1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/units.h" 11 #include "qemu/log.h" 12 #include "target/arm/idau.h" 13 #include "trace.h" 14 #include "cpu.h" 15 #include "internals.h" 16 #include "exec/helper-proto.h" 17 #include "qemu/host-utils.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/timer.h" 20 #include "qemu/bitops.h" 21 #include "qemu/crc32c.h" 22 #include "qemu/qemu-print.h" 23 #include "exec/exec-all.h" 24 #include <zlib.h> /* For crc32 */ 25 #include "hw/irq.h" 26 #include "semihosting/semihost.h" 27 #include "sysemu/cpus.h" 28 #include "sysemu/cpu-timers.h" 29 #include "sysemu/kvm.h" 30 #include "sysemu/tcg.h" 31 #include "qemu/range.h" 32 #include "qapi/qapi-commands-machine-target.h" 33 #include "qapi/error.h" 34 #include "qemu/guest-random.h" 35 #ifdef CONFIG_TCG 36 #include "arm_ldst.h" 37 #include "exec/cpu_ldst.h" 38 #include "semihosting/common-semi.h" 39 #endif 40 41 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 42 #define PMCR_NUM_COUNTERS 4 /* QEMU IMPDEF choice */ 43 44 #ifndef CONFIG_USER_ONLY 45 46 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 47 MMUAccessType access_type, ARMMMUIdx mmu_idx, 48 bool s1_is_el0, 49 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 50 target_ulong *page_size_ptr, 51 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 52 __attribute__((nonnull)); 53 #endif 54 55 static void switch_mode(CPUARMState *env, int mode); 56 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx); 57 58 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 assert(ri->fieldoffset); 61 if (cpreg_field_is_64bit(ri)) { 62 return CPREG_FIELD64(env, ri); 63 } else { 64 return CPREG_FIELD32(env, ri); 65 } 66 } 67 68 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 69 uint64_t value) 70 { 71 assert(ri->fieldoffset); 72 if (cpreg_field_is_64bit(ri)) { 73 CPREG_FIELD64(env, ri) = value; 74 } else { 75 CPREG_FIELD32(env, ri) = value; 76 } 77 } 78 79 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 80 { 81 return (char *)env + ri->fieldoffset; 82 } 83 84 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 85 { 86 /* Raw read of a coprocessor register (as needed for migration, etc). */ 87 if (ri->type & ARM_CP_CONST) { 88 return ri->resetvalue; 89 } else if (ri->raw_readfn) { 90 return ri->raw_readfn(env, ri); 91 } else if (ri->readfn) { 92 return ri->readfn(env, ri); 93 } else { 94 return raw_read(env, ri); 95 } 96 } 97 98 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 99 uint64_t v) 100 { 101 /* Raw write of a coprocessor register (as needed for migration, etc). 102 * Note that constant registers are treated as write-ignored; the 103 * caller should check for success by whether a readback gives the 104 * value written. 105 */ 106 if (ri->type & ARM_CP_CONST) { 107 return; 108 } else if (ri->raw_writefn) { 109 ri->raw_writefn(env, ri, v); 110 } else if (ri->writefn) { 111 ri->writefn(env, ri, v); 112 } else { 113 raw_write(env, ri, v); 114 } 115 } 116 117 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 118 { 119 /* Return true if the regdef would cause an assertion if you called 120 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 121 * program bug for it not to have the NO_RAW flag). 122 * NB that returning false here doesn't necessarily mean that calling 123 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 124 * read/write access functions which are safe for raw use" from "has 125 * read/write access functions which have side effects but has forgotten 126 * to provide raw access functions". 127 * The tests here line up with the conditions in read/write_raw_cp_reg() 128 * and assertions in raw_read()/raw_write(). 129 */ 130 if ((ri->type & ARM_CP_CONST) || 131 ri->fieldoffset || 132 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 133 return false; 134 } 135 return true; 136 } 137 138 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 139 { 140 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 141 int i; 142 bool ok = true; 143 144 for (i = 0; i < cpu->cpreg_array_len; i++) { 145 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 146 const ARMCPRegInfo *ri; 147 uint64_t newval; 148 149 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 150 if (!ri) { 151 ok = false; 152 continue; 153 } 154 if (ri->type & ARM_CP_NO_RAW) { 155 continue; 156 } 157 158 newval = read_raw_cp_reg(&cpu->env, ri); 159 if (kvm_sync) { 160 /* 161 * Only sync if the previous list->cpustate sync succeeded. 162 * Rather than tracking the success/failure state for every 163 * item in the list, we just recheck "does the raw write we must 164 * have made in write_list_to_cpustate() read back OK" here. 165 */ 166 uint64_t oldval = cpu->cpreg_values[i]; 167 168 if (oldval == newval) { 169 continue; 170 } 171 172 write_raw_cp_reg(&cpu->env, ri, oldval); 173 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 174 continue; 175 } 176 177 write_raw_cp_reg(&cpu->env, ri, newval); 178 } 179 cpu->cpreg_values[i] = newval; 180 } 181 return ok; 182 } 183 184 bool write_list_to_cpustate(ARMCPU *cpu) 185 { 186 int i; 187 bool ok = true; 188 189 for (i = 0; i < cpu->cpreg_array_len; i++) { 190 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 191 uint64_t v = cpu->cpreg_values[i]; 192 const ARMCPRegInfo *ri; 193 194 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 195 if (!ri) { 196 ok = false; 197 continue; 198 } 199 if (ri->type & ARM_CP_NO_RAW) { 200 continue; 201 } 202 /* Write value and confirm it reads back as written 203 * (to catch read-only registers and partially read-only 204 * registers where the incoming migration value doesn't match) 205 */ 206 write_raw_cp_reg(&cpu->env, ri, v); 207 if (read_raw_cp_reg(&cpu->env, ri) != v) { 208 ok = false; 209 } 210 } 211 return ok; 212 } 213 214 static void add_cpreg_to_list(gpointer key, gpointer opaque) 215 { 216 ARMCPU *cpu = opaque; 217 uint64_t regidx; 218 const ARMCPRegInfo *ri; 219 220 regidx = *(uint32_t *)key; 221 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 222 223 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 224 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 225 /* The value array need not be initialized at this point */ 226 cpu->cpreg_array_len++; 227 } 228 } 229 230 static void count_cpreg(gpointer key, gpointer opaque) 231 { 232 ARMCPU *cpu = opaque; 233 uint64_t regidx; 234 const ARMCPRegInfo *ri; 235 236 regidx = *(uint32_t *)key; 237 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 238 239 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 240 cpu->cpreg_array_len++; 241 } 242 } 243 244 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 245 { 246 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 247 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 248 249 if (aidx > bidx) { 250 return 1; 251 } 252 if (aidx < bidx) { 253 return -1; 254 } 255 return 0; 256 } 257 258 void init_cpreg_list(ARMCPU *cpu) 259 { 260 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 261 * Note that we require cpreg_tuples[] to be sorted by key ID. 262 */ 263 GList *keys; 264 int arraylen; 265 266 keys = g_hash_table_get_keys(cpu->cp_regs); 267 keys = g_list_sort(keys, cpreg_key_compare); 268 269 cpu->cpreg_array_len = 0; 270 271 g_list_foreach(keys, count_cpreg, cpu); 272 273 arraylen = cpu->cpreg_array_len; 274 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 275 cpu->cpreg_values = g_new(uint64_t, arraylen); 276 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 277 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 278 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 279 cpu->cpreg_array_len = 0; 280 281 g_list_foreach(keys, add_cpreg_to_list, cpu); 282 283 assert(cpu->cpreg_array_len == arraylen); 284 285 g_list_free(keys); 286 } 287 288 /* 289 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 290 */ 291 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 292 const ARMCPRegInfo *ri, 293 bool isread) 294 { 295 if (!is_a64(env) && arm_current_el(env) == 3 && 296 arm_is_secure_below_el3(env)) { 297 return CP_ACCESS_TRAP_UNCATEGORIZED; 298 } 299 return CP_ACCESS_OK; 300 } 301 302 /* Some secure-only AArch32 registers trap to EL3 if used from 303 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 304 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 305 * We assume that the .access field is set to PL1_RW. 306 */ 307 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 308 const ARMCPRegInfo *ri, 309 bool isread) 310 { 311 if (arm_current_el(env) == 3) { 312 return CP_ACCESS_OK; 313 } 314 if (arm_is_secure_below_el3(env)) { 315 if (env->cp15.scr_el3 & SCR_EEL2) { 316 return CP_ACCESS_TRAP_EL2; 317 } 318 return CP_ACCESS_TRAP_EL3; 319 } 320 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 321 return CP_ACCESS_TRAP_UNCATEGORIZED; 322 } 323 324 static uint64_t arm_mdcr_el2_eff(CPUARMState *env) 325 { 326 return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0; 327 } 328 329 /* Check for traps to "powerdown debug" registers, which are controlled 330 * by MDCR.TDOSA 331 */ 332 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 333 bool isread) 334 { 335 int el = arm_current_el(env); 336 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 337 bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) || 338 (arm_hcr_el2_eff(env) & HCR_TGE); 339 340 if (el < 2 && mdcr_el2_tdosa) { 341 return CP_ACCESS_TRAP_EL2; 342 } 343 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 344 return CP_ACCESS_TRAP_EL3; 345 } 346 return CP_ACCESS_OK; 347 } 348 349 /* Check for traps to "debug ROM" registers, which are controlled 350 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 351 */ 352 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 353 bool isread) 354 { 355 int el = arm_current_el(env); 356 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 357 bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) || 358 (arm_hcr_el2_eff(env) & HCR_TGE); 359 360 if (el < 2 && mdcr_el2_tdra) { 361 return CP_ACCESS_TRAP_EL2; 362 } 363 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 364 return CP_ACCESS_TRAP_EL3; 365 } 366 return CP_ACCESS_OK; 367 } 368 369 /* Check for traps to general debug registers, which are controlled 370 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 371 */ 372 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 373 bool isread) 374 { 375 int el = arm_current_el(env); 376 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 377 bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) || 378 (arm_hcr_el2_eff(env) & HCR_TGE); 379 380 if (el < 2 && mdcr_el2_tda) { 381 return CP_ACCESS_TRAP_EL2; 382 } 383 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 384 return CP_ACCESS_TRAP_EL3; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 /* Check for traps to performance monitor registers, which are controlled 390 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 391 */ 392 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 393 bool isread) 394 { 395 int el = arm_current_el(env); 396 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 397 398 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 399 return CP_ACCESS_TRAP_EL2; 400 } 401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 402 return CP_ACCESS_TRAP_EL3; 403 } 404 return CP_ACCESS_OK; 405 } 406 407 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 408 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 409 bool isread) 410 { 411 if (arm_current_el(env) == 1) { 412 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 413 if (arm_hcr_el2_eff(env) & trap) { 414 return CP_ACCESS_TRAP_EL2; 415 } 416 } 417 return CP_ACCESS_OK; 418 } 419 420 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 421 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 422 bool isread) 423 { 424 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 return CP_ACCESS_OK; 428 } 429 430 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 431 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 432 bool isread) 433 { 434 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 435 return CP_ACCESS_TRAP_EL2; 436 } 437 return CP_ACCESS_OK; 438 } 439 440 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 441 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 442 bool isread) 443 { 444 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 445 return CP_ACCESS_TRAP_EL2; 446 } 447 return CP_ACCESS_OK; 448 } 449 450 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 451 { 452 ARMCPU *cpu = env_archcpu(env); 453 454 raw_write(env, ri, value); 455 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 456 } 457 458 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 459 { 460 ARMCPU *cpu = env_archcpu(env); 461 462 if (raw_read(env, ri) != value) { 463 /* Unlike real hardware the qemu TLB uses virtual addresses, 464 * not modified virtual addresses, so this causes a TLB flush. 465 */ 466 tlb_flush(CPU(cpu)); 467 raw_write(env, ri, value); 468 } 469 } 470 471 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 472 uint64_t value) 473 { 474 ARMCPU *cpu = env_archcpu(env); 475 476 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 477 && !extended_addresses_enabled(env)) { 478 /* For VMSA (when not using the LPAE long descriptor page table 479 * format) this register includes the ASID, so do a TLB flush. 480 * For PMSA it is purely a process ID and no action is needed. 481 */ 482 tlb_flush(CPU(cpu)); 483 } 484 raw_write(env, ri, value); 485 } 486 487 /* IS variants of TLB operations must affect all cores */ 488 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 489 uint64_t value) 490 { 491 CPUState *cs = env_cpu(env); 492 493 tlb_flush_all_cpus_synced(cs); 494 } 495 496 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 497 uint64_t value) 498 { 499 CPUState *cs = env_cpu(env); 500 501 tlb_flush_all_cpus_synced(cs); 502 } 503 504 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 505 uint64_t value) 506 { 507 CPUState *cs = env_cpu(env); 508 509 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 510 } 511 512 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 CPUState *cs = env_cpu(env); 516 517 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 518 } 519 520 /* 521 * Non-IS variants of TLB operations are upgraded to 522 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 523 * force broadcast of these operations. 524 */ 525 static bool tlb_force_broadcast(CPUARMState *env) 526 { 527 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 528 } 529 530 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 531 uint64_t value) 532 { 533 /* Invalidate all (TLBIALL) */ 534 CPUState *cs = env_cpu(env); 535 536 if (tlb_force_broadcast(env)) { 537 tlb_flush_all_cpus_synced(cs); 538 } else { 539 tlb_flush(cs); 540 } 541 } 542 543 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 547 CPUState *cs = env_cpu(env); 548 549 value &= TARGET_PAGE_MASK; 550 if (tlb_force_broadcast(env)) { 551 tlb_flush_page_all_cpus_synced(cs, value); 552 } else { 553 tlb_flush_page(cs, value); 554 } 555 } 556 557 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 /* Invalidate by ASID (TLBIASID) */ 561 CPUState *cs = env_cpu(env); 562 563 if (tlb_force_broadcast(env)) { 564 tlb_flush_all_cpus_synced(cs); 565 } else { 566 tlb_flush(cs); 567 } 568 } 569 570 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 574 CPUState *cs = env_cpu(env); 575 576 value &= TARGET_PAGE_MASK; 577 if (tlb_force_broadcast(env)) { 578 tlb_flush_page_all_cpus_synced(cs, value); 579 } else { 580 tlb_flush_page(cs, value); 581 } 582 } 583 584 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 CPUState *cs = env_cpu(env); 588 589 tlb_flush_by_mmuidx(cs, 590 ARMMMUIdxBit_E10_1 | 591 ARMMMUIdxBit_E10_1_PAN | 592 ARMMMUIdxBit_E10_0); 593 } 594 595 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 600 tlb_flush_by_mmuidx_all_cpus_synced(cs, 601 ARMMMUIdxBit_E10_1 | 602 ARMMMUIdxBit_E10_1_PAN | 603 ARMMMUIdxBit_E10_0); 604 } 605 606 607 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 CPUState *cs = env_cpu(env); 611 612 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 613 } 614 615 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 CPUState *cs = env_cpu(env); 619 620 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 621 } 622 623 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 624 uint64_t value) 625 { 626 CPUState *cs = env_cpu(env); 627 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 628 629 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 630 } 631 632 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 633 uint64_t value) 634 { 635 CPUState *cs = env_cpu(env); 636 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 637 638 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 639 ARMMMUIdxBit_E2); 640 } 641 642 static const ARMCPRegInfo cp_reginfo[] = { 643 /* Define the secure and non-secure FCSE identifier CP registers 644 * separately because there is no secure bank in V8 (no _EL3). This allows 645 * the secure register to be properly reset and migrated. There is also no 646 * v8 EL1 version of the register so the non-secure instance stands alone. 647 */ 648 { .name = "FCSEIDR", 649 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 650 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 651 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 652 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 653 { .name = "FCSEIDR_S", 654 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 655 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 656 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 657 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 658 /* Define the secure and non-secure context identifier CP registers 659 * separately because there is no secure bank in V8 (no _EL3). This allows 660 * the secure register to be properly reset and migrated. In the 661 * non-secure case, the 32-bit register will have reset and migration 662 * disabled during registration as it is handled by the 64-bit instance. 663 */ 664 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 665 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 666 .access = PL1_RW, .accessfn = access_tvm_trvm, 667 .secure = ARM_CP_SECSTATE_NS, 668 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 669 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 670 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 671 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 672 .access = PL1_RW, .accessfn = access_tvm_trvm, 673 .secure = ARM_CP_SECSTATE_S, 674 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 675 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 676 REGINFO_SENTINEL 677 }; 678 679 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 680 /* NB: Some of these registers exist in v8 but with more precise 681 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 682 */ 683 /* MMU Domain access control / MPU write buffer control */ 684 { .name = "DACR", 685 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 686 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 687 .writefn = dacr_write, .raw_writefn = raw_write, 688 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 689 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 690 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 691 * For v6 and v5, these mappings are overly broad. 692 */ 693 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 694 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 695 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 696 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 697 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 698 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 699 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 700 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 701 /* Cache maintenance ops; some of this space may be overridden later. */ 702 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 703 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 704 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 705 REGINFO_SENTINEL 706 }; 707 708 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 709 /* Not all pre-v6 cores implemented this WFI, so this is slightly 710 * over-broad. 711 */ 712 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 713 .access = PL1_W, .type = ARM_CP_WFI }, 714 REGINFO_SENTINEL 715 }; 716 717 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 718 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 719 * is UNPREDICTABLE; we choose to NOP as most implementations do). 720 */ 721 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 722 .access = PL1_W, .type = ARM_CP_WFI }, 723 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 724 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 725 * OMAPCP will override this space. 726 */ 727 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 728 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 729 .resetvalue = 0 }, 730 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 731 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 732 .resetvalue = 0 }, 733 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 734 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 735 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 736 .resetvalue = 0 }, 737 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 738 * implementing it as RAZ means the "debug architecture version" bits 739 * will read as a reserved value, which should cause Linux to not try 740 * to use the debug hardware. 741 */ 742 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 743 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 744 /* MMU TLB control. Note that the wildcarding means we cover not just 745 * the unified TLB ops but also the dside/iside/inner-shareable variants. 746 */ 747 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 748 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 749 .type = ARM_CP_NO_RAW }, 750 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 751 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 752 .type = ARM_CP_NO_RAW }, 753 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 754 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 755 .type = ARM_CP_NO_RAW }, 756 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 757 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 758 .type = ARM_CP_NO_RAW }, 759 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 760 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 761 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 762 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 763 REGINFO_SENTINEL 764 }; 765 766 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 767 uint64_t value) 768 { 769 uint32_t mask = 0; 770 771 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 772 if (!arm_feature(env, ARM_FEATURE_V8)) { 773 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 774 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 775 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 776 */ 777 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 778 /* VFP coprocessor: cp10 & cp11 [23:20] */ 779 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 780 781 if (!arm_feature(env, ARM_FEATURE_NEON)) { 782 /* ASEDIS [31] bit is RAO/WI */ 783 value |= (1 << 31); 784 } 785 786 /* VFPv3 and upwards with NEON implement 32 double precision 787 * registers (D0-D31). 788 */ 789 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 790 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 791 value |= (1 << 30); 792 } 793 } 794 value &= mask; 795 } 796 797 /* 798 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 799 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 800 */ 801 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 802 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 803 value &= ~(0xf << 20); 804 value |= env->cp15.cpacr_el1 & (0xf << 20); 805 } 806 807 env->cp15.cpacr_el1 = value; 808 } 809 810 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 811 { 812 /* 813 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 814 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 815 */ 816 uint64_t value = env->cp15.cpacr_el1; 817 818 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 819 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 820 value &= ~(0xf << 20); 821 } 822 return value; 823 } 824 825 826 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 827 { 828 /* Call cpacr_write() so that we reset with the correct RAO bits set 829 * for our CPU features. 830 */ 831 cpacr_write(env, ri, 0); 832 } 833 834 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 835 bool isread) 836 { 837 if (arm_feature(env, ARM_FEATURE_V8)) { 838 /* Check if CPACR accesses are to be trapped to EL2 */ 839 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 840 (env->cp15.cptr_el[2] & CPTR_TCPAC)) { 841 return CP_ACCESS_TRAP_EL2; 842 /* Check if CPACR accesses are to be trapped to EL3 */ 843 } else if (arm_current_el(env) < 3 && 844 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 845 return CP_ACCESS_TRAP_EL3; 846 } 847 } 848 849 return CP_ACCESS_OK; 850 } 851 852 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 853 bool isread) 854 { 855 /* Check if CPTR accesses are set to trap to EL3 */ 856 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 857 return CP_ACCESS_TRAP_EL3; 858 } 859 860 return CP_ACCESS_OK; 861 } 862 863 static const ARMCPRegInfo v6_cp_reginfo[] = { 864 /* prefetch by MVA in v6, NOP in v7 */ 865 { .name = "MVA_prefetch", 866 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 867 .access = PL1_W, .type = ARM_CP_NOP }, 868 /* We need to break the TB after ISB to execute self-modifying code 869 * correctly and also to take any pending interrupts immediately. 870 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 871 */ 872 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 873 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 874 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 875 .access = PL0_W, .type = ARM_CP_NOP }, 876 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 877 .access = PL0_W, .type = ARM_CP_NOP }, 878 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 879 .access = PL1_RW, .accessfn = access_tvm_trvm, 880 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 881 offsetof(CPUARMState, cp15.ifar_ns) }, 882 .resetvalue = 0, }, 883 /* Watchpoint Fault Address Register : should actually only be present 884 * for 1136, 1176, 11MPCore. 885 */ 886 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 887 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 888 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 889 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 890 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 891 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 892 REGINFO_SENTINEL 893 }; 894 895 typedef struct pm_event { 896 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 897 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 898 bool (*supported)(CPUARMState *); 899 /* 900 * Retrieve the current count of the underlying event. The programmed 901 * counters hold a difference from the return value from this function 902 */ 903 uint64_t (*get_count)(CPUARMState *); 904 /* 905 * Return how many nanoseconds it will take (at a minimum) for count events 906 * to occur. A negative value indicates the counter will never overflow, or 907 * that the counter has otherwise arranged for the overflow bit to be set 908 * and the PMU interrupt to be raised on overflow. 909 */ 910 int64_t (*ns_per_count)(uint64_t); 911 } pm_event; 912 913 static bool event_always_supported(CPUARMState *env) 914 { 915 return true; 916 } 917 918 static uint64_t swinc_get_count(CPUARMState *env) 919 { 920 /* 921 * SW_INCR events are written directly to the pmevcntr's by writes to 922 * PMSWINC, so there is no underlying count maintained by the PMU itself 923 */ 924 return 0; 925 } 926 927 static int64_t swinc_ns_per(uint64_t ignored) 928 { 929 return -1; 930 } 931 932 /* 933 * Return the underlying cycle count for the PMU cycle counters. If we're in 934 * usermode, simply return 0. 935 */ 936 static uint64_t cycles_get_count(CPUARMState *env) 937 { 938 #ifndef CONFIG_USER_ONLY 939 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 940 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 941 #else 942 return cpu_get_host_ticks(); 943 #endif 944 } 945 946 #ifndef CONFIG_USER_ONLY 947 static int64_t cycles_ns_per(uint64_t cycles) 948 { 949 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 950 } 951 952 static bool instructions_supported(CPUARMState *env) 953 { 954 return icount_enabled() == 1; /* Precise instruction counting */ 955 } 956 957 static uint64_t instructions_get_count(CPUARMState *env) 958 { 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 return icount_to_ns((int64_t)icount); 965 } 966 #endif 967 968 static bool pmu_8_1_events_supported(CPUARMState *env) 969 { 970 /* For events which are supported in any v8.1 PMU */ 971 return cpu_isar_feature(any_pmu_8_1, env_archcpu(env)); 972 } 973 974 static bool pmu_8_4_events_supported(CPUARMState *env) 975 { 976 /* For events which are supported in any v8.1 PMU */ 977 return cpu_isar_feature(any_pmu_8_4, env_archcpu(env)); 978 } 979 980 static uint64_t zero_event_get_count(CPUARMState *env) 981 { 982 /* For events which on QEMU never fire, so their count is always zero */ 983 return 0; 984 } 985 986 static int64_t zero_event_ns_per(uint64_t cycles) 987 { 988 /* An event which never fires can never overflow */ 989 return -1; 990 } 991 992 static const pm_event pm_events[] = { 993 { .number = 0x000, /* SW_INCR */ 994 .supported = event_always_supported, 995 .get_count = swinc_get_count, 996 .ns_per_count = swinc_ns_per, 997 }, 998 #ifndef CONFIG_USER_ONLY 999 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1000 .supported = instructions_supported, 1001 .get_count = instructions_get_count, 1002 .ns_per_count = instructions_ns_per, 1003 }, 1004 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1005 .supported = event_always_supported, 1006 .get_count = cycles_get_count, 1007 .ns_per_count = cycles_ns_per, 1008 }, 1009 #endif 1010 { .number = 0x023, /* STALL_FRONTEND */ 1011 .supported = pmu_8_1_events_supported, 1012 .get_count = zero_event_get_count, 1013 .ns_per_count = zero_event_ns_per, 1014 }, 1015 { .number = 0x024, /* STALL_BACKEND */ 1016 .supported = pmu_8_1_events_supported, 1017 .get_count = zero_event_get_count, 1018 .ns_per_count = zero_event_ns_per, 1019 }, 1020 { .number = 0x03c, /* STALL */ 1021 .supported = pmu_8_4_events_supported, 1022 .get_count = zero_event_get_count, 1023 .ns_per_count = zero_event_ns_per, 1024 }, 1025 }; 1026 1027 /* 1028 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1029 * events (i.e. the statistical profiling extension), this implementation 1030 * should first be updated to something sparse instead of the current 1031 * supported_event_map[] array. 1032 */ 1033 #define MAX_EVENT_ID 0x3c 1034 #define UNSUPPORTED_EVENT UINT16_MAX 1035 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1036 1037 /* 1038 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1039 * of ARM event numbers to indices in our pm_events array. 1040 * 1041 * Note: Events in the 0x40XX range are not currently supported. 1042 */ 1043 void pmu_init(ARMCPU *cpu) 1044 { 1045 unsigned int i; 1046 1047 /* 1048 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1049 * events to them 1050 */ 1051 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1052 supported_event_map[i] = UNSUPPORTED_EVENT; 1053 } 1054 cpu->pmceid0 = 0; 1055 cpu->pmceid1 = 0; 1056 1057 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1058 const pm_event *cnt = &pm_events[i]; 1059 assert(cnt->number <= MAX_EVENT_ID); 1060 /* We do not currently support events in the 0x40xx range */ 1061 assert(cnt->number <= 0x3f); 1062 1063 if (cnt->supported(&cpu->env)) { 1064 supported_event_map[cnt->number] = i; 1065 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1066 if (cnt->number & 0x20) { 1067 cpu->pmceid1 |= event_mask; 1068 } else { 1069 cpu->pmceid0 |= event_mask; 1070 } 1071 } 1072 } 1073 } 1074 1075 /* 1076 * Check at runtime whether a PMU event is supported for the current machine 1077 */ 1078 static bool event_supported(uint16_t number) 1079 { 1080 if (number > MAX_EVENT_ID) { 1081 return false; 1082 } 1083 return supported_event_map[number] != UNSUPPORTED_EVENT; 1084 } 1085 1086 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1087 bool isread) 1088 { 1089 /* Performance monitor registers user accessibility is controlled 1090 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1091 * trapping to EL2 or EL3 for other accesses. 1092 */ 1093 int el = arm_current_el(env); 1094 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1095 1096 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1097 return CP_ACCESS_TRAP; 1098 } 1099 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1100 return CP_ACCESS_TRAP_EL2; 1101 } 1102 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1103 return CP_ACCESS_TRAP_EL3; 1104 } 1105 1106 return CP_ACCESS_OK; 1107 } 1108 1109 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1110 const ARMCPRegInfo *ri, 1111 bool isread) 1112 { 1113 /* ER: event counter read trap control */ 1114 if (arm_feature(env, ARM_FEATURE_V8) 1115 && arm_current_el(env) == 0 1116 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1117 && isread) { 1118 return CP_ACCESS_OK; 1119 } 1120 1121 return pmreg_access(env, ri, isread); 1122 } 1123 1124 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1125 const ARMCPRegInfo *ri, 1126 bool isread) 1127 { 1128 /* SW: software increment write trap control */ 1129 if (arm_feature(env, ARM_FEATURE_V8) 1130 && arm_current_el(env) == 0 1131 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1132 && !isread) { 1133 return CP_ACCESS_OK; 1134 } 1135 1136 return pmreg_access(env, ri, isread); 1137 } 1138 1139 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1140 const ARMCPRegInfo *ri, 1141 bool isread) 1142 { 1143 /* ER: event counter read trap control */ 1144 if (arm_feature(env, ARM_FEATURE_V8) 1145 && arm_current_el(env) == 0 1146 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1147 return CP_ACCESS_OK; 1148 } 1149 1150 return pmreg_access(env, ri, isread); 1151 } 1152 1153 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1154 const ARMCPRegInfo *ri, 1155 bool isread) 1156 { 1157 /* CR: cycle counter read trap control */ 1158 if (arm_feature(env, ARM_FEATURE_V8) 1159 && arm_current_el(env) == 0 1160 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1161 && isread) { 1162 return CP_ACCESS_OK; 1163 } 1164 1165 return pmreg_access(env, ri, isread); 1166 } 1167 1168 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using 1169 * the current EL, security state, and register configuration. 1170 */ 1171 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1172 { 1173 uint64_t filter; 1174 bool e, p, u, nsk, nsu, nsh, m; 1175 bool enabled, prohibited, filtered; 1176 bool secure = arm_is_secure(env); 1177 int el = arm_current_el(env); 1178 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1179 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1180 1181 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1182 return false; 1183 } 1184 1185 if (!arm_feature(env, ARM_FEATURE_EL2) || 1186 (counter < hpmn || counter == 31)) { 1187 e = env->cp15.c9_pmcr & PMCRE; 1188 } else { 1189 e = mdcr_el2 & MDCR_HPME; 1190 } 1191 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1192 1193 if (!secure) { 1194 if (el == 2 && (counter < hpmn || counter == 31)) { 1195 prohibited = mdcr_el2 & MDCR_HPMD; 1196 } else { 1197 prohibited = false; 1198 } 1199 } else { 1200 prohibited = arm_feature(env, ARM_FEATURE_EL3) && 1201 !(env->cp15.mdcr_el3 & MDCR_SPME); 1202 } 1203 1204 if (prohibited && counter == 31) { 1205 prohibited = env->cp15.c9_pmcr & PMCRDP; 1206 } 1207 1208 if (counter == 31) { 1209 filter = env->cp15.pmccfiltr_el0; 1210 } else { 1211 filter = env->cp15.c14_pmevtyper[counter]; 1212 } 1213 1214 p = filter & PMXEVTYPER_P; 1215 u = filter & PMXEVTYPER_U; 1216 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1217 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1218 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1219 m = arm_el_is_aa64(env, 1) && 1220 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1221 1222 if (el == 0) { 1223 filtered = secure ? u : u != nsu; 1224 } else if (el == 1) { 1225 filtered = secure ? p : p != nsk; 1226 } else if (el == 2) { 1227 filtered = !nsh; 1228 } else { /* EL3 */ 1229 filtered = m != p; 1230 } 1231 1232 if (counter != 31) { 1233 /* 1234 * If not checking PMCCNTR, ensure the counter is setup to an event we 1235 * support 1236 */ 1237 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1238 if (!event_supported(event)) { 1239 return false; 1240 } 1241 } 1242 1243 return enabled && !prohibited && !filtered; 1244 } 1245 1246 static void pmu_update_irq(CPUARMState *env) 1247 { 1248 ARMCPU *cpu = env_archcpu(env); 1249 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1250 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1251 } 1252 1253 /* 1254 * Ensure c15_ccnt is the guest-visible count so that operations such as 1255 * enabling/disabling the counter or filtering, modifying the count itself, 1256 * etc. can be done logically. This is essentially a no-op if the counter is 1257 * not enabled at the time of the call. 1258 */ 1259 static void pmccntr_op_start(CPUARMState *env) 1260 { 1261 uint64_t cycles = cycles_get_count(env); 1262 1263 if (pmu_counter_enabled(env, 31)) { 1264 uint64_t eff_cycles = cycles; 1265 if (env->cp15.c9_pmcr & PMCRD) { 1266 /* Increment once every 64 processor clock cycles */ 1267 eff_cycles /= 64; 1268 } 1269 1270 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1271 1272 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1273 1ull << 63 : 1ull << 31; 1274 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1275 env->cp15.c9_pmovsr |= (1 << 31); 1276 pmu_update_irq(env); 1277 } 1278 1279 env->cp15.c15_ccnt = new_pmccntr; 1280 } 1281 env->cp15.c15_ccnt_delta = cycles; 1282 } 1283 1284 /* 1285 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1286 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1287 * pmccntr_op_start. 