9808 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr, 9809 attrs, prot, page_size, fsr, fi); 9810 } else { 9811 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr, 9812 prot, page_size, fsr, fi); 9813 } 9814 } 9815 9816 /* Walk the page table and (if the mapping exists) add the page 9817 * to the TLB. Return false on success, or true on failure. Populate 9818 * fsr with ARM DFSR/IFSR fault register format value on failure. 9819 */ 9820 bool arm_tlb_fill(CPUState *cs, vaddr address, 9821 MMUAccessType access_type, int mmu_idx, uint32_t *fsr, 9822 ARMMMUFaultInfo *fi) 9823 { 9824 ARMCPU *cpu = ARM_CPU(cs); 9825 CPUARMState *env = &cpu->env; 9826 hwaddr phys_addr; 9827 target_ulong page_size; 9828 int prot; 9829 int ret; 9830 MemTxAttrs attrs = {}; 9831 9832 ret = get_phys_addr(env, address, access_type, 9833 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 9834 &attrs, &prot, &page_size, fsr, fi, NULL); 9835 if (!ret) { 9836 /* Map a single [sub]page. */ 9837 phys_addr &= TARGET_PAGE_MASK; 9838 address &= TARGET_PAGE_MASK; 9839 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 9840 prot, mmu_idx, page_size); 9841 return 0; 9842 } 9843 9844 return ret; 9845 } 9846 9847 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 9848 MemTxAttrs *attrs) 9849 { 9850 ARMCPU *cpu = ARM_CPU(cs); 9851 CPUARMState *env = &cpu->env; 9852 hwaddr phys_addr; 9853 target_ulong page_size; 9854 int prot; 9855 bool ret; 9856 uint32_t fsr; 9857 ARMMMUFaultInfo fi = {}; 9858 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 9859 9860 *attrs = (MemTxAttrs) {}; 9861 9862 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 9863 attrs, &prot, &page_size, &fsr, &fi, NULL); 9864 9865 if (ret) { 9866 return -1; 9867 } 9868 return phys_addr; 9869 } 9870 9871 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 9872 { 9873 uint32_t mask; 9874 unsigned el = arm_current_el(env); 9875 9876 /* First handle registers which unprivileged can read */ 9877 9878 switch (reg) { 9879 case 0 ... 7: /* xPSR sub-fields */ 9880 mask = 0; 9881 if ((reg & 1) && el) { 9882 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 9883 } 9884 if (!(reg & 4)) { 9885 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 9886 } 9887 /* EPSR reads as zero */ 9888 return xpsr_read(env) & mask; 9889 break; 9890 case 20: /* CONTROL */ 9891 return env->v7m.control[env->v7m.secure]; 9892 case 0x94: /* CONTROL_NS */ 9893 /* We have to handle this here because unprivileged Secure code 9894 * can read the NS CONTROL register. 9895 */ 9896 if (!env->v7m.secure) { 9897 return 0; 9898 } 9899 return env->v7m.control[M_REG_NS]; 9900 } 9901 9902 if (el == 0) { 9903 return 0; /* unprivileged reads others as zero */ 9904 } 9905 9906 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9907 switch (reg) { 9908 case 0x88: /* MSP_NS */ 9909 if (!env->v7m.secure) { 9910 return 0; 9911 } 9912 return env->v7m.other_ss_msp; 9913 case 0x89: /* PSP_NS */ 9914 if (!env->v7m.secure) { 9915 return 0; 9916 } 9917 return env->v7m.other_ss_psp; 9918 case 0x90: /* PRIMASK_NS */ 9919 if (!env->v7m.secure) { 9920 return 0; 9921 } 9922 return env->v7m.primask[M_REG_NS]; 9923 case 0x91: /* BASEPRI_NS */ 9924 if (!env->v7m.secure) { 9925 return 0; 9926 } 9927 return env->v7m.basepri[M_REG_NS]; 9928 case 0x93: /* FAULTMASK_NS */ 9929 if (!env->v7m.secure) { 9930 return 0; 9931 } 9932 return env->v7m.faultmask[M_REG_NS]; 9933 case 0x98: /* SP_NS */ 9934 { 9935 /* This gives the non-secure SP selected based on whether we're 9936 * currently in handler mode or not, using the NS CONTROL.SPSEL. 9937 */ 9938 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 9939 9940 if (!env->v7m.secure) { 9941 return 0; 9942 } 9943 if (!arm_v7m_is_handler_mode(env) && spsel) { 9944 return env->v7m.other_ss_psp; 9945 } else { 9946 return env->v7m.other_ss_msp; 9947 } 9948 } 9949 default: 9950 break; 9951 } 9952 } 9953 9954 switch (reg) { 9955 case 8: /* MSP */ 9956 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? 9957 env->v7m.other_sp : env->regs[13]; 9958 case 9: /* PSP */ 9959 return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ? 9960 env->regs[13] : env->v7m.other_sp; 9961 case 16: /* PRIMASK */ 9962 return env->v7m.primask[env->v7m.secure]; 9963 case 17: /* BASEPRI */ 9964 case 18: /* BASEPRI_MAX */ 9965 return env->v7m.basepri[env->v7m.secure]; 9966 case 19: /* FAULTMASK */ 9967 return env->v7m.faultmask[env->v7m.secure]; 9968 default: 9969 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 9970 " register %d\n", reg); 9971 return 0; 9972 } 9973 } 9974 9975 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 9976 { 9977 /* We're passed bits [11..0] of the instruction; extract 9978 * SYSm and the mask bits. 9979 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 9980 * we choose to treat them as if the mask bits were valid. 9981 * NB that the pseudocode 'mask' variable is bits [11..10], 9982 * whereas ours is [11..8]. 9983 */ 9984 uint32_t mask = extract32(maskreg, 8, 4); 9985 uint32_t reg = extract32(maskreg, 0, 8); 9986 9987 if (arm_current_el(env) == 0 && reg > 7) { 9988 /* only xPSR sub-fields may be written by unprivileged */ 9989 return; 9990 } 9991 9992 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9993 switch (reg) { 9994 case 0x88: /* MSP_NS */ 9995 if (!env->v7m.secure) { 9996 return; 9997 } 9998 env->v7m.other_ss_msp = val; 9999 return; 10000 case 0x89: /* PSP_NS */ 10001 if (!env->v7m.secure) { 10002 return; 10003 } 10004 env->v7m.other_ss_psp = val; 10005 return; 10006 case 0x90: /* PRIMASK_NS */ 10007 if (!env->v7m.secure) { 10008 return; 10009 } 10010 env->v7m.primask[M_REG_NS] = val & 1; 10011 return; 10012 case 0x91: /* BASEPRI_NS */ 10013 if (!env->v7m.secure) { 10014 return; 10015 } 10016 env->v7m.basepri[M_REG_NS] = val & 0xff; 10017 return; 10018 case 0x93: /* FAULTMASK_NS */ 10019 if (!env->v7m.secure) { 10020 return; 10021 } 10022 env->v7m.faultmask[M_REG_NS] = val & 1; 10023 return; 10024 case 0x98: /* SP_NS */ 10025 { 10026 /* This gives the non-secure SP selected based on whether we're 10027 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10028 */ 10029 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10030 10031 if (!env->v7m.secure) { 10032 return; 10033 } 10034 if (!arm_v7m_is_handler_mode(env) && spsel) { 10035 env->v7m.other_ss_psp = val; 10036 } else { 10037 env->v7m.other_ss_msp = val; 10038 } 10039 return; 10040 } 10041 default: 10042 break; 10043 } 10044 } 10045 10046 switch (reg) { 10047 case 0 ... 