xref: /openbmc/qemu/target/arm/helper.c (revision 34d49937)
1 #include "qemu/osdep.h"
2 #include "trace.h"
3 #include "cpu.h"
4 #include "internals.h"
5 #include "exec/gdbstub.h"
6 #include "exec/helper-proto.h"
7 #include "qemu/host-utils.h"
8 #include "sysemu/arch_init.h"
9 #include "sysemu/sysemu.h"
10 #include "qemu/bitops.h"
11 #include "qemu/crc32c.h"
12 #include "exec/exec-all.h"
13 #include "exec/cpu_ldst.h"
14 #include "arm_ldst.h"
15 #include <zlib.h> /* For crc32 */
16 #include "exec/semihost.h"
17 #include "sysemu/kvm.h"
18 
19 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 
21 #ifndef CONFIG_USER_ONLY
22 /* Cacheability and shareability attributes for a memory access */
23 typedef struct ARMCacheAttrs {
24     unsigned int attrs:8; /* as in the MAIR register encoding */
25     unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
26 } ARMCacheAttrs;
27 
28 static bool get_phys_addr(CPUARMState *env, target_ulong address,
29                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
30                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
31                           target_ulong *page_size, uint32_t *fsr,
32                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
33 
34 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
35                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
36                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
37                                target_ulong *page_size_ptr, uint32_t *fsr,
38                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
39 
40 /* Security attributes for an address, as returned by v8m_security_lookup. */
41 typedef struct V8M_SAttributes {
42     bool ns;
43     bool nsc;
44     uint8_t sregion;
45     bool srvalid;
46     uint8_t iregion;
47     bool irvalid;
48 } V8M_SAttributes;
49 
50 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
51                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
52                                 V8M_SAttributes *sattrs);
53 
54 /* Definitions for the PMCCNTR and PMCR registers */
55 #define PMCRD   0x8
56 #define PMCRC   0x4
57 #define PMCRE   0x1
58 #endif
59 
60 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
61 {
62     int nregs;
63 
64     /* VFP data registers are always little-endian.  */
65     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
66     if (reg < nregs) {
67         stfq_le_p(buf, env->vfp.regs[reg]);
68         return 8;
69     }
70     if (arm_feature(env, ARM_FEATURE_NEON)) {
71         /* Aliases for Q regs.  */
72         nregs += 16;
73         if (reg < nregs) {
74             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
75             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
76             return 16;
77         }
78     }
79     switch (reg - nregs) {
80     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
81     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
82     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
83     }
84     return 0;
85 }
86 
87 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
88 {
89     int nregs;
90 
91     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
92     if (reg < nregs) {
93         env->vfp.regs[reg] = ldfq_le_p(buf);
94         return 8;
95     }
96     if (arm_feature(env, ARM_FEATURE_NEON)) {
97         nregs += 16;
98         if (reg < nregs) {
99             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
100             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
101             return 16;
102         }
103     }
104     switch (reg - nregs) {
105     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
106     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
107     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
108     }
109     return 0;
110 }
111 
112 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
113 {
114     switch (reg) {
115     case 0 ... 31:
116         /* 128 bit FP register */
117         stfq_le_p(buf, env->vfp.regs[reg * 2]);
118         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
119         return 16;
120     case 32:
121         /* FPSR */
122         stl_p(buf, vfp_get_fpsr(env));
123         return 4;
124     case 33:
125         /* FPCR */
126         stl_p(buf, vfp_get_fpcr(env));
127         return 4;
128     default:
129         return 0;
130     }
131 }
132 
133 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
134 {
135     switch (reg) {
136     case 0 ... 31:
137         /* 128 bit FP register */
138         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
139         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
140         return 16;
141     case 32:
142         /* FPSR */
143         vfp_set_fpsr(env, ldl_p(buf));
144         return 4;
145     case 33:
146         /* FPCR */
147         vfp_set_fpcr(env, ldl_p(buf));
148         return 4;
149     default:
150         return 0;
151     }
152 }
153 
154 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
155 {
156     assert(ri->fieldoffset);
157     if (cpreg_field_is_64bit(ri)) {
158         return CPREG_FIELD64(env, ri);
159     } else {
160         return CPREG_FIELD32(env, ri);
161     }
162 }
163 
164 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
165                       uint64_t value)
166 {
167     assert(ri->fieldoffset);
168     if (cpreg_field_is_64bit(ri)) {
169         CPREG_FIELD64(env, ri) = value;
170     } else {
171         CPREG_FIELD32(env, ri) = value;
172     }
173 }
174 
175 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
176 {
177     return (char *)env + ri->fieldoffset;
178 }
179 
180 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
181 {
182     /* Raw read of a coprocessor register (as needed for migration, etc). */
183     if (ri->type & ARM_CP_CONST) {
184         return ri->resetvalue;
185     } else if (ri->raw_readfn) {
186         return ri->raw_readfn(env, ri);
187     } else if (ri->readfn) {
188         return ri->readfn(env, ri);
189     } else {
190         return raw_read(env, ri);
191     }
192 }
193 
194 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
195                              uint64_t v)
196 {
197     /* Raw write of a coprocessor register (as needed for migration, etc).
198      * Note that constant registers are treated as write-ignored; the
199      * caller should check for success by whether a readback gives the
200      * value written.
201      */
202     if (ri->type & ARM_CP_CONST) {
203         return;
204     } else if (ri->raw_writefn) {
205         ri->raw_writefn(env, ri, v);
206     } else if (ri->writefn) {
207         ri->writefn(env, ri, v);
208     } else {
209         raw_write(env, ri, v);
210     }
211 }
212 
213 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
214 {
215    /* Return true if the regdef would cause an assertion if you called
216     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
217     * program bug for it not to have the NO_RAW flag).
218     * NB that returning false here doesn't necessarily mean that calling
219     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
220     * read/write access functions which are safe for raw use" from "has
221     * read/write access functions which have side effects but has forgotten
222     * to provide raw access functions".
223     * The tests here line up with the conditions in read/write_raw_cp_reg()
224     * and assertions in raw_read()/raw_write().
225     */
226     if ((ri->type & ARM_CP_CONST) ||
227         ri->fieldoffset ||
228         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
229         return false;
230     }
231     return true;
232 }
233 
234 bool write_cpustate_to_list(ARMCPU *cpu)
235 {
236     /* Write the coprocessor state from cpu->env to the (index,value) list. */
237     int i;
238     bool ok = true;
239 
240     for (i = 0; i < cpu->cpreg_array_len; i++) {
241         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
242         const ARMCPRegInfo *ri;
243 
244         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
245         if (!ri) {
246             ok = false;
247             continue;
248         }
249         if (ri->type & ARM_CP_NO_RAW) {
250             continue;
251         }
252         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
253     }
254     return ok;
255 }
256 
257 bool write_list_to_cpustate(ARMCPU *cpu)
258 {
259     int i;
260     bool ok = true;
261 
262     for (i = 0; i < cpu->cpreg_array_len; i++) {
263         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
264         uint64_t v = cpu->cpreg_values[i];
265         const ARMCPRegInfo *ri;
266 
267         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
268         if (!ri) {
269             ok = false;
270             continue;
271         }
272         if (ri->type & ARM_CP_NO_RAW) {
273             continue;
274         }
275         /* Write value and confirm it reads back as written
276          * (to catch read-only registers and partially read-only
277          * registers where the incoming migration value doesn't match)
278          */
279         write_raw_cp_reg(&cpu->env, ri, v);
280         if (read_raw_cp_reg(&cpu->env, ri) != v) {
281             ok = false;
282         }
283     }
284     return ok;
285 }
286 
287 static void add_cpreg_to_list(gpointer key, gpointer opaque)
288 {
289     ARMCPU *cpu = opaque;
290     uint64_t regidx;
291     const ARMCPRegInfo *ri;
292 
293     regidx = *(uint32_t *)key;
294     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
295 
296     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
297         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
298         /* The value array need not be initialized at this point */
299         cpu->cpreg_array_len++;
300     }
301 }
302 
303 static void count_cpreg(gpointer key, gpointer opaque)
304 {
305     ARMCPU *cpu = opaque;
306     uint64_t regidx;
307     const ARMCPRegInfo *ri;
308 
309     regidx = *(uint32_t *)key;
310     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
311 
312     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
313         cpu->cpreg_array_len++;
314     }
315 }
316 
317 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
318 {
319     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
320     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
321 
322     if (aidx > bidx) {
323         return 1;
324     }
325     if (aidx < bidx) {
326         return -1;
327     }
328     return 0;
329 }
330 
331 void init_cpreg_list(ARMCPU *cpu)
332 {
333     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
334      * Note that we require cpreg_tuples[] to be sorted by key ID.
335      */
336     GList *keys;
337     int arraylen;
338 
339     keys = g_hash_table_get_keys(cpu->cp_regs);
340     keys = g_list_sort(keys, cpreg_key_compare);
341 
342     cpu->cpreg_array_len = 0;
343 
344     g_list_foreach(keys, count_cpreg, cpu);
345 
346     arraylen = cpu->cpreg_array_len;
347     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
348     cpu->cpreg_values = g_new(uint64_t, arraylen);
349     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
350     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
351     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
352     cpu->cpreg_array_len = 0;
353 
354     g_list_foreach(keys, add_cpreg_to_list, cpu);
355 
356     assert(cpu->cpreg_array_len == arraylen);
357 
358     g_list_free(keys);
359 }
360 
361 /*
362  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
363  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
364  *
365  * access_el3_aa32ns: Used to check AArch32 register views.
366  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
367  */
368 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
369                                         const ARMCPRegInfo *ri,
370                                         bool isread)
371 {
372     bool secure = arm_is_secure_below_el3(env);
373 
374     assert(!arm_el_is_aa64(env, 3));
375     if (secure) {
376         return CP_ACCESS_TRAP_UNCATEGORIZED;
377     }
378     return CP_ACCESS_OK;
379 }
380 
381 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
382                                                 const ARMCPRegInfo *ri,
383                                                 bool isread)
384 {
385     if (!arm_el_is_aa64(env, 3)) {
386         return access_el3_aa32ns(env, ri, isread);
387     }
388     return CP_ACCESS_OK;
389 }
390 
391 /* Some secure-only AArch32 registers trap to EL3 if used from
392  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
393  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
394  * We assume that the .access field is set to PL1_RW.
395  */
396 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
397                                             const ARMCPRegInfo *ri,
398                                             bool isread)
399 {
400     if (arm_current_el(env) == 3) {
401         return CP_ACCESS_OK;
402     }
403     if (arm_is_secure_below_el3(env)) {
404         return CP_ACCESS_TRAP_EL3;
405     }
406     /* This will be EL1 NS and EL2 NS, which just UNDEF */
407     return CP_ACCESS_TRAP_UNCATEGORIZED;
408 }
409 
410 /* Check for traps to "powerdown debug" registers, which are controlled
411  * by MDCR.TDOSA
412  */
413 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
414                                    bool isread)
415 {
416     int el = arm_current_el(env);
417 
418     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
419         && !arm_is_secure_below_el3(env)) {
420         return CP_ACCESS_TRAP_EL2;
421     }
422     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
423         return CP_ACCESS_TRAP_EL3;
424     }
425     return CP_ACCESS_OK;
426 }
427 
428 /* Check for traps to "debug ROM" registers, which are controlled
429  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
430  */
431 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
432                                   bool isread)
433 {
434     int el = arm_current_el(env);
435 
436     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
437         && !arm_is_secure_below_el3(env)) {
438         return CP_ACCESS_TRAP_EL2;
439     }
440     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
441         return CP_ACCESS_TRAP_EL3;
442     }
443     return CP_ACCESS_OK;
444 }
445 
446 /* Check for traps to general debug registers, which are controlled
447  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
448  */
449 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
450                                   bool isread)
451 {
452     int el = arm_current_el(env);
453 
454     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
455         && !arm_is_secure_below_el3(env)) {
456         return CP_ACCESS_TRAP_EL2;
457     }
458     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
459         return CP_ACCESS_TRAP_EL3;
460     }
461     return CP_ACCESS_OK;
462 }
463 
464 /* Check for traps to performance monitor registers, which are controlled
465  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
466  */
467 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
468                                  bool isread)
469 {
470     int el = arm_current_el(env);
471 
472     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
473         && !arm_is_secure_below_el3(env)) {
474         return CP_ACCESS_TRAP_EL2;
475     }
476     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
477         return CP_ACCESS_TRAP_EL3;
478     }
479     return CP_ACCESS_OK;
480 }
481 
482 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
483 {
484     ARMCPU *cpu = arm_env_get_cpu(env);
485 
486     raw_write(env, ri, value);
487     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
488 }
489 
490 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
491 {
492     ARMCPU *cpu = arm_env_get_cpu(env);
493 
494     if (raw_read(env, ri) != value) {
495         /* Unlike real hardware the qemu TLB uses virtual addresses,
496          * not modified virtual addresses, so this causes a TLB flush.
497          */
498         tlb_flush(CPU(cpu));
499         raw_write(env, ri, value);
500     }
501 }
502 
503 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
504                              uint64_t value)
505 {
506     ARMCPU *cpu = arm_env_get_cpu(env);
507 
508     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
509         && !extended_addresses_enabled(env)) {
510         /* For VMSA (when not using the LPAE long descriptor page table
511          * format) this register includes the ASID, so do a TLB flush.
512          * For PMSA it is purely a process ID and no action is needed.
513          */
514         tlb_flush(CPU(cpu));
515     }
516     raw_write(env, ri, value);
517 }
518 
519 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
520                           uint64_t value)
521 {
522     /* Invalidate all (TLBIALL) */
523     ARMCPU *cpu = arm_env_get_cpu(env);
524 
525     tlb_flush(CPU(cpu));
526 }
527 
528 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
529                           uint64_t value)
530 {
531     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
532     ARMCPU *cpu = arm_env_get_cpu(env);
533 
534     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
535 }
536 
537 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
538                            uint64_t value)
539 {
540     /* Invalidate by ASID (TLBIASID) */
541     ARMCPU *cpu = arm_env_get_cpu(env);
542 
543     tlb_flush(CPU(cpu));
544 }
545 
546 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
547                            uint64_t value)
548 {
549     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
550     ARMCPU *cpu = arm_env_get_cpu(env);
551 
552     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
553 }
554 
555 /* IS variants of TLB operations must affect all cores */
556 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
557                              uint64_t value)
558 {
559     CPUState *cs = ENV_GET_CPU(env);
560 
561     tlb_flush_all_cpus_synced(cs);
562 }
563 
564 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
565                              uint64_t value)
566 {
567     CPUState *cs = ENV_GET_CPU(env);
568 
569     tlb_flush_all_cpus_synced(cs);
570 }
571 
572 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
573                              uint64_t value)
574 {
575     CPUState *cs = ENV_GET_CPU(env);
576 
577     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
578 }
579 
580 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
581                              uint64_t value)
582 {
583     CPUState *cs = ENV_GET_CPU(env);
584 
585     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
586 }
587 
588 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
589                                uint64_t value)
590 {
591     CPUState *cs = ENV_GET_CPU(env);
592 
593     tlb_flush_by_mmuidx(cs,
594                         ARMMMUIdxBit_S12NSE1 |
595                         ARMMMUIdxBit_S12NSE0 |
596                         ARMMMUIdxBit_S2NS);
597 }
598 
599 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
600                                   uint64_t value)
601 {
602     CPUState *cs = ENV_GET_CPU(env);
603 
604     tlb_flush_by_mmuidx_all_cpus_synced(cs,
605                                         ARMMMUIdxBit_S12NSE1 |
606                                         ARMMMUIdxBit_S12NSE0 |
607                                         ARMMMUIdxBit_S2NS);
608 }
609 
610 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
611                             uint64_t value)
612 {
613     /* Invalidate by IPA. This has to invalidate any structures that
614      * contain only stage 2 translation information, but does not need
615      * to apply to structures that contain combined stage 1 and stage 2
616      * translation information.
617      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
618      */
619     CPUState *cs = ENV_GET_CPU(env);
620     uint64_t pageaddr;
621 
622     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623         return;
624     }
625 
626     pageaddr = sextract64(value << 12, 0, 40);
627 
628     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
629 }
630 
631 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
632                                uint64_t value)
633 {
634     CPUState *cs = ENV_GET_CPU(env);
635     uint64_t pageaddr;
636 
637     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
638         return;
639     }
640 
641     pageaddr = sextract64(value << 12, 0, 40);
642 
643     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
644                                              ARMMMUIdxBit_S2NS);
645 }
646 
647 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
648                               uint64_t value)
649 {
650     CPUState *cs = ENV_GET_CPU(env);
651 
652     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
653 }
654 
655 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
656                                  uint64_t value)
657 {
658     CPUState *cs = ENV_GET_CPU(env);
659 
660     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
661 }
662 
663 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
664                               uint64_t value)
665 {
666     CPUState *cs = ENV_GET_CPU(env);
667     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
668 
669     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
670 }
671 
672 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
673                                  uint64_t value)
674 {
675     CPUState *cs = ENV_GET_CPU(env);
676     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
677 
678     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
679                                              ARMMMUIdxBit_S1E2);
680 }
681 
682 static const ARMCPRegInfo cp_reginfo[] = {
683     /* Define the secure and non-secure FCSE identifier CP registers
684      * separately because there is no secure bank in V8 (no _EL3).  This allows
685      * the secure register to be properly reset and migrated. There is also no
686      * v8 EL1 version of the register so the non-secure instance stands alone.
687      */
688     { .name = "FCSEIDR(NS)",
689       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
690       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
691       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
692       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
693     { .name = "FCSEIDR(S)",
694       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
695       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
696       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
697       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
698     /* Define the secure and non-secure context identifier CP registers
699      * separately because there is no secure bank in V8 (no _EL3).  This allows
700      * the secure register to be properly reset and migrated.  In the
701      * non-secure case, the 32-bit register will have reset and migration
702      * disabled during registration as it is handled by the 64-bit instance.
703      */
704     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
705       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
706       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
707       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
708       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
709     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
710       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
711       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
712       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
713       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
714     REGINFO_SENTINEL
715 };
716 
717 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
718     /* NB: Some of these registers exist in v8 but with more precise
719      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
720      */
721     /* MMU Domain access control / MPU write buffer control */
722     { .name = "DACR",
723       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
724       .access = PL1_RW, .resetvalue = 0,
725       .writefn = dacr_write, .raw_writefn = raw_write,
726       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
727                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
728     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
729      * For v6 and v5, these mappings are overly broad.
730      */
731     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
732       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
733     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
734       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
735     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
736       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
737     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
738       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
739     /* Cache maintenance ops; some of this space may be overridden later. */
740     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
741       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
742       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
743     REGINFO_SENTINEL
744 };
745 
746 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
747     /* Not all pre-v6 cores implemented this WFI, so this is slightly
748      * over-broad.
749      */
750     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
751       .access = PL1_W, .type = ARM_CP_WFI },
752     REGINFO_SENTINEL
753 };
754 
755 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
756     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
757      * is UNPREDICTABLE; we choose to NOP as most implementations do).
758      */
759     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
760       .access = PL1_W, .type = ARM_CP_WFI },
761     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
762      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
763      * OMAPCP will override this space.
764      */
765     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
766       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
767       .resetvalue = 0 },
768     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
769       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
770       .resetvalue = 0 },
771     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
772     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
773       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
774       .resetvalue = 0 },
775     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
776      * implementing it as RAZ means the "debug architecture version" bits
777      * will read as a reserved value, which should cause Linux to not try
778      * to use the debug hardware.
779      */
780     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
781       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
782     /* MMU TLB control. Note that the wildcarding means we cover not just
783      * the unified TLB ops but also the dside/iside/inner-shareable variants.
784      */
785     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
786       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
787       .type = ARM_CP_NO_RAW },
788     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
789       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
790       .type = ARM_CP_NO_RAW },
791     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
792       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
793       .type = ARM_CP_NO_RAW },
794     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
795       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
796       .type = ARM_CP_NO_RAW },
797     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
798       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
799     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
800       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
801     REGINFO_SENTINEL
802 };
803 
804 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
805                         uint64_t value)
806 {
807     uint32_t mask = 0;
808 
809     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
810     if (!arm_feature(env, ARM_FEATURE_V8)) {
811         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
812          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
813          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
814          */
815         if (arm_feature(env, ARM_FEATURE_VFP)) {
816             /* VFP coprocessor: cp10 & cp11 [23:20] */
817             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
818 
819             if (!arm_feature(env, ARM_FEATURE_NEON)) {
820                 /* ASEDIS [31] bit is RAO/WI */
821                 value |= (1 << 31);
822             }
823 
824             /* VFPv3 and upwards with NEON implement 32 double precision
825              * registers (D0-D31).
826              */
827             if (!arm_feature(env, ARM_FEATURE_NEON) ||
828                     !arm_feature(env, ARM_FEATURE_VFP3)) {
829                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
830                 value |= (1 << 30);
831             }
832         }
833         value &= mask;
834     }
835     env->cp15.cpacr_el1 = value;
836 }
837 
838 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
839                                    bool isread)
840 {
841     if (arm_feature(env, ARM_FEATURE_V8)) {
842         /* Check if CPACR accesses are to be trapped to EL2 */
843         if (arm_current_el(env) == 1 &&
844             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
845             return CP_ACCESS_TRAP_EL2;
846         /* Check if CPACR accesses are to be trapped to EL3 */
847         } else if (arm_current_el(env) < 3 &&
848                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
849             return CP_ACCESS_TRAP_EL3;
850         }
851     }
852 
853     return CP_ACCESS_OK;
854 }
855 
856 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
857                                   bool isread)
858 {
859     /* Check if CPTR accesses are set to trap to EL3 */
860     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
861         return CP_ACCESS_TRAP_EL3;
862     }
863 
864     return CP_ACCESS_OK;
865 }
866 
867 static const ARMCPRegInfo v6_cp_reginfo[] = {
868     /* prefetch by MVA in v6, NOP in v7 */
869     { .name = "MVA_prefetch",
870       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
871       .access = PL1_W, .type = ARM_CP_NOP },
872     /* We need to break the TB after ISB to execute self-modifying code
873      * correctly and also to take any pending interrupts immediately.
874      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
875      */
876     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
877       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
878     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
879       .access = PL0_W, .type = ARM_CP_NOP },
880     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
881       .access = PL0_W, .type = ARM_CP_NOP },
882     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
883       .access = PL1_RW,
884       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
885                              offsetof(CPUARMState, cp15.ifar_ns) },
886       .resetvalue = 0, },
887     /* Watchpoint Fault Address Register : should actually only be present
888      * for 1136, 1176, 11MPCore.
889      */
890     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
891       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
892     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
893       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
894       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
895       .resetvalue = 0, .writefn = cpacr_write },
896     REGINFO_SENTINEL
897 };
898 
899 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
900                                    bool isread)
901 {
902     /* Performance monitor registers user accessibility is controlled
903      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
904      * trapping to EL2 or EL3 for other accesses.
905      */
906     int el = arm_current_el(env);
907 
908     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
909         return CP_ACCESS_TRAP;
910     }
911     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
912         && !arm_is_secure_below_el3(env)) {
913         return CP_ACCESS_TRAP_EL2;
914     }
915     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
916         return CP_ACCESS_TRAP_EL3;
917     }
918 
919     return CP_ACCESS_OK;
920 }
921 
922 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
923                                            const ARMCPRegInfo *ri,
924                                            bool isread)
925 {
926     /* ER: event counter read trap control */
927     if (arm_feature(env, ARM_FEATURE_V8)
928         && arm_current_el(env) == 0
929         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
930         && isread) {
931         return CP_ACCESS_OK;
932     }
933 
934     return pmreg_access(env, ri, isread);
935 }
936 
937 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
938                                          const ARMCPRegInfo *ri,
939                                          bool isread)
940 {
941     /* SW: software increment write trap control */
942     if (arm_feature(env, ARM_FEATURE_V8)
943         && arm_current_el(env) == 0
944         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
945         && !isread) {
946         return CP_ACCESS_OK;
947     }
948 
949     return pmreg_access(env, ri, isread);
950 }
951 
952 #ifndef CONFIG_USER_ONLY
953 
954 static CPAccessResult pmreg_access_selr(CPUARMState *env,
955                                         const ARMCPRegInfo *ri,
956                                         bool isread)
957 {
958     /* ER: event counter read trap control */
959     if (arm_feature(env, ARM_FEATURE_V8)
960         && arm_current_el(env) == 0
961         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
962         return CP_ACCESS_OK;
963     }
964 
965     return pmreg_access(env, ri, isread);
966 }
967 
968 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
969                                          const ARMCPRegInfo *ri,
970                                          bool isread)
971 {
972     /* CR: cycle counter read trap control */
973     if (arm_feature(env, ARM_FEATURE_V8)
974         && arm_current_el(env) == 0
975         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
976         && isread) {
977         return CP_ACCESS_OK;
978     }
979 
980     return pmreg_access(env, ri, isread);
981 }
982 
983 static inline bool arm_ccnt_enabled(CPUARMState *env)
984 {
985     /* This does not support checking PMCCFILTR_EL0 register */
986 
987     if (!(env->cp15.c9_pmcr & PMCRE)) {
988         return false;
989     }
990 
991     return true;
992 }
993 
994 void pmccntr_sync(CPUARMState *env)
995 {
996     uint64_t temp_ticks;
997 
998     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
999                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1000 
1001     if (env->cp15.c9_pmcr & PMCRD) {
1002         /* Increment once every 64 processor clock cycles */
1003         temp_ticks /= 64;
1004     }
1005 
1006     if (arm_ccnt_enabled(env)) {
1007         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
1008     }
1009 }
1010 
1011 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1012                        uint64_t value)
1013 {
1014     pmccntr_sync(env);
1015 
1016     if (value & PMCRC) {
1017         /* The counter has been reset */
1018         env->cp15.c15_ccnt = 0;
1019     }
1020 
1021     /* only the DP, X, D and E bits are writable */
1022     env->cp15.c9_pmcr &= ~0x39;
1023     env->cp15.c9_pmcr |= (value & 0x39);
1024 
1025     pmccntr_sync(env);
1026 }
1027 
1028 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1029 {
1030     uint64_t total_ticks;
1031 
1032     if (!arm_ccnt_enabled(env)) {
1033         /* Counter is disabled, do not change value */
1034         return env->cp15.c15_ccnt;
1035     }
1036 
1037     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1038                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1039 
1040     if (env->cp15.c9_pmcr & PMCRD) {
1041         /* Increment once every 64 processor clock cycles */
1042         total_ticks /= 64;
1043     }
1044     return total_ticks - env->cp15.c15_ccnt;
1045 }
1046 
1047 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1048                          uint64_t value)
1049 {
1050     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1051      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1052      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1053      * accessed.
1054      */
1055     env->cp15.c9_pmselr = value & 0x1f;
1056 }
1057 
1058 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1059                         uint64_t value)
1060 {
1061     uint64_t total_ticks;
1062 
1063     if (!arm_ccnt_enabled(env)) {
1064         /* Counter is disabled, set the absolute value */
1065         env->cp15.c15_ccnt = value;
1066         return;
1067     }
1068 
1069     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1070                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1071 
1072     if (env->cp15.c9_pmcr & PMCRD) {
1073         /* Increment once every 64 processor clock cycles */
1074         total_ticks /= 64;
1075     }
1076     env->cp15.c15_ccnt = total_ticks - value;
1077 }
1078 
1079 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1080                             uint64_t value)
1081 {
1082     uint64_t cur_val = pmccntr_read(env, NULL);
1083 
1084     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1085 }
1086 
1087 #else /* CONFIG_USER_ONLY */
1088 
1089 void pmccntr_sync(CPUARMState *env)
1090 {
1091 }
1092 
1093 #endif
1094 
1095 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1096                             uint64_t value)
1097 {
1098     pmccntr_sync(env);
1099     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1100     pmccntr_sync(env);
1101 }
1102 
1103 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1104                             uint64_t value)
1105 {
1106     value &= (1 << 31);
1107     env->cp15.c9_pmcnten |= value;
1108 }
1109 
1110 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1111                              uint64_t value)
1112 {
1113     value &= (1 << 31);
1114     env->cp15.c9_pmcnten &= ~value;
1115 }
1116 
1117 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1118                          uint64_t value)
1119 {
1120     env->cp15.c9_pmovsr &= ~value;
1121 }
1122 
1123 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1124                              uint64_t value)
1125 {
1126     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1127      * PMSELR value is equal to or greater than the number of implemented
1128      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1129      */
1130     if (env->cp15.c9_pmselr == 0x1f) {
1131         pmccfiltr_write(env, ri, value);
1132     }
1133 }
1134 
1135 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1136 {
1137     /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1138      * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1139      */
1140     if (env->cp15.c9_pmselr == 0x1f) {
1141         return env->cp15.pmccfiltr_el0;
1142     } else {
1143         return 0;
1144     }
1145 }
1146 
1147 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1148                             uint64_t value)
1149 {
1150     if (arm_feature(env, ARM_FEATURE_V8)) {
1151         env->cp15.c9_pmuserenr = value & 0xf;
1152     } else {
1153         env->cp15.c9_pmuserenr = value & 1;
1154     }
1155 }
1156 
1157 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158                              uint64_t value)
1159 {
1160     /* We have no event counters so only the C bit can be changed */
1161     value &= (1 << 31);
1162     env->cp15.c9_pminten |= value;
1163 }
1164 
1165 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1166                              uint64_t value)
1167 {
1168     value &= (1 << 31);
1169     env->cp15.c9_pminten &= ~value;
1170 }
1171 
1172 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1173                        uint64_t value)
1174 {
1175     /* Note that even though the AArch64 view of this register has bits
1176      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1177      * architectural requirements for bits which are RES0 only in some
1178      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1179      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1180      */
1181     raw_write(env, ri, value & ~0x1FULL);
1182 }
1183 
1184 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1185 {
1186     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1187      * For bits that vary between AArch32/64, code needs to check the
1188      * current execution mode before directly using the feature bit.
1189      */
1190     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1191 
1192     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1193         valid_mask &= ~SCR_HCE;
1194 
1195         /* On ARMv7, SMD (or SCD as it is called in v7) is only
1196          * supported if EL2 exists. The bit is UNK/SBZP when
1197          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1198          * when EL2 is unavailable.
1199          * On ARMv8, this bit is always available.
1200          */
1201         if (arm_feature(env, ARM_FEATURE_V7) &&
1202             !arm_feature(env, ARM_FEATURE_V8)) {
1203             valid_mask &= ~SCR_SMD;
1204         }
1205     }
1206 
1207     /* Clear all-context RES0 bits.  */
1208     value &= valid_mask;
1209     raw_write(env, ri, value);
1210 }
1211 
1212 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1213 {
1214     ARMCPU *cpu = arm_env_get_cpu(env);
1215 
1216     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1217      * bank
1218      */
1219     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1220                                         ri->secure & ARM_CP_SECSTATE_S);
1221 
1222     return cpu->ccsidr[index];
1223 }
1224 
1225 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1226                          uint64_t value)
1227 {
1228     raw_write(env, ri, value & 0xf);
1229 }
1230 
1231 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1232 {
1233     CPUState *cs = ENV_GET_CPU(env);
1234     uint64_t ret = 0;
1235 
1236     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1237         ret |= CPSR_I;
1238     }
1239     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1240         ret |= CPSR_F;
1241     }
1242     /* External aborts are not possible in QEMU so A bit is always clear */
1243     return ret;
1244 }
1245 
1246 static const ARMCPRegInfo v7_cp_reginfo[] = {
1247     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1248     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1249       .access = PL1_W, .type = ARM_CP_NOP },
1250     /* Performance monitors are implementation defined in v7,
1251      * but with an ARM recommended set of registers, which we
1252      * follow (although we don't actually implement any counters)
1253      *
1254      * Performance registers fall into three categories:
1255      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1256      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1257      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1258      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1259      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1260      */
1261     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1262       .access = PL0_RW, .type = ARM_CP_ALIAS,
1263       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1264       .writefn = pmcntenset_write,
1265       .accessfn = pmreg_access,
1266       .raw_writefn = raw_write },
1267     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1268       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1269       .access = PL0_RW, .accessfn = pmreg_access,
1270       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1271       .writefn = pmcntenset_write, .raw_writefn = raw_write },
1272     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1273       .access = PL0_RW,
1274       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1275       .accessfn = pmreg_access,
1276       .writefn = pmcntenclr_write,
1277       .type = ARM_CP_ALIAS },
1278     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1279       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1280       .access = PL0_RW, .accessfn = pmreg_access,
1281       .type = ARM_CP_ALIAS,
1282       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1283       .writefn = pmcntenclr_write },
1284     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1285       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1286       .accessfn = pmreg_access,
1287       .writefn = pmovsr_write,
1288       .raw_writefn = raw_write },
1289     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1290       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1291       .access = PL0_RW, .accessfn = pmreg_access,
1292       .type = ARM_CP_ALIAS,
1293       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1294       .writefn = pmovsr_write,
1295       .raw_writefn = raw_write },
1296     /* Unimplemented so WI. */
1297     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1298       .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1299 #ifndef CONFIG_USER_ONLY
1300     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1301       .access = PL0_RW, .type = ARM_CP_ALIAS,
1302       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1303       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1304       .raw_writefn = raw_write},
1305     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
1306       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1307       .access = PL0_RW, .accessfn = pmreg_access_selr,
1308       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
1309       .writefn = pmselr_write, .raw_writefn = raw_write, },
1310     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1311       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1312       .readfn = pmccntr_read, .writefn = pmccntr_write32,
1313       .accessfn = pmreg_access_ccntr },
1314     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1315       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1316       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1317       .type = ARM_CP_IO,
1318       .readfn = pmccntr_read, .writefn = pmccntr_write, },
1319 #endif
1320     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1321       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1322       .writefn = pmccfiltr_write,
1323       .access = PL0_RW, .accessfn = pmreg_access,
1324       .type = ARM_CP_IO,
1325       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1326       .resetvalue = 0, },
1327     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1328       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1329       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1330     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
1331       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
1332       .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
1333       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1334     /* Unimplemented, RAZ/WI. */
1335     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1336       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1337       .accessfn = pmreg_access_xevcntr },
1338     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1339       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1340       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1341       .resetvalue = 0,
1342       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1343     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1344       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1345       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1346       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1347       .resetvalue = 0,
1348       .writefn = pmuserenr_write, .raw_writefn = raw_write },
1349     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1350       .access = PL1_RW, .accessfn = access_tpm,
1351       .type = ARM_CP_ALIAS,
1352       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1353       .resetvalue = 0,
1354       .writefn = pmintenset_write, .raw_writefn = raw_write },
1355     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
1356       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
1357       .access = PL1_RW, .accessfn = access_tpm,
1358       .type = ARM_CP_IO,
1359       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1360       .writefn = pmintenset_write, .raw_writefn = raw_write,
1361       .resetvalue = 0x0 },
1362     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1363       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1364       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1365       .writefn = pmintenclr_write, },
1366     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1367       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1368       .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1369       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1370       .writefn = pmintenclr_write },
1371     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1372       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1373       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1374     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1375       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1376       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1377       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1378                              offsetof(CPUARMState, cp15.csselr_ns) } },
1379     /* Auxiliary ID register: this actually has an IMPDEF value but for now
1380      * just RAZ for all cores:
1381      */
1382     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1383       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1384       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1385     /* Auxiliary fault status registers: these also are IMPDEF, and we
1386      * choose to RAZ/WI for all cores.
1387      */
1388     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1389       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1390       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1391     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1392       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1393       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1394     /* MAIR can just read-as-written because we don't implement caches
1395      * and so don't need to care about memory attributes.
1396      */
1397     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1398       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1399       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1400       .resetvalue = 0 },
1401     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1402       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1403       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1404       .resetvalue = 0 },
1405     /* For non-long-descriptor page tables these are PRRR and NMRR;
1406      * regardless they still act as reads-as-written for QEMU.
1407      */
1408      /* MAIR0/1 are defined separately from their 64-bit counterpart which
1409       * allows them to assign the correct fieldoffset based on the endianness
1410       * handled in the field definitions.
1411       */
1412     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1413       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1414       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1415                              offsetof(CPUARMState, cp15.mair0_ns) },
1416       .resetfn = arm_cp_reset_ignore },
1417     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1418       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1419       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1420                              offsetof(CPUARMState, cp15.mair1_ns) },
1421       .resetfn = arm_cp_reset_ignore },
1422     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1423       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1424       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1425     /* 32 bit ITLB invalidates */
1426     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1427       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1428     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1429       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1430     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1431       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1432     /* 32 bit DTLB invalidates */
1433     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1434       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1435     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1436       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1437     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1438       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1439     /* 32 bit TLB invalidates */
1440     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1441       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1442     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1443       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1444     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1445       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1446     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1447       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1448     REGINFO_SENTINEL
1449 };
1450 
1451 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1452     /* 32 bit TLB invalidates, Inner Shareable */
1453     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1454       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1455     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1456       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1457     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1458       .type = ARM_CP_NO_RAW, .access = PL1_W,
1459       .writefn = tlbiasid_is_write },
1460     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1461       .type = ARM_CP_NO_RAW, .access = PL1_W,
1462       .writefn = tlbimvaa_is_write },
1463     REGINFO_SENTINEL
1464 };
1465 
1466 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1467                         uint64_t value)
1468 {
1469     value &= 1;
1470     env->teecr = value;
1471 }
1472 
1473 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1474                                     bool isread)
1475 {
1476     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1477         return CP_ACCESS_TRAP;
1478     }
1479     return CP_ACCESS_OK;
1480 }
1481 
1482 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1483     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1484       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1485       .resetvalue = 0,
1486       .writefn = teecr_write },
1487     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1488       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1489       .accessfn = teehbr_access, .resetvalue = 0 },
1490     REGINFO_SENTINEL
1491 };
1492 
1493 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1494     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1495       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1496       .access = PL0_RW,
1497       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1498     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1499       .access = PL0_RW,
1500       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1501                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1502       .resetfn = arm_cp_reset_ignore },
1503     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1504       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1505       .access = PL0_R|PL1_W,
1506       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1507       .resetvalue = 0},
1508     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1509       .access = PL0_R|PL1_W,
1510       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1511                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1512       .resetfn = arm_cp_reset_ignore },
1513     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1514       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1515       .access = PL1_RW,
1516       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1517     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1518       .access = PL1_RW,
1519       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1520                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1521       .resetvalue = 0 },
1522     REGINFO_SENTINEL
1523 };
1524 
1525 #ifndef CONFIG_USER_ONLY
1526 
1527 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1528                                        bool isread)
1529 {
1530     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1531      * Writable only at the highest implemented exception level.
1532      */
1533     int el = arm_current_el(env);
1534 
1535     switch (el) {
1536     case 0:
1537         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1538             return CP_ACCESS_TRAP;
1539         }
1540         break;
1541     case 1:
1542         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1543             arm_is_secure_below_el3(env)) {
1544             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1545             return CP_ACCESS_TRAP_UNCATEGORIZED;
1546         }
1547         break;
1548     case 2:
1549     case 3:
1550         break;
1551     }
1552 
1553     if (!isread && el < arm_highest_el(env)) {
1554         return CP_ACCESS_TRAP_UNCATEGORIZED;
1555     }
1556 
1557     return CP_ACCESS_OK;
1558 }
1559 
1560 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1561                                         bool isread)
1562 {
1563     unsigned int cur_el = arm_current_el(env);
1564     bool secure = arm_is_secure(env);
1565 
1566     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1567     if (cur_el == 0 &&
1568         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1569         return CP_ACCESS_TRAP;
1570     }
1571 
1572     if (arm_feature(env, ARM_FEATURE_EL2) &&
1573         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1574         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1575         return CP_ACCESS_TRAP_EL2;
1576     }
1577     return CP_ACCESS_OK;
1578 }
1579 
1580 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1581                                       bool isread)
1582 {
1583     unsigned int cur_el = arm_current_el(env);
1584     bool secure = arm_is_secure(env);
1585 
1586     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1587      * EL0[PV]TEN is zero.
1588      */
1589     if (cur_el == 0 &&
1590         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1591         return CP_ACCESS_TRAP;
1592     }
1593 
1594     if (arm_feature(env, ARM_FEATURE_EL2) &&
1595         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1596         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1597         return CP_ACCESS_TRAP_EL2;
1598     }
1599     return CP_ACCESS_OK;
1600 }
1601 
1602 static CPAccessResult gt_pct_access(CPUARMState *env,
1603                                     const ARMCPRegInfo *ri,
1604                                     bool isread)
1605 {
1606     return gt_counter_access(env, GTIMER_PHYS, isread);
1607 }
1608 
1609 static CPAccessResult gt_vct_access(CPUARMState *env,
1610                                     const ARMCPRegInfo *ri,
1611                                     bool isread)
1612 {
1613     return gt_counter_access(env, GTIMER_VIRT, isread);
1614 }
1615 
1616 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1617                                        bool isread)
1618 {
1619     return gt_timer_access(env, GTIMER_PHYS, isread);
1620 }
1621 
1622 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1623                                        bool isread)
1624 {
1625     return gt_timer_access(env, GTIMER_VIRT, isread);
1626 }
1627 
1628 static CPAccessResult gt_stimer_access(CPUARMState *env,
1629                                        const ARMCPRegInfo *ri,
1630                                        bool isread)
1631 {
1632     /* The AArch64 register view of the secure physical timer is
1633      * always accessible from EL3, and configurably accessible from
1634      * Secure EL1.
1635      */
1636     switch (arm_current_el(env)) {
1637     case 1:
1638         if (!arm_is_secure(env)) {
1639             return CP_ACCESS_TRAP;
1640         }
1641         if (!(env->cp15.scr_el3 & SCR_ST)) {
1642             return CP_ACCESS_TRAP_EL3;
1643         }
1644         return CP_ACCESS_OK;
1645     case 0:
1646     case 2:
1647         return CP_ACCESS_TRAP;
1648     case 3:
1649         return CP_ACCESS_OK;
1650     default:
1651         g_assert_not_reached();
1652     }
1653 }
1654 
1655 static uint64_t gt_get_countervalue(CPUARMState *env)
1656 {
1657     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1658 }
1659 
1660 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1661 {
1662     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1663 
1664     if (gt->ctl & 1) {
1665         /* Timer enabled: calculate and set current ISTATUS, irq, and
1666          * reset timer to when ISTATUS next has to change
1667          */
1668         uint64_t offset = timeridx == GTIMER_VIRT ?
1669                                       cpu->env.cp15.cntvoff_el2 : 0;
1670         uint64_t count = gt_get_countervalue(&cpu->env);
1671         /* Note that this must be unsigned 64 bit arithmetic: */
1672         int istatus = count - offset >= gt->cval;
1673         uint64_t nexttick;
1674         int irqstate;
1675 
1676         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1677 
1678         irqstate = (istatus && !(gt->ctl & 2));
1679         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1680 
1681         if (istatus) {
1682             /* Next transition is when count rolls back over to zero */
1683             nexttick = UINT64_MAX;
1684         } else {
1685             /* Next transition is when we hit cval */
1686             nexttick = gt->cval + offset;
1687         }
1688         /* Note that the desired next expiry time might be beyond the
1689          * signed-64-bit range of a QEMUTimer -- in this case we just
1690          * set the timer for as far in the future as possible. When the
1691          * timer expires we will reset the timer for any remaining period.