1288 */ 1289 static void pmccntr_op_finish(CPUARMState *env) 1290 { 1291 if (pmu_counter_enabled(env, 31)) { 1292 #ifndef CONFIG_USER_ONLY 1293 /* Calculate when the counter will next overflow */ 1294 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1295 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1296 remaining_cycles = (uint32_t)remaining_cycles; 1297 } 1298 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1299 1300 if (overflow_in > 0) { 1301 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1302 overflow_in; 1303 ARMCPU *cpu = env_archcpu(env); 1304 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1305 } 1306 #endif 1307 1308 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1309 if (env->cp15.c9_pmcr & PMCRD) { 1310 /* Increment once every 64 processor clock cycles */ 1311 prev_cycles /= 64; 1312 } 1313 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1314 } 1315 } 1316 1317 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1318 { 1319 1320 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1321 uint64_t count = 0; 1322 if (event_supported(event)) { 1323 uint16_t event_idx = supported_event_map[event]; 1324 count = pm_events[event_idx].get_count(env); 1325 } 1326 1327 if (pmu_counter_enabled(env, counter)) { 1328 uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1329 1330 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) { 1331 env->cp15.c9_pmovsr |= (1 << counter); 1332 pmu_update_irq(env); 1333 } 1334 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1335 } 1336 env->cp15.c14_pmevcntr_delta[counter] = count; 1337 } 1338 1339 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1340 { 1341 if (pmu_counter_enabled(env, counter)) { 1342 #ifndef CONFIG_USER_ONLY 1343 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1344 uint16_t event_idx = supported_event_map[event]; 1345 uint64_t delta = UINT32_MAX - 1346 (uint32_t)env->cp15.c14_pmevcntr[counter] + 1; 1347 int64_t overflow_in = pm_events[event_idx].ns_per_count(delta); 1348 1349 if (overflow_in > 0) { 1350 int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 1351 overflow_in; 1352 ARMCPU *cpu = env_archcpu(env); 1353 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1354 } 1355 #endif 1356 1357 env->cp15.c14_pmevcntr_delta[counter] -= 1358 env->cp15.c14_pmevcntr[counter]; 1359 } 1360 } 1361 1362 void pmu_op_start(CPUARMState *env) 1363 { 1364 unsigned int i; 1365 pmccntr_op_start(env); 1366 for (i = 0; i < pmu_num_counters(env); i++) { 1367 pmevcntr_op_start(env, i); 1368 } 1369 } 1370 1371 void pmu_op_finish(CPUARMState *env) 1372 { 1373 unsigned int i; 1374 pmccntr_op_finish(env); 1375 for (i = 0; i < pmu_num_counters(env); i++) { 1376 pmevcntr_op_finish(env, i); 1377 } 1378 } 1379 1380 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1381 { 1382 pmu_op_start(&cpu->env); 1383 } 1384 1385 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1386 { 1387 pmu_op_finish(&cpu->env); 1388 } 1389 1390 void arm_pmu_timer_cb(void *opaque) 1391 { 1392 ARMCPU *cpu = opaque; 1393 1394 /* 1395 * Update all the counter values based on the current underlying counts, 1396 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1397 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1398 * counter may expire. 1399 */ 1400 pmu_op_start(&cpu->env); 1401 pmu_op_finish(&cpu->env); 1402 } 1403 1404 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 pmu_op_start(env); 1408 1409 if (value & PMCRC) { 1410 /* The counter has been reset */ 1411 env->cp15.c15_ccnt = 0; 1412 } 1413 1414 if (value & PMCRP) { 1415 unsigned int i; 1416 for (i = 0; i < pmu_num_counters(env); i++) { 1417 env->cp15.c14_pmevcntr[i] = 0; 1418 } 1419 } 1420 1421 env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK; 1422 env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK); 1423 1424 pmu_op_finish(env); 1425 } 1426 1427 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1428 uint64_t value) 1429 { 1430 unsigned int i; 1431 for (i = 0; i < pmu_num_counters(env); i++) { 1432 /* Increment a counter's count iff: */ 1433 if ((value & (1 << i)) && /* counter's bit is set */ 1434 /* counter is enabled and not filtered */ 1435 pmu_counter_enabled(env, i) && 1436 /* counter is SW_INCR */ 1437 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1438 pmevcntr_op_start(env, i); 1439 1440 /* 1441 * Detect if this write causes an overflow since we can't predict 1442 * PMSWINC overflows like we can for other events 1443 */ 1444 uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1445 1446 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) { 1447 env->cp15.c9_pmovsr |= (1 << i); 1448 pmu_update_irq(env); 1449 } 1450 1451 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1452 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 } 1457 1458 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1459 { 1460 uint64_t ret; 1461 pmccntr_op_start(env); 1462 ret = env->cp15.c15_ccnt; 1463 pmccntr_op_finish(env); 1464 return ret; 1465 } 1466 1467 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1468 uint64_t value) 1469 { 1470 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1471 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1472 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1473 * accessed. 1474 */ 1475 env->cp15.c9_pmselr = value & 0x1f; 1476 } 1477 1478 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 pmccntr_op_start(env); 1482 env->cp15.c15_ccnt = value; 1483 pmccntr_op_finish(env); 1484 } 1485 1486 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1487 uint64_t value) 1488 { 1489 uint64_t cur_val = pmccntr_read(env, NULL); 1490 1491 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1492 } 1493 1494 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1495 uint64_t value) 1496 { 1497 pmccntr_op_start(env); 1498 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1499 pmccntr_op_finish(env); 1500 } 1501 1502 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1503 uint64_t value) 1504 { 1505 pmccntr_op_start(env); 1506 /* M is not accessible from AArch32 */ 1507 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1508 (value & PMCCFILTR); 1509 pmccntr_op_finish(env); 1510 } 1511 1512 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1513 { 1514 /* M is not visible in AArch32 */ 1515 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1516 } 1517 1518 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1519 uint64_t value) 1520 { 1521 value &= pmu_counter_mask(env); 1522 env->cp15.c9_pmcnten |= value; 1523 } 1524 1525 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1526 uint64_t value) 1527 { 1528 value &= pmu_counter_mask(env); 1529 env->cp15.c9_pmcnten &= ~value; 1530 } 1531 1532 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1533 uint64_t value) 1534 { 1535 value &= pmu_counter_mask(env); 1536 env->cp15.c9_pmovsr &= ~value; 1537 pmu_update_irq(env); 1538 } 1539 1540 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1541 uint64_t value) 1542 { 1543 value &= pmu_counter_mask(env); 1544 env->cp15.c9_pmovsr |= value; 1545 pmu_update_irq(env); 1546 } 1547 1548 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1549 uint64_t value, const uint8_t counter) 1550 { 1551 if (counter == 31) { 1552 pmccfiltr_write(env, ri, value); 1553 } else if (counter < pmu_num_counters(env)) { 1554 pmevcntr_op_start(env, counter); 1555 1556 /* 1557 * If this counter's event type is changing, store the current 1558 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1559 * pmevcntr_op_finish has the correct baseline when it converts back to 1560 * a delta. 1561 */ 1562 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1563 PMXEVTYPER_EVTCOUNT; 1564 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1565 if (old_event != new_event) { 1566 uint64_t count = 0; 1567 if (event_supported(new_event)) { 1568 uint16_t event_idx = supported_event_map[new_event]; 1569 count = pm_events[event_idx].get_count(env); 1570 } 1571 env->cp15.c14_pmevcntr_delta[counter] = count; 1572 } 1573 1574 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1575 pmevcntr_op_finish(env, counter); 1576 } 1577 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1578 * PMSELR value is equal to or greater than the number of implemented 1579 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1580 */ 1581 } 1582 1583 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1584 const uint8_t counter) 1585 { 1586 if (counter == 31) { 1587 return env->cp15.pmccfiltr_el0; 1588 } else if (counter < pmu_num_counters(env)) { 1589 return env->cp15.c14_pmevtyper[counter]; 1590 } else { 1591 /* 1592 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1593 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1594 */ 1595 return 0; 1596 } 1597 } 1598 1599 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1600 uint64_t value) 1601 { 1602 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1603 pmevtyper_write(env, ri, value, counter); 1604 } 1605 1606 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1607 uint64_t value) 1608 { 1609 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1610 env->cp15.c14_pmevtyper[counter] = value; 1611 1612 /* 1613 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1614 * pmu_op_finish calls when loading saved state for a migration. Because 1615 * we're potentially updating the type of event here, the value written to 1616 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1617 * different counter type. Therefore, we need to set this value to the 1618 * current count for the counter type we're writing so that pmu_op_finish 1619 * has the correct count for its calculation. 1620 */ 1621 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1622 if (event_supported(event)) { 1623 uint16_t event_idx = supported_event_map[event]; 1624 env->cp15.c14_pmevcntr_delta[counter] = 1625 pm_events[event_idx].get_count(env); 1626 } 1627 } 1628 1629 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1630 { 1631 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1632 return pmevtyper_read(env, ri, counter); 1633 } 1634 1635 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1639 } 1640 1641 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1642 { 1643 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1644 } 1645 1646 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1647 uint64_t value, uint8_t counter) 1648 { 1649 if (counter < pmu_num_counters(env)) { 1650 pmevcntr_op_start(env, counter); 1651 env->cp15.c14_pmevcntr[counter] = value; 1652 pmevcntr_op_finish(env, counter); 1653 } 1654 /* 1655 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1656 * are CONSTRAINED UNPREDICTABLE. 1657 */ 1658 } 1659 1660 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint8_t counter) 1662 { 1663 if (counter < pmu_num_counters(env)) { 1664 uint64_t ret; 1665 pmevcntr_op_start(env, counter); 1666 ret = env->cp15.c14_pmevcntr[counter]; 1667 pmevcntr_op_finish(env, counter); 1668 return ret; 1669 } else { 1670 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1671 * are CONSTRAINED UNPREDICTABLE. */ 1672 return 0; 1673 } 1674 } 1675 1676 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1677 uint64_t value) 1678 { 1679 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1680 pmevcntr_write(env, ri, value, counter); 1681 } 1682 1683 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1684 { 1685 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1686 return pmevcntr_read(env, ri, counter); 1687 } 1688 1689 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1693 assert(counter < pmu_num_counters(env)); 1694 env->cp15.c14_pmevcntr[counter] = value; 1695 pmevcntr_write(env, ri, value, counter); 1696 } 1697 1698 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1699 { 1700 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1701 assert(counter < pmu_num_counters(env)); 1702 return env->cp15.c14_pmevcntr[counter]; 1703 } 1704 1705 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value) 1707 { 1708 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1709 } 1710 1711 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1712 { 1713 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1714 } 1715 1716 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 if (arm_feature(env, ARM_FEATURE_V8)) { 1720 env->cp15.c9_pmuserenr = value & 0xf; 1721 } else { 1722 env->cp15.c9_pmuserenr = value & 1; 1723 } 1724 } 1725 1726 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint64_t value) 1728 { 1729 /* We have no event counters so only the C bit can be changed */ 1730 value &= pmu_counter_mask(env); 1731 env->cp15.c9_pminten |= value; 1732 pmu_update_irq(env); 1733 } 1734 1735 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1736 uint64_t value) 1737 { 1738 value &= pmu_counter_mask(env); 1739 env->cp15.c9_pminten &= ~value; 1740 pmu_update_irq(env); 1741 } 1742 1743 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1744 uint64_t value) 1745 { 1746 /* Note that even though the AArch64 view of this register has bits 1747 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1748 * architectural requirements for bits which are RES0 only in some 1749 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1750 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1751 */ 1752 raw_write(env, ri, value & ~0x1FULL); 1753 } 1754 1755 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1756 { 1757 /* Begin with base v8.0 state. */ 1758 uint32_t valid_mask = 0x3fff; 1759 ARMCPU *cpu = env_archcpu(env); 1760 1761 if (ri->state == ARM_CP_STATE_AA64) { 1762 if (arm_feature(env, ARM_FEATURE_AARCH64) && 1763 !cpu_isar_feature(aa64_aa32_el1, cpu)) { 1764 value |= SCR_FW | SCR_AW; /* these two bits are RES1. */ 1765 } 1766 valid_mask &= ~SCR_NET; 1767 1768 if (cpu_isar_feature(aa64_lor, cpu)) { 1769 valid_mask |= SCR_TLOR; 1770 } 1771 if (cpu_isar_feature(aa64_pauth, cpu)) { 1772 valid_mask |= SCR_API | SCR_APK; 1773 } 1774 if (cpu_isar_feature(aa64_sel2, cpu)) { 1775 valid_mask |= SCR_EEL2; 1776 } 1777 if (cpu_isar_feature(aa64_mte, cpu)) { 1778 valid_mask |= SCR_ATA; 1779 } 1780 } else { 1781 valid_mask &= ~(SCR_RW | SCR_ST); 1782 } 1783 1784 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1785 valid_mask &= ~SCR_HCE; 1786 1787 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1788 * supported if EL2 exists. The bit is UNK/SBZP when 1789 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1790 * when EL2 is unavailable. 1791 * On ARMv8, this bit is always available. 1792 */ 1793 if (arm_feature(env, ARM_FEATURE_V7) && 1794 !arm_feature(env, ARM_FEATURE_V8)) { 1795 valid_mask &= ~SCR_SMD; 1796 } 1797 } 1798 1799 /* Clear all-context RES0 bits. */ 1800 value &= valid_mask; 1801 raw_write(env, ri, value); 1802 } 1803 1804 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 /* 1807 * scr_write will set the RES1 bits on an AArch64-only CPU. 1808 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1809 */ 1810 scr_write(env, ri, 0); 1811 } 1812 1813 static CPAccessResult access_aa64_tid2(CPUARMState *env, 1814 const ARMCPRegInfo *ri, 1815 bool isread) 1816 { 1817 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) { 1818 return CP_ACCESS_TRAP_EL2; 1819 } 1820 1821 return CP_ACCESS_OK; 1822 } 1823 1824 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1825 { 1826 ARMCPU *cpu = env_archcpu(env); 1827 1828 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1829 * bank 1830 */ 1831 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1832 ri->secure & ARM_CP_SECSTATE_S); 1833 1834 return cpu->ccsidr[index]; 1835 } 1836 1837 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1838 uint64_t value) 1839 { 1840 raw_write(env, ri, value & 0xf); 1841 } 1842 1843 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1844 { 1845 CPUState *cs = env_cpu(env); 1846 bool el1 = arm_current_el(env) == 1; 1847 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1848 uint64_t ret = 0; 1849 1850 if (hcr_el2 & HCR_IMO) { 1851 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1852 ret |= CPSR_I; 1853 } 1854 } else { 1855 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1856 ret |= CPSR_I; 1857 } 1858 } 1859 1860 if (hcr_el2 & HCR_FMO) { 1861 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1862 ret |= CPSR_F; 1863 } 1864 } else { 1865 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1866 ret |= CPSR_F; 1867 } 1868 } 1869 1870 /* External aborts are not possible in QEMU so A bit is always clear */ 1871 return ret; 1872 } 1873 1874 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1875 bool isread) 1876 { 1877 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 1878 return CP_ACCESS_TRAP_EL2; 1879 } 1880 1881 return CP_ACCESS_OK; 1882 } 1883 1884 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1885 bool isread) 1886 { 1887 if (arm_feature(env, ARM_FEATURE_V8)) { 1888 return access_aa64_tid1(env, ri, isread); 1889 } 1890 1891 return CP_ACCESS_OK; 1892 } 1893 1894 static const ARMCPRegInfo v7_cp_reginfo[] = { 1895 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1896 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1897 .access = PL1_W, .type = ARM_CP_NOP }, 1898 /* Performance monitors are implementation defined in v7, 1899 * but with an ARM recommended set of registers, which we 1900 * follow. 1901 * 1902 * Performance registers fall into three categories: 1903 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1904 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1905 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1906 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1907 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1908 */ 1909 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1910 .access = PL0_RW, .type = ARM_CP_ALIAS, 1911 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1912 .writefn = pmcntenset_write, 1913 .accessfn = pmreg_access, 1914 .raw_writefn = raw_write }, 1915 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1916 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1917 .access = PL0_RW, .accessfn = pmreg_access, 1918 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1919 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1920 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1921 .access = PL0_RW, 1922 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1923 .accessfn = pmreg_access, 1924 .writefn = pmcntenclr_write, 1925 .type = ARM_CP_ALIAS }, 1926 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1928 .access = PL0_RW, .accessfn = pmreg_access, 1929 .type = ARM_CP_ALIAS, 1930 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1931 .writefn = pmcntenclr_write }, 1932 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1933 .access = PL0_RW, .type = ARM_CP_IO, 1934 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1935 .accessfn = pmreg_access, 1936 .writefn = pmovsr_write, 1937 .raw_writefn = raw_write }, 1938 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1939 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1940 .access = PL0_RW, .accessfn = pmreg_access, 1941 .type = ARM_CP_ALIAS | ARM_CP_IO, 1942 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1943 .writefn = pmovsr_write, 1944 .raw_writefn = raw_write }, 1945 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1946 .access = PL0_W, .accessfn = pmreg_access_swinc, 1947 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1948 .writefn = pmswinc_write }, 1949 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 1950 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 1951 .access = PL0_W, .accessfn = pmreg_access_swinc, 1952 .type = ARM_CP_NO_RAW | ARM_CP_IO, 1953 .writefn = pmswinc_write }, 1954 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1955 .access = PL0_RW, .type = ARM_CP_ALIAS, 1956 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1957 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1958 .raw_writefn = raw_write}, 1959 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1960 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1961 .access = PL0_RW, .accessfn = pmreg_access_selr, 1962 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1963 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1964 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1965 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1966 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1967 .accessfn = pmreg_access_ccntr }, 1968 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1969 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1970 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1971 .type = ARM_CP_IO, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 1973 .readfn = pmccntr_read, .writefn = pmccntr_write, 1974 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 1975 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 1976 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 1977 .access = PL0_RW, .accessfn = pmreg_access, 1978 .type = ARM_CP_ALIAS | ARM_CP_IO, 1979 .resetvalue = 0, }, 1980 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1981 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1982 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 1983 .access = PL0_RW, .accessfn = pmreg_access, 1984 .type = ARM_CP_IO, 1985 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1986 .resetvalue = 0, }, 1987 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1988 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1989 .accessfn = pmreg_access, 1990 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1991 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1992 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1993 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1994 .accessfn = pmreg_access, 1995 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1996 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1997 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 1998 .accessfn = pmreg_access_xevcntr, 1999 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2000 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2001 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2002 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2003 .accessfn = pmreg_access_xevcntr, 2004 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2005 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2006 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2007 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2008 .resetvalue = 0, 2009 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2010 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2011 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2012 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2013 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2014 .resetvalue = 0, 2015 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2016 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2017 .access = PL1_RW, .accessfn = access_tpm, 2018 .type = ARM_CP_ALIAS | ARM_CP_IO, 2019 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2020 .resetvalue = 0, 2021 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2022 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2023 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2024 .access = PL1_RW, .accessfn = access_tpm, 2025 .type = ARM_CP_IO, 2026 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2027 .writefn = pmintenset_write, .raw_writefn = raw_write, 2028 .resetvalue = 0x0 }, 2029 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2030 .access = PL1_RW, .accessfn = access_tpm, 2031 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2032 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2033 .writefn = pmintenclr_write, }, 2034 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2035 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2036 .access = PL1_RW, .accessfn = access_tpm, 2037 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2038 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2039 .writefn = pmintenclr_write }, 2040 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2042 .access = PL1_R, 2043 .accessfn = access_aa64_tid2, 2044 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2045 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2046 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2047 .access = PL1_RW, 2048 .accessfn = access_aa64_tid2, 2049 .writefn = csselr_write, .resetvalue = 0, 2050 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2051 offsetof(CPUARMState, cp15.csselr_ns) } }, 2052 /* Auxiliary ID register: this actually has an IMPDEF value but for now 2053 * just RAZ for all cores: 2054 */ 2055 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2057 .access = PL1_R, .type = ARM_CP_CONST, 2058 .accessfn = access_aa64_tid1, 2059 .resetvalue = 0 }, 2060 /* Auxiliary fault status registers: these also are IMPDEF, and we 2061 * choose to RAZ/WI for all cores. 2062 */ 2063 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2064 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2065 .access = PL1_RW, .accessfn = access_tvm_trvm, 2066 .type = ARM_CP_CONST, .resetvalue = 0 }, 2067 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2069 .access = PL1_RW, .accessfn = access_tvm_trvm, 2070 .type = ARM_CP_CONST, .resetvalue = 0 }, 2071 /* MAIR can just read-as-written because we don't implement caches 2072 * and so don't need to care about memory attributes. 2073 */ 2074 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2075 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2076 .access = PL1_RW, .accessfn = access_tvm_trvm, 2077 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2078 .resetvalue = 0 }, 2079 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2080 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2081 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2082 .resetvalue = 0 }, 2083 /* For non-long-descriptor page tables these are PRRR and NMRR; 2084 * regardless they still act as reads-as-written for QEMU. 2085 */ 2086 /* MAIR0/1 are defined separately from their 64-bit counterpart which 2087 * allows them to assign the correct fieldoffset based on the endianness 2088 * handled in the field definitions. 2089 */ 2090 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2091 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2092 .access = PL1_RW, .accessfn = access_tvm_trvm, 2093 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2094 offsetof(CPUARMState, cp15.mair0_ns) }, 2095 .resetfn = arm_cp_reset_ignore }, 2096 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2097 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2098 .access = PL1_RW, .accessfn = access_tvm_trvm, 2099 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2100 offsetof(CPUARMState, cp15.mair1_ns) }, 2101 .resetfn = arm_cp_reset_ignore }, 2102 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2104 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2105 /* 32 bit ITLB invalidates */ 2106 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2107 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2108 .writefn = tlbiall_write }, 2109 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2110 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2111 .writefn = tlbimva_write }, 2112 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2113 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2114 .writefn = tlbiasid_write }, 2115 /* 32 bit DTLB invalidates */ 2116 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2117 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2118 .writefn = tlbiall_write }, 2119 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2120 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2121 .writefn = tlbimva_write }, 2122 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2123 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2124 .writefn = tlbiasid_write }, 2125 /* 32 bit TLB invalidates */ 2126 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2127 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2128 .writefn = tlbiall_write }, 2129 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2130 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2131 .writefn = tlbimva_write }, 2132 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2133 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2134 .writefn = tlbiasid_write }, 2135 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2136 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2137 .writefn = tlbimvaa_write }, 2138 REGINFO_SENTINEL 2139 }; 2140 2141 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2142 /* 32 bit TLB invalidates, Inner Shareable */ 2143 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2144 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2145 .writefn = tlbiall_is_write }, 2146 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2147 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2148 .writefn = tlbimva_is_write }, 2149 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2150 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2151 .writefn = tlbiasid_is_write }, 2152 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2153 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2154 .writefn = tlbimvaa_is_write }, 2155 REGINFO_SENTINEL 2156 }; 2157 2158 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2159 /* PMOVSSET is not implemented in v7 before v7ve */ 2160 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2161 .access = PL0_RW, .accessfn = pmreg_access, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2164 .writefn = pmovsset_write, 2165 .raw_writefn = raw_write }, 2166 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2168 .access = PL0_RW, .accessfn = pmreg_access, 2169 .type = ARM_CP_ALIAS | ARM_CP_IO, 2170 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2171 .writefn = pmovsset_write, 2172 .raw_writefn = raw_write }, 2173 REGINFO_SENTINEL 2174 }; 2175 2176 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2177 uint64_t value) 2178 { 2179 value &= 1; 2180 env->teecr = value; 2181 } 2182 2183 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2184 bool isread) 2185 { 2186 /* 2187 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2188 * at all, so we don't need to check whether we're v8A. 2189 */ 2190 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2191 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2192 return CP_ACCESS_TRAP_EL2; 2193 } 2194 return CP_ACCESS_OK; 2195 } 2196 2197 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2198 bool isread) 2199 { 2200 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2201 return CP_ACCESS_TRAP; 2202 } 2203 return teecr_access(env, ri, isread); 2204 } 2205 2206 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2207 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2208 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2209 .resetvalue = 0, 2210 .writefn = teecr_write, .accessfn = teecr_access }, 2211 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2212 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2213 .accessfn = teehbr_access, .resetvalue = 0 }, 2214 REGINFO_SENTINEL 2215 }; 2216 2217 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2218 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2219 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2220 .access = PL0_RW, 2221 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2222 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2223 .access = PL0_RW, 2224 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2225 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2226 .resetfn = arm_cp_reset_ignore }, 2227 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2228 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2229 .access = PL0_R|PL1_W, 2230 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2231 .resetvalue = 0}, 2232 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2233 .access = PL0_R|PL1_W, 2234 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2235 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2236 .resetfn = arm_cp_reset_ignore }, 2237 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2238 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2239 .access = PL1_RW, 2240 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2241 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2242 .access = PL1_RW, 2243 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2244 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2245 .resetvalue = 0 }, 2246 REGINFO_SENTINEL 2247 }; 2248 2249 #ifndef CONFIG_USER_ONLY 2250 2251 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2252 bool isread) 2253 { 2254 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2255 * Writable only at the highest implemented exception level. 2256 */ 2257 int el = arm_current_el(env); 2258 uint64_t hcr; 2259 uint32_t cntkctl; 2260 2261 switch (el) { 2262 case 0: 2263 hcr = arm_hcr_el2_eff(env); 2264 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2265 cntkctl = env->cp15.cnthctl_el2; 2266 } else { 2267 cntkctl = env->cp15.c14_cntkctl; 2268 } 2269 if (!extract32(cntkctl, 0, 2)) { 2270 return CP_ACCESS_TRAP; 2271 } 2272 break; 2273 case 1: 2274 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2275 arm_is_secure_below_el3(env)) { 2276 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2277 return CP_ACCESS_TRAP_UNCATEGORIZED; 2278 } 2279 break; 2280 case 2: 2281 case 3: 2282 break; 2283 } 2284 2285 if (!isread && el < arm_highest_el(env)) { 2286 return CP_ACCESS_TRAP_UNCATEGORIZED; 2287 } 2288 2289 return CP_ACCESS_OK; 2290 } 2291 2292 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2293 bool isread) 2294 { 2295 unsigned int cur_el = arm_current_el(env); 2296 bool has_el2 = arm_is_el2_enabled(env); 2297 uint64_t hcr = arm_hcr_el2_eff(env); 2298 2299 switch (cur_el) { 2300 case 0: 2301 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2302 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2303 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2304 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2305 } 2306 2307 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2308 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2309 return CP_ACCESS_TRAP; 2310 } 2311 2312 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2313 if (hcr & HCR_E2H) { 2314 if (timeridx == GTIMER_PHYS && 2315 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2316 return CP_ACCESS_TRAP_EL2; 2317 } 2318 } else { 2319 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2320 if (has_el2 && timeridx == GTIMER_PHYS && 2321 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2322 return CP_ACCESS_TRAP_EL2; 2323 } 2324 } 2325 break; 2326 2327 case 1: 2328 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2329 if (has_el2 && timeridx == GTIMER_PHYS && 2330 (hcr & HCR_E2H 2331 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2332 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2333 return CP_ACCESS_TRAP_EL2; 2334 } 2335 break; 2336 } 2337 return CP_ACCESS_OK; 2338 } 2339 2340 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2341 bool isread) 2342 { 2343 unsigned int cur_el = arm_current_el(env); 2344 bool has_el2 = arm_is_el2_enabled(env); 2345 uint64_t hcr = arm_hcr_el2_eff(env); 2346 2347 switch (cur_el) { 2348 case 0: 2349 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2350 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2351 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2352 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2353 } 2354 2355 /* 2356 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2357 * EL0 if EL0[PV]TEN is zero. 2358 */ 2359 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2360 return CP_ACCESS_TRAP; 2361 } 2362 /* fall through */ 2363 2364 case 1: 2365 if (has_el2 && timeridx == GTIMER_PHYS) { 2366 if (hcr & HCR_E2H) { 2367 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2368 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2369 return CP_ACCESS_TRAP_EL2; 2370 } 2371 } else { 2372 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2373 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2374 return CP_ACCESS_TRAP_EL2; 2375 } 2376 } 2377 } 2378 break; 2379 } 2380 return CP_ACCESS_OK; 2381 } 2382 2383 static CPAccessResult gt_pct_access(CPUARMState *env, 2384 const ARMCPRegInfo *ri, 2385 bool isread) 2386 { 2387 return gt_counter_access(env, GTIMER_PHYS, isread); 2388 } 2389 2390 static CPAccessResult gt_vct_access(CPUARMState *env, 2391 const ARMCPRegInfo *ri, 2392 bool isread) 2393 { 2394 return gt_counter_access(env, GTIMER_VIRT, isread); 2395 } 2396 2397 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2398 bool isread) 2399 { 2400 return gt_timer_access(env, GTIMER_PHYS, isread); 2401 } 2402 2403 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2404 bool isread) 2405 { 2406 return gt_timer_access(env, GTIMER_VIRT, isread); 2407 } 2408 2409 static CPAccessResult gt_stimer_access(CPUARMState *env, 2410 const ARMCPRegInfo *ri, 2411 bool isread) 2412 { 2413 /* The AArch64 register view of the secure physical timer is 2414 * always accessible from EL3, and configurably accessible from 2415 * Secure EL1. 2416 */ 2417 switch (arm_current_el(env)) { 2418 case 1: 2419 if (!arm_is_secure(env)) { 2420 return CP_ACCESS_TRAP; 2421 } 2422 if (!(env->cp15.scr_el3 & SCR_ST)) { 2423 return CP_ACCESS_TRAP_EL3; 2424 } 2425 return CP_ACCESS_OK; 2426 case 0: 2427 case 2: 2428 return CP_ACCESS_TRAP; 2429 case 3: 2430 return CP_ACCESS_OK; 2431 default: 2432 g_assert_not_reached(); 2433 } 2434 } 2435 2436 static uint64_t gt_get_countervalue(CPUARMState *env) 2437 { 2438 ARMCPU *cpu = env_archcpu(env); 2439 2440 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2441 } 2442 2443 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2444 { 2445 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2446 2447 if (gt->ctl & 1) { 2448 /* Timer enabled: calculate and set current ISTATUS, irq, and 2449 * reset timer to when ISTATUS next has to change 2450 */ 2451 uint64_t offset = timeridx == GTIMER_VIRT ? 2452 cpu->env.cp15.cntvoff_el2 : 0; 2453 uint64_t count = gt_get_countervalue(&cpu->env); 2454 /* Note that this must be unsigned 64 bit arithmetic: */ 2455 int istatus = count - offset >= gt->cval; 2456 uint64_t nexttick; 2457 int irqstate; 2458 2459 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2460 2461 irqstate = (istatus && !