7: /* xPSR sub-fields */ 10048 /* only APSR is actually writable */ 10049 if (!(reg & 4)) { 10050 uint32_t apsrmask = 0; 10051 10052 if (mask & 8) { 10053 apsrmask |= XPSR_NZCV | XPSR_Q; 10054 } 10055 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10056 apsrmask |= XPSR_GE; 10057 } 10058 xpsr_write(env, val, apsrmask); 10059 } 10060 break; 10061 case 8: /* MSP */ 10062 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { 10063 env->v7m.other_sp = val; 10064 } else { 10065 env->regs[13] = val; 10066 } 10067 break; 10068 case 9: /* PSP */ 10069 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) { 10070 env->regs[13] = val; 10071 } else { 10072 env->v7m.other_sp = val; 10073 } 10074 break; 10075 case 16: /* PRIMASK */ 10076 env->v7m.primask[env->v7m.secure] = val & 1; 10077 break; 10078 case 17: /* BASEPRI */ 10079 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10080 break; 10081 case 18: /* BASEPRI_MAX */ 10082 val &= 0xff; 10083 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10084 || env->v7m.basepri[env->v7m.secure] == 0)) { 10085 env->v7m.basepri[env->v7m.secure] = val; 10086 } 10087 break; 10088 case 19: /* FAULTMASK */ 10089 env->v7m.faultmask[env->v7m.secure] = val & 1; 10090 break; 10091 case 20: /* CONTROL */ 10092 /* Writing to the SPSEL bit only has an effect if we are in 10093 * thread mode; other bits can be updated by any privileged code. 10094 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10095 * env->v7m.control, so we only need update the others. 10096 */ 10097 if (!arm_v7m_is_handler_mode(env)) { 10098 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10099 } 10100 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10101 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10102 break; 10103 default: 10104 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10105 " register %d\n", reg); 10106 return; 10107 } 10108 } 10109 10110 #endif 10111 10112 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10113 { 10114 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10115 * Note that we do not implement the (architecturally mandated) 10116 * alignment fault for attempts to use this on Device memory 10117 * (which matches the usual QEMU behaviour of not implementing either 10118 * alignment faults or any memory attribute handling). 10119 */ 10120 10121 ARMCPU *cpu = arm_env_get_cpu(env); 10122 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10123 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10124 10125 #ifndef CONFIG_USER_ONLY 10126 { 10127 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10128 * the block size so we might have to do more than one TLB lookup. 10129 * We know that in fact for any v8 CPU the page size is at least 4K 10130 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10131 * 1K as an artefact of legacy v5 subpage support being present in the 10132 * same QEMU executable. 10133 */ 10134 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10135 void *hostaddr[maxidx]; 10136 int try, i; 10137 unsigned mmu_idx = cpu_mmu_index(env, false); 10138 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10139 10140 for (try = 0; try < 2; try++) { 10141 10142 for (i = 0; i < maxidx; i++) { 10143 hostaddr[i] = tlb_vaddr_to_host(env, 10144 vaddr + TARGET_PAGE_SIZE * i, 10145 1, mmu_idx); 10146 if (!hostaddr[i]) { 10147 break; 10148 } 10149 } 10150 if (i == maxidx) { 10151 /* If it's all in the TLB it's fair game for just writing to; 10152 * we know we don't need to update dirty status, etc. 10153 */ 10154 for (i = 0; i < maxidx - 1; i++) { 10155 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10156 } 10157 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10158 return; 10159 } 10160 /* OK, try a store and see if we can populate the tlb. This 10161 * might cause an exception if the memory isn't writable, 10162 * in which case we will longjmp out of here. We must for 10163 * this purpose use the actual register value passed to us 10164 * so that we get the fault address right. 10165 */ 10166 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10167 /* Now we can populate the other TLB entries, if any */ 10168 for (i = 0; i < maxidx; i++) { 10169 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10170 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10171 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10172 } 10173 } 10174 } 10175 10176 /* Slow path (probably attempt to do this to an I/O device or 10177 * similar, or clearing of a block of code we have translations 10178 * cached for). Just do a series of byte writes as the architecture 10179 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10180 * memset(), unmap() sequence here because: 10181 * + we'd need to account for the blocksize being larger than a page 10182 * + the direct-RAM access case is almost always going to be dealt 10183 * with in the fastpath code above, so there's no speed benefit 10184 * + we would have to deal with the map returning NULL because the 10185 * bounce buffer was in use 10186 */ 10187 for (i = 0; i < blocklen; i++) { 10188 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10189 } 10190 } 10191 #else 10192 memset(g2h(vaddr), 0, blocklen); 10193 #endif 10194 } 10195 10196 /* Note that signed overflow is undefined in C. The following routines are 10197 careful to use unsigned types where modulo arithmetic is required. 