1692          */
1693         if (nexttick > INT64_MAX / GTIMER_SCALE) {
1694             nexttick = INT64_MAX / GTIMER_SCALE;
1695         }
1696         timer_mod(cpu->gt_timer[timeridx], nexttick);
1697         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1698     } else {
1699         /* Timer disabled: ISTATUS and timer output always clear */
1700         gt->ctl &= ~4;
1701         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1702         timer_del(cpu->gt_timer[timeridx]);
1703         trace_arm_gt_recalc_disabled(timeridx);
1704     }
1705 }
1706 
1707 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1708                            int timeridx)
1709 {
1710     ARMCPU *cpu = arm_env_get_cpu(env);
1711 
1712     timer_del(cpu->gt_timer[timeridx]);
1713 }
1714 
1715 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1716 {
1717     return gt_get_countervalue(env);
1718 }
1719 
1720 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1721 {
1722     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1723 }
1724 
1725 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726                           int timeridx,
1727                           uint64_t value)
1728 {
1729     trace_arm_gt_cval_write(timeridx, value);
1730     env->cp15.c14_timer[timeridx].cval = value;
1731     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1732 }
1733 
1734 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1735                              int timeridx)
1736 {
1737     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1738 
1739     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1740                       (gt_get_countervalue(env) - offset));
1741 }
1742 
1743 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1744                           int timeridx,
1745                           uint64_t value)
1746 {
1747     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748 
1749     trace_arm_gt_tval_write(timeridx, value);
1750     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1751                                          sextract64(value, 0, 32);
1752     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1753 }
1754 
1755 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756                          int timeridx,
1757                          uint64_t value)
1758 {
1759     ARMCPU *cpu = arm_env_get_cpu(env);
1760     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1761 
1762     trace_arm_gt_ctl_write(timeridx, value);
1763     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1764     if ((oldval ^ value) & 1) {
1765         /* Enable toggled */
1766         gt_recalc_timer(cpu, timeridx);
1767     } else if ((oldval ^ value) & 2) {
1768         /* IMASK toggled: don't need to recalculate,
1769          * just set the interrupt line based on ISTATUS
1770          */
1771         int irqstate = (oldval & 4) && !(value & 2);
1772 
1773         trace_arm_gt_imask_toggle(timeridx, irqstate);
1774         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1775     }
1776 }
1777 
1778 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1779 {
1780     gt_timer_reset(env, ri, GTIMER_PHYS);
1781 }
1782 
1783 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1784                                uint64_t value)
1785 {
1786     gt_cval_write(env, ri, GTIMER_PHYS, value);
1787 }
1788 
1789 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1790 {
1791     return gt_tval_read(env, ri, GTIMER_PHYS);
1792 }
1793 
1794 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1795                                uint64_t value)
1796 {
1797     gt_tval_write(env, ri, GTIMER_PHYS, value);
1798 }
1799 
1800 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1801                               uint64_t value)
1802 {
1803     gt_ctl_write(env, ri, GTIMER_PHYS, value);
1804 }
1805 
1806 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1807 {
1808     gt_timer_reset(env, ri, GTIMER_VIRT);
1809 }
1810 
1811 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1812                                uint64_t value)
1813 {
1814     gt_cval_write(env, ri, GTIMER_VIRT, value);
1815 }
1816 
1817 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     return gt_tval_read(env, ri, GTIMER_VIRT);
1820 }
1821 
1822 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1823                                uint64_t value)
1824 {
1825     gt_tval_write(env, ri, GTIMER_VIRT, value);
1826 }
1827 
1828 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829                               uint64_t value)
1830 {
1831     gt_ctl_write(env, ri, GTIMER_VIRT, value);
1832 }
1833 
1834 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1835                               uint64_t value)
1836 {
1837     ARMCPU *cpu = arm_env_get_cpu(env);
1838 
1839     trace_arm_gt_cntvoff_write(value);
1840     raw_write(env, ri, value);
1841     gt_recalc_timer(cpu, GTIMER_VIRT);
1842 }
1843 
1844 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1845 {
1846     gt_timer_reset(env, ri, GTIMER_HYP);
1847 }
1848 
1849 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                               uint64_t value)
1851 {
1852     gt_cval_write(env, ri, GTIMER_HYP, value);
1853 }
1854 
1855 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1856 {
1857     return gt_tval_read(env, ri, GTIMER_HYP);
1858 }
1859 
1860 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1861                               uint64_t value)
1862 {
1863     gt_tval_write(env, ri, GTIMER_HYP, value);
1864 }
1865 
1866 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1867                               uint64_t value)
1868 {
1869     gt_ctl_write(env, ri, GTIMER_HYP, value);
1870 }
1871 
1872 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1873 {
1874     gt_timer_reset(env, ri, GTIMER_SEC);
1875 }
1876 
1877 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1878                               uint64_t value)
1879 {
1880     gt_cval_write(env, ri, GTIMER_SEC, value);
1881 }
1882 
1883 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1884 {
1885     return gt_tval_read(env, ri, GTIMER_SEC);
1886 }
1887 
1888 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1889                               uint64_t value)
1890 {
1891     gt_tval_write(env, ri, GTIMER_SEC, value);
1892 }
1893 
1894 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1895                               uint64_t value)
1896 {
1897     gt_ctl_write(env, ri, GTIMER_SEC, value);
1898 }
1899 
1900 void arm_gt_ptimer_cb(void *opaque)
1901 {
1902     ARMCPU *cpu = opaque;
1903 
1904     gt_recalc_timer(cpu, GTIMER_PHYS);
1905 }
1906 
1907 void arm_gt_vtimer_cb(void *opaque)
1908 {
1909     ARMCPU *cpu = opaque;
1910 
1911     gt_recalc_timer(cpu, GTIMER_VIRT);
1912 }
1913 
1914 void arm_gt_htimer_cb(void *opaque)
1915 {
1916     ARMCPU *cpu = opaque;
1917 
1918     gt_recalc_timer(cpu, GTIMER_HYP);
1919 }
1920 
1921 void arm_gt_stimer_cb(void *opaque)
1922 {
1923     ARMCPU *cpu = opaque;
1924 
1925     gt_recalc_timer(cpu, GTIMER_SEC);
1926 }
1927 
1928 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1929     /* Note that CNTFRQ is purely reads-as-written for the benefit
1930      * of software; writing it doesn't actually change the timer frequency.
1931      * Our reset value matches the fixed frequency we implement the timer at.
1932      */
1933     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1934       .type = ARM_CP_ALIAS,
1935       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1936       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1937     },
1938     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1939       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1940       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1941       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1942       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1943     },
1944     /* overall control: mostly access permissions */
1945     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1946       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1947       .access = PL1_RW,
1948       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1949       .resetvalue = 0,
1950     },
1951     /* per-timer control */
1952     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1953       .secure = ARM_CP_SECSTATE_NS,
1954       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1955       .accessfn = gt_ptimer_access,
1956       .fieldoffset = offsetoflow32(CPUARMState,
1957                                    cp15.c14_timer[GTIMER_PHYS].ctl),
1958       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1959     },
1960     { .name = "CNTP_CTL(S)",
1961       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1962       .secure = ARM_CP_SECSTATE_S,
1963       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1964       .accessfn = gt_ptimer_access,
1965       .fieldoffset = offsetoflow32(CPUARMState,
1966                                    cp15.c14_timer[GTIMER_SEC].ctl),
1967       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1968     },
1969     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1970       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1971       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1972       .accessfn = gt_ptimer_access,
1973       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1974       .resetvalue = 0,
1975       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1976     },
1977     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1978       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1979       .accessfn = gt_vtimer_access,
1980       .fieldoffset = offsetoflow32(CPUARMState,
1981                                    cp15.c14_timer[GTIMER_VIRT].ctl),
1982       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1983     },
1984     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1985       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1986       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1987       .accessfn = gt_vtimer_access,
1988       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1989       .resetvalue = 0,
1990       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1991     },
1992     /* TimerValue views: a 32 bit downcounting view of the underlying state */
1993     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1994       .secure = ARM_CP_SECSTATE_NS,
1995       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1996       .accessfn = gt_ptimer_access,
1997       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1998     },
1999     { .name = "CNTP_TVAL(S)",
2000       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2001       .secure = ARM_CP_SECSTATE_S,
2002       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2003       .accessfn = gt_ptimer_access,
2004       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
2005     },
2006     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2007       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2008       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2009       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
2010       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2011     },
2012     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2013       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2014       .accessfn = gt_vtimer_access,
2015       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2016     },
2017     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
2018       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2019       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2020       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
2021       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2022     },
2023     /* The counter itself */
2024     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2025       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2026       .accessfn = gt_pct_access,
2027       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
2028     },
2029     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
2030       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2031       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2032       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2033     },
2034     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2035       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036       .accessfn = gt_vct_access,
2037       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2038     },
2039     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
2040       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2041       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2043     },
2044     /* Comparison value, indicating when the timer goes off */
2045     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2046       .secure = ARM_CP_SECSTATE_NS,
2047       .access = PL1_RW | PL0_R,
2048       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2049       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2050       .accessfn = gt_ptimer_access,
2051       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2052     },
2053     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
2054       .secure = ARM_CP_SECSTATE_S,
2055       .access = PL1_RW | PL0_R,
2056       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2057       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2058       .accessfn = gt_ptimer_access,
2059       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2060     },
2061     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2062       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
2063       .access = PL1_RW | PL0_R,
2064       .type = ARM_CP_IO,
2065       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2066       .resetvalue = 0, .accessfn = gt_ptimer_access,
2067       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2068     },
2069     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
2070       .access = PL1_RW | PL0_R,
2071       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2072       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2073       .accessfn = gt_vtimer_access,
2074       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2075     },
2076     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
2077       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
2078       .access = PL1_RW | PL0_R,
2079       .type = ARM_CP_IO,
2080       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2081       .resetvalue = 0, .accessfn = gt_vtimer_access,
2082       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2083     },
2084     /* Secure timer -- this is actually restricted to only EL3
2085      * and configurably Secure-EL1 via the accessfn.
2086      */
2087     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
2088       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
2089       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
2090       .accessfn = gt_stimer_access,
2091       .readfn = gt_sec_tval_read,
2092       .writefn = gt_sec_tval_write,
2093       .resetfn = gt_sec_timer_reset,
2094     },
2095     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
2096       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
2097       .type = ARM_CP_IO, .access = PL1_RW,
2098       .accessfn = gt_stimer_access,
2099       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
2100       .resetvalue = 0,
2101       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
2102     },
2103     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
2104       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
2105       .type = ARM_CP_IO, .access = PL1_RW,
2106       .accessfn = gt_stimer_access,
2107       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
2108       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
2109     },
2110     REGINFO_SENTINEL
2111 };
2112 
2113 #else
2114 /* In user-mode none of the generic timer registers are accessible,
2115  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2116  * so instead just don't register any of them.
2117  */
2118 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
2119     REGINFO_SENTINEL
2120 };
2121 
2122 #endif
2123 
2124 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2125 {
2126     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2127         raw_write(env, ri, value);
2128     } else if (arm_feature(env, ARM_FEATURE_V7)) {
2129         raw_write(env, ri, value & 0xfffff6ff);
2130     } else {
2131         raw_write(env, ri, value & 0xfffff1ff);
2132     }
2133 }
2134 
2135 #ifndef CONFIG_USER_ONLY
2136 /* get_phys_addr() isn't present for user-mode-only targets */
2137 
2138 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2139                                  bool isread)
2140 {
2141     if (ri->opc2 & 4) {
2142         /* The ATS12NSO* operations must trap to EL3 if executed in
2143          * Secure EL1 (which can only happen if EL3 is AArch64).
2144          * They are simply UNDEF if executed from NS EL1.
2145          * They function normally from EL2 or EL3.
2146          */
2147         if (arm_current_el(env) == 1) {
2148             if (arm_is_secure_below_el3(env)) {
2149                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2150             }
2151             return CP_ACCESS_TRAP_UNCATEGORIZED;
2152         }
2153     }
2154     return CP_ACCESS_OK;
2155 }
2156 
2157 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2158                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
2159 {
2160     hwaddr phys_addr;
2161     target_ulong page_size;
2162     int prot;
2163     uint32_t fsr;
2164     bool ret;
2165     uint64_t par64;
2166     MemTxAttrs attrs = {};
2167     ARMMMUFaultInfo fi = {};
2168     ARMCacheAttrs cacheattrs = {};
2169 
2170     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2171                         &prot, &page_size, &fsr, &fi, &cacheattrs);
2172     if (arm_s1_regime_using_lpae_format(env, mmu_idx)) {
2173         /* fsr is a DFSR/IFSR value for the long descriptor
2174          * translation table format, but with WnR always clear.
2175          * Convert it to a 64-bit PAR.
2176          */
2177         par64 = (1 << 11); /* LPAE bit always set */
2178         if (!ret) {
2179             par64 |= phys_addr & ~0xfffULL;
2180             if (!attrs.secure) {
2181                 par64 |= (1 << 9); /* NS */
2182             }
2183             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
2184             par64 |= cacheattrs.shareability << 7; /* SH */
2185         } else {
2186             par64 |= 1; /* F */
2187             par64 |= (fsr & 0x3f) << 1; /* FS */
2188             /* Note that S2WLK and FSTAGE are always zero, because we don't
2189              * implement virtualization and therefore there can't be a stage 2
2190              * fault.
2191              */
2192         }
2193     } else {
2194         /* fsr is a DFSR/IFSR value for the short descriptor
2195          * translation table format (with WnR always clear).
2196          * Convert it to a 32-bit PAR.
2197          */
2198         if (!ret) {
2199             /* We do not set any attribute bits in the PAR */
2200             if (page_size == (1 << 24)
2201                 && arm_feature(env, ARM_FEATURE_V7)) {
2202                 par64 = (phys_addr & 0xff000000) | (1 << 1);
2203             } else {
2204                 par64 = phys_addr & 0xfffff000;
2205             }
2206             if (!attrs.secure) {
2207                 par64 |= (1 << 9); /* NS */
2208             }
2209         } else {
2210             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2211                     ((fsr & 0xf) << 1) | 1;
2212         }
2213     }
2214     return par64;
2215 }
2216 
2217 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2218 {
2219     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2220     uint64_t par64;
2221     ARMMMUIdx mmu_idx;
2222     int el = arm_current_el(env);
2223     bool secure = arm_is_secure_below_el3(env);
2224 
2225     switch (ri->opc2 & 6) {
2226     case 0:
2227         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2228         switch (el) {
2229         case 3:
2230             mmu_idx = ARMMMUIdx_S1E3;
2231             break;
2232         case 2:
2233             mmu_idx = ARMMMUIdx_S1NSE1;
2234             break;
2235         case 1:
2236             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2237             break;
2238         default:
2239             g_assert_not_reached();
2240         }
2241         break;
2242     case 2:
2243         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2244         switch (el) {
2245         case 3:
2246             mmu_idx = ARMMMUIdx_S1SE0;
2247             break;
2248         case 2:
2249             mmu_idx = ARMMMUIdx_S1NSE0;
2250             break;
2251         case 1:
2252             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2253             break;
2254         default:
2255             g_assert_not_reached();
2256         }
2257         break;
2258     case 4:
2259         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2260         mmu_idx = ARMMMUIdx_S12NSE1;
2261         break;
2262     case 6:
2263         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2264         mmu_idx = ARMMMUIdx_S12NSE0;
2265         break;
2266     default:
2267         g_assert_not_reached();
2268     }
2269 
2270     par64 = do_ats_write(env, value, access_type, mmu_idx);
2271 
2272     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2273 }
2274 
2275 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2276                         uint64_t value)
2277 {
2278     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2279     uint64_t par64;
2280 
2281     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2282 
2283     A32_BANKED_CURRENT_REG_SET(env, par, par64);
2284 }
2285 
2286 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2287                                      bool isread)
2288 {
2289     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2290         return CP_ACCESS_TRAP;
2291     }
2292     return CP_ACCESS_OK;
2293 }
2294 
2295 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2296                         uint64_t value)
2297 {
2298     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2299     ARMMMUIdx mmu_idx;
2300     int secure = arm_is_secure_below_el3(env);
2301 
2302     switch (ri->opc2 & 6) {
2303     case 0:
2304         switch (ri->opc1) {
2305         case 0: /* AT S1E1R, AT S1E1W */
2306             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2307             break;
2308         case 4: /* AT S1E2R, AT S1E2W */
2309             mmu_idx = ARMMMUIdx_S1E2;
2310             break;
2311         case 6: /* AT S1E3R, AT S1E3W */
2312             mmu_idx = ARMMMUIdx_S1E3;
2313             break;
2314         default:
2315             g_assert_not_reached();
2316         }
2317         break;
2318     case 2: /* AT S1E0R, AT S1E0W */
2319         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2320         break;
2321     case 4: /* AT S12E1R, AT S12E1W */
2322         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2323         break;
2324     case 6: /* AT S12E0R, AT S12E0W */
2325         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2326         break;
2327     default:
2328         g_assert_not_reached();
2329     }
2330 
2331     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2332 }
2333 #endif
2334 
2335 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2336     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2337       .access = PL1_RW, .resetvalue = 0,
2338       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2339                              offsetoflow32(CPUARMState, cp15.par_ns) },
2340       .writefn = par_write },
2341 #ifndef CONFIG_USER_ONLY
2342     /* This underdecoding is safe because the reginfo is NO_RAW. */
2343     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2344       .access = PL1_W, .accessfn = ats_access,
2345       .writefn = ats_write, .type = ARM_CP_NO_RAW },
2346 #endif
2347     REGINFO_SENTINEL
2348 };
2349 
2350 /* Return basic MPU access permission bits.  */
2351 static uint32_t simple_mpu_ap_bits(uint32_t val)
2352 {
2353     uint32_t ret;
2354     uint32_t mask;
2355     int i;
2356     ret = 0;
2357     mask = 3;
2358     for (i = 0; i < 16; i += 2) {
2359         ret |= (val >> i) & mask;
2360         mask <<= 2;
2361     }
2362     return ret;
2363 }
2364 
2365 /* Pad basic MPU access permission bits to extended format.  */
2366 static uint32_t extended_mpu_ap_bits(uint32_t val)
2367 {
2368     uint32_t ret;
2369     uint32_t mask;
2370     int i;
2371     ret = 0;
2372     mask = 3;
2373     for (i = 0; i < 16; i += 2) {
2374         ret |= (val & mask) << i;
2375         mask <<= 2;
2376     }
2377     return ret;
2378 }
2379 
2380 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2381                                  uint64_t value)
2382 {
2383     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2384 }
2385 
2386 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2387 {
2388     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2389 }
2390 
2391 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2392                                  uint64_t value)
2393 {
2394     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2395 }
2396 
2397 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2398 {
2399     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2400 }
2401 
2402 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2403 {
2404     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2405 
2406     if (!u32p) {
2407         return 0;
2408     }
2409 
2410     u32p += env->pmsav7.rnr[M_REG_NS];
2411     return *u32p;
2412 }
2413 
2414 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2415                          uint64_t value)
2416 {
2417     ARMCPU *cpu = arm_env_get_cpu(env);
2418     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2419 
2420     if (!u32p) {
2421         return;
2422     }
2423 
2424     u32p += env->pmsav7.rnr[M_REG_NS];
2425     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2426     *u32p = value;
2427 }
2428 
2429 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2430                               uint64_t value)
2431 {
2432     ARMCPU *cpu = arm_env_get_cpu(env);
2433     uint32_t nrgs = cpu->pmsav7_dregion;
2434 
2435     if (value >= nrgs) {
2436         qemu_log_mask(LOG_GUEST_ERROR,
2437                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2438                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2439         return;
2440     }
2441 
2442     raw_write(env, ri, value);
2443 }
2444 
2445 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2446     /* Reset for all these registers is handled in arm_cpu_reset(),
2447      * because the PMSAv7 is also used by M-profile CPUs, which do
2448      * not register cpregs but still need the state to be reset.
2449      */
2450     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2451       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2452       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2453       .readfn = pmsav7_read, .writefn = pmsav7_write,
2454       .resetfn = arm_cp_reset_ignore },
2455     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2456       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2457       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2458       .readfn = pmsav7_read, .writefn = pmsav7_write,
2459       .resetfn = arm_cp_reset_ignore },
2460     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2461       .access = PL1_RW, .type = ARM_CP_NO_RAW,
2462       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2463       .readfn = pmsav7_read, .writefn = pmsav7_write,
2464       .resetfn = arm_cp_reset_ignore },
2465     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2466       .access = PL1_RW,
2467       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2468       .writefn = pmsav7_rgnr_write,
2469       .resetfn = arm_cp_reset_ignore },
2470     REGINFO_SENTINEL
2471 };
2472 
2473 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2474     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2475       .access = PL1_RW, .type = ARM_CP_ALIAS,
2476       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2477       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2478     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2479       .access = PL1_RW, .type = ARM_CP_ALIAS,
2480       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2481       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2482     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2483       .access = PL1_RW,
2484       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2485       .resetvalue = 0, },
2486     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2487       .access = PL1_RW,
2488       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2489       .resetvalue = 0, },
2490     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2491       .access = PL1_RW,
2492       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2493     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2494       .access = PL1_RW,
2495       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2496     /* Protection region base and size registers */
2497     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2498       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2499       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2500     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2501       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2502       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2503     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2504       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2505       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2506     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2507       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2508       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2509     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2510       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2511       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2512     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2513       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2514       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2515     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2516       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2517       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2518     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2519       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2520       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2521     REGINFO_SENTINEL
2522 };
2523 
2524 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2525                                  uint64_t value)
2526 {
2527     TCR *tcr = raw_ptr(env, ri);
2528     int maskshift = extract32(value, 0, 3);
2529 
2530     if (!arm_feature(env, ARM_FEATURE_V8)) {
2531         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2532             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2533              * using Long-desciptor translation table format */
2534             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2535         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2536             /* In an implementation that includes the Security Extensions
2537              * TTBCR has additional fields PD0 [4] and PD1 [5] for
2538              * Short-descriptor translation table format.
2539              */
2540             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2541         } else {
2542             value &= TTBCR_N;
2543         }
2544     }
2545 
2546     /* Update the masks corresponding to the TCR bank being written
2547      * Note that we always calculate mask and base_mask, but
2548      * they are only used for short-descriptor tables (ie if EAE is 0);
2549      * for long-descriptor tables the TCR fields are used differently
2550      * and the mask and base_mask values are meaningless.
2551      */
2552     tcr->raw_tcr = value;
2553     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2554     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2555 }
2556 
2557 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2558                              uint64_t value)
2559 {
2560     ARMCPU *cpu = arm_env_get_cpu(env);
2561 
2562     if (arm_feature(env, ARM_FEATURE_LPAE)) {
2563         /* With LPAE the TTBCR could result in a change of ASID
2564          * via the TTBCR.A1 bit, so do a TLB flush.
2565          */
2566         tlb_flush(CPU(cpu));
2567     }
2568     vmsa_ttbcr_raw_write(env, ri, value);
2569 }
2570 
2571 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2572 {
2573     TCR *tcr = raw_ptr(env, ri);
2574 
2575     /* Reset both the TCR as well as the masks corresponding to the bank of
2576      * the TCR being reset.
2577      */
2578     tcr->raw_tcr = 0;
2579     tcr->mask = 0;
2580     tcr->base_mask = 0xffffc000u;
2581 }
2582 
2583 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2584                                uint64_t value)
2585 {
2586     ARMCPU *cpu = arm_env_get_cpu(env);
2587     TCR *tcr = raw_ptr(env, ri);
2588 
2589     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2590     tlb_flush(CPU(cpu));
2591     tcr->raw_tcr = value;
2592 }
2593 
2594 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2595                             uint64_t value)
2596 {
2597     /* 64 bit accesses to the TTBRs can change the ASID and so we
2598      * must flush the TLB.
2599      */
2600     if (cpreg_field_is_64bit(ri)) {
2601         ARMCPU *cpu = arm_env_get_cpu(env);
2602 
2603         tlb_flush(CPU(cpu));
2604     }
2605     raw_write(env, ri, value);
2606 }
2607 
2608 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2609                         uint64_t value)
2610 {
2611     ARMCPU *cpu = arm_env_get_cpu(env);
2612     CPUState *cs = CPU(cpu);
2613 
2614     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
2615     if (raw_read(env, ri) != value) {
2616         tlb_flush_by_mmuidx(cs,
2617                             ARMMMUIdxBit_S12NSE1 |
2618                             ARMMMUIdxBit_S12NSE0 |
2619                             ARMMMUIdxBit_S2NS);
2620         raw_write(env, ri, value);
2621     }
2622 }
2623 
2624 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2625     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2626       .access = PL1_RW, .type = ARM_CP_ALIAS,
2627       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2628                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2629     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2630       .access = PL1_RW, .resetvalue = 0,
2631       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2632                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2633     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2634       .access = PL1_RW, .resetvalue = 0,
2635       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2636                              offsetof(CPUARMState, cp15.dfar_ns) } },
2637     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2638       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2639       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2640       .resetvalue = 0, },
2641     REGINFO_SENTINEL
2642 };
2643 
2644 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2645     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2646       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2647       .access = PL1_RW,
2648       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2649     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2650       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2651       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2652       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2653                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
2654     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2655       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2656       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2657       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2658                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
2659     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2660       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2661       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2662       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2663       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2664     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2665       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2666       .raw_writefn = vmsa_ttbcr_raw_write,
2667       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2668                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2669     REGINFO_SENTINEL
2670 };
2671 
2672 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2673                                 uint64_t value)
2674 {
2675     env->cp15.c15_ticonfig = value & 0xe7;
2676     /* The OS_TYPE bit in this register changes the reported CPUID! */
2677     env->cp15.c0_cpuid = (value & (1 << 5)) ?
2678         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2679 }
2680 
2681 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2682                                 uint64_t value)
2683 {
2684     env->cp15.c15_threadid = value & 0xffff;
2685 }
2686 
2687 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2688                            uint64_t value)
2689 {
2690     /* Wait-for-interrupt (deprecated) */
2691     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2692 }
2693 
2694 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2695                                   uint64_t value)
2696 {
2697     /* On OMAP there are registers indicating the max/min index of dcache lines
2698      * containing a dirty line; cache flush operations have to reset these.
2699      */
2700     env->cp15.c15_i_max = 0x000;
2701     env->cp15.c15_i_min = 0xff0;
2702 }
2703 
2704 static const ARMCPRegInfo omap_cp_reginfo[] = {
2705     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2706       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2707       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2708       .resetvalue = 0, },
2709     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2710       .access = PL1_RW, .type = ARM_CP_NOP },
2711     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2712       .access = PL1_RW,
2713       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2714       .writefn = omap_ticonfig_write },
2715     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2716       .access = PL1_RW,
2717       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2718     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2719       .access = PL1_RW, .resetvalue = 0xff0,
2720       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2721     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2722       .access = PL1_RW,
2723       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2724       .writefn = omap_threadid_write },
2725     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2726       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2727       .type = ARM_CP_NO_RAW,
2728       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2729     /* TODO: Peripheral port remap register:
2730      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2731      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2732      * when MMU is off.
2733      */
2734     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2735       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2736       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2737       .writefn = omap_cachemaint_write },
2738     { .name = "C9", .cp = 15, .crn = 9,
2739       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2740       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2741     REGINFO_SENTINEL
2742 };
2743 
2744 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2745                               uint64_t value)
2746 {
2747     env->cp15.c15_cpar = value & 0x3fff;
2748 }
2749 
2750 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2751     { .name = "XSCALE_CPAR",
2752       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2753       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2754       .writefn = xscale_cpar_write, },
2755     { .name = "XSCALE_AUXCR",
2756       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2757       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2758       .resetvalue = 0, },
2759     /* XScale specific cache-lockdown: since we have no cache we NOP these
2760      * and hope the guest does not really rely on cache behaviour.
2761      */
2762     { .name = "XSCALE_LOCK_ICACHE_LINE",
2763       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2764       .access = PL1_W, .type = ARM_CP_NOP },
2765     { .name = "XSCALE_UNLOCK_ICACHE",
2766       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2767       .access = PL1_W, .type = ARM_CP_NOP },
2768     { .name = "XSCALE_DCACHE_LOCK",
2769       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2770       .access = PL1_RW, .type = ARM_CP_NOP },
2771     { .name = "XSCALE_UNLOCK_DCACHE",
2772       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2773       .access = PL1_W, .type = ARM_CP_NOP },
2774     REGINFO_SENTINEL
2775 };
2776 
2777 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2778     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2779      * implementation of this implementation-defined space.
2780      * Ideally this should eventually disappear in favour of actually
2781      * implementing the correct behaviour for all cores.
2782      */
2783     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2784       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2785       .access = PL1_RW,
2786       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2787       .resetvalue = 0 },
2788     REGINFO_SENTINEL
2789 };
2790 
2791 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2792     /* Cache status: RAZ because we have no cache so it's always clean */
2793     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2794       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2795       .resetvalue = 0 },
2796     REGINFO_SENTINEL
2797 };
2798 
2799 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2800     /* We never have a a block transfer operation in progress */
2801     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2802       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2803       .resetvalue = 0 },
2804     /* The cache ops themselves: these all NOP for QEMU */
2805     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2806       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2807     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2808       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2809     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2810       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2811     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2812       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2813     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2814       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2815     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2816       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2817     REGINFO_SENTINEL
2818 };
2819 
2820 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2821     /* The cache test-and-clean instructions always return (1 << 30)
2822      * to indicate that there are no dirty cache lines.
2823      */
2824     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2825       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2826       .resetvalue = (1 << 30) },
2827     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2828       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2829       .resetvalue = (1 << 30) },
2830     REGINFO_SENTINEL
2831 };
2832 
2833 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2834     /* Ignore ReadBuffer accesses */
2835     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2836       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2837       .access = PL1_RW, .resetvalue = 0,
2838       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2839     REGINFO_SENTINEL
2840 };
2841 
2842 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2843 {
2844     ARMCPU *cpu = arm_env_get_cpu(env);
2845     unsigned int cur_el = arm_current_el(env);
2846     bool secure = arm_is_secure(env);
2847 
2848     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2849         return env->cp15.vpidr_el2;
2850     }
2851     return raw_read(env, ri);
2852 }
2853 
2854 static uint64_t mpidr_read_val(CPUARMState *env)
2855 {
2856     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2857     uint64_t mpidr = cpu->mp_affinity;
2858 
2859     if (arm_feature(env, ARM_FEATURE_V7MP)) {
2860         mpidr |= (1U << 31);
2861         /* Cores which are uniprocessor (non-coherent)
2862          * but still implement the MP extensions set
2863          * bit 30. (For instance, Cortex-R5).
2864          */
2865         if (cpu->mp_is_up) {
2866             mpidr |= (1u << 30);
2867         }
2868     }
2869     return mpidr;
2870 }
2871 
2872 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2873 {
2874     unsigned int cur_el = arm_current_el(env);
2875     bool secure = arm_is_secure(env);
2876 
2877     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2878         return env->cp15.vmpidr_el2;
2879     }
2880     return mpidr_read_val(env);
2881 }
2882 
2883 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2884     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2885       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2886       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2887     REGINFO_SENTINEL
2888 };
2889 
2890 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2891     /* NOP AMAIR0/1 */
2892     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2893       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2894       .access = PL1_RW, .type = ARM_CP_CONST,
2895       .resetvalue = 0 },
2896     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2897     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2898       .access = PL1_RW, .type = ARM_CP_CONST,
2899       .resetvalue = 0 },
2900     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2901       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2902       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2903                              offsetof(CPUARMState, cp15.par_ns)} },
2904     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2905       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2906       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2907                              offsetof(CPUARMState, cp15.ttbr0_ns) },
2908       .writefn = vmsa_ttbr_write, },
2909     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2910       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2911       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2912                              offsetof(CPUARMState, cp15.ttbr1_ns) },
2913       .writefn = vmsa_ttbr_write, },
2914     REGINFO_SENTINEL
2915 };
2916 
2917 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2918 {
2919     return vfp_get_fpcr(env);
2920 }
2921 
2922 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2923                             uint64_t value)
2924 {
2925     vfp_set_fpcr(env, value);
2926 }
2927 
2928 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2929 {
2930     return vfp_get_fpsr(env);
2931 }
2932 
2933 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2934                             uint64_t value)
2935 {
2936     vfp_set_fpsr(env, value);
2937 }
2938 
2939 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2940                                        bool isread)
2941 {
2942     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2943         return CP_ACCESS_TRAP;
2944     }
2945     return CP_ACCESS_OK;
2946 }
2947 
2948 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2949                             uint64_t value)
2950 {
2951     env->daif = value & PSTATE_DAIF;
2952 }
2953 
2954 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2955                                           const ARMCPRegInfo *ri,
2956                                           bool isread)
2957 {
2958     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2959      * SCTLR_EL1.UCI is set.
2960      */
2961     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2962         return CP_ACCESS_TRAP;
2963     }
2964     return CP_ACCESS_OK;
2965 }
2966 
2967 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2968  * Page D4-1736 (DDI0487A.b)
2969  */
2970 
2971 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2972                                     uint64_t value)
2973 {
2974     CPUState *cs = ENV_GET_CPU(env);
2975 
2976     if (arm_is_secure_below_el3(env)) {
2977         tlb_flush_by_mmuidx(cs,
2978                             ARMMMUIdxBit_S1SE1 |
2979                             ARMMMUIdxBit_S1SE0);
2980     } else {
2981         tlb_flush_by_mmuidx(cs,
2982                             ARMMMUIdxBit_S12NSE1 |
2983                             ARMMMUIdxBit_S12NSE0);
2984     }
2985 }
2986 
2987 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                                       uint64_t value)
2989 {
2990     CPUState *cs = ENV_GET_CPU(env);
2991     bool sec = arm_is_secure_below_el3(env);
2992 
2993     if (sec) {
2994         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2995                                             ARMMMUIdxBit_S1SE1 |
2996                                             ARMMMUIdxBit_S1SE0);
2997     } else {
2998         tlb_flush_by_mmuidx_all_cpus_synced(cs,
2999                                             ARMMMUIdxBit_S12NSE1 |
3000                                             ARMMMUIdxBit_S12NSE0);
3001     }
3002 }
3003 
3004 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                                   uint64_t value)
3006 {
3007     /* Note that the 'ALL' scope must invalidate both stage 1 and
3008      * stage 2 translations, whereas most other scopes only invalidate
3009      * stage 1 translations.
3010      */
3011     ARMCPU *cpu = arm_env_get_cpu(env);
3012     CPUState *cs = CPU(cpu);
3013 
3014     if (arm_is_secure_below_el3(env)) {
3015         tlb_flush_by_mmuidx(cs,
3016                             ARMMMUIdxBit_S1SE1 |
3017                             ARMMMUIdxBit_S1SE0);
3018     } else {
3019         if (arm_feature(env, ARM_FEATURE_EL2)) {
3020             tlb_flush_by_mmuidx(cs,
3021                                 ARMMMUIdxBit_S12NSE1 |
3022                                 ARMMMUIdxBit_S12NSE0 |
3023                                 ARMMMUIdxBit_S2NS);
3024         } else {
3025             tlb_flush_by_mmuidx(cs,
3026                                 ARMMMUIdxBit_S12NSE1 |
3027                                 ARMMMUIdxBit_S12NSE0);
3028         }
3029     }
3030 }
3031 
3032 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033                                   uint64_t value)
3034 {
3035     ARMCPU *cpu = arm_env_get_cpu(env);
3036     CPUState *cs = CPU(cpu);
3037 
3038     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3039 }
3040 
3041 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3042                                   uint64_t value)
3043 {
3044     ARMCPU *cpu = arm_env_get_cpu(env);
3045     CPUState *cs = CPU(cpu);
3046 
3047     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3048 }
3049 
3050 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3051                                     uint64_t value)
3052 {
3053     /* Note that the 'ALL' scope must invalidate both stage 1 and
3054      * stage 2 translations, whereas most other scopes only invalidate
3055      * stage 1 translations.
3056      */
3057     CPUState *cs = ENV_GET_CPU(env);
3058     bool sec = arm_is_secure_below_el3(env);
3059     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3060 
3061     if (sec) {
3062         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3063                                             ARMMMUIdxBit_S1SE1 |
3064                                             ARMMMUIdxBit_S1SE0);
3065     } else if (has_el2) {
3066         tlb_flush_by_mmuidx_all_cpus_synced(cs,
3067                                             ARMMMUIdxBit_S12NSE1 |
3068                                             ARMMMUIdxBit_S12NSE0 |
3069                                             ARMMMUIdxBit_S2NS);
3070     } else {
3071           tlb_flush_by_mmuidx_all_cpus_synced(cs,
3072                                               ARMMMUIdxBit_S12NSE1 |
3073                                               ARMMMUIdxBit_S12NSE0);
3074     }
3075 }
3076 
3077 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3078                                     uint64_t value)
3079 {
3080     CPUState *cs = ENV_GET_CPU(env);
3081 
3082     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3083 }
3084 
3085 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3086                                     uint64_t value)
3087 {
3088     CPUState *cs = ENV_GET_CPU(env);
3089 
3090     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3091 }
3092 
3093 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3094                                  uint64_t value)
3095 {
3096     /* Invalidate by VA, EL1&0 (AArch64 version).
3097      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3098      * since we don't support flush-for-specific-ASID-only or
3099      * flush-last-level-only.
3100      */
3101     ARMCPU *cpu = arm_env_get_cpu(env);
3102     CPUState *cs = CPU(cpu);
3103     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3104 
3105     if (arm_is_secure_below_el3(env)) {
3106         tlb_flush_page_by_mmuidx(cs, pageaddr,
3107                                  ARMMMUIdxBit_S1SE1 |
3108                                  ARMMMUIdxBit_S1SE0);
3109     } else {
3110         tlb_flush_page_by_mmuidx(cs, pageaddr,
3111                                  ARMMMUIdxBit_S12NSE1 |
3112                                  ARMMMUIdxBit_S12NSE0);
3113     }
3114 }
3115 
3116 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3117                                  uint64_t value)
3118 {
3119     /* Invalidate by VA, EL2
3120      * Currently handles both VAE2 and VALE2, since we don't support
3121      * flush-last-level-only.
3122      */
3123     ARMCPU *cpu = arm_env_get_cpu(env);
3124     CPUState *cs = CPU(cpu);
3125     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3126 
3127     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3128 }
3129 
3130 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
3131                                  uint64_t value)
3132 {
3133     /* Invalidate by VA, EL3
3134      * Currently handles both VAE3 and VALE3, since we don't support
3135      * flush-last-level-only.
3136      */
3137     ARMCPU *cpu = arm_env_get_cpu(env);
3138     CPUState *cs = CPU(cpu);
3139     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3140 
3141     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3142 }
3143 
3144 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3145                                    uint64_t value)
3146 {
3147     ARMCPU *cpu = arm_env_get_cpu(env);
3148     CPUState *cs = CPU(cpu);
3149     bool sec = arm_is_secure_below_el3(env);
3150     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3151 
3152     if (sec) {
3153         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3154                                                  ARMMMUIdxBit_S1SE1 |
3155                                                  ARMMMUIdxBit_S1SE0);
3156     } else {
3157         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3158                                                  ARMMMUIdxBit_S12NSE1 |
3159                                                  ARMMMUIdxBit_S12NSE0);
3160     }
3161 }
3162 
3163 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3164                                    uint64_t value)
3165 {
3166     CPUState *cs = ENV_GET_CPU(env);
3167     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3168 
3169     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3170                                              ARMMMUIdxBit_S1E2);
3171 }
3172 
3173 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3174                                    uint64_t value)
3175 {
3176     CPUState *cs = ENV_GET_CPU(env);
3177     uint64_t pageaddr = sextract64(value << 12, 0, 56);
3178 
3179     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3180                                              ARMMMUIdxBit_S1E3);
3181 }
3182 
3183 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3184                                     uint64_t value)
3185 {
3186     /* Invalidate by IPA. This has to invalidate any structures that
3187      * contain only stage 2 translation information, but does not need
3188      * to apply to structures that contain combined stage 1 and stage 2
3189      * translation information.
3190      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3191      */
3192     ARMCPU *cpu = arm_env_get_cpu(env);
3193     CPUState *cs = CPU(cpu);
3194     uint64_t pageaddr;
3195 
3196     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3197         return;
3198     }
3199 
3200     pageaddr = sextract64(value << 12, 0, 48);
3201 
3202     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3203 }
3204 
3205 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3206                                       uint64_t value)
3207 {
3208     CPUState *cs = ENV_GET_CPU(env);
3209     uint64_t pageaddr;
3210 
3211     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3212         return;
3213     }
3214 
3215     pageaddr = sextract64(value << 12, 0, 48);
3216 
3217     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3218                                              ARMMMUIdxBit_S2NS);
3219 }
3220 
3221 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3222                                       bool isread)
3223 {
3224     /* We don't implement EL2, so the only control on DC ZVA is the
3225      * bit in the SCTLR which can prohibit access for EL0.
3226      */
3227     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3228         return CP_ACCESS_TRAP;
3229     }
3230     return CP_ACCESS_OK;
3231 }
3232 
3233 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3234 {
3235     ARMCPU *cpu = arm_env_get_cpu(env);
3236     int dzp_bit = 1 << 4;
3237 
3238     /* DZP indicates whether DC ZVA access is allowed */
3239     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3240         dzp_bit = 0;
3241     }
3242     return cpu->dcz_blocksize | dzp_bit;
3243 }
3244 
3245 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3246                                     bool isread)
3247 {
3248     if (!(env->pstate & PSTATE_SP)) {
3249         /* Access to SP_EL0 is undefined if it's being used as
3250          * the stack pointer.
3251          */
3252         return CP_ACCESS_TRAP_UNCATEGORIZED;
3253     }
3254     return CP_ACCESS_OK;
3255 }
3256 
3257 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3258 {
3259     return env->pstate & PSTATE_SP;
3260 }
3261 
3262 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3263 {
3264     update_spsel(env, val);
3265 }
3266 
3267 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3268                         uint64_t value)
3269 {
3270     ARMCPU *cpu = arm_env_get_cpu(env);
3271 
3272     if (raw_read(env, ri) == value) {
3273         /* Skip the TLB flush if nothing actually changed; Linux likes
3274          * to do a lot of pointless SCTLR writes.