(gt->ctl & 2)); 2462 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2463 2464 if (istatus) { 2465 /* Next transition is when count rolls back over to zero */ 2466 nexttick = UINT64_MAX; 2467 } else { 2468 /* Next transition is when we hit cval */ 2469 nexttick = gt->cval + offset; 2470 } 2471 /* Note that the desired next expiry time might be beyond the 2472 * signed-64-bit range of a QEMUTimer -- in this case we just 2473 * set the timer for as far in the future as possible. When the 2474 * timer expires we will reset the timer for any remaining period. 2475 */ 2476 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2477 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2478 } else { 2479 timer_mod(cpu->gt_timer[timeridx], nexttick); 2480 } 2481 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2482 } else { 2483 /* Timer disabled: ISTATUS and timer output always clear */ 2484 gt->ctl &= ~4; 2485 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2486 timer_del(cpu->gt_timer[timeridx]); 2487 trace_arm_gt_recalc_disabled(timeridx); 2488 } 2489 } 2490 2491 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2492 int timeridx) 2493 { 2494 ARMCPU *cpu = env_archcpu(env); 2495 2496 timer_del(cpu->gt_timer[timeridx]); 2497 } 2498 2499 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2500 { 2501 return gt_get_countervalue(env); 2502 } 2503 2504 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2505 { 2506 uint64_t hcr; 2507 2508 switch (arm_current_el(env)) { 2509 case 2: 2510 hcr = arm_hcr_el2_eff(env); 2511 if (hcr & HCR_E2H) { 2512 return 0; 2513 } 2514 break; 2515 case 0: 2516 hcr = arm_hcr_el2_eff(env); 2517 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2518 return 0; 2519 } 2520 break; 2521 } 2522 2523 return env->cp15.cntvoff_el2; 2524 } 2525 2526 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2527 { 2528 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2529 } 2530 2531 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2532 int timeridx, 2533 uint64_t value) 2534 { 2535 trace_arm_gt_cval_write(timeridx, value); 2536 env->cp15.c14_timer[timeridx].cval = value; 2537 gt_recalc_timer(env_archcpu(env), timeridx); 2538 } 2539 2540 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2541 int timeridx) 2542 { 2543 uint64_t offset = 0; 2544 2545 switch (timeridx) { 2546 case GTIMER_VIRT: 2547 case GTIMER_HYPVIRT: 2548 offset = gt_virt_cnt_offset(env); 2549 break; 2550 } 2551 2552 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2553 (gt_get_countervalue(env) - offset)); 2554 } 2555 2556 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2557 int timeridx, 2558 uint64_t value) 2559 { 2560 uint64_t offset = 0; 2561 2562 switch (timeridx) { 2563 case GTIMER_VIRT: 2564 case GTIMER_HYPVIRT: 2565 offset = gt_virt_cnt_offset(env); 2566 break; 2567 } 2568 2569 trace_arm_gt_tval_write(timeridx, value); 2570 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2571 sextract64(value, 0, 32); 2572 gt_recalc_timer(env_archcpu(env), timeridx); 2573 } 2574 2575 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2576 int timeridx, 2577 uint64_t value) 2578 { 2579 ARMCPU *cpu = env_archcpu(env); 2580 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2581 2582 trace_arm_gt_ctl_write(timeridx, value); 2583 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2584 if ((oldval ^ value) & 1) { 2585 /* Enable toggled */ 2586 gt_recalc_timer(cpu, timeridx); 2587 } else if ((oldval ^ value) & 2) { 2588 /* IMASK toggled: don't need to recalculate, 2589 * just set the interrupt line based on ISTATUS 2590 */ 2591 int irqstate = (oldval & 4) && !(value & 2); 2592 2593 trace_arm_gt_imask_toggle(timeridx, irqstate); 2594 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2595 } 2596 } 2597 2598 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2599 { 2600 gt_timer_reset(env, ri, GTIMER_PHYS); 2601 } 2602 2603 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2604 uint64_t value) 2605 { 2606 gt_cval_write(env, ri, GTIMER_PHYS, value); 2607 } 2608 2609 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2610 { 2611 return gt_tval_read(env, ri, GTIMER_PHYS); 2612 } 2613 2614 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2615 uint64_t value) 2616 { 2617 gt_tval_write(env, ri, GTIMER_PHYS, value); 2618 } 2619 2620 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2621 uint64_t value) 2622 { 2623 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2624 } 2625 2626 static int gt_phys_redir_timeridx(CPUARMState *env) 2627 { 2628 switch (arm_mmu_idx(env)) { 2629 case ARMMMUIdx_E20_0: 2630 case ARMMMUIdx_E20_2: 2631 case ARMMMUIdx_E20_2_PAN: 2632 case ARMMMUIdx_SE20_0: 2633 case ARMMMUIdx_SE20_2: 2634 case ARMMMUIdx_SE20_2_PAN: 2635 return GTIMER_HYP; 2636 default: 2637 return GTIMER_PHYS; 2638 } 2639 } 2640 2641 static int gt_virt_redir_timeridx(CPUARMState *env) 2642 { 2643 switch (arm_mmu_idx(env)) { 2644 case ARMMMUIdx_E20_0: 2645 case ARMMMUIdx_E20_2: 2646 case ARMMMUIdx_E20_2_PAN: 2647 case ARMMMUIdx_SE20_0: 2648 case ARMMMUIdx_SE20_2: 2649 case ARMMMUIdx_SE20_2_PAN: 2650 return GTIMER_HYPVIRT; 2651 default: 2652 return GTIMER_VIRT; 2653 } 2654 } 2655 2656 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2657 const ARMCPRegInfo *ri) 2658 { 2659 int timeridx = gt_phys_redir_timeridx(env); 2660 return env->cp15.c14_timer[timeridx].cval; 2661 } 2662 2663 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2664 uint64_t value) 2665 { 2666 int timeridx = gt_phys_redir_timeridx(env); 2667 gt_cval_write(env, ri, timeridx, value); 2668 } 2669 2670 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2671 const ARMCPRegInfo *ri) 2672 { 2673 int timeridx = gt_phys_redir_timeridx(env); 2674 return gt_tval_read(env, ri, timeridx); 2675 } 2676 2677 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2678 uint64_t value) 2679 { 2680 int timeridx = gt_phys_redir_timeridx(env); 2681 gt_tval_write(env, ri, timeridx, value); 2682 } 2683 2684 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2685 const ARMCPRegInfo *ri) 2686 { 2687 int timeridx = gt_phys_redir_timeridx(env); 2688 return env->cp15.c14_timer[timeridx].ctl; 2689 } 2690 2691 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2692 uint64_t value) 2693 { 2694 int timeridx = gt_phys_redir_timeridx(env); 2695 gt_ctl_write(env, ri, timeridx, value); 2696 } 2697 2698 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2699 { 2700 gt_timer_reset(env, ri, GTIMER_VIRT); 2701 } 2702 2703 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2704 uint64_t value) 2705 { 2706 gt_cval_write(env, ri, GTIMER_VIRT, value); 2707 } 2708 2709 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2710 { 2711 return gt_tval_read(env, ri, GTIMER_VIRT); 2712 } 2713 2714 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2715 uint64_t value) 2716 { 2717 gt_tval_write(env, ri, GTIMER_VIRT, value); 2718 } 2719 2720 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2721 uint64_t value) 2722 { 2723 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2724 } 2725 2726 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2727 uint64_t value) 2728 { 2729 ARMCPU *cpu = env_archcpu(env); 2730 2731 trace_arm_gt_cntvoff_write(value); 2732 raw_write(env, ri, value); 2733 gt_recalc_timer(cpu, GTIMER_VIRT); 2734 } 2735 2736 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2737 const ARMCPRegInfo *ri) 2738 { 2739 int timeridx = gt_virt_redir_timeridx(env); 2740 return env->cp15.c14_timer[timeridx].cval; 2741 } 2742 2743 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2744 uint64_t value) 2745 { 2746 int timeridx = gt_virt_redir_timeridx(env); 2747 gt_cval_write(env, ri, timeridx, value); 2748 } 2749 2750 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2751 const ARMCPRegInfo *ri) 2752 { 2753 int timeridx = gt_virt_redir_timeridx(env); 2754 return gt_tval_read(env, ri, timeridx); 2755 } 2756 2757 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2758 uint64_t value) 2759 { 2760 int timeridx = gt_virt_redir_timeridx(env); 2761 gt_tval_write(env, ri, timeridx, value); 2762 } 2763 2764 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2765 const ARMCPRegInfo *ri) 2766 { 2767 int timeridx = gt_virt_redir_timeridx(env); 2768 return env->cp15.c14_timer[timeridx].ctl; 2769 } 2770 2771 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2772 uint64_t value) 2773 { 2774 int timeridx = gt_virt_redir_timeridx(env); 2775 gt_ctl_write(env, ri, timeridx, value); 2776 } 2777 2778 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2779 { 2780 gt_timer_reset(env, ri, GTIMER_HYP); 2781 } 2782 2783 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2784 uint64_t value) 2785 { 2786 gt_cval_write(env, ri, GTIMER_HYP, value); 2787 } 2788 2789 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2790 { 2791 return gt_tval_read(env, ri, GTIMER_HYP); 2792 } 2793 2794 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 gt_tval_write(env, ri, GTIMER_HYP, value); 2798 } 2799 2800 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2801 uint64_t value) 2802 { 2803 gt_ctl_write(env, ri, GTIMER_HYP, value); 2804 } 2805 2806 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2807 { 2808 gt_timer_reset(env, ri, GTIMER_SEC); 2809 } 2810 2811 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2812 uint64_t value) 2813 { 2814 gt_cval_write(env, ri, GTIMER_SEC, value); 2815 } 2816 2817 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2818 { 2819 return gt_tval_read(env, ri, GTIMER_SEC); 2820 } 2821 2822 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2823 uint64_t value) 2824 { 2825 gt_tval_write(env, ri, GTIMER_SEC, value); 2826 } 2827 2828 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2829 uint64_t value) 2830 { 2831 gt_ctl_write(env, ri, GTIMER_SEC, value); 2832 } 2833 2834 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2835 { 2836 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2837 } 2838 2839 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2840 uint64_t value) 2841 { 2842 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 2843 } 2844 2845 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2846 { 2847 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 2848 } 2849 2850 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2851 uint64_t value) 2852 { 2853 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 2854 } 2855 2856 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2857 uint64_t value) 2858 { 2859 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 2860 } 2861 2862 void arm_gt_ptimer_cb(void *opaque) 2863 { 2864 ARMCPU *cpu = opaque; 2865 2866 gt_recalc_timer(cpu, GTIMER_PHYS); 2867 } 2868 2869 void arm_gt_vtimer_cb(void *opaque) 2870 { 2871 ARMCPU *cpu = opaque; 2872 2873 gt_recalc_timer(cpu, GTIMER_VIRT); 2874 } 2875 2876 void arm_gt_htimer_cb(void *opaque) 2877 { 2878 ARMCPU *cpu = opaque; 2879 2880 gt_recalc_timer(cpu, GTIMER_HYP); 2881 } 2882 2883 void arm_gt_stimer_cb(void *opaque) 2884 { 2885 ARMCPU *cpu = opaque; 2886 2887 gt_recalc_timer(cpu, GTIMER_SEC); 2888 } 2889 2890 void arm_gt_hvtimer_cb(void *opaque) 2891 { 2892 ARMCPU *cpu = opaque; 2893 2894 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 2895 } 2896 2897 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2898 { 2899 ARMCPU *cpu = env_archcpu(env); 2900 2901 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2902 } 2903 2904 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2905 /* Note that CNTFRQ is purely reads-as-written for the benefit 2906 * of software; writing it doesn't actually change the timer frequency. 2907 * Our reset value matches the fixed frequency we implement the timer at. 2908 */ 2909 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 2910 .type = ARM_CP_ALIAS, 2911 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2912 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 2913 }, 2914 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 2915 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 2916 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 2917 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 2918 .resetfn = arm_gt_cntfrq_reset, 2919 }, 2920 /* overall control: mostly access permissions */ 2921 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 2922 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 2923 .access = PL1_RW, 2924 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 2925 .resetvalue = 0, 2926 }, 2927 /* per-timer control */ 2928 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2929 .secure = ARM_CP_SECSTATE_NS, 2930 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2931 .accessfn = gt_ptimer_access, 2932 .fieldoffset = offsetoflow32(CPUARMState, 2933 cp15.c14_timer[GTIMER_PHYS].ctl), 2934 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2935 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2936 }, 2937 { .name = "CNTP_CTL_S", 2938 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 2939 .secure = ARM_CP_SECSTATE_S, 2940 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2941 .accessfn = gt_ptimer_access, 2942 .fieldoffset = offsetoflow32(CPUARMState, 2943 cp15.c14_timer[GTIMER_SEC].ctl), 2944 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2945 }, 2946 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 2947 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 2948 .type = ARM_CP_IO, .access = PL0_RW, 2949 .accessfn = gt_ptimer_access, 2950 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 2951 .resetvalue = 0, 2952 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 2953 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 2954 }, 2955 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2956 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 2957 .accessfn = gt_vtimer_access, 2958 .fieldoffset = offsetoflow32(CPUARMState, 2959 cp15.c14_timer[GTIMER_VIRT].ctl), 2960 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2961 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2962 }, 2963 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2964 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2965 .type = ARM_CP_IO, .access = PL0_RW, 2966 .accessfn = gt_vtimer_access, 2967 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2968 .resetvalue = 0, 2969 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 2970 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 2971 }, 2972 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2973 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2974 .secure = ARM_CP_SECSTATE_NS, 2975 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2976 .accessfn = gt_ptimer_access, 2977 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2978 }, 2979 { .name = "CNTP_TVAL_S", 2980 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2981 .secure = ARM_CP_SECSTATE_S, 2982 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2983 .accessfn = gt_ptimer_access, 2984 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2985 }, 2986 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2988 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2989 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2990 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 2991 }, 2992 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2993 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 2994 .accessfn = gt_vtimer_access, 2995 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 2996 }, 2997 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2998 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2999 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3000 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3001 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3002 }, 3003 /* The counter itself */ 3004 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3005 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3006 .accessfn = gt_pct_access, 3007 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3008 }, 3009 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3010 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3011 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3012 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3013 }, 3014 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3015 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3016 .accessfn = gt_vct_access, 3017 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3018 }, 3019 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3020 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3021 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3022 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3023 }, 3024 /* Comparison value, indicating when the timer goes off */ 3025 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3026 .secure = ARM_CP_SECSTATE_NS, 3027 .access = PL0_RW, 3028 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3029 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3030 .accessfn = gt_ptimer_access, 3031 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3032 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3033 }, 3034 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3035 .secure = ARM_CP_SECSTATE_S, 3036 .access = PL0_RW, 3037 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3038 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3039 .accessfn = gt_ptimer_access, 3040 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3041 }, 3042 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3043 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3044 .access = PL0_RW, 3045 .type = ARM_CP_IO, 3046 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3047 .resetvalue = 0, .accessfn = gt_ptimer_access, 3048 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3049 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3050 }, 3051 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3052 .access = PL0_RW, 3053 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3054 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3055 .accessfn = gt_vtimer_access, 3056 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3057 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3058 }, 3059 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3060 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3061 .access = PL0_RW, 3062 .type = ARM_CP_IO, 3063 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3064 .resetvalue = 0, .accessfn = gt_vtimer_access, 3065 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3066 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3067 }, 3068 /* Secure timer -- this is actually restricted to only EL3 3069 * and configurably Secure-EL1 via the accessfn. 3070 */ 3071 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3072 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3073 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3074 .accessfn = gt_stimer_access, 3075 .readfn = gt_sec_tval_read, 3076 .writefn = gt_sec_tval_write, 3077 .resetfn = gt_sec_timer_reset, 3078 }, 3079 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3080 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3081 .type = ARM_CP_IO, .access = PL1_RW, 3082 .accessfn = gt_stimer_access, 3083 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3084 .resetvalue = 0, 3085 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3086 }, 3087 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3088 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3089 .type = ARM_CP_IO, .access = PL1_RW, 3090 .accessfn = gt_stimer_access, 3091 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3092 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3093 }, 3094 REGINFO_SENTINEL 3095 }; 3096 3097 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3098 bool isread) 3099 { 3100 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3101 return CP_ACCESS_TRAP; 3102 } 3103 return CP_ACCESS_OK; 3104 } 3105 3106 #else 3107 3108 /* In user-mode most of the generic timer registers are inaccessible 3109 * however modern kernels (4.12+) allow access to cntvct_el0 3110 */ 3111 3112 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3113 { 3114 ARMCPU *cpu = env_archcpu(env); 3115 3116 /* Currently we have no support for QEMUTimer in linux-user so we 3117 * can't call gt_get_countervalue(env), instead we directly 3118 * call the lower level functions. 3119 */ 3120 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3121 } 3122 3123 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3124 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3126 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3127 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3128 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3129 }, 3130 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3131 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3132 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3133 .readfn = gt_virt_cnt_read, 3134 }, 3135 REGINFO_SENTINEL 3136 }; 3137 3138 #endif 3139 3140 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3141 { 3142 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3143 raw_write(env, ri, value); 3144 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3145 raw_write(env, ri, value & 0xfffff6ff); 3146 } else { 3147 raw_write(env, ri, value & 0xfffff1ff); 3148 } 3149 } 3150 3151 #ifndef CONFIG_USER_ONLY 3152 /* get_phys_addr() isn't present for user-mode-only targets */ 3153 3154 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3155 bool isread) 3156 { 3157 if (ri->opc2 & 4) { 3158 /* The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3159 * Secure EL1 (which can only happen if EL3 is AArch64). 3160 * They are simply UNDEF if executed from NS EL1. 3161 * They function normally from EL2 or EL3. 3162 */ 3163 if (arm_current_el(env) == 1) { 3164 if (arm_is_secure_below_el3(env)) { 3165 if (env->cp15.scr_el3 & SCR_EEL2) { 3166 return CP_ACCESS_TRAP_UNCATEGORIZED_EL2; 3167 } 3168 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 3169 } 3170 return CP_ACCESS_TRAP_UNCATEGORIZED; 3171 } 3172 } 3173 return CP_ACCESS_OK; 3174 } 3175 3176 #ifdef CONFIG_TCG 3177 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3178 MMUAccessType access_type, ARMMMUIdx mmu_idx) 3179 { 3180 hwaddr phys_addr; 3181 target_ulong page_size; 3182 int prot; 3183 bool ret; 3184 uint64_t par64; 3185 bool format64 = false; 3186 MemTxAttrs attrs = {}; 3187 ARMMMUFaultInfo fi = {}; 3188 ARMCacheAttrs cacheattrs = {}; 3189 3190 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 3191 &prot, &page_size, &fi, &cacheattrs); 3192 3193 if (ret) { 3194 /* 3195 * Some kinds of translation fault must cause exceptions rather 3196 * than being reported in the PAR. 3197 */ 3198 int current_el = arm_current_el(env); 3199 int target_el; 3200 uint32_t syn, fsr, fsc; 3201 bool take_exc = false; 3202 3203 if (fi.s1ptw && current_el == 1 3204 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3205 /* 3206 * Synchronous stage 2 fault on an access made as part of the 3207 * translation table walk for AT S1E0* or AT S1E1* insn 3208 * executed from NS EL1. If this is a synchronous external abort 3209 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3210 * to EL3. Otherwise the fault is taken as an exception to EL2, 3211 * and HPFAR_EL2 holds the faulting IPA. 3212 */ 3213 if (fi.type == ARMFault_SyncExternalOnWalk && 3214 (env->cp15.scr_el3 & SCR_EA)) { 3215 target_el = 3; 3216 } else { 3217 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3218 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3219 env->cp15.hpfar_el2 |= HPFAR_NS; 3220 } 3221 target_el = 2; 3222 } 3223 take_exc = true; 3224 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3225 /* 3226 * Synchronous external aborts during a translation table walk 3227 * are taken as Data Abort exceptions. 3228 */ 3229 if (fi.stage2) { 3230 if (current_el == 3) { 3231 target_el = 3; 3232 } else { 3233 target_el = 2; 3234 } 3235 } else { 3236 target_el = exception_target_el(env); 3237 } 3238 take_exc = true; 3239 } 3240 3241 if (take_exc) { 3242 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3243 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3244 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3245 fsr = arm_fi_to_lfsc(&fi); 3246 fsc = extract32(fsr, 0, 6); 3247 } else { 3248 fsr = arm_fi_to_sfsc(&fi); 3249 fsc = 0x3f; 3250 } 3251 /* 3252 * Report exception with ESR indicating a fault due to a 3253 * translation table walk for a cache maintenance instruction. 3254 */ 3255 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3256 fi.ea, 1, fi.s1ptw, 1, fsc); 3257 env->exception.vaddress = value; 3258 env->exception.fsr = fsr; 3259 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3260 } 3261 } 3262 3263 if (is_a64(env)) { 3264 format64 = true; 3265 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3266 /* 3267 * ATS1Cxx: 3268 * * TTBCR.EAE determines whether the result is returned using the 3269 * 32-bit or the 64-bit PAR format 3270 * * Instructions executed in Hyp mode always use the 64bit format 3271 * 3272 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3273 * * The Non-secure TTBCR.EAE bit is set to 1 3274 * * The implementation includes EL2, and the value of HCR.VM is 1 3275 * 3276 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3277 * 3278 * ATS1Hx always uses the 64bit format. 3279 */ 3280 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3281 3282 if (arm_feature(env, ARM_FEATURE_EL2)) { 3283 if (mmu_idx == ARMMMUIdx_E10_0 || 3284 mmu_idx == ARMMMUIdx_E10_1 || 3285 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3286 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3287 } else { 3288 format64 |= arm_current_el(env) == 2; 3289 } 3290 } 3291 } 3292 3293 if (format64) { 3294 /* Create a 64-bit PAR */ 3295 par64 = (1 << 11); /* LPAE bit always set */ 3296 if (!ret) { 3297 par64 |= phys_addr & ~0xfffULL; 3298 if (!attrs.secure) { 3299 par64 |= (1 << 9); /* NS */ 3300 } 3301 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 3302 par64 |= cacheattrs.shareability << 7; /* SH */ 3303 } else { 3304 uint32_t fsr = arm_fi_to_lfsc(&fi); 3305 3306 par64 |= 1; /* F */ 3307 par64 |= (fsr & 0x3f) << 1; /* FS */ 3308 if (fi.stage2) { 3309 par64 |= (1 << 9); /* S */ 3310 } 3311 if (fi.s1ptw) { 3312 par64 |= (1 << 8); /* PTW */ 3313 } 3314 } 3315 } else { 3316 /* fsr is a DFSR/IFSR value for the short descriptor 3317 * translation table format (with WnR always clear). 3318 * Convert it to a 32-bit PAR. 3319 */ 3320 if (!ret) { 3321 /* We do not set any attribute bits in the PAR */ 3322 if (page_size == (1 << 24) 3323 && arm_feature(env, ARM_FEATURE_V7)) { 3324 par64 = (phys_addr & 0xff000000) | (1 << 1); 3325 } else { 3326 par64 = phys_addr & 0xfffff000; 3327 } 3328 if (!attrs.secure) { 3329 par64 |= (1 << 9); /* NS */ 3330 } 3331 } else { 3332 uint32_t fsr = arm_fi_to_sfsc(&fi); 3333 3334 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3335 ((fsr & 0xf) << 1) | 1; 3336 } 3337 } 3338 return par64; 3339 } 3340 #endif /* CONFIG_TCG */ 3341 3342 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3343 { 3344 #ifdef CONFIG_TCG 3345 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3346 uint64_t par64; 3347 ARMMMUIdx mmu_idx; 3348 int el = arm_current_el(env); 3349 bool secure = arm_is_secure_below_el3(env); 3350 3351 switch (ri->opc2 & 6) { 3352 case 0: 3353 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3354 switch (el) { 3355 case 3: 3356 mmu_idx = ARMMMUIdx_SE3; 3357 break; 3358 case 2: 3359 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3360 /* fall through */ 3361 case 1: 3362 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3363 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3364 : ARMMMUIdx_Stage1_E1_PAN); 3365 } else { 3366 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3367 } 3368 break; 3369 default: 3370 g_assert_not_reached(); 3371 } 3372 break; 3373 case 2: 3374 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3375 switch (el) { 3376 case 3: 3377 mmu_idx = ARMMMUIdx_SE10_0; 3378 break; 3379 case 2: 3380 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3381 mmu_idx = ARMMMUIdx_Stage1_E0; 3382 break; 3383 case 1: 3384 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3385 break; 3386 default: 3387 g_assert_not_reached(); 3388 } 3389 break; 3390 case 4: 3391 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3392 mmu_idx = ARMMMUIdx_E10_1; 3393 break; 3394 case 6: 3395 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3396 mmu_idx = ARMMMUIdx_E10_0; 3397 break; 3398 default: 3399 g_assert_not_reached(); 3400 } 3401 3402 par64 = do_ats_write(env, value, access_type, mmu_idx); 3403 3404 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3405 #else 3406 /* Handled by hardware accelerator. */ 3407 g_assert_not_reached(); 3408 #endif /* CONFIG_TCG */ 3409 } 3410 3411 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3412 uint64_t value) 3413 { 3414 #ifdef CONFIG_TCG 3415 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3416 uint64_t par64; 3417 3418 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2); 3419 3420 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3421 #else 3422 /* Handled by hardware accelerator. */ 3423 g_assert_not_reached(); 3424 #endif /* CONFIG_TCG */ 3425 } 3426 3427 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3428 bool isread) 3429 { 3430 if (arm_current_el(env) == 3 && 3431 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3432 return CP_ACCESS_TRAP; 3433 } 3434 return CP_ACCESS_OK; 3435 } 3436 3437 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3438 uint64_t value) 3439 { 3440 #ifdef CONFIG_TCG 3441 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3442 ARMMMUIdx mmu_idx; 3443 int secure = arm_is_secure_below_el3(env); 3444 3445 switch (ri->opc2 & 6) { 3446 case 0: 3447 switch (ri->opc1) { 3448 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3449 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3450 mmu_idx = (secure ? ARMMMUIdx_Stage1_SE1_PAN 3451 : ARMMMUIdx_Stage1_E1_PAN); 3452 } else { 3453 mmu_idx = secure ? ARMMMUIdx_Stage1_SE1 : ARMMMUIdx_Stage1_E1; 3454 } 3455 break; 3456 case 4: /* AT S1E2R, AT S1E2W */ 3457 mmu_idx = secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2; 3458 break; 3459 case 6: /* AT S1E3R, AT S1E3W */ 3460 mmu_idx = ARMMMUIdx_SE3; 3461 break; 3462 default: 3463 g_assert_not_reached(); 3464 } 3465 break; 3466 case 2: /* AT S1E0R, AT S1E0W */ 3467 mmu_idx = secure ? ARMMMUIdx_Stage1_SE0 : ARMMMUIdx_Stage1_E0; 3468 break; 3469 case 4: /* AT S12E1R, AT S12E1W */ 3470 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1; 3471 break; 3472 case 6: /* AT S12E0R, AT S12E0W */ 3473 mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0; 3474 break; 3475 default: 3476 g_assert_not_reached(); 3477 } 3478 3479 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 3480 #else 3481 /* Handled by hardware accelerator. */ 3482 g_assert_not_reached(); 3483 #endif /* CONFIG_TCG */ 3484 } 3485 #endif 3486 3487 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3488 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3489 .access = PL1_RW, .resetvalue = 0, 3490 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3491 offsetoflow32(CPUARMState, cp15.par_ns) }, 3492 .writefn = par_write }, 3493 #ifndef CONFIG_USER_ONLY 3494 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3495 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3496 .access = PL1_W, .accessfn = ats_access, 3497 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3498 #endif 3499 REGINFO_SENTINEL 3500 }; 3501 3502 /* Return basic MPU access permission bits. */ 3503 static uint32_t simple_mpu_ap_bits(uint32_t val) 3504 { 3505 uint32_t ret; 3506 uint32_t mask; 3507 int i; 3508 ret = 0; 3509 mask = 3; 3510 for (i = 0; i < 16; i += 2) { 3511 ret |= (val >> i) & mask; 3512 mask <<= 2; 3513 } 3514 return ret; 3515 } 3516 3517 /* Pad basic MPU access permission bits to extended format. */ 3518 static uint32_t extended_mpu_ap_bits(uint32_t val) 3519 { 3520 uint32_t ret; 3521 uint32_t mask; 3522 int i; 3523 ret = 0; 3524 mask = 3; 3525 for (i = 0; i < 16; i += 2) { 3526 ret |= (val & mask) << i; 3527 mask <<= 2; 3528 } 3529 return ret; 3530 } 3531 3532 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3533 uint64_t value) 3534 { 3535 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3536 } 3537 3538 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3539 { 3540 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3541 } 3542 3543 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3544 uint64_t value) 3545 { 3546 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3547 } 3548 3549 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3550 { 3551 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3552 } 3553 3554 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3555 { 3556 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3557 3558 if (!u32p) { 3559 return 0; 3560 } 3561 3562 u32p += env->pmsav7.rnr[M_REG_NS]; 3563 return *u32p; 3564 } 3565 3566 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3567 uint64_t value) 3568 { 3569 ARMCPU *cpu = env_archcpu(env); 3570 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3571 3572 if (!u32p) { 3573 return; 3574 } 3575 3576 u32p += env->pmsav7.rnr[M_REG_NS]; 3577 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3578 *u32p = value; 3579 } 3580 3581 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 ARMCPU *cpu = env_archcpu(env); 3585 uint32_t nrgs = cpu->pmsav7_dregion; 3586 3587 if (value >= nrgs) { 3588 qemu_log_mask(LOG_GUEST_ERROR, 3589 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3590 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3591 return; 3592 } 3593 3594 raw_write(env, ri, value); 3595 } 3596 3597 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3598 /* Reset for all these registers is handled in arm_cpu_reset(), 3599 * because the PMSAv7 is also used by M-profile CPUs, which do 3600 * not register cpregs but still need the state to be reset. 3601 */ 3602 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3603 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3604 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3605 .readfn = pmsav7_read, .writefn = pmsav7_write, 3606 .resetfn = arm_cp_reset_ignore }, 3607 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3608 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3609 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 3610 .readfn = pmsav7_read, .writefn = pmsav7_write, 3611 .resetfn = arm_cp_reset_ignore }, 3612 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 3613 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3614 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 3615 .readfn = pmsav7_read, .writefn = pmsav7_write, 3616 .resetfn = arm_cp_reset_ignore }, 3617 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 3618 .access = PL1_RW, 3619 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 3620 .writefn = pmsav7_rgnr_write, 3621 .resetfn = arm_cp_reset_ignore }, 3622 REGINFO_SENTINEL 3623 }; 3624 3625 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 3626 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3627 .access = PL1_RW, .type = ARM_CP_ALIAS, 3628 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3629 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 3630 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3631 .access = PL1_RW, .type = ARM_CP_ALIAS, 3632 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3633 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 3634 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 3635 .access = PL1_RW, 3636 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 3637 .resetvalue = 0, }, 3638 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 3639 .access = PL1_RW, 3640 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 3641 .resetvalue = 0, }, 3642 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 3643 .access = PL1_RW, 3644 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 3645 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 3646 .access = PL1_RW, 3647 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 3648 /* Protection region base and size registers */ 3649 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 3650 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3651 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 3652 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 3653 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3654 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 3655 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 3656 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3657 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 3658 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 3659 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3660 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 3661 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 3662 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3663 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 3664 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 3665 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3666 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 3667 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 3668 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3669 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 3670 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 3671 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 3672 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 3673 REGINFO_SENTINEL 3674 }; 3675 3676 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 3677 uint64_t value) 3678 { 3679 TCR *tcr = raw_ptr(env, ri); 3680 int maskshift = extract32(value, 0, 3); 3681 3682 if (!arm_feature(env, ARM_FEATURE_V8)) { 3683 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 3684 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 3685 * using Long-desciptor translation table format */ 3686 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 3687 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 3688 /* In an implementation that includes the Security Extensions 3689 * TTBCR has additional fields PD0 [4] and PD1 [5] for 3690 * Short-descriptor translation table format. 3691 */ 3692 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 3693 } else { 3694 value &= TTBCR_N; 3695 } 3696 } 3697 3698 /* Update the masks corresponding to the TCR bank being written 3699 * Note that we always calculate mask and base_mask, but 3700 * they are only used for short-descriptor tables (ie if EAE is 0); 3701 * for long-descriptor tables the TCR fields are used differently 3702 * and the mask and base_mask values are meaningless. 