10198 Failure to do so _will_ break on newer gcc. */ 10199 10200 /* Signed saturating arithmetic. */ 10201 10202 /* Perform 16-bit signed saturating addition. */ 10203 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10204 { 10205 uint16_t res; 10206 10207 res = a + b; 10208 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10209 if (a & 0x8000) 10210 res = 0x8000; 10211 else 10212 res = 0x7fff; 10213 } 10214 return res; 10215 } 10216 10217 /* Perform 8-bit signed saturating addition. */ 10218 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10219 { 10220 uint8_t res; 10221 10222 res = a + b; 10223 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10224 if (a & 0x80) 10225 res = 0x80; 10226 else 10227 res = 0x7f; 10228 } 10229 return res; 10230 } 10231 10232 /* Perform 16-bit signed saturating subtraction. */ 10233 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10234 { 10235 uint16_t res; 10236 10237 res = a - b; 10238 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10239 if (a & 0x8000) 10240 res = 0x8000; 10241 else 10242 res = 0x7fff; 10243 } 10244 return res; 10245 } 10246 10247 /* Perform 8-bit signed saturating subtraction. */ 10248 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10249 { 10250 uint8_t res; 10251 10252 res = a - b; 10253 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10254 if (a & 0x80) 10255 res = 0x80; 10256 else 10257 res = 0x7f; 10258 } 10259 return res; 10260 } 10261 10262 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10263 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10264 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10265 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10266 #define PFX q 10267 10268 #include "op_addsub.h" 10269 10270 /* Unsigned saturating arithmetic. */ 10271 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10272 { 10273 uint16_t res; 10274 res = a + b; 10275 if (res < a) 10276 res = 0xffff; 10277 return res; 10278 } 10279 10280 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10281 { 10282 if (a > b) 10283 return a - b; 10284 else 10285 return 0; 10286 } 10287 10288 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10289 { 10290 uint8_t res; 10291 res = a + b; 10292 if (res < a) 10293 res = 0xff; 10294 return res; 10295 } 10296 10297 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10298 { 10299 if (a > b) 10300 return a - b; 10301 else 10302 return 0; 10303 } 10304 10305 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10306 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10307 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10308 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10309 #define PFX uq 10310 10311 #include "op_addsub.h" 10312 10313 /* Signed modulo arithmetic. */ 10314 #define SARITH16(a, b, n, op) do { \ 10315 int32_t sum; \ 10316 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10317 RESULT(sum, n, 16); \ 10318 if (sum >= 0) \ 10319 ge |= 3 << (n * 2); \ 10320 } while(0) 10321 10322 #define SARITH8(a, b, n, op) do { \ 10323 int32_t sum; \ 10324 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10325 RESULT(sum, n, 8); \ 10326 if (sum >= 0) \ 10327 ge |= 1 << n; \ 10328 } while(0) 10329 10330 10331 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10332 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10333 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10334 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10335 #define PFX s 10336 #define ARITH_GE 10337 10338 #include "op_addsub.h" 10339 10340 /* Unsigned modulo arithmetic. */ 10341 #define ADD16(a, b, n) do { \ 10342 uint32_t sum; \ 10343 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 10344 RESULT(sum, n, 16); \ 10345 if ((sum >> 16) == 1) \ 10346 ge |= 3 << (n * 2); \ 10347 } while(0) 10348 10349 #define ADD8(a, b, n) do { \ 10350 uint32_t sum; \ 10351 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 10352 RESULT(sum, n, 8); \ 10353 if ((sum >> 8) == 1) \ 10354 ge |= 1 << n; \ 10355 } while(0) 10356 10357 #define SUB16(a, b, n) do { \ 10358 uint32_t sum; \ 10359 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 10360 RESULT(sum, n, 16); \ 10361 if ((sum >> 16) == 0) \ 10362 ge |= 3 << (n * 2); \ 10363 } while(0) 10364 10365 #define SUB8(a, b, n) do { \ 10366 uint32_t sum; \ 10367 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 10368 RESULT(sum, n, 8); \ 10369 if ((sum >> 8) == 0) \ 10370 ge |= 1 << n; \ 10371 } while(0) 10372 10373 #define PFX u 10374 #define ARITH_GE 10375 10376 #include "op_addsub.h" 10377 10378 /* Halved signed arithmetic. */ 10379 #define ADD16(a, b, n) \ 10380 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 10381 #define SUB16(a, b, n) \ 10382 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 10383 #define ADD8(a, b, n) \ 10384 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 10385 #define SUB8(a, b, n) \ 10386 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 10387 #define PFX sh 10388 10389 #include "op_addsub.h" 10390 10391 /* Halved unsigned arithmetic. */ 10392 #define ADD16(a, b, n) \ 10393 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10394 #define SUB16(a, b, n) \ 10395 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 10396 #define ADD8(a, b, n) \ 10397 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10398 #define SUB8(a, b, n) \ 10399 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 10400 #define PFX uh 10401 10402 #include "op_addsub.h" 10403 10404 static inline uint8_t do_usad(uint8_t a, uint8_t b) 10405 { 10406 if (a > b) 10407 return a - b; 10408 else 10409 return b - a; 10410 } 10411 10412 /* Unsigned sum of absolute byte differences. */ 10413 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 10414 { 10415 uint32_t sum; 10416 sum = do_usad(a, b); 10417 sum += do_usad(a >> 8, b >> 8); 10418 sum += do_usad(a >> 16, b >>16); 10419 sum += do_usad(a >> 24, b >> 24); 10420 return sum; 10421 } 10422 10423 /* For ARMv6 SEL instruction. */ 10424 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 10425 { 10426 uint32_t mask; 10427 10428 mask = 0; 10429 if (flags & 1) 10430 mask |= 0xff; 10431 if (flags & 2) 10432 mask |= 0xff00; 10433 if (flags & 4) 10434 mask |= 0xff0000; 10435 if (flags & 8) 10436 mask |= 0xff000000; 10437 return (a & mask) | (b & ~mask); 10438 } 10439 10440 /* VFP support. We follow the convention used for VFP instructions: 10441 Single precision routines have a "s" suffix, double precision a 10442 "d" suffix. */ 10443 10444 /* Convert host exception flags to vfp form. */ 