3275          */
3276         return;
3277     }
3278 
3279     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
3280         /* M bit is RAZ/WI for PMSA with no MPU implemented */
3281         value &= ~SCTLR_M;
3282     }
3283 
3284     raw_write(env, ri, value);
3285     /* ??? Lots of these bits are not implemented.  */
3286     /* This may enable/disable the MMU, so do a TLB flush.  */
3287     tlb_flush(CPU(cpu));
3288 }
3289 
3290 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3291                                      bool isread)
3292 {
3293     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3294         return CP_ACCESS_TRAP_FP_EL2;
3295     }
3296     if (env->cp15.cptr_el[3] & CPTR_TFP) {
3297         return CP_ACCESS_TRAP_FP_EL3;
3298     }
3299     return CP_ACCESS_OK;
3300 }
3301 
3302 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3303                        uint64_t value)
3304 {
3305     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3306 }
3307 
3308 static const ARMCPRegInfo v8_cp_reginfo[] = {
3309     /* Minimal set of EL0-visible registers. This will need to be expanded
3310      * significantly for system emulation of AArch64 CPUs.
3311      */
3312     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3313       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3314       .access = PL0_RW, .type = ARM_CP_NZCV },
3315     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3316       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3317       .type = ARM_CP_NO_RAW,
3318       .access = PL0_RW, .accessfn = aa64_daif_access,
3319       .fieldoffset = offsetof(CPUARMState, daif),
3320       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3321     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3322       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3323       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3324     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3325       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3326       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3327     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3328       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3329       .access = PL0_R, .type = ARM_CP_NO_RAW,
3330       .readfn = aa64_dczid_read },
3331     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3332       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3333       .access = PL0_W, .type = ARM_CP_DC_ZVA,
3334 #ifndef CONFIG_USER_ONLY
3335       /* Avoid overhead of an access check that always passes in user-mode */
3336       .accessfn = aa64_zva_access,
3337 #endif
3338     },
3339     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3340       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3341       .access = PL1_R, .type = ARM_CP_CURRENTEL },
3342     /* Cache ops: all NOPs since we don't emulate caches */
3343     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3344       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3345       .access = PL1_W, .type = ARM_CP_NOP },
3346     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3347       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3348       .access = PL1_W, .type = ARM_CP_NOP },
3349     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3350       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3351       .access = PL0_W, .type = ARM_CP_NOP,
3352       .accessfn = aa64_cacheop_access },
3353     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3354       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3355       .access = PL1_W, .type = ARM_CP_NOP },
3356     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3357       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3358       .access = PL1_W, .type = ARM_CP_NOP },
3359     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3360       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3361       .access = PL0_W, .type = ARM_CP_NOP,
3362       .accessfn = aa64_cacheop_access },
3363     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3364       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3365       .access = PL1_W, .type = ARM_CP_NOP },
3366     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3367       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3368       .access = PL0_W, .type = ARM_CP_NOP,
3369       .accessfn = aa64_cacheop_access },
3370     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3371       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3372       .access = PL0_W, .type = ARM_CP_NOP,
3373       .accessfn = aa64_cacheop_access },
3374     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3375       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3376       .access = PL1_W, .type = ARM_CP_NOP },
3377     /* TLBI operations */
3378     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3379       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3380       .access = PL1_W, .type = ARM_CP_NO_RAW,
3381       .writefn = tlbi_aa64_vmalle1is_write },
3382     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3383       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3384       .access = PL1_W, .type = ARM_CP_NO_RAW,
3385       .writefn = tlbi_aa64_vae1is_write },
3386     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3387       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3388       .access = PL1_W, .type = ARM_CP_NO_RAW,
3389       .writefn = tlbi_aa64_vmalle1is_write },
3390     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3391       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3392       .access = PL1_W, .type = ARM_CP_NO_RAW,
3393       .writefn = tlbi_aa64_vae1is_write },
3394     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3395       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3396       .access = PL1_W, .type = ARM_CP_NO_RAW,
3397       .writefn = tlbi_aa64_vae1is_write },
3398     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3399       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3400       .access = PL1_W, .type = ARM_CP_NO_RAW,
3401       .writefn = tlbi_aa64_vae1is_write },
3402     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3403       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3404       .access = PL1_W, .type = ARM_CP_NO_RAW,
3405       .writefn = tlbi_aa64_vmalle1_write },
3406     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3407       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3408       .access = PL1_W, .type = ARM_CP_NO_RAW,
3409       .writefn = tlbi_aa64_vae1_write },
3410     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3411       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3412       .access = PL1_W, .type = ARM_CP_NO_RAW,
3413       .writefn = tlbi_aa64_vmalle1_write },
3414     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3415       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3416       .access = PL1_W, .type = ARM_CP_NO_RAW,
3417       .writefn = tlbi_aa64_vae1_write },
3418     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3419       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3420       .access = PL1_W, .type = ARM_CP_NO_RAW,
3421       .writefn = tlbi_aa64_vae1_write },
3422     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3424       .access = PL1_W, .type = ARM_CP_NO_RAW,
3425       .writefn = tlbi_aa64_vae1_write },
3426     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3427       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3428       .access = PL2_W, .type = ARM_CP_NO_RAW,
3429       .writefn = tlbi_aa64_ipas2e1is_write },
3430     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3431       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3432       .access = PL2_W, .type = ARM_CP_NO_RAW,
3433       .writefn = tlbi_aa64_ipas2e1is_write },
3434     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3435       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3436       .access = PL2_W, .type = ARM_CP_NO_RAW,
3437       .writefn = tlbi_aa64_alle1is_write },
3438     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3439       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3440       .access = PL2_W, .type = ARM_CP_NO_RAW,
3441       .writefn = tlbi_aa64_alle1is_write },
3442     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3443       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3444       .access = PL2_W, .type = ARM_CP_NO_RAW,
3445       .writefn = tlbi_aa64_ipas2e1_write },
3446     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3447       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3448       .access = PL2_W, .type = ARM_CP_NO_RAW,
3449       .writefn = tlbi_aa64_ipas2e1_write },
3450     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3451       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3452       .access = PL2_W, .type = ARM_CP_NO_RAW,
3453       .writefn = tlbi_aa64_alle1_write },
3454     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3455       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3456       .access = PL2_W, .type = ARM_CP_NO_RAW,
3457       .writefn = tlbi_aa64_alle1is_write },
3458 #ifndef CONFIG_USER_ONLY
3459     /* 64 bit address translation operations */
3460     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3461       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3462       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3463     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3464       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3465       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3466     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3467       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3468       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3469     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3470       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3471       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3472     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3473       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3474       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3475     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3476       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3477       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3478     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3479       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3480       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3481     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3482       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3483       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3484     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3485     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3486       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3487       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3488     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3489       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3490       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3491     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3492       .type = ARM_CP_ALIAS,
3493       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3494       .access = PL1_RW, .resetvalue = 0,
3495       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3496       .writefn = par_write },
3497 #endif
3498     /* TLB invalidate last level of translation table walk */
3499     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3500       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3501     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3502       .type = ARM_CP_NO_RAW, .access = PL1_W,
3503       .writefn = tlbimvaa_is_write },
3504     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3505       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3506     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3507       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3508     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3509       .type = ARM_CP_NO_RAW, .access = PL2_W,
3510       .writefn = tlbimva_hyp_write },
3511     { .name = "TLBIMVALHIS",
3512       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3513       .type = ARM_CP_NO_RAW, .access = PL2_W,
3514       .writefn = tlbimva_hyp_is_write },
3515     { .name = "TLBIIPAS2",
3516       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3517       .type = ARM_CP_NO_RAW, .access = PL2_W,
3518       .writefn = tlbiipas2_write },
3519     { .name = "TLBIIPAS2IS",
3520       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3521       .type = ARM_CP_NO_RAW, .access = PL2_W,
3522       .writefn = tlbiipas2_is_write },
3523     { .name = "TLBIIPAS2L",
3524       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3525       .type = ARM_CP_NO_RAW, .access = PL2_W,
3526       .writefn = tlbiipas2_write },
3527     { .name = "TLBIIPAS2LIS",
3528       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3529       .type = ARM_CP_NO_RAW, .access = PL2_W,
3530       .writefn = tlbiipas2_is_write },
3531     /* 32 bit cache operations */
3532     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3533       .type = ARM_CP_NOP, .access = PL1_W },
3534     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3535       .type = ARM_CP_NOP, .access = PL1_W },
3536     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3537       .type = ARM_CP_NOP, .access = PL1_W },
3538     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3539       .type = ARM_CP_NOP, .access = PL1_W },
3540     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3541       .type = ARM_CP_NOP, .access = PL1_W },
3542     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3543       .type = ARM_CP_NOP, .access = PL1_W },
3544     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3545       .type = ARM_CP_NOP, .access = PL1_W },
3546     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3547       .type = ARM_CP_NOP, .access = PL1_W },
3548     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3549       .type = ARM_CP_NOP, .access = PL1_W },
3550     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3551       .type = ARM_CP_NOP, .access = PL1_W },
3552     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3553       .type = ARM_CP_NOP, .access = PL1_W },
3554     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3555       .type = ARM_CP_NOP, .access = PL1_W },
3556     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3557       .type = ARM_CP_NOP, .access = PL1_W },
3558     /* MMU Domain access control / MPU write buffer control */
3559     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3560       .access = PL1_RW, .resetvalue = 0,
3561       .writefn = dacr_write, .raw_writefn = raw_write,
3562       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3563                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3564     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3565       .type = ARM_CP_ALIAS,
3566       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3567       .access = PL1_RW,
3568       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3569     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3570       .type = ARM_CP_ALIAS,
3571       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3572       .access = PL1_RW,
3573       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3574     /* We rely on the access checks not allowing the guest to write to the
3575      * state field when SPSel indicates that it's being used as the stack
3576      * pointer.
3577      */
3578     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3579       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3580       .access = PL1_RW, .accessfn = sp_el0_access,
3581       .type = ARM_CP_ALIAS,
3582       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3583     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3584       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3585       .access = PL2_RW, .type = ARM_CP_ALIAS,
3586       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3587     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3588       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3589       .type = ARM_CP_NO_RAW,
3590       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3591     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3592       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3593       .type = ARM_CP_ALIAS,
3594       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3595       .access = PL2_RW, .accessfn = fpexc32_access },
3596     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3597       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3598       .access = PL2_RW, .resetvalue = 0,
3599       .writefn = dacr_write, .raw_writefn = raw_write,
3600       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3601     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3602       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3603       .access = PL2_RW, .resetvalue = 0,
3604       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3605     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3606       .type = ARM_CP_ALIAS,
3607       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3608       .access = PL2_RW,
3609       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3610     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3611       .type = ARM_CP_ALIAS,
3612       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3613       .access = PL2_RW,
3614       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3615     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3616       .type = ARM_CP_ALIAS,
3617       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3618       .access = PL2_RW,
3619       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3620     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3621       .type = ARM_CP_ALIAS,
3622       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3623       .access = PL2_RW,
3624       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3625     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3626       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3627       .resetvalue = 0,
3628       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3629     { .name = "SDCR", .type = ARM_CP_ALIAS,
3630       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3631       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3632       .writefn = sdcr_write,
3633       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3634     REGINFO_SENTINEL
3635 };
3636 
3637 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3638 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3639     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3640       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3641       .access = PL2_RW,
3642       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3643     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3644       .type = ARM_CP_NO_RAW,
3645       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3646       .access = PL2_RW,
3647       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3648     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3649       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3650       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3651     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3652       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3653       .access = PL2_RW, .type = ARM_CP_CONST,
3654       .resetvalue = 0 },
3655     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3656       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3657       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3658     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3659       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3660       .access = PL2_RW, .type = ARM_CP_CONST,
3661       .resetvalue = 0 },
3662     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3663       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3664       .access = PL2_RW, .type = ARM_CP_CONST,
3665       .resetvalue = 0 },
3666     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3667       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3668       .access = PL2_RW, .type = ARM_CP_CONST,
3669       .resetvalue = 0 },
3670     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3671       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3672       .access = PL2_RW, .type = ARM_CP_CONST,
3673       .resetvalue = 0 },
3674     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3675       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3676       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3677     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3678       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3679       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3680       .type = ARM_CP_CONST, .resetvalue = 0 },
3681     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3682       .cp = 15, .opc1 = 6, .crm = 2,
3683       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3684       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3685     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3686       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3687       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3688     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3689       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3690       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3691     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3692       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3693       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3694     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3695       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3696       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3697     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3698       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3699       .resetvalue = 0 },
3700     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3701       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3702       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3703     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3704       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3705       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3706     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3707       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3708       .resetvalue = 0 },
3709     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3710       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3711       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3712     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3713       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3714       .resetvalue = 0 },
3715     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3716       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3717       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3718     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3719       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3720       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3721     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3722       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3723       .access = PL2_RW, .accessfn = access_tda,
3724       .type = ARM_CP_CONST, .resetvalue = 0 },
3725     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3726       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3727       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3728       .type = ARM_CP_CONST, .resetvalue = 0 },
3729     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3730       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3731       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3732     REGINFO_SENTINEL
3733 };
3734 
3735 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3736 {
3737     ARMCPU *cpu = arm_env_get_cpu(env);
3738     uint64_t valid_mask = HCR_MASK;
3739 
3740     if (arm_feature(env, ARM_FEATURE_EL3)) {
3741         valid_mask &= ~HCR_HCD;
3742     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
3743         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3744          * However, if we're using the SMC PSCI conduit then QEMU is
3745          * effectively acting like EL3 firmware and so the guest at
3746          * EL2 should retain the ability to prevent EL1 from being
3747          * able to make SMC calls into the ersatz firmware, so in
3748          * that case HCR.TSC should be read/write.
3749          */
3750         valid_mask &= ~HCR_TSC;
3751     }
3752 
3753     /* Clear RES0 bits.  */
3754     value &= valid_mask;
3755 
3756     /* These bits change the MMU setup:
3757      * HCR_VM enables stage 2 translation
3758      * HCR_PTW forbids certain page-table setups
3759      * HCR_DC Disables stage1 and enables stage2 translation
3760      */
3761     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3762         tlb_flush(CPU(cpu));
3763     }
3764     raw_write(env, ri, value);
3765 }
3766 
3767 static const ARMCPRegInfo el2_cp_reginfo[] = {
3768     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3769       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3770       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3771       .writefn = hcr_write },
3772     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3773       .type = ARM_CP_ALIAS,
3774       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3775       .access = PL2_RW,
3776       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3777     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3778       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3779       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3780     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3781       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3782       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3783     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3784       .type = ARM_CP_ALIAS,
3785       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3786       .access = PL2_RW,
3787       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3788     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3789       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3790       .access = PL2_RW, .writefn = vbar_write,
3791       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3792       .resetvalue = 0 },
3793     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3794       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3795       .access = PL3_RW, .type = ARM_CP_ALIAS,
3796       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3797     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3798       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3799       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3800       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3801     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3802       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3803       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3804       .resetvalue = 0 },
3805     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3806       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3807       .access = PL2_RW, .type = ARM_CP_ALIAS,
3808       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3809     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3810       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3811       .access = PL2_RW, .type = ARM_CP_CONST,
3812       .resetvalue = 0 },
3813     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3814     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3815       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3816       .access = PL2_RW, .type = ARM_CP_CONST,
3817       .resetvalue = 0 },
3818     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3819       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3820       .access = PL2_RW, .type = ARM_CP_CONST,
3821       .resetvalue = 0 },
3822     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3823       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3824       .access = PL2_RW, .type = ARM_CP_CONST,
3825       .resetvalue = 0 },
3826     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3827       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3828       .access = PL2_RW,
3829       /* no .writefn needed as this can't cause an ASID change;
3830        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3831        */
3832       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3833     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3834       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3835       .type = ARM_CP_ALIAS,
3836       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3837       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3838     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3839       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3840       .access = PL2_RW,
3841       /* no .writefn needed as this can't cause an ASID change;
3842        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3843        */
3844       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3845     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3846       .cp = 15, .opc1 = 6, .crm = 2,
3847       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3848       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3849       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3850       .writefn = vttbr_write },
3851     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3852       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3853       .access = PL2_RW, .writefn = vttbr_write,
3854       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3855     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3856       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3857       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3858       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3859     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3860       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3861       .access = PL2_RW, .resetvalue = 0,
3862       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3863     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3864       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3865       .access = PL2_RW, .resetvalue = 0,
3866       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3867     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3868       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3869       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3870     { .name = "TLBIALLNSNH",
3871       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3872       .type = ARM_CP_NO_RAW, .access = PL2_W,
3873       .writefn = tlbiall_nsnh_write },
3874     { .name = "TLBIALLNSNHIS",
3875       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3876       .type = ARM_CP_NO_RAW, .access = PL2_W,
3877       .writefn = tlbiall_nsnh_is_write },
3878     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3879       .type = ARM_CP_NO_RAW, .access = PL2_W,
3880       .writefn = tlbiall_hyp_write },
3881     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3882       .type = ARM_CP_NO_RAW, .access = PL2_W,
3883       .writefn = tlbiall_hyp_is_write },
3884     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3885       .type = ARM_CP_NO_RAW, .access = PL2_W,
3886       .writefn = tlbimva_hyp_write },
3887     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3888       .type = ARM_CP_NO_RAW, .access = PL2_W,
3889       .writefn = tlbimva_hyp_is_write },
3890     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3891       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3892       .type = ARM_CP_NO_RAW, .access = PL2_W,
3893       .writefn = tlbi_aa64_alle2_write },
3894     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3895       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3896       .type = ARM_CP_NO_RAW, .access = PL2_W,
3897       .writefn = tlbi_aa64_vae2_write },
3898     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3899       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3900       .access = PL2_W, .type = ARM_CP_NO_RAW,
3901       .writefn = tlbi_aa64_vae2_write },
3902     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3903       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3904       .access = PL2_W, .type = ARM_CP_NO_RAW,
3905       .writefn = tlbi_aa64_alle2is_write },
3906     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3907       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3908       .type = ARM_CP_NO_RAW, .access = PL2_W,
3909       .writefn = tlbi_aa64_vae2is_write },
3910     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3911       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3912       .access = PL2_W, .type = ARM_CP_NO_RAW,
3913       .writefn = tlbi_aa64_vae2is_write },
3914 #ifndef CONFIG_USER_ONLY
3915     /* Unlike the other EL2-related AT operations, these must
3916      * UNDEF from EL3 if EL2 is not implemented, which is why we
3917      * define them here rather than with the rest of the AT ops.
3918      */
3919     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3920       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3921       .access = PL2_W, .accessfn = at_s1e2_access,
3922       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3923     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3924       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3925       .access = PL2_W, .accessfn = at_s1e2_access,
3926       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3927     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3928      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3929      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3930      * to behave as if SCR.NS was 1.
3931      */
3932     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3933       .access = PL2_W,
3934       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3935     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3936       .access = PL2_W,
3937       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3938     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3939       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3940       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3941        * reset values as IMPDEF. We choose to reset to 3 to comply with
3942        * both ARMv7 and ARMv8.
3943        */
3944       .access = PL2_RW, .resetvalue = 3,
3945       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3946     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3947       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3948       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3949       .writefn = gt_cntvoff_write,
3950       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3951     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3952       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3953       .writefn = gt_cntvoff_write,
3954       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3955     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3956       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3957       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3958       .type = ARM_CP_IO, .access = PL2_RW,
3959       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3960     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3961       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3962       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3963       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3964     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3965       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3966       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3967       .resetfn = gt_hyp_timer_reset,
3968       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3969     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3970       .type = ARM_CP_IO,
3971       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3972       .access = PL2_RW,
3973       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3974       .resetvalue = 0,
3975       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3976 #endif
3977     /* The only field of MDCR_EL2 that has a defined architectural reset value
3978      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3979      * don't impelment any PMU event counters, so using zero as a reset
3980      * value for MDCR_EL2 is okay
3981      */
3982     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3983       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3984       .access = PL2_RW, .resetvalue = 0,
3985       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3986     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3987       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3988       .access = PL2_RW, .accessfn = access_el3_aa32ns,
3989       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3990     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3991       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3992       .access = PL2_RW,
3993       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3994     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3995       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3996       .access = PL2_RW,
3997       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3998     REGINFO_SENTINEL
3999 };
4000 
4001 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
4002                                    bool isread)
4003 {
4004     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4005      * At Secure EL1 it traps to EL3.
4006      */
4007     if (arm_current_el(env) == 3) {
4008         return CP_ACCESS_OK;
4009     }
4010     if (arm_is_secure_below_el3(env)) {
4011         return CP_ACCESS_TRAP_EL3;
4012     }
4013     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4014     if (isread) {
4015         return CP_ACCESS_OK;
4016     }
4017     return CP_ACCESS_TRAP_UNCATEGORIZED;
4018 }
4019 
4020 static const ARMCPRegInfo el3_cp_reginfo[] = {
4021     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
4022       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
4023       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
4024       .resetvalue = 0, .writefn = scr_write },
4025     { .name = "SCR",  .type = ARM_CP_ALIAS,
4026       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4027       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4028       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4029       .writefn = scr_write },
4030     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
4031       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
4032       .access = PL3_RW, .resetvalue = 0,
4033       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
4034     { .name = "SDER",
4035       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
4036       .access = PL3_RW, .resetvalue = 0,
4037       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
4038     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4039       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
4040       .writefn = vbar_write, .resetvalue = 0,
4041       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
4042     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
4043       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
4044       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
4045       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
4046     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
4047       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4048       .access = PL3_RW,
4049       /* no .writefn needed as this can't cause an ASID change;
4050        * we must provide a .raw_writefn and .resetfn because we handle
4051        * reset and migration for the AArch32 TTBCR(S), which might be
4052        * using mask and base_mask.
4053        */
4054       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
4055       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4056     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4057       .type = ARM_CP_ALIAS,
4058       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
4059       .access = PL3_RW,
4060       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4061     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
4062       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
4063       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4064     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
4065       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
4066       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4067     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4068       .type = ARM_CP_ALIAS,
4069       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4070       .access = PL3_RW,
4071       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4072     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
4073       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
4074       .access = PL3_RW, .writefn = vbar_write,
4075       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
4076       .resetvalue = 0 },
4077     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
4078       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
4079       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
4080       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4081     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
4082       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
4083       .access = PL3_RW, .resetvalue = 0,
4084       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4085     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
4086       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
4087       .access = PL3_RW, .type = ARM_CP_CONST,
4088       .resetvalue = 0 },
4089     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
4090       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
4091       .access = PL3_RW, .type = ARM_CP_CONST,
4092       .resetvalue = 0 },
4093     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
4094       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
4095       .access = PL3_RW, .type = ARM_CP_CONST,
4096       .resetvalue = 0 },
4097     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
4098       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
4099       .access = PL3_W, .type = ARM_CP_NO_RAW,
4100       .writefn = tlbi_aa64_alle3is_write },
4101     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
4102       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
4103       .access = PL3_W, .type = ARM_CP_NO_RAW,
4104       .writefn = tlbi_aa64_vae3is_write },
4105     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
4106       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
4107       .access = PL3_W, .type = ARM_CP_NO_RAW,
4108       .writefn = tlbi_aa64_vae3is_write },
4109     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
4110       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
4111       .access = PL3_W, .type = ARM_CP_NO_RAW,
4112       .writefn = tlbi_aa64_alle3_write },
4113     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
4114       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
4115       .access = PL3_W, .type = ARM_CP_NO_RAW,
4116       .writefn = tlbi_aa64_vae3_write },
4117     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
4118       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
4119       .access = PL3_W, .type = ARM_CP_NO_RAW,
4120       .writefn = tlbi_aa64_vae3_write },
4121     REGINFO_SENTINEL
4122 };
4123 
4124 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4125                                      bool isread)
4126 {
4127     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4128      * but the AArch32 CTR has its own reginfo struct)
4129      */
4130     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4131         return CP_ACCESS_TRAP;
4132     }
4133     return CP_ACCESS_OK;
4134 }
4135 
4136 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4137                         uint64_t value)
4138 {
4139     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4140      * read via a bit in OSLSR_EL1.
4141      */
4142     int oslock;
4143 
4144     if (ri->state == ARM_CP_STATE_AA32) {
4145         oslock = (value == 0xC5ACCE55);
4146     } else {
4147         oslock = value & 1;
4148     }
4149 
4150     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4151 }
4152 
4153 static const ARMCPRegInfo debug_cp_reginfo[] = {
4154     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4155      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4156      * unlike DBGDRAR it is never accessible from EL0.
4157      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4158      * accessor.
4159      */
4160     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4161       .access = PL0_R, .accessfn = access_tdra,
4162       .type = ARM_CP_CONST, .resetvalue = 0 },
4163     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4164       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4165       .access = PL1_R, .accessfn = access_tdra,
4166       .type = ARM_CP_CONST, .resetvalue = 0 },
4167     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4168       .access = PL0_R, .accessfn = access_tdra,
4169       .type = ARM_CP_CONST, .resetvalue = 0 },
4170     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4171     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4172       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4173       .access = PL1_RW, .accessfn = access_tda,
4174       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4175       .resetvalue = 0 },
4176     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4177      * We don't implement the configurable EL0 access.
4178      */
4179     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4180       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4181       .type = ARM_CP_ALIAS,
4182       .access = PL1_R, .accessfn = access_tda,
4183       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4184     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4185       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4186       .access = PL1_W, .type = ARM_CP_NO_RAW,
4187       .accessfn = access_tdosa,
4188       .writefn = oslar_write },
4189     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4190       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4191       .access = PL1_R, .resetvalue = 10,
4192       .accessfn = access_tdosa,
4193       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4194     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4195     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4196       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4197       .access = PL1_RW, .accessfn = access_tdosa,
4198       .type = ARM_CP_NOP },
4199     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4200      * implement vector catch debug events yet.
4201      */
4202     { .name = "DBGVCR",
4203       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4204       .access = PL1_RW, .accessfn = access_tda,
4205       .type = ARM_CP_NOP },
4206     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4207      * to save and restore a 32-bit guest's DBGVCR)
4208      */
4209     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
4210       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
4211       .access = PL2_RW, .accessfn = access_tda,
4212       .type = ARM_CP_NOP },
4213     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4214      * Channel but Linux may try to access this register. The 32-bit
4215      * alias is DBGDCCINT.
4216      */
4217     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
4218       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4219       .access = PL1_RW, .accessfn = access_tda,
4220       .type = ARM_CP_NOP },
4221     REGINFO_SENTINEL
4222 };
4223 
4224 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4225     /* 64 bit access versions of the (dummy) debug registers */
4226     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4227       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4228     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4229       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4230     REGINFO_SENTINEL
4231 };
4232 
4233 void hw_watchpoint_update(ARMCPU *cpu, int n)
4234 {
4235     CPUARMState *env = &cpu->env;
4236     vaddr len = 0;
4237     vaddr wvr = env->cp15.dbgwvr[n];
4238     uint64_t wcr = env->cp15.dbgwcr[n];
4239     int mask;
4240     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4241 
4242     if (env->cpu_watchpoint[n]) {
4243         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4244         env->cpu_watchpoint[n] = NULL;
4245     }
4246 
4247     if (!extract64(wcr, 0, 1)) {
4248         /* E bit clear : watchpoint disabled */
4249         return;
4250     }
4251 
4252     switch (extract64(wcr, 3, 2)) {
4253     case 0:
4254         /* LSC 00 is reserved and must behave as if the wp is disabled */
4255         return;
4256     case 1:
4257         flags |= BP_MEM_READ;
4258         break;
4259     case 2:
4260         flags |= BP_MEM_WRITE;
4261         break;
4262     case 3:
4263         flags |= BP_MEM_ACCESS;
4264         break;
4265     }
4266 
4267     /* Attempts to use both MASK and BAS fields simultaneously are
4268      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4269      * thus generating a watchpoint for every byte in the masked region.
4270      */
4271     mask = extract64(wcr, 24, 4);
4272     if (mask == 1 || mask == 2) {
4273         /* Reserved values of MASK; we must act as if the mask value was
4274          * some non-reserved value, or as if the watchpoint were disabled.
4275          * We choose the latter.
4276          */
4277         return;
4278     } else if (mask) {
4279         /* Watchpoint covers an aligned area up to 2GB in size */
4280         len = 1ULL << mask;
4281         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4282          * whether the watchpoint fires when the unmasked bits match; we opt
4283          * to generate the exceptions.
4284          */
4285         wvr &= ~(len - 1);
4286     } else {
4287         /* Watchpoint covers bytes defined by the byte address select bits */
4288         int bas = extract64(wcr, 5, 8);
4289         int basstart;
4290 
4291         if (bas == 0) {
4292             /* This must act as if the watchpoint is disabled */
4293             return;
4294         }
4295 
4296         if (extract64(wvr, 2, 1)) {
4297             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4298              * ignored, and BAS[3:0] define which bytes to watch.
4299              */
4300             bas &= 0xf;
4301         }
4302         /* The BAS bits are supposed to be programmed to indicate a contiguous
4303          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4304          * we fire for each byte in the word/doubleword addressed by the WVR.
4305          * We choose to ignore any non-zero bits after the first range of 1s.
4306          */
4307         basstart = ctz32(bas);
4308         len = cto32(bas >> basstart);
4309         wvr += basstart;
4310     }
4311 
4312     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4313                           &env->cpu_watchpoint[n]);
4314 }
4315 
4316 void hw_watchpoint_update_all(ARMCPU *cpu)
4317 {
4318     int i;
4319     CPUARMState *env = &cpu->env;
4320 
4321     /* Completely clear out existing QEMU watchpoints and our array, to
4322      * avoid possible stale entries following migration load.
4323      */
4324     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4325     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4326 
4327     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4328         hw_watchpoint_update(cpu, i);
4329     }
4330 }
4331 
4332 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4333                          uint64_t value)
4334 {
4335     ARMCPU *cpu = arm_env_get_cpu(env);
4336     int i = ri->crm;
4337 
4338     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4339      * register reads and behaves as if values written are sign extended.
4340      * Bits [1:0] are RES0.
4341      */
4342     value = sextract64(value, 0, 49) & ~3ULL;
4343 
4344     raw_write(env, ri, value);
4345     hw_watchpoint_update(cpu, i);
4346 }
4347 
4348 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4349                          uint64_t value)
4350 {
4351     ARMCPU *cpu = arm_env_get_cpu(env);
4352     int i = ri->crm;
4353 
4354     raw_write(env, ri, value);
4355     hw_watchpoint_update(cpu, i);
4356 }
4357 
4358 void hw_breakpoint_update(ARMCPU *cpu, int n)
4359 {
4360     CPUARMState *env = &cpu->env;
4361     uint64_t bvr = env->cp15.dbgbvr[n];
4362     uint64_t bcr = env->cp15.dbgbcr[n];
4363     vaddr addr;
4364     int bt;
4365     int flags = BP_CPU;
4366 
4367     if (env->cpu_breakpoint[n]) {
4368         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4369         env->cpu_breakpoint[n] = NULL;
4370     }
4371 
4372     if (!extract64(bcr, 0, 1)) {
4373         /* E bit clear : watchpoint disabled */
4374         return;
4375     }
4376 
4377     bt = extract64(bcr, 20, 4);
4378 
4379     switch (bt) {
4380     case 4: /* unlinked address mismatch (reserved if AArch64) */
4381     case 5: /* linked address mismatch (reserved if AArch64) */
4382         qemu_log_mask(LOG_UNIMP,
4383                       "arm: address mismatch breakpoint types not implemented");
4384         return;
4385     case 0: /* unlinked address match */
4386     case 1: /* linked address match */
4387     {
4388         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4389          * we behave as if the register was sign extended. Bits [1:0] are
4390          * RES0. The BAS field is used to allow setting breakpoints on 16
4391          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4392          * a bp will fire if the addresses covered by the bp and the addresses
4393          * covered by the insn overlap but the insn doesn't start at the
4394          * start of the bp address range. We choose to require the insn and
4395          * the bp to have the same address. The constraints on writing to
4396          * BAS enforced in dbgbcr_write mean we have only four cases:
4397          *  0b0000  => no breakpoint
4398          *  0b0011  => breakpoint on addr
4399          *  0b1100  => breakpoint on addr + 2
4400          *  0b1111  => breakpoint on addr
4401          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4402          */
4403         int bas = extract64(bcr, 5, 4);
4404         addr = sextract64(bvr, 0, 49) & ~3ULL;
4405         if (bas == 0) {
4406             return;
4407         }
4408         if (bas == 0xc) {
4409             addr += 2;
4410         }
4411         break;
4412     }
4413     case 2: /* unlinked context ID match */
4414     case 8: /* unlinked VMID match (reserved if no EL2) */
4415     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4416         qemu_log_mask(LOG_UNIMP,
4417                       "arm: unlinked context breakpoint types not implemented");
4418         return;
4419     case 9: /* linked VMID match (reserved if no EL2) */
4420     case 11: /* linked context ID and VMID match (reserved if no EL2) */
4421     case 3: /* linked context ID match */
4422     default:
4423         /* We must generate no events for Linked context matches (unless
4424          * they are linked to by some other bp/wp, which is handled in
4425          * updates for the linking bp/wp). We choose to also generate no events
4426          * for reserved values.
4427          */
4428         return;
4429     }
4430 
4431     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4432 }
4433 
4434 void hw_breakpoint_update_all(ARMCPU *cpu)
4435 {
4436     int i;
4437     CPUARMState *env = &cpu->env;
4438 
4439     /* Completely clear out existing QEMU breakpoints and our array, to
4440      * avoid possible stale entries following migration load.
4441      */
4442     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4443     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4444 
4445     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4446         hw_breakpoint_update(cpu, i);
4447     }
4448 }
4449 
4450 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4451                          uint64_t value)
4452 {
4453     ARMCPU *cpu = arm_env_get_cpu(env);
4454     int i = ri->crm;
4455 
4456     raw_write(env, ri, value);
4457     hw_breakpoint_update(cpu, i);
4458 }
4459 
4460 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4461                          uint64_t value)
4462 {
4463     ARMCPU *cpu = arm_env_get_cpu(env);
4464     int i = ri->crm;
4465 
4466     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4467      * copy of BAS[0].
4468      */
4469     value = deposit64(value, 6, 1, extract64(value, 5, 1));
4470     value = deposit64(value, 8, 1, extract64(value, 7, 1));
4471 
4472     raw_write(env, ri, value);
4473     hw_breakpoint_update(cpu, i);
4474 }
4475 
4476 static void define_debug_regs(ARMCPU *cpu)
4477 {
4478     /* Define v7 and v8 architectural debug registers.
4479      * These are just dummy implementations for now.
4480      */
4481     int i;
4482     int wrps, brps, ctx_cmps;
4483     ARMCPRegInfo dbgdidr = {
4484         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4485         .access = PL0_R, .accessfn = access_tda,
4486         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4487     };
4488 
4489     /* Note that all these register fields hold "number of Xs minus 1". */
4490     brps = extract32(cpu->dbgdidr, 24, 4);
4491     wrps = extract32(cpu->dbgdidr, 28, 4);
4492     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4493 
4494     assert(ctx_cmps <= brps);
4495 
4496     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4497      * of the debug registers such as number of breakpoints;
4498      * check that if they both exist then they agree.
4499      */
4500     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4501         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4502         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4503         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4504     }
4505 
4506     define_one_arm_cp_reg(cpu, &dbgdidr);
4507     define_arm_cp_regs(cpu, debug_cp_reginfo);
4508 
4509     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4510         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4511     }
4512 
4513     for (i = 0; i < brps + 1; i++) {
4514         ARMCPRegInfo dbgregs[] = {
4515             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4516               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4517               .access = PL1_RW, .accessfn = access_tda,
4518               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4519               .writefn = dbgbvr_write, .raw_writefn = raw_write
4520             },
4521             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4522               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4523               .access = PL1_RW, .accessfn = access_tda,
4524               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4525               .writefn = dbgbcr_write, .raw_writefn = raw_write
4526             },
4527             REGINFO_SENTINEL
4528         };
4529         define_arm_cp_regs(cpu, dbgregs);
4530     }
4531 
4532     for (i = 0; i < wrps + 1; i++) {
4533         ARMCPRegInfo dbgregs[] = {
4534             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4535               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4536               .access = PL1_RW, .accessfn = access_tda,
4537               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4538               .writefn = dbgwvr_write, .raw_writefn = raw_write
4539             },
4540             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4541               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4542               .access = PL1_RW, .accessfn = access_tda,
4543               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4544               .writefn = dbgwcr_write, .raw_writefn = raw_write
4545             },
4546             REGINFO_SENTINEL
4547         };
4548         define_arm_cp_regs(cpu, dbgregs);
4549     }
4550 }
4551 
4552 /* We don't know until after realize whether there's a GICv3
4553  * attached, and that is what registers the gicv3 sysregs.
4554  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
4555  * at runtime.
4556  */
4557 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
4558 {
4559     ARMCPU *cpu = arm_env_get_cpu(env);
4560     uint64_t pfr1 = cpu->id_pfr1;
4561 
4562     if (env->gicv3state) {
4563         pfr1 |= 1 << 28;
4564     }
4565     return pfr1;
4566 }
4567 
4568 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
4569 {
4570     ARMCPU *cpu = arm_env_get_cpu(env);
4571     uint64_t pfr0 = cpu->id_aa64pfr0;
4572 
4573     if (env->gicv3state) {
4574         pfr0 |= 1 << 24;
4575     }
4576     return pfr0;
4577 }
4578 
4579 void register_cp_regs_for_features(ARMCPU *cpu)
4580 {
4581     /* Register all the coprocessor registers based on feature bits */
4582     CPUARMState *env = &cpu->env;
4583     if (arm_feature(env, ARM_FEATURE_M)) {
4584         /* M profile has no coprocessor registers */
4585         return;
4586     }
4587 
4588     define_arm_cp_regs(cpu, cp_reginfo);
4589     if (!arm_feature(env, ARM_FEATURE_V8)) {
4590         /* Must go early as it is full of wildcards that may be
4591          * overridden by later definitions.
4592          */
4593         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4594     }
4595 
4596     if (arm_feature(env, ARM_FEATURE_V6)) {
4597         /* The ID registers all have impdef reset values */
4598         ARMCPRegInfo v6_idregs[] = {
4599             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4600               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4601               .access = PL1_R, .type = ARM_CP_CONST,
4602               .resetvalue = cpu->id_pfr0 },
4603             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
4604              * the value of the GIC field until after we define these regs.
4605              */
4606             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4607               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4608               .access = PL1_R, .type = ARM_CP_NO_RAW,
4609               .readfn = id_pfr1_read,
4610               .writefn = arm_cp_write_ignore },
4611             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4612               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4613               .access = PL1_R, .type = ARM_CP_CONST,
4614               .resetvalue = cpu->id_dfr0 },
4615             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4616               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4617               .access = PL1_R, .type = ARM_CP_CONST,
4618               .resetvalue = cpu->id_afr0 },
4619             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4620               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4621               .access = PL1_R, .type = ARM_CP_CONST,
4622               .resetvalue = cpu->id_mmfr0 },
4623             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4624               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4625               .access = PL1_R, .type = ARM_CP_CONST,
4626               .resetvalue = cpu->id_mmfr1 },
4627             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4628               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4629               .access = PL1_R, .type = ARM_CP_CONST,
4630               .resetvalue = cpu->id_mmfr2 },
4631             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4632               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4633               .access = PL1_R, .type = ARM_CP_CONST,
4634               .resetvalue = cpu->id_mmfr3 },
4635             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4636               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4637               .access = PL1_R, .type = ARM_CP_CONST,
4638               .resetvalue = cpu->id_isar0 },
4639             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4640               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4641               .access = PL1_R, .type = ARM_CP_CONST,
4642               .resetvalue = cpu->id_isar1 },
4643             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4644               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4645               .access = PL1_R, .type = ARM_CP_CONST,
4646               .resetvalue = cpu->id_isar2 },
4647             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4648               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4649               .access = PL1_R, .type = ARM_CP_CONST,
4650               .resetvalue = cpu->id_isar3 },
4651             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4652               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4653               .access = PL1_R, .type = ARM_CP_CONST,
4654               .resetvalue = cpu->id_isar4 },
4655             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4656               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4657               .access = PL1_R, .type = ARM_CP_CONST,
4658               .resetvalue = cpu->id_isar5 },
4659             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4660               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4661               .access = PL1_R, .type = ARM_CP_CONST,
4662               .resetvalue = cpu->id_mmfr4 },
4663             /* 7 is as yet unallocated and must RAZ */
4664             { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4665               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4666               .access = PL1_R, .type = ARM_CP_CONST,
4667               .resetvalue = 0 },
4668             REGINFO_SENTINEL
4669         };
4670         define_arm_cp_regs(cpu, v6_idregs);
4671         define_arm_cp_regs(cpu, v6_cp_reginfo);
4672     } else {
4673         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4674     }
4675     if (arm_feature(env, ARM_FEATURE_V6K)) {
4676         define_arm_cp_regs(cpu, v6k_cp_reginfo);
4677     }
4678     if (arm_feature(env, ARM_FEATURE_V7MP) &&
4679         !arm_feature(env, ARM_FEATURE_PMSA)) {
4680         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4681     }
4682     if (arm_feature(env, ARM_FEATURE_V7)) {
4683         /* v7 performance monitor control register: same implementor
4684          * field as main ID register, and we implement only the cycle
4685          * count register.
4686          */
4687 #ifndef CONFIG_USER_ONLY
4688         ARMCPRegInfo pmcr = {
4689             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4690             .access = PL0_RW,
4691             .type = ARM_CP_IO | ARM_CP_ALIAS,
4692             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4693             .accessfn = pmreg_access, .writefn = pmcr_write,
4694             .raw_writefn = raw_write,
4695         };
4696         ARMCPRegInfo pmcr64 = {
4697             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4698             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4699             .access = PL0_RW, .accessfn = pmreg_access,
4700             .type = ARM_CP_IO,
4701             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4702             .resetvalue = cpu->midr & 0xff000000,
4703             .writefn = pmcr_write, .raw_writefn = raw_write,
4704         };
4705         define_one_arm_cp_reg(cpu, &pmcr);
4706         define_one_arm_cp_reg(cpu, &pmcr64);
4707 #endif
4708         ARMCPRegInfo clidr = {
4709             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4710             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4711             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4712         };
4713         define_one_arm_cp_reg(cpu, &clidr);
4714         define_arm_cp_regs(cpu, v7_cp_reginfo);
4715         define_debug_regs(cpu);
4716     } else {
4717         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4718     }
4719     if (arm_feature(env, ARM_FEATURE_V8)) {
4720         /* AArch64 ID registers, which all have impdef reset values.
4721          * Note that within the ID register ranges the unused slots
4722          * must all RAZ, not UNDEF; future architecture versions may
4723          * define new registers here.
4724          */
4725         ARMCPRegInfo v8_idregs[] = {
4726             /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
4727              * know the right value for the GIC field until after we
4728              * define these regs.