3703 */ 3704 tcr->raw_tcr = value; 3705 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 3706 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 3707 } 3708 3709 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3710 uint64_t value) 3711 { 3712 ARMCPU *cpu = env_archcpu(env); 3713 TCR *tcr = raw_ptr(env, ri); 3714 3715 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3716 /* With LPAE the TTBCR could result in a change of ASID 3717 * via the TTBCR.A1 bit, so do a TLB flush. 3718 */ 3719 tlb_flush(CPU(cpu)); 3720 } 3721 /* Preserve the high half of TCR_EL1, set via TTBCR2. */ 3722 value = deposit64(tcr->raw_tcr, 0, 32, value); 3723 vmsa_ttbcr_raw_write(env, ri, value); 3724 } 3725 3726 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3727 { 3728 TCR *tcr = raw_ptr(env, ri); 3729 3730 /* Reset both the TCR as well as the masks corresponding to the bank of 3731 * the TCR being reset. 3732 */ 3733 tcr->raw_tcr = 0; 3734 tcr->mask = 0; 3735 tcr->base_mask = 0xffffc000u; 3736 } 3737 3738 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 3739 uint64_t value) 3740 { 3741 ARMCPU *cpu = env_archcpu(env); 3742 TCR *tcr = raw_ptr(env, ri); 3743 3744 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 3745 tlb_flush(CPU(cpu)); 3746 tcr->raw_tcr = value; 3747 } 3748 3749 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3750 uint64_t value) 3751 { 3752 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 3753 if (cpreg_field_is_64bit(ri) && 3754 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 3755 ARMCPU *cpu = env_archcpu(env); 3756 tlb_flush(CPU(cpu)); 3757 } 3758 raw_write(env, ri, value); 3759 } 3760 3761 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3762 uint64_t value) 3763 { 3764 /* 3765 * If we are running with E2&0 regime, then an ASID is active. 3766 * Flush if that might be changing. Note we're not checking 3767 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 3768 * holds the active ASID, only checking the field that might. 3769 */ 3770 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 3771 (arm_hcr_el2_eff(env) & HCR_E2H)) { 3772 uint16_t mask = ARMMMUIdxBit_E20_2 | 3773 ARMMMUIdxBit_E20_2_PAN | 3774 ARMMMUIdxBit_E20_0; 3775 3776 if (arm_is_secure_below_el3(env)) { 3777 mask >>= ARM_MMU_IDX_A_NS; 3778 } 3779 3780 tlb_flush_by_mmuidx(env_cpu(env), mask); 3781 } 3782 raw_write(env, ri, value); 3783 } 3784 3785 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 CPUState *cs = CPU(cpu); 3790 3791 /* 3792 * A change in VMID to the stage2 page table (Stage2) invalidates 3793 * the combined stage 1&2 tlbs (EL10_1 and EL10_0). 3794 */ 3795 if (raw_read(env, ri) != value) { 3796 uint16_t mask = ARMMMUIdxBit_E10_1 | 3797 ARMMMUIdxBit_E10_1_PAN | 3798 ARMMMUIdxBit_E10_0; 3799 3800 if (arm_is_secure_below_el3(env)) { 3801 mask >>= ARM_MMU_IDX_A_NS; 3802 } 3803 3804 tlb_flush_by_mmuidx(cs, mask); 3805 raw_write(env, ri, value); 3806 } 3807 } 3808 3809 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 3810 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 3811 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 3812 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 3813 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 3814 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 3815 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3816 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 3817 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 3818 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 3819 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 3820 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 3821 offsetof(CPUARMState, cp15.dfar_ns) } }, 3822 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 3824 .access = PL1_RW, .accessfn = access_tvm_trvm, 3825 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 3826 .resetvalue = 0, }, 3827 REGINFO_SENTINEL 3828 }; 3829 3830 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 3831 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 3833 .access = PL1_RW, .accessfn = access_tvm_trvm, 3834 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 3835 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 3836 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 3837 .access = PL1_RW, .accessfn = access_tvm_trvm, 3838 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3839 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 3840 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 3841 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 3842 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 3843 .access = PL1_RW, .accessfn = access_tvm_trvm, 3844 .writefn = vmsa_ttbr_write, .resetvalue = 0, 3845 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 3846 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 3847 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 3848 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3849 .access = PL1_RW, .accessfn = access_tvm_trvm, 3850 .writefn = vmsa_tcr_el12_write, 3851 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 3852 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 3853 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 3854 .access = PL1_RW, .accessfn = access_tvm_trvm, 3855 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 3856 .raw_writefn = vmsa_ttbcr_raw_write, 3857 /* No offsetoflow32 -- pass the entire TCR to writefn/raw_writefn. */ 3858 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.tcr_el[3]), 3859 offsetof(CPUARMState, cp15.tcr_el[1])} }, 3860 REGINFO_SENTINEL 3861 }; 3862 3863 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing 3864 * qemu tlbs nor adjusting cached masks. 3865 */ 3866 static const ARMCPRegInfo ttbcr2_reginfo = { 3867 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 3868 .access = PL1_RW, .accessfn = access_tvm_trvm, 3869 .type = ARM_CP_ALIAS, 3870 .bank_fieldoffsets = { 3871 offsetofhigh32(CPUARMState, cp15.tcr_el[3].raw_tcr), 3872 offsetofhigh32(CPUARMState, cp15.tcr_el[1].raw_tcr), 3873 }, 3874 }; 3875 3876 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 3877 uint64_t value) 3878 { 3879 env->cp15.c15_ticonfig = value & 0xe7; 3880 /* The OS_TYPE bit in this register changes the reported CPUID! */ 3881 env->cp15.c0_cpuid = (value & (1 << 5)) ? 3882 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 3883 } 3884 3885 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 3886 uint64_t value) 3887 { 3888 env->cp15.c15_threadid = value & 0xffff; 3889 } 3890 3891 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 3892 uint64_t value) 3893 { 3894 /* Wait-for-interrupt (deprecated) */ 3895 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 3896 } 3897 3898 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 3899 uint64_t value) 3900 { 3901 /* On OMAP there are registers indicating the max/min index of dcache lines 3902 * containing a dirty line; cache flush operations have to reset these. 3903 */ 3904 env->cp15.c15_i_max = 0x000; 3905 env->cp15.c15_i_min = 0xff0; 3906 } 3907 3908 static const ARMCPRegInfo omap_cp_reginfo[] = { 3909 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 3910 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 3911 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 3912 .resetvalue = 0, }, 3913 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 3914 .access = PL1_RW, .type = ARM_CP_NOP }, 3915 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 3916 .access = PL1_RW, 3917 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 3918 .writefn = omap_ticonfig_write }, 3919 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 3920 .access = PL1_RW, 3921 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 3922 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 3923 .access = PL1_RW, .resetvalue = 0xff0, 3924 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 3925 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 3926 .access = PL1_RW, 3927 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 3928 .writefn = omap_threadid_write }, 3929 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 3930 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3931 .type = ARM_CP_NO_RAW, 3932 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 3933 /* TODO: Peripheral port remap register: 3934 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 3935 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 3936 * when MMU is off. 3937 */ 3938 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 3939 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 3940 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 3941 .writefn = omap_cachemaint_write }, 3942 { .name = "C9", .cp = 15, .crn = 9, 3943 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 3944 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 3945 REGINFO_SENTINEL 3946 }; 3947 3948 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3949 uint64_t value) 3950 { 3951 env->cp15.c15_cpar = value & 0x3fff; 3952 } 3953 3954 static const ARMCPRegInfo xscale_cp_reginfo[] = { 3955 { .name = "XSCALE_CPAR", 3956 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 3957 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 3958 .writefn = xscale_cpar_write, }, 3959 { .name = "XSCALE_AUXCR", 3960 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 3961 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 3962 .resetvalue = 0, }, 3963 /* XScale specific cache-lockdown: since we have no cache we NOP these 3964 * and hope the guest does not really rely on cache behaviour. 3965 */ 3966 { .name = "XSCALE_LOCK_ICACHE_LINE", 3967 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 3968 .access = PL1_W, .type = ARM_CP_NOP }, 3969 { .name = "XSCALE_UNLOCK_ICACHE", 3970 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 3971 .access = PL1_W, .type = ARM_CP_NOP }, 3972 { .name = "XSCALE_DCACHE_LOCK", 3973 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 3974 .access = PL1_RW, .type = ARM_CP_NOP }, 3975 { .name = "XSCALE_UNLOCK_DCACHE", 3976 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 3977 .access = PL1_W, .type = ARM_CP_NOP }, 3978 REGINFO_SENTINEL 3979 }; 3980 3981 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 3982 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 3983 * implementation of this implementation-defined space. 3984 * Ideally this should eventually disappear in favour of actually 3985 * implementing the correct behaviour for all cores. 3986 */ 3987 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 3988 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 3989 .access = PL1_RW, 3990 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 3991 .resetvalue = 0 }, 3992 REGINFO_SENTINEL 3993 }; 3994 3995 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 3996 /* Cache status: RAZ because we have no cache so it's always clean */ 3997 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 3998 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 3999 .resetvalue = 0 }, 4000 REGINFO_SENTINEL 4001 }; 4002 4003 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4004 /* We never have a a block transfer operation in progress */ 4005 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4006 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4007 .resetvalue = 0 }, 4008 /* The cache ops themselves: these all NOP for QEMU */ 4009 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4010 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4011 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4012 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4013 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4014 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4015 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4016 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4017 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4018 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4019 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4020 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 4021 REGINFO_SENTINEL 4022 }; 4023 4024 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4025 /* The cache test-and-clean instructions always return (1 << 30) 4026 * to indicate that there are no dirty cache lines. 4027 */ 4028 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4029 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4030 .resetvalue = (1 << 30) }, 4031 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4032 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4033 .resetvalue = (1 << 30) }, 4034 REGINFO_SENTINEL 4035 }; 4036 4037 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4038 /* Ignore ReadBuffer accesses */ 4039 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4040 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4041 .access = PL1_RW, .resetvalue = 0, 4042 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4043 REGINFO_SENTINEL 4044 }; 4045 4046 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4047 { 4048 unsigned int cur_el = arm_current_el(env); 4049 4050 if (arm_is_el2_enabled(env) && cur_el == 1) { 4051 return env->cp15.vpidr_el2; 4052 } 4053 return raw_read(env, ri); 4054 } 4055 4056 static uint64_t mpidr_read_val(CPUARMState *env) 4057 { 4058 ARMCPU *cpu = env_archcpu(env); 4059 uint64_t mpidr = cpu->mp_affinity; 4060 4061 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4062 mpidr |= (1U << 31); 4063 /* Cores which are uniprocessor (non-coherent) 4064 * but still implement the MP extensions set 4065 * bit 30. (For instance, Cortex-R5). 4066 */ 4067 if (cpu->mp_is_up) { 4068 mpidr |= (1u << 30); 4069 } 4070 } 4071 return mpidr; 4072 } 4073 4074 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4075 { 4076 unsigned int cur_el = arm_current_el(env); 4077 4078 if (arm_is_el2_enabled(env) && cur_el == 1) { 4079 return env->cp15.vmpidr_el2; 4080 } 4081 return mpidr_read_val(env); 4082 } 4083 4084 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4085 /* NOP AMAIR0/1 */ 4086 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4087 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4088 .access = PL1_RW, .accessfn = access_tvm_trvm, 4089 .type = ARM_CP_CONST, .resetvalue = 0 }, 4090 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4091 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4092 .access = PL1_RW, .accessfn = access_tvm_trvm, 4093 .type = ARM_CP_CONST, .resetvalue = 0 }, 4094 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4095 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4096 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4097 offsetof(CPUARMState, cp15.par_ns)} }, 4098 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4099 .access = PL1_RW, .accessfn = access_tvm_trvm, 4100 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4101 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4102 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4103 .writefn = vmsa_ttbr_write, }, 4104 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4105 .access = PL1_RW, .accessfn = access_tvm_trvm, 4106 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4107 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4108 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4109 .writefn = vmsa_ttbr_write, }, 4110 REGINFO_SENTINEL 4111 }; 4112 4113 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4114 { 4115 return vfp_get_fpcr(env); 4116 } 4117 4118 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4119 uint64_t value) 4120 { 4121 vfp_set_fpcr(env, value); 4122 } 4123 4124 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4125 { 4126 return vfp_get_fpsr(env); 4127 } 4128 4129 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4130 uint64_t value) 4131 { 4132 vfp_set_fpsr(env, value); 4133 } 4134 4135 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4136 bool isread) 4137 { 4138 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4139 return CP_ACCESS_TRAP; 4140 } 4141 return CP_ACCESS_OK; 4142 } 4143 4144 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 env->daif = value & PSTATE_DAIF; 4148 } 4149 4150 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4151 { 4152 return env->pstate & PSTATE_PAN; 4153 } 4154 4155 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4156 uint64_t value) 4157 { 4158 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4159 } 4160 4161 static const ARMCPRegInfo pan_reginfo = { 4162 .name = "PAN", .state = ARM_CP_STATE_AA64, 4163 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4164 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4165 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4166 }; 4167 4168 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4169 { 4170 return env->pstate & PSTATE_UAO; 4171 } 4172 4173 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4174 uint64_t value) 4175 { 4176 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4177 } 4178 4179 static const ARMCPRegInfo uao_reginfo = { 4180 .name = "UAO", .state = ARM_CP_STATE_AA64, 4181 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4182 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4183 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4184 }; 4185 4186 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4187 { 4188 return env->pstate & PSTATE_DIT; 4189 } 4190 4191 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4192 uint64_t value) 4193 { 4194 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4195 } 4196 4197 static const ARMCPRegInfo dit_reginfo = { 4198 .name = "DIT", .state = ARM_CP_STATE_AA64, 4199 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4200 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4201 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4202 }; 4203 4204 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4205 { 4206 return env->pstate & PSTATE_SSBS; 4207 } 4208 4209 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4210 uint64_t value) 4211 { 4212 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4213 } 4214 4215 static const ARMCPRegInfo ssbs_reginfo = { 4216 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4217 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4218 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4219 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4220 }; 4221 4222 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4223 const ARMCPRegInfo *ri, 4224 bool isread) 4225 { 4226 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4227 switch (arm_current_el(env)) { 4228 case 0: 4229 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4230 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4231 return CP_ACCESS_TRAP; 4232 } 4233 /* fall through */ 4234 case 1: 4235 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4236 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4237 return CP_ACCESS_TRAP_EL2; 4238 } 4239 break; 4240 } 4241 return CP_ACCESS_OK; 4242 } 4243 4244 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env, 4245 const ARMCPRegInfo *ri, 4246 bool isread) 4247 { 4248 /* Cache invalidate/clean to Point of Unification... */ 4249 switch (arm_current_el(env)) { 4250 case 0: 4251 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4252 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4253 return CP_ACCESS_TRAP; 4254 } 4255 /* fall through */ 4256 case 1: 4257 /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set. */ 4258 if (arm_hcr_el2_eff(env) & HCR_TPU) { 4259 return CP_ACCESS_TRAP_EL2; 4260 } 4261 break; 4262 } 4263 return CP_ACCESS_OK; 4264 } 4265 4266 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4267 * Page D4-1736 (DDI0487A.b) 4268 */ 4269 4270 static int vae1_tlbmask(CPUARMState *env) 4271 { 4272 uint64_t hcr = arm_hcr_el2_eff(env); 4273 uint16_t mask; 4274 4275 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4276 mask = ARMMMUIdxBit_E20_2 | 4277 ARMMMUIdxBit_E20_2_PAN | 4278 ARMMMUIdxBit_E20_0; 4279 } else { 4280 mask = ARMMMUIdxBit_E10_1 | 4281 ARMMMUIdxBit_E10_1_PAN | 4282 ARMMMUIdxBit_E10_0; 4283 } 4284 4285 if (arm_is_secure_below_el3(env)) { 4286 mask >>= ARM_MMU_IDX_A_NS; 4287 } 4288 4289 return mask; 4290 } 4291 4292 /* Return 56 if TBI is enabled, 64 otherwise. */ 4293 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4294 uint64_t addr) 4295 { 4296 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 4297 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4298 int select = extract64(addr, 55, 1); 4299 4300 return (tbi >> select) & 1 ? 56 : 64; 4301 } 4302 4303 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4304 { 4305 uint64_t hcr = arm_hcr_el2_eff(env); 4306 ARMMMUIdx mmu_idx; 4307 4308 /* Only the regime of the mmu_idx below is significant. */ 4309 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4310 mmu_idx = ARMMMUIdx_E20_0; 4311 } else { 4312 mmu_idx = ARMMMUIdx_E10_0; 4313 } 4314 4315 if (arm_is_secure_below_el3(env)) { 4316 mmu_idx &= ~ARM_MMU_IDX_A_NS; 4317 } 4318 4319 return tlbbits_for_regime(env, mmu_idx, addr); 4320 } 4321 4322 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4323 uint64_t value) 4324 { 4325 CPUState *cs = env_cpu(env); 4326 int mask = vae1_tlbmask(env); 4327 4328 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4329 } 4330 4331 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4332 uint64_t value) 4333 { 4334 CPUState *cs = env_cpu(env); 4335 int mask = vae1_tlbmask(env); 4336 4337 if (tlb_force_broadcast(env)) { 4338 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4339 } else { 4340 tlb_flush_by_mmuidx(cs, mask); 4341 } 4342 } 4343 4344 static int alle1_tlbmask(CPUARMState *env) 4345 { 4346 /* 4347 * Note that the 'ALL' scope must invalidate both stage 1 and 4348 * stage 2 translations, whereas most other scopes only invalidate 4349 * stage 1 translations. 4350 */ 4351 if (arm_is_secure_below_el3(env)) { 4352 return ARMMMUIdxBit_SE10_1 | 4353 ARMMMUIdxBit_SE10_1_PAN | 4354 ARMMMUIdxBit_SE10_0; 4355 } else { 4356 return ARMMMUIdxBit_E10_1 | 4357 ARMMMUIdxBit_E10_1_PAN | 4358 ARMMMUIdxBit_E10_0; 4359 } 4360 } 4361 4362 static int e2_tlbmask(CPUARMState *env) 4363 { 4364 if (arm_is_secure_below_el3(env)) { 4365 return ARMMMUIdxBit_SE20_0 | 4366 ARMMMUIdxBit_SE20_2 | 4367 ARMMMUIdxBit_SE20_2_PAN | 4368 ARMMMUIdxBit_SE2; 4369 } else { 4370 return ARMMMUIdxBit_E20_0 | 4371 ARMMMUIdxBit_E20_2 | 4372 ARMMMUIdxBit_E20_2_PAN | 4373 ARMMMUIdxBit_E2; 4374 } 4375 } 4376 4377 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4378 uint64_t value) 4379 { 4380 CPUState *cs = env_cpu(env); 4381 int mask = alle1_tlbmask(env); 4382 4383 tlb_flush_by_mmuidx(cs, mask); 4384 } 4385 4386 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 CPUState *cs = env_cpu(env); 4390 int mask = e2_tlbmask(env); 4391 4392 tlb_flush_by_mmuidx(cs, mask); 4393 } 4394 4395 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4396 uint64_t value) 4397 { 4398 ARMCPU *cpu = env_archcpu(env); 4399 CPUState *cs = CPU(cpu); 4400 4401 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3); 4402 } 4403 4404 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4405 uint64_t value) 4406 { 4407 CPUState *cs = env_cpu(env); 4408 int mask = alle1_tlbmask(env); 4409 4410 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4411 } 4412 4413 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4414 uint64_t value) 4415 { 4416 CPUState *cs = env_cpu(env); 4417 int mask = e2_tlbmask(env); 4418 4419 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4420 } 4421 4422 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4423 uint64_t value) 4424 { 4425 CPUState *cs = env_cpu(env); 4426 4427 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3); 4428 } 4429 4430 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4431 uint64_t value) 4432 { 4433 /* Invalidate by VA, EL2 4434 * Currently handles both VAE2 and VALE2, since we don't support 4435 * flush-last-level-only. 4436 */ 4437 CPUState *cs = env_cpu(env); 4438 int mask = e2_tlbmask(env); 4439 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4440 4441 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4442 } 4443 4444 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4445 uint64_t value) 4446 { 4447 /* Invalidate by VA, EL3 4448 * Currently handles both VAE3 and VALE3, since we don't support 4449 * flush-last-level-only. 4450 */ 4451 ARMCPU *cpu = env_archcpu(env); 4452 CPUState *cs = CPU(cpu); 4453 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4454 4455 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3); 4456 } 4457 4458 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4459 uint64_t value) 4460 { 4461 CPUState *cs = env_cpu(env); 4462 int mask = vae1_tlbmask(env); 4463 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4464 int bits = vae1_tlbbits(env, pageaddr); 4465 4466 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4467 } 4468 4469 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4470 uint64_t value) 4471 { 4472 /* Invalidate by VA, EL1&0 (AArch64 version). 4473 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4474 * since we don't support flush-for-specific-ASID-only or 4475 * flush-last-level-only. 4476 */ 4477 CPUState *cs = env_cpu(env); 4478 int mask = vae1_tlbmask(env); 4479 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4480 int bits = vae1_tlbbits(env, pageaddr); 4481 4482 if (tlb_force_broadcast(env)) { 4483 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4484 } else { 4485 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4486 } 4487 } 4488 4489 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4490 uint64_t value) 4491 { 4492 CPUState *cs = env_cpu(env); 4493 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4494 bool secure = arm_is_secure_below_el3(env); 4495 int mask = secure ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2; 4496 int bits = tlbbits_for_regime(env, secure ? ARMMMUIdx_SE2 : ARMMMUIdx_E2, 4497 pageaddr); 4498 4499 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4500 } 4501 4502 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4503 uint64_t value) 4504 { 4505 CPUState *cs = env_cpu(env); 4506 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4507 int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr); 4508 4509 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4510 ARMMMUIdxBit_SE3, bits); 4511 } 4512 4513 #ifdef TARGET_AARCH64 4514 typedef struct { 4515 uint64_t base; 4516 uint64_t length; 4517 } TLBIRange; 4518 4519 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4520 uint64_t value) 4521 { 4522 unsigned int page_size_granule, page_shift, num, scale, exponent; 4523 /* Extract one bit to represent the va selector in use. */ 4524 uint64_t select = sextract64(value, 36, 1); 4525 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4526 TLBIRange ret = { }; 4527 4528 page_size_granule = extract64(value, 46, 2); 4529 4530 /* The granule encoded in value must match the granule in use. */ 4531 if (page_size_granule != (param.using64k ? 3 : param.using16k ? 2 : 1)) { 4532 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4533 page_size_granule); 4534 return ret; 4535 } 4536 4537 page_shift = (page_size_granule - 1) * 2 + 12; 4538 num = extract64(value, 39, 5); 4539 scale = extract64(value, 44, 2); 4540 exponent = (5 * scale) + 1; 4541 4542 ret.length = (num + 1) << (exponent + page_shift); 4543 4544 if (param.select) { 4545 ret.base = sextract64(value, 0, 37); 4546 } else { 4547 ret.base = extract64(value, 0, 37); 4548 } 4549 if (param.ds) { 4550 /* 4551 * With DS=1, BaseADDR is always shifted 16 so that it is able 4552 * to address all 52 va bits. The input address is perforce 4553 * aligned on a 64k boundary regardless of translation granule. 4554 */ 4555 page_shift = 16; 4556 } 4557 ret.base <<= page_shift; 4558 4559 return ret; 4560 } 4561 4562 static void do_rvae_write(CPUARMState *env, uint64_t value, 4563 int idxmap, bool synced) 4564 { 4565 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4566 TLBIRange range; 4567 int bits; 4568 4569 range = tlbi_aa64_get_range(env, one_idx, value); 4570 bits = tlbbits_for_regime(env, one_idx, range.base); 4571 4572 if (synced) { 4573 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4574 range.base, 4575 range.length, 4576 idxmap, 4577 bits); 4578 } else { 4579 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4580 range.length, idxmap, bits); 4581 } 4582 } 4583 4584 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4585 const ARMCPRegInfo *ri, 4586 uint64_t value) 4587 { 4588 /* 4589 * Invalidate by VA range, EL1&0. 4590 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4591 * since we don't support flush-for-specific-ASID-only or 4592 * flush-last-level-only. 4593 */ 4594 4595 do_rvae_write(env, value, vae1_tlbmask(env), 4596 tlb_force_broadcast(env)); 4597 } 4598 4599 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4600 const ARMCPRegInfo *ri, 4601 uint64_t value) 4602 { 4603 /* 4604 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4605 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4606 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4607 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4608 * shareable specific flushes. 4609 */ 4610 4611 do_rvae_write(env, value, vae1_tlbmask(env), true); 4612 } 4613 4614 static int vae2_tlbmask(CPUARMState *env) 4615 { 4616 return (arm_is_secure_below_el3(env) 4617 ? ARMMMUIdxBit_SE2 : ARMMMUIdxBit_E2); 4618 } 4619 4620 static void tlbi_aa64_rvae2_write(CPUARMState *env, 4621 const ARMCPRegInfo *ri, 4622 uint64_t value) 4623 { 4624 /* 4625 * Invalidate by VA range, EL2. 4626 * Currently handles all of RVAE2 and RVALE2, 4627 * since we don't support flush-for-specific-ASID-only or 4628 * flush-last-level-only. 4629 */ 4630 4631 do_rvae_write(env, value, vae2_tlbmask(env), 4632 tlb_force_broadcast(env)); 4633 4634 4635 } 4636 4637 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 4638 const ARMCPRegInfo *ri, 4639 uint64_t value) 4640 { 4641 /* 4642 * Invalidate by VA range, Inner/Outer Shareable, EL2. 4643 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 4644 * since we don't support flush-for-specific-ASID-only, 4645 * flush-last-level-only or inner/outer shareable specific flushes. 4646 */ 4647 4648 do_rvae_write(env, value, vae2_tlbmask(env), true); 4649 4650 } 4651 4652 static void tlbi_aa64_rvae3_write(CPUARMState *env, 4653 const ARMCPRegInfo *ri, 4654 uint64_t value) 4655 { 4656 /* 4657 * Invalidate by VA range, EL3. 4658 * Currently handles all of RVAE3 and RVALE3, 4659 * since we don't support flush-for-specific-ASID-only or 4660 * flush-last-level-only. 4661 */ 4662 4663 do_rvae_write(env, value, ARMMMUIdxBit_SE3, 4664 tlb_force_broadcast(env)); 4665 } 4666 4667 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 4668 const ARMCPRegInfo *ri, 4669 uint64_t value) 4670 { 4671 /* 4672 * Invalidate by VA range, EL3, Inner/Outer Shareable. 4673 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 4674 * since we don't support flush-for-specific-ASID-only, 4675 * flush-last-level-only or inner/outer specific flushes. 4676 */ 4677 4678 do_rvae_write(env, value, ARMMMUIdxBit_SE3, true); 4679 } 4680 #endif 4681 4682 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 4683 bool isread) 4684 { 4685 int cur_el = arm_current_el(env); 4686 4687 if (cur_el < 2) { 4688 uint64_t hcr = arm_hcr_el2_eff(env); 4689 4690 if (cur_el == 0) { 4691 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4692 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 4693 return CP_ACCESS_TRAP_EL2; 4694 } 4695 } else { 4696 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 4697 return CP_ACCESS_TRAP; 4698 } 4699 if (hcr & HCR_TDZ) { 4700 return CP_ACCESS_TRAP_EL2; 4701 } 4702 } 4703 } else if (hcr & HCR_TDZ) { 4704 return CP_ACCESS_TRAP_EL2; 4705 } 4706 } 4707 return CP_ACCESS_OK; 4708 } 4709 4710 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 4711 { 4712 ARMCPU *cpu = env_archcpu(env); 4713 int dzp_bit = 1 << 4; 4714 4715 /* DZP indicates whether DC ZVA access is allowed */ 4716 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 4717 dzp_bit = 0; 4718 } 4719 return cpu->dcz_blocksize | dzp_bit; 4720 } 4721 4722 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4723 bool isread) 4724 { 4725 if (!(env->pstate & PSTATE_SP)) { 4726 /* Access to SP_EL0 is undefined if it's being used as 4727 * the stack pointer. 4728 */ 4729 return CP_ACCESS_TRAP_UNCATEGORIZED; 4730 } 4731 return CP_ACCESS_OK; 4732 } 4733 4734 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 4735 { 4736 return env->pstate & PSTATE_SP; 4737 } 4738 4739 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 4740 { 4741 update_spsel(env, val); 4742 } 4743 4744 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4745 uint64_t value) 4746 { 4747 ARMCPU *cpu = env_archcpu(env); 4748 4749 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 4750 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 4751 value &= ~SCTLR_M; 4752 } 4753 4754 /* ??? Lots of these bits are not implemented. */ 4755 4756 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 4757 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 4758 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 4759 } else { 4760 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 4761 SCTLR_ATA0 | SCTLR_ATA); 4762 } 4763 } 4764 4765 if (raw_read(env, ri) == value) { 4766 /* Skip the TLB flush if nothing actually changed; Linux likes 4767 * to do a lot of pointless SCTLR writes. 