10445 static inline int vfp_exceptbits_from_host(int host_bits) 10446 { 10447 int target_bits = 0; 10448 10449 if (host_bits & float_flag_invalid) 10450 target_bits |= 1; 10451 if (host_bits & float_flag_divbyzero) 10452 target_bits |= 2; 10453 if (host_bits & float_flag_overflow) 10454 target_bits |= 4; 10455 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 10456 target_bits |= 8; 10457 if (host_bits & float_flag_inexact) 10458 target_bits |= 0x10; 10459 if (host_bits & float_flag_input_denormal) 10460 target_bits |= 0x80; 10461 return target_bits; 10462 } 10463 10464 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 10465 { 10466 int i; 10467 uint32_t fpscr; 10468 10469 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 10470 | (env->vfp.vec_len << 16) 10471 | (env->vfp.vec_stride << 20); 10472 i = get_float_exception_flags(&env->vfp.fp_status); 10473 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 10474 fpscr |= vfp_exceptbits_from_host(i); 10475 return fpscr; 10476 } 10477 10478 uint32_t vfp_get_fpscr(CPUARMState *env) 10479 { 10480 return HELPER(vfp_get_fpscr)(env); 10481 } 10482 10483 /* Convert vfp exception flags to target form. */ 10484 static inline int vfp_exceptbits_to_host(int target_bits) 10485 { 10486 int host_bits = 0; 10487 10488 if (target_bits & 1) 10489 host_bits |= float_flag_invalid; 10490 if (target_bits & 2) 10491 host_bits |= float_flag_divbyzero; 10492 if (target_bits & 4) 10493 host_bits |= float_flag_overflow; 10494 if (target_bits & 8) 10495 host_bits |= float_flag_underflow; 10496 if (target_bits & 0x10) 10497 host_bits |= float_flag_inexact; 10498 if (target_bits & 0x80) 10499 host_bits |= float_flag_input_denormal; 10500 return host_bits; 10501 } 10502 10503 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 10504 { 10505 int i; 10506 uint32_t changed; 10507 10508 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 10509 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 10510 env->vfp.vec_len = (val >> 16) & 7; 10511 env->vfp.vec_stride = (val >> 20) & 3; 10512 10513 changed ^= val; 10514 if (changed & (3 << 22)) { 10515 i = (val >> 22) & 3; 10516 switch (i) { 10517 case FPROUNDING_TIEEVEN: 10518 i = float_round_nearest_even; 10519 break; 10520 case FPROUNDING_POSINF: 10521 i = float_round_up; 10522 break; 10523 case FPROUNDING_NEGINF: 10524 i = float_round_down; 10525 break; 10526 case FPROUNDING_ZERO: 10527 i = float_round_to_zero; 10528 break; 10529 } 10530 set_float_rounding_mode(i, &env->vfp.fp_status); 10531 } 10532 if (changed & (1 << 24)) { 10533 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10534 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status); 10535 } 10536 if (changed & (1 << 25)) 10537 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status); 10538 10539 i = vfp_exceptbits_to_host(val); 10540 set_float_exception_flags(i, &env->vfp.fp_status); 10541 set_float_exception_flags(0, &env->vfp.standard_fp_status); 10542 } 10543 10544 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 10545 { 10546 HELPER(vfp_set_fpscr)(env, val); 10547 } 10548 10549 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 10550 10551 #define VFP_BINOP(name) \ 10552 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 10553 { \ 10554 float_status *fpst = fpstp; \ 10555 return float32_ ## name(a, b, fpst); \ 10556 } \ 10557 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 10558 { \ 10559 float_status *fpst = fpstp; \ 10560 return float64_ ## name(a, b, fpst); \ 10561 } 10562 VFP_BINOP(add) 10563 VFP_BINOP(sub) 10564 VFP_BINOP(mul) 10565 VFP_BINOP(div) 10566 VFP_BINOP(min) 10567 VFP_BINOP(max) 10568 VFP_BINOP(minnum) 10569 VFP_BINOP(maxnum) 10570 #undef VFP_BINOP 10571 10572 float32 VFP_HELPER(neg, s)(float32 a) 10573 { 10574 return float32_chs(a); 10575 } 10576 10577 float64 VFP_HELPER(neg, d)(float64 a) 10578 { 10579 return float64_chs(a); 10580 } 10581 10582 float32 VFP_HELPER(abs, s)(float32 a) 10583 { 10584 return float32_abs(a); 10585 } 10586 10587 float64 VFP_HELPER(abs, d)(float64 a) 10588 { 10589 return float64_abs(a); 10590 } 10591 10592 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 10593 { 10594 return float32_sqrt(a, &env->vfp.fp_status); 10595 } 10596 10597 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 10598 { 10599 return float64_sqrt(a, &env->vfp.fp_status); 10600 } 10601 10602 /* XXX: check quiet/signaling case */ 10603 #define DO_VFP_cmp(p, type) \ 10604 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 10605 { \ 10606 uint32_t flags; \ 10607 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 10608 case 0: flags = 0x6; break; \ 10609 case -1: flags = 0x8; break; \ 10610 case 1: flags = 0x2; break; \ 10611 default: case 2: flags = 0x3; break; \ 10612 } \ 10613 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10614 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10615 } \ 10616 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 10617 { \ 10618 uint32_t flags; \ 10619 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 10620 case 0: flags = 0x6; break; \ 10621 case -1: flags = 0x8; break; \ 10622 case 1: flags = 0x2; break; \ 10623 default: case 2: flags = 0x3; break; \ 10624 } \ 10625 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 10626 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 10627 } 10628 DO_VFP_cmp(s, float32) 10629 DO_VFP_cmp(d, float64) 10630 #undef DO_VFP_cmp 10631 10632 /* Integer to float and float to integer conversions */ 10633 10634 #define CONV_ITOF(name, fsz, sign) \ 10635 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 10636 { \ 10637 float_status *fpst = fpstp; \ 10638 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 10639 } 10640 10641 #define CONV_FTOI(name, fsz, sign, round) \ 10642 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 10643 { \ 10644 float_status *fpst = fpstp; \ 10645 if (float##fsz##_is_any_nan(x)) { \ 10646 float_raise(float_flag_invalid, fpst); \ 10647 return 0; \ 10648 } \ 10649 return float##fsz##_to_##sign##int32##round(x, fpst); \ 10650 } 10651 10652 #define FLOAT_CONVS(name, p, fsz, sign) \ 10653 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 10654 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 10655 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 10656 10657 FLOAT_CONVS(si, s, 32, ) 10658 FLOAT_CONVS(si, d, 64, ) 10659 FLOAT_CONVS(ui, s, 32, u) 10660 FLOAT_CONVS(ui, d, 64, u) 10661 10662 #undef CONV_ITOF 10663 #undef CONV_FTOI 10664 #undef FLOAT_CONVS 10665 10666 /* floating point conversion */ 10667 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 10668 { 10669 float64 r = float32_to_float64(x, &env->vfp.fp_status); 10670 /* ARM requires that S<->D conversion of any kind of NaN generates 10671 * a quiet NaN by forcing the most significant frac bit to 1. 