4729              */
4730             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4731               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4732               .access = PL1_R, .type = ARM_CP_NO_RAW,
4733               .readfn = id_aa64pfr0_read,
4734               .writefn = arm_cp_write_ignore },
4735             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4736               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4737               .access = PL1_R, .type = ARM_CP_CONST,
4738               .resetvalue = cpu->id_aa64pfr1},
4739             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4740               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4741               .access = PL1_R, .type = ARM_CP_CONST,
4742               .resetvalue = 0 },
4743             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4744               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4745               .access = PL1_R, .type = ARM_CP_CONST,
4746               .resetvalue = 0 },
4747             { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4748               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4749               .access = PL1_R, .type = ARM_CP_CONST,
4750               .resetvalue = 0 },
4751             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4752               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4753               .access = PL1_R, .type = ARM_CP_CONST,
4754               .resetvalue = 0 },
4755             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4756               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4757               .access = PL1_R, .type = ARM_CP_CONST,
4758               .resetvalue = 0 },
4759             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4760               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4761               .access = PL1_R, .type = ARM_CP_CONST,
4762               .resetvalue = 0 },
4763             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4764               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4765               .access = PL1_R, .type = ARM_CP_CONST,
4766               .resetvalue = cpu->id_aa64dfr0 },
4767             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4768               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4769               .access = PL1_R, .type = ARM_CP_CONST,
4770               .resetvalue = cpu->id_aa64dfr1 },
4771             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4772               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4773               .access = PL1_R, .type = ARM_CP_CONST,
4774               .resetvalue = 0 },
4775             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4776               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4777               .access = PL1_R, .type = ARM_CP_CONST,
4778               .resetvalue = 0 },
4779             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4780               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4781               .access = PL1_R, .type = ARM_CP_CONST,
4782               .resetvalue = cpu->id_aa64afr0 },
4783             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4784               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4785               .access = PL1_R, .type = ARM_CP_CONST,
4786               .resetvalue = cpu->id_aa64afr1 },
4787             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4788               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4789               .access = PL1_R, .type = ARM_CP_CONST,
4790               .resetvalue = 0 },
4791             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4792               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4793               .access = PL1_R, .type = ARM_CP_CONST,
4794               .resetvalue = 0 },
4795             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4796               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4797               .access = PL1_R, .type = ARM_CP_CONST,
4798               .resetvalue = cpu->id_aa64isar0 },
4799             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4800               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4801               .access = PL1_R, .type = ARM_CP_CONST,
4802               .resetvalue = cpu->id_aa64isar1 },
4803             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4804               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4805               .access = PL1_R, .type = ARM_CP_CONST,
4806               .resetvalue = 0 },
4807             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4808               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4809               .access = PL1_R, .type = ARM_CP_CONST,
4810               .resetvalue = 0 },
4811             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4812               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4813               .access = PL1_R, .type = ARM_CP_CONST,
4814               .resetvalue = 0 },
4815             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4816               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4817               .access = PL1_R, .type = ARM_CP_CONST,
4818               .resetvalue = 0 },
4819             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4820               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4821               .access = PL1_R, .type = ARM_CP_CONST,
4822               .resetvalue = 0 },
4823             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4824               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4825               .access = PL1_R, .type = ARM_CP_CONST,
4826               .resetvalue = 0 },
4827             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4828               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4829               .access = PL1_R, .type = ARM_CP_CONST,
4830               .resetvalue = cpu->id_aa64mmfr0 },
4831             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4832               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4833               .access = PL1_R, .type = ARM_CP_CONST,
4834               .resetvalue = cpu->id_aa64mmfr1 },
4835             { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4836               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4837               .access = PL1_R, .type = ARM_CP_CONST,
4838               .resetvalue = 0 },
4839             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4840               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4841               .access = PL1_R, .type = ARM_CP_CONST,
4842               .resetvalue = 0 },
4843             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4844               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4845               .access = PL1_R, .type = ARM_CP_CONST,
4846               .resetvalue = 0 },
4847             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4848               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4849               .access = PL1_R, .type = ARM_CP_CONST,
4850               .resetvalue = 0 },
4851             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4852               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4853               .access = PL1_R, .type = ARM_CP_CONST,
4854               .resetvalue = 0 },
4855             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4856               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4857               .access = PL1_R, .type = ARM_CP_CONST,
4858               .resetvalue = 0 },
4859             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4860               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4861               .access = PL1_R, .type = ARM_CP_CONST,
4862               .resetvalue = cpu->mvfr0 },
4863             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4864               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4865               .access = PL1_R, .type = ARM_CP_CONST,
4866               .resetvalue = cpu->mvfr1 },
4867             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4868               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4869               .access = PL1_R, .type = ARM_CP_CONST,
4870               .resetvalue = cpu->mvfr2 },
4871             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4872               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4873               .access = PL1_R, .type = ARM_CP_CONST,
4874               .resetvalue = 0 },
4875             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4876               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4877               .access = PL1_R, .type = ARM_CP_CONST,
4878               .resetvalue = 0 },
4879             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4880               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4881               .access = PL1_R, .type = ARM_CP_CONST,
4882               .resetvalue = 0 },
4883             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4884               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4885               .access = PL1_R, .type = ARM_CP_CONST,
4886               .resetvalue = 0 },
4887             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4888               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4889               .access = PL1_R, .type = ARM_CP_CONST,
4890               .resetvalue = 0 },
4891             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4892               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4893               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4894               .resetvalue = cpu->pmceid0 },
4895             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4896               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4897               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4898               .resetvalue = cpu->pmceid0 },
4899             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4900               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4901               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4902               .resetvalue = cpu->pmceid1 },
4903             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4904               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4905               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4906               .resetvalue = cpu->pmceid1 },
4907             REGINFO_SENTINEL
4908         };
4909         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4910         if (!arm_feature(env, ARM_FEATURE_EL3) &&
4911             !arm_feature(env, ARM_FEATURE_EL2)) {
4912             ARMCPRegInfo rvbar = {
4913                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4914                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4915                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4916             };
4917             define_one_arm_cp_reg(cpu, &rvbar);
4918         }
4919         define_arm_cp_regs(cpu, v8_idregs);
4920         define_arm_cp_regs(cpu, v8_cp_reginfo);
4921     }
4922     if (arm_feature(env, ARM_FEATURE_EL2)) {
4923         uint64_t vmpidr_def = mpidr_read_val(env);
4924         ARMCPRegInfo vpidr_regs[] = {
4925             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4926               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4927               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4928               .resetvalue = cpu->midr,
4929               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4930             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4931               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4932               .access = PL2_RW, .resetvalue = cpu->midr,
4933               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4934             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4935               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4936               .access = PL2_RW, .accessfn = access_el3_aa32ns,
4937               .resetvalue = vmpidr_def,
4938               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4939             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4940               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4941               .access = PL2_RW,
4942               .resetvalue = vmpidr_def,
4943               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4944             REGINFO_SENTINEL
4945         };
4946         define_arm_cp_regs(cpu, vpidr_regs);
4947         define_arm_cp_regs(cpu, el2_cp_reginfo);
4948         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4949         if (!arm_feature(env, ARM_FEATURE_EL3)) {
4950             ARMCPRegInfo rvbar = {
4951                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4952                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4953                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4954             };
4955             define_one_arm_cp_reg(cpu, &rvbar);
4956         }
4957     } else {
4958         /* If EL2 is missing but higher ELs are enabled, we need to
4959          * register the no_el2 reginfos.
4960          */
4961         if (arm_feature(env, ARM_FEATURE_EL3)) {
4962             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4963              * of MIDR_EL1 and MPIDR_EL1.
4964              */
4965             ARMCPRegInfo vpidr_regs[] = {
4966                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4967                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4968                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4969                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4970                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4971                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4972                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4973                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4974                   .type = ARM_CP_NO_RAW,
4975                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4976                 REGINFO_SENTINEL
4977             };
4978             define_arm_cp_regs(cpu, vpidr_regs);
4979             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4980         }
4981     }
4982     if (arm_feature(env, ARM_FEATURE_EL3)) {
4983         define_arm_cp_regs(cpu, el3_cp_reginfo);
4984         ARMCPRegInfo el3_regs[] = {
4985             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4986               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4987               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4988             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4989               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4990               .access = PL3_RW,
4991               .raw_writefn = raw_write, .writefn = sctlr_write,
4992               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4993               .resetvalue = cpu->reset_sctlr },
4994             REGINFO_SENTINEL
4995         };
4996 
4997         define_arm_cp_regs(cpu, el3_regs);
4998     }
4999     /* The behaviour of NSACR is sufficiently various that we don't
5000      * try to describe it in a single reginfo:
5001      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
5002      *     reads as constant 0xc00 from NS EL1 and NS EL2
5003      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5004      *  if v7 without EL3, register doesn't exist
5005      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5006      */
5007     if (arm_feature(env, ARM_FEATURE_EL3)) {
5008         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5009             ARMCPRegInfo nsacr = {
5010                 .name = "NSACR", .type = ARM_CP_CONST,
5011                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5012                 .access = PL1_RW, .accessfn = nsacr_access,
5013                 .resetvalue = 0xc00
5014             };
5015             define_one_arm_cp_reg(cpu, &nsacr);
5016         } else {
5017             ARMCPRegInfo nsacr = {
5018                 .name = "NSACR",
5019                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5020                 .access = PL3_RW | PL1_R,
5021                 .resetvalue = 0,
5022                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
5023             };
5024             define_one_arm_cp_reg(cpu, &nsacr);
5025         }
5026     } else {
5027         if (arm_feature(env, ARM_FEATURE_V8)) {
5028             ARMCPRegInfo nsacr = {
5029                 .name = "NSACR", .type = ARM_CP_CONST,
5030                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
5031                 .access = PL1_R,
5032                 .resetvalue = 0xc00
5033             };
5034             define_one_arm_cp_reg(cpu, &nsacr);
5035         }
5036     }
5037 
5038     if (arm_feature(env, ARM_FEATURE_PMSA)) {
5039         if (arm_feature(env, ARM_FEATURE_V6)) {
5040             /* PMSAv6 not implemented */
5041             assert(arm_feature(env, ARM_FEATURE_V7));
5042             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5043             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
5044         } else {
5045             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
5046         }
5047     } else {
5048         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5049         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
5050     }
5051     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
5052         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
5053     }
5054     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
5055         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
5056     }
5057     if (arm_feature(env, ARM_FEATURE_VAPA)) {
5058         define_arm_cp_regs(cpu, vapa_cp_reginfo);
5059     }
5060     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
5061         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
5062     }
5063     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
5064         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
5065     }
5066     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
5067         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
5068     }
5069     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
5070         define_arm_cp_regs(cpu, omap_cp_reginfo);
5071     }
5072     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
5073         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
5074     }
5075     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5076         define_arm_cp_regs(cpu, xscale_cp_reginfo);
5077     }
5078     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
5079         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
5080     }
5081     if (arm_feature(env, ARM_FEATURE_LPAE)) {
5082         define_arm_cp_regs(cpu, lpae_cp_reginfo);
5083     }
5084     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5085      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5086      * be read-only (ie write causes UNDEF exception).
5087      */
5088     {
5089         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
5090             /* Pre-v8 MIDR space.
5091              * Note that the MIDR isn't a simple constant register because
5092              * of the TI925 behaviour where writes to another register can
5093              * cause the MIDR value to change.
5094              *
5095              * Unimplemented registers in the c15 0 0 0 space default to
5096              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5097              * and friends override accordingly.
5098              */
5099             { .name = "MIDR",
5100               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5101               .access = PL1_R, .resetvalue = cpu->midr,
5102               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
5103               .readfn = midr_read,
5104               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5105               .type = ARM_CP_OVERRIDE },
5106             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5107             { .name = "DUMMY",
5108               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
5109               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5110             { .name = "DUMMY",
5111               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
5112               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5113             { .name = "DUMMY",
5114               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
5115               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5116             { .name = "DUMMY",
5117               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
5118               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5119             { .name = "DUMMY",
5120               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
5121               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5122             REGINFO_SENTINEL
5123         };
5124         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
5125             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
5126               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
5127               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
5128               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
5129               .readfn = midr_read },
5130             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5131             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5132               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5133               .access = PL1_R, .resetvalue = cpu->midr },
5134             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
5135               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
5136               .access = PL1_R, .resetvalue = cpu->midr },
5137             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
5138               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5139               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5140             REGINFO_SENTINEL
5141         };
5142         ARMCPRegInfo id_cp_reginfo[] = {
5143             /* These are common to v8 and pre-v8 */
5144             { .name = "CTR",
5145               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
5146               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5147             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
5148               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
5149               .access = PL0_R, .accessfn = ctr_el0_access,
5150               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
5151             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5152             { .name = "TCMTR",
5153               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
5154               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
5155             REGINFO_SENTINEL
5156         };
5157         /* TLBTR is specific to VMSA */
5158         ARMCPRegInfo id_tlbtr_reginfo = {
5159               .name = "TLBTR",
5160               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
5161               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
5162         };
5163         /* MPUIR is specific to PMSA V6+ */
5164         ARMCPRegInfo id_mpuir_reginfo = {
5165               .name = "MPUIR",
5166               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
5167               .access = PL1_R, .type = ARM_CP_CONST,
5168               .resetvalue = cpu->pmsav7_dregion << 8
5169         };
5170         ARMCPRegInfo crn0_wi_reginfo = {
5171             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
5172             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
5173             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
5174         };
5175         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
5176             arm_feature(env, ARM_FEATURE_STRONGARM)) {
5177             ARMCPRegInfo *r;
5178             /* Register the blanket "writes ignored" value first to cover the
5179              * whole space. Then update the specific ID registers to allow write
5180              * access, so that they ignore writes rather than causing them to
5181              * UNDEF.
5182              */
5183             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5184             for (r = id_pre_v8_midr_cp_reginfo;
5185                  r->type != ARM_CP_SENTINEL; r++) {
5186                 r->access = PL1_RW;
5187             }
5188             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5189                 r->access = PL1_RW;
5190             }
5191             id_tlbtr_reginfo.access = PL1_RW;
5192             id_tlbtr_reginfo.access = PL1_RW;
5193         }
5194         if (arm_feature(env, ARM_FEATURE_V8)) {
5195             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5196         } else {
5197             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5198         }
5199         define_arm_cp_regs(cpu, id_cp_reginfo);
5200         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5201             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5202         } else if (arm_feature(env, ARM_FEATURE_V7)) {
5203             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5204         }
5205     }
5206 
5207     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5208         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5209     }
5210 
5211     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5212         ARMCPRegInfo auxcr_reginfo[] = {
5213             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5214               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5215               .access = PL1_RW, .type = ARM_CP_CONST,
5216               .resetvalue = cpu->reset_auxcr },
5217             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5218               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5219               .access = PL2_RW, .type = ARM_CP_CONST,
5220               .resetvalue = 0 },
5221             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5222               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5223               .access = PL3_RW, .type = ARM_CP_CONST,
5224               .resetvalue = 0 },
5225             REGINFO_SENTINEL
5226         };
5227         define_arm_cp_regs(cpu, auxcr_reginfo);
5228     }
5229 
5230     if (arm_feature(env, ARM_FEATURE_CBAR)) {
5231         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5232             /* 32 bit view is [31:18] 0...0 [43:32]. */
5233             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5234                 | extract64(cpu->reset_cbar, 32, 12);
5235             ARMCPRegInfo cbar_reginfo[] = {
5236                 { .name = "CBAR",
5237                   .type = ARM_CP_CONST,
5238                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5239                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
5240                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5241                   .type = ARM_CP_CONST,
5242                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5243                   .access = PL1_R, .resetvalue = cbar32 },
5244                 REGINFO_SENTINEL
5245             };
5246             /* We don't implement a r/w 64 bit CBAR currently */
5247             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5248             define_arm_cp_regs(cpu, cbar_reginfo);
5249         } else {
5250             ARMCPRegInfo cbar = {
5251                 .name = "CBAR",
5252                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5253                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5254                 .fieldoffset = offsetof(CPUARMState,
5255                                         cp15.c15_config_base_address)
5256             };
5257             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5258                 cbar.access = PL1_R;
5259                 cbar.fieldoffset = 0;
5260                 cbar.type = ARM_CP_CONST;
5261             }
5262             define_one_arm_cp_reg(cpu, &cbar);
5263         }
5264     }
5265 
5266     if (arm_feature(env, ARM_FEATURE_VBAR)) {
5267         ARMCPRegInfo vbar_cp_reginfo[] = {
5268             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
5269               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
5270               .access = PL1_RW, .writefn = vbar_write,
5271               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
5272                                      offsetof(CPUARMState, cp15.vbar_ns) },
5273               .resetvalue = 0 },
5274             REGINFO_SENTINEL
5275         };
5276         define_arm_cp_regs(cpu, vbar_cp_reginfo);
5277     }
5278 
5279     /* Generic registers whose values depend on the implementation */
5280     {
5281         ARMCPRegInfo sctlr = {
5282             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5283             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5284             .access = PL1_RW,
5285             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5286                                    offsetof(CPUARMState, cp15.sctlr_ns) },
5287             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5288             .raw_writefn = raw_write,
5289         };
5290         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5291             /* Normally we would always end the TB on an SCTLR write, but Linux
5292              * arch/arm/mach-pxa/sleep.S expects two instructions following
5293              * an MMU enable to execute from cache.  Imitate this behaviour.
5294              */
5295             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5296         }
5297         define_one_arm_cp_reg(cpu, &sctlr);
5298     }
5299 }
5300 
5301 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5302 {
5303     CPUState *cs = CPU(cpu);
5304     CPUARMState *env = &cpu->env;
5305 
5306     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5307         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5308                                  aarch64_fpu_gdb_set_reg,
5309                                  34, "aarch64-fpu.xml", 0);
5310     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5311         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5312                                  51, "arm-neon.xml", 0);
5313     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5314         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5315                                  35, "arm-vfp3.xml", 0);
5316     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5317         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5318                                  19, "arm-vfp.xml", 0);
5319     }
5320 }
5321 
5322 /* Sort alphabetically by type name, except for "any". */
5323 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5324 {
5325     ObjectClass *class_a = (ObjectClass *)a;
5326     ObjectClass *class_b = (ObjectClass *)b;
5327     const char *name_a, *name_b;
5328 
5329     name_a = object_class_get_name(class_a);
5330     name_b = object_class_get_name(class_b);
5331     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5332         return 1;
5333     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5334         return -1;
5335     } else {
5336         return strcmp(name_a, name_b);
5337     }
5338 }
5339 
5340 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5341 {
5342     ObjectClass *oc = data;
5343     CPUListState *s = user_data;
5344     const char *typename;
5345     char *name;
5346 
5347     typename = object_class_get_name(oc);
5348     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5349     (*s->cpu_fprintf)(s->file, "  %s\n",
5350                       name);
5351     g_free(name);
5352 }
5353 
5354 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5355 {
5356     CPUListState s = {
5357         .file = f,
5358         .cpu_fprintf = cpu_fprintf,
5359     };
5360     GSList *list;
5361 
5362     list = object_class_get_list(TYPE_ARM_CPU, false);
5363     list = g_slist_sort(list, arm_cpu_list_compare);
5364     (*cpu_fprintf)(f, "Available CPUs:\n");
5365     g_slist_foreach(list, arm_cpu_list_entry, &s);
5366     g_slist_free(list);
5367 #ifdef CONFIG_KVM
5368     /* The 'host' CPU type is dynamically registered only if KVM is
5369      * enabled, so we have to special-case it here:
5370      */
5371     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
5372 #endif
5373 }
5374 
5375 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5376 {
5377     ObjectClass *oc = data;
5378     CpuDefinitionInfoList **cpu_list = user_data;
5379     CpuDefinitionInfoList *entry;
5380     CpuDefinitionInfo *info;
5381     const char *typename;
5382 
5383     typename = object_class_get_name(oc);
5384     info = g_malloc0(sizeof(*info));
5385     info->name = g_strndup(typename,
5386                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
5387     info->q_typename = g_strdup(typename);
5388 
5389     entry = g_malloc0(sizeof(*entry));
5390     entry->value = info;
5391     entry->next = *cpu_list;
5392     *cpu_list = entry;
5393 }
5394 
5395 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5396 {
5397     CpuDefinitionInfoList *cpu_list = NULL;
5398     GSList *list;
5399 
5400     list = object_class_get_list(TYPE_ARM_CPU, false);
5401     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5402     g_slist_free(list);
5403 
5404     return cpu_list;
5405 }
5406 
5407 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5408                                    void *opaque, int state, int secstate,
5409                                    int crm, int opc1, int opc2)
5410 {
5411     /* Private utility function for define_one_arm_cp_reg_with_opaque():
5412      * add a single reginfo struct to the hash table.
5413      */
5414     uint32_t *key = g_new(uint32_t, 1);
5415     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5416     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5417     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5418 
5419     /* Reset the secure state to the specific incoming state.  This is
5420      * necessary as the register may have been defined with both states.
5421      */
5422     r2->secure = secstate;
5423 
5424     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5425         /* Register is banked (using both entries in array).
5426          * Overwriting fieldoffset as the array is only used to define
5427          * banked registers but later only fieldoffset is used.
5428          */
5429         r2->fieldoffset = r->bank_fieldoffsets[ns];
5430     }
5431 
5432     if (state == ARM_CP_STATE_AA32) {
5433         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5434             /* If the register is banked then we don't need to migrate or
5435              * reset the 32-bit instance in certain cases:
5436              *
5437              * 1) If the register has both 32-bit and 64-bit instances then we
5438              *    can count on the 64-bit instance taking care of the
5439              *    non-secure bank.
5440              * 2) If ARMv8 is enabled then we can count on a 64-bit version
5441              *    taking care of the secure bank.  This requires that separate
5442              *    32 and 64-bit definitions are provided.
5443              */
5444             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5445                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5446                 r2->type |= ARM_CP_ALIAS;
5447             }
5448         } else if ((secstate != r->secure) && !ns) {
5449             /* The register is not banked so we only want to allow migration of
5450              * the non-secure instance.
5451              */
5452             r2->type |= ARM_CP_ALIAS;
5453         }
5454 
5455         if (r->state == ARM_CP_STATE_BOTH) {
5456             /* We assume it is a cp15 register if the .cp field is left unset.
5457              */
5458             if (r2->cp == 0) {
5459                 r2->cp = 15;
5460             }
5461 
5462 #ifdef HOST_WORDS_BIGENDIAN
5463             if (r2->fieldoffset) {
5464                 r2->fieldoffset += sizeof(uint32_t);
5465             }
5466 #endif
5467         }
5468     }
5469     if (state == ARM_CP_STATE_AA64) {
5470         /* To allow abbreviation of ARMCPRegInfo
5471          * definitions, we treat cp == 0 as equivalent to
5472          * the value for "standard guest-visible sysreg".
5473          * STATE_BOTH definitions are also always "standard
5474          * sysreg" in their AArch64 view (the .cp value may
5475          * be non-zero for the benefit of the AArch32 view).
5476          */
5477         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5478             r2->cp = CP_REG_ARM64_SYSREG_CP;
5479         }
5480         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5481                                   r2->opc0, opc1, opc2);
5482     } else {
5483         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5484     }
5485     if (opaque) {
5486         r2->opaque = opaque;
5487     }
5488     /* reginfo passed to helpers is correct for the actual access,
5489      * and is never ARM_CP_STATE_BOTH:
5490      */
5491     r2->state = state;
5492     /* Make sure reginfo passed to helpers for wildcarded regs
5493      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5494      */
5495     r2->crm = crm;
5496     r2->opc1 = opc1;
5497     r2->opc2 = opc2;
5498     /* By convention, for wildcarded registers only the first
5499      * entry is used for migration; the others are marked as
5500      * ALIAS so we don't try to transfer the register
5501      * multiple times. Special registers (ie NOP/WFI) are
5502      * never migratable and not even raw-accessible.
5503      */
5504     if ((r->type & ARM_CP_SPECIAL)) {
5505         r2->type |= ARM_CP_NO_RAW;
5506     }
5507     if (((r->crm == CP_ANY) && crm != 0) ||
5508         ((r->opc1 == CP_ANY) && opc1 != 0) ||
5509         ((r->opc2 == CP_ANY) && opc2 != 0)) {
5510         r2->type |= ARM_CP_ALIAS;
5511     }
5512 
5513     /* Check that raw accesses are either forbidden or handled. Note that
5514      * we can't assert this earlier because the setup of fieldoffset for
5515      * banked registers has to be done first.
5516      */
5517     if (!(r2->type & ARM_CP_NO_RAW)) {
5518         assert(!raw_accessors_invalid(r2));
5519     }
5520 
5521     /* Overriding of an existing definition must be explicitly
5522      * requested.
5523      */
5524     if (!(r->type & ARM_CP_OVERRIDE)) {
5525         ARMCPRegInfo *oldreg;
5526         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5527         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5528             fprintf(stderr, "Register redefined: cp=%d %d bit "
5529                     "crn=%d crm=%d opc1=%d opc2=%d, "
5530                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5531                     r2->crn, r2->crm, r2->opc1, r2->opc2,
5532                     oldreg->name, r2->name);
5533             g_assert_not_reached();
5534         }
5535     }
5536     g_hash_table_insert(cpu->cp_regs, key, r2);
5537 }
5538 
5539 
5540 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5541                                        const ARMCPRegInfo *r, void *opaque)
5542 {
5543     /* Define implementations of coprocessor registers.
5544      * We store these in a hashtable because typically
5545      * there are less than 150 registers in a space which
5546      * is 16*16*16*8*8 = 262144 in size.
5547      * Wildcarding is supported for the crm, opc1 and opc2 fields.
5548      * If a register is defined twice then the second definition is
5549      * used, so this can be used to define some generic registers and
5550      * then override them with implementation specific variations.
5551      * At least one of the original and the second definition should
5552      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5553      * against accidental use.
5554      *
5555      * The state field defines whether the register is to be
5556      * visible in the AArch32 or AArch64 execution state. If the
5557      * state is set to ARM_CP_STATE_BOTH then we synthesise a
5558      * reginfo structure for the AArch32 view, which sees the lower
5559      * 32 bits of the 64 bit register.
5560      *
5561      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5562      * be wildcarded. AArch64 registers are always considered to be 64
5563      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5564      * the register, if any.
5565      */
5566     int crm, opc1, opc2, state;
5567     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5568     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5569     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5570     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5571     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5572     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5573     /* 64 bit registers have only CRm and Opc1 fields */
5574     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5575     /* op0 only exists in the AArch64 encodings */
5576     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5577     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5578     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5579     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5580      * encodes a minimum access level for the register. We roll this
5581      * runtime check into our general permission check code, so check
5582      * here that the reginfo's specified permissions are strict enough
5583      * to encompass the generic architectural permission check.
5584      */
5585     if (r->state != ARM_CP_STATE_AA32) {
5586         int mask = 0;
5587         switch (r->opc1) {
5588         case 0: case 1: case 2:
5589             /* min_EL EL1 */
5590             mask = PL1_RW;
5591             break;
5592         case 3:
5593             /* min_EL EL0 */
5594             mask = PL0_RW;
5595             break;
5596         case 4:
5597             /* min_EL EL2 */
5598             mask = PL2_RW;
5599             break;
5600         case 5:
5601             /* unallocated encoding, so not possible */
5602             assert(false);
5603             break;
5604         case 6:
5605             /* min_EL EL3 */
5606             mask = PL3_RW;
5607             break;
5608         case 7:
5609             /* min_EL EL1, secure mode only (we don't check the latter) */
5610             mask = PL1_RW;
5611             break;
5612         default:
5613             /* broken reginfo with out-of-range opc1 */
5614             assert(false);
5615             break;
5616         }
5617         /* assert our permissions are not too lax (stricter is fine) */
5618         assert((r->access & ~mask) == 0);
5619     }
5620 
5621     /* Check that the register definition has enough info to handle
5622      * reads and writes if they are permitted.
5623      */
5624     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5625         if (r->access & PL3_R) {
5626             assert((r->fieldoffset ||
5627                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5628                    r->readfn);
5629         }
5630         if (r->access & PL3_W) {
5631             assert((r->fieldoffset ||
5632                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5633                    r->writefn);
5634         }
5635     }
5636     /* Bad type field probably means missing sentinel at end of reg list */
5637     assert(cptype_valid(r->type));
5638     for (crm = crmmin; crm <= crmmax; crm++) {
5639         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5640             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5641                 for (state = ARM_CP_STATE_AA32;
5642                      state <= ARM_CP_STATE_AA64; state++) {
5643                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5644                         continue;
5645                     }
5646                     if (state == ARM_CP_STATE_AA32) {
5647                         /* Under AArch32 CP registers can be common
5648                          * (same for secure and non-secure world) or banked.
5649                          */
5650                         switch (r->secure) {
5651                         case ARM_CP_SECSTATE_S:
5652                         case ARM_CP_SECSTATE_NS:
5653                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5654                                                    r->secure, crm, opc1, opc2);
5655                             break;
5656                         default:
5657                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5658                                                    ARM_CP_SECSTATE_S,
5659                                                    crm, opc1, opc2);
5660                             add_cpreg_to_hashtable(cpu, r, opaque, state,
5661                                                    ARM_CP_SECSTATE_NS,
5662                                                    crm, opc1, opc2);
5663                             break;
5664                         }
5665                     } else {
5666                         /* AArch64 registers get mapped to non-secure instance
5667                          * of AArch32 */
5668                         add_cpreg_to_hashtable(cpu, r, opaque, state,
5669                                                ARM_CP_SECSTATE_NS,
5670                                                crm, opc1, opc2);
5671                     }
5672                 }
5673             }
5674         }
5675     }
5676 }
5677 
5678 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5679                                     const ARMCPRegInfo *regs, void *opaque)
5680 {
5681     /* Define a whole list of registers */
5682     const ARMCPRegInfo *r;
5683     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5684         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5685     }
5686 }
5687 
5688 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5689 {
5690     return g_hash_table_lookup(cpregs, &encoded_cp);
5691 }
5692 
5693 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5694                          uint64_t value)
5695 {
5696     /* Helper coprocessor write function for write-ignore registers */
5697 }
5698 
5699 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5700 {
5701     /* Helper coprocessor write function for read-as-zero registers */
5702     return 0;
5703 }
5704 
5705 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5706 {
5707     /* Helper coprocessor reset function for do-nothing-on-reset registers */
5708 }
5709 
5710 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5711 {
5712     /* Return true if it is not valid for us to switch to
5713      * this CPU mode (ie all the UNPREDICTABLE cases in
5714      * the ARM ARM CPSRWriteByInstr pseudocode).
5715      */
5716 
5717     /* Changes to or from Hyp via MSR and CPS are illegal. */
5718     if (write_type == CPSRWriteByInstr &&
5719         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5720          mode == ARM_CPU_MODE_HYP)) {
5721         return 1;
5722     }
5723 
5724     switch (mode) {
5725     case ARM_CPU_MODE_USR:
5726         return 0;
5727     case ARM_CPU_MODE_SYS:
5728     case ARM_CPU_MODE_SVC:
5729     case ARM_CPU_MODE_ABT:
5730     case ARM_CPU_MODE_UND:
5731     case ARM_CPU_MODE_IRQ:
5732     case ARM_CPU_MODE_FIQ:
5733         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5734          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5735          */
5736         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5737          * and CPS are treated as illegal mode changes.
5738          */
5739         if (write_type == CPSRWriteByInstr &&
5740             (env->cp15.hcr_el2 & HCR_TGE) &&
5741             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5742             !arm_is_secure_below_el3(env)) {
5743             return 1;
5744         }
5745         return 0;
5746     case ARM_CPU_MODE_HYP:
5747         return !arm_feature(env, ARM_FEATURE_EL2)
5748             || arm_current_el(env) < 2 || arm_is_secure(env);
5749     case ARM_CPU_MODE_MON:
5750         return arm_current_el(env) < 3;
5751     default:
5752         return 1;
5753     }
5754 }
5755 
5756 uint32_t cpsr_read(CPUARMState *env)
5757 {
5758     int ZF;
5759     ZF = (env->ZF == 0);
5760     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5761         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5762         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5763         | ((env->condexec_bits & 0xfc) << 8)
5764         | (env->GE << 16) | (env->daif & CPSR_AIF);
5765 }
5766 
5767 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5768                 CPSRWriteType write_type)
5769 {
5770     uint32_t changed_daif;
5771 
5772     if (mask & CPSR_NZCV) {
5773         env->ZF = (~val) & CPSR_Z;
5774         env->NF = val;
5775         env->CF = (val >> 29) & 1;
5776         env->VF = (val << 3) & 0x80000000;
5777     }
5778     if (mask & CPSR_Q)
5779         env->QF = ((val & CPSR_Q) != 0);
5780     if (mask & CPSR_T)
5781         env->thumb = ((val & CPSR_T) != 0);
5782     if (mask & CPSR_IT_0_1) {
5783         env->condexec_bits &= ~3;
5784         env->condexec_bits |= (val >> 25) & 3;
5785     }
5786     if (mask & CPSR_IT_2_7) {
5787         env->condexec_bits &= 3;
5788         env->condexec_bits |= (val >> 8) & 0xfc;
5789     }
5790     if (mask & CPSR_GE) {
5791         env->GE = (val >> 16) & 0xf;
5792     }
5793 
5794     /* In a V7 implementation that includes the security extensions but does
5795      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5796      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5797      * bits respectively.
5798      *
5799      * In a V8 implementation, it is permitted for privileged software to
5800      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5801      */
5802     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5803         arm_feature(env, ARM_FEATURE_EL3) &&
5804         !arm_feature(env, ARM_FEATURE_EL2) &&
5805         !arm_is_secure(env)) {
5806 
5807         changed_daif = (env->daif ^ val) & mask;
5808 
5809         if (changed_daif & CPSR_A) {
5810             /* Check to see if we are allowed to change the masking of async
5811              * abort exceptions from a non-secure state.
5812              */
5813             if (!(env->cp15.scr_el3 & SCR_AW)) {
5814                 qemu_log_mask(LOG_GUEST_ERROR,
5815                               "Ignoring attempt to switch CPSR_A flag from "
5816                               "non-secure world with SCR.AW bit clear\n");
5817                 mask &= ~CPSR_A;
5818             }
5819         }
5820 
5821         if (changed_daif & CPSR_F) {
5822             /* Check to see if we are allowed to change the masking of FIQ
5823              * exceptions from a non-secure state.
5824              */
5825             if (!(env->cp15.scr_el3 & SCR_FW)) {
5826                 qemu_log_mask(LOG_GUEST_ERROR,
5827                               "Ignoring attempt to switch CPSR_F flag from "
5828                               "non-secure world with SCR.FW bit clear\n");
5829                 mask &= ~CPSR_F;
5830             }
5831 
5832             /* Check whether non-maskable FIQ (NMFI) support is enabled.
5833              * If this bit is set software is not allowed to mask
5834              * FIQs, but is allowed to set CPSR_F to 0.
5835              */
5836             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5837                 (val & CPSR_F)) {
5838                 qemu_log_mask(LOG_GUEST_ERROR,
5839                               "Ignoring attempt to enable CPSR_F flag "
5840                               "(non-maskable FIQ [NMFI] support enabled)\n");
5841                 mask &= ~CPSR_F;
5842             }
5843         }
5844     }
5845 
5846     env->daif &= ~(CPSR_AIF & mask);
5847     env->daif |= val & CPSR_AIF & mask;
5848 
5849     if (write_type != CPSRWriteRaw &&
5850         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5851         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5852             /* Note that we can only get here in USR mode if this is a
5853              * gdb stub write; for this case we follow the architectural
5854              * behaviour for guest writes in USR mode of ignoring an attempt
5855              * to switch mode. (Those are caught by translate.c for writes
5856              * triggered by guest instructions.)
5857              */
5858             mask &= ~CPSR_M;
5859         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5860             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5861              * v7, and has defined behaviour in v8:
5862              *  + leave CPSR.M untouched
5863              *  + allow changes to the other CPSR fields
5864              *  + set PSTATE.IL
5865              * For user changes via the GDB stub, we don't set PSTATE.IL,
5866              * as this would be unnecessarily harsh for a user error.
5867              */
5868             mask &= ~CPSR_M;
5869             if (write_type != CPSRWriteByGDBStub &&
5870                 arm_feature(env, ARM_FEATURE_V8)) {
5871                 mask |= CPSR_IL;
5872                 val |= CPSR_IL;
5873             }
5874         } else {
5875             switch_mode(env, val & CPSR_M);
5876         }
5877     }
5878     mask &= ~CACHED_CPSR_BITS;
5879     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5880 }
5881 
5882 /* Sign/zero extend */
5883 uint32_t HELPER(sxtb16)(uint32_t x)
5884 {
5885     uint32_t res;
5886     res = (uint16_t)(int8_t)x;
5887     res |= (uint32_t)(int8_t)(x >> 16) << 16;
5888     return res;
5889 }
5890 
5891 uint32_t HELPER(uxtb16)(uint32_t x)
5892 {
5893     uint32_t res;
5894     res = (uint16_t)(uint8_t)x;
5895     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5896     return res;
5897 }
5898 
5899 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5900 {
5901     if (den == 0)
5902       return 0;
5903     if (num == INT_MIN && den == -1)
5904       return INT_MIN;
5905     return num / den;
5906 }
5907 
5908 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5909 {
5910     if (den == 0)
5911       return 0;
5912     return num / den;
5913 }
5914 
5915 uint32_t HELPER(rbit)(uint32_t x)
5916 {
5917     return revbit32(x);
5918 }
5919 
5920 #if defined(CONFIG_USER_ONLY)
5921 
5922 /* These should probably raise undefined insn exceptions.  */
5923 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5924 {
5925     ARMCPU *cpu = arm_env_get_cpu(env);
5926 
5927     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5928 }
5929 
5930 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5931 {
5932     ARMCPU *cpu = arm_env_get_cpu(env);
5933 
5934     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5935     return 0;
5936 }
5937 
5938 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
5939 {
5940     /* translate.c should never generate calls here in user-only mode */
5941     g_assert_not_reached();
5942 }
5943 
5944 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
5945 {
5946     /* translate.c should never generate calls here in user-only mode */
5947     g_assert_not_reached();
5948 }
5949 
5950 void switch_mode(CPUARMState *env, int mode)
5951 {
5952     ARMCPU *cpu = arm_env_get_cpu(env);
5953 
5954     if (mode != ARM_CPU_MODE_USR) {
5955         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5956     }
5957 }
5958 
5959 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5960                                  uint32_t cur_el, bool secure)
5961 {
5962     return 1;
5963 }
5964 
5965 void aarch64_sync_64_to_32(CPUARMState *env)
5966 {
5967     g_assert_not_reached();
5968 }
5969 
5970 #else
5971 
5972 void switch_mode(CPUARMState *env, int mode)
5973 {
5974     int old_mode;
5975     int i;
5976 
5977     old_mode = env->uncached_cpsr & CPSR_M;
5978     if (mode == old_mode)
5979         return;
5980 
5981     if (old_mode == ARM_CPU_MODE_FIQ) {
5982         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5983         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5984     } else if (mode == ARM_CPU_MODE_FIQ) {
5985         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5986         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5987     }
5988 
5989     i = bank_number(old_mode);
5990     env->banked_r13[i] = env->regs[13];
5991     env->banked_r14[i] = env->regs[14];
5992     env->banked_spsr[i] = env->spsr;
5993 
5994     i = bank_number(mode);
5995     env->regs[13] = env->banked_r13[i];
5996     env->regs[14] = env->banked_r14[i];
5997     env->spsr = env->banked_spsr[i];
5998 }
5999 
6000 /* Physical Interrupt Target EL Lookup Table
6001  *
6002  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6003  *
6004  * The below multi-dimensional table is used for looking up the target
6005  * exception level given numerous condition criteria.  Specifically, the
6006  * target EL is based on SCR and HCR routing controls as well as the
6007  * currently executing EL and secure state.
6008  *
6009  *    Dimensions:
6010  *    target_el_table[2][2][2][2][2][4]
6011  *                    |  |  |  |  |  +--- Current EL
6012  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
6013  *                    |  |  |  +--------- HCR mask override
6014  *                    |  |  +------------ SCR exec state control
6015  *                    |  +--------------- SCR mask override
6016  *                    +------------------ 32-bit(0)/64-bit(1) EL3
6017  *
6018  *    The table values are as such:
6019  *    0-3 = EL0-EL3
6020  *     -1 = Cannot occur
6021  *
6022  * The ARM ARM target EL table includes entries indicating that an "exception
6023  * is not taken".  The two cases where this is applicable are:
6024  *    1) An exception is taken from EL3 but the SCR does not have the exception
6025  *    routed to EL3.
6026  *    2) An exception is taken from EL2 but the HCR does not have the exception
6027  *    routed to EL2.
6028  * In these two cases, the below table contain a target of EL1.  This value is
6029  * returned as it is expected that the consumer of the table data will check
6030  * for "target EL >= current EL" to ensure the exception is not taken.
6031  *
6032  *            SCR     HCR
6033  *         64  EA     AMO                 From
6034  *        BIT IRQ     IMO      Non-secure         Secure
6035  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
6036  */
6037 static const int8_t target_el_table[2][2][2][2][2][4] = {
6038     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6039        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
6040       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
6041        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
6042      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6043        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
6044       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
6045        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
6046     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
6047        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
6048       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
6049        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
6050      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6051        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
6052       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
6053        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
6054 };
6055 
6056 /*
6057  * Determine the target EL for physical exceptions
6058  */
6059 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
6060                                  uint32_t cur_el, bool secure)
6061 {
6062     CPUARMState *env = cs->env_ptr;
6063     int rw;
6064     int scr;
6065     int hcr;
6066     int target_el;
6067     /* Is the highest EL AArch64? */
6068     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
6069 
6070     if (arm_feature(env, ARM_FEATURE_EL3)) {
6071         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
6072     } else {
6073         /* Either EL2 is the highest EL (and so the EL2 register width
6074          * is given by is64); or there is no EL2 or EL3, in which case
6075          * the value of 'rw' does not affect the table lookup anyway.
6076          */
6077         rw = is64;
6078     }
6079 
6080     switch (excp_idx) {
6081     case EXCP_IRQ:
6082         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
6083         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
6084         break;
6085     case EXCP_FIQ:
6086         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
6087         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
6088         break;
6089     default:
6090         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
6091         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
6092         break;
6093     };
6094 
6095     /* If HCR.TGE is set then HCR is treated as being 1 */
6096     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
6097 
6098     /* Perform a table-lookup for the target EL given the current state */
6099     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
6100 
6101     assert(target_el > 0);
6102 
6103     return target_el;
6104 }
6105 
6106 static void v7m_push(CPUARMState *env, uint32_t val)
6107 {
6108     CPUState *cs = CPU(arm_env_get_cpu(env));
6109 
6110     env->regs[13] -= 4;
6111     stl_phys(cs->as, env->regs[13], val);
6112 }
6113 
6114 /* Return true if we're using the process stack pointer (not the MSP) */
6115 static bool v7m_using_psp(CPUARMState *env)
6116 {
6117     /* Handler mode always uses the main stack; for thread mode
6118      * the CONTROL.SPSEL bit determines the answer.