4768 */ 4769 return; 4770 } 4771 4772 raw_write(env, ri, value); 4773 4774 /* This may enable/disable the MMU, so do a TLB flush. */ 4775 tlb_flush(CPU(cpu)); 4776 4777 if (ri->type & ARM_CP_SUPPRESS_TB_END) { 4778 /* 4779 * Normally we would always end the TB on an SCTLR write; see the 4780 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 4781 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 4782 * of hflags from the translator, so do it here. 4783 */ 4784 arm_rebuild_hflags(env); 4785 } 4786 } 4787 4788 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 4789 bool isread) 4790 { 4791 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 4792 return CP_ACCESS_TRAP_FP_EL2; 4793 } 4794 if (env->cp15.cptr_el[3] & CPTR_TFP) { 4795 return CP_ACCESS_TRAP_FP_EL3; 4796 } 4797 return CP_ACCESS_OK; 4798 } 4799 4800 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4801 uint64_t value) 4802 { 4803 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 4804 } 4805 4806 static const ARMCPRegInfo v8_cp_reginfo[] = { 4807 /* Minimal set of EL0-visible registers. This will need to be expanded 4808 * significantly for system emulation of AArch64 CPUs. 4809 */ 4810 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 4811 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 4812 .access = PL0_RW, .type = ARM_CP_NZCV }, 4813 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 4814 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 4815 .type = ARM_CP_NO_RAW, 4816 .access = PL0_RW, .accessfn = aa64_daif_access, 4817 .fieldoffset = offsetof(CPUARMState, daif), 4818 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 4819 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 4821 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4822 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 4823 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 4824 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 4825 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 4826 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 4827 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 4828 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 4829 .access = PL0_R, .type = ARM_CP_NO_RAW, 4830 .readfn = aa64_dczid_read }, 4831 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 4832 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 4833 .access = PL0_W, .type = ARM_CP_DC_ZVA, 4834 #ifndef CONFIG_USER_ONLY 4835 /* Avoid overhead of an access check that always passes in user-mode */ 4836 .accessfn = aa64_zva_access, 4837 #endif 4838 }, 4839 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 4840 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 4841 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 4842 /* Cache ops: all NOPs since we don't emulate caches */ 4843 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 4844 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 4845 .access = PL1_W, .type = ARM_CP_NOP, 4846 .accessfn = aa64_cacheop_pou_access }, 4847 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 4848 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 4849 .access = PL1_W, .type = ARM_CP_NOP, 4850 .accessfn = aa64_cacheop_pou_access }, 4851 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 4852 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 4853 .access = PL0_W, .type = ARM_CP_NOP, 4854 .accessfn = aa64_cacheop_pou_access }, 4855 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 4856 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 4857 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 4858 .type = ARM_CP_NOP }, 4859 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 4860 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 4861 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4862 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 4863 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 4864 .access = PL0_W, .type = ARM_CP_NOP, 4865 .accessfn = aa64_cacheop_poc_access }, 4866 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 4867 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 4868 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4869 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 4870 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 4871 .access = PL0_W, .type = ARM_CP_NOP, 4872 .accessfn = aa64_cacheop_pou_access }, 4873 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 4874 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 4875 .access = PL0_W, .type = ARM_CP_NOP, 4876 .accessfn = aa64_cacheop_poc_access }, 4877 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 4878 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 4879 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 4880 /* TLBI operations */ 4881 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 4882 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 4883 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4884 .writefn = tlbi_aa64_vmalle1is_write }, 4885 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 4886 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 4887 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4888 .writefn = tlbi_aa64_vae1is_write }, 4889 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 4891 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4892 .writefn = tlbi_aa64_vmalle1is_write }, 4893 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 4894 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 4895 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4896 .writefn = tlbi_aa64_vae1is_write }, 4897 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 4898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 4899 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4900 .writefn = tlbi_aa64_vae1is_write }, 4901 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 4902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 4903 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4904 .writefn = tlbi_aa64_vae1is_write }, 4905 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 4906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 4907 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4908 .writefn = tlbi_aa64_vmalle1_write }, 4909 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 4910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 4911 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4912 .writefn = tlbi_aa64_vae1_write }, 4913 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 4914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 4915 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4916 .writefn = tlbi_aa64_vmalle1_write }, 4917 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 4918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 4919 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4920 .writefn = tlbi_aa64_vae1_write }, 4921 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 4922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 4923 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4924 .writefn = tlbi_aa64_vae1_write }, 4925 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 4926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 4927 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 4928 .writefn = tlbi_aa64_vae1_write }, 4929 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 4930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 4931 .access = PL2_W, .type = ARM_CP_NOP }, 4932 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 4933 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 4934 .access = PL2_W, .type = ARM_CP_NOP }, 4935 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 4936 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 4937 .access = PL2_W, .type = ARM_CP_NO_RAW, 4938 .writefn = tlbi_aa64_alle1is_write }, 4939 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 4940 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 4941 .access = PL2_W, .type = ARM_CP_NO_RAW, 4942 .writefn = tlbi_aa64_alle1is_write }, 4943 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 4944 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 4945 .access = PL2_W, .type = ARM_CP_NOP }, 4946 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 4948 .access = PL2_W, .type = ARM_CP_NOP }, 4949 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 4950 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 4951 .access = PL2_W, .type = ARM_CP_NO_RAW, 4952 .writefn = tlbi_aa64_alle1_write }, 4953 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 4954 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 4955 .access = PL2_W, .type = ARM_CP_NO_RAW, 4956 .writefn = tlbi_aa64_alle1is_write }, 4957 #ifndef CONFIG_USER_ONLY 4958 /* 64 bit address translation operations */ 4959 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 4960 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 4961 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4962 .writefn = ats_write64 }, 4963 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 4964 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 4965 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4966 .writefn = ats_write64 }, 4967 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 4968 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 4969 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4970 .writefn = ats_write64 }, 4971 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 4972 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 4973 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4974 .writefn = ats_write64 }, 4975 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 4976 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 4977 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4978 .writefn = ats_write64 }, 4979 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 4980 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 4981 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4982 .writefn = ats_write64 }, 4983 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 4984 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 4985 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4986 .writefn = ats_write64 }, 4987 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 4988 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 4989 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4990 .writefn = ats_write64 }, 4991 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 4992 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 4993 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 4994 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4995 .writefn = ats_write64 }, 4996 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 4997 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 4998 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 4999 .writefn = ats_write64 }, 5000 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5001 .type = ARM_CP_ALIAS, 5002 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5003 .access = PL1_RW, .resetvalue = 0, 5004 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5005 .writefn = par_write }, 5006 #endif 5007 /* TLB invalidate last level of translation table walk */ 5008 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5009 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5010 .writefn = tlbimva_is_write }, 5011 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5012 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5013 .writefn = tlbimvaa_is_write }, 5014 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5015 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5016 .writefn = tlbimva_write }, 5017 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5018 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5019 .writefn = tlbimvaa_write }, 5020 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5021 .type = ARM_CP_NO_RAW, .access = PL2_W, 5022 .writefn = tlbimva_hyp_write }, 5023 { .name = "TLBIMVALHIS", 5024 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5025 .type = ARM_CP_NO_RAW, .access = PL2_W, 5026 .writefn = tlbimva_hyp_is_write }, 5027 { .name = "TLBIIPAS2", 5028 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5029 .type = ARM_CP_NOP, .access = PL2_W }, 5030 { .name = "TLBIIPAS2IS", 5031 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5032 .type = ARM_CP_NOP, .access = PL2_W }, 5033 { .name = "TLBIIPAS2L", 5034 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5035 .type = ARM_CP_NOP, .access = PL2_W }, 5036 { .name = "TLBIIPAS2LIS", 5037 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5038 .type = ARM_CP_NOP, .access = PL2_W }, 5039 /* 32 bit cache operations */ 5040 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5041 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5042 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5043 .type = ARM_CP_NOP, .access = PL1_W }, 5044 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5045 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5046 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5047 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5048 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5049 .type = ARM_CP_NOP, .access = PL1_W }, 5050 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5051 .type = ARM_CP_NOP, .access = PL1_W }, 5052 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5053 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5054 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5055 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5056 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5057 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5058 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5059 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5060 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5061 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access }, 5062 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5063 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5064 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5065 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5066 /* MMU Domain access control / MPU write buffer control */ 5067 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5068 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5069 .writefn = dacr_write, .raw_writefn = raw_write, 5070 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5071 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5072 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5073 .type = ARM_CP_ALIAS, 5074 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5075 .access = PL1_RW, 5076 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5077 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5078 .type = ARM_CP_ALIAS, 5079 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5080 .access = PL1_RW, 5081 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5082 /* We rely on the access checks not allowing the guest to write to the 5083 * state field when SPSel indicates that it's being used as the stack 5084 * pointer. 5085 */ 5086 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5087 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5088 .access = PL1_RW, .accessfn = sp_el0_access, 5089 .type = ARM_CP_ALIAS, 5090 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5091 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5092 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5093 .access = PL2_RW, .type = ARM_CP_ALIAS, 5094 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5095 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5096 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5097 .type = ARM_CP_NO_RAW, 5098 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5099 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5100 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5101 .type = ARM_CP_ALIAS, 5102 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 5103 .access = PL2_RW, .accessfn = fpexc32_access }, 5104 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5105 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5106 .access = PL2_RW, .resetvalue = 0, 5107 .writefn = dacr_write, .raw_writefn = raw_write, 5108 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5109 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5110 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5111 .access = PL2_RW, .resetvalue = 0, 5112 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5113 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5114 .type = ARM_CP_ALIAS, 5115 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5116 .access = PL2_RW, 5117 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5118 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5119 .type = ARM_CP_ALIAS, 5120 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5121 .access = PL2_RW, 5122 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5123 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5124 .type = ARM_CP_ALIAS, 5125 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5126 .access = PL2_RW, 5127 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5128 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5129 .type = ARM_CP_ALIAS, 5130 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5131 .access = PL2_RW, 5132 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5133 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5134 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5135 .resetvalue = 0, 5136 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5137 { .name = "SDCR", .type = ARM_CP_ALIAS, 5138 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5139 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5140 .writefn = sdcr_write, 5141 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5142 REGINFO_SENTINEL 5143 }; 5144 5145 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 5146 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 5147 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5148 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5149 .access = PL2_RW, 5150 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 5151 { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH, 5152 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5153 .access = PL2_RW, 5154 .type = ARM_CP_CONST, .resetvalue = 0 }, 5155 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5156 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5157 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5158 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5159 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5160 .access = PL2_RW, 5161 .type = ARM_CP_CONST, .resetvalue = 0 }, 5162 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5163 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5164 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5165 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5166 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5167 .access = PL2_RW, .type = ARM_CP_CONST, 5168 .resetvalue = 0 }, 5169 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5170 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5171 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5172 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5173 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5174 .access = PL2_RW, .type = ARM_CP_CONST, 5175 .resetvalue = 0 }, 5176 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5177 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5178 .access = PL2_RW, .type = ARM_CP_CONST, 5179 .resetvalue = 0 }, 5180 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5181 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5182 .access = PL2_RW, .type = ARM_CP_CONST, 5183 .resetvalue = 0 }, 5184 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5185 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5186 .access = PL2_RW, .type = ARM_CP_CONST, 5187 .resetvalue = 0 }, 5188 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5189 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5190 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5191 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 5192 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5193 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5194 .type = ARM_CP_CONST, .resetvalue = 0 }, 5195 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5196 .cp = 15, .opc1 = 6, .crm = 2, 5197 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5198 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 5199 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5200 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5201 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5202 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5203 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5204 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5205 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5206 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5207 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5208 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5209 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5210 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5211 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5212 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5213 .resetvalue = 0 }, 5214 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5215 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5216 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5217 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5218 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5219 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5220 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5221 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5222 .resetvalue = 0 }, 5223 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5224 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5225 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5226 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5227 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 5228 .resetvalue = 0 }, 5229 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5230 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5231 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5232 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5233 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5234 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5235 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5236 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5237 .access = PL2_RW, .accessfn = access_tda, 5238 .type = ARM_CP_CONST, .resetvalue = 0 }, 5239 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 5240 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5241 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5242 .type = ARM_CP_CONST, .resetvalue = 0 }, 5243 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5244 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5245 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5246 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5247 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5248 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5249 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5250 .type = ARM_CP_CONST, 5251 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5252 .access = PL2_RW, .resetvalue = 0 }, 5253 REGINFO_SENTINEL 5254 }; 5255 5256 /* Ditto, but for registers which exist in ARMv8 but not v7 */ 5257 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = { 5258 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5259 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5260 .access = PL2_RW, 5261 .type = ARM_CP_CONST, .resetvalue = 0 }, 5262 REGINFO_SENTINEL 5263 }; 5264 5265 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5266 { 5267 ARMCPU *cpu = env_archcpu(env); 5268 5269 if (arm_feature(env, ARM_FEATURE_V8)) { 5270 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5271 } else { 5272 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5273 } 5274 5275 if (arm_feature(env, ARM_FEATURE_EL3)) { 5276 valid_mask &= ~HCR_HCD; 5277 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5278 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5279 * However, if we're using the SMC PSCI conduit then QEMU is 5280 * effectively acting like EL3 firmware and so the guest at 5281 * EL2 should retain the ability to prevent EL1 from being 5282 * able to make SMC calls into the ersatz firmware, so in 5283 * that case HCR.TSC should be read/write. 5284 */ 5285 valid_mask &= ~HCR_TSC; 5286 } 5287 5288 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5289 if (cpu_isar_feature(aa64_vh, cpu)) { 5290 valid_mask |= HCR_E2H; 5291 } 5292 if (cpu_isar_feature(aa64_lor, cpu)) { 5293 valid_mask |= HCR_TLOR; 5294 } 5295 if (cpu_isar_feature(aa64_pauth, cpu)) { 5296 valid_mask |= HCR_API | HCR_APK; 5297 } 5298 if (cpu_isar_feature(aa64_mte, cpu)) { 5299 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5300 } 5301 } 5302 5303 /* Clear RES0 bits. */ 5304 value &= valid_mask; 5305 5306 /* 5307 * These bits change the MMU setup: 5308 * HCR_VM enables stage 2 translation 5309 * HCR_PTW forbids certain page-table setups 5310 * HCR_DC disables stage1 and enables stage2 translation 5311 * HCR_DCT enables tagging on (disabled) stage1 translation 5312 */ 5313 if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) { 5314 tlb_flush(CPU(cpu)); 5315 } 5316 env->cp15.hcr_el2 = value; 5317 5318 /* 5319 * Updates to VI and VF require us to update the status of 5320 * virtual interrupts, which are the logical OR of these bits 5321 * and the state of the input lines from the GIC. (This requires 5322 * that we have the iothread lock, which is done by marking the 5323 * reginfo structs as ARM_CP_IO.) 5324 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5325 * possible for it to be taken immediately, because VIRQ and 5326 * VFIQ are masked unless running at EL0 or EL1, and HCR 5327 * can only be written at EL2. 5328 */ 5329 g_assert(qemu_mutex_iothread_locked()); 5330 arm_cpu_update_virq(cpu); 5331 arm_cpu_update_vfiq(cpu); 5332 } 5333 5334 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5335 { 5336 do_hcr_write(env, value, 0); 5337 } 5338 5339 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5340 uint64_t value) 5341 { 5342 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5343 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5344 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5345 } 5346 5347 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5348 uint64_t value) 5349 { 5350 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5351 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5352 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5353 } 5354 5355 /* 5356 * Return the effective value of HCR_EL2. 5357 * Bits that are not included here: 5358 * RW (read from SCR_EL3.RW as needed) 5359 */ 5360 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5361 { 5362 uint64_t ret = env->cp15.hcr_el2; 5363 5364 if (!arm_is_el2_enabled(env)) { 5365 /* 5366 * "This register has no effect if EL2 is not enabled in the 5367 * current Security state". This is ARMv8.4-SecEL2 speak for 5368 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5369 * 5370 * Prior to that, the language was "In an implementation that 5371 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5372 * as if this field is 0 for all purposes other than a direct 5373 * read or write access of HCR_EL2". With lots of enumeration 5374 * on a per-field basis. In current QEMU, this is condition 5375 * is arm_is_secure_below_el3. 5376 * 5377 * Since the v8.4 language applies to the entire register, and 5378 * appears to be backward compatible, use that. 5379 */ 5380 return 0; 5381 } 5382 5383 /* 5384 * For a cpu that supports both aarch64 and aarch32, we can set bits 5385 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5386 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5387 */ 5388 if (!arm_el_is_aa64(env, 2)) { 5389 uint64_t aa32_valid; 5390 5391 /* 5392 * These bits are up-to-date as of ARMv8.6. 5393 * For HCR, it's easiest to list just the 2 bits that are invalid. 5394 * For HCR2, list those that are valid. 5395 */ 5396 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5397 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5398 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5399 ret &= aa32_valid; 5400 } 5401 5402 if (ret & HCR_TGE) { 5403 /* These bits are up-to-date as of ARMv8.6. */ 5404 if (ret & HCR_E2H) { 5405 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5406 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5407 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5408 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5409 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5410 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5411 } else { 5412 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5413 } 5414 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5415 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5416 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5417 HCR_TLOR); 5418 } 5419 5420 return ret; 5421 } 5422 5423 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5424 uint64_t value) 5425 { 5426 /* 5427 * For A-profile AArch32 EL3, if NSACR.CP10 5428 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5429 */ 5430 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5431 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5432 value &= ~(0x3 << 10); 5433 value |= env->cp15.cptr_el[2] & (0x3 << 10); 5434 } 5435 env->cp15.cptr_el[2] = value; 5436 } 5437 5438 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5439 { 5440 /* 5441 * For A-profile AArch32 EL3, if NSACR.CP10 5442 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5443 */ 5444 uint64_t value = env->cp15.cptr_el[2]; 5445 5446 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5447 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5448 value |= 0x3 << 10; 5449 } 5450 return value; 5451 } 5452 5453 static const ARMCPRegInfo el2_cp_reginfo[] = { 5454 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5455 .type = ARM_CP_IO, 5456 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5457 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5458 .writefn = hcr_write }, 5459 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5460 .type = ARM_CP_ALIAS | ARM_CP_IO, 5461 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5462 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5463 .writefn = hcr_writelow }, 5464 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5465 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5466 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5467 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5468 .type = ARM_CP_ALIAS, 5469 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5470 .access = PL2_RW, 5471 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5472 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5473 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5474 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5475 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5476 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5477 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5478 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5479 .type = ARM_CP_ALIAS, 5480 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5481 .access = PL2_RW, 5482 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5483 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5484 .type = ARM_CP_ALIAS, 5485 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5486 .access = PL2_RW, 5487 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5488 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5489 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5490 .access = PL2_RW, .writefn = vbar_write, 5491 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5492 .resetvalue = 0 }, 5493 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5494 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5495 .access = PL3_RW, .type = ARM_CP_ALIAS, 5496 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5497 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5498 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5499 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5500 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5501 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5502 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5503 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5504 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5505 .resetvalue = 0 }, 5506 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5507 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5508 .access = PL2_RW, .type = ARM_CP_ALIAS, 5509 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5510 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5511 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5512 .access = PL2_RW, .type = ARM_CP_CONST, 5513 .resetvalue = 0 }, 5514 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5515 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5516 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5517 .access = PL2_RW, .type = ARM_CP_CONST, 5518 .resetvalue = 0 }, 5519 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5520 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5521 .access = PL2_RW, .type = ARM_CP_CONST, 5522 .resetvalue = 0 }, 5523 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5524 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5525 .access = PL2_RW, .type = ARM_CP_CONST, 5526 .resetvalue = 0 }, 5527 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5528 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5529 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5530 /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */ 5531 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5532 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5533 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5534 .type = ARM_CP_ALIAS, 5535 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5536 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5537 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5538 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5539 .access = PL2_RW, 5540 /* no .writefn needed as this can't cause an ASID change; 5541 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 5542 */ 5543 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5544 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5545 .cp = 15, .opc1 = 6, .crm = 2, 5546 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5547 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5548 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5549 .writefn = vttbr_write }, 5550 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5551 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5552 .access = PL2_RW, .writefn = vttbr_write, 5553 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5554 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5555 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5556 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5557 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 5558 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5559 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 5560 .access = PL2_RW, .resetvalue = 0, 5561 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 5562 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 5563 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 5564 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 5565 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5566 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 5567 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5568 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 5569 { .name = "TLBIALLNSNH", 5570 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5571 .type = ARM_CP_NO_RAW, .access = PL2_W, 5572 .writefn = tlbiall_nsnh_write }, 5573 { .name = "TLBIALLNSNHIS", 5574 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5575 .type = ARM_CP_NO_RAW, .access = PL2_W, 5576 .writefn = tlbiall_nsnh_is_write }, 5577 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5578 .type = ARM_CP_NO_RAW, .access = PL2_W, 5579 .writefn = tlbiall_hyp_write }, 5580 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5581 .type = ARM_CP_NO_RAW, .access = PL2_W, 5582 .writefn = tlbiall_hyp_is_write }, 5583 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5584 .type = ARM_CP_NO_RAW, .access = PL2_W, 5585 .writefn = tlbimva_hyp_write }, 5586 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5587 .type = ARM_CP_NO_RAW, .access = PL2_W, 5588 .writefn = tlbimva_hyp_is_write }, 5589 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 5590 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 5591 .type = ARM_CP_NO_RAW, .access = PL2_W, 5592 .writefn = tlbi_aa64_alle2_write }, 5593 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 5594 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 5595 .type = ARM_CP_NO_RAW, .access = PL2_W, 5596 .writefn = tlbi_aa64_vae2_write }, 5597 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 5598 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5599 .access = PL2_W, .type = ARM_CP_NO_RAW, 5600 .writefn = tlbi_aa64_vae2_write }, 5601 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 5602 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 5603 .access = PL2_W, .type = ARM_CP_NO_RAW, 5604 .writefn = tlbi_aa64_alle2is_write }, 5605 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 5606 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 5607 .type = ARM_CP_NO_RAW, .access = PL2_W, 5608 .writefn = tlbi_aa64_vae2is_write }, 5609 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 5610 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5611 .access = PL2_W, .type = ARM_CP_NO_RAW, 5612 .writefn = tlbi_aa64_vae2is_write }, 5613 #ifndef CONFIG_USER_ONLY 5614 /* Unlike the other EL2-related AT operations, these must 5615 * UNDEF from EL3 if EL2 is not implemented, which is why we 5616 * define them here rather than with the rest of the AT ops. 5617 */ 5618 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 5619 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5620 .access = PL2_W, .accessfn = at_s1e2_access, 5621 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5622 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 5623 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5624 .access = PL2_W, .accessfn = at_s1e2_access, 5625 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 }, 5626 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 5627 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 5628 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 5629 * to behave as if SCR.NS was 1. 5630 */ 5631 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 5632 .access = PL2_W, 5633 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5634 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 5635 .access = PL2_W, 5636 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 5637 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 5638 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 5639 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 5640 * reset values as IMPDEF. We choose to reset to 3 to comply with 5641 * both ARMv7 and ARMv8. 5642 */ 5643 .access = PL2_RW, .resetvalue = 3, 5644 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 5645 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 5646 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 5647 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 5648 .writefn = gt_cntvoff_write, 5649 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5650 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 5651 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 5652 .writefn = gt_cntvoff_write, 5653 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 5654 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 5655 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 5656 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5657 .type = ARM_CP_IO, .access = PL2_RW, 5658 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5659 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 5660 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 5661 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 5662 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 5663 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 5664 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 5665 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 5666 .resetfn = gt_hyp_timer_reset, 5667 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 5668 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 5669 .type = ARM_CP_IO, 5670 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 5671 .access = PL2_RW, 5672 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 5673 .resetvalue = 0, 5674 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 5675 #endif 5676 /* The only field of MDCR_EL2 that has a defined architectural reset value 5677 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 5678 */ 5679 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 5680 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 5681 .access = PL2_RW, .resetvalue = PMCR_NUM_COUNTERS, 5682 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 5683 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 5684 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5685 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5686 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5687 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 5688 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 5689 .access = PL2_RW, 5690 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 5691 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 5692 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 5693 .access = PL2_RW, 5694 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 5695 REGINFO_SENTINEL 5696 }; 5697 5698 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 5699 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 5700 .type = ARM_CP_ALIAS | ARM_CP_IO, 5701 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 5702 .access = PL2_RW, 5703 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 5704 .writefn = hcr_writehigh }, 5705 REGINFO_SENTINEL 5706 }; 5707 5708 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 5709 bool isread) 5710 { 5711 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 5712 return CP_ACCESS_OK; 5713 } 5714 return CP_ACCESS_TRAP_UNCATEGORIZED; 5715 } 5716 5717 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 5718 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 5719 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 5720 .access = PL2_RW, .accessfn = sel2_access, 5721 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 5722 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 5723 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 5724 .access = PL2_RW, .accessfn = sel2_access, 5725 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 5726 REGINFO_SENTINEL 5727 }; 5728 5729 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 5730 bool isread) 5731 { 5732 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 5733 * At Secure EL1 it traps to EL3 or EL2. 