10672 */ 10673 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10674 } 10675 10676 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 10677 { 10678 float32 r = float64_to_float32(x, &env->vfp.fp_status); 10679 /* ARM requires that S<->D conversion of any kind of NaN generates 10680 * a quiet NaN by forcing the most significant frac bit to 1. 10681 */ 10682 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 10683 } 10684 10685 /* VFP3 fixed point conversion. */ 10686 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10687 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 10688 void *fpstp) \ 10689 { \ 10690 float_status *fpst = fpstp; \ 10691 float##fsz tmp; \ 10692 tmp = itype##_to_##float##fsz(x, fpst); \ 10693 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 10694 } 10695 10696 /* Notice that we want only input-denormal exception flags from the 10697 * scalbn operation: the other possible flags (overflow+inexact if 10698 * we overflow to infinity, output-denormal) aren't correct for the 10699 * complete scale-and-convert operation. 10700 */ 10701 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 10702 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 10703 uint32_t shift, \ 10704 void *fpstp) \ 10705 { \ 10706 float_status *fpst = fpstp; \ 10707 int old_exc_flags = get_float_exception_flags(fpst); \ 10708 float##fsz tmp; \ 10709 if (float##fsz##_is_any_nan(x)) { \ 10710 float_raise(float_flag_invalid, fpst); \ 10711 return 0; \ 10712 } \ 10713 tmp = float##fsz##_scalbn(x, shift, fpst); \ 10714 old_exc_flags |= get_float_exception_flags(fpst) \ 10715 & float_flag_input_denormal; \ 10716 set_float_exception_flags(old_exc_flags, fpst); \ 10717 return float##fsz##_to_##itype##round(tmp, fpst); \ 10718 } 10719 10720 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 10721 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10722 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 10723 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10724 10725 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 10726 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 10727 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 10728 10729 VFP_CONV_FIX(sh, d, 64, 64, int16) 10730 VFP_CONV_FIX(sl, d, 64, 64, int32) 10731 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 10732 VFP_CONV_FIX(uh, d, 64, 64, uint16) 10733 VFP_CONV_FIX(ul, d, 64, 64, uint32) 10734 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 10735 VFP_CONV_FIX(sh, s, 32, 32, int16) 10736 VFP_CONV_FIX(sl, s, 32, 32, int32) 10737 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 10738 VFP_CONV_FIX(uh, s, 32, 32, uint16) 10739 VFP_CONV_FIX(ul, s, 32, 32, uint32) 10740 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 10741 #undef VFP_CONV_FIX 10742 #undef VFP_CONV_FIX_FLOAT 10743 #undef VFP_CONV_FLOAT_FIX_ROUND 10744 10745 /* Set the current fp rounding mode and return the old one. 10746 * The argument is a softfloat float_round_ value. 10747 */ 10748 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env) 10749 { 10750 float_status *fp_status = &env->vfp.fp_status; 10751 10752 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10753 set_float_rounding_mode(rmode, fp_status); 10754 10755 return prev_rmode; 10756 } 10757 10758 /* Set the current fp rounding mode in the standard fp status and return 10759 * the old one. This is for NEON instructions that need to change the 10760 * rounding mode but wish to use the standard FPSCR values for everything 10761 * else. Always set the rounding mode back to the correct value after 10762 * modifying it. 10763 * The argument is a softfloat float_round_ value. 10764 */ 10765 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 10766 { 10767 float_status *fp_status = &env->vfp.standard_fp_status; 10768 10769 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 10770 set_float_rounding_mode(rmode, fp_status); 10771 10772 return prev_rmode; 10773 } 10774 10775 /* Half precision conversions. */ 10776 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 10777 { 10778 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10779 float32 r = float16_to_float32(make_float16(a), ieee, s); 10780 if (ieee) { 10781 return float32_maybe_silence_nan(r, s); 10782 } 10783 return r; 10784 } 10785 10786 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 10787 { 10788 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10789 float16 r = float32_to_float16(a, ieee, s); 10790 if (ieee) { 10791 r = float16_maybe_silence_nan(r, s); 10792 } 10793 return float16_val(r); 10794 } 10795 10796 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 10797 { 10798 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 10799 } 10800 10801 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 10802 { 10803 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 10804 } 10805 10806 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 10807 { 10808 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 10809 } 10810 10811 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 10812 { 10813 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 10814 } 10815 10816 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 10817 { 10818 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10819 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 10820 if (ieee) { 10821 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 10822 } 10823 return r; 10824 } 10825 10826 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 10827 { 10828 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 10829 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 10830 if (ieee) { 10831 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 10832 } 10833 return float16_val(r); 10834 } 10835 10836 #define float32_two make_float32(0x40000000) 10837 #define float32_three make_float32(0x40400000) 10838 #define float32_one_point_five make_float32(0x3fc00000) 10839 10840 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 10841 { 10842 float_status *s = &env->vfp.standard_fp_status; 10843 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 10844 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 10845 if (!