6119      * Note that in v7M it is not possible to be in Handler mode with
6120      * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
6121      */
6122     return !arm_v7m_is_handler_mode(env) &&
6123         env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
6124 }
6125 
6126 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6127  * This may change the current stack pointer between Main and Process
6128  * stack pointers if it is done for the CONTROL register for the current
6129  * security state.
6130  */
6131 static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
6132                                                  bool new_spsel,
6133                                                  bool secstate)
6134 {
6135     bool old_is_psp = v7m_using_psp(env);
6136 
6137     env->v7m.control[secstate] =
6138         deposit32(env->v7m.control[secstate],
6139                   R_V7M_CONTROL_SPSEL_SHIFT,
6140                   R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
6141 
6142     if (secstate == env->v7m.secure) {
6143         bool new_is_psp = v7m_using_psp(env);
6144         uint32_t tmp;
6145 
6146         if (old_is_psp != new_is_psp) {
6147             tmp = env->v7m.other_sp;
6148             env->v7m.other_sp = env->regs[13];
6149             env->regs[13] = tmp;
6150         }
6151     }
6152 }
6153 
6154 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6155  * stack pointer between Main and Process stack pointers.
6156  */
6157 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
6158 {
6159     write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
6160 }
6161 
6162 void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
6163 {
6164     /* Write a new value to v7m.exception, thus transitioning into or out
6165      * of Handler mode; this may result in a change of active stack pointer.
6166      */
6167     bool new_is_psp, old_is_psp = v7m_using_psp(env);
6168     uint32_t tmp;
6169 
6170     env->v7m.exception = new_exc;
6171 
6172     new_is_psp = v7m_using_psp(env);
6173 
6174     if (old_is_psp != new_is_psp) {
6175         tmp = env->v7m.other_sp;
6176         env->v7m.other_sp = env->regs[13];
6177         env->regs[13] = tmp;
6178     }
6179 }
6180 
6181 /* Switch M profile security state between NS and S */
6182 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
6183 {
6184     uint32_t new_ss_msp, new_ss_psp;
6185 
6186     if (env->v7m.secure == new_secstate) {
6187         return;
6188     }
6189 
6190     /* All the banked state is accessed by looking at env->v7m.secure
6191      * except for the stack pointer; rearrange the SP appropriately.
6192      */
6193     new_ss_msp = env->v7m.other_ss_msp;
6194     new_ss_psp = env->v7m.other_ss_psp;
6195 
6196     if (v7m_using_psp(env)) {
6197         env->v7m.other_ss_psp = env->regs[13];
6198         env->v7m.other_ss_msp = env->v7m.other_sp;
6199     } else {
6200         env->v7m.other_ss_msp = env->regs[13];
6201         env->v7m.other_ss_psp = env->v7m.other_sp;
6202     }
6203 
6204     env->v7m.secure = new_secstate;
6205 
6206     if (v7m_using_psp(env)) {
6207         env->regs[13] = new_ss_psp;
6208         env->v7m.other_sp = new_ss_msp;
6209     } else {
6210         env->regs[13] = new_ss_msp;
6211         env->v7m.other_sp = new_ss_psp;
6212     }
6213 }
6214 
6215 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
6216 {
6217     /* Handle v7M BXNS:
6218      *  - if the return value is a magic value, do exception return (like BX)
6219      *  - otherwise bit 0 of the return value is the target security state
6220      */
6221     uint32_t min_magic;
6222 
6223     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6224         /* Covers FNC_RETURN and EXC_RETURN magic */
6225         min_magic = FNC_RETURN_MIN_MAGIC;
6226     } else {
6227         /* EXC_RETURN magic only */
6228         min_magic = EXC_RETURN_MIN_MAGIC;
6229     }
6230 
6231     if (dest >= min_magic) {
6232         /* This is an exception return magic value; put it where
6233          * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6234          * Note that if we ever add gen_ss_advance() singlestep support to
6235          * M profile this should count as an "instruction execution complete"
6236          * event (compare gen_bx_excret_final_code()).
6237          */
6238         env->regs[15] = dest & ~1;
6239         env->thumb = dest & 1;
6240         HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
6241         /* notreached */
6242     }
6243 
6244     /* translate.c should have made BXNS UNDEF unless we're secure */
6245     assert(env->v7m.secure);
6246 
6247     switch_v7m_security_state(env, dest & 1);
6248     env->thumb = 1;
6249     env->regs[15] = dest & ~1;
6250 }
6251 
6252 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
6253 {
6254     /* Handle v7M BLXNS:
6255      *  - bit 0 of the destination address is the target security state
6256      */
6257 
6258     /* At this point regs[15] is the address just after the BLXNS */
6259     uint32_t nextinst = env->regs[15] | 1;
6260     uint32_t sp = env->regs[13] - 8;
6261     uint32_t saved_psr;
6262 
6263     /* translate.c will have made BLXNS UNDEF unless we're secure */
6264     assert(env->v7m.secure);
6265 
6266     if (dest & 1) {
6267         /* target is Secure, so this is just a normal BLX,
6268          * except that the low bit doesn't indicate Thumb/not.
6269          */
6270         env->regs[14] = nextinst;
6271         env->thumb = 1;
6272         env->regs[15] = dest & ~1;
6273         return;
6274     }
6275 
6276     /* Target is non-secure: first push a stack frame */
6277     if (!QEMU_IS_ALIGNED(sp, 8)) {
6278         qemu_log_mask(LOG_GUEST_ERROR,
6279                       "BLXNS with misaligned SP is UNPREDICTABLE\n");
6280     }
6281 
6282     saved_psr = env->v7m.exception;
6283     if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
6284         saved_psr |= XPSR_SFPA;
6285     }
6286 
6287     /* Note that these stores can throw exceptions on MPU faults */
6288     cpu_stl_data(env, sp, nextinst);
6289     cpu_stl_data(env, sp + 4, saved_psr);
6290 
6291     env->regs[13] = sp;
6292     env->regs[14] = 0xfeffffff;
6293     if (arm_v7m_is_handler_mode(env)) {
6294         /* Write a dummy value to IPSR, to avoid leaking the current secure
6295          * exception number to non-secure code. This is guaranteed not
6296          * to cause write_v7m_exception() to actually change stacks.
6297          */
6298         write_v7m_exception(env, 1);
6299     }
6300     switch_v7m_security_state(env, 0);
6301     env->thumb = 1;
6302     env->regs[15] = dest;
6303 }
6304 
6305 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
6306                                 bool spsel)
6307 {
6308     /* Return a pointer to the location where we currently store the
6309      * stack pointer for the requested security state and thread mode.
6310      * This pointer will become invalid if the CPU state is updated
6311      * such that the stack pointers are switched around (eg changing
6312      * the SPSEL control bit).
6313      * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
6314      * Unlike that pseudocode, we require the caller to pass us in the
6315      * SPSEL control bit value; this is because we also use this
6316      * function in handling of pushing of the callee-saves registers
6317      * part of the v8M stack frame (pseudocode PushCalleeStack()),
6318      * and in the tailchain codepath the SPSEL bit comes from the exception
6319      * return magic LR value from the previous exception. The pseudocode
6320      * opencodes the stack-selection in PushCalleeStack(), but we prefer
6321      * to make this utility function generic enough to do the job.
6322      */
6323     bool want_psp = threadmode && spsel;
6324 
6325     if (secure == env->v7m.secure) {
6326         if (want_psp == v7m_using_psp(env)) {
6327             return &env->regs[13];
6328         } else {
6329             return &env->v7m.other_sp;
6330         }
6331     } else {
6332         if (want_psp) {
6333             return &env->v7m.other_ss_psp;
6334         } else {
6335             return &env->v7m.other_ss_msp;
6336         }
6337     }
6338 }
6339 
6340 static uint32_t arm_v7m_load_vector(ARMCPU *cpu, bool targets_secure)
6341 {
6342     CPUState *cs = CPU(cpu);
6343     CPUARMState *env = &cpu->env;
6344     MemTxResult result;
6345     hwaddr vec = env->v7m.vecbase[targets_secure] + env->v7m.exception * 4;
6346     uint32_t addr;
6347 
6348     addr = address_space_ldl(cs->as, vec,
6349                              MEMTXATTRS_UNSPECIFIED, &result);
6350     if (result != MEMTX_OK) {
6351         /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
6352          * which would then be immediately followed by our failing to load
6353          * the entry vector for that HardFault, which is a Lockup case.
6354          * Since we don't model Lockup, we just report this guest error
6355          * via cpu_abort().
6356          */
6357         cpu_abort(cs, "Failed to read from %s exception vector table "
6358                   "entry %08x\n", targets_secure ? "secure" : "nonsecure",
6359                   (unsigned)vec);
6360     }
6361     return addr;
6362 }
6363 
6364 static void v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6365 {
6366     /* For v8M, push the callee-saves register part of the stack frame.
6367      * Compare the v8M pseudocode PushCalleeStack().
6368      * In the tailchaining case this may not be the current stack.
6369      */
6370     CPUARMState *env = &cpu->env;
6371     CPUState *cs = CPU(cpu);
6372     uint32_t *frame_sp_p;
6373     uint32_t frameptr;
6374 
6375     if (dotailchain) {
6376         frame_sp_p = get_v7m_sp_ptr(env, true,
6377                                     lr & R_V7M_EXCRET_MODE_MASK,
6378                                     lr & R_V7M_EXCRET_SPSEL_MASK);
6379     } else {
6380         frame_sp_p = &env->regs[13];
6381     }
6382 
6383     frameptr = *frame_sp_p - 0x28;
6384 
6385     stl_phys(cs->as, frameptr, 0xfefa125b);
6386     stl_phys(cs->as, frameptr + 0x8, env->regs[4]);
6387     stl_phys(cs->as, frameptr + 0xc, env->regs[5]);
6388     stl_phys(cs->as, frameptr + 0x10, env->regs[6]);
6389     stl_phys(cs->as, frameptr + 0x14, env->regs[7]);
6390     stl_phys(cs->as, frameptr + 0x18, env->regs[8]);
6391     stl_phys(cs->as, frameptr + 0x1c, env->regs[9]);
6392     stl_phys(cs->as, frameptr + 0x20, env->regs[10]);
6393     stl_phys(cs->as, frameptr + 0x24, env->regs[11]);
6394 
6395     *frame_sp_p = frameptr;
6396 }
6397 
6398 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain)
6399 {
6400     /* Do the "take the exception" parts of exception entry,
6401      * but not the pushing of state to the stack. This is
6402      * similar to the pseudocode ExceptionTaken() function.
6403      */
6404     CPUARMState *env = &cpu->env;
6405     uint32_t addr;
6406     bool targets_secure;
6407 
6408     targets_secure = armv7m_nvic_acknowledge_irq(env->nvic);
6409 
6410     if (arm_feature(env, ARM_FEATURE_V8)) {
6411         if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6412             (lr & R_V7M_EXCRET_S_MASK)) {
6413             /* The background code (the owner of the registers in the
6414              * exception frame) is Secure. This means it may either already
6415              * have or now needs to push callee-saves registers.
6416              */
6417             if (targets_secure) {
6418                 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
6419                     /* We took an exception from Secure to NonSecure
6420                      * (which means the callee-saved registers got stacked)
6421                      * and are now tailchaining to a Secure exception.
6422                      * Clear DCRS so eventual return from this Secure
6423                      * exception unstacks the callee-saved registers.
6424                      */
6425                     lr &= ~R_V7M_EXCRET_DCRS_MASK;
6426                 }
6427             } else {
6428                 /* We're going to a non-secure exception; push the
6429                  * callee-saves registers to the stack now, if they're
6430                  * not already saved.
6431                  */
6432                 if (lr & R_V7M_EXCRET_DCRS_MASK &&
6433                     !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6434                     v7m_push_callee_stack(cpu, lr, dotailchain);
6435                 }
6436                 lr |= R_V7M_EXCRET_DCRS_MASK;
6437             }
6438         }
6439 
6440         lr &= ~R_V7M_EXCRET_ES_MASK;
6441         if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6442             lr |= R_V7M_EXCRET_ES_MASK;
6443         }
6444         lr &= ~R_V7M_EXCRET_SPSEL_MASK;
6445         if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
6446             lr |= R_V7M_EXCRET_SPSEL_MASK;
6447         }
6448 
6449         /* Clear registers if necessary to prevent non-secure exception
6450          * code being able to see register values from secure code.
6451          * Where register values become architecturally UNKNOWN we leave
6452          * them with their previous values.
6453          */
6454         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6455             if (!targets_secure) {
6456                 /* Always clear the caller-saved registers (they have been
6457                  * pushed to the stack earlier in v7m_push_stack()).
6458                  * Clear callee-saved registers if the background code is
6459                  * Secure (in which case these regs were saved in
6460                  * v7m_push_callee_stack()).
6461                  */
6462                 int i;
6463 
6464                 for (i = 0; i < 13; i++) {
6465                     /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
6466                     if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
6467                         env->regs[i] = 0;
6468                     }
6469                 }
6470                 /* Clear EAPSR */
6471                 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
6472             }
6473         }
6474     }
6475 
6476     /* Switch to target security state -- must do this before writing SPSEL */
6477     switch_v7m_security_state(env, targets_secure);
6478     write_v7m_control_spsel(env, 0);
6479     arm_clear_exclusive(env);
6480     /* Clear IT bits */
6481     env->condexec_bits = 0;
6482     env->regs[14] = lr;
6483     addr = arm_v7m_load_vector(cpu, targets_secure);
6484     env->regs[15] = addr & 0xfffffffe;
6485     env->thumb = addr & 1;
6486 }
6487 
6488 static void v7m_push_stack(ARMCPU *cpu)
6489 {
6490     /* Do the "set up stack frame" part of exception entry,
6491      * similar to pseudocode PushStack().
6492      */
6493     CPUARMState *env = &cpu->env;
6494     uint32_t xpsr = xpsr_read(env);
6495 
6496     /* Align stack pointer if the guest wants that */
6497     if ((env->regs[13] & 4) &&
6498         (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6499         env->regs[13] -= 4;
6500         xpsr |= XPSR_SPREALIGN;
6501     }
6502     /* Switch to the handler mode.  */
6503     v7m_push(env, xpsr);
6504     v7m_push(env, env->regs[15]);
6505     v7m_push(env, env->regs[14]);
6506     v7m_push(env, env->regs[12]);
6507     v7m_push(env, env->regs[3]);
6508     v7m_push(env, env->regs[2]);
6509     v7m_push(env, env->regs[1]);
6510     v7m_push(env, env->regs[0]);
6511 }
6512 
6513 static void do_v7m_exception_exit(ARMCPU *cpu)
6514 {
6515     CPUARMState *env = &cpu->env;
6516     CPUState *cs = CPU(cpu);
6517     uint32_t excret;
6518     uint32_t xpsr;
6519     bool ufault = false;
6520     bool sfault = false;
6521     bool return_to_sp_process;
6522     bool return_to_handler;
6523     bool rettobase = false;
6524     bool exc_secure = false;
6525     bool return_to_secure;
6526 
6527     /* If we're not in Handler mode then jumps to magic exception-exit
6528      * addresses don't have magic behaviour. However for the v8M
6529      * security extensions the magic secure-function-return has to
6530      * work in thread mode too, so to avoid doing an extra check in
6531      * the generated code we allow exception-exit magic to also cause the
6532      * internal exception and bring us here in thread mode. Correct code
6533      * will never try to do this (the following insn fetch will always
6534      * fault) so we the overhead of having taken an unnecessary exception
6535      * doesn't matter.
6536      */
6537     if (!arm_v7m_is_handler_mode(env)) {
6538         return;
6539     }
6540 
6541     /* In the spec pseudocode ExceptionReturn() is called directly
6542      * from BXWritePC() and gets the full target PC value including
6543      * bit zero. In QEMU's implementation we treat it as a normal
6544      * jump-to-register (which is then caught later on), and so split
6545      * the target value up between env->regs[15] and env->thumb in
6546      * gen_bx(). Reconstitute it.
6547      */
6548     excret = env->regs[15];
6549     if (env->thumb) {
6550         excret |= 1;
6551     }
6552 
6553     qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
6554                   " previous exception %d\n",
6555                   excret, env->v7m.exception);
6556 
6557     if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6558         qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6559                       "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
6560                       excret);
6561     }
6562 
6563     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6564         /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
6565          * we pick which FAULTMASK to clear.
6566          */
6567         if (!env->v7m.secure &&
6568             ((excret & R_V7M_EXCRET_ES_MASK) ||
6569              !(excret & R_V7M_EXCRET_DCRS_MASK))) {
6570             sfault = 1;
6571             /* For all other purposes, treat ES as 0 (R_HXSR) */
6572             excret &= ~R_V7M_EXCRET_ES_MASK;
6573         }
6574     }
6575 
6576     if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6577         /* Auto-clear FAULTMASK on return from other than NMI.
6578          * If the security extension is implemented then this only
6579          * happens if the raw execution priority is >= 0; the
6580          * value of the ES bit in the exception return value indicates
6581          * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
6582          */
6583         if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6584             exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6585             if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6586                 env->v7m.faultmask[exc_secure] = 0;
6587             }
6588         } else {
6589             env->v7m.faultmask[M_REG_NS] = 0;
6590         }
6591     }
6592 
6593     switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
6594                                      exc_secure)) {
6595     case -1:
6596         /* attempt to exit an exception that isn't active */
6597         ufault = true;
6598         break;
6599     case 0:
6600         /* still an irq active now */
6601         break;
6602     case 1:
6603         /* we returned to base exception level, no nesting.
6604          * (In the pseudocode this is written using "NestedActivation != 1"
6605          * where we have 'rettobase == false'.)
6606          */
6607         rettobase = true;
6608         break;
6609     default:
6610         g_assert_not_reached();
6611     }
6612 
6613     return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
6614     return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
6615     return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
6616         (excret & R_V7M_EXCRET_S_MASK);
6617 
6618     if (arm_feature(env, ARM_FEATURE_V8)) {
6619         if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6620             /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
6621              * we choose to take the UsageFault.
6622              */
6623             if ((excret & R_V7M_EXCRET_S_MASK) ||
6624                 (excret & R_V7M_EXCRET_ES_MASK) ||
6625                 !(excret & R_V7M_EXCRET_DCRS_MASK)) {
6626                 ufault = true;
6627             }
6628         }
6629         if (excret & R_V7M_EXCRET_RES0_MASK) {
6630             ufault = true;
6631         }
6632     } else {
6633         /* For v7M we only recognize certain combinations of the low bits */
6634         switch (excret & 0xf) {
6635         case 1: /* Return to Handler */
6636             break;
6637         case 13: /* Return to Thread using Process stack */
6638         case 9: /* Return to Thread using Main stack */
6639             /* We only need to check NONBASETHRDENA for v7M, because in
6640              * v8M this bit does not exist (it is RES1).
6641              */
6642             if (!rettobase &&
6643                 !(env->v7m.ccr[env->v7m.secure] &
6644                   R_V7M_CCR_NONBASETHRDENA_MASK)) {
6645                 ufault = true;
6646             }
6647             break;
6648         default:
6649             ufault = true;
6650         }
6651     }
6652 
6653     if (sfault) {
6654         env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
6655         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6656         v7m_exception_taken(cpu, excret, true);
6657         qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6658                       "stackframe: failed EXC_RETURN.ES validity check\n");
6659         return;
6660     }
6661 
6662     if (ufault) {
6663         /* Bad exception return: instead of popping the exception
6664          * stack, directly take a usage fault on the current stack.
6665          */
6666         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6667         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
6668         v7m_exception_taken(cpu, excret, true);
6669         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6670                       "stackframe: failed exception return integrity check\n");
6671         return;
6672     }
6673 
6674     /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
6675      * Handler mode (and will be until we write the new XPSR.Interrupt
6676      * field) this does not switch around the current stack pointer.
6677      */
6678     write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
6679 
6680     switch_v7m_security_state(env, return_to_secure);
6681 
6682     {
6683         /* The stack pointer we should be reading the exception frame from
6684          * depends on bits in the magic exception return type value (and
6685          * for v8M isn't necessarily the stack pointer we will eventually
6686          * end up resuming execution with). Get a pointer to the location
6687          * in the CPU state struct where the SP we need is currently being
6688          * stored; we will use and modify it in place.
6689          * We use this limited C variable scope so we don't accidentally
6690          * use 'frame_sp_p' after we do something that makes it invalid.
6691          */
6692         uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
6693                                               return_to_secure,
6694                                               !return_to_handler,
6695                                               return_to_sp_process);
6696         uint32_t frameptr = *frame_sp_p;
6697 
6698         if (!QEMU_IS_ALIGNED(frameptr, 8) &&
6699             arm_feature(env, ARM_FEATURE_V8)) {
6700             qemu_log_mask(LOG_GUEST_ERROR,
6701                           "M profile exception return with non-8-aligned SP "
6702                           "for destination state is UNPREDICTABLE\n");
6703         }
6704 
6705         /* Do we need to pop callee-saved registers? */
6706         if (return_to_secure &&
6707             ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
6708              (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
6709             uint32_t expected_sig = 0xfefa125b;
6710             uint32_t actual_sig = ldl_phys(cs->as, frameptr);
6711 
6712             if (expected_sig != actual_sig) {
6713                 /* Take a SecureFault on the current stack */
6714                 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
6715                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6716                 v7m_exception_taken(cpu, excret, true);
6717                 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
6718                               "stackframe: failed exception return integrity "
6719                               "signature check\n");
6720                 return;
6721             }
6722 
6723             env->regs[4] = ldl_phys(cs->as, frameptr + 0x8);
6724             env->regs[5] = ldl_phys(cs->as, frameptr + 0xc);
6725             env->regs[6] = ldl_phys(cs->as, frameptr + 0x10);
6726             env->regs[7] = ldl_phys(cs->as, frameptr + 0x14);
6727             env->regs[8] = ldl_phys(cs->as, frameptr + 0x18);
6728             env->regs[9] = ldl_phys(cs->as, frameptr + 0x1c);
6729             env->regs[10] = ldl_phys(cs->as, frameptr + 0x20);
6730             env->regs[11] = ldl_phys(cs->as, frameptr + 0x24);
6731 
6732             frameptr += 0x28;
6733         }
6734 
6735         /* Pop registers. TODO: make these accesses use the correct
6736          * attributes and address space (S/NS, priv/unpriv) and handle
6737          * memory transaction failures.
6738          */
6739         env->regs[0] = ldl_phys(cs->as, frameptr);
6740         env->regs[1] = ldl_phys(cs->as, frameptr + 0x4);
6741         env->regs[2] = ldl_phys(cs->as, frameptr + 0x8);
6742         env->regs[3] = ldl_phys(cs->as, frameptr + 0xc);
6743         env->regs[12] = ldl_phys(cs->as, frameptr + 0x10);
6744         env->regs[14] = ldl_phys(cs->as, frameptr + 0x14);
6745         env->regs[15] = ldl_phys(cs->as, frameptr + 0x18);
6746 
6747         /* Returning from an exception with a PC with bit 0 set is defined
6748          * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
6749          * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
6750          * the lsbit, and there are several RTOSes out there which incorrectly
6751          * assume the r15 in the stack frame should be a Thumb-style "lsbit
6752          * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
6753          * complain about the badly behaved guest.
6754          */
6755         if (env->regs[15] & 1) {
6756             env->regs[15] &= ~1U;
6757             if (!arm_feature(env, ARM_FEATURE_V8)) {
6758                 qemu_log_mask(LOG_GUEST_ERROR,
6759                               "M profile return from interrupt with misaligned "
6760                               "PC is UNPREDICTABLE on v7M\n");
6761             }
6762         }
6763 
6764         xpsr = ldl_phys(cs->as, frameptr + 0x1c);
6765 
6766         if (arm_feature(env, ARM_FEATURE_V8)) {
6767             /* For v8M we have to check whether the xPSR exception field
6768              * matches the EXCRET value for return to handler/thread
6769              * before we commit to changing the SP and xPSR.
6770              */
6771             bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
6772             if (return_to_handler != will_be_handler) {
6773                 /* Take an INVPC UsageFault on the current stack.
6774                  * By this point we will have switched to the security state
6775                  * for the background state, so this UsageFault will target
6776                  * that state.
6777                  */
6778                 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6779                                         env->v7m.secure);
6780                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6781                 v7m_exception_taken(cpu, excret, true);
6782                 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
6783                               "stackframe: failed exception return integrity "
6784                               "check\n");
6785                 return;
6786             }
6787         }
6788 
6789         /* Commit to consuming the stack frame */
6790         frameptr += 0x20;
6791         /* Undo stack alignment (the SPREALIGN bit indicates that the original
6792          * pre-exception SP was not 8-aligned and we added a padding word to
6793          * align it, so we undo this by ORing in the bit that increases it
6794          * from the current 8-aligned value to the 8-unaligned value. (Adding 4
6795          * would work too but a logical OR is how the pseudocode specifies it.)
6796          */
6797         if (xpsr & XPSR_SPREALIGN) {
6798             frameptr |= 4;
6799         }
6800         *frame_sp_p = frameptr;
6801     }
6802     /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
6803     xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
6804 
6805     /* The restored xPSR exception field will be zero if we're
6806      * resuming in Thread mode. If that doesn't match what the
6807      * exception return excret specified then this is a UsageFault.
6808      * v7M requires we make this check here; v8M did it earlier.
6809      */
6810     if (return_to_handler != arm_v7m_is_handler_mode(env)) {
6811         /* Take an INVPC UsageFault by pushing the stack again;
6812          * we know we're v7M so this is never a Secure UsageFault.
6813          */
6814         assert(!arm_feature(env, ARM_FEATURE_V8));
6815         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
6816         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6817         v7m_push_stack(cpu);
6818         v7m_exception_taken(cpu, excret, false);
6819         qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
6820                       "failed exception return integrity check\n");
6821         return;
6822     }
6823 
6824     /* Otherwise, we have a successful exception exit. */
6825     arm_clear_exclusive(env);
6826     qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
6827 }
6828 
6829 static bool do_v7m_function_return(ARMCPU *cpu)
6830 {
6831     /* v8M security extensions magic function return.
6832      * We may either:
6833      *  (1) throw an exception (longjump)
6834      *  (2) return true if we successfully handled the function return
6835      *  (3) return false if we failed a consistency check and have
6836      *      pended a UsageFault that needs to be taken now
6837      *
6838      * At this point the magic return value is split between env->regs[15]
6839      * and env->thumb. We don't bother to reconstitute it because we don't
6840      * need it (all values are handled the same way).
6841      */
6842     CPUARMState *env = &cpu->env;
6843     uint32_t newpc, newpsr, newpsr_exc;
6844 
6845     qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
6846 
6847     {
6848         bool threadmode, spsel;
6849         TCGMemOpIdx oi;
6850         ARMMMUIdx mmu_idx;
6851         uint32_t *frame_sp_p;
6852         uint32_t frameptr;
6853 
6854         /* Pull the return address and IPSR from the Secure stack */
6855         threadmode = !arm_v7m_is_handler_mode(env);
6856         spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
6857 
6858         frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
6859         frameptr = *frame_sp_p;
6860 
6861         /* These loads may throw an exception (for MPU faults). We want to
6862          * do them as secure, so work out what MMU index that is.
6863          */
6864         mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
6865         oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
6866         newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
6867         newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
6868 
6869         /* Consistency checks on new IPSR */
6870         newpsr_exc = newpsr & XPSR_EXCP;
6871         if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
6872               (env->v7m.exception == 1 && newpsr_exc != 0))) {
6873             /* Pend the fault and tell our caller to take it */
6874             env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
6875             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
6876                                     env->v7m.secure);
6877             qemu_log_mask(CPU_LOG_INT,
6878                           "...taking INVPC UsageFault: "
6879                           "IPSR consistency check failed\n");
6880             return false;
6881         }
6882 
6883         *frame_sp_p = frameptr + 8;
6884     }
6885 
6886     /* This invalidates frame_sp_p */
6887     switch_v7m_security_state(env, true);
6888     env->v7m.exception = newpsr_exc;
6889     env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
6890     if (newpsr & XPSR_SFPA) {
6891         env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
6892     }
6893     xpsr_write(env, 0, XPSR_IT);
6894     env->thumb = newpc & 1;
6895     env->regs[15] = newpc & ~1;
6896 
6897     qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
6898     return true;
6899 }
6900 
6901 static void arm_log_exception(int idx)
6902 {
6903     if (qemu_loglevel_mask(CPU_LOG_INT)) {
6904         const char *exc = NULL;
6905         static const char * const excnames[] = {
6906             [EXCP_UDEF] = "Undefined Instruction",
6907             [EXCP_SWI] = "SVC",
6908             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
6909             [EXCP_DATA_ABORT] = "Data Abort",
6910             [EXCP_IRQ] = "IRQ",
6911             [EXCP_FIQ] = "FIQ",
6912             [EXCP_BKPT] = "Breakpoint",
6913             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
6914             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
6915             [EXCP_HVC] = "Hypervisor Call",
6916             [EXCP_HYP_TRAP] = "Hypervisor Trap",
6917             [EXCP_SMC] = "Secure Monitor Call",
6918             [EXCP_VIRQ] = "Virtual IRQ",
6919             [EXCP_VFIQ] = "Virtual FIQ",
6920             [EXCP_SEMIHOST] = "Semihosting call",
6921             [EXCP_NOCP] = "v7M NOCP UsageFault",
6922             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
6923         };
6924 
6925         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
6926             exc = excnames[idx];
6927         }
6928         if (!exc) {
6929             exc = "unknown";
6930         }
6931         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
6932     }
6933 }
6934 
6935 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
6936                                uint32_t addr, uint16_t *insn)
6937 {
6938     /* Load a 16-bit portion of a v7M instruction, returning true on success,
6939      * or false on failure (in which case we will have pended the appropriate
6940      * exception).
6941      * We need to do the instruction fetch's MPU and SAU checks
6942      * like this because there is no MMU index that would allow
6943      * doing the load with a single function call. Instead we must
6944      * first check that the security attributes permit the load
6945      * and that they don't mismatch on the two halves of the instruction,
6946      * and then we do the load as a secure load (ie using the security
6947      * attributes of the address, not the CPU, as architecturally required).
6948      */
6949     CPUState *cs = CPU(cpu);
6950     CPUARMState *env = &cpu->env;
6951     V8M_SAttributes sattrs = {};
6952     MemTxAttrs attrs = {};
6953     ARMMMUFaultInfo fi = {};
6954     MemTxResult txres;
6955     target_ulong page_size;
6956     hwaddr physaddr;
6957     int prot;
6958     uint32_t fsr;
6959 
6960     v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
6961     if (!sattrs.nsc || sattrs.ns) {
6962         /* This must be the second half of the insn, and it straddles a
6963          * region boundary with the second half not being S&NSC.
6964          */
6965         env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
6966         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
6967         qemu_log_mask(CPU_LOG_INT,
6968                       "...really SecureFault with SFSR.INVEP\n");
6969         return false;
6970     }
6971     if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
6972                       &physaddr, &attrs, &prot, &page_size, &fsr, &fi, NULL)) {
6973         /* the MPU lookup failed */
6974         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
6975         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
6976         qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
6977         return false;
6978     }
6979     *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
6980                                  attrs, &txres);
6981     if (txres != MEMTX_OK) {
6982         env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
6983         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
6984         qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
6985         return false;
6986     }
6987     return true;
6988 }
6989 
6990 static bool v7m_handle_execute_nsc(ARMCPU *cpu)
6991 {
6992     /* Check whether this attempt to execute code in a Secure & NS-Callable
6993      * memory region is for an SG instruction; if so, then emulate the
6994      * effect of the SG instruction and return true. Otherwise pend
6995      * the correct kind of exception and return false.
6996      */
6997     CPUARMState *env = &cpu->env;
6998     ARMMMUIdx mmu_idx;
6999     uint16_t insn;
7000 
7001     /* We should never get here unless get_phys_addr_pmsav8() caused
7002      * an exception for NS executing in S&NSC memory.
7003      */
7004     assert(!env->v7m.secure);
7005     assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7006 
7007     /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7008     mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
7009 
7010     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
7011         return false;
7012     }
7013 
7014     if (!env->thumb) {
7015         goto gen_invep;
7016     }
7017 
7018     if (insn != 0xe97f) {
7019         /* Not an SG instruction first half (we choose the IMPDEF
7020          * early-SG-check option).
7021          */
7022         goto gen_invep;
7023     }
7024 
7025     if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
7026         return false;
7027     }
7028 
7029     if (insn != 0xe97f) {
7030         /* Not an SG instruction second half (yes, both halves of the SG
7031          * insn have the same hex value)
7032          */
7033         goto gen_invep;
7034     }
7035 
7036     /* OK, we have confirmed that we really have an SG instruction.
7037      * We know we're NS in S memory so don't need to repeat those checks.
7038      */
7039     qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
7040                   ", executing it\n", env->regs[15]);
7041     env->regs[14] &= ~1;
7042     switch_v7m_security_state(env, true);
7043     xpsr_write(env, 0, XPSR_IT);
7044     env->regs[15] += 4;
7045     return true;
7046 
7047 gen_invep:
7048     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7049     armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7050     qemu_log_mask(CPU_LOG_INT,
7051                   "...really SecureFault with SFSR.INVEP\n");
7052     return false;
7053 }
7054 
7055 void arm_v7m_cpu_do_interrupt(CPUState *cs)
7056 {
7057     ARMCPU *cpu = ARM_CPU(cs);
7058     CPUARMState *env = &cpu->env;
7059     uint32_t lr;
7060 
7061     arm_log_exception(cs->exception_index);
7062 
7063     /* For exceptions we just mark as pending on the NVIC, and let that
7064        handle it.  */
7065     switch (cs->exception_index) {
7066     case EXCP_UDEF:
7067         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7068         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7069         break;
7070     case EXCP_NOCP:
7071         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7072         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7073         break;
7074     case EXCP_INVSTATE:
7075         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7076         env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7077         break;
7078     case EXCP_SWI:
7079         /* The PC already points to the next instruction.  */
7080         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7081         break;
7082     case EXCP_PREFETCH_ABORT:
7083     case EXCP_DATA_ABORT:
7084         /* Note that for M profile we don't have a guest facing FSR, but
7085          * the env->exception.fsr will be populated by the code that
7086          * raises the fault, in the A profile short-descriptor format.
7087          */
7088         switch (env->exception.fsr & 0xf) {
7089         case M_FAKE_FSR_NSC_EXEC:
7090             /* Exception generated when we try to execute code at an address
7091              * which is marked as Secure & Non-Secure Callable and the CPU
7092              * is in the Non-Secure state. The only instruction which can
7093              * be executed like this is SG (and that only if both halves of
7094              * the SG instruction have the same security attributes.)
7095              * Everything else must generate an INVEP SecureFault, so we
7096              * emulate the SG instruction here.
7097              */
7098             if (v7m_handle_execute_nsc(cpu)) {
7099                 return;
7100             }
7101             break;
7102         case M_FAKE_FSR_SFAULT:
7103             /* Various flavours of SecureFault for attempts to execute or
7104              * access data in the wrong security state.
7105              */
7106             switch (cs->exception_index) {
7107             case EXCP_PREFETCH_ABORT:
7108                 if (env->v7m.secure) {
7109                     env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
7110                     qemu_log_mask(CPU_LOG_INT,
7111                                   "...really SecureFault with SFSR.INVTRAN\n");
7112                 } else {
7113                     env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
7114                     qemu_log_mask(CPU_LOG_INT,
7115                                   "...really SecureFault with SFSR.INVEP\n");
7116                 }
7117                 break;
7118             case EXCP_DATA_ABORT:
7119                 /* This must be an NS access to S memory */
7120                 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
7121                 qemu_log_mask(CPU_LOG_INT,
7122                               "...really SecureFault with SFSR.AUVIOL\n");
7123                 break;
7124             }
7125             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7126             break;
7127         case 0x8: /* External Abort */
7128             switch (cs->exception_index) {
7129             case EXCP_PREFETCH_ABORT:
7130                 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
7131                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7132                 break;
7133             case EXCP_DATA_ABORT:
7134                 env->v7m.cfsr[M_REG_NS] |=
7135                     (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7136                 env->v7m.bfar = env->exception.vaddress;
7137                 qemu_log_mask(CPU_LOG_INT,
7138                               "...with CFSR.PRECISERR and BFAR 0x%x\n",
7139                               env->v7m.bfar);
7140                 break;
7141             }
7142             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7143             break;
7144         default:
7145             /* All other FSR values are either MPU faults or "can't happen
7146              * for M profile" cases.
7147              */
7148             switch (cs->exception_index) {
7149             case EXCP_PREFETCH_ABORT:
7150                 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7151                 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
7152                 break;
7153             case EXCP_DATA_ABORT:
7154                 env->v7m.cfsr[env->v7m.secure] |=
7155                     (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7156                 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7157                 qemu_log_mask(CPU_LOG_INT,
7158                               "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7159                               env->v7m.mmfar[env->v7m.secure]);
7160                 break;
7161             }
7162             armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
7163                                     env->v7m.secure);
7164             break;
7165         }
7166         break;
7167     case EXCP_BKPT:
7168         if (semihosting_enabled()) {
7169             int nr;
7170             nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
7171             if (nr == 0xab) {
7172                 env->regs[15] += 2;
7173                 qemu_log_mask(CPU_LOG_INT,
7174                               "...handling as semihosting call 0x%x\n",
7175                               env->regs[0]);
7176                 env->regs[0] = do_arm_semihosting(env);
7177                 return;
7178             }
7179         }
7180         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7181         break;
7182     case EXCP_IRQ:
7183         break;
7184     case EXCP_EXCEPTION_EXIT:
7185         if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
7186             /* Must be v8M security extension function return */
7187             assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
7188             assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
7189             if (do_v7m_function_return(cpu)) {
7190                 return;
7191             }
7192         } else {
7193             do_v7m_exception_exit(cpu);
7194             return;
7195         }
7196         break;
7197     default:
7198         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7199         return; /* Never happens.  Keep compiler happy.  */
7200     }
7201 
7202     if (arm_feature(env, ARM_FEATURE_V8)) {
7203         lr = R_V7M_EXCRET_RES1_MASK |
7204             R_V7M_EXCRET_DCRS_MASK |
7205             R_V7M_EXCRET_FTYPE_MASK;
7206         /* The S bit indicates whether we should return to Secure
7207          * or NonSecure (ie our current state).
7208          * The ES bit indicates whether we're taking this exception
7209          * to Secure or NonSecure (ie our target state). We set it
7210          * later, in v7m_exception_taken().
7211          * The SPSEL bit is also set in v7m_exception_taken() for v8M.
7212          * This corresponds to the ARM ARM pseudocode for v8M setting
7213          * some LR bits in PushStack() and some in ExceptionTaken();
7214          * the distinction matters for the tailchain cases where we
7215          * can take an exception without pushing the stack.
7216          */
7217         if (env->v7m.secure) {
7218             lr |= R_V7M_EXCRET_S_MASK;
7219         }
7220     } else {
7221         lr = R_V7M_EXCRET_RES1_MASK |
7222             R_V7M_EXCRET_S_MASK |
7223             R_V7M_EXCRET_DCRS_MASK |
7224             R_V7M_EXCRET_FTYPE_MASK |
7225             R_V7M_EXCRET_ES_MASK;
7226         if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
7227             lr |= R_V7M_EXCRET_SPSEL_MASK;
7228         }
7229     }
7230     if (!arm_v7m_is_handler_mode(env)) {
7231         lr |= R_V7M_EXCRET_MODE_MASK;
7232     }
7233 
7234     v7m_push_stack(cpu);
7235     v7m_exception_taken(cpu, lr, false);
7236     qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
7237 }
7238 
7239 /* Function used to synchronize QEMU's AArch64 register set with AArch32
7240  * register set.  This is necessary when switching between AArch32 and AArch64
7241  * execution state.
7242  */
7243 void aarch64_sync_32_to_64(CPUARMState *env)
7244 {
7245     int i;
7246     uint32_t mode = env->uncached_cpsr & CPSR_M;
7247 
7248     /* We can blanket copy R[0:7] to X[0:7] */
7249     for (i = 0; i < 8; i++) {
7250         env->xregs[i] = env->regs[i];
7251     }
7252 
7253     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
7254      * Otherwise, they come from the banked user regs.
7255      */
7256     if (mode == ARM_CPU_MODE_FIQ) {
7257         for (i = 8; i < 13; i++) {
7258             env->xregs[i] = env->usr_regs[i - 8];
7259         }
7260     } else {
7261         for (i = 8; i < 13; i++) {
7262             env->xregs[i] = env->regs[i];
7263         }
7264     }
7265 
7266     /* Registers x13-x23 are the various mode SP and FP registers. Registers
7267      * r13 and r14 are only copied if we are in that mode, otherwise we copy
7268      * from the mode banked register.
7269      */
7270     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7271         env->xregs[13] = env->regs[13];
7272         env->xregs[14] = env->regs[14];
7273     } else {
7274         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
7275         /* HYP is an exception in that it is copied from r14 */
7276         if (mode == ARM_CPU_MODE_HYP) {
7277             env->xregs[14] = env->regs[14];
7278         } else {
7279             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
7280         }
7281     }
7282 
7283     if (mode == ARM_CPU_MODE_HYP) {
7284         env->xregs[15] = env->regs[13];
7285     } else {
7286         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
7287     }
7288 
7289     if (mode == ARM_CPU_MODE_IRQ) {
7290         env->xregs[16] = env->regs[14];
7291         env->xregs[17] = env->regs[13];
7292     } else {
7293         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
7294         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7295     }
7296 
7297     if (mode == ARM_CPU_MODE_SVC) {
7298         env->xregs[18] = env->regs[14];
7299         env->xregs[19] = env->regs[13];
7300     } else {
7301         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
7302         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7303     }
7304 
7305     if (mode == ARM_CPU_MODE_ABT) {
7306         env->xregs[20] = env->regs[14];
7307         env->xregs[21] = env->regs[13];
7308     } else {
7309         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
7310         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7311     }
7312 
7313     if (mode == ARM_CPU_MODE_UND) {
7314         env->xregs[22] = env->regs[14];
7315         env->xregs[23] = env->regs[13];
7316     } else {
7317         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
7318         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7319     }
7320 
7321     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7322      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
7323      * FIQ bank for r8-r14.
7324      */
7325     if (mode == ARM_CPU_MODE_FIQ) {
7326         for (i = 24; i < 31; i++) {
7327             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
7328         }
7329     } else {
7330         for (i = 24; i < 29; i++) {
7331             env->xregs[i] = env->fiq_regs[i - 24];
7332         }
7333         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
7334         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
7335     }
7336 
7337     env->pc = env->regs[15];
7338 }
7339 
7340 /* Function used to synchronize QEMU's AArch32 register set with AArch64
7341  * register set.  This is necessary when switching between AArch32 and AArch64
7342  * execution state.