5734 */ 5735 if (arm_current_el(env) == 3) { 5736 return CP_ACCESS_OK; 5737 } 5738 if (arm_is_secure_below_el3(env)) { 5739 if (env->cp15.scr_el3 & SCR_EEL2) { 5740 return CP_ACCESS_TRAP_EL2; 5741 } 5742 return CP_ACCESS_TRAP_EL3; 5743 } 5744 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 5745 if (isread) { 5746 return CP_ACCESS_OK; 5747 } 5748 return CP_ACCESS_TRAP_UNCATEGORIZED; 5749 } 5750 5751 static const ARMCPRegInfo el3_cp_reginfo[] = { 5752 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 5753 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 5754 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 5755 .resetfn = scr_reset, .writefn = scr_write }, 5756 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 5757 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 5758 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5759 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 5760 .writefn = scr_write }, 5761 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 5762 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 5763 .access = PL3_RW, .resetvalue = 0, 5764 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 5765 { .name = "SDER", 5766 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 5767 .access = PL3_RW, .resetvalue = 0, 5768 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 5769 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5770 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5771 .writefn = vbar_write, .resetvalue = 0, 5772 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 5773 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 5774 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 5775 .access = PL3_RW, .resetvalue = 0, 5776 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 5777 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 5778 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 5779 .access = PL3_RW, 5780 /* no .writefn needed as this can't cause an ASID change; 5781 * we must provide a .raw_writefn and .resetfn because we handle 5782 * reset and migration for the AArch32 TTBCR(S), which might be 5783 * using mask and base_mask. 5784 */ 5785 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 5786 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 5787 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 5788 .type = ARM_CP_ALIAS, 5789 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 5790 .access = PL3_RW, 5791 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 5792 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 5793 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 5794 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 5795 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 5796 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 5797 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 5798 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 5799 .type = ARM_CP_ALIAS, 5800 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 5801 .access = PL3_RW, 5802 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 5803 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 5804 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 5805 .access = PL3_RW, .writefn = vbar_write, 5806 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 5807 .resetvalue = 0 }, 5808 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 5809 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 5810 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 5811 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 5812 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 5813 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 5814 .access = PL3_RW, .resetvalue = 0, 5815 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 5816 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 5817 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 5818 .access = PL3_RW, .type = ARM_CP_CONST, 5819 .resetvalue = 0 }, 5820 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 5821 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 5822 .access = PL3_RW, .type = ARM_CP_CONST, 5823 .resetvalue = 0 }, 5824 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 5825 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 5826 .access = PL3_RW, .type = ARM_CP_CONST, 5827 .resetvalue = 0 }, 5828 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 5829 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 5830 .access = PL3_W, .type = ARM_CP_NO_RAW, 5831 .writefn = tlbi_aa64_alle3is_write }, 5832 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 5833 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 5834 .access = PL3_W, .type = ARM_CP_NO_RAW, 5835 .writefn = tlbi_aa64_vae3is_write }, 5836 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 5837 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 5838 .access = PL3_W, .type = ARM_CP_NO_RAW, 5839 .writefn = tlbi_aa64_vae3is_write }, 5840 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 5841 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 5842 .access = PL3_W, .type = ARM_CP_NO_RAW, 5843 .writefn = tlbi_aa64_alle3_write }, 5844 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 5845 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 5846 .access = PL3_W, .type = ARM_CP_NO_RAW, 5847 .writefn = tlbi_aa64_vae3_write }, 5848 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 5849 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 5850 .access = PL3_W, .type = ARM_CP_NO_RAW, 5851 .writefn = tlbi_aa64_vae3_write }, 5852 REGINFO_SENTINEL 5853 }; 5854 5855 #ifndef CONFIG_USER_ONLY 5856 /* Test if system register redirection is to occur in the current state. */ 5857 static bool redirect_for_e2h(CPUARMState *env) 5858 { 5859 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 5860 } 5861 5862 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 5863 { 5864 CPReadFn *readfn; 5865 5866 if (redirect_for_e2h(env)) { 5867 /* Switch to the saved EL2 version of the register. */ 5868 ri = ri->opaque; 5869 readfn = ri->readfn; 5870 } else { 5871 readfn = ri->orig_readfn; 5872 } 5873 if (readfn == NULL) { 5874 readfn = raw_read; 5875 } 5876 return readfn(env, ri); 5877 } 5878 5879 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 5880 uint64_t value) 5881 { 5882 CPWriteFn *writefn; 5883 5884 if (redirect_for_e2h(env)) { 5885 /* Switch to the saved EL2 version of the register. */ 5886 ri = ri->opaque; 5887 writefn = ri->writefn; 5888 } else { 5889 writefn = ri->orig_writefn; 5890 } 5891 if (writefn == NULL) { 5892 writefn = raw_write; 5893 } 5894 writefn(env, ri, value); 5895 } 5896 5897 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 5898 { 5899 struct E2HAlias { 5900 uint32_t src_key, dst_key, new_key; 5901 const char *src_name, *dst_name, *new_name; 5902 bool (*feature)(const ARMISARegisters *id); 5903 }; 5904 5905 #define K(op0, op1, crn, crm, op2) \ 5906 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 5907 5908 static const struct E2HAlias aliases[] = { 5909 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 5910 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 5911 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 5912 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 5913 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 5914 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 5915 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 5916 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 5917 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 5918 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 5919 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 5920 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 5921 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 5922 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 5923 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 5924 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 5925 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 5926 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 5927 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 5928 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 5929 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 5930 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 5931 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 5932 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 5933 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 5934 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 5935 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 5936 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 5937 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 5938 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 5939 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 5940 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 5941 5942 /* 5943 * Note that redirection of ZCR is mentioned in the description 5944 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 5945 * not in the summary table. 5946 */ 5947 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 5948 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 5949 5950 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 5951 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 5952 5953 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 5954 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 5955 }; 5956 #undef K 5957 5958 size_t i; 5959 5960 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 5961 const struct E2HAlias *a = &aliases[i]; 5962 ARMCPRegInfo *src_reg, *dst_reg; 5963 5964 if (a->feature && !a->feature(&cpu->isar)) { 5965 continue; 5966 } 5967 5968 src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key); 5969 dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key); 5970 g_assert(src_reg != NULL); 5971 g_assert(dst_reg != NULL); 5972 5973 /* Cross-compare names to detect typos in the keys. */ 5974 g_assert(strcmp(src_reg->name, a->src_name) == 0); 5975 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 5976 5977 /* None of the core system registers use opaque; we will. */ 5978 g_assert(src_reg->opaque == NULL); 5979 5980 /* Create alias before redirection so we dup the right data. */ 5981 if (a->new_key) { 5982 ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 5983 uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t)); 5984 bool ok; 5985 5986 new_reg->name = a->new_name; 5987 new_reg->type |= ARM_CP_ALIAS; 5988 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 5989 new_reg->access &= PL2_RW | PL3_RW; 5990 5991 ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg); 5992 g_assert(ok); 5993 } 5994 5995 src_reg->opaque = dst_reg; 5996 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 5997 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 5998 if (!src_reg->raw_readfn) { 5999 src_reg->raw_readfn = raw_read; 6000 } 6001 if (!src_reg->raw_writefn) { 6002 src_reg->raw_writefn = raw_write; 6003 } 6004 src_reg->readfn = el2_e2h_read; 6005 src_reg->writefn = el2_e2h_write; 6006 } 6007 } 6008 #endif 6009 6010 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6011 bool isread) 6012 { 6013 int cur_el = arm_current_el(env); 6014 6015 if (cur_el < 2) { 6016 uint64_t hcr = arm_hcr_el2_eff(env); 6017 6018 if (cur_el == 0) { 6019 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6020 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6021 return CP_ACCESS_TRAP_EL2; 6022 } 6023 } else { 6024 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6025 return CP_ACCESS_TRAP; 6026 } 6027 if (hcr & HCR_TID2) { 6028 return CP_ACCESS_TRAP_EL2; 6029 } 6030 } 6031 } else if (hcr & HCR_TID2) { 6032 return CP_ACCESS_TRAP_EL2; 6033 } 6034 } 6035 6036 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6037 return CP_ACCESS_TRAP_EL2; 6038 } 6039 6040 return CP_ACCESS_OK; 6041 } 6042 6043 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 6044 uint64_t value) 6045 { 6046 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 6047 * read via a bit in OSLSR_EL1. 6048 */ 6049 int oslock; 6050 6051 if (ri->state == ARM_CP_STATE_AA32) { 6052 oslock = (value == 0xC5ACCE55); 6053 } else { 6054 oslock = value & 1; 6055 } 6056 6057 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 6058 } 6059 6060 static const ARMCPRegInfo debug_cp_reginfo[] = { 6061 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 6062 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 6063 * unlike DBGDRAR it is never accessible from EL0. 6064 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 6065 * accessor. 6066 */ 6067 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 6068 .access = PL0_R, .accessfn = access_tdra, 6069 .type = ARM_CP_CONST, .resetvalue = 0 }, 6070 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 6071 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 6072 .access = PL1_R, .accessfn = access_tdra, 6073 .type = ARM_CP_CONST, .resetvalue = 0 }, 6074 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 6075 .access = PL0_R, .accessfn = access_tdra, 6076 .type = ARM_CP_CONST, .resetvalue = 0 }, 6077 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 6078 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 6079 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 6080 .access = PL1_RW, .accessfn = access_tda, 6081 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 6082 .resetvalue = 0 }, 6083 /* 6084 * MDCCSR_EL0[30:29] map to EDSCR[30:29]. Simply RAZ as the external 6085 * Debug Communication Channel is not implemented. 6086 */ 6087 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64, 6088 .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0, 6089 .access = PL0_R, .accessfn = access_tda, 6090 .type = ARM_CP_CONST, .resetvalue = 0 }, 6091 /* 6092 * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2]. Map all bits as 6093 * it is unlikely a guest will care. 6094 * We don't implement the configurable EL0 access. 6095 */ 6096 { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32, 6097 .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 6098 .type = ARM_CP_ALIAS, 6099 .access = PL1_R, .accessfn = access_tda, 6100 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 6101 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 6102 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 6103 .access = PL1_W, .type = ARM_CP_NO_RAW, 6104 .accessfn = access_tdosa, 6105 .writefn = oslar_write }, 6106 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 6107 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 6108 .access = PL1_R, .resetvalue = 10, 6109 .accessfn = access_tdosa, 6110 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 6111 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 6112 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 6113 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 6114 .access = PL1_RW, .accessfn = access_tdosa, 6115 .type = ARM_CP_NOP }, 6116 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 6117 * implement vector catch debug events yet. 6118 */ 6119 { .name = "DBGVCR", 6120 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 6121 .access = PL1_RW, .accessfn = access_tda, 6122 .type = ARM_CP_NOP }, 6123 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 6124 * to save and restore a 32-bit guest's DBGVCR) 6125 */ 6126 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 6127 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 6128 .access = PL2_RW, .accessfn = access_tda, 6129 .type = ARM_CP_NOP }, 6130 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 6131 * Channel but Linux may try to access this register. The 32-bit 6132 * alias is DBGDCCINT. 6133 */ 6134 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 6135 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 6136 .access = PL1_RW, .accessfn = access_tda, 6137 .type = ARM_CP_NOP }, 6138 REGINFO_SENTINEL 6139 }; 6140 6141 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 6142 /* 64 bit access versions of the (dummy) debug registers */ 6143 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 6144 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6145 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 6146 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 6147 REGINFO_SENTINEL 6148 }; 6149 6150 /* Return the exception level to which exceptions should be taken 6151 * via SVEAccessTrap. If an exception should be routed through 6152 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should 6153 * take care of raising that exception. 6154 * C.f. the ARM pseudocode function CheckSVEEnabled. 6155 */ 6156 int sve_exception_el(CPUARMState *env, int el) 6157 { 6158 #ifndef CONFIG_USER_ONLY 6159 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 6160 6161 if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6162 /* Check CPACR.ZEN. */ 6163 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 6164 case 1: 6165 if (el != 0) { 6166 break; 6167 } 6168 /* fall through */ 6169 case 0: 6170 case 2: 6171 /* route_to_el2 */ 6172 return hcr_el2 & HCR_TGE ? 2 : 1; 6173 } 6174 6175 /* Check CPACR.FPEN. */ 6176 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 6177 case 1: 6178 if (el != 0) { 6179 break; 6180 } 6181 /* fall through */ 6182 case 0: 6183 case 2: 6184 return 0; 6185 } 6186 } 6187 6188 /* 6189 * CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). 6190 */ 6191 if (el <= 2) { 6192 if (hcr_el2 & HCR_E2H) { 6193 /* Check CPTR_EL2.ZEN. */ 6194 switch (extract32(env->cp15.cptr_el[2], 16, 2)) { 6195 case 1: 6196 if (el != 0 || !(hcr_el2 & HCR_TGE)) { 6197 break; 6198 } 6199 /* fall through */ 6200 case 0: 6201 case 2: 6202 return 2; 6203 } 6204 6205 /* Check CPTR_EL2.FPEN. */ 6206 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 6207 case 1: 6208 if (el == 2 || !(hcr_el2 & HCR_TGE)) { 6209 break; 6210 } 6211 /* fall through */ 6212 case 0: 6213 case 2: 6214 return 0; 6215 } 6216 } else if (arm_is_el2_enabled(env)) { 6217 if (env->cp15.cptr_el[2] & CPTR_TZ) { 6218 return 2; 6219 } 6220 if (env->cp15.cptr_el[2] & CPTR_TFP) { 6221 return 0; 6222 } 6223 } 6224 } 6225 6226 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6227 if (arm_feature(env, ARM_FEATURE_EL3) 6228 && !(env->cp15.cptr_el[3] & CPTR_EZ)) { 6229 return 3; 6230 } 6231 #endif 6232 return 0; 6233 } 6234 6235 uint32_t aarch64_sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len) 6236 { 6237 uint32_t end_len; 6238 6239 start_len = MIN(start_len, ARM_MAX_VQ - 1); 6240 end_len = start_len; 6241 6242 if (!test_bit(start_len, cpu->sve_vq_map)) { 6243 end_len = find_last_bit(cpu->sve_vq_map, start_len); 6244 assert(end_len < start_len); 6245 } 6246 return end_len; 6247 } 6248 6249 /* 6250 * Given that SVE is enabled, return the vector length for EL. 6251 */ 6252 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el) 6253 { 6254 ARMCPU *cpu = env_archcpu(env); 6255 uint32_t zcr_len = cpu->sve_max_vq - 1; 6256 6257 if (el <= 1 && 6258 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 6259 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]); 6260 } 6261 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6262 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 6263 } 6264 if (arm_feature(env, ARM_FEATURE_EL3)) { 6265 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 6266 } 6267 6268 return aarch64_sve_zcr_get_valid_len(cpu, zcr_len); 6269 } 6270 6271 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6272 uint64_t value) 6273 { 6274 int cur_el = arm_current_el(env); 6275 int old_len = sve_zcr_len_for_el(env, cur_el); 6276 int new_len; 6277 6278 /* Bits other than [3:0] are RAZ/WI. */ 6279 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6280 raw_write(env, ri, value & 0xf); 6281 6282 /* 6283 * Because we arrived here, we know both FP and SVE are enabled; 6284 * otherwise we would have trapped access to the ZCR_ELn register. 6285 */ 6286 new_len = sve_zcr_len_for_el(env, cur_el); 6287 if (new_len < old_len) { 6288 aarch64_sve_narrow_vq(env, new_len + 1); 6289 } 6290 } 6291 6292 static const ARMCPRegInfo zcr_el1_reginfo = { 6293 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6294 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6295 .access = PL1_RW, .type = ARM_CP_SVE, 6296 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6297 .writefn = zcr_write, .raw_writefn = raw_write 6298 }; 6299 6300 static const ARMCPRegInfo zcr_el2_reginfo = { 6301 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6302 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6303 .access = PL2_RW, .type = ARM_CP_SVE, 6304 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6305 .writefn = zcr_write, .raw_writefn = raw_write 6306 }; 6307 6308 static const ARMCPRegInfo zcr_no_el2_reginfo = { 6309 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6310 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6311 .access = PL2_RW, .type = ARM_CP_SVE, 6312 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 6313 }; 6314 6315 static const ARMCPRegInfo zcr_el3_reginfo = { 6316 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6317 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6318 .access = PL3_RW, .type = ARM_CP_SVE, 6319 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6320 .writefn = zcr_write, .raw_writefn = raw_write 6321 }; 6322 6323 void hw_watchpoint_update(ARMCPU *cpu, int n) 6324 { 6325 CPUARMState *env = &cpu->env; 6326 vaddr len = 0; 6327 vaddr wvr = env->cp15.dbgwvr[n]; 6328 uint64_t wcr = env->cp15.dbgwcr[n]; 6329 int mask; 6330 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 6331 6332 if (env->cpu_watchpoint[n]) { 6333 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 6334 env->cpu_watchpoint[n] = NULL; 6335 } 6336 6337 if (!extract64(wcr, 0, 1)) { 6338 /* E bit clear : watchpoint disabled */ 6339 return; 6340 } 6341 6342 switch (extract64(wcr, 3, 2)) { 6343 case 0: 6344 /* LSC 00 is reserved and must behave as if the wp is disabled */ 6345 return; 6346 case 1: 6347 flags |= BP_MEM_READ; 6348 break; 6349 case 2: 6350 flags |= BP_MEM_WRITE; 6351 break; 6352 case 3: 6353 flags |= BP_MEM_ACCESS; 6354 break; 6355 } 6356 6357 /* Attempts to use both MASK and BAS fields simultaneously are 6358 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 6359 * thus generating a watchpoint for every byte in the masked region. 6360 */ 6361 mask = extract64(wcr, 24, 4); 6362 if (mask == 1 || mask == 2) { 6363 /* Reserved values of MASK; we must act as if the mask value was 6364 * some non-reserved value, or as if the watchpoint were disabled. 6365 * We choose the latter. 6366 */ 6367 return; 6368 } else if (mask) { 6369 /* Watchpoint covers an aligned area up to 2GB in size */ 6370 len = 1ULL << mask; 6371 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 6372 * whether the watchpoint fires when the unmasked bits match; we opt 6373 * to generate the exceptions. 6374 */ 6375 wvr &= ~(len - 1); 6376 } else { 6377 /* Watchpoint covers bytes defined by the byte address select bits */ 6378 int bas = extract64(wcr, 5, 8); 6379 int basstart; 6380 6381 if (extract64(wvr, 2, 1)) { 6382 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 6383 * ignored, and BAS[3:0] define which bytes to watch. 6384 */ 6385 bas &= 0xf; 6386 } 6387 6388 if (bas == 0) { 6389 /* This must act as if the watchpoint is disabled */ 6390 return; 6391 } 6392 6393 /* The BAS bits are supposed to be programmed to indicate a contiguous 6394 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 6395 * we fire for each byte in the word/doubleword addressed by the WVR. 6396 * We choose to ignore any non-zero bits after the first range of 1s. 6397 */ 6398 basstart = ctz32(bas); 6399 len = cto32(bas >> basstart); 6400 wvr += basstart; 6401 } 6402 6403 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 6404 &env->cpu_watchpoint[n]); 6405 } 6406 6407 void hw_watchpoint_update_all(ARMCPU *cpu) 6408 { 6409 int i; 6410 CPUARMState *env = &cpu->env; 6411 6412 /* Completely clear out existing QEMU watchpoints and our array, to 6413 * avoid possible stale entries following migration load. 6414 */ 6415 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 6416 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 6417 6418 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 6419 hw_watchpoint_update(cpu, i); 6420 } 6421 } 6422 6423 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6424 uint64_t value) 6425 { 6426 ARMCPU *cpu = env_archcpu(env); 6427 int i = ri->crm; 6428 6429 /* 6430 * Bits [1:0] are RES0. 6431 * 6432 * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA) 6433 * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if 6434 * they contain the value written. It is CONSTRAINED UNPREDICTABLE 6435 * whether the RESS bits are ignored when comparing an address. 6436 * 6437 * Therefore we are allowed to compare the entire register, which lets 6438 * us avoid considering whether or not FEAT_LVA is actually enabled. 6439 */ 6440 value &= ~3ULL; 6441 6442 raw_write(env, ri, value); 6443 hw_watchpoint_update(cpu, i); 6444 } 6445 6446 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6447 uint64_t value) 6448 { 6449 ARMCPU *cpu = env_archcpu(env); 6450 int i = ri->crm; 6451 6452 raw_write(env, ri, value); 6453 hw_watchpoint_update(cpu, i); 6454 } 6455 6456 void hw_breakpoint_update(ARMCPU *cpu, int n) 6457 { 6458 CPUARMState *env = &cpu->env; 6459 uint64_t bvr = env->cp15.dbgbvr[n]; 6460 uint64_t bcr = env->cp15.dbgbcr[n]; 6461 vaddr addr; 6462 int bt; 6463 int flags = BP_CPU; 6464 6465 if (env->cpu_breakpoint[n]) { 6466 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 6467 env->cpu_breakpoint[n] = NULL; 6468 } 6469 6470 if (!extract64(bcr, 0, 1)) { 6471 /* E bit clear : watchpoint disabled */ 6472 return; 6473 } 6474 6475 bt = extract64(bcr, 20, 4); 6476 6477 switch (bt) { 6478 case 4: /* unlinked address mismatch (reserved if AArch64) */ 6479 case 5: /* linked address mismatch (reserved if AArch64) */ 6480 qemu_log_mask(LOG_UNIMP, 6481 "arm: address mismatch breakpoint types not implemented\n"); 6482 return; 6483 case 0: /* unlinked address match */ 6484 case 1: /* linked address match */ 6485 { 6486 /* 6487 * Bits [1:0] are RES0. 6488 * 6489 * It is IMPLEMENTATION DEFINED whether bits [63:49] 6490 * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit 6491 * of the VA field ([48] or [52] for FEAT_LVA), or whether the 6492 * value is read as written. It is CONSTRAINED UNPREDICTABLE 6493 * whether the RESS bits are ignored when comparing an address. 6494 * Therefore we are allowed to compare the entire register, which 6495 * lets us avoid considering whether FEAT_LVA is actually enabled. 6496 * 6497 * The BAS field is used to allow setting breakpoints on 16-bit 6498 * wide instructions; it is CONSTRAINED UNPREDICTABLE whether 6499 * a bp will fire if the addresses covered by the bp and the addresses 6500 * covered by the insn overlap but the insn doesn't start at the 6501 * start of the bp address range. We choose to require the insn and 6502 * the bp to have the same address. The constraints on writing to 6503 * BAS enforced in dbgbcr_write mean we have only four cases: 6504 * 0b0000 => no breakpoint 6505 * 0b0011 => breakpoint on addr 6506 * 0b1100 => breakpoint on addr + 2 6507 * 0b1111 => breakpoint on addr 6508 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 6509 */ 6510 int bas = extract64(bcr, 5, 4); 6511 addr = bvr & ~3ULL; 6512 if (bas == 0) { 6513 return; 6514 } 6515 if (bas == 0xc) { 6516 addr += 2; 6517 } 6518 break; 6519 } 6520 case 2: /* unlinked context ID match */ 6521 case 8: /* unlinked VMID match (reserved if no EL2) */ 6522 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 6523 qemu_log_mask(LOG_UNIMP, 6524 "arm: unlinked context breakpoint types not implemented\n"); 6525 return; 6526 case 9: /* linked VMID match (reserved if no EL2) */ 6527 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 6528 case 3: /* linked context ID match */ 6529 default: 6530 /* We must generate no events for Linked context matches (unless 6531 * they are linked to by some other bp/wp, which is handled in 6532 * updates for the linking bp/wp). We choose to also generate no events 6533 * for reserved values. 6534 */ 6535 return; 6536 } 6537 6538 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 6539 } 6540 6541 void hw_breakpoint_update_all(ARMCPU *cpu) 6542 { 6543 int i; 6544 CPUARMState *env = &cpu->env; 6545 6546 /* Completely clear out existing QEMU breakpoints and our array, to 6547 * avoid possible stale entries following migration load. 6548 */ 6549 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 6550 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 6551 6552 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 6553 hw_breakpoint_update(cpu, i); 6554 } 6555 } 6556 6557 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6558 uint64_t value) 6559 { 6560 ARMCPU *cpu = env_archcpu(env); 6561 int i = ri->crm; 6562 6563 raw_write(env, ri, value); 6564 hw_breakpoint_update(cpu, i); 6565 } 6566 6567 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6568 uint64_t value) 6569 { 6570 ARMCPU *cpu = env_archcpu(env); 6571 int i = ri->crm; 6572 6573 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 6574 * copy of BAS[0]. 6575 */ 6576 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 6577 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 6578 6579 raw_write(env, ri, value); 6580 hw_breakpoint_update(cpu, i); 6581 } 6582 6583 static void define_debug_regs(ARMCPU *cpu) 6584 { 6585 /* Define v7 and v8 architectural debug registers. 6586 * These are just dummy implementations for now. 6587 */ 6588 int i; 6589 int wrps, brps, ctx_cmps; 6590 6591 /* 6592 * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot 6593 * use AArch32. Given that bit 15 is RES1, if the value is 0 then 6594 * the register must not exist for this cpu. 6595 */ 6596 if (cpu->isar.dbgdidr != 0) { 6597 ARMCPRegInfo dbgdidr = { 6598 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, 6599 .opc1 = 0, .opc2 = 0, 6600 .access = PL0_R, .accessfn = access_tda, 6601 .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr, 6602 }; 6603 define_one_arm_cp_reg(cpu, &dbgdidr); 6604 } 6605 6606 /* Note that all these register fields hold "number of Xs minus 1". */ 6607 brps = arm_num_brps(cpu); 6608 wrps = arm_num_wrps(cpu); 6609 ctx_cmps = arm_num_ctx_cmps(cpu); 6610 6611 assert(ctx_cmps <= brps); 6612 6613 define_arm_cp_regs(cpu, debug_cp_reginfo); 6614 6615 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 6616 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 6617 } 6618 6619 for (i = 0; i < brps; i++) { 6620 ARMCPRegInfo dbgregs[] = { 6621 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 6622 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 6623 .access = PL1_RW, .accessfn = access_tda, 6624 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 6625 .writefn = dbgbvr_write, .raw_writefn = raw_write 6626 }, 6627 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 6628 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 6629 .access = PL1_RW, .accessfn = access_tda, 6630 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 6631 .writefn = dbgbcr_write, .raw_writefn = raw_write 6632 }, 6633 REGINFO_SENTINEL 6634 }; 6635 define_arm_cp_regs(cpu, dbgregs); 6636 } 6637 6638 for (i = 0; i < wrps; i++) { 6639 ARMCPRegInfo dbgregs[] = { 6640 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 6641 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 6642 .access = PL1_RW, .accessfn = access_tda, 6643 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 6644 .writefn = dbgwvr_write, .raw_writefn = raw_write 6645 }, 6646 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 6647 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 6648 .access = PL1_RW, .accessfn = access_tda, 6649 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 6650 .writefn = dbgwcr_write, .raw_writefn = raw_write 6651 }, 6652 REGINFO_SENTINEL 6653 }; 6654 define_arm_cp_regs(cpu, dbgregs); 6655 } 6656 } 6657 6658 static void define_pmu_regs(ARMCPU *cpu) 6659 { 6660 /* 6661 * v7 performance monitor control register: same implementor 6662 * field as main ID register, and we implement four counters in 6663 * addition to the cycle count register. 6664 */ 6665 unsigned int i, pmcrn = PMCR_NUM_COUNTERS; 6666 ARMCPRegInfo pmcr = { 6667 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6668 .access = PL0_RW, 6669 .type = ARM_CP_IO | ARM_CP_ALIAS, 6670 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6671 .accessfn = pmreg_access, .writefn = pmcr_write, 6672 .raw_writefn = raw_write, 6673 }; 6674 ARMCPRegInfo pmcr64 = { 6675 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6677 .access = PL0_RW, .accessfn = pmreg_access, 6678 .type = ARM_CP_IO, 6679 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6680 .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) | 6681 PMCRLC, 6682 .writefn = pmcr_write, .raw_writefn = raw_write, 6683 }; 6684 define_one_arm_cp_reg(cpu, &pmcr); 6685 define_one_arm_cp_reg(cpu, &pmcr64); 6686 for (i = 0; i < pmcrn; i++) { 6687 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6688 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6689 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6690 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6691 ARMCPRegInfo pmev_regs[] = { 6692 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6693 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6694 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6695 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6696 .accessfn = pmreg_access }, 6697 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6698 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6699 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6700 .type = ARM_CP_IO, 6701 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6702 .raw_readfn = pmevcntr_rawread, 6703 .raw_writefn = pmevcntr_rawwrite }, 6704 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6705 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6706 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6707 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6708 .accessfn = pmreg_access }, 6709 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6710 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6711 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6712 .type = ARM_CP_IO, 6713 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6714 .raw_writefn = pmevtyper_rawwrite }, 6715 REGINFO_SENTINEL 6716 }; 6717 define_arm_cp_regs(cpu, pmev_regs); 6718 g_free(pmevcntr_name); 6719 g_free(pmevcntr_el0_name); 6720 g_free(pmevtyper_name); 6721 g_free(pmevtyper_el0_name); 6722 } 6723 if (cpu_isar_feature(aa32_pmu_8_1, cpu)) { 6724 ARMCPRegInfo v81_pmu_regs[] = { 6725 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 6726 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 6727 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6728 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 6729 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 6730 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 6731 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6732 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 6733 REGINFO_SENTINEL 6734 }; 6735 define_arm_cp_regs(cpu, v81_pmu_regs); 6736 } 6737 if (cpu_isar_feature(any_pmu_8_4, cpu)) { 6738 static const ARMCPRegInfo v84_pmmir = { 6739 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 6740 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 6741 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 6742 .resetvalue = 0 6743 }; 6744 define_one_arm_cp_reg(cpu, &v84_pmmir); 6745 } 6746 } 6747 6748 /* We don't know until after realize whether there's a GICv3 6749 * attached, and that is what registers the gicv3 sysregs. 6750 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 6751 * at runtime. 6752 */ 6753 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 6754 { 6755 ARMCPU *cpu = env_archcpu(env); 6756 uint64_t pfr1 = cpu->isar.id_pfr1; 6757 6758 if (env->gicv3state) { 6759 pfr1 |= 1 << 28; 6760 } 6761 return pfr1; 6762 } 6763 6764 #ifndef CONFIG_USER_ONLY 6765 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 6766 { 6767 ARMCPU *cpu = env_archcpu(env); 6768 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 6769 6770 if (env->gicv3state) { 6771 pfr0 |= 1 << 24; 6772 } 6773 return pfr0; 6774 } 6775 #endif 6776 6777 /* Shared logic between LORID and the rest of the LOR* registers. 6778 * Secure state exclusion has already been dealt with. 6779 */ 6780 static CPAccessResult access_lor_ns(CPUARMState *env, 6781 const ARMCPRegInfo *ri, bool isread) 6782 { 6783 int el = arm_current_el(env); 6784 6785 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 6786 return CP_ACCESS_TRAP_EL2; 6787 } 6788 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 6789 return CP_ACCESS_TRAP_EL3; 6790 } 6791 return CP_ACCESS_OK; 6792 } 6793 6794 static CPAccessResult access_lor_other(CPUARMState *env, 6795 const ARMCPRegInfo *ri, bool isread) 6796 { 6797 if (arm_is_secure_below_el3(env)) { 6798 /* Access denied in secure mode. */ 6799 return CP_ACCESS_TRAP; 6800 } 6801 return access_lor_ns(env, ri, isread); 6802 } 6803 6804 /* 6805 * A trivial implementation of ARMv8.1-LOR leaves all of these 6806 * registers fixed at 0, which indicates that there are zero 6807 * supported Limited Ordering regions. 