(float32_is_zero(a) || float32_is_zero(b))) { 10846 float_raise(float_flag_input_denormal, s); 10847 } 10848 return float32_two; 10849 } 10850 return float32_sub(float32_two, float32_mul(a, b, s), s); 10851 } 10852 10853 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 10854 { 10855 float_status *s = &env->vfp.standard_fp_status; 10856 float32 product; 10857 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 10858 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 10859 if (!(float32_is_zero(a) || float32_is_zero(b))) { 10860 float_raise(float_flag_input_denormal, s); 10861 } 10862 return float32_one_point_five; 10863 } 10864 product = float32_mul(a, b, s); 10865 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 10866 } 10867 10868 /* NEON helpers. */ 10869 10870 /* Constants 256 and 512 are used in some helpers; we avoid relying on 10871 * int->float conversions at run-time. */ 10872 #define float64_256 make_float64(0x4070000000000000LL) 10873 #define float64_512 make_float64(0x4080000000000000LL) 10874 #define float32_maxnorm make_float32(0x7f7fffff) 10875 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 10876 10877 /* Reciprocal functions 10878 * 10879 * The algorithm that must be used to calculate the estimate 10880 * is specified by the ARM ARM, see FPRecipEstimate() 10881 */ 10882 10883 static float64 recip_estimate(float64 a, float_status *real_fp_status) 10884 { 10885 /* These calculations mustn't set any fp exception flags, 10886 * so we use a local copy of the fp_status. 10887 */ 10888 float_status dummy_status = *real_fp_status; 10889 float_status *s = &dummy_status; 10890 /* q = (int)(a * 512.0) */ 10891 float64 q = float64_mul(float64_512, a, s); 10892 int64_t q_int = float64_to_int64_round_to_zero(q, s); 10893 10894 /* r = 1.0 / (((double)q + 0.5) / 512.0) */ 10895 q = int64_to_float64(q_int, s); 10896 q = float64_add(q, float64_half, s); 10897 q = float64_div(q, float64_512, s); 10898 q = float64_div(float64_one, q, s); 10899 10900 /* s = (int)(256.0 * r + 0.5) */ 10901 q = float64_mul(q, float64_256, s); 10902 q = float64_add(q, float64_half, s); 10903 q_int = float64_to_int64_round_to_zero(q, s); 10904 10905 /* return (double)s / 256.0 */ 10906 return float64_div(int64_to_float64(q_int, s), float64_256, s); 10907 } 10908 10909 /* Common wrapper to call recip_estimate */ 10910 static float64 call_recip_estimate(float64 num, int off, float_status *fpst) 10911 { 10912 uint64_t val64 = float64_val(num); 10913 uint64_t frac = extract64(val64, 0, 52); 10914 int64_t exp = extract64(val64, 52, 11); 10915 uint64_t sbit; 10916 float64 scaled, estimate; 10917 10918 /* Generate the scaled number for the estimate function */ 10919 if (exp == 0) { 10920 if (extract64(frac, 51, 1) == 0) { 10921 exp = -1; 10922 frac = extract64(frac, 0, 50) << 2; 10923 } else { 10924 frac = extract64(frac, 0, 51) << 1; 10925 } 10926 } 10927 10928 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */ 10929 scaled = make_float64((0x3feULL << 52) 10930 | extract64(frac, 44, 8) << 44); 10931 10932 estimate = recip_estimate(scaled, fpst); 10933 10934 /* Build new result */ 10935 val64 = float64_val(estimate); 10936 sbit = 0x8000000000000000ULL & val64; 10937 exp = off - exp; 10938 frac = extract64(val64, 0, 52); 10939 10940 if (exp == 0) { 10941 frac = 1ULL << 51 | extract64(frac, 1, 51); 10942 } else if (exp == -1) { 10943 frac = 1ULL << 50 | extract64(frac, 2, 50); 10944 exp = 0; 10945 } 10946 10947 return make_float64(sbit | (exp << 52) | frac); 10948 } 10949 10950 static bool round_to_inf(float_status *fpst, bool sign_bit) 10951 { 10952 switch (fpst->float_rounding_mode) { 10953 case float_round_nearest_even: /* Round to Nearest */ 10954 return true; 10955 case float_round_up: /* Round to +Inf */ 10956 return !sign_bit; 10957 case float_round_down: /* Round to -Inf */ 10958 return sign_bit; 10959 case float_round_to_zero: /* Round to Zero */ 10960 return false; 10961 } 10962 10963 g_assert_not_reached(); 10964 } 10965 10966 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 10967 { 10968 float_status *fpst = fpstp; 10969 float32 f32 = float32_squash_input_denormal(input, fpst); 10970 uint32_t f32_val = float32_val(f32); 10971 uint32_t f32_sbit = 0x80000000ULL & f32_val; 10972 int32_t f32_exp = extract32(f32_val, 23, 8); 10973 uint32_t f32_frac = extract32(f32_val, 0, 23); 10974 float64 f64, r64; 10975 uint64_t r64_val; 10976 int64_t r64_exp; 10977 uint64_t r64_frac; 10978 10979 if (float32_is_any_nan(f32)) { 10980 float32 nan = f32; 10981 if (float32_is_signaling_nan(f32, fpst)) { 10982 float_raise(float_flag_invalid, fpst); 10983 nan = float32_maybe_silence_nan(f32, fpst); 10984 } 10985 if (fpst->default_nan_mode) { 10986 nan = float32_default_nan(fpst); 10987 } 10988 return nan; 10989 } else if (float32_is_infinity(f32)) { 10990 return float32_set_sign(float32_zero, float32_is_neg(f32)); 10991 } else if (float32_is_zero(f32)) { 10992 float_raise(float_flag_divbyzero, fpst); 10993 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10994 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) { 10995 /* Abs(value) < 2.0^-128 */ 10996 float_raise(float_flag_overflow | float_flag_inexact, fpst); 10997 if (round_to_inf(fpst, f32_sbit)) { 10998 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 10999 } else { 11000 return float32_set_sign(float32_maxnorm, float32_is_neg(f32)); 11001 } 11002 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11003 