7343  */
7344 void aarch64_sync_64_to_32(CPUARMState *env)
7345 {
7346     int i;
7347     uint32_t mode = env->uncached_cpsr & CPSR_M;
7348 
7349     /* We can blanket copy X[0:7] to R[0:7] */
7350     for (i = 0; i < 8; i++) {
7351         env->regs[i] = env->xregs[i];
7352     }
7353 
7354     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
7355      * Otherwise, we copy x8-x12 into the banked user regs.
7356      */
7357     if (mode == ARM_CPU_MODE_FIQ) {
7358         for (i = 8; i < 13; i++) {
7359             env->usr_regs[i - 8] = env->xregs[i];
7360         }
7361     } else {
7362         for (i = 8; i < 13; i++) {
7363             env->regs[i] = env->xregs[i];
7364         }
7365     }
7366 
7367     /* Registers r13 & r14 depend on the current mode.
7368      * If we are in a given mode, we copy the corresponding x registers to r13
7369      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
7370      * for the mode.
7371      */
7372     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
7373         env->regs[13] = env->xregs[13];
7374         env->regs[14] = env->xregs[14];
7375     } else {
7376         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
7377 
7378         /* HYP is an exception in that it does not have its own banked r14 but
7379          * shares the USR r14
7380          */
7381         if (mode == ARM_CPU_MODE_HYP) {
7382             env->regs[14] = env->xregs[14];
7383         } else {
7384             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
7385         }
7386     }
7387 
7388     if (mode == ARM_CPU_MODE_HYP) {
7389         env->regs[13] = env->xregs[15];
7390     } else {
7391         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
7392     }
7393 
7394     if (mode == ARM_CPU_MODE_IRQ) {
7395         env->regs[14] = env->xregs[16];
7396         env->regs[13] = env->xregs[17];
7397     } else {
7398         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
7399         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7400     }
7401 
7402     if (mode == ARM_CPU_MODE_SVC) {
7403         env->regs[14] = env->xregs[18];
7404         env->regs[13] = env->xregs[19];
7405     } else {
7406         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
7407         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7408     }
7409 
7410     if (mode == ARM_CPU_MODE_ABT) {
7411         env->regs[14] = env->xregs[20];
7412         env->regs[13] = env->xregs[21];
7413     } else {
7414         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
7415         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7416     }
7417 
7418     if (mode == ARM_CPU_MODE_UND) {
7419         env->regs[14] = env->xregs[22];
7420         env->regs[13] = env->xregs[23];
7421     } else {
7422         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
7423         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7424     }
7425 
7426     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
7427      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
7428      * FIQ bank for r8-r14.
7429      */
7430     if (mode == ARM_CPU_MODE_FIQ) {
7431         for (i = 24; i < 31; i++) {
7432             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
7433         }
7434     } else {
7435         for (i = 24; i < 29; i++) {
7436             env->fiq_regs[i - 24] = env->xregs[i];
7437         }
7438         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
7439         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
7440     }
7441 
7442     env->regs[15] = env->pc;
7443 }
7444 
7445 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
7446 {
7447     ARMCPU *cpu = ARM_CPU(cs);
7448     CPUARMState *env = &cpu->env;
7449     uint32_t addr;
7450     uint32_t mask;
7451     int new_mode;
7452     uint32_t offset;
7453     uint32_t moe;
7454 
7455     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
7456     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
7457     case EC_BREAKPOINT:
7458     case EC_BREAKPOINT_SAME_EL:
7459         moe = 1;
7460         break;
7461     case EC_WATCHPOINT:
7462     case EC_WATCHPOINT_SAME_EL:
7463         moe = 10;
7464         break;
7465     case EC_AA32_BKPT:
7466         moe = 3;
7467         break;
7468     case EC_VECTORCATCH:
7469         moe = 5;
7470         break;
7471     default:
7472         moe = 0;
7473         break;
7474     }
7475 
7476     if (moe) {
7477         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
7478     }
7479 
7480     /* TODO: Vectored interrupt controller.  */
7481     switch (cs->exception_index) {
7482     case EXCP_UDEF:
7483         new_mode = ARM_CPU_MODE_UND;
7484         addr = 0x04;
7485         mask = CPSR_I;
7486         if (env->thumb)
7487             offset = 2;
7488         else
7489             offset = 4;
7490         break;
7491     case EXCP_SWI:
7492         new_mode = ARM_CPU_MODE_SVC;
7493         addr = 0x08;
7494         mask = CPSR_I;
7495         /* The PC already points to the next instruction.  */
7496         offset = 0;
7497         break;
7498     case EXCP_BKPT:
7499         env->exception.fsr = 2;
7500         /* Fall through to prefetch abort.  */
7501     case EXCP_PREFETCH_ABORT:
7502         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
7503         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7504         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
7505                       env->exception.fsr, (uint32_t)env->exception.vaddress);
7506         new_mode = ARM_CPU_MODE_ABT;
7507         addr = 0x0c;
7508         mask = CPSR_A | CPSR_I;
7509         offset = 4;
7510         break;
7511     case EXCP_DATA_ABORT:
7512         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
7513         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7514         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
7515                       env->exception.fsr,
7516                       (uint32_t)env->exception.vaddress);
7517         new_mode = ARM_CPU_MODE_ABT;
7518         addr = 0x10;
7519         mask = CPSR_A | CPSR_I;
7520         offset = 8;
7521         break;
7522     case EXCP_IRQ:
7523         new_mode = ARM_CPU_MODE_IRQ;
7524         addr = 0x18;
7525         /* Disable IRQ and imprecise data aborts.  */
7526         mask = CPSR_A | CPSR_I;
7527         offset = 4;
7528         if (env->cp15.scr_el3 & SCR_IRQ) {
7529             /* IRQ routed to monitor mode */
7530             new_mode = ARM_CPU_MODE_MON;
7531             mask |= CPSR_F;
7532         }
7533         break;
7534     case EXCP_FIQ:
7535         new_mode = ARM_CPU_MODE_FIQ;
7536         addr = 0x1c;
7537         /* Disable FIQ, IRQ and imprecise data aborts.  */
7538         mask = CPSR_A | CPSR_I | CPSR_F;
7539         if (env->cp15.scr_el3 & SCR_FIQ) {
7540             /* FIQ routed to monitor mode */
7541             new_mode = ARM_CPU_MODE_MON;
7542         }
7543         offset = 4;
7544         break;
7545     case EXCP_VIRQ:
7546         new_mode = ARM_CPU_MODE_IRQ;
7547         addr = 0x18;
7548         /* Disable IRQ and imprecise data aborts.  */
7549         mask = CPSR_A | CPSR_I;
7550         offset = 4;
7551         break;
7552     case EXCP_VFIQ:
7553         new_mode = ARM_CPU_MODE_FIQ;
7554         addr = 0x1c;
7555         /* Disable FIQ, IRQ and imprecise data aborts.  */
7556         mask = CPSR_A | CPSR_I | CPSR_F;
7557         offset = 4;
7558         break;
7559     case EXCP_SMC:
7560         new_mode = ARM_CPU_MODE_MON;
7561         addr = 0x08;
7562         mask = CPSR_A | CPSR_I | CPSR_F;
7563         offset = 0;
7564         break;
7565     default:
7566         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7567         return; /* Never happens.  Keep compiler happy.  */
7568     }
7569 
7570     if (new_mode == ARM_CPU_MODE_MON) {
7571         addr += env->cp15.mvbar;
7572     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
7573         /* High vectors. When enabled, base address cannot be remapped. */
7574         addr += 0xffff0000;
7575     } else {
7576         /* ARM v7 architectures provide a vector base address register to remap
7577          * the interrupt vector table.
7578          * This register is only followed in non-monitor mode, and is banked.
7579          * Note: only bits 31:5 are valid.
7580          */
7581         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
7582     }
7583 
7584     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
7585         env->cp15.scr_el3 &= ~SCR_NS;
7586     }
7587 
7588     switch_mode (env, new_mode);
7589     /* For exceptions taken to AArch32 we must clear the SS bit in both
7590      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
7591      */
7592     env->uncached_cpsr &= ~PSTATE_SS;
7593     env->spsr = cpsr_read(env);
7594     /* Clear IT bits.  */
7595     env->condexec_bits = 0;
7596     /* Switch to the new mode, and to the correct instruction set.  */
7597     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
7598     /* Set new mode endianness */
7599     env->uncached_cpsr &= ~CPSR_E;
7600     if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
7601         env->uncached_cpsr |= CPSR_E;
7602     }
7603     env->daif |= mask;
7604     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
7605      * and we should just guard the thumb mode on V4 */
7606     if (arm_feature(env, ARM_FEATURE_V4T)) {
7607         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
7608     }
7609     env->regs[14] = env->regs[15] + offset;
7610     env->regs[15] = addr;
7611 }
7612 
7613 /* Handle exception entry to a target EL which is using AArch64 */
7614 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
7615 {
7616     ARMCPU *cpu = ARM_CPU(cs);
7617     CPUARMState *env = &cpu->env;
7618     unsigned int new_el = env->exception.target_el;
7619     target_ulong addr = env->cp15.vbar_el[new_el];
7620     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
7621 
7622     if (arm_current_el(env) < new_el) {
7623         /* Entry vector offset depends on whether the implemented EL
7624          * immediately lower than the target level is using AArch32 or AArch64
7625          */
7626         bool is_aa64;
7627 
7628         switch (new_el) {
7629         case 3:
7630             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
7631             break;
7632         case 2:
7633             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
7634             break;
7635         case 1:
7636             is_aa64 = is_a64(env);
7637             break;
7638         default:
7639             g_assert_not_reached();
7640         }
7641 
7642         if (is_aa64) {
7643             addr += 0x400;
7644         } else {
7645             addr += 0x600;
7646         }
7647     } else if (pstate_read(env) & PSTATE_SP) {
7648         addr += 0x200;
7649     }
7650 
7651     switch (cs->exception_index) {
7652     case EXCP_PREFETCH_ABORT:
7653     case EXCP_DATA_ABORT:
7654         env->cp15.far_el[new_el] = env->exception.vaddress;
7655         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
7656                       env->cp15.far_el[new_el]);
7657         /* fall through */
7658     case EXCP_BKPT:
7659     case EXCP_UDEF:
7660     case EXCP_SWI:
7661     case EXCP_HVC:
7662     case EXCP_HYP_TRAP:
7663     case EXCP_SMC:
7664         env->cp15.esr_el[new_el] = env->exception.syndrome;
7665         break;
7666     case EXCP_IRQ:
7667     case EXCP_VIRQ:
7668         addr += 0x80;
7669         break;
7670     case EXCP_FIQ:
7671     case EXCP_VFIQ:
7672         addr += 0x100;
7673         break;
7674     case EXCP_SEMIHOST:
7675         qemu_log_mask(CPU_LOG_INT,
7676                       "...handling as semihosting call 0x%" PRIx64 "\n",
7677                       env->xregs[0]);
7678         env->xregs[0] = do_arm_semihosting(env);
7679         return;
7680     default:
7681         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
7682     }
7683 
7684     if (is_a64(env)) {
7685         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
7686         aarch64_save_sp(env, arm_current_el(env));
7687         env->elr_el[new_el] = env->pc;
7688     } else {
7689         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
7690         env->elr_el[new_el] = env->regs[15];
7691 
7692         aarch64_sync_32_to_64(env);
7693 
7694         env->condexec_bits = 0;
7695     }
7696     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
7697                   env->elr_el[new_el]);
7698 
7699     pstate_write(env, PSTATE_DAIF | new_mode);
7700     env->aarch64 = 1;
7701     aarch64_restore_sp(env, new_el);
7702 
7703     env->pc = addr;
7704 
7705     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
7706                   new_el, env->pc, pstate_read(env));
7707 }
7708 
7709 static inline bool check_for_semihosting(CPUState *cs)
7710 {
7711     /* Check whether this exception is a semihosting call; if so
7712      * then handle it and return true; otherwise return false.
7713      */
7714     ARMCPU *cpu = ARM_CPU(cs);
7715     CPUARMState *env = &cpu->env;
7716 
7717     if (is_a64(env)) {
7718         if (cs->exception_index == EXCP_SEMIHOST) {
7719             /* This is always the 64-bit semihosting exception.
7720              * The "is this usermode" and "is semihosting enabled"
7721              * checks have been done at translate time.
7722              */
7723             qemu_log_mask(CPU_LOG_INT,
7724                           "...handling as semihosting call 0x%" PRIx64 "\n",
7725                           env->xregs[0]);
7726             env->xregs[0] = do_arm_semihosting(env);
7727             return true;
7728         }
7729         return false;
7730     } else {
7731         uint32_t imm;
7732 
7733         /* Only intercept calls from privileged modes, to provide some
7734          * semblance of security.
7735          */
7736         if (cs->exception_index != EXCP_SEMIHOST &&
7737             (!semihosting_enabled() ||
7738              ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
7739             return false;
7740         }
7741 
7742         switch (cs->exception_index) {
7743         case EXCP_SEMIHOST:
7744             /* This is always a semihosting call; the "is this usermode"
7745              * and "is semihosting enabled" checks have been done at
7746              * translate time.
7747              */
7748             break;
7749         case EXCP_SWI:
7750             /* Check for semihosting interrupt.  */
7751             if (env->thumb) {
7752                 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
7753                     & 0xff;
7754                 if (imm == 0xab) {
7755                     break;
7756                 }
7757             } else {
7758                 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
7759                     & 0xffffff;
7760                 if (imm == 0x123456) {
7761                     break;
7762                 }
7763             }
7764             return false;
7765         case EXCP_BKPT:
7766             /* See if this is a semihosting syscall.  */
7767             if (env->thumb) {
7768                 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
7769                     & 0xff;
7770                 if (imm == 0xab) {
7771                     env->regs[15] += 2;
7772                     break;
7773                 }
7774             }
7775             return false;
7776         default:
7777             return false;
7778         }
7779 
7780         qemu_log_mask(CPU_LOG_INT,
7781                       "...handling as semihosting call 0x%x\n",
7782                       env->regs[0]);
7783         env->regs[0] = do_arm_semihosting(env);
7784         return true;
7785     }
7786 }
7787 
7788 /* Handle a CPU exception for A and R profile CPUs.
7789  * Do any appropriate logging, handle PSCI calls, and then hand off
7790  * to the AArch64-entry or AArch32-entry function depending on the
7791  * target exception level's register width.
7792  */
7793 void arm_cpu_do_interrupt(CPUState *cs)
7794 {
7795     ARMCPU *cpu = ARM_CPU(cs);
7796     CPUARMState *env = &cpu->env;
7797     unsigned int new_el = env->exception.target_el;
7798 
7799     assert(!arm_feature(env, ARM_FEATURE_M));
7800 
7801     arm_log_exception(cs->exception_index);
7802     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
7803                   new_el);
7804     if (qemu_loglevel_mask(CPU_LOG_INT)
7805         && !excp_is_internal(cs->exception_index)) {
7806         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
7807                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
7808                       env->exception.syndrome);
7809     }
7810 
7811     if (arm_is_psci_call(cpu, cs->exception_index)) {
7812         arm_handle_psci_call(cpu);
7813         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
7814         return;
7815     }
7816 
7817     /* Semihosting semantics depend on the register width of the
7818      * code that caused the exception, not the target exception level,
7819      * so must be handled here.
7820      */
7821     if (check_for_semihosting(cs)) {
7822         return;
7823     }
7824 
7825     assert(!excp_is_internal(cs->exception_index));
7826     if (arm_el_is_aa64(env, new_el)) {
7827         arm_cpu_do_interrupt_aarch64(cs);
7828     } else {
7829         arm_cpu_do_interrupt_aarch32(cs);
7830     }
7831 
7832     /* Hooks may change global state so BQL should be held, also the
7833      * BQL needs to be held for any modification of
7834      * cs->interrupt_request.
7835      */
7836     g_assert(qemu_mutex_iothread_locked());
7837 
7838     arm_call_el_change_hook(cpu);
7839 
7840     if (!kvm_enabled()) {
7841         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
7842     }
7843 }
7844 
7845 /* Return the exception level which controls this address translation regime */
7846 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
7847 {
7848     switch (mmu_idx) {
7849     case ARMMMUIdx_S2NS:
7850     case ARMMMUIdx_S1E2:
7851         return 2;
7852     case ARMMMUIdx_S1E3:
7853         return 3;
7854     case ARMMMUIdx_S1SE0:
7855         return arm_el_is_aa64(env, 3) ? 1 : 3;
7856     case ARMMMUIdx_S1SE1:
7857     case ARMMMUIdx_S1NSE0:
7858     case ARMMMUIdx_S1NSE1:
7859     case ARMMMUIdx_MPriv:
7860     case ARMMMUIdx_MNegPri:
7861     case ARMMMUIdx_MUser:
7862     case ARMMMUIdx_MSPriv:
7863     case ARMMMUIdx_MSNegPri:
7864     case ARMMMUIdx_MSUser:
7865         return 1;
7866     default:
7867         g_assert_not_reached();
7868     }
7869 }
7870 
7871 /* Return the SCTLR value which controls this address translation regime */
7872 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
7873 {
7874     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
7875 }
7876 
7877 /* Return true if the specified stage of address translation is disabled */
7878 static inline bool regime_translation_disabled(CPUARMState *env,
7879                                                ARMMMUIdx mmu_idx)
7880 {
7881     if (arm_feature(env, ARM_FEATURE_M)) {
7882         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
7883                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
7884         case R_V7M_MPU_CTRL_ENABLE_MASK:
7885             /* Enabled, but not for HardFault and NMI */
7886             return mmu_idx == ARMMMUIdx_MNegPri ||
7887                 mmu_idx == ARMMMUIdx_MSNegPri;
7888         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
7889             /* Enabled for all cases */
7890             return false;
7891         case 0:
7892         default:
7893             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
7894              * we warned about that in armv7m_nvic.c when the guest set it.
7895              */
7896             return true;
7897         }
7898     }
7899 
7900     if (mmu_idx == ARMMMUIdx_S2NS) {
7901         return (env->cp15.hcr_el2 & HCR_VM) == 0;
7902     }
7903     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
7904 }
7905 
7906 static inline bool regime_translation_big_endian(CPUARMState *env,
7907                                                  ARMMMUIdx mmu_idx)
7908 {
7909     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
7910 }
7911 
7912 /* Return the TCR controlling this translation regime */
7913 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
7914 {
7915     if (mmu_idx == ARMMMUIdx_S2NS) {
7916         return &env->cp15.vtcr_el2;
7917     }
7918     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
7919 }
7920 
7921 /* Convert a possible stage1+2 MMU index into the appropriate
7922  * stage 1 MMU index
7923  */
7924 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
7925 {
7926     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
7927         mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
7928     }
7929     return mmu_idx;
7930 }
7931 
7932 /* Returns TBI0 value for current regime el */
7933 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
7934 {
7935     TCR *tcr;
7936     uint32_t el;
7937 
7938     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7939      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7940      */
7941     mmu_idx = stage_1_mmu_idx(mmu_idx);
7942 
7943     tcr = regime_tcr(env, mmu_idx);
7944     el = regime_el(env, mmu_idx);
7945 
7946     if (el > 1) {
7947         return extract64(tcr->raw_tcr, 20, 1);
7948     } else {
7949         return extract64(tcr->raw_tcr, 37, 1);
7950     }
7951 }
7952 
7953 /* Returns TBI1 value for current regime el */
7954 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
7955 {
7956     TCR *tcr;
7957     uint32_t el;
7958 
7959     /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
7960      * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
7961      */
7962     mmu_idx = stage_1_mmu_idx(mmu_idx);
7963 
7964     tcr = regime_tcr(env, mmu_idx);
7965     el = regime_el(env, mmu_idx);
7966 
7967     if (el > 1) {
7968         return 0;
7969     } else {
7970         return extract64(tcr->raw_tcr, 38, 1);
7971     }
7972 }
7973 
7974 /* Return the TTBR associated with this translation regime */
7975 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
7976                                    int ttbrn)
7977 {
7978     if (mmu_idx == ARMMMUIdx_S2NS) {
7979         return env->cp15.vttbr_el2;
7980     }
7981     if (ttbrn == 0) {
7982         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
7983     } else {
7984         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
7985     }
7986 }
7987 
7988 /* Return true if the translation regime is using LPAE format page tables */
7989 static inline bool regime_using_lpae_format(CPUARMState *env,
7990                                             ARMMMUIdx mmu_idx)
7991 {
7992     int el = regime_el(env, mmu_idx);
7993     if (el == 2 || arm_el_is_aa64(env, el)) {
7994         return true;
7995     }
7996     if (arm_feature(env, ARM_FEATURE_LPAE)
7997         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
7998         return true;
7999     }
8000     return false;
8001 }
8002 
8003 /* Returns true if the stage 1 translation regime is using LPAE format page
8004  * tables. Used when raising alignment exceptions, whose FSR changes depending
8005  * on whether the long or short descriptor format is in use. */
8006 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8007 {
8008     mmu_idx = stage_1_mmu_idx(mmu_idx);
8009 
8010     return regime_using_lpae_format(env, mmu_idx);
8011 }
8012 
8013 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
8014 {
8015     switch (mmu_idx) {
8016     case ARMMMUIdx_S1SE0:
8017     case ARMMMUIdx_S1NSE0:
8018     case ARMMMUIdx_MUser:
8019         return true;
8020     default:
8021         return false;
8022     case ARMMMUIdx_S12NSE0:
8023     case ARMMMUIdx_S12NSE1:
8024         g_assert_not_reached();
8025     }
8026 }
8027 
8028 /* Translate section/page access permissions to page
8029  * R/W protection flags
8030  *
8031  * @env:         CPUARMState
8032  * @mmu_idx:     MMU index indicating required translation regime
8033  * @ap:          The 3-bit access permissions (AP[2:0])
8034  * @domain_prot: The 2-bit domain access permissions
8035  */
8036 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
8037                                 int ap, int domain_prot)
8038 {
8039     bool is_user = regime_is_user(env, mmu_idx);
8040 
8041     if (domain_prot == 3) {
8042         return PAGE_READ | PAGE_WRITE;
8043     }
8044 
8045     switch (ap) {
8046     case 0:
8047         if (arm_feature(env, ARM_FEATURE_V7)) {
8048             return 0;
8049         }
8050         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
8051         case SCTLR_S:
8052             return is_user ? 0 : PAGE_READ;
8053         case SCTLR_R:
8054             return PAGE_READ;
8055         default:
8056             return 0;
8057         }
8058     case 1:
8059         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8060     case 2:
8061         if (is_user) {
8062             return PAGE_READ;
8063         } else {
8064             return PAGE_READ | PAGE_WRITE;
8065         }
8066     case 3:
8067         return PAGE_READ | PAGE_WRITE;
8068     case 4: /* Reserved.  */
8069         return 0;
8070     case 5:
8071         return is_user ? 0 : PAGE_READ;
8072     case 6:
8073         return PAGE_READ;
8074     case 7:
8075         if (!arm_feature(env, ARM_FEATURE_V6K)) {
8076             return 0;
8077         }
8078         return PAGE_READ;
8079     default:
8080         g_assert_not_reached();
8081     }
8082 }
8083 
8084 /* Translate section/page access permissions to page
8085  * R/W protection flags.
8086  *
8087  * @ap:      The 2-bit simple AP (AP[2:1])
8088  * @is_user: TRUE if accessing from PL0
8089  */
8090 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8091 {
8092     switch (ap) {
8093     case 0:
8094         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
8095     case 1:
8096         return PAGE_READ | PAGE_WRITE;
8097     case 2:
8098         return is_user ? 0 : PAGE_READ;
8099     case 3:
8100         return PAGE_READ;
8101     default:
8102         g_assert_not_reached();
8103     }
8104 }
8105 
8106 static inline int
8107 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
8108 {
8109     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
8110 }
8111 
8112 /* Translate S2 section/page access permissions to protection flags
8113  *
8114  * @env:     CPUARMState
8115  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
8116  * @xn:      XN (execute-never) bit
8117  */
8118 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
8119 {
8120     int prot = 0;
8121 
8122     if (s2ap & 1) {
8123         prot |= PAGE_READ;
8124     }
8125     if (s2ap & 2) {
8126         prot |= PAGE_WRITE;
8127     }
8128     if (!xn) {
8129         if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
8130             prot |= PAGE_EXEC;
8131         }
8132     }
8133     return prot;
8134 }
8135 
8136 /* Translate section/page access permissions to protection flags
8137  *
8138  * @env:     CPUARMState
8139  * @mmu_idx: MMU index indicating required translation regime
8140  * @is_aa64: TRUE if AArch64
8141  * @ap:      The 2-bit simple AP (AP[2:1])
8142  * @ns:      NS (non-secure) bit
8143  * @xn:      XN (execute-never) bit
8144  * @pxn:     PXN (privileged execute-never) bit
8145  */
8146 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
8147                       int ap, int ns, int xn, int pxn)
8148 {
8149     bool is_user = regime_is_user(env, mmu_idx);
8150     int prot_rw, user_rw;
8151     bool have_wxn;
8152     int wxn = 0;
8153 
8154     assert(mmu_idx != ARMMMUIdx_S2NS);
8155 
8156     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
8157     if (is_user) {
8158         prot_rw = user_rw;
8159     } else {
8160         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
8161     }
8162 
8163     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
8164         return prot_rw;
8165     }
8166 
8167     /* TODO have_wxn should be replaced with
8168      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
8169      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
8170      * compatible processors have EL2, which is required for [U]WXN.
8171      */
8172     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
8173 
8174     if (have_wxn) {
8175         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
8176     }
8177 
8178     if (is_aa64) {
8179         switch (regime_el(env, mmu_idx)) {
8180         case 1:
8181             if (!is_user) {
8182                 xn = pxn || (user_rw & PAGE_WRITE);
8183             }
8184             break;
8185         case 2:
8186         case 3:
8187             break;
8188         }
8189     } else if (arm_feature(env, ARM_FEATURE_V7)) {
8190         switch (regime_el(env, mmu_idx)) {
8191         case 1:
8192         case 3:
8193             if (is_user) {
8194                 xn = xn || !(user_rw & PAGE_READ);
8195             } else {
8196                 int uwxn = 0;
8197                 if (have_wxn) {
8198                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
8199                 }
8200                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
8201                      (uwxn && (user_rw & PAGE_WRITE));
8202             }
8203             break;
8204         case 2:
8205             break;
8206         }
8207     } else {
8208         xn = wxn = 0;
8209     }
8210 
8211     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
8212         return prot_rw;
8213     }
8214     return prot_rw | PAGE_EXEC;
8215 }
8216 
8217 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
8218                                      uint32_t *table, uint32_t address)
8219 {
8220     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
8221     TCR *tcr = regime_tcr(env, mmu_idx);
8222 
8223     if (address & tcr->mask) {
8224         if (tcr->raw_tcr & TTBCR_PD1) {
8225             /* Translation table walk disabled for TTBR1 */
8226             return false;
8227         }
8228         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8229     } else {
8230         if (tcr->raw_tcr & TTBCR_PD0) {
8231             /* Translation table walk disabled for TTBR0 */
8232             return false;
8233         }
8234         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8235     }
8236     *table |= (address >> 18) & 0x3ffc;
8237     return true;
8238 }
8239 
8240 /* Translate a S1 pagetable walk through S2 if needed.  */
8241 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
8242                                hwaddr addr, MemTxAttrs txattrs,
8243                                uint32_t *fsr,
8244                                ARMMMUFaultInfo *fi)
8245 {
8246     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
8247         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8248         target_ulong s2size;
8249         hwaddr s2pa;
8250         int s2prot;
8251         int ret;
8252 
8253         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8254                                  &txattrs, &s2prot, &s2size, fsr, fi, NULL);
8255         if (ret) {
8256             fi->s2addr = addr;
8257             fi->stage2 = true;
8258             fi->s1ptw = true;
8259             return ~0;
8260         }
8261         addr = s2pa;
8262     }
8263     return addr;
8264 }
8265 
8266 /* All loads done in the course of a page table walk go through here.
8267  * TODO: rather than ignoring errors from physical memory reads (which
8268  * are external aborts in ARM terminology) we should propagate this
8269  * error out so that we can turn it into a Data Abort if this walk
8270  * was being done for a CPU load/store or an address translation instruction
8271  * (but not if it was for a debug access).
8272  */
8273 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8274                             ARMMMUIdx mmu_idx, uint32_t *fsr,
8275                             ARMMMUFaultInfo *fi)
8276 {
8277     ARMCPU *cpu = ARM_CPU(cs);
8278     CPUARMState *env = &cpu->env;
8279     MemTxAttrs attrs = {};
8280     AddressSpace *as;
8281 
8282     attrs.secure = is_secure;
8283     as = arm_addressspace(cs, attrs);
8284     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8285     if (fi->s1ptw) {
8286         return 0;
8287     }
8288     if (regime_translation_big_endian(env, mmu_idx)) {
8289         return address_space_ldl_be(as, addr, attrs, NULL);
8290     } else {
8291         return address_space_ldl_le(as, addr, attrs, NULL);
8292     }
8293 }
8294 
8295 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8296                             ARMMMUIdx mmu_idx, uint32_t *fsr,
8297                             ARMMMUFaultInfo *fi)
8298 {
8299     ARMCPU *cpu = ARM_CPU(cs);
8300     CPUARMState *env = &cpu->env;
8301     MemTxAttrs attrs = {};
8302     AddressSpace *as;
8303 
8304     attrs.secure = is_secure;
8305     as = arm_addressspace(cs, attrs);
8306     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
8307     if (fi->s1ptw) {
8308         return 0;
8309     }
8310     if (regime_translation_big_endian(env, mmu_idx)) {
8311         return address_space_ldq_be(as, addr, attrs, NULL);
8312     } else {
8313         return address_space_ldq_le(as, addr, attrs, NULL);
8314     }
8315 }
8316 
8317 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8318                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8319                              hwaddr *phys_ptr, int *prot,
8320                              target_ulong *page_size, uint32_t *fsr,
8321                              ARMMMUFaultInfo *fi)
8322 {
8323     CPUState *cs = CPU(arm_env_get_cpu(env));
8324     int code;
8325     uint32_t table;
8326     uint32_t desc;
8327     int type;
8328     int ap;
8329     int domain = 0;
8330     int domain_prot;
8331     hwaddr phys_addr;
8332     uint32_t dacr;
8333 
8334     /* Pagetable walk.  */
8335     /* Lookup l1 descriptor.  */
8336     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8337         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8338         code = 5;
8339         goto do_fault;
8340     }
8341     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8342                        mmu_idx, fsr, fi);
8343     type = (desc & 3);
8344     domain = (desc >> 5) & 0x0f;
8345     if (regime_el(env, mmu_idx) == 1) {
8346         dacr = env->cp15.dacr_ns;
8347     } else {
8348         dacr = env->cp15.dacr_s;
8349     }
8350     domain_prot = (dacr >> (domain * 2)) & 3;
8351     if (type == 0) {
8352         /* Section translation fault.  */
8353         code = 5;
8354         goto do_fault;
8355     }
8356     if (domain_prot == 0 || domain_prot == 2) {
8357         if (type == 2)
8358             code = 9; /* Section domain fault.  */
8359         else
8360             code = 11; /* Page domain fault.  */
8361         goto do_fault;
8362     }
8363     if (type == 2) {
8364         /* 1Mb section.  */
8365         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8366         ap = (desc >> 10) & 3;
8367         code = 13;
8368         *page_size = 1024 * 1024;
8369     } else {
8370         /* Lookup l2 entry.  */
8371         if (type == 1) {
8372             /* Coarse pagetable.  */
8373             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8374         } else {
8375             /* Fine pagetable.  */
8376             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
8377         }
8378         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8379                            mmu_idx, fsr, fi);
8380         switch (desc & 3) {
8381         case 0: /* Page translation fault.  */
8382             code = 7;
8383             goto do_fault;
8384         case 1: /* 64k page.  */
8385             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8386             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
8387             *page_size = 0x10000;
8388             break;
8389         case 2: /* 4k page.  */
8390             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8391             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
8392             *page_size = 0x1000;
8393             break;
8394         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8395             if (type == 1) {
8396                 /* ARMv6/XScale extended small page format */
8397                 if (arm_feature(env, ARM_FEATURE_XSCALE)
8398                     || arm_feature(env, ARM_FEATURE_V6)) {
8399                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8400                     *page_size = 0x1000;
8401                 } else {
8402                     /* UNPREDICTABLE in ARMv5; we choose to take a
8403                      * page translation fault.
8404                      */
8405                     code = 7;
8406                     goto do_fault;
8407                 }
8408             } else {
8409                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8410                 *page_size = 0x400;
8411             }
8412             ap = (desc >> 4) & 3;
8413             break;
8414         default:
8415             /* Never happens, but compiler isn't smart enough to tell.  */
8416             abort();
8417         }
8418         code = 15;
8419     }
8420     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8421     *prot |= *prot ? PAGE_EXEC : 0;
8422     if (!(*prot & (1 << access_type))) {
8423         /* Access permission fault.  */
8424         goto do_fault;
8425     }
8426     *phys_ptr = phys_addr;
8427     return false;
8428 do_fault:
8429     *fsr = code | (domain << 4);
8430     return true;
8431 }
8432 
8433 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8434                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
8435                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8436                              target_ulong *page_size, uint32_t *fsr,
8437                              ARMMMUFaultInfo *fi)
8438 {
8439     CPUState *cs = CPU(arm_env_get_cpu(env));
8440     int code;
8441     uint32_t table;
8442     uint32_t desc;
8443     uint32_t xn;
8444     uint32_t pxn = 0;
8445     int type;
8446     int ap;
8447     int domain = 0;
8448     int domain_prot;
8449     hwaddr phys_addr;
8450     uint32_t dacr;
8451     bool ns;
8452 
8453     /* Pagetable walk.  */
8454     /* Lookup l1 descriptor.  */
8455     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8456         /* Section translation fault if page walk is disabled by PD0 or PD1 */
8457         code = 5;
8458         goto do_fault;
8459     }
8460     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8461                        mmu_idx, fsr, fi);
8462     type = (desc & 3);
8463     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
8464         /* Section translation fault, or attempt to use the encoding
8465          * which is Reserved on implementations without PXN.
8466          */
8467         code = 5;
8468         goto do_fault;
8469     }
8470     if ((type == 1) || !(desc & (1 << 18))) {
8471         /* Page or Section.  */
8472         domain = (desc >> 5) & 0x0f;
8473     }
8474     if (regime_el(env, mmu_idx) == 1) {
8475         dacr = env->cp15.dacr_ns;
8476     } else {
8477         dacr = env->cp15.dacr_s;
8478     }
8479     domain_prot = (dacr >> (domain * 2)) & 3;
8480     if (domain_prot == 0 || domain_prot == 2) {
8481         if (type != 1) {
8482             code = 9; /* Section domain fault.  */
8483         } else {
8484             code = 11; /* Page domain fault.  */
8485         }
8486         goto do_fault;
8487     }
8488     if (type != 1) {
8489         if (desc & (1 << 18)) {
8490             /* Supersection.  */
8491             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8492             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
8493             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
8494             *page_size = 0x1000000;
8495         } else {
8496             /* Section.  */
8497             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
8498             *page_size = 0x100000;
8499         }
8500         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
8501         xn = desc & (1 << 4);
8502         pxn = desc & 1;
8503         code = 13;
8504         ns = extract32(desc, 19, 1);
8505     } else {
8506         if (arm_feature(env, ARM_FEATURE_PXN)) {
8507             pxn = (desc >> 2) & 1;
8508         }
8509         ns = extract32(desc, 3, 1);
8510         /* Lookup l2 entry.  */
8511         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8512         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8513                            mmu_idx, fsr, fi);
8514         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
8515         switch (desc & 3) {
8516         case 0: /* Page translation fault.  */
8517             code = 7;
8518             goto do_fault;
8519         case 1: /* 64k page.  */
8520             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
8521             xn = desc & (1 << 15);
8522             *page_size = 0x10000;
8523             break;
8524         case 2: case 3: /* 4k page.  */
8525             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8526             xn = desc & 1;
8527             *page_size = 0x1000;
8528             break;
8529         default:
8530             /* Never happens, but compiler isn't smart enough to tell.  */
8531             abort();
8532         }
8533         code = 15;
8534     }
8535     if (domain_prot == 3) {
8536         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8537     } else {
8538         if (pxn && !regime_is_user(env, mmu_idx)) {
8539             xn = 1;
8540         }
8541         if (xn && access_type == MMU_INST_FETCH)
8542             goto do_fault;
8543 
8544         if (arm_feature(env, ARM_FEATURE_V6K) &&
8545                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
8546             /* The simplified model uses AP[0] as an access control bit.  */
8547             if ((ap & 1) == 0) {
8548                 /* Access flag fault.  */
8549                 code = (code == 15) ? 6 : 3;
8550                 goto do_fault;
8551             }
8552             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
8553         } else {
8554             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8555         }
8556         if (*prot && !xn) {
8557             *prot |= PAGE_EXEC;
8558         }
8559         if (!(*prot & (1 << access_type))) {
8560             /* Access permission fault.  */
8561             goto do_fault;
8562         }
8563     }
8564     if (ns) {
8565         /* The NS bit will (as required by the architecture) have no effect if
8566          * the CPU doesn't support TZ or this is a non-secure translation
8567          * regime, because the attribute will already be non-secure.
8568          */
8569         attrs->secure = false;
8570     }
8571     *phys_ptr = phys_addr;
8572     return false;
8573 do_fault:
8574     *fsr = code | (domain << 4);
8575     return true;
8576 }
8577 
8578 /* Fault type for long-descriptor MMU fault reporting; this corresponds
8579  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
8580  */
8581 typedef enum {
8582     translation_fault = 1,
8583     access_fault = 2,
8584     permission_fault = 3,
8585 } MMUFaultType;
8586 
8587 /*
8588  * check_s2_mmu_setup
8589  * @cpu:        ARMCPU
8590  * @is_aa64:    True if the translation regime is in AArch64 state
8591  * @startlevel: Suggested starting level
8592  * @inputsize:  Bitsize of IPAs
8593  * @stride:     Page-table stride (See the ARM ARM)
8594  *
8595  * Returns true if the suggested S2 translation parameters are OK and
8596  * false otherwise.
8597  */
8598 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
8599                                int inputsize, int stride)
8600 {
8601     const int grainsize = stride + 3;
8602     int startsizecheck;
8603 
8604     /* Negative levels are never allowed.  */
8605     if (level < 0) {
8606         return false;
8607     }
8608 
8609     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
8610     if (startsizecheck < 1 || startsizecheck > stride + 4) {
8611         return false;
8612     }
8613 
8614     if (is_aa64) {
8615         CPUARMState *env = &cpu->env;
8616         unsigned int pamax = arm_pamax(cpu);
8617 
8618         switch (stride) {
8619         case 13: /* 64KB Pages.  */
8620             if (level == 0 || (level == 1 && pamax <= 42)) {
8621                 return false;
8622             }
8623             break;
8624         case 11: /* 16KB Pages.  */
8625             if (level == 0 || (level == 1 && pamax <= 40)) {
8626                 return false;
8627             }
8628             break;
8629         case 9: /* 4KB Pages.  */
8630             if (level == 0 && pamax <= 42) {
8631                 return false;
8632             }
8633             break;
8634         default:
8635             g_assert_not_reached();
8636         }
8637 
8638         /* Inputsize checks.  */
8639         if (inputsize > pamax &&
8640             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
8641             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
8642             return false;
8643         }
8644     } else {
8645         /* AArch32 only supports 4KB pages. Assert on that.  */
8646         assert(stride == 9);
8647 
8648         if (level == 0) {
8649             return false;
8650         }
8651     }
8652     return true;
8653 }
8654 
8655 /* Translate from the 4-bit stage 2 representation of
8656  * memory attributes (without cache-allocation hints) to
8657  * the 8-bit representation of the stage 1 MAIR registers
8658  * (which includes allocation hints).
8659  *
8660  * ref: shared/translation/attrs/S2AttrDecode()
8661  *      .../S2ConvertAttrsHints()
8662  */
8663 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
8664 {
8665     uint8_t hiattr = extract32(s2attrs, 2, 2);
8666     uint8_t loattr = extract32(s2attrs, 0, 2);
8667     uint8_t hihint = 0, lohint = 0;
8668 
8669     if (hiattr != 0) { /* normal memory */
8670         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
8671             hiattr = loattr = 1; /* non-cacheable */
8672         } else {
8673             if (hiattr != 1) { /* Write-through or write-back */
8674                 hihint = 3; /* RW allocate */
8675             }
8676             if (loattr != 1) { /* Write-through or write-back */
8677                 lohint = 3; /* RW allocate */
8678             }
8679         }
8680     }
8681 
8682     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
8683 }
8684 
8685 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
8686                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
8687                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
8688                                target_ulong *page_size_ptr, uint32_t *fsr,
8689                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
8690 {
8691     ARMCPU *cpu = arm_env_get_cpu(env);
8692     CPUState *cs = CPU(cpu);
8693     /* Read an LPAE long-descriptor translation table. */
8694     MMUFaultType fault_type = translation_fault;
8695     uint32_t level;
8696     uint32_t epd = 0;
8697     int32_t t0sz, t1sz;
8698     uint32_t tg;
8699     uint64_t ttbr;
8700     int ttbr_select;
8701     hwaddr descaddr, indexmask, indexmask_grainsize;
8702     uint32_t tableattrs;
8703     target_ulong page_size;
8704     uint32_t attrs;
8705     int32_t stride = 9;
8706     int32_t addrsize;
8707     int inputsize;
8708     int32_t tbi = 0;
8709     TCR *tcr = regime_tcr(env, mmu_idx);
8710     int ap, ns, xn, pxn;
8711     uint32_t el = regime_el(env, mmu_idx);
8712     bool ttbr1_valid = true;
8713     uint64_t descaddrmask;
8714     bool aarch64 = arm_el_is_aa64(env, el);
8715 
8716     /* TODO:
8717      * This code does not handle the different format TCR for VTCR_EL2.
8718      * This code also does not support shareability levels.
8719      * Attribute and permission bit handling should also be checked when adding
8720      * support for those page table walks.
8721      */
8722     if (aarch64) {
8723         level = 0;
8724         addrsize = 64;
8725         if (el > 1) {
8726             if (mmu_idx != ARMMMUIdx_S2NS) {
8727                 tbi = extract64(tcr->raw_tcr, 20, 1);
8728             }
8729         } else {
8730             if (extract64(address, 55, 1)) {
8731                 tbi = extract64(tcr->raw_tcr, 38, 1);
8732             } else {
8733                 tbi = extract64(tcr->raw_tcr, 37, 1);
8734             }
8735         }
8736         tbi *= 8;
8737 
8738         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
8739          * invalid.