6808 */ 6809 static const ARMCPRegInfo lor_reginfo[] = { 6810 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 6811 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 6812 .access = PL1_RW, .accessfn = access_lor_other, 6813 .type = ARM_CP_CONST, .resetvalue = 0 }, 6814 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 6815 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 6816 .access = PL1_RW, .accessfn = access_lor_other, 6817 .type = ARM_CP_CONST, .resetvalue = 0 }, 6818 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 6819 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 6820 .access = PL1_RW, .accessfn = access_lor_other, 6821 .type = ARM_CP_CONST, .resetvalue = 0 }, 6822 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 6823 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 6824 .access = PL1_RW, .accessfn = access_lor_other, 6825 .type = ARM_CP_CONST, .resetvalue = 0 }, 6826 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 6827 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 6828 .access = PL1_R, .accessfn = access_lor_ns, 6829 .type = ARM_CP_CONST, .resetvalue = 0 }, 6830 REGINFO_SENTINEL 6831 }; 6832 6833 #ifdef TARGET_AARCH64 6834 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 6835 bool isread) 6836 { 6837 int el = arm_current_el(env); 6838 6839 if (el < 2 && 6840 arm_feature(env, ARM_FEATURE_EL2) && 6841 !(arm_hcr_el2_eff(env) & HCR_APK)) { 6842 return CP_ACCESS_TRAP_EL2; 6843 } 6844 if (el < 3 && 6845 arm_feature(env, ARM_FEATURE_EL3) && 6846 !(env->cp15.scr_el3 & SCR_APK)) { 6847 return CP_ACCESS_TRAP_EL3; 6848 } 6849 return CP_ACCESS_OK; 6850 } 6851 6852 static const ARMCPRegInfo pauth_reginfo[] = { 6853 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6854 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 6855 .access = PL1_RW, .accessfn = access_pauth, 6856 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 6857 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6858 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 6859 .access = PL1_RW, .accessfn = access_pauth, 6860 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 6861 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6862 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 6863 .access = PL1_RW, .accessfn = access_pauth, 6864 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 6865 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6866 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 6867 .access = PL1_RW, .accessfn = access_pauth, 6868 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 6869 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6870 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 6871 .access = PL1_RW, .accessfn = access_pauth, 6872 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 6873 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6874 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 6875 .access = PL1_RW, .accessfn = access_pauth, 6876 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 6877 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6878 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 6879 .access = PL1_RW, .accessfn = access_pauth, 6880 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 6881 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6882 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 6883 .access = PL1_RW, .accessfn = access_pauth, 6884 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 6885 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 6887 .access = PL1_RW, .accessfn = access_pauth, 6888 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 6889 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 6890 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 6891 .access = PL1_RW, .accessfn = access_pauth, 6892 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 6893 REGINFO_SENTINEL 6894 }; 6895 6896 static const ARMCPRegInfo tlbirange_reginfo[] = { 6897 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 6898 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 6899 .access = PL1_W, .type = ARM_CP_NO_RAW, 6900 .writefn = tlbi_aa64_rvae1is_write }, 6901 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 6902 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 6903 .access = PL1_W, .type = ARM_CP_NO_RAW, 6904 .writefn = tlbi_aa64_rvae1is_write }, 6905 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 6907 .access = PL1_W, .type = ARM_CP_NO_RAW, 6908 .writefn = tlbi_aa64_rvae1is_write }, 6909 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 6910 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 6911 .access = PL1_W, .type = ARM_CP_NO_RAW, 6912 .writefn = tlbi_aa64_rvae1is_write }, 6913 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 6914 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 6915 .access = PL1_W, .type = ARM_CP_NO_RAW, 6916 .writefn = tlbi_aa64_rvae1is_write }, 6917 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 6918 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 6919 .access = PL1_W, .type = ARM_CP_NO_RAW, 6920 .writefn = tlbi_aa64_rvae1is_write }, 6921 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 6922 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 6923 .access = PL1_W, .type = ARM_CP_NO_RAW, 6924 .writefn = tlbi_aa64_rvae1is_write }, 6925 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 6926 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 6927 .access = PL1_W, .type = ARM_CP_NO_RAW, 6928 .writefn = tlbi_aa64_rvae1is_write }, 6929 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 6930 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 6931 .access = PL1_W, .type = ARM_CP_NO_RAW, 6932 .writefn = tlbi_aa64_rvae1_write }, 6933 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 6934 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 6935 .access = PL1_W, .type = ARM_CP_NO_RAW, 6936 .writefn = tlbi_aa64_rvae1_write }, 6937 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 6938 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 6939 .access = PL1_W, .type = ARM_CP_NO_RAW, 6940 .writefn = tlbi_aa64_rvae1_write }, 6941 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 6942 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 6943 .access = PL1_W, .type = ARM_CP_NO_RAW, 6944 .writefn = tlbi_aa64_rvae1_write }, 6945 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 6946 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 6947 .access = PL2_W, .type = ARM_CP_NOP }, 6948 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 6950 .access = PL2_W, .type = ARM_CP_NOP }, 6951 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 6952 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 6953 .access = PL2_W, .type = ARM_CP_NO_RAW, 6954 .writefn = tlbi_aa64_rvae2is_write }, 6955 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 6956 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 6957 .access = PL2_W, .type = ARM_CP_NO_RAW, 6958 .writefn = tlbi_aa64_rvae2is_write }, 6959 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 6960 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 6961 .access = PL2_W, .type = ARM_CP_NOP }, 6962 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 6963 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 6964 .access = PL2_W, .type = ARM_CP_NOP }, 6965 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 6966 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 6967 .access = PL2_W, .type = ARM_CP_NO_RAW, 6968 .writefn = tlbi_aa64_rvae2is_write }, 6969 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 6970 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 6971 .access = PL2_W, .type = ARM_CP_NO_RAW, 6972 .writefn = tlbi_aa64_rvae2is_write }, 6973 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 6974 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 6975 .access = PL2_W, .type = ARM_CP_NO_RAW, 6976 .writefn = tlbi_aa64_rvae2_write }, 6977 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 6978 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 6979 .access = PL2_W, .type = ARM_CP_NO_RAW, 6980 .writefn = tlbi_aa64_rvae2_write }, 6981 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 6982 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 6983 .access = PL3_W, .type = ARM_CP_NO_RAW, 6984 .writefn = tlbi_aa64_rvae3is_write }, 6985 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 6986 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 6987 .access = PL3_W, .type = ARM_CP_NO_RAW, 6988 .writefn = tlbi_aa64_rvae3is_write }, 6989 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 6990 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 6991 .access = PL3_W, .type = ARM_CP_NO_RAW, 6992 .writefn = tlbi_aa64_rvae3is_write }, 6993 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 6994 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 6995 .access = PL3_W, .type = ARM_CP_NO_RAW, 6996 .writefn = tlbi_aa64_rvae3is_write }, 6997 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 6998 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 6999 .access = PL3_W, .type = ARM_CP_NO_RAW, 7000 .writefn = tlbi_aa64_rvae3_write }, 7001 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7002 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7003 .access = PL3_W, .type = ARM_CP_NO_RAW, 7004 .writefn = tlbi_aa64_rvae3_write }, 7005 REGINFO_SENTINEL 7006 }; 7007 7008 static const ARMCPRegInfo tlbios_reginfo[] = { 7009 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7010 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7011 .access = PL1_W, .type = ARM_CP_NO_RAW, 7012 .writefn = tlbi_aa64_vmalle1is_write }, 7013 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7014 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7015 .access = PL1_W, .type = ARM_CP_NO_RAW, 7016 .writefn = tlbi_aa64_vae1is_write }, 7017 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7018 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7019 .access = PL1_W, .type = ARM_CP_NO_RAW, 7020 .writefn = tlbi_aa64_vmalle1is_write }, 7021 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7022 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7023 .access = PL1_W, .type = ARM_CP_NO_RAW, 7024 .writefn = tlbi_aa64_vae1is_write }, 7025 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7026 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7027 .access = PL1_W, .type = ARM_CP_NO_RAW, 7028 .writefn = tlbi_aa64_vae1is_write }, 7029 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7030 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7031 .access = PL1_W, .type = ARM_CP_NO_RAW, 7032 .writefn = tlbi_aa64_vae1is_write }, 7033 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7034 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7035 .access = PL2_W, .type = ARM_CP_NO_RAW, 7036 .writefn = tlbi_aa64_alle2is_write }, 7037 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7038 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7039 .access = PL2_W, .type = ARM_CP_NO_RAW, 7040 .writefn = tlbi_aa64_vae2is_write }, 7041 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7042 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7043 .access = PL2_W, .type = ARM_CP_NO_RAW, 7044 .writefn = tlbi_aa64_alle1is_write }, 7045 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7046 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7047 .access = PL2_W, .type = ARM_CP_NO_RAW, 7048 .writefn = tlbi_aa64_vae2is_write }, 7049 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7050 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7051 .access = PL2_W, .type = ARM_CP_NO_RAW, 7052 .writefn = tlbi_aa64_alle1is_write }, 7053 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7054 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7055 .access = PL2_W, .type = ARM_CP_NOP }, 7056 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7057 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7058 .access = PL2_W, .type = ARM_CP_NOP }, 7059 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7060 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7061 .access = PL2_W, .type = ARM_CP_NOP }, 7062 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7063 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7064 .access = PL2_W, .type = ARM_CP_NOP }, 7065 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7066 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7067 .access = PL3_W, .type = ARM_CP_NO_RAW, 7068 .writefn = tlbi_aa64_alle3is_write }, 7069 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7070 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7071 .access = PL3_W, .type = ARM_CP_NO_RAW, 7072 .writefn = tlbi_aa64_vae3is_write }, 7073 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7074 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7075 .access = PL3_W, .type = ARM_CP_NO_RAW, 7076 .writefn = tlbi_aa64_vae3is_write }, 7077 REGINFO_SENTINEL 7078 }; 7079 7080 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7081 { 7082 Error *err = NULL; 7083 uint64_t ret; 7084 7085 /* Success sets NZCV = 0000. */ 7086 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7087 7088 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7089 /* 7090 * ??? Failed, for unknown reasons in the crypto subsystem. 7091 * The best we can do is log the reason and return the 7092 * timed-out indication to the guest. There is no reason 7093 * we know to expect this failure to be transitory, so the 7094 * guest may well hang retrying the operation. 7095 */ 7096 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7097 ri->name, error_get_pretty(err)); 7098 error_free(err); 7099 7100 env->ZF = 0; /* NZCF = 0100 */ 7101 return 0; 7102 } 7103 return ret; 7104 } 7105 7106 /* We do not support re-seeding, so the two registers operate the same. */ 7107 static const ARMCPRegInfo rndr_reginfo[] = { 7108 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7109 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7110 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7111 .access = PL0_R, .readfn = rndr_readfn }, 7112 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7113 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7114 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7115 .access = PL0_R, .readfn = rndr_readfn }, 7116 REGINFO_SENTINEL 7117 }; 7118 7119 #ifndef CONFIG_USER_ONLY 7120 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7121 uint64_t value) 7122 { 7123 ARMCPU *cpu = env_archcpu(env); 7124 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7125 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7126 uint64_t vaddr_in = (uint64_t) value; 7127 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7128 void *haddr; 7129 int mem_idx = cpu_mmu_index(env, false); 7130 7131 /* This won't be crossing page boundaries */ 7132 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7133 if (haddr) { 7134 7135 ram_addr_t offset; 7136 MemoryRegion *mr; 7137 7138 /* RCU lock is already being held */ 7139 mr = memory_region_from_host(haddr, &offset); 7140 7141 if (mr) { 7142 memory_region_writeback(mr, offset, dline_size); 7143 } 7144 } 7145 } 7146 7147 static const ARMCPRegInfo dcpop_reg[] = { 7148 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7150 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7151 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7152 REGINFO_SENTINEL 7153 }; 7154 7155 static const ARMCPRegInfo dcpodp_reg[] = { 7156 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7157 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7158 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7159 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7160 REGINFO_SENTINEL 7161 }; 7162 #endif /*CONFIG_USER_ONLY*/ 7163 7164 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7165 bool isread) 7166 { 7167 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7168 return CP_ACCESS_TRAP_EL2; 7169 } 7170 7171 return CP_ACCESS_OK; 7172 } 7173 7174 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7175 bool isread) 7176 { 7177 int el = arm_current_el(env); 7178 7179 if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 7180 uint64_t hcr = arm_hcr_el2_eff(env); 7181 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7182 return CP_ACCESS_TRAP_EL2; 7183 } 7184 } 7185 if (el < 3 && 7186 arm_feature(env, ARM_FEATURE_EL3) && 7187 !(env->cp15.scr_el3 & SCR_ATA)) { 7188 return CP_ACCESS_TRAP_EL3; 7189 } 7190 return CP_ACCESS_OK; 7191 } 7192 7193 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7194 { 7195 return env->pstate & PSTATE_TCO; 7196 } 7197 7198 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7199 { 7200 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7201 } 7202 7203 static const ARMCPRegInfo mte_reginfo[] = { 7204 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7205 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7206 .access = PL1_RW, .accessfn = access_mte, 7207 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7208 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7209 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7210 .access = PL1_RW, .accessfn = access_mte, 7211 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7212 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7213 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7214 .access = PL2_RW, .accessfn = access_mte, 7215 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7216 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7218 .access = PL3_RW, 7219 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7220 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7221 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7222 .access = PL1_RW, .accessfn = access_mte, 7223 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7224 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7225 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7226 .access = PL1_RW, .accessfn = access_mte, 7227 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7228 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7229 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7230 .access = PL1_R, .accessfn = access_aa64_tid5, 7231 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7232 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7233 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7234 .type = ARM_CP_NO_RAW, 7235 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7236 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7238 .type = ARM_CP_NOP, .access = PL1_W, 7239 .accessfn = aa64_cacheop_poc_access }, 7240 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7241 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7242 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7243 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7244 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7245 .type = ARM_CP_NOP, .access = PL1_W, 7246 .accessfn = aa64_cacheop_poc_access }, 7247 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7249 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7250 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7251 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7252 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7253 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7254 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7255 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7256 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7257 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7258 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7259 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7261 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7262 REGINFO_SENTINEL 7263 }; 7264 7265 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7266 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7267 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7268 .type = ARM_CP_CONST, .access = PL0_RW, }, 7269 REGINFO_SENTINEL 7270 }; 7271 7272 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7273 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7274 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7275 .type = ARM_CP_NOP, .access = PL0_W, 7276 .accessfn = aa64_cacheop_poc_access }, 7277 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7278 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7279 .type = ARM_CP_NOP, .access = PL0_W, 7280 .accessfn = aa64_cacheop_poc_access }, 7281 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7283 .type = ARM_CP_NOP, .access = PL0_W, 7284 .accessfn = aa64_cacheop_poc_access }, 7285 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7286 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7287 .type = ARM_CP_NOP, .access = PL0_W, 7288 .accessfn = aa64_cacheop_poc_access }, 7289 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7290 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7291 .type = ARM_CP_NOP, .access = PL0_W, 7292 .accessfn = aa64_cacheop_poc_access }, 7293 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7294 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7295 .type = ARM_CP_NOP, .access = PL0_W, 7296 .accessfn = aa64_cacheop_poc_access }, 7297 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7298 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7299 .type = ARM_CP_NOP, .access = PL0_W, 7300 .accessfn = aa64_cacheop_poc_access }, 7301 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7302 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7303 .type = ARM_CP_NOP, .access = PL0_W, 7304 .accessfn = aa64_cacheop_poc_access }, 7305 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7307 .access = PL0_W, .type = ARM_CP_DC_GVA, 7308 #ifndef CONFIG_USER_ONLY 7309 /* Avoid overhead of an access check that always passes in user-mode */ 7310 .accessfn = aa64_zva_access, 7311 #endif 7312 }, 7313 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7314 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7315 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7316 #ifndef CONFIG_USER_ONLY 7317 /* Avoid overhead of an access check that always passes in user-mode */ 7318 .accessfn = aa64_zva_access, 7319 #endif 7320 }, 7321 REGINFO_SENTINEL 7322 }; 7323 7324 #endif 7325 7326 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7327 bool isread) 7328 { 7329 int el = arm_current_el(env); 7330 7331 if (el == 0) { 7332 uint64_t sctlr = arm_sctlr(env, el); 7333 if (!(sctlr & SCTLR_EnRCTX)) { 7334 return CP_ACCESS_TRAP; 7335 } 7336 } else if (el == 1) { 7337 uint64_t hcr = arm_hcr_el2_eff(env); 7338 if (hcr & HCR_NV) { 7339 return CP_ACCESS_TRAP_EL2; 7340 } 7341 } 7342 return CP_ACCESS_OK; 7343 } 7344 7345 static const ARMCPRegInfo predinv_reginfo[] = { 7346 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7347 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7348 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7349 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7350 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7351 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7352 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7354 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7355 /* 7356 * Note the AArch32 opcodes have a different OPC1. 7357 */ 7358 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7359 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7360 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7361 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7362 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7363 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7364 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7365 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7366 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7367 REGINFO_SENTINEL 7368 }; 7369 7370 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7371 { 7372 /* Read the high 32 bits of the current CCSIDR */ 7373 return extract64(ccsidr_read(env, ri), 32, 32); 7374 } 7375 7376 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7377 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7378 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7379 .access = PL1_R, 7380 .accessfn = access_aa64_tid2, 7381 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7382 REGINFO_SENTINEL 7383 }; 7384 7385 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7386 bool isread) 7387 { 7388 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7389 return CP_ACCESS_TRAP_EL2; 7390 } 7391 7392 return CP_ACCESS_OK; 7393 } 7394 7395 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7396 bool isread) 7397 { 7398 if (arm_feature(env, ARM_FEATURE_V8)) { 7399 return access_aa64_tid3(env, ri, isread); 7400 } 7401 7402 return CP_ACCESS_OK; 7403 } 7404 7405 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7406 bool isread) 7407 { 7408 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7409 return CP_ACCESS_TRAP_EL2; 7410 } 7411 7412 return CP_ACCESS_OK; 7413 } 7414 7415 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7416 const ARMCPRegInfo *ri, bool isread) 7417 { 7418 /* 7419 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7420 * in v7A, not in v8A. 7421 */ 7422 if (!arm_feature(env, ARM_FEATURE_V8) && 7423 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7424 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7425 return CP_ACCESS_TRAP_EL2; 7426 } 7427 return CP_ACCESS_OK; 7428 } 7429 7430 static const ARMCPRegInfo jazelle_regs[] = { 7431 { .name = "JIDR", 7432 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7433 .access = PL1_R, .accessfn = access_jazelle, 7434 .type = ARM_CP_CONST, .resetvalue = 0 }, 7435 { .name = "JOSCR", 7436 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7437 .accessfn = access_joscr_jmcr, 7438 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7439 { .name = "JMCR", 7440 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7441 .accessfn = access_joscr_jmcr, 7442 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7443 REGINFO_SENTINEL 7444 }; 7445 7446 static const ARMCPRegInfo vhe_reginfo[] = { 7447 { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7448 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7449 .access = PL2_RW, 7450 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) }, 7451 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7452 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7453 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7454 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7455 #ifndef CONFIG_USER_ONLY 7456 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7457 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7458 .fieldoffset = 7459 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7460 .type = ARM_CP_IO, .access = PL2_RW, 7461 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7462 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7463 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7464 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7465 .resetfn = gt_hv_timer_reset, 7466 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7467 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7468 .type = ARM_CP_IO, 7469 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7470 .access = PL2_RW, 7471 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7472 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7473 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7474 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7475 .type = ARM_CP_IO | ARM_CP_ALIAS, 7476 .access = PL2_RW, .accessfn = e2h_access, 7477 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7478 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7479 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7480 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7481 .type = ARM_CP_IO | ARM_CP_ALIAS, 7482 .access = PL2_RW, .accessfn = e2h_access, 7483 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7484 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7485 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7486 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7487 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7488 .access = PL2_RW, .accessfn = e2h_access, 7489 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7490 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7491 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7492 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7493 .access = PL2_RW, .accessfn = e2h_access, 7494 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7495 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7497 .type = ARM_CP_IO | ARM_CP_ALIAS, 7498 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7499 .access = PL2_RW, .accessfn = e2h_access, 7500 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7501 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7502 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7503 .type = ARM_CP_IO | ARM_CP_ALIAS, 7504 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7505 .access = PL2_RW, .accessfn = e2h_access, 7506 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7507 #endif 7508 REGINFO_SENTINEL 7509 }; 7510 7511 #ifndef CONFIG_USER_ONLY 7512 static const ARMCPRegInfo ats1e1_reginfo[] = { 7513 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 7514 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7515 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7516 .writefn = ats_write64 }, 7517 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7519 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7520 .writefn = ats_write64 }, 7521 REGINFO_SENTINEL 7522 }; 7523 7524 static const ARMCPRegInfo ats1cp_reginfo[] = { 7525 { .name = "ATS1CPRP", 7526 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7527 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7528 .writefn = ats_write }, 7529 { .name = "ATS1CPWP", 7530 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7531 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7532 .writefn = ats_write }, 7533 REGINFO_SENTINEL 7534 }; 7535 #endif 7536 7537 /* 7538 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7539 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7540 * is non-zero, which is never for ARMv7, optionally in ARMv8 7541 * and mandatorily for ARMv8.2 and up. 7542 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7543 * implementation is RAZ/WI we can ignore this detail, as we 7544 * do for ACTLR. 7545 */ 7546 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7547 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7548 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7549 .access = PL1_RW, .accessfn = access_tacr, 7550 .type = ARM_CP_CONST, .resetvalue = 0 }, 7551 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7552 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7553 .access = PL2_RW, .type = ARM_CP_CONST, 7554 .resetvalue = 0 }, 7555 REGINFO_SENTINEL 7556 }; 7557 7558 void register_cp_regs_for_features(ARMCPU *cpu) 7559 { 7560 /* Register all the coprocessor registers based on feature bits */ 7561 CPUARMState *env = &cpu->env; 7562 if (arm_feature(env, ARM_FEATURE_M)) { 7563 /* M profile has no coprocessor registers */ 7564 return; 7565 } 7566 7567 define_arm_cp_regs(cpu, cp_reginfo); 7568 if (!arm_feature(env, ARM_FEATURE_V8)) { 7569 /* Must go early as it is full of wildcards that may be 7570 * overridden by later definitions. 7571 */ 7572 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7573 } 7574 7575 if (arm_feature(env, ARM_FEATURE_V6)) { 7576 /* The ID registers all have impdef reset values */ 7577 ARMCPRegInfo v6_idregs[] = { 7578 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7580 .access = PL1_R, .type = ARM_CP_CONST, 7581 .accessfn = access_aa32_tid3, 7582 .resetvalue = cpu->isar.id_pfr0 }, 7583 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7584 * the value of the GIC field until after we define these regs. 7585 */ 7586 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 7587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 7588 .access = PL1_R, .type = ARM_CP_NO_RAW, 7589 .accessfn = access_aa32_tid3, 7590 .readfn = id_pfr1_read, 7591 .writefn = arm_cp_write_ignore }, 7592 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 7593 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 7594 .access = PL1_R, .type = ARM_CP_CONST, 7595 .accessfn = access_aa32_tid3, 7596 .resetvalue = cpu->isar.id_dfr0 }, 7597 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 7598 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 7599 .access = PL1_R, .type = ARM_CP_CONST, 7600 .accessfn = access_aa32_tid3, 7601 .resetvalue = cpu->id_afr0 }, 7602 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 7603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 7604 .access = PL1_R, .type = ARM_CP_CONST, 7605 .accessfn = access_aa32_tid3, 7606 .resetvalue = cpu->isar.id_mmfr0 }, 7607 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 7608 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 7609 .access = PL1_R, .type = ARM_CP_CONST, 7610 .accessfn = access_aa32_tid3, 7611 .resetvalue = cpu->isar.id_mmfr1 }, 7612 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 7613 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 7614 .access = PL1_R, .type = ARM_CP_CONST, 7615 .accessfn = access_aa32_tid3, 7616 .resetvalue = cpu->isar.id_mmfr2 }, 7617 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 7618 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 7619 .access = PL1_R, .type = ARM_CP_CONST, 7620 .accessfn = access_aa32_tid3, 7621 .resetvalue = cpu->isar.id_mmfr3 }, 7622 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 7623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 7624 .access = PL1_R, .type = ARM_CP_CONST, 7625 .accessfn = access_aa32_tid3, 7626 .resetvalue = cpu->isar.id_isar0 }, 7627 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 7628 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 7629 .access = PL1_R, .type = ARM_CP_CONST, 7630 .accessfn = access_aa32_tid3, 7631 .resetvalue = cpu->isar.id_isar1 }, 7632 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 7633 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 7634 .access = PL1_R, .type = ARM_CP_CONST, 7635 .accessfn = access_aa32_tid3, 7636 .resetvalue = cpu->isar.id_isar2 }, 7637 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 7638 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 7639 .access = PL1_R, .type = ARM_CP_CONST, 7640 .accessfn = access_aa32_tid3, 7641 .resetvalue = cpu->isar.id_isar3 }, 7642 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 7643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 7644 .access = PL1_R, .type = ARM_CP_CONST, 7645 .accessfn = access_aa32_tid3, 7646 .resetvalue = cpu->isar.id_isar4 }, 7647 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 7648 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 7649 .access = PL1_R, .type = ARM_CP_CONST, 7650 .accessfn = access_aa32_tid3, 7651 .resetvalue = cpu->isar.id_isar5 }, 7652 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 7653 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 7654 .access = PL1_R, .type = ARM_CP_CONST, 7655 .accessfn = access_aa32_tid3, 7656 .resetvalue = cpu->isar.id_mmfr4 }, 7657 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 7658 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 7659 .access = PL1_R, .type = ARM_CP_CONST, 7660 .accessfn = access_aa32_tid3, 7661 .resetvalue = cpu->isar.id_isar6 }, 7662 REGINFO_SENTINEL 7663 }; 7664 define_arm_cp_regs(cpu, v6_idregs); 7665 define_arm_cp_regs(cpu, v6_cp_reginfo); 7666 } else { 7667 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 7668 } 7669 if (arm_feature(env, ARM_FEATURE_V6K)) { 7670 define_arm_cp_regs(cpu, v6k_cp_reginfo); 7671 } 7672 if (arm_feature(env, ARM_FEATURE_V7MP) && 7673 !arm_feature(env, ARM_FEATURE_PMSA)) { 7674 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 7675 } 7676 if (arm_feature(env, ARM_FEATURE_V7VE)) { 7677 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 7678 } 7679 if (arm_feature(env, ARM_FEATURE_V7)) { 7680 ARMCPRegInfo clidr = { 7681 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 7682 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 7683 .access = PL1_R, .type = ARM_CP_CONST, 7684 .accessfn = access_aa64_tid2, 7685 .resetvalue = cpu->clidr 7686 }; 7687 define_one_arm_cp_reg(cpu, &clidr); 7688 define_arm_cp_regs(cpu, v7_cp_reginfo); 7689 define_debug_regs(cpu); 7690 define_pmu_regs(cpu); 7691 } else { 7692 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 7693 } 7694 if (arm_feature(env, ARM_FEATURE_V8)) { 7695 /* AArch64 ID registers, which all have impdef reset values. 