float_raise(float_flag_underflow, fpst); 11004 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11005 } 11006 11007 11008 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29); 11009 r64 = call_recip_estimate(f64, 253, fpst); 11010 r64_val = float64_val(r64); 11011 r64_exp = extract64(r64_val, 52, 11); 11012 r64_frac = extract64(r64_val, 0, 52); 11013 11014 /* result = sign : result_exp<7:0> : fraction<51:29>; */ 11015 return make_float32(f32_sbit | 11016 (r64_exp & 0xff) << 23 | 11017 extract64(r64_frac, 29, 24)); 11018 } 11019 11020 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11021 { 11022 float_status *fpst = fpstp; 11023 float64 f64 = float64_squash_input_denormal(input, fpst); 11024 uint64_t f64_val = float64_val(f64); 11025 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val; 11026 int64_t f64_exp = extract64(f64_val, 52, 11); 11027 float64 r64; 11028 uint64_t r64_val; 11029 int64_t r64_exp; 11030 uint64_t r64_frac; 11031 11032 /* Deal with any special cases */ 11033 if (float64_is_any_nan(f64)) { 11034 float64 nan = f64; 11035 if (float64_is_signaling_nan(f64, fpst)) { 11036 float_raise(float_flag_invalid, fpst); 11037 nan = float64_maybe_silence_nan(f64, fpst); 11038 } 11039 if (fpst->default_nan_mode) { 11040 nan = float64_default_nan(fpst); 11041 } 11042 return nan; 11043 } else if (float64_is_infinity(f64)) { 11044 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11045 } else if (float64_is_zero(f64)) { 11046 float_raise(float_flag_divbyzero, fpst); 11047 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11048 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11049 /* Abs(value) < 2.0^-1024 */ 11050 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11051 if (round_to_inf(fpst, f64_sbit)) { 11052 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11053 } else { 11054 return float64_set_sign(float64_maxnorm, float64_is_neg(f64)); 11055 } 11056 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11057 float_raise(float_flag_underflow, fpst); 11058 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11059 } 11060 11061 r64 = call_recip_estimate(f64, 2045, fpst); 11062 r64_val = float64_val(r64); 11063 r64_exp = extract64(r64_val, 52, 11); 11064 r64_frac = extract64(r64_val, 0, 52); 11065 11066 /* result = sign : result_exp<10:0> : fraction<51:0> */ 11067 return make_float64(f64_sbit | 11068 ((r64_exp & 0x7ff) << 52) | 11069 r64_frac); 11070 } 11071 11072 /* The algorithm that must be used to calculate the estimate 11073 * is specified by the ARM ARM. 11074 */ 11075 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status) 11076 { 11077 /* These calculations mustn't set any fp exception flags, 11078 * so we use a local copy of the fp_status. 11079 */ 11080 float_status dummy_status = *real_fp_status; 11081 float_status *s = &dummy_status; 11082 float64 q; 11083 int64_t q_int; 11084 11085 if (float64_lt(a, float64_half, s)) { 11086 /* range 0.25 <= a < 0.5 */ 11087 11088 /* a in units of 1/512 rounded down */ 11089 /* q0 = (int)(a * 512.0); */ 11090 q = float64_mul(float64_512, a, s); 11091 q_int = float64_to_int64_round_to_zero(q, s); 11092 11093 /* reciprocal root r */ 11094 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */ 11095 q = int64_to_float64(q_int, s); 11096 q = float64_add(q, float64_half, s); 11097 q = float64_div(q, float64_512, s); 11098 q = float64_sqrt(q, s); 11099 q = float64_div(float64_one, q, s); 11100 } else { 11101 /* range 0.5 <= a < 1.0 */ 11102 11103 /* a in units of 1/256 rounded down */ 11104 /* q1 = (int)(a * 256.0); */ 11105 q = float64_mul(float64_256, a, s); 11106 int64_t q_int = float64_to_int64_round_to_zero(q, s); 11107 11108 /* reciprocal root r */ 11109 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */ 11110 q = int64_to_float64(q_int, s); 11111 q = float64_add(q, float64_half, s); 11112 q = float64_div(q, float64_256, s); 11113 q = float64_sqrt(q, s); 11114 q = float64_div(float64_one, q, s); 11115 } 11116 /* r in units of 1/256 rounded to nearest */ 11117 /* s = (int)(256.0 * r + 0.5); */ 11118 11119 q = float64_mul(q, float64_256,s ); 11120 q = float64_add(q, float64_half, s); 11121 q_int = float64_to_int64_round_to_zero(q, s); 11122 11123 /* return (double)s / 256.0;*/ 11124 return float64_div(int64_to_float64(q_int, s), float64_256, s); 11125 } 11126 11127 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11128 { 11129 float_status *s = fpstp; 11130 float32 f32 = float32_squash_input_denormal(input, s); 11131 uint32_t val = float32_val(f32); 11132 uint32_t f32_sbit = 0x80000000 & val; 11133 int32_t f32_exp = extract32(val, 23, 8); 11134 uint32_t f32_frac = extract32(val, 0, 23); 11135 uint64_t f64_frac; 11136 uint64_t val64; 11137 int result_exp; 11138 float64 f64; 11139 11140 if (float32_is_any_nan(f32)) { 11141 float32 nan = f32; 11142 if (float32_is_signaling_nan(f32, s)) { 11143 float_raise(float_flag_invalid, s); 11144 nan = float32_maybe_silence_nan(f32, s); 11145 } 11146 if (s->default_nan_mode) { 11147 nan = float32_default_nan(s); 11148 } 11149 return nan; 11150 } else if (float32_is_zero(f32)) { 11151 float_raise(float_flag_divbyzero, s); 11152 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11153 } else if (float32_is_neg(f32)) { 11154 float_raise(float_flag_invalid, s); 11155 return float32_default_nan(s); 11156 } else if (float32_is_infinity(f32)) { 11157 return float32_zero; 11158 } 11159 11160 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11161 * preserving the parity of the exponent. */ 11162 11163 f64_frac = ((uint64_t) f32_frac) << 29; 11164 if (f32_exp == 0) { 11165 while (extract64(f64_frac, 51, 1) == 0) { 11166 f64_frac = f64_frac << 1; 11167 f32_exp = f32_exp-1; 11168 } 11169 f64_frac = extract64(f64_frac, 0, 51) << 1; 11170 } 11171 11172 if (extract64(f32_exp, 0, 1) == 0) { 11173 f64 = make_float64(((uint64_t) f32_sbit) << 32 11174 | (0x3feULL << 52) 11175 | f64_frac); 11176 } else { 11177 f64 = make_float64(((uint64_t) f32_sbit) << 32 11178 | (0x3fdULL << 52) 11179 | f64_frac); 11180 } 11181 11182 result_exp = (380 - f32_exp) / 2; 11183 11184 f64 = recip_sqrt_estimate(f64, s); 