8740          */
8741         if (el > 1) {
8742             ttbr1_valid = false;
8743         }
8744     } else {
8745         level = 1;
8746         addrsize = 32;
8747         /* There is no TTBR1 for EL2 */
8748         if (el == 2) {
8749             ttbr1_valid = false;
8750         }
8751     }
8752 
8753     /* Determine whether this address is in the region controlled by
8754      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
8755      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
8756      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
8757      */
8758     if (aarch64) {
8759         /* AArch64 translation.  */
8760         t0sz = extract32(tcr->raw_tcr, 0, 6);
8761         t0sz = MIN(t0sz, 39);
8762         t0sz = MAX(t0sz, 16);
8763     } else if (mmu_idx != ARMMMUIdx_S2NS) {
8764         /* AArch32 stage 1 translation.  */
8765         t0sz = extract32(tcr->raw_tcr, 0, 3);
8766     } else {
8767         /* AArch32 stage 2 translation.  */
8768         bool sext = extract32(tcr->raw_tcr, 4, 1);
8769         bool sign = extract32(tcr->raw_tcr, 3, 1);
8770         /* Address size is 40-bit for a stage 2 translation,
8771          * and t0sz can be negative (from -8 to 7),
8772          * so we need to adjust it to use the TTBR selecting logic below.
8773          */
8774         addrsize = 40;
8775         t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
8776 
8777         /* If the sign-extend bit is not the same as t0sz[3], the result
8778          * is unpredictable. Flag this as a guest error.  */
8779         if (sign != sext) {
8780             qemu_log_mask(LOG_GUEST_ERROR,
8781                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
8782         }
8783     }
8784     t1sz = extract32(tcr->raw_tcr, 16, 6);
8785     if (aarch64) {
8786         t1sz = MIN(t1sz, 39);
8787         t1sz = MAX(t1sz, 16);
8788     }
8789     if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
8790         /* there is a ttbr0 region and we are in it (high bits all zero) */
8791         ttbr_select = 0;
8792     } else if (ttbr1_valid && t1sz &&
8793                !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
8794         /* there is a ttbr1 region and we are in it (high bits all one) */
8795         ttbr_select = 1;
8796     } else if (!t0sz) {
8797         /* ttbr0 region is "everything not in the ttbr1 region" */
8798         ttbr_select = 0;
8799     } else if (!t1sz && ttbr1_valid) {
8800         /* ttbr1 region is "everything not in the ttbr0 region" */
8801         ttbr_select = 1;
8802     } else {
8803         /* in the gap between the two regions, this is a Translation fault */
8804         fault_type = translation_fault;
8805         goto do_fault;
8806     }
8807 
8808     /* Note that QEMU ignores shareability and cacheability attributes,
8809      * so we don't need to do anything with the SH, ORGN, IRGN fields
8810      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
8811      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
8812      * implement any ASID-like capability so we can ignore it (instead
8813      * we will always flush the TLB any time the ASID is changed).
8814      */
8815     if (ttbr_select == 0) {
8816         ttbr = regime_ttbr(env, mmu_idx, 0);
8817         if (el < 2) {
8818             epd = extract32(tcr->raw_tcr, 7, 1);
8819         }
8820         inputsize = addrsize - t0sz;
8821 
8822         tg = extract32(tcr->raw_tcr, 14, 2);
8823         if (tg == 1) { /* 64KB pages */
8824             stride = 13;
8825         }
8826         if (tg == 2) { /* 16KB pages */
8827             stride = 11;
8828         }
8829     } else {
8830         /* We should only be here if TTBR1 is valid */
8831         assert(ttbr1_valid);
8832 
8833         ttbr = regime_ttbr(env, mmu_idx, 1);
8834         epd = extract32(tcr->raw_tcr, 23, 1);
8835         inputsize = addrsize - t1sz;
8836 
8837         tg = extract32(tcr->raw_tcr, 30, 2);
8838         if (tg == 3)  { /* 64KB pages */
8839             stride = 13;
8840         }
8841         if (tg == 1) { /* 16KB pages */
8842             stride = 11;
8843         }
8844     }
8845 
8846     /* Here we should have set up all the parameters for the translation:
8847      * inputsize, ttbr, epd, stride, tbi
8848      */
8849 
8850     if (epd) {
8851         /* Translation table walk disabled => Translation fault on TLB miss
8852          * Note: This is always 0 on 64-bit EL2 and EL3.
8853          */
8854         goto do_fault;
8855     }
8856 
8857     if (mmu_idx != ARMMMUIdx_S2NS) {
8858         /* The starting level depends on the virtual address size (which can
8859          * be up to 48 bits) and the translation granule size. It indicates
8860          * the number of strides (stride bits at a time) needed to
8861          * consume the bits of the input address. In the pseudocode this is:
8862          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
8863          * where their 'inputsize' is our 'inputsize', 'grainsize' is
8864          * our 'stride + 3' and 'stride' is our 'stride'.
8865          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
8866          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
8867          * = 4 - (inputsize - 4) / stride;
8868          */
8869         level = 4 - (inputsize - 4) / stride;
8870     } else {
8871         /* For stage 2 translations the starting level is specified by the
8872          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
8873          */
8874         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
8875         uint32_t startlevel;
8876         bool ok;
8877 
8878         if (!aarch64 || stride == 9) {
8879             /* AArch32 or 4KB pages */
8880             startlevel = 2 - sl0;
8881         } else {
8882             /* 16KB or 64KB pages */
8883             startlevel = 3 - sl0;
8884         }
8885 
8886         /* Check that the starting level is valid. */
8887         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
8888                                 inputsize, stride);
8889         if (!ok) {
8890             fault_type = translation_fault;
8891             goto do_fault;
8892         }
8893         level = startlevel;
8894     }
8895 
8896     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
8897     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
8898 
8899     /* Now we can extract the actual base address from the TTBR */
8900     descaddr = extract64(ttbr, 0, 48);
8901     descaddr &= ~indexmask;
8902 
8903     /* The address field in the descriptor goes up to bit 39 for ARMv7
8904      * but up to bit 47 for ARMv8, but we use the descaddrmask
8905      * up to bit 39 for AArch32, because we don't need other bits in that case
8906      * to construct next descriptor address (anyway they should be all zeroes).
8907      */
8908     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
8909                    ~indexmask_grainsize;
8910 
8911     /* Secure accesses start with the page table in secure memory and
8912      * can be downgraded to non-secure at any step. Non-secure accesses
8913      * remain non-secure. We implement this by just ORing in the NSTable/NS
8914      * bits at each step.
8915      */
8916     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
8917     for (;;) {
8918         uint64_t descriptor;
8919         bool nstable;
8920 
8921         descaddr |= (address >> (stride * (4 - level))) & indexmask;
8922         descaddr &= ~7ULL;
8923         nstable = extract32(tableattrs, 4, 1);
8924         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
8925         if (fi->s1ptw) {
8926             goto do_fault;
8927         }
8928 
8929         if (!(descriptor & 1) ||
8930             (!(descriptor & 2) && (level == 3))) {
8931             /* Invalid, or the Reserved level 3 encoding */
8932             goto do_fault;
8933         }
8934         descaddr = descriptor & descaddrmask;
8935 
8936         if ((descriptor & 2) && (level < 3)) {
8937             /* Table entry. The top five bits are attributes which  may
8938              * propagate down through lower levels of the table (and
8939              * which are all arranged so that 0 means "no effect", so
8940              * we can gather them up by ORing in the bits at each level).
8941              */
8942             tableattrs |= extract64(descriptor, 59, 5);
8943             level++;
8944             indexmask = indexmask_grainsize;
8945             continue;
8946         }
8947         /* Block entry at level 1 or 2, or page entry at level 3.
8948          * These are basically the same thing, although the number
8949          * of bits we pull in from the vaddr varies.
8950          */
8951         page_size = (1ULL << ((stride * (4 - level)) + 3));
8952         descaddr |= (address & (page_size - 1));
8953         /* Extract attributes from the descriptor */
8954         attrs = extract64(descriptor, 2, 10)
8955             | (extract64(descriptor, 52, 12) << 10);
8956 
8957         if (mmu_idx == ARMMMUIdx_S2NS) {
8958             /* Stage 2 table descriptors do not include any attribute fields */
8959             break;
8960         }
8961         /* Merge in attributes from table descriptors */
8962         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
8963         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
8964         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
8965          * means "force PL1 access only", which means forcing AP[1] to 0.
8966          */
8967         if (extract32(tableattrs, 2, 1)) {
8968             attrs &= ~(1 << 4);
8969         }
8970         attrs |= nstable << 3; /* NS */
8971         break;
8972     }
8973     /* Here descaddr is the final physical address, and attributes
8974      * are all in attrs.
8975      */
8976     fault_type = access_fault;
8977     if ((attrs & (1 << 8)) == 0) {
8978         /* Access flag */
8979         goto do_fault;
8980     }
8981 
8982     ap = extract32(attrs, 4, 2);
8983     xn = extract32(attrs, 12, 1);
8984 
8985     if (mmu_idx == ARMMMUIdx_S2NS) {
8986         ns = true;
8987         *prot = get_S2prot(env, ap, xn);
8988     } else {
8989         ns = extract32(attrs, 3, 1);
8990         pxn = extract32(attrs, 11, 1);
8991         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8992     }
8993 
8994     fault_type = permission_fault;
8995     if (!(*prot & (1 << access_type))) {
8996         goto do_fault;
8997     }
8998 
8999     if (ns) {
9000         /* The NS bit will (as required by the architecture) have no effect if
9001          * the CPU doesn't support TZ or this is a non-secure translation
9002          * regime, because the attribute will already be non-secure.
9003          */
9004         txattrs->secure = false;
9005     }
9006 
9007     if (cacheattrs != NULL) {
9008         if (mmu_idx == ARMMMUIdx_S2NS) {
9009             cacheattrs->attrs = convert_stage2_attrs(env,
9010                                                      extract32(attrs, 0, 4));
9011         } else {
9012             /* Index into MAIR registers for cache attributes */
9013             uint8_t attrindx = extract32(attrs, 0, 3);
9014             uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
9015             assert(attrindx <= 7);
9016             cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
9017         }
9018         cacheattrs->shareability = extract32(attrs, 6, 2);
9019     }
9020 
9021     *phys_ptr = descaddr;
9022     *page_size_ptr = page_size;
9023     return false;
9024 
9025 do_fault:
9026     /* Long-descriptor format IFSR/DFSR value */
9027     *fsr = (1 << 9) | (fault_type << 2) | level;
9028     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
9029     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9030     return true;
9031 }
9032 
9033 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
9034                                                 ARMMMUIdx mmu_idx,
9035                                                 int32_t address, int *prot)
9036 {
9037     if (!arm_feature(env, ARM_FEATURE_M)) {
9038         *prot = PAGE_READ | PAGE_WRITE;
9039         switch (address) {
9040         case 0xF0000000 ... 0xFFFFFFFF:
9041             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
9042                 /* hivecs execing is ok */
9043                 *prot |= PAGE_EXEC;
9044             }
9045             break;
9046         case 0x00000000 ... 0x7FFFFFFF:
9047             *prot |= PAGE_EXEC;
9048             break;
9049         }
9050     } else {
9051         /* Default system address map for M profile cores.
9052          * The architecture specifies which regions are execute-never;
9053          * at the MPU level no other checks are defined.
9054          */
9055         switch (address) {
9056         case 0x00000000 ... 0x1fffffff: /* ROM */
9057         case 0x20000000 ... 0x3fffffff: /* SRAM */
9058         case 0x60000000 ... 0x7fffffff: /* RAM */
9059         case 0x80000000 ... 0x9fffffff: /* RAM */
9060             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9061             break;
9062         case 0x40000000 ... 0x5fffffff: /* Peripheral */
9063         case 0xa0000000 ... 0xbfffffff: /* Device */
9064         case 0xc0000000 ... 0xdfffffff: /* Device */
9065         case 0xe0000000 ... 0xffffffff: /* System */
9066             *prot = PAGE_READ | PAGE_WRITE;
9067             break;
9068         default:
9069             g_assert_not_reached();
9070         }
9071     }
9072 }
9073 
9074 static bool pmsav7_use_background_region(ARMCPU *cpu,
9075                                          ARMMMUIdx mmu_idx, bool is_user)
9076 {
9077     /* Return true if we should use the default memory map as a
9078      * "background" region if there are no hits against any MPU regions.
9079      */
9080     CPUARMState *env = &cpu->env;
9081 
9082     if (is_user) {
9083         return false;
9084     }
9085 
9086     if (arm_feature(env, ARM_FEATURE_M)) {
9087         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
9088             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9089     } else {
9090         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
9091     }
9092 }
9093 
9094 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
9095 {
9096     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
9097     return arm_feature(env, ARM_FEATURE_M) &&
9098         extract32(address, 20, 12) == 0xe00;
9099 }
9100 
9101 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
9102 {
9103     /* True if address is in the M profile system region
9104      * 0xe0000000 - 0xffffffff
9105      */
9106     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
9107 }
9108 
9109 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9110                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9111                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9112 {
9113     ARMCPU *cpu = arm_env_get_cpu(env);
9114     int n;
9115     bool is_user = regime_is_user(env, mmu_idx);
9116 
9117     *phys_ptr = address;
9118     *prot = 0;
9119 
9120     if (regime_translation_disabled(env, mmu_idx) ||
9121         m_is_ppb_region(env, address)) {
9122         /* MPU disabled or M profile PPB access: use default memory map.
9123          * The other case which uses the default memory map in the
9124          * v7M ARM ARM pseudocode is exception vector reads from the vector
9125          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
9126          * which always does a direct read using address_space_ldl(), rather
9127          * than going via this function, so we don't need to check that here.
9128          */
9129         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9130     } else { /* MPU enabled */
9131         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9132             /* region search */
9133             uint32_t base = env->pmsav7.drbar[n];
9134             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
9135             uint32_t rmask;
9136             bool srdis = false;
9137 
9138             if (!(env->pmsav7.drsr[n] & 0x1)) {
9139                 continue;
9140             }
9141 
9142             if (!rsize) {
9143                 qemu_log_mask(LOG_GUEST_ERROR,
9144                               "DRSR[%d]: Rsize field cannot be 0\n", n);
9145                 continue;
9146             }
9147             rsize++;
9148             rmask = (1ull << rsize) - 1;
9149 
9150             if (base & rmask) {
9151                 qemu_log_mask(LOG_GUEST_ERROR,
9152                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
9153                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
9154                               n, base, rmask);
9155                 continue;
9156             }
9157 
9158             if (address < base || address > base + rmask) {
9159                 continue;
9160             }
9161 
9162             /* Region matched */
9163 
9164             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
9165                 int i, snd;
9166                 uint32_t srdis_mask;
9167 
9168                 rsize -= 3; /* sub region size (power of 2) */
9169                 snd = ((address - base) >> rsize) & 0x7;
9170                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
9171 
9172                 srdis_mask = srdis ? 0x3 : 0x0;
9173                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
9174                     /* This will check in groups of 2, 4 and then 8, whether
9175                      * the subregion bits are consistent. rsize is incremented
9176                      * back up to give the region size, considering consistent
9177                      * adjacent subregions as one region. Stop testing if rsize
9178                      * is already big enough for an entire QEMU page.
9179                      */
9180                     int snd_rounded = snd & ~(i - 1);
9181                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
9182                                                      snd_rounded + 8, i);
9183                     if (srdis_mask ^ srdis_multi) {
9184                         break;
9185                     }
9186                     srdis_mask = (srdis_mask << i) | srdis_mask;
9187                     rsize++;
9188                 }
9189             }
9190             if (rsize < TARGET_PAGE_BITS) {
9191                 qemu_log_mask(LOG_UNIMP,
9192                               "DRSR[%d]: No support for MPU (sub)region "
9193                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
9194                               n, rsize, TARGET_PAGE_BITS);
9195                 continue;
9196             }
9197             if (srdis) {
9198                 continue;
9199             }
9200             break;
9201         }
9202 
9203         if (n == -1) { /* no hits */
9204             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9205                 /* background fault */
9206                 *fsr = 0;
9207                 return true;
9208             }
9209             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9210         } else { /* a MPU hit! */
9211             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9212             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
9213 
9214             if (m_is_system_region(env, address)) {
9215                 /* System space is always execute never */
9216                 xn = 1;
9217             }
9218 
9219             if (is_user) { /* User mode AP bit decoding */
9220                 switch (ap) {
9221                 case 0:
9222                 case 1:
9223                 case 5:
9224                     break; /* no access */
9225                 case 3:
9226                     *prot |= PAGE_WRITE;
9227                     /* fall through */
9228                 case 2:
9229                 case 6:
9230                     *prot |= PAGE_READ | PAGE_EXEC;
9231                     break;
9232                 default:
9233                     qemu_log_mask(LOG_GUEST_ERROR,
9234                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9235                                   PRIx32 "\n", n, ap);
9236                 }
9237             } else { /* Priv. mode AP bits decoding */
9238                 switch (ap) {
9239                 case 0:
9240                     break; /* no access */
9241                 case 1:
9242                 case 2:
9243                 case 3:
9244                     *prot |= PAGE_WRITE;
9245                     /* fall through */
9246                 case 5:
9247                 case 6:
9248                     *prot |= PAGE_READ | PAGE_EXEC;
9249                     break;
9250                 default:
9251                     qemu_log_mask(LOG_GUEST_ERROR,
9252                                   "DRACR[%d]: Bad value for AP bits: 0x%"
9253                                   PRIx32 "\n", n, ap);
9254                 }
9255             }
9256 
9257             /* execute never */
9258             if (xn) {
9259                 *prot &= ~PAGE_EXEC;
9260             }
9261         }
9262     }
9263 
9264     *fsr = 0x00d; /* Permission fault */
9265     return !(*prot & (1 << access_type));
9266 }
9267 
9268 static bool v8m_is_sau_exempt(CPUARMState *env,
9269                               uint32_t address, MMUAccessType access_type)
9270 {
9271     /* The architecture specifies that certain address ranges are
9272      * exempt from v8M SAU/IDAU checks.
9273      */
9274     return
9275         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
9276         (address >= 0xe0000000 && address <= 0xe0002fff) ||
9277         (address >= 0xe000e000 && address <= 0xe000efff) ||
9278         (address >= 0xe002e000 && address <= 0xe002efff) ||
9279         (address >= 0xe0040000 && address <= 0xe0041fff) ||
9280         (address >= 0xe00ff000 && address <= 0xe00fffff);
9281 }
9282 
9283 static void v8m_security_lookup(CPUARMState *env, uint32_t address,
9284                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9285                                 V8M_SAttributes *sattrs)
9286 {
9287     /* Look up the security attributes for this address. Compare the
9288      * pseudocode SecurityCheck() function.
9289      * We assume the caller has zero-initialized *sattrs.
9290      */
9291     ARMCPU *cpu = arm_env_get_cpu(env);
9292     int r;
9293 
9294     /* TODO: implement IDAU */
9295 
9296     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
9297         /* 0xf0000000..0xffffffff is always S for insn fetches */
9298         return;
9299     }
9300 
9301     if (v8m_is_sau_exempt(env, address, access_type)) {
9302         sattrs->ns = !regime_is_secure(env, mmu_idx);
9303         return;
9304     }
9305 
9306     switch (env->sau.ctrl & 3) {
9307     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
9308         break;
9309     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
9310         sattrs->ns = true;
9311         break;
9312     default: /* SAU.ENABLE == 1 */
9313         for (r = 0; r < cpu->sau_sregion; r++) {
9314             if (env->sau.rlar[r] & 1) {
9315                 uint32_t base = env->sau.rbar[r] & ~0x1f;
9316                 uint32_t limit = env->sau.rlar[r] | 0x1f;
9317 
9318                 if (base <= address && limit >= address) {
9319                     if (sattrs->srvalid) {
9320                         /* If we hit in more than one region then we must report
9321                          * as Secure, not NS-Callable, with no valid region
9322                          * number info.
9323                          */
9324                         sattrs->ns = false;
9325                         sattrs->nsc = false;
9326                         sattrs->sregion = 0;
9327                         sattrs->srvalid = false;
9328                         break;
9329                     } else {
9330                         if (env->sau.rlar[r] & 2) {
9331                             sattrs->nsc = true;
9332                         } else {
9333                             sattrs->ns = true;
9334                         }
9335                         sattrs->srvalid = true;
9336                         sattrs->sregion = r;
9337                     }
9338                 }
9339             }
9340         }
9341 
9342         /* TODO when we support the IDAU then it may override the result here */
9343         break;
9344     }
9345 }
9346 
9347 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
9348                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9349                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
9350                                  int *prot, uint32_t *fsr)
9351 {
9352     ARMCPU *cpu = arm_env_get_cpu(env);
9353     bool is_user = regime_is_user(env, mmu_idx);
9354     uint32_t secure = regime_is_secure(env, mmu_idx);
9355     int n;
9356     int matchregion = -1;
9357     bool hit = false;
9358     V8M_SAttributes sattrs = {};
9359 
9360     *phys_ptr = address;
9361     *prot = 0;
9362 
9363     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9364         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
9365         if (access_type == MMU_INST_FETCH) {
9366             /* Instruction fetches always use the MMU bank and the
9367              * transaction attribute determined by the fetch address,
9368              * regardless of CPU state. This is painful for QEMU
9369              * to handle, because it would mean we need to encode
9370              * into the mmu_idx not just the (user, negpri) information
9371              * for the current security state but also that for the
9372              * other security state, which would balloon the number
9373              * of mmu_idx values needed alarmingly.
9374              * Fortunately we can avoid this because it's not actually
9375              * possible to arbitrarily execute code from memory with
9376              * the wrong security attribute: it will always generate
9377              * an exception of some kind or another, apart from the
9378              * special case of an NS CPU executing an SG instruction
9379              * in S&NSC memory. So we always just fail the translation
9380              * here and sort things out in the exception handler
9381              * (including possibly emulating an SG instruction).
9382              */
9383             if (sattrs.ns != !secure) {
9384                 *fsr = sattrs.nsc ? M_FAKE_FSR_NSC_EXEC : M_FAKE_FSR_SFAULT;
9385                 return true;
9386             }
9387         } else {
9388             /* For data accesses we always use the MMU bank indicated
9389              * by the current CPU state, but the security attributes
9390              * might downgrade a secure access to nonsecure.
9391              */
9392             if (sattrs.ns) {
9393                 txattrs->secure = false;
9394             } else if (!secure) {
9395                 /* NS access to S memory must fault.
9396                  * Architecturally we should first check whether the
9397                  * MPU information for this address indicates that we
9398                  * are doing an unaligned access to Device memory, which
9399                  * should generate a UsageFault instead. QEMU does not
9400                  * currently check for that kind of unaligned access though.
9401                  * If we added it we would need to do so as a special case
9402                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
9403                  */
9404                 *fsr = M_FAKE_FSR_SFAULT;
9405                 return true;
9406             }
9407         }
9408     }
9409 
9410     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
9411      * was an exception vector read from the vector table (which is always
9412      * done using the default system address map), because those accesses
9413      * are done in arm_v7m_load_vector(), which always does a direct
9414      * read using address_space_ldl(), rather than going via this function.
9415      */
9416     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
9417         hit = true;
9418     } else if (m_is_ppb_region(env, address)) {
9419         hit = true;
9420     } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9421         hit = true;
9422     } else {
9423         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
9424             /* region search */
9425             /* Note that the base address is bits [31:5] from the register
9426              * with bits [4:0] all zeroes, but the limit address is bits
9427              * [31:5] from the register with bits [4:0] all ones.
9428              */
9429             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
9430             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9431 
9432             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9433                 /* Region disabled */
9434                 continue;
9435             }
9436 
9437             if (address < base || address > limit) {
9438                 continue;
9439             }
9440 
9441             if (hit) {
9442                 /* Multiple regions match -- always a failure (unlike
9443                  * PMSAv7 where highest-numbered-region wins)
9444                  */
9445                 *fsr = 0x00d; /* permission fault */
9446                 return true;
9447             }
9448 
9449             matchregion = n;
9450             hit = true;
9451 
9452             if (base & ~TARGET_PAGE_MASK) {
9453                 qemu_log_mask(LOG_UNIMP,
9454                               "MPU_RBAR[%d]: No support for MPU region base"
9455                               "address of 0x%" PRIx32 ". Minimum alignment is "
9456                               "%d\n",
9457                               n, base, TARGET_PAGE_BITS);
9458                 continue;
9459             }
9460             if ((limit + 1) & ~TARGET_PAGE_MASK) {
9461                 qemu_log_mask(LOG_UNIMP,
9462                               "MPU_RBAR[%d]: No support for MPU region limit"
9463                               "address of 0x%" PRIx32 ". Minimum alignment is "
9464                               "%d\n",
9465                               n, limit, TARGET_PAGE_BITS);
9466                 continue;
9467             }
9468         }
9469     }
9470 
9471     if (!hit) {
9472         /* background fault */
9473         *fsr = 0;
9474         return true;
9475     }
9476 
9477     if (matchregion == -1) {
9478         /* hit using the background region */
9479         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
9480     } else {
9481         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
9482         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9483 
9484         if (m_is_system_region(env, address)) {
9485             /* System space is always execute never */
9486             xn = 1;
9487         }
9488 
9489         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
9490         if (*prot && !xn) {
9491             *prot |= PAGE_EXEC;
9492         }
9493         /* We don't need to look the attribute up in the MAIR0/MAIR1
9494          * registers because that only tells us about cacheability.
9495          */
9496     }
9497 
9498     *fsr = 0x00d; /* Permission fault */
9499     return !(*prot & (1 << access_type));
9500 }
9501 
9502 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
9503                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
9504                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
9505 {
9506     int n;
9507     uint32_t mask;
9508     uint32_t base;
9509     bool is_user = regime_is_user(env, mmu_idx);
9510 
9511     if (regime_translation_disabled(env, mmu_idx)) {
9512         /* MPU disabled.  */
9513         *phys_ptr = address;
9514         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9515         return false;
9516     }
9517 
9518     *phys_ptr = address;
9519     for (n = 7; n >= 0; n--) {
9520         base = env->cp15.c6_region[n];
9521         if ((base & 1) == 0) {
9522             continue;
9523         }
9524         mask = 1 << ((base >> 1) & 0x1f);
9525         /* Keep this shift separate from the above to avoid an
9526            (undefined) << 32.  */
9527         mask = (mask << 1) - 1;
9528         if (((base ^ address) & ~mask) == 0) {
9529             break;
9530         }
9531     }
9532     if (n < 0) {
9533         *fsr = 2;
9534         return true;
9535     }
9536 
9537     if (access_type == MMU_INST_FETCH) {
9538         mask = env->cp15.pmsav5_insn_ap;
9539     } else {
9540         mask = env->cp15.pmsav5_data_ap;
9541     }
9542     mask = (mask >> (n * 4)) & 0xf;
9543     switch (mask) {
9544     case 0:
9545         *fsr = 1;
9546         return true;
9547     case 1:
9548         if (is_user) {
9549             *fsr = 1;
9550             return true;
9551         }
9552         *prot = PAGE_READ | PAGE_WRITE;
9553         break;
9554     case 2:
9555         *prot = PAGE_READ;
9556         if (!is_user) {
9557             *prot |= PAGE_WRITE;
9558         }
9559         break;
9560     case 3:
9561         *prot = PAGE_READ | PAGE_WRITE;
9562         break;
9563     case 5:
9564         if (is_user) {
9565             *fsr = 1;
9566             return true;
9567         }
9568         *prot = PAGE_READ;
9569         break;
9570     case 6:
9571         *prot = PAGE_READ;
9572         break;
9573     default:
9574         /* Bad permission.  */
9575         *fsr = 1;
9576         return true;
9577     }
9578     *prot |= PAGE_EXEC;
9579     return false;
9580 }
9581 
9582 /* Combine either inner or outer cacheability attributes for normal
9583  * memory, according to table D4-42 and pseudocode procedure
9584  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
9585  *
9586  * NB: only stage 1 includes allocation hints (RW bits), leading to
9587  * some asymmetry.
9588  */
9589 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
9590 {
9591     if (s1 == 4 || s2 == 4) {
9592         /* non-cacheable has precedence */
9593         return 4;
9594     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
9595         /* stage 1 write-through takes precedence */
9596         return s1;
9597     } else if (extract32(s2, 2, 2) == 2) {
9598         /* stage 2 write-through takes precedence, but the allocation hint
9599          * is still taken from stage 1
9600          */
9601         return (2 << 2) | extract32(s1, 0, 2);
9602     } else { /* write-back */
9603         return s1;
9604     }
9605 }
9606 
9607 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
9608  * and CombineS1S2Desc()
9609  *
9610  * @s1:      Attributes from stage 1 walk
9611  * @s2:      Attributes from stage 2 walk
9612  */
9613 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
9614 {
9615     uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
9616     uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
9617     ARMCacheAttrs ret;
9618 
9619     /* Combine shareability attributes (table D4-43) */
9620     if (s1.shareability == 2 || s2.shareability == 2) {
9621         /* if either are outer-shareable, the result is outer-shareable */
9622         ret.shareability = 2;
9623     } else if (s1.shareability == 3 || s2.shareability == 3) {
9624         /* if either are inner-shareable, the result is inner-shareable */
9625         ret.shareability = 3;
9626     } else {
9627         /* both non-shareable */
9628         ret.shareability = 0;
9629     }
9630 
9631     /* Combine memory type and cacheability attributes */
9632     if (s1hi == 0 || s2hi == 0) {
9633         /* Device has precedence over normal */
9634         if (s1lo == 0 || s2lo == 0) {
9635             /* nGnRnE has precedence over anything */
9636             ret.attrs = 0;
9637         } else if (s1lo == 4 || s2lo == 4) {
9638             /* non-Reordering has precedence over Reordering */
9639             ret.attrs = 4;  /* nGnRE */
9640         } else if (s1lo == 8 || s2lo == 8) {
9641             /* non-Gathering has precedence over Gathering */
9642             ret.attrs = 8;  /* nGRE */
9643         } else {
9644             ret.attrs = 0xc; /* GRE */
9645         }
9646 
9647         /* Any location for which the resultant memory type is any
9648          * type of Device memory is always treated as Outer Shareable.
9649          */
9650         ret.shareability = 2;
9651     } else { /* Normal memory */
9652         /* Outer/inner cacheability combine independently */
9653         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
9654                   | combine_cacheattr_nibble(s1lo, s2lo);
9655 
9656         if (ret.attrs == 0x44) {
9657             /* Any location for which the resultant memory type is Normal
9658              * Inner Non-cacheable, Outer Non-cacheable is always treated
9659              * as Outer Shareable.
9660              */
9661             ret.shareability = 2;
9662         }
9663     }
9664 
9665     return ret;
9666 }
9667 
9668 
9669 /* get_phys_addr - get the physical address for this virtual address
9670  *
9671  * Find the physical address corresponding to the given virtual address,
9672  * by doing a translation table walk on MMU based systems or using the
9673  * MPU state on MPU based systems.
9674  *
9675  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
9676  * prot and page_size may not be filled in, and the populated fsr value provides
9677  * information on why the translation aborted, in the format of a
9678  * DFSR/IFSR fault register, with the following caveats:
9679  *  * we honour the short vs long DFSR format differences.
9680  *  * the WnR bit is never set (the caller must do this).
9681  *  * for PSMAv5 based systems we don't bother to return a full FSR format
9682  *    value.
9683  *
9684  * @env: CPUARMState
9685  * @address: virtual address to get physical address for
9686  * @access_type: 0 for read, 1 for write, 2 for execute
9687  * @mmu_idx: MMU index indicating required translation regime
9688  * @phys_ptr: set to the physical address corresponding to the virtual address
9689  * @attrs: set to the memory transaction attributes to use
9690  * @prot: set to the permissions for the page containing phys_ptr
9691  * @page_size: set to the size of the page containing phys_ptr
9692  * @fsr: set to the DFSR/IFSR value on failure
9693  * @fi: set to fault info if the translation fails
9694  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
9695  */
9696 static bool get_phys_addr(CPUARMState *env, target_ulong address,
9697                           MMUAccessType access_type, ARMMMUIdx mmu_idx,
9698                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
9699                           target_ulong *page_size, uint32_t *fsr,
9700                           ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9701 {
9702     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
9703         /* Call ourselves recursively to do the stage 1 and then stage 2
9704          * translations.
9705          */
9706         if (arm_feature(env, ARM_FEATURE_EL2)) {
9707             hwaddr ipa;
9708             int s2_prot;
9709             int ret;
9710             ARMCacheAttrs cacheattrs2 = {};
9711 
9712             ret = get_phys_addr(env, address, access_type,
9713                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
9714                                 prot, page_size, fsr, fi, cacheattrs);
9715 
9716             /* If S1 fails or S2 is disabled, return early.  */
9717             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
9718                 *phys_ptr = ipa;
9719                 return ret;
9720             }
9721 
9722             /* S1 is done. Now do S2 translation.  */
9723             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
9724                                      phys_ptr, attrs, &s2_prot,
9725                                      page_size, fsr, fi,
9726                                      cacheattrs != NULL ? &cacheattrs2 : NULL);
9727             fi->s2addr = ipa;
9728             /* Combine the S1 and S2 perms.  */
9729             *prot &= s2_prot;
9730 
9731             /* Combine the S1 and S2 cache attributes, if needed */
9732             if (!ret && cacheattrs != NULL) {
9733                 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
9734             }
9735 
9736             return ret;
9737         } else {
9738             /*
9739              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
9740              */
9741             mmu_idx = stage_1_mmu_idx(mmu_idx);
9742         }
9743     }
9744 
9745     /* The page table entries may downgrade secure to non-secure, but
9746      * cannot upgrade an non-secure translation regime's attributes
9747      * to secure.
9748      */
9749     attrs->secure = regime_is_secure(env, mmu_idx);
9750     attrs->user = regime_is_user(env, mmu_idx);
9751 
9752     /* Fast Context Switch Extension. This doesn't exist at all in v8.
9753      * In v7 and earlier it affects all stage 1 translations.
9754      */
9755     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
9756         && !arm_feature(env, ARM_FEATURE_V8)) {
9757         if (regime_el(env, mmu_idx) == 3) {
9758             address += env->cp15.fcseidr_s;
9759         } else {
9760             address += env->cp15.fcseidr_ns;
9761         }
9762     }
9763 
9764     if (arm_feature(env, ARM_FEATURE_PMSA)) {
9765         bool ret;
9766         *page_size = TARGET_PAGE_SIZE;
9767 
9768         if (arm_feature(env, ARM_FEATURE_V8)) {
9769             /* PMSAv8 */
9770             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
9771                                        phys_ptr, attrs, prot, fsr);
9772         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9773             /* PMSAv7 */
9774             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
9775                                        phys_ptr, prot, fsr);
9776         } else {
9777             /* Pre-v7 MPU */
9778             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
9779                                        phys_ptr, prot, fsr);
9780         }
9781         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
9782                       " mmu_idx %u -> %s (prot %c%c%c)\n",
9783                       access_type == MMU_DATA_LOAD ? "reading" :
9784                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
9785                       (uint32_t)address, mmu_idx,
9786                       ret ? "Miss" : "Hit",
9787                       *prot & PAGE_READ ? 'r' : '-',
9788                       *prot & PAGE_WRITE ? 'w' : '-',
9789                       *prot & PAGE_EXEC ? 'x' : '-');
9790 
9791         return ret;
9792     }
9793 
9794     /* Definitely a real MMU, not an MPU */
9795 
9796     if (regime_translation_disabled(env, mmu_idx)) {
9797         /* MMU disabled. */
9798         *phys_ptr = address;
9799         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
9800         *page_size = TARGET_PAGE_SIZE;
9801         return 0;
9802     }
9803 
9804     if (regime_using_lpae_format(env, mmu_idx)) {
9805         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
9806                                   attrs, prot, page_size, fsr, fi, cacheattrs);
9807     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
9808         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
9809                                 attrs, prot, page_size, fsr, fi);
9810     } else {
9811         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
9812                                 prot, page_size, fsr, fi);
9813     }
9814 }
9815 
9816 /* Walk the page table and (if the mapping exists) add the page
9817  * to the TLB. Return false on success, or true on failure. Populate
9818  * fsr with ARM DFSR/IFSR fault register format value on failure.
9819  */
9820 bool arm_tlb_fill(CPUState *cs, vaddr address,
9821                   MMUAccessType access_type, int mmu_idx, uint32_t *fsr,
9822                   ARMMMUFaultInfo *fi)
9823 {
9824     ARMCPU *cpu = ARM_CPU(cs);
9825     CPUARMState *env = &cpu->env;
9826     hwaddr phys_addr;
9827     target_ulong page_size;
9828     int prot;
9829     int ret;
9830     MemTxAttrs attrs = {};
9831 
9832     ret = get_phys_addr(env, address, access_type,
9833                         core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
9834                         &attrs, &prot, &page_size, fsr, fi, NULL);
9835     if (!ret) {
9836         /* Map a single [sub]page.  */
9837         phys_addr &= TARGET_PAGE_MASK;
9838         address &= TARGET_PAGE_MASK;
9839         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
9840                                 prot, mmu_idx, page_size);
9841         return 0;
9842     }
9843 
9844     return ret;
9845 }
9846 
9847 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
9848                                          MemTxAttrs *attrs)
9849 {
9850     ARMCPU *cpu = ARM_CPU(cs);
9851     CPUARMState *env = &cpu->env;
9852     hwaddr phys_addr;
9853     target_ulong page_size;
9854     int prot;
9855     bool ret;
9856     uint32_t fsr;
9857     ARMMMUFaultInfo fi = {};
9858     ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
9859 
9860     *attrs = (MemTxAttrs) {};
9861 
9862     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
9863                         attrs, &prot, &page_size, &fsr, &fi, NULL);
9864 
9865     if (ret) {
9866         return -1;
9867     }
9868     return phys_addr;
9869 }
9870 
9871 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
9872 {
9873     uint32_t mask;
9874     unsigned el = arm_current_el(env);
9875 
9876     /* First handle registers which unprivileged can read */
9877 
9878     switch (reg) {
9879     case 0 ... 7: /* xPSR sub-fields */
9880         mask = 0;
9881         if ((reg & 1) && el) {
9882             mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
9883         }
9884         if (!(reg & 4)) {
9885             mask |= XPSR_NZCV | XPSR_Q; /* APSR */
9886         }
9887         /* EPSR reads as zero */
9888         return xpsr_read(env) & mask;
9889         break;
9890     case 20: /* CONTROL */
9891         return env->v7m.control[env->v7m.secure];
9892     case 0x94: /* CONTROL_NS */
9893         /* We have to handle this here because unprivileged Secure code
9894          * can read the NS CONTROL register.
9895          */
9896         if (!env->v7m.secure) {
9897             return 0;
9898         }
9899         return env->v7m.control[M_REG_NS];
9900     }
9901 
9902     if (el == 0) {
9903         return 0; /* unprivileged reads others as zero */
9904     }
9905 
9906     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9907         switch (reg) {
9908         case 0x88: /* MSP_NS */
9909             if (!env->v7m.secure) {
9910                 return 0;
9911             }
9912             return env->v7m.other_ss_msp;
9913         case 0x89: /* PSP_NS */
9914             if (!env->v7m.secure) {
9915                 return 0;
9916             }
9917             return env->v7m.other_ss_psp;
9918         case 0x90: /* PRIMASK_NS */
9919             if (!env->v7m.secure) {
9920                 return 0;
9921             }
9922             return env->v7m.primask[M_REG_NS];
9923         case 0x91: /* BASEPRI_NS */
9924             if (!env->v7m.secure) {
9925                 return 0;
9926             }
9927             return env->v7m.basepri[M_REG_NS];
9928         case 0x93: /* FAULTMASK_NS */
9929             if (!env->v7m.secure) {
9930                 return 0;
9931             }
9932             return env->v7m.faultmask[M_REG_NS];
9933         case 0x98: /* SP_NS */
9934         {
9935             /* This gives the non-secure SP selected based on whether we're
9936              * currently in handler mode or not, using the NS CONTROL.SPSEL.
9937              */
9938             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
9939 
9940             if (!env->v7m.secure) {
9941                 return 0;
9942             }
9943             if (!arm_v7m_is_handler_mode(env) && spsel) {
9944                 return env->v7m.other_ss_psp;
9945             } else {
9946                 return env->v7m.other_ss_msp;
9947             }
9948         }
9949         default:
9950             break;
9951         }
9952     }
9953 
9954     switch (reg) {
9955     case 8: /* MSP */
9956         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9957             env->v7m.other_sp : env->regs[13];
9958     case 9: /* PSP */
9959         return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
9960             env->regs[13] : env->v7m.other_sp;
9961     case 16: /* PRIMASK */
9962         return env->v7m.primask[env->v7m.secure];
9963     case 17: /* BASEPRI */
9964     case 18: /* BASEPRI_MAX */
9965         return env->v7m.basepri[env->v7m.secure];
9966     case 19: /* FAULTMASK */
9967         return env->v7m.faultmask[env->v7m.secure];
9968     default:
9969         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
9970                                        " register %d\n", reg);
9971         return 0;
9972     }
9973 }
9974 
9975 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
9976 {
9977     /* We're passed bits [11..0] of the instruction; extract
9978      * SYSm and the mask bits.
9979      * Invalid combinations of SYSm and mask are UNPREDICTABLE;
9980      * we choose to treat them as if the mask bits were valid.
9981      * NB that the pseudocode 'mask' variable is bits [11..10],
9982      * whereas ours is [11..8].
9983      */
9984     uint32_t mask = extract32(maskreg, 8, 4);
9985     uint32_t reg = extract32(maskreg, 0, 8);
9986 
9987     if (arm_current_el(env) == 0 && reg > 7) {
9988         /* only xPSR sub-fields may be written by unprivileged */
9989         return;
9990     }
9991 
9992     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
9993         switch (reg) {
9994         case 0x88: /* MSP_NS */
9995             if (!env->v7m.secure) {
9996                 return;
9997             }
9998             env->v7m.other_ss_msp = val;
9999             return;
10000         case 0x89: /* PSP_NS */
10001             if (!env->v7m.secure) {
10002                 return;
10003             }
10004             env->v7m.other_ss_psp = val;
10005             return;
10006         case 0x90: /* PRIMASK_NS */
10007             if (!env->v7m.secure) {
10008                 return;
10009             }
10010             env->v7m.primask[M_REG_NS] = val & 1;
10011             return;
10012         case 0x91: /* BASEPRI_NS */
10013             if (!env->v7m.secure) {
10014                 return;
10015             }
10016             env->v7m.basepri[M_REG_NS] = val & 0xff;
10017             return;
10018         case 0x93: /* FAULTMASK_NS */
10019             if (!env->v7m.secure) {
10020                 return;
10021             }
10022             env->v7m.faultmask[M_REG_NS] = val & 1;
10023             return;
10024         case 0x98: /* SP_NS */
10025         {
10026             /* This gives the non-secure SP selected based on whether we're
10027              * currently in handler mode or not, using the NS CONTROL.SPSEL.