11185 11186 val64 = float64_val(f64); 11187 11188 val = ((result_exp & 0xff) << 23) 11189 | ((val64 >> 29) & 0x7fffff); 11190 return make_float32(val); 11191 } 11192 11193 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11194 { 11195 float_status *s = fpstp; 11196 float64 f64 = float64_squash_input_denormal(input, s); 11197 uint64_t val = float64_val(f64); 11198 uint64_t f64_sbit = 0x8000000000000000ULL & val; 11199 int64_t f64_exp = extract64(val, 52, 11); 11200 uint64_t f64_frac = extract64(val, 0, 52); 11201 int64_t result_exp; 11202 uint64_t result_frac; 11203 11204 if (float64_is_any_nan(f64)) { 11205 float64 nan = f64; 11206 if (float64_is_signaling_nan(f64, s)) { 11207 float_raise(float_flag_invalid, s); 11208 nan = float64_maybe_silence_nan(f64, s); 11209 } 11210 if (s->default_nan_mode) { 11211 nan = float64_default_nan(s); 11212 } 11213 return nan; 11214 } else if (float64_is_zero(f64)) { 11215 float_raise(float_flag_divbyzero, s); 11216 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11217 } else if (float64_is_neg(f64)) { 11218 float_raise(float_flag_invalid, s); 11219 return float64_default_nan(s); 11220 } else if (float64_is_infinity(f64)) { 11221 return float64_zero; 11222 } 11223 11224 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11225 * preserving the parity of the exponent. */ 11226 11227 if (f64_exp == 0) { 11228 while (extract64(f64_frac, 51, 1) == 0) { 11229 f64_frac = f64_frac << 1; 11230 f64_exp = f64_exp - 1; 11231 } 11232 f64_frac = extract64(f64_frac, 0, 51) << 1; 11233 } 11234 11235 if (extract64(f64_exp, 0, 1) == 0) { 11236 f64 = make_float64(f64_sbit 11237 | (0x3feULL << 52) 11238 | f64_frac); 11239 } else { 11240 f64 = make_float64(f64_sbit 11241 | (0x3fdULL << 52) 11242 | f64_frac); 11243 } 11244 11245 result_exp = (3068 - f64_exp) / 2; 11246 11247 f64 = recip_sqrt_estimate(f64, s); 11248 11249 result_frac = extract64(float64_val(f64), 0, 52); 11250 11251 return make_float64(f64_sbit | 11252 ((result_exp & 0x7ff) << 52) | 11253 result_frac); 11254 } 11255 11256 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11257 { 11258 float_status *s = fpstp; 11259 float64 f64; 11260 11261 if ((a & 0x80000000) == 0) { 11262 return 0xffffffff; 11263 } 11264 11265 f64 = make_float64((0x3feULL << 52) 11266 | ((int64_t)(a & 0x7fffffff) << 21)); 11267 11268 f64 = recip_estimate(f64, s); 11269 11270 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11271 } 11272 11273 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11274 { 11275 float_status *fpst = fpstp; 11276 float64 f64; 11277 11278 if ((a & 0xc0000000) == 0) { 11279 return 0xffffffff; 11280 } 11281 11282 if (a & 0x80000000) { 11283 f64 = make_float64((0x3feULL << 52) 11284 | ((uint64_t)(a & 0x7fffffff) << 21)); 11285 } else { /* bits 31-30 == '01' */ 11286 f64 = make_float64((0x3fdULL << 52) 11287 | ((uint64_t)(a & 0x3fffffff) << 22)); 11288 } 11289 11290 f64 = recip_sqrt_estimate(f64, fpst); 11291 11292 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff); 11293 } 11294 11295 /* VFPv4 fused multiply-accumulate */ 11296 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11297 { 11298 float_status *fpst = fpstp; 11299 return float32_muladd(a, b, c, 0, fpst); 11300 } 11301 11302 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 11303 { 11304 float_status *fpst = fpstp; 11305 return float64_muladd(a, b, c, 0, fpst); 11306 } 11307 11308 /* ARMv8 round to integral */ 11309 float32 HELPER(rints_exact)(float32 x, void *fp_status) 11310 { 11311 return float32_round_to_int(x, fp_status); 11312 } 11313 11314 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 11315 { 11316 return float64_round_to_int(x, fp_status); 11317 } 11318 11319 float32 HELPER(rints)(float32 x, void *fp_status) 11320 { 11321 int old_flags = get_float_exception_flags(fp_status), new_flags; 11322 float32 ret; 11323 11324 ret = float32_round_to_int(x, fp_status); 11325 11326 /* Suppress any inexact exceptions the conversion produced */ 11327 if (!(old_flags & float_flag_inexact)) { 11328 new_flags = get_float_exception_flags(fp_status); 11329 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11330 } 11331 11332 return ret; 11333 } 11334 11335 float64 HELPER(rintd)(float64 x, void *fp_status) 11336 { 11337 int old_flags = get_float_exception_flags(fp_status), new_flags; 11338 float64 ret; 11339 11340 ret = float64_round_to_int(x, fp_status); 11341 11342 new_flags = get_float_exception_flags(fp_status); 11343 11344 /* Suppress any inexact exceptions the conversion produced */ 11345 if (!(old_flags & float_flag_inexact)) { 11346 new_flags = get_float_exception_flags(fp_status); 11347 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 11348 } 11349 11350 return ret; 11351 } 11352 11353 /* Convert ARM rounding mode to softfloat */ 11354 int arm_rmode_to_sf(int rmode) 11355 { 11356 switch (rmode) { 11357 case FPROUNDING_TIEAWAY: 11358 rmode = float_round_ties_away; 11359 break; 11360 case FPROUNDING_ODD: 11361 /* FIXME: add support for TIEAWAY and ODD */ 11362 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 11363 rmode); 11364 case FPROUNDING_TIEEVEN: 11365 default: 11366 rmode = float_round_nearest_even; 11367 break; 11368 case FPROUNDING_POSINF: 11369 rmode = float_round_up; 11370 break; 11371 case FPROUNDING_NEGINF: 11372 rmode = float_round_down; 11373 break; 11374 case FPROUNDING_ZERO: 11375 rmode = float_round_to_zero; 11376 break; 11377 } 11378 return rmode; 11379 } 11380 11381 /* CRC helpers. 11382 * The upper bytes of val (above the number specified by 'bytes') must have 11383 * been zeroed out by the caller. 11384 */ 11385 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11386 { 11387 uint8_t buf[4]; 11388 11389 stl_le_p(buf, val); 11390 11391 /* zlib crc32 converts the accumulator and output to one's complement. */ 11392 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11393 } 11394 11395 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11396 { 11397 uint8_t buf[4]; 11398 11399 stl_le_p(buf, val); 11400 11401 /* Linux crc32c converts the output to one's complement. */ 11402 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11403 } 11404