10028              */
10029             bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
10030 
10031             if (!env->v7m.secure) {
10032                 return;
10033             }
10034             if (!arm_v7m_is_handler_mode(env) && spsel) {
10035                 env->v7m.other_ss_psp = val;
10036             } else {
10037                 env->v7m.other_ss_msp = val;
10038             }
10039             return;
10040         }
10041         default:
10042             break;
10043         }
10044     }
10045 
10046     switch (reg) {
10047     case 0 ... 7: /* xPSR sub-fields */
10048         /* only APSR is actually writable */
10049         if (!(reg & 4)) {
10050             uint32_t apsrmask = 0;
10051 
10052             if (mask & 8) {
10053                 apsrmask |= XPSR_NZCV | XPSR_Q;
10054             }
10055             if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10056                 apsrmask |= XPSR_GE;
10057             }
10058             xpsr_write(env, val, apsrmask);
10059         }
10060         break;
10061     case 8: /* MSP */
10062         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
10063             env->v7m.other_sp = val;
10064         } else {
10065             env->regs[13] = val;
10066         }
10067         break;
10068     case 9: /* PSP */
10069         if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
10070             env->regs[13] = val;
10071         } else {
10072             env->v7m.other_sp = val;
10073         }
10074         break;
10075     case 16: /* PRIMASK */
10076         env->v7m.primask[env->v7m.secure] = val & 1;
10077         break;
10078     case 17: /* BASEPRI */
10079         env->v7m.basepri[env->v7m.secure] = val & 0xff;
10080         break;
10081     case 18: /* BASEPRI_MAX */
10082         val &= 0xff;
10083         if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
10084                          || env->v7m.basepri[env->v7m.secure] == 0)) {
10085             env->v7m.basepri[env->v7m.secure] = val;
10086         }
10087         break;
10088     case 19: /* FAULTMASK */
10089         env->v7m.faultmask[env->v7m.secure] = val & 1;
10090         break;
10091     case 20: /* CONTROL */
10092         /* Writing to the SPSEL bit only has an effect if we are in
10093          * thread mode; other bits can be updated by any privileged code.
10094          * write_v7m_control_spsel() deals with updating the SPSEL bit in
10095          * env->v7m.control, so we only need update the others.
10096          */
10097         if (!arm_v7m_is_handler_mode(env)) {
10098             write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10099         }
10100         env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
10101         env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
10102         break;
10103     default:
10104         qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
10105                                        " register %d\n", reg);
10106         return;
10107     }
10108 }
10109 
10110 #endif
10111 
10112 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
10113 {
10114     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
10115      * Note that we do not implement the (architecturally mandated)
10116      * alignment fault for attempts to use this on Device memory
10117      * (which matches the usual QEMU behaviour of not implementing either
10118      * alignment faults or any memory attribute handling).
10119      */
10120 
10121     ARMCPU *cpu = arm_env_get_cpu(env);
10122     uint64_t blocklen = 4 << cpu->dcz_blocksize;
10123     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
10124 
10125 #ifndef CONFIG_USER_ONLY
10126     {
10127         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
10128          * the block size so we might have to do more than one TLB lookup.
10129          * We know that in fact for any v8 CPU the page size is at least 4K
10130          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
10131          * 1K as an artefact of legacy v5 subpage support being present in the
10132          * same QEMU executable.
10133          */
10134         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
10135         void *hostaddr[maxidx];
10136         int try, i;
10137         unsigned mmu_idx = cpu_mmu_index(env, false);
10138         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10139 
10140         for (try = 0; try < 2; try++) {
10141 
10142             for (i = 0; i < maxidx; i++) {
10143                 hostaddr[i] = tlb_vaddr_to_host(env,
10144                                                 vaddr + TARGET_PAGE_SIZE * i,
10145                                                 1, mmu_idx);
10146                 if (!hostaddr[i]) {
10147                     break;
10148                 }
10149             }
10150             if (i == maxidx) {
10151                 /* If it's all in the TLB it's fair game for just writing to;
10152                  * we know we don't need to update dirty status, etc.
10153                  */
10154                 for (i = 0; i < maxidx - 1; i++) {
10155                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
10156                 }
10157                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
10158                 return;
10159             }
10160             /* OK, try a store and see if we can populate the tlb. This
10161              * might cause an exception if the memory isn't writable,
10162              * in which case we will longjmp out of here. We must for
10163              * this purpose use the actual register value passed to us
10164              * so that we get the fault address right.
10165              */
10166             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10167             /* Now we can populate the other TLB entries, if any */
10168             for (i = 0; i < maxidx; i++) {
10169                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
10170                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
10171                     helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10172                 }
10173             }
10174         }
10175 
10176         /* Slow path (probably attempt to do this to an I/O device or
10177          * similar, or clearing of a block of code we have translations
10178          * cached for). Just do a series of byte writes as the architecture
10179          * demands. It's not worth trying to use a cpu_physical_memory_map(),
10180          * memset(), unmap() sequence here because:
10181          *  + we'd need to account for the blocksize being larger than a page
10182          *  + the direct-RAM access case is almost always going to be dealt
10183          *    with in the fastpath code above, so there's no speed benefit
10184          *  + we would have to deal with the map returning NULL because the
10185          *    bounce buffer was in use
10186          */
10187         for (i = 0; i < blocklen; i++) {
10188             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10189         }
10190     }
10191 #else
10192     memset(g2h(vaddr), 0, blocklen);
10193 #endif
10194 }
10195 
10196 /* Note that signed overflow is undefined in C.  The following routines are
10197    careful to use unsigned types where modulo arithmetic is required.
10198    Failure to do so _will_ break on newer gcc.  */
10199 
10200 /* Signed saturating arithmetic.  */
10201 
10202 /* Perform 16-bit signed saturating addition.  */
10203 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
10204 {
10205     uint16_t res;
10206 
10207     res = a + b;
10208     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
10209         if (a & 0x8000)
10210             res = 0x8000;
10211         else
10212             res = 0x7fff;
10213     }
10214     return res;
10215 }
10216 
10217 /* Perform 8-bit signed saturating addition.  */
10218 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
10219 {
10220     uint8_t res;
10221 
10222     res = a + b;
10223     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
10224         if (a & 0x80)
10225             res = 0x80;
10226         else
10227             res = 0x7f;
10228     }
10229     return res;
10230 }
10231 
10232 /* Perform 16-bit signed saturating subtraction.  */
10233 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
10234 {
10235     uint16_t res;
10236 
10237     res = a - b;
10238     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
10239         if (a & 0x8000)
10240             res = 0x8000;
10241         else
10242             res = 0x7fff;
10243     }
10244     return res;
10245 }
10246 
10247 /* Perform 8-bit signed saturating subtraction.  */
10248 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
10249 {
10250     uint8_t res;
10251 
10252     res = a - b;
10253     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
10254         if (a & 0x80)
10255             res = 0x80;
10256         else
10257             res = 0x7f;
10258     }
10259     return res;
10260 }
10261 
10262 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
10263 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
10264 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
10265 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
10266 #define PFX q
10267 
10268 #include "op_addsub.h"
10269 
10270 /* Unsigned saturating arithmetic.  */
10271 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
10272 {
10273     uint16_t res;
10274     res = a + b;
10275     if (res < a)
10276         res = 0xffff;
10277     return res;
10278 }
10279 
10280 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
10281 {
10282     if (a > b)
10283         return a - b;
10284     else
10285         return 0;
10286 }
10287 
10288 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
10289 {
10290     uint8_t res;
10291     res = a + b;
10292     if (res < a)
10293         res = 0xff;
10294     return res;
10295 }
10296 
10297 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
10298 {
10299     if (a > b)
10300         return a - b;
10301     else
10302         return 0;
10303 }
10304 
10305 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
10306 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
10307 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
10308 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
10309 #define PFX uq
10310 
10311 #include "op_addsub.h"
10312 
10313 /* Signed modulo arithmetic.  */
10314 #define SARITH16(a, b, n, op) do { \
10315     int32_t sum; \
10316     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
10317     RESULT(sum, n, 16); \
10318     if (sum >= 0) \
10319         ge |= 3 << (n * 2); \
10320     } while(0)
10321 
10322 #define SARITH8(a, b, n, op) do { \
10323     int32_t sum; \
10324     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
10325     RESULT(sum, n, 8); \
10326     if (sum >= 0) \
10327         ge |= 1 << n; \
10328     } while(0)
10329 
10330 
10331 #define ADD16(a, b, n) SARITH16(a, b, n, +)
10332 #define SUB16(a, b, n) SARITH16(a, b, n, -)
10333 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
10334 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
10335 #define PFX s
10336 #define ARITH_GE
10337 
10338 #include "op_addsub.h"
10339 
10340 /* Unsigned modulo arithmetic.  */
10341 #define ADD16(a, b, n) do { \
10342     uint32_t sum; \
10343     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
10344     RESULT(sum, n, 16); \
10345     if ((sum >> 16) == 1) \
10346         ge |= 3 << (n * 2); \
10347     } while(0)
10348 
10349 #define ADD8(a, b, n) do { \
10350     uint32_t sum; \
10351     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
10352     RESULT(sum, n, 8); \
10353     if ((sum >> 8) == 1) \
10354         ge |= 1 << n; \
10355     } while(0)
10356 
10357 #define SUB16(a, b, n) do { \
10358     uint32_t sum; \
10359     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
10360     RESULT(sum, n, 16); \
10361     if ((sum >> 16) == 0) \
10362         ge |= 3 << (n * 2); \
10363     } while(0)
10364 
10365 #define SUB8(a, b, n) do { \
10366     uint32_t sum; \
10367     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
10368     RESULT(sum, n, 8); \
10369     if ((sum >> 8) == 0) \
10370         ge |= 1 << n; \
10371     } while(0)
10372 
10373 #define PFX u
10374 #define ARITH_GE
10375 
10376 #include "op_addsub.h"
10377 
10378 /* Halved signed arithmetic.  */
10379 #define ADD16(a, b, n) \
10380   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
10381 #define SUB16(a, b, n) \
10382   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
10383 #define ADD8(a, b, n) \
10384   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
10385 #define SUB8(a, b, n) \
10386   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
10387 #define PFX sh
10388 
10389 #include "op_addsub.h"
10390 
10391 /* Halved unsigned arithmetic.  */
10392 #define ADD16(a, b, n) \
10393   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10394 #define SUB16(a, b, n) \
10395   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
10396 #define ADD8(a, b, n) \
10397   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10398 #define SUB8(a, b, n) \
10399   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
10400 #define PFX uh
10401 
10402 #include "op_addsub.h"
10403 
10404 static inline uint8_t do_usad(uint8_t a, uint8_t b)
10405 {
10406     if (a > b)
10407         return a - b;
10408     else
10409         return b - a;
10410 }
10411 
10412 /* Unsigned sum of absolute byte differences.  */
10413 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
10414 {
10415     uint32_t sum;
10416     sum = do_usad(a, b);
10417     sum += do_usad(a >> 8, b >> 8);
10418     sum += do_usad(a >> 16, b >>16);
10419     sum += do_usad(a >> 24, b >> 24);
10420     return sum;
10421 }
10422 
10423 /* For ARMv6 SEL instruction.  */
10424 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
10425 {
10426     uint32_t mask;
10427 
10428     mask = 0;
10429     if (flags & 1)
10430         mask |= 0xff;
10431     if (flags & 2)
10432         mask |= 0xff00;
10433     if (flags & 4)
10434         mask |= 0xff0000;
10435     if (flags & 8)
10436         mask |= 0xff000000;
10437     return (a & mask) | (b & ~mask);
10438 }
10439 
10440 /* VFP support.  We follow the convention used for VFP instructions:
10441    Single precision routines have a "s" suffix, double precision a
10442    "d" suffix.  */
10443 
10444 /* Convert host exception flags to vfp form.  */
10445 static inline int vfp_exceptbits_from_host(int host_bits)
10446 {
10447     int target_bits = 0;
10448 
10449     if (host_bits & float_flag_invalid)
10450         target_bits |= 1;
10451     if (host_bits & float_flag_divbyzero)
10452         target_bits |= 2;
10453     if (host_bits & float_flag_overflow)
10454         target_bits |= 4;
10455     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
10456         target_bits |= 8;
10457     if (host_bits & float_flag_inexact)
10458         target_bits |= 0x10;
10459     if (host_bits & float_flag_input_denormal)
10460         target_bits |= 0x80;
10461     return target_bits;
10462 }
10463 
10464 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
10465 {
10466     int i;
10467     uint32_t fpscr;
10468 
10469     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
10470             | (env->vfp.vec_len << 16)
10471             | (env->vfp.vec_stride << 20);
10472     i = get_float_exception_flags(&env->vfp.fp_status);
10473     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
10474     fpscr |= vfp_exceptbits_from_host(i);
10475     return fpscr;
10476 }
10477 
10478 uint32_t vfp_get_fpscr(CPUARMState *env)
10479 {
10480     return HELPER(vfp_get_fpscr)(env);
10481 }
10482 
10483 /* Convert vfp exception flags to target form.  */
10484 static inline int vfp_exceptbits_to_host(int target_bits)
10485 {
10486     int host_bits = 0;
10487 
10488     if (target_bits & 1)
10489         host_bits |= float_flag_invalid;
10490     if (target_bits & 2)
10491         host_bits |= float_flag_divbyzero;
10492     if (target_bits & 4)
10493         host_bits |= float_flag_overflow;
10494     if (target_bits & 8)
10495         host_bits |= float_flag_underflow;
10496     if (target_bits & 0x10)
10497         host_bits |= float_flag_inexact;
10498     if (target_bits & 0x80)
10499         host_bits |= float_flag_input_denormal;
10500     return host_bits;
10501 }
10502 
10503 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
10504 {
10505     int i;
10506     uint32_t changed;
10507 
10508     changed = env->vfp.xregs[ARM_VFP_FPSCR];
10509     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
10510     env->vfp.vec_len = (val >> 16) & 7;
10511     env->vfp.vec_stride = (val >> 20) & 3;
10512 
10513     changed ^= val;
10514     if (changed & (3 << 22)) {
10515         i = (val >> 22) & 3;
10516         switch (i) {
10517         case FPROUNDING_TIEEVEN:
10518             i = float_round_nearest_even;
10519             break;
10520         case FPROUNDING_POSINF:
10521             i = float_round_up;
10522             break;
10523         case FPROUNDING_NEGINF:
10524             i = float_round_down;
10525             break;
10526         case FPROUNDING_ZERO:
10527             i = float_round_to_zero;
10528             break;
10529         }
10530         set_float_rounding_mode(i, &env->vfp.fp_status);
10531     }
10532     if (changed & (1 << 24)) {
10533         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10534         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
10535     }
10536     if (changed & (1 << 25))
10537         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
10538 
10539     i = vfp_exceptbits_to_host(val);
10540     set_float_exception_flags(i, &env->vfp.fp_status);
10541     set_float_exception_flags(0, &env->vfp.standard_fp_status);
10542 }
10543 
10544 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
10545 {
10546     HELPER(vfp_set_fpscr)(env, val);
10547 }
10548 
10549 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
10550 
10551 #define VFP_BINOP(name) \
10552 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
10553 { \
10554     float_status *fpst = fpstp; \
10555     return float32_ ## name(a, b, fpst); \
10556 } \
10557 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
10558 { \
10559     float_status *fpst = fpstp; \
10560     return float64_ ## name(a, b, fpst); \
10561 }
10562 VFP_BINOP(add)
10563 VFP_BINOP(sub)
10564 VFP_BINOP(mul)
10565 VFP_BINOP(div)
10566 VFP_BINOP(min)
10567 VFP_BINOP(max)
10568 VFP_BINOP(minnum)
10569 VFP_BINOP(maxnum)
10570 #undef VFP_BINOP
10571 
10572 float32 VFP_HELPER(neg, s)(float32 a)
10573 {
10574     return float32_chs(a);
10575 }
10576 
10577 float64 VFP_HELPER(neg, d)(float64 a)
10578 {
10579     return float64_chs(a);
10580 }
10581 
10582 float32 VFP_HELPER(abs, s)(float32 a)
10583 {
10584     return float32_abs(a);
10585 }
10586 
10587 float64 VFP_HELPER(abs, d)(float64 a)
10588 {
10589     return float64_abs(a);
10590 }
10591 
10592 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
10593 {
10594     return float32_sqrt(a, &env->vfp.fp_status);
10595 }
10596 
10597 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
10598 {
10599     return float64_sqrt(a, &env->vfp.fp_status);
10600 }
10601 
10602 /* XXX: check quiet/signaling case */
10603 #define DO_VFP_cmp(p, type) \
10604 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
10605 { \
10606     uint32_t flags; \
10607     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
10608     case 0: flags = 0x6; break; \
10609     case -1: flags = 0x8; break; \
10610     case 1: flags = 0x2; break; \
10611     default: case 2: flags = 0x3; break; \
10612     } \
10613     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10614         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10615 } \
10616 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
10617 { \
10618     uint32_t flags; \
10619     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
10620     case 0: flags = 0x6; break; \
10621     case -1: flags = 0x8; break; \
10622     case 1: flags = 0x2; break; \
10623     default: case 2: flags = 0x3; break; \
10624     } \
10625     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
10626         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
10627 }
10628 DO_VFP_cmp(s, float32)
10629 DO_VFP_cmp(d, float64)
10630 #undef DO_VFP_cmp
10631 
10632 /* Integer to float and float to integer conversions */
10633 
10634 #define CONV_ITOF(name, fsz, sign) \
10635     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
10636 { \
10637     float_status *fpst = fpstp; \
10638     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
10639 }
10640 
10641 #define CONV_FTOI(name, fsz, sign, round) \
10642 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
10643 { \
10644     float_status *fpst = fpstp; \
10645     if (float##fsz##_is_any_nan(x)) { \
10646         float_raise(float_flag_invalid, fpst); \
10647         return 0; \
10648     } \
10649     return float##fsz##_to_##sign##int32##round(x, fpst); \
10650 }
10651 
10652 #define FLOAT_CONVS(name, p, fsz, sign) \
10653 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
10654 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
10655 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
10656 
10657 FLOAT_CONVS(si, s, 32, )
10658 FLOAT_CONVS(si, d, 64, )
10659 FLOAT_CONVS(ui, s, 32, u)
10660 FLOAT_CONVS(ui, d, 64, u)
10661 
10662 #undef CONV_ITOF
10663 #undef CONV_FTOI
10664 #undef FLOAT_CONVS
10665 
10666 /* floating point conversion */
10667 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
10668 {
10669     float64 r = float32_to_float64(x, &env->vfp.fp_status);
10670     /* ARM requires that S<->D conversion of any kind of NaN generates
10671      * a quiet NaN by forcing the most significant frac bit to 1.
10672      */
10673     return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10674 }
10675 
10676 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
10677 {
10678     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
10679     /* ARM requires that S<->D conversion of any kind of NaN generates
10680      * a quiet NaN by forcing the most significant frac bit to 1.
10681      */
10682     return float32_maybe_silence_nan(r, &env->vfp.fp_status);
10683 }
10684 
10685 /* VFP3 fixed point conversion.  */
10686 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
10687 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
10688                                      void *fpstp) \
10689 { \
10690     float_status *fpst = fpstp; \
10691     float##fsz tmp; \
10692     tmp = itype##_to_##float##fsz(x, fpst); \
10693     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
10694 }
10695 
10696 /* Notice that we want only input-denormal exception flags from the
10697  * scalbn operation: the other possible flags (overflow+inexact if
10698  * we overflow to infinity, output-denormal) aren't correct for the
10699  * complete scale-and-convert operation.
10700  */
10701 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
10702 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
10703                                              uint32_t shift, \
10704                                              void *fpstp) \
10705 { \
10706     float_status *fpst = fpstp; \
10707     int old_exc_flags = get_float_exception_flags(fpst); \
10708     float##fsz tmp; \
10709     if (float##fsz##_is_any_nan(x)) { \
10710         float_raise(float_flag_invalid, fpst); \
10711         return 0; \
10712     } \
10713     tmp = float##fsz##_scalbn(x, shift, fpst); \
10714     old_exc_flags |= get_float_exception_flags(fpst) \
10715         & float_flag_input_denormal; \
10716     set_float_exception_flags(old_exc_flags, fpst); \
10717     return float##fsz##_to_##itype##round(tmp, fpst); \
10718 }
10719 
10720 #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
10721 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10722 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
10723 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10724 
10725 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
10726 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
10727 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
10728 
10729 VFP_CONV_FIX(sh, d, 64, 64, int16)
10730 VFP_CONV_FIX(sl, d, 64, 64, int32)
10731 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
10732 VFP_CONV_FIX(uh, d, 64, 64, uint16)
10733 VFP_CONV_FIX(ul, d, 64, 64, uint32)
10734 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
10735 VFP_CONV_FIX(sh, s, 32, 32, int16)
10736 VFP_CONV_FIX(sl, s, 32, 32, int32)
10737 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
10738 VFP_CONV_FIX(uh, s, 32, 32, uint16)
10739 VFP_CONV_FIX(ul, s, 32, 32, uint32)
10740 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
10741 #undef VFP_CONV_FIX
10742 #undef VFP_CONV_FIX_FLOAT
10743 #undef VFP_CONV_FLOAT_FIX_ROUND
10744 
10745 /* Set the current fp rounding mode and return the old one.
10746  * The argument is a softfloat float_round_ value.
10747  */
10748 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
10749 {
10750     float_status *fp_status = &env->vfp.fp_status;
10751 
10752     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10753     set_float_rounding_mode(rmode, fp_status);
10754 
10755     return prev_rmode;
10756 }
10757 
10758 /* Set the current fp rounding mode in the standard fp status and return
10759  * the old one. This is for NEON instructions that need to change the
10760  * rounding mode but wish to use the standard FPSCR values for everything
10761  * else. Always set the rounding mode back to the correct value after
10762  * modifying it.
10763  * The argument is a softfloat float_round_ value.
10764  */
10765 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
10766 {
10767     float_status *fp_status = &env->vfp.standard_fp_status;
10768 
10769     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
10770     set_float_rounding_mode(rmode, fp_status);
10771 
10772     return prev_rmode;
10773 }
10774 
10775 /* Half precision conversions.  */
10776 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
10777 {
10778     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10779     float32 r = float16_to_float32(make_float16(a), ieee, s);
10780     if (ieee) {
10781         return float32_maybe_silence_nan(r, s);
10782     }
10783     return r;
10784 }
10785 
10786 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
10787 {
10788     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10789     float16 r = float32_to_float16(a, ieee, s);
10790     if (ieee) {
10791         r = float16_maybe_silence_nan(r, s);
10792     }
10793     return float16_val(r);
10794 }
10795 
10796 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10797 {
10798     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
10799 }
10800 
10801 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10802 {
10803     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
10804 }
10805 
10806 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
10807 {
10808     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
10809 }
10810 
10811 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
10812 {
10813     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
10814 }
10815 
10816 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
10817 {
10818     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10819     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
10820     if (ieee) {
10821         return float64_maybe_silence_nan(r, &env->vfp.fp_status);
10822     }
10823     return r;
10824 }
10825 
10826 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
10827 {
10828     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
10829     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
10830     if (ieee) {
10831         r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
10832     }
10833     return float16_val(r);
10834 }
10835 
10836 #define float32_two make_float32(0x40000000)
10837 #define float32_three make_float32(0x40400000)
10838 #define float32_one_point_five make_float32(0x3fc00000)
10839 
10840 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
10841 {
10842     float_status *s = &env->vfp.standard_fp_status;
10843     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10844         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10845         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10846             float_raise(float_flag_input_denormal, s);
10847         }
10848         return float32_two;
10849     }
10850     return float32_sub(float32_two, float32_mul(a, b, s), s);
10851 }
10852 
10853 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
10854 {
10855     float_status *s = &env->vfp.standard_fp_status;
10856     float32 product;
10857     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
10858         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
10859         if (!(float32_is_zero(a) || float32_is_zero(b))) {
10860             float_raise(float_flag_input_denormal, s);
10861         }
10862         return float32_one_point_five;
10863     }
10864     product = float32_mul(a, b, s);
10865     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
10866 }
10867 
10868 /* NEON helpers.  */
10869 
10870 /* Constants 256 and 512 are used in some helpers; we avoid relying on
10871  * int->float conversions at run-time.  */
10872 #define float64_256 make_float64(0x4070000000000000LL)
10873 #define float64_512 make_float64(0x4080000000000000LL)
10874 #define float32_maxnorm make_float32(0x7f7fffff)
10875 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
10876 
10877 /* Reciprocal functions
10878  *
10879  * The algorithm that must be used to calculate the estimate
10880  * is specified by the ARM ARM, see FPRecipEstimate()
10881  */
10882 
10883 static float64 recip_estimate(float64 a, float_status *real_fp_status)
10884 {
10885     /* These calculations mustn't set any fp exception flags,
10886      * so we use a local copy of the fp_status.
10887      */
10888     float_status dummy_status = *real_fp_status;
10889     float_status *s = &dummy_status;
10890     /* q = (int)(a * 512.0) */
10891     float64 q = float64_mul(float64_512, a, s);
10892     int64_t q_int = float64_to_int64_round_to_zero(q, s);
10893 
10894     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
10895     q = int64_to_float64(q_int, s);
10896     q = float64_add(q, float64_half, s);
10897     q = float64_div(q, float64_512, s);
10898     q = float64_div(float64_one, q, s);
10899 
10900     /* s = (int)(256.0 * r + 0.5) */
10901     q = float64_mul(q, float64_256, s);
10902     q = float64_add(q, float64_half, s);
10903     q_int = float64_to_int64_round_to_zero(q, s);
10904 
10905     /* return (double)s / 256.0 */
10906     return float64_div(int64_to_float64(q_int, s), float64_256, s);
10907 }
10908 
10909 /* Common wrapper to call recip_estimate */
10910 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
10911 {
10912     uint64_t val64 = float64_val(num);
10913     uint64_t frac = extract64(val64, 0, 52);
10914     int64_t exp = extract64(val64, 52, 11);
10915     uint64_t sbit;
10916     float64 scaled, estimate;
10917 
10918     /* Generate the scaled number for the estimate function */
10919     if (exp == 0) {
10920         if (extract64(frac, 51, 1) == 0) {
10921             exp = -1;
10922             frac = extract64(frac, 0, 50) << 2;
10923         } else {
10924             frac = extract64(frac, 0, 51) << 1;
10925         }
10926     }
10927 
10928     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
10929     scaled = make_float64((0x3feULL << 52)
10930                           | extract64(frac, 44, 8) << 44);
10931 
10932     estimate = recip_estimate(scaled, fpst);
10933 
10934     /* Build new result */
10935     val64 = float64_val(estimate);
10936     sbit = 0x8000000000000000ULL & val64;
10937     exp = off - exp;
10938     frac = extract64(val64, 0, 52);
10939 
10940     if (exp == 0) {
10941         frac = 1ULL << 51 | extract64(frac, 1, 51);
10942     } else if (exp == -1) {
10943         frac = 1ULL << 50 | extract64(frac, 2, 50);
10944         exp = 0;
10945     }
10946 
10947     return make_float64(sbit | (exp << 52) | frac);
10948 }
10949 
10950 static bool round_to_inf(float_status *fpst, bool sign_bit)
10951 {
10952     switch (fpst->float_rounding_mode) {
10953     case float_round_nearest_even: /* Round to Nearest */
10954         return true;
10955     case float_round_up: /* Round to +Inf */
10956         return !sign_bit;
10957     case float_round_down: /* Round to -Inf */
10958         return sign_bit;
10959     case float_round_to_zero: /* Round to Zero */
10960         return false;
10961     }
10962 
10963     g_assert_not_reached();
10964 }
10965 
10966 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
10967 {
10968     float_status *fpst = fpstp;
10969     float32 f32 = float32_squash_input_denormal(input, fpst);
10970     uint32_t f32_val = float32_val(f32);
10971     uint32_t f32_sbit = 0x80000000ULL & f32_val;
10972     int32_t f32_exp = extract32(f32_val, 23, 8);
10973     uint32_t f32_frac = extract32(f32_val, 0, 23);
10974     float64 f64, r64;
10975     uint64_t r64_val;
10976     int64_t r64_exp;
10977     uint64_t r64_frac;
10978 
10979     if (float32_is_any_nan(f32)) {
10980         float32 nan = f32;
10981         if (float32_is_signaling_nan(f32, fpst)) {
10982             float_raise(float_flag_invalid, fpst);
10983             nan = float32_maybe_silence_nan(f32, fpst);
10984         }
10985         if (fpst->default_nan_mode) {
10986             nan =  float32_default_nan(fpst);
10987         }
10988         return nan;
10989     } else if (float32_is_infinity(f32)) {
10990         return float32_set_sign(float32_zero, float32_is_neg(f32));
10991     } else if (float32_is_zero(f32)) {
10992         float_raise(float_flag_divbyzero, fpst);
10993         return float32_set_sign(float32_infinity, float32_is_neg(f32));
10994     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
10995         /* Abs(value) < 2.0^-128 */
10996         float_raise(float_flag_overflow | float_flag_inexact, fpst);
10997         if (round_to_inf(fpst, f32_sbit)) {
10998             return float32_set_sign(float32_infinity, float32_is_neg(f32));
10999         } else {
11000             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
11001         }
11002     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
11003         float_raise(float_flag_underflow, fpst);
11004         return float32_set_sign(float32_zero, float32_is_neg(f32));
11005     }
11006 
11007 
11008     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
11009     r64 = call_recip_estimate(f64, 253, fpst);
11010     r64_val = float64_val(r64);
11011     r64_exp = extract64(r64_val, 52, 11);
11012     r64_frac = extract64(r64_val, 0, 52);
11013 
11014     /* result = sign : result_exp<7:0> : fraction<51:29>; */
11015     return make_float32(f32_sbit |
11016                         (r64_exp & 0xff) << 23 |
11017                         extract64(r64_frac, 29, 24));
11018 }
11019 
11020 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
11021 {
11022     float_status *fpst = fpstp;
11023     float64 f64 = float64_squash_input_denormal(input, fpst);
11024     uint64_t f64_val = float64_val(f64);
11025     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
11026     int64_t f64_exp = extract64(f64_val, 52, 11);
11027     float64 r64;
11028     uint64_t r64_val;
11029     int64_t r64_exp;
11030     uint64_t r64_frac;
11031 
11032     /* Deal with any special cases */
11033     if (float64_is_any_nan(f64)) {
11034         float64 nan = f64;
11035         if (float64_is_signaling_nan(f64, fpst)) {
11036             float_raise(float_flag_invalid, fpst);
11037             nan = float64_maybe_silence_nan(f64, fpst);
11038         }
11039         if (fpst->default_nan_mode) {
11040             nan =  float64_default_nan(fpst);
11041         }
11042         return nan;
11043     } else if (float64_is_infinity(f64)) {
11044         return float64_set_sign(float64_zero, float64_is_neg(f64));
11045     } else if (float64_is_zero(f64)) {
11046         float_raise(float_flag_divbyzero, fpst);
11047         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11048     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
11049         /* Abs(value) < 2.0^-1024 */
11050         float_raise(float_flag_overflow | float_flag_inexact, fpst);
11051         if (round_to_inf(fpst, f64_sbit)) {
11052             return float64_set_sign(float64_infinity, float64_is_neg(f64));
11053         } else {
11054             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
11055         }
11056     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11057         float_raise(float_flag_underflow, fpst);
11058         return float64_set_sign(float64_zero, float64_is_neg(f64));
11059     }
11060 
11061     r64 = call_recip_estimate(f64, 2045, fpst);
11062     r64_val = float64_val(r64);
11063     r64_exp = extract64(r64_val, 52, 11);
11064     r64_frac = extract64(r64_val, 0, 52);
11065 
11066     /* result = sign : result_exp<10:0> : fraction<51:0> */
11067     return make_float64(f64_sbit |
11068                         ((r64_exp & 0x7ff) << 52) |
11069                         r64_frac);
11070 }
11071 
11072 /* The algorithm that must be used to calculate the estimate
11073  * is specified by the ARM ARM.
11074  */
11075 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
11076 {
11077     /* These calculations mustn't set any fp exception flags,
11078      * so we use a local copy of the fp_status.
11079      */
11080     float_status dummy_status = *real_fp_status;
11081     float_status *s = &dummy_status;
11082     float64 q;
11083     int64_t q_int;
11084 
11085     if (float64_lt(a, float64_half, s)) {
11086         /* range 0.25 <= a < 0.5 */
11087 
11088         /* a in units of 1/512 rounded down */
11089         /* q0 = (int)(a * 512.0);  */
11090         q = float64_mul(float64_512, a, s);
11091         q_int = float64_to_int64_round_to_zero(q, s);
11092 
11093         /* reciprocal root r */
11094         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
11095         q = int64_to_float64(q_int, s);
11096         q = float64_add(q, float64_half, s);
11097         q = float64_div(q, float64_512, s);
11098         q = float64_sqrt(q, s);
11099         q = float64_div(float64_one, q, s);
11100     } else {
11101         /* range 0.5 <= a < 1.0 */
11102 
11103         /* a in units of 1/256 rounded down */
11104         /* q1 = (int)(a * 256.0); */
11105         q = float64_mul(float64_256, a, s);
11106         int64_t q_int = float64_to_int64_round_to_zero(q, s);
11107 
11108         /* reciprocal root r */
11109         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
11110         q = int64_to_float64(q_int, s);
11111         q = float64_add(q, float64_half, s);
11112         q = float64_div(q, float64_256, s);
11113         q = float64_sqrt(q, s);
11114         q = float64_div(float64_one, q, s);
11115     }
11116     /* r in units of 1/256 rounded to nearest */
11117     /* s = (int)(256.0 * r + 0.5); */
11118 
11119     q = float64_mul(q, float64_256,s );
11120     q = float64_add(q, float64_half, s);
11121     q_int = float64_to_int64_round_to_zero(q, s);
11122 
11123     /* return (double)s / 256.0;*/
11124     return float64_div(int64_to_float64(q_int, s), float64_256, s);
11125 }
11126 
11127 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
11128 {
11129     float_status *s = fpstp;
11130     float32 f32 = float32_squash_input_denormal(input, s);
11131     uint32_t val = float32_val(f32);
11132     uint32_t f32_sbit = 0x80000000 & val;
11133     int32_t f32_exp = extract32(val, 23, 8);
11134     uint32_t f32_frac = extract32(val, 0, 23);
11135     uint64_t f64_frac;
11136     uint64_t val64;
11137     int result_exp;
11138     float64 f64;
11139 
11140     if (float32_is_any_nan(f32)) {
11141         float32 nan = f32;
11142         if (float32_is_signaling_nan(f32, s)) {
11143             float_raise(float_flag_invalid, s);
11144             nan = float32_maybe_silence_nan(f32, s);
11145         }
11146         if (s->default_nan_mode) {
11147             nan =  float32_default_nan(s);
11148         }
11149         return nan;
11150     } else if (float32_is_zero(f32)) {
11151         float_raise(float_flag_divbyzero, s);
11152         return float32_set_sign(float32_infinity, float32_is_neg(f32));
11153     } else if (float32_is_neg(f32)) {
11154         float_raise(float_flag_invalid, s);
11155         return float32_default_nan(s);
11156     } else if (float32_is_infinity(f32)) {
11157         return float32_zero;
11158     }
11159 
11160     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11161      * preserving the parity of the exponent.  */
11162 
11163     f64_frac = ((uint64_t) f32_frac) << 29;
11164     if (f32_exp == 0) {
11165         while (extract64(f64_frac, 51, 1) == 0) {
11166             f64_frac = f64_frac << 1;
11167             f32_exp = f32_exp-1;
11168         }
11169         f64_frac = extract64(f64_frac, 0, 51) << 1;
11170     }
11171 
11172     if (extract64(f32_exp, 0, 1) == 0) {
11173         f64 = make_float64(((uint64_t) f32_sbit) << 32
11174                            | (0x3feULL << 52)
11175                            | f64_frac);
11176     } else {
11177         f64 = make_float64(((uint64_t) f32_sbit) << 32
11178                            | (0x3fdULL << 52)
11179                            | f64_frac);
11180     }
11181 
11182     result_exp = (380 - f32_exp) / 2;
11183 
11184     f64 = recip_sqrt_estimate(f64, s);
11185 
11186     val64 = float64_val(f64);
11187 
11188     val = ((result_exp & 0xff) << 23)
11189         | ((val64 >> 29)  & 0x7fffff);
11190     return make_float32(val);
11191 }
11192 
11193 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
11194 {
11195     float_status *s = fpstp;
11196     float64 f64 = float64_squash_input_denormal(input, s);
11197     uint64_t val = float64_val(f64);
11198     uint64_t f64_sbit = 0x8000000000000000ULL & val;
11199     int64_t f64_exp = extract64(val, 52, 11);
11200     uint64_t f64_frac = extract64(val, 0, 52);
11201     int64_t result_exp;
11202     uint64_t result_frac;
11203 
11204     if (float64_is_any_nan(f64)) {
11205         float64 nan = f64;
11206         if (float64_is_signaling_nan(f64, s)) {
11207             float_raise(float_flag_invalid, s);
11208             nan = float64_maybe_silence_nan(f64, s);
11209         }
11210         if (s->default_nan_mode) {
11211             nan =  float64_default_nan(s);
11212         }
11213         return nan;
11214     } else if (float64_is_zero(f64)) {
11215         float_raise(float_flag_divbyzero, s);
11216         return float64_set_sign(float64_infinity, float64_is_neg(f64));
11217     } else if (float64_is_neg(f64)) {
11218         float_raise(float_flag_invalid, s);
11219         return float64_default_nan(s);
11220     } else if (float64_is_infinity(f64)) {
11221         return float64_zero;
11222     }
11223 
11224     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11225      * preserving the parity of the exponent.  */
11226 
11227     if (f64_exp == 0) {
11228         while (extract64(f64_frac, 51, 1) == 0) {
11229             f64_frac = f64_frac << 1;
11230             f64_exp = f64_exp - 1;
11231         }
11232         f64_frac = extract64(f64_frac, 0, 51) << 1;
11233     }
11234 
11235     if (extract64(f64_exp, 0, 1) == 0) {
11236         f64 = make_float64(f64_sbit
11237                            | (0x3feULL << 52)
11238                            | f64_frac);
11239     } else {
11240         f64 = make_float64(f64_sbit
11241                            | (0x3fdULL << 52)
11242                            | f64_frac);
11243     }
11244 
11245     result_exp = (3068 - f64_exp) / 2;
11246 
11247     f64 = recip_sqrt_estimate(f64, s);
11248 
11249     result_frac = extract64(float64_val(f64), 0, 52);
11250 
11251     return make_float64(f64_sbit |
11252                         ((result_exp & 0x7ff) << 52) |
11253                         result_frac);
11254 }
11255 
11256 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
11257 {
11258     float_status *s = fpstp;
11259     float64 f64;
11260 
11261     if ((a & 0x80000000) == 0) {
11262         return 0xffffffff;
11263     }
11264 
11265     f64 = make_float64((0x3feULL << 52)
11266                        | ((int64_t)(a & 0x7fffffff) << 21));
11267 
11268     f64 = recip_estimate(f64, s);
11269 
11270     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11271 }
11272 
11273 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
11274 {
11275     float_status *fpst = fpstp;
11276     float64 f64;
11277 
11278     if ((a & 0xc0000000) == 0) {
11279         return 0xffffffff;
11280     }
11281 
11282     if (a & 0x80000000) {
11283         f64 = make_float64((0x3feULL << 52)
11284                            | ((uint64_t)(a & 0x7fffffff) << 21));
11285     } else { /* bits 31-30 == '01' */
11286         f64 = make_float64((0x3fdULL << 52)
11287                            | ((uint64_t)(a & 0x3fffffff) << 22));
11288     }
11289 
11290     f64 = recip_sqrt_estimate(f64, fpst);
11291 
11292     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
11293 }
11294 
11295 /* VFPv4 fused multiply-accumulate */
11296 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
11297 {
11298     float_status *fpst = fpstp;
11299     return float32_muladd(a, b, c, 0, fpst);
11300 }
11301 
11302 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
11303 {
11304     float_status *fpst = fpstp;
11305     return float64_muladd(a, b, c, 0, fpst);
11306 }
11307 
11308 /* ARMv8 round to integral */
11309 float32 HELPER(rints_exact)(float32 x, void *fp_status)
11310 {
11311     return float32_round_to_int(x, fp_status);
11312 }
11313 
11314 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
11315 {
11316     return float64_round_to_int(x, fp_status);
11317 }
11318 
11319 float32 HELPER(rints)(float32 x, void *fp_status)
11320 {
11321     int old_flags = get_float_exception_flags(fp_status), new_flags;
11322     float32 ret;
11323 
11324     ret = float32_round_to_int(x, fp_status);
11325 
11326     /* Suppress any inexact exceptions the conversion produced */
11327     if (!(old_flags & float_flag_inexact)) {
11328         new_flags = get_float_exception_flags(fp_status);
11329         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11330     }
11331 
11332     return ret;
11333 }
11334 
11335 float64 HELPER(rintd)(float64 x, void *fp_status)
11336 {
11337     int old_flags = get_float_exception_flags(fp_status), new_flags;
11338     float64 ret;
11339 
11340     ret = float64_round_to_int(x, fp_status);
11341 
11342     new_flags = get_float_exception_flags(fp_status);
11343 
11344     /* Suppress any inexact exceptions the conversion produced */
11345     if (!(old_flags & float_flag_inexact)) {
11346         new_flags = get_float_exception_flags(fp_status);
11347         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
11348     }
11349 
11350     return ret;
11351 }
11352 
11353 /* Convert ARM rounding mode to softfloat */
11354 int arm_rmode_to_sf(int rmode)
11355 {
11356     switch (rmode) {
11357     case FPROUNDING_TIEAWAY:
11358         rmode = float_round_ties_away;
11359         break;
11360     case FPROUNDING_ODD:
11361         /* FIXME: add support for TIEAWAY and ODD */
11362         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
11363                       rmode);
11364     case FPROUNDING_TIEEVEN:
11365     default:
11366         rmode = float_round_nearest_even;
11367         break;
11368     case FPROUNDING_POSINF:
11369         rmode = float_round_up;
11370         break;
11371     case FPROUNDING_NEGINF:
11372         rmode = float_round_down;
11373         break;
11374     case FPROUNDING_ZERO:
11375         rmode = float_round_to_zero;
11376         break;
11377     }
11378     return rmode;
11379 }
11380 
11381 /* CRC helpers.
11382  * The upper bytes of val (above the number specified by 'bytes') must have
11383  * been zeroed out by the caller.
11384  */
11385 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11386 {
11387     uint8_t buf[4];
11388 
11389     stl_le_p(buf, val);
11390 
11391     /* zlib crc32 converts the accumulator and output to one's complement.  */
11392     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11393 }
11394 
11395 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11396 {
11397     uint8_t buf[4];
11398 
11399     stl_le_p(buf, val);
11400 
11401     /* Linux crc32c converts the output to one's complement.  */
11402     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11403 }
11404