7696 * Note that within the ID register ranges the unused slots 7697 * must all RAZ, not UNDEF; future architecture versions may 7698 * define new registers here. 7699 */ 7700 ARMCPRegInfo v8_idregs[] = { 7701 /* 7702 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 7703 * emulation because we don't know the right value for the 7704 * GIC field until after we define these regs. 7705 */ 7706 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 7707 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 7708 .access = PL1_R, 7709 #ifdef CONFIG_USER_ONLY 7710 .type = ARM_CP_CONST, 7711 .resetvalue = cpu->isar.id_aa64pfr0 7712 #else 7713 .type = ARM_CP_NO_RAW, 7714 .accessfn = access_aa64_tid3, 7715 .readfn = id_aa64pfr0_read, 7716 .writefn = arm_cp_write_ignore 7717 #endif 7718 }, 7719 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 7721 .access = PL1_R, .type = ARM_CP_CONST, 7722 .accessfn = access_aa64_tid3, 7723 .resetvalue = cpu->isar.id_aa64pfr1}, 7724 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7725 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 7726 .access = PL1_R, .type = ARM_CP_CONST, 7727 .accessfn = access_aa64_tid3, 7728 .resetvalue = 0 }, 7729 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7730 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 7731 .access = PL1_R, .type = ARM_CP_CONST, 7732 .accessfn = access_aa64_tid3, 7733 .resetvalue = 0 }, 7734 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 7735 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 7736 .access = PL1_R, .type = ARM_CP_CONST, 7737 .accessfn = access_aa64_tid3, 7738 .resetvalue = cpu->isar.id_aa64zfr0 }, 7739 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7740 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 7741 .access = PL1_R, .type = ARM_CP_CONST, 7742 .accessfn = access_aa64_tid3, 7743 .resetvalue = 0 }, 7744 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 7746 .access = PL1_R, .type = ARM_CP_CONST, 7747 .accessfn = access_aa64_tid3, 7748 .resetvalue = 0 }, 7749 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 7751 .access = PL1_R, .type = ARM_CP_CONST, 7752 .accessfn = access_aa64_tid3, 7753 .resetvalue = 0 }, 7754 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 7756 .access = PL1_R, .type = ARM_CP_CONST, 7757 .accessfn = access_aa64_tid3, 7758 .resetvalue = cpu->isar.id_aa64dfr0 }, 7759 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 7760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 7761 .access = PL1_R, .type = ARM_CP_CONST, 7762 .accessfn = access_aa64_tid3, 7763 .resetvalue = cpu->isar.id_aa64dfr1 }, 7764 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 7766 .access = PL1_R, .type = ARM_CP_CONST, 7767 .accessfn = access_aa64_tid3, 7768 .resetvalue = 0 }, 7769 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 7771 .access = PL1_R, .type = ARM_CP_CONST, 7772 .accessfn = access_aa64_tid3, 7773 .resetvalue = 0 }, 7774 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 7775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 7776 .access = PL1_R, .type = ARM_CP_CONST, 7777 .accessfn = access_aa64_tid3, 7778 .resetvalue = cpu->id_aa64afr0 }, 7779 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 7780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 7781 .access = PL1_R, .type = ARM_CP_CONST, 7782 .accessfn = access_aa64_tid3, 7783 .resetvalue = cpu->id_aa64afr1 }, 7784 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 7786 .access = PL1_R, .type = ARM_CP_CONST, 7787 .accessfn = access_aa64_tid3, 7788 .resetvalue = 0 }, 7789 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 7791 .access = PL1_R, .type = ARM_CP_CONST, 7792 .accessfn = access_aa64_tid3, 7793 .resetvalue = 0 }, 7794 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 7795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 7796 .access = PL1_R, .type = ARM_CP_CONST, 7797 .accessfn = access_aa64_tid3, 7798 .resetvalue = cpu->isar.id_aa64isar0 }, 7799 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 7800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 7801 .access = PL1_R, .type = ARM_CP_CONST, 7802 .accessfn = access_aa64_tid3, 7803 .resetvalue = cpu->isar.id_aa64isar1 }, 7804 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 7806 .access = PL1_R, .type = ARM_CP_CONST, 7807 .accessfn = access_aa64_tid3, 7808 .resetvalue = 0 }, 7809 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 7811 .access = PL1_R, .type = ARM_CP_CONST, 7812 .accessfn = access_aa64_tid3, 7813 .resetvalue = 0 }, 7814 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 7816 .access = PL1_R, .type = ARM_CP_CONST, 7817 .accessfn = access_aa64_tid3, 7818 .resetvalue = 0 }, 7819 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7820 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 7821 .access = PL1_R, .type = ARM_CP_CONST, 7822 .accessfn = access_aa64_tid3, 7823 .resetvalue = 0 }, 7824 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7825 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 7826 .access = PL1_R, .type = ARM_CP_CONST, 7827 .accessfn = access_aa64_tid3, 7828 .resetvalue = 0 }, 7829 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7830 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 7831 .access = PL1_R, .type = ARM_CP_CONST, 7832 .accessfn = access_aa64_tid3, 7833 .resetvalue = 0 }, 7834 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 7835 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 7836 .access = PL1_R, .type = ARM_CP_CONST, 7837 .accessfn = access_aa64_tid3, 7838 .resetvalue = cpu->isar.id_aa64mmfr0 }, 7839 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 7840 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 7841 .access = PL1_R, .type = ARM_CP_CONST, 7842 .accessfn = access_aa64_tid3, 7843 .resetvalue = cpu->isar.id_aa64mmfr1 }, 7844 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 7845 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 7846 .access = PL1_R, .type = ARM_CP_CONST, 7847 .accessfn = access_aa64_tid3, 7848 .resetvalue = cpu->isar.id_aa64mmfr2 }, 7849 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7850 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 7851 .access = PL1_R, .type = ARM_CP_CONST, 7852 .accessfn = access_aa64_tid3, 7853 .resetvalue = 0 }, 7854 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7855 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 7856 .access = PL1_R, .type = ARM_CP_CONST, 7857 .accessfn = access_aa64_tid3, 7858 .resetvalue = 0 }, 7859 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7860 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 7861 .access = PL1_R, .type = ARM_CP_CONST, 7862 .accessfn = access_aa64_tid3, 7863 .resetvalue = 0 }, 7864 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7865 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 7866 .access = PL1_R, .type = ARM_CP_CONST, 7867 .accessfn = access_aa64_tid3, 7868 .resetvalue = 0 }, 7869 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7870 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 7871 .access = PL1_R, .type = ARM_CP_CONST, 7872 .accessfn = access_aa64_tid3, 7873 .resetvalue = 0 }, 7874 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 7875 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 7876 .access = PL1_R, .type = ARM_CP_CONST, 7877 .accessfn = access_aa64_tid3, 7878 .resetvalue = cpu->isar.mvfr0 }, 7879 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 7880 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 7881 .access = PL1_R, .type = ARM_CP_CONST, 7882 .accessfn = access_aa64_tid3, 7883 .resetvalue = cpu->isar.mvfr1 }, 7884 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 7885 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 7886 .access = PL1_R, .type = ARM_CP_CONST, 7887 .accessfn = access_aa64_tid3, 7888 .resetvalue = cpu->isar.mvfr2 }, 7889 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 7891 .access = PL1_R, .type = ARM_CP_CONST, 7892 .accessfn = access_aa64_tid3, 7893 .resetvalue = 0 }, 7894 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 7895 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 7896 .access = PL1_R, .type = ARM_CP_CONST, 7897 .accessfn = access_aa64_tid3, 7898 .resetvalue = cpu->isar.id_pfr2 }, 7899 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 7901 .access = PL1_R, .type = ARM_CP_CONST, 7902 .accessfn = access_aa64_tid3, 7903 .resetvalue = 0 }, 7904 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 7906 .access = PL1_R, .type = ARM_CP_CONST, 7907 .accessfn = access_aa64_tid3, 7908 .resetvalue = 0 }, 7909 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 7910 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 7911 .access = PL1_R, .type = ARM_CP_CONST, 7912 .accessfn = access_aa64_tid3, 7913 .resetvalue = 0 }, 7914 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 7915 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 7916 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7917 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 7918 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 7919 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 7920 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7921 .resetvalue = cpu->pmceid0 }, 7922 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 7923 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 7924 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7925 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 7926 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 7928 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7929 .resetvalue = cpu->pmceid1 }, 7930 REGINFO_SENTINEL 7931 }; 7932 #ifdef CONFIG_USER_ONLY 7933 ARMCPRegUserSpaceInfo v8_user_idregs[] = { 7934 { .name = "ID_AA64PFR0_EL1", 7935 .exported_bits = 0x000f000f00ff0000, 7936 .fixed_bits = 0x0000000000000011 }, 7937 { .name = "ID_AA64PFR1_EL1", 7938 .exported_bits = 0x00000000000000f0 }, 7939 { .name = "ID_AA64PFR*_EL1_RESERVED", 7940 .is_glob = true }, 7941 { .name = "ID_AA64ZFR0_EL1" }, 7942 { .name = "ID_AA64MMFR0_EL1", 7943 .fixed_bits = 0x00000000ff000000 }, 7944 { .name = "ID_AA64MMFR1_EL1" }, 7945 { .name = "ID_AA64MMFR*_EL1_RESERVED", 7946 .is_glob = true }, 7947 { .name = "ID_AA64DFR0_EL1", 7948 .fixed_bits = 0x0000000000000006 }, 7949 { .name = "ID_AA64DFR1_EL1" }, 7950 { .name = "ID_AA64DFR*_EL1_RESERVED", 7951 .is_glob = true }, 7952 { .name = "ID_AA64AFR*", 7953 .is_glob = true }, 7954 { .name = "ID_AA64ISAR0_EL1", 7955 .exported_bits = 0x00fffffff0fffff0 }, 7956 { .name = "ID_AA64ISAR1_EL1", 7957 .exported_bits = 0x000000f0ffffffff }, 7958 { .name = "ID_AA64ISAR*_EL1_RESERVED", 7959 .is_glob = true }, 7960 REGUSERINFO_SENTINEL 7961 }; 7962 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 7963 #endif 7964 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 7965 if (!arm_feature(env, ARM_FEATURE_EL3) && 7966 !arm_feature(env, ARM_FEATURE_EL2)) { 7967 ARMCPRegInfo rvbar = { 7968 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 7969 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 7970 .access = PL1_R, 7971 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 7972 }; 7973 define_one_arm_cp_reg(cpu, &rvbar); 7974 } 7975 define_arm_cp_regs(cpu, v8_idregs); 7976 define_arm_cp_regs(cpu, v8_cp_reginfo); 7977 } 7978 if (arm_feature(env, ARM_FEATURE_EL2)) { 7979 uint64_t vmpidr_def = mpidr_read_val(env); 7980 ARMCPRegInfo vpidr_regs[] = { 7981 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 7982 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7983 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7984 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 7985 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 7986 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 7987 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 7988 .access = PL2_RW, .resetvalue = cpu->midr, 7989 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 7990 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 7991 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7992 .access = PL2_RW, .accessfn = access_el3_aa32ns, 7993 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 7994 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 7995 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 7996 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 7997 .access = PL2_RW, 7998 .resetvalue = vmpidr_def, 7999 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8000 REGINFO_SENTINEL 8001 }; 8002 define_arm_cp_regs(cpu, vpidr_regs); 8003 define_arm_cp_regs(cpu, el2_cp_reginfo); 8004 if (arm_feature(env, ARM_FEATURE_V8)) { 8005 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8006 } 8007 if (cpu_isar_feature(aa64_sel2, cpu)) { 8008 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8009 } 8010 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8011 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8012 ARMCPRegInfo rvbar = { 8013 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8014 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8015 .access = PL2_R, 8016 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8017 }; 8018 define_one_arm_cp_reg(cpu, &rvbar); 8019 } 8020 } else { 8021 /* If EL2 is missing but higher ELs are enabled, we need to 8022 * register the no_el2 reginfos. 8023 */ 8024 if (arm_feature(env, ARM_FEATURE_EL3)) { 8025 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 8026 * of MIDR_EL1 and MPIDR_EL1. 8027 */ 8028 ARMCPRegInfo vpidr_regs[] = { 8029 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8030 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8031 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8032 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 8033 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8034 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 8035 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8036 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8037 .type = ARM_CP_NO_RAW, 8038 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 8039 REGINFO_SENTINEL 8040 }; 8041 define_arm_cp_regs(cpu, vpidr_regs); 8042 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 8043 if (arm_feature(env, ARM_FEATURE_V8)) { 8044 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo); 8045 } 8046 } 8047 } 8048 if (arm_feature(env, ARM_FEATURE_EL3)) { 8049 define_arm_cp_regs(cpu, el3_cp_reginfo); 8050 ARMCPRegInfo el3_regs[] = { 8051 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8052 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8053 .access = PL3_R, 8054 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8055 }, 8056 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8057 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8058 .access = PL3_RW, 8059 .raw_writefn = raw_write, .writefn = sctlr_write, 8060 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8061 .resetvalue = cpu->reset_sctlr }, 8062 REGINFO_SENTINEL 8063 }; 8064 8065 define_arm_cp_regs(cpu, el3_regs); 8066 } 8067 /* The behaviour of NSACR is sufficiently various that we don't 8068 * try to describe it in a single reginfo: 8069 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8070 * reads as constant 0xc00 from NS EL1 and NS EL2 8071 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8072 * if v7 without EL3, register doesn't exist 8073 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8074 */ 8075 if (arm_feature(env, ARM_FEATURE_EL3)) { 8076 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8077 ARMCPRegInfo nsacr = { 8078 .name = "NSACR", .type = ARM_CP_CONST, 8079 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8080 .access = PL1_RW, .accessfn = nsacr_access, 8081 .resetvalue = 0xc00 8082 }; 8083 define_one_arm_cp_reg(cpu, &nsacr); 8084 } else { 8085 ARMCPRegInfo nsacr = { 8086 .name = "NSACR", 8087 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8088 .access = PL3_RW | PL1_R, 8089 .resetvalue = 0, 8090 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8091 }; 8092 define_one_arm_cp_reg(cpu, &nsacr); 8093 } 8094 } else { 8095 if (arm_feature(env, ARM_FEATURE_V8)) { 8096 ARMCPRegInfo nsacr = { 8097 .name = "NSACR", .type = ARM_CP_CONST, 8098 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8099 .access = PL1_R, 8100 .resetvalue = 0xc00 8101 }; 8102 define_one_arm_cp_reg(cpu, &nsacr); 8103 } 8104 } 8105 8106 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8107 if (arm_feature(env, ARM_FEATURE_V6)) { 8108 /* PMSAv6 not implemented */ 8109 assert(arm_feature(env, ARM_FEATURE_V7)); 8110 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8111 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8112 } else { 8113 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8114 } 8115 } else { 8116 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8117 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8118 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8119 if (cpu_isar_feature(aa32_hpd, cpu)) { 8120 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8121 } 8122 } 8123 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8124 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8125 } 8126 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8127 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8128 } 8129 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8130 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8131 } 8132 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8133 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8134 } 8135 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8136 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8137 } 8138 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8139 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8140 } 8141 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8142 define_arm_cp_regs(cpu, omap_cp_reginfo); 8143 } 8144 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8145 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8146 } 8147 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8148 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8149 } 8150 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8151 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8152 } 8153 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8154 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8155 } 8156 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8157 define_arm_cp_regs(cpu, jazelle_regs); 8158 } 8159 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 8160 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8161 * be read-only (ie write causes UNDEF exception). 8162 */ 8163 { 8164 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8165 /* Pre-v8 MIDR space. 8166 * Note that the MIDR isn't a simple constant register because 8167 * of the TI925 behaviour where writes to another register can 8168 * cause the MIDR value to change. 8169 * 8170 * Unimplemented registers in the c15 0 0 0 space default to 8171 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8172 * and friends override accordingly. 8173 */ 8174 { .name = "MIDR", 8175 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8176 .access = PL1_R, .resetvalue = cpu->midr, 8177 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8178 .readfn = midr_read, 8179 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8180 .type = ARM_CP_OVERRIDE }, 8181 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8182 { .name = "DUMMY", 8183 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8184 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8185 { .name = "DUMMY", 8186 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8187 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8188 { .name = "DUMMY", 8189 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8190 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8191 { .name = "DUMMY", 8192 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8193 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8194 { .name = "DUMMY", 8195 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8196 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8197 REGINFO_SENTINEL 8198 }; 8199 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8200 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8201 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8202 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8203 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8204 .readfn = midr_read }, 8205 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 8206 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8207 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8208 .access = PL1_R, .resetvalue = cpu->midr }, 8209 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8210 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8211 .access = PL1_R, .resetvalue = cpu->midr }, 8212 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8213 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8214 .access = PL1_R, 8215 .accessfn = access_aa64_tid1, 8216 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8217 REGINFO_SENTINEL 8218 }; 8219 ARMCPRegInfo id_cp_reginfo[] = { 8220 /* These are common to v8 and pre-v8 */ 8221 { .name = "CTR", 8222 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8223 .access = PL1_R, .accessfn = ctr_el0_access, 8224 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8225 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8226 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8227 .access = PL0_R, .accessfn = ctr_el0_access, 8228 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8229 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8230 { .name = "TCMTR", 8231 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8232 .access = PL1_R, 8233 .accessfn = access_aa32_tid1, 8234 .type = ARM_CP_CONST, .resetvalue = 0 }, 8235 REGINFO_SENTINEL 8236 }; 8237 /* TLBTR is specific to VMSA */ 8238 ARMCPRegInfo id_tlbtr_reginfo = { 8239 .name = "TLBTR", 8240 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8241 .access = PL1_R, 8242 .accessfn = access_aa32_tid1, 8243 .type = ARM_CP_CONST, .resetvalue = 0, 8244 }; 8245 /* MPUIR is specific to PMSA V6+ */ 8246 ARMCPRegInfo id_mpuir_reginfo = { 8247 .name = "MPUIR", 8248 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8249 .access = PL1_R, .type = ARM_CP_CONST, 8250 .resetvalue = cpu->pmsav7_dregion << 8 8251 }; 8252 ARMCPRegInfo crn0_wi_reginfo = { 8253 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8254 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8255 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8256 }; 8257 #ifdef CONFIG_USER_ONLY 8258 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8259 { .name = "MIDR_EL1", 8260 .exported_bits = 0x00000000ffffffff }, 8261 { .name = "REVIDR_EL1" }, 8262 REGUSERINFO_SENTINEL 8263 }; 8264 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8265 #endif 8266 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8267 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8268 ARMCPRegInfo *r; 8269 /* Register the blanket "writes ignored" value first to cover the 8270 * whole space. Then update the specific ID registers to allow write 8271 * access, so that they ignore writes rather than causing them to 8272 * UNDEF. 8273 */ 8274 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8275 for (r = id_pre_v8_midr_cp_reginfo; 8276 r->type != ARM_CP_SENTINEL; r++) { 8277 r->access = PL1_RW; 8278 } 8279 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 8280 r->access = PL1_RW; 8281 } 8282 id_mpuir_reginfo.access = PL1_RW; 8283 id_tlbtr_reginfo.access = PL1_RW; 8284 } 8285 if (arm_feature(env, ARM_FEATURE_V8)) { 8286 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8287 } else { 8288 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8289 } 8290 define_arm_cp_regs(cpu, id_cp_reginfo); 8291 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8292 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8293 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8294 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8295 } 8296 } 8297 8298 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8299 ARMCPRegInfo mpidr_cp_reginfo[] = { 8300 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8301 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8302 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8303 REGINFO_SENTINEL 8304 }; 8305 #ifdef CONFIG_USER_ONLY 8306 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8307 { .name = "MPIDR_EL1", 8308 .fixed_bits = 0x0000000080000000 }, 8309 REGUSERINFO_SENTINEL 8310 }; 8311 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8312 #endif 8313 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8314 } 8315 8316 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8317 ARMCPRegInfo auxcr_reginfo[] = { 8318 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8319 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8320 .access = PL1_RW, .accessfn = access_tacr, 8321 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8322 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8323 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8324 .access = PL2_RW, .type = ARM_CP_CONST, 8325 .resetvalue = 0 }, 8326 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8327 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8328 .access = PL3_RW, .type = ARM_CP_CONST, 8329 .resetvalue = 0 }, 8330 REGINFO_SENTINEL 8331 }; 8332 define_arm_cp_regs(cpu, auxcr_reginfo); 8333 if (cpu_isar_feature(aa32_ac2, cpu)) { 8334 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8335 } 8336 } 8337 8338 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8339 /* 8340 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8341 * There are two flavours: 8342 * (1) older 32-bit only cores have a simple 32-bit CBAR 8343 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8344 * 32-bit register visible to AArch32 at a different encoding 8345 * to the "flavour 1" register and with the bits rearranged to 8346 * be able to squash a 64-bit address into the 32-bit view. 8347 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8348 * in future if we support AArch32-only configs of some of the 8349 * AArch64 cores we might need to add a specific feature flag 8350 * to indicate cores with "flavour 2" CBAR. 8351 */ 8352 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8353 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8354 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8355 | extract64(cpu->reset_cbar, 32, 12); 8356 ARMCPRegInfo cbar_reginfo[] = { 8357 { .name = "CBAR", 8358 .type = ARM_CP_CONST, 8359 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8360 .access = PL1_R, .resetvalue = cbar32 }, 8361 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8362 .type = ARM_CP_CONST, 8363 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8364 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8365 REGINFO_SENTINEL 8366 }; 8367 /* We don't implement a r/w 64 bit CBAR currently */ 8368 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8369 define_arm_cp_regs(cpu, cbar_reginfo); 8370 } else { 8371 ARMCPRegInfo cbar = { 8372 .name = "CBAR", 8373 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8374 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 8375 .fieldoffset = offsetof(CPUARMState, 8376 cp15.c15_config_base_address) 8377 }; 8378 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 8379 cbar.access = PL1_R; 8380 cbar.fieldoffset = 0; 8381 cbar.type = ARM_CP_CONST; 8382 } 8383 define_one_arm_cp_reg(cpu, &cbar); 8384 } 8385 } 8386 8387 if (arm_feature(env, ARM_FEATURE_VBAR)) { 8388 ARMCPRegInfo vbar_cp_reginfo[] = { 8389 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 8390 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 8391 .access = PL1_RW, .writefn = vbar_write, 8392 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 8393 offsetof(CPUARMState, cp15.vbar_ns) }, 8394 .resetvalue = 0 }, 8395 REGINFO_SENTINEL 8396 }; 8397 define_arm_cp_regs(cpu, vbar_cp_reginfo); 8398 } 8399 8400 /* Generic registers whose values depend on the implementation */ 8401 { 8402 ARMCPRegInfo sctlr = { 8403 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 8404 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 8405 .access = PL1_RW, .accessfn = access_tvm_trvm, 8406 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 8407 offsetof(CPUARMState, cp15.sctlr_ns) }, 8408 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 8409 .raw_writefn = raw_write, 8410 }; 8411 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8412 /* Normally we would always end the TB on an SCTLR write, but Linux 8413 * arch/arm/mach-pxa/sleep.S expects two instructions following 8414 * an MMU enable to execute from cache. Imitate this behaviour. 8415 */ 8416 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 8417 } 8418 define_one_arm_cp_reg(cpu, &sctlr); 8419 } 8420 8421 if (cpu_isar_feature(aa64_lor, cpu)) { 8422 define_arm_cp_regs(cpu, lor_reginfo); 8423 } 8424 if (cpu_isar_feature(aa64_pan, cpu)) { 8425 define_one_arm_cp_reg(cpu, &pan_reginfo); 8426 } 8427 #ifndef CONFIG_USER_ONLY 8428 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 8429 define_arm_cp_regs(cpu, ats1e1_reginfo); 8430 } 8431 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 8432 define_arm_cp_regs(cpu, ats1cp_reginfo); 8433 } 8434 #endif 8435 if (cpu_isar_feature(aa64_uao, cpu)) { 8436 define_one_arm_cp_reg(cpu, &uao_reginfo); 8437 } 8438 8439 if (cpu_isar_feature(aa64_dit, cpu)) { 8440 define_one_arm_cp_reg(cpu, &dit_reginfo); 8441 } 8442 if (cpu_isar_feature(aa64_ssbs, cpu)) { 8443 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 8444 } 8445 8446 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8447 define_arm_cp_regs(cpu, vhe_reginfo); 8448 } 8449 8450 if (cpu_isar_feature(aa64_sve, cpu)) { 8451 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 8452 if (arm_feature(env, ARM_FEATURE_EL2)) { 8453 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 8454 } else { 8455 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 8456 } 8457 if (arm_feature(env, ARM_FEATURE_EL3)) { 8458 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 8459 } 8460 } 8461 8462 #ifdef TARGET_AARCH64 8463 if (cpu_isar_feature(aa64_pauth, cpu)) { 8464 define_arm_cp_regs(cpu, pauth_reginfo); 8465 } 8466 if (cpu_isar_feature(aa64_rndr, cpu)) { 8467 define_arm_cp_regs(cpu, rndr_reginfo); 8468 } 8469 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 8470 define_arm_cp_regs(cpu, tlbirange_reginfo); 8471 } 8472 if (cpu_isar_feature(aa64_tlbios, cpu)) { 8473 define_arm_cp_regs(cpu, tlbios_reginfo); 8474 } 8475 #ifndef CONFIG_USER_ONLY 8476 /* Data Cache clean instructions up to PoP */ 8477 if (cpu_isar_feature(aa64_dcpop, cpu)) { 8478 define_one_arm_cp_reg(cpu, dcpop_reg); 8479 8480 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 8481 define_one_arm_cp_reg(cpu, dcpodp_reg); 8482 } 8483 } 8484 #endif /*CONFIG_USER_ONLY*/ 8485 8486 /* 8487 * If full MTE is enabled, add all of the system registers. 8488 * If only "instructions available at EL0" are enabled, 8489 * then define only a RAZ/WI version of PSTATE.TCO. 8490 */ 8491 if (cpu_isar_feature(aa64_mte, cpu)) { 8492 define_arm_cp_regs(cpu, mte_reginfo); 8493 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8494 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 8495 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 8496 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 8497 } 8498 #endif 8499 8500 if (cpu_isar_feature(any_predinv, cpu)) { 8501 define_arm_cp_regs(cpu, predinv_reginfo); 8502 } 8503 8504 if (cpu_isar_feature(any_ccidx, cpu)) { 8505 define_arm_cp_regs(cpu, ccsidr2_reginfo); 8506 } 8507 8508 #ifndef CONFIG_USER_ONLY 8509 /* 8510 * Register redirections and aliases must be done last, 8511 * after the registers from the other extensions have been defined. 8512 */ 8513 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 8514 define_arm_vh_e2h_redirects_aliases(cpu); 8515 } 8516 #endif 8517 } 8518 8519 /* Sort alphabetically by type name, except for "any". */ 8520 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 8521 { 8522 ObjectClass *class_a = (ObjectClass *)a; 8523 ObjectClass *class_b = (ObjectClass *)b; 8524 const char *name_a, *name_b; 8525 8526 name_a = object_class_get_name(class_a); 8527 name_b = object_class_get_name(class_b); 8528 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 8529 return 1; 8530 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 8531 return -1; 8532 } else { 8533 return strcmp(name_a, name_b); 8534 } 8535 } 8536 8537 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 8538 { 8539 ObjectClass *oc = data; 8540 const char *typename; 8541 char *name; 8542 8543 typename = object_class_get_name(oc); 8544 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8545 qemu_printf(" %s\n", name); 8546 g_free(name); 8547 } 8548 8549 void arm_cpu_list(void) 8550 { 8551 GSList *list; 8552 8553 list = object_class_get_list(TYPE_ARM_CPU, false); 8554 list = g_slist_sort(list, arm_cpu_list_compare); 8555 qemu_printf("Available CPUs:\n"); 8556 g_slist_foreach(list, arm_cpu_list_entry, NULL); 8557 g_slist_free(list); 8558 } 8559 8560 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 8561 { 8562 ObjectClass *oc = data; 8563 CpuDefinitionInfoList **cpu_list = user_data; 8564 CpuDefinitionInfo *info; 8565 const char *typename; 8566 8567 typename = object_class_get_name(oc); 8568 info = g_malloc0(sizeof(*info)); 8569 info->name = g_strndup(typename, 8570 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 8571 info->q_typename = g_strdup(typename); 8572 8573 QAPI_LIST_PREPEND(*cpu_list, info); 8574 } 8575 8576 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 8577 { 8578 CpuDefinitionInfoList *cpu_list = NULL; 8579 GSList *list; 8580 8581 list = object_class_get_list(TYPE_ARM_CPU, false); 8582 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 8583 g_slist_free(list); 8584 8585 return cpu_list; 8586 } 8587 8588 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 8589 void *opaque, int state, int secstate, 8590 int crm, int opc1, int opc2, 8591 const char *name) 8592 { 8593 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 8594 * add a single reginfo struct to the hash table. 8595 */ 8596 uint32_t *key = g_new(uint32_t, 1); 8597 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 8598 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 8599 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 8600 8601 r2->name = g_strdup(name); 8602 /* Reset the secure state to the specific incoming state. This is 8603 * necessary as the register may have been defined with both states. 8604 */ 8605 r2->secure = secstate; 8606 8607 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8608 /* Register is banked (using both entries in array). 8609 * Overwriting fieldoffset as the array is only used to define 8610 * banked registers but later only fieldoffset is used. 8611 */ 8612 r2->fieldoffset = r->bank_fieldoffsets[ns]; 8613 } 8614 8615 if (state == ARM_CP_STATE_AA32) { 8616 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 8617 /* If the register is banked then we don't need to migrate or 8618 * reset the 32-bit instance in certain cases: 8619 * 8620 * 1) If the register has both 32-bit and 64-bit instances then we 8621 * can count on the 64-bit instance taking care of the 8622 * non-secure bank. 8623 * 2) If ARMv8 is enabled then we can count on a 64-bit version 8624 * taking care of the secure bank. This requires that separate 8625 * 32 and 64-bit definitions are provided. 8626 */ 8627 if ((r->state == ARM_CP_STATE_BOTH && ns) || 8628 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 8629 r2->type |= ARM_CP_ALIAS; 8630 } 8631 } else if ((secstate != r->secure) && !ns) { 8632 /* The register is not banked so we only want to allow migration of 8633 * the non-secure instance. 8634 */ 8635 r2->type |= ARM_CP_ALIAS; 8636 } 8637 8638 if (r->state == ARM_CP_STATE_BOTH) { 8639 /* We assume it is a cp15 register if the .cp field is left unset. 8640 */ 8641 if (r2->cp == 0) { 8642 r2->cp = 15; 8643 } 8644 8645 #ifdef HOST_WORDS_BIGENDIAN 8646 if (r2->fieldoffset) { 8647 r2->fieldoffset += sizeof(uint32_t); 8648 } 8649 #endif 8650 } 8651 } 8652 if (state == ARM_CP_STATE_AA64) { 8653 /* To allow abbreviation of ARMCPRegInfo 8654 * definitions, we treat cp == 0 as equivalent to 8655 * the value for "standard guest-visible sysreg". 8656 * STATE_BOTH definitions are also always "standard 8657 * sysreg" in their AArch64 view (the .cp value may 8658 * be non-zero for the benefit of the AArch32 view). 8659 */ 8660 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 8661 r2->cp = CP_REG_ARM64_SYSREG_CP; 8662 } 8663 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 8664 r2->opc0, opc1, opc2); 8665 } else { 8666 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 8667 } 8668 if (opaque) { 8669 r2->opaque = opaque; 8670 } 8671 /* reginfo passed to helpers is correct for the actual access, 8672 * and is never ARM_CP_STATE_BOTH: 8673 */ 8674 r2->state = state; 8675 /* Make sure reginfo passed to helpers for wildcarded regs 8676 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 8677 */ 8678 r2->crm = crm; 8679 r2->opc1 = opc1; 8680 r2->opc2 = opc2; 8681 /* By convention, for wildcarded registers only the first 8682 * entry is used for migration; the others are marked as 8683 * ALIAS so we don't try to transfer the register 8684 * multiple times. Special registers (ie NOP/WFI) are 8685 * never migratable and not even raw-accessible. 8686 */ 8687 if ((r->type & ARM_CP_SPECIAL)) { 8688 r2->type |= ARM_CP_NO_RAW; 8689 } 8690 if (((r->crm == CP_ANY) && crm != 0) || 8691 ((r->opc1 == CP_ANY) && opc1 != 0) || 8692 ((r->opc2 == CP_ANY) && opc2 != 0)) { 8693 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 8694 } 8695 8696 /* Check that raw accesses are either forbidden or handled. Note that 8697 * we can't assert this earlier because the setup of fieldoffset for 8698 * banked registers has to be done first. 8699 */ 8700 if (!(r2->type & ARM_CP_NO_RAW)) { 8701 assert(!raw_accessors_invalid(r2)); 8702 } 8703 8704 /* Overriding of an existing definition must be explicitly 8705 * requested. 8706 */ 8707 if (!(r->type & ARM_CP_OVERRIDE)) { 8708 ARMCPRegInfo *oldreg; 8709 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 8710 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 8711 fprintf(stderr, "Register redefined: cp=%d %d bit " 8712 "crn=%d crm=%d opc1=%d opc2=%d, " 8713 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 8714 r2->crn, r2->crm, r2->opc1, r2->opc2, 8715 oldreg->name, r2->name); 8716 g_assert_not_reached(); 8717 } 8718 } 8719 g_hash_table_insert(cpu->cp_regs, key, r2); 8720 } 8721 8722 8723 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 8724 const ARMCPRegInfo *r, void *opaque) 8725 { 8726 /* Define implementations of coprocessor registers. 8727 * We store these in a hashtable because typically 8728 * there are less than 150 registers in a space which 8729 * is 16*16*16*8*8 = 262144 in size. 8730 * Wildcarding is supported for the crm, opc1 and opc2 fields. 8731 * If a register is defined twice then the second definition is 8732 * used, so this can be used to define some generic registers and 8733 * then override them with implementation specific variations. 8734 * At least one of the original and the second definition should 8735 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 8736 * against accidental use. 8737 * 8738 * The state field defines whether the register is to be 8739 * visible in the AArch32 or AArch64 execution state. If the 8740 * state is set to ARM_CP_STATE_BOTH then we synthesise a 8741 * reginfo structure for the AArch32 view, which sees the lower 8742 * 32 bits of the 64 bit register. 8743 * 8744 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 8745 * be wildcarded. AArch64 registers are always considered to be 64 8746 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 8747 * the register, if any. 8748 */ 8749 int crm, opc1, opc2, state; 8750 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 8751 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 8752 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 8753 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 8754 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 8755 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 8756 /* 64 bit registers have only CRm and Opc1 fields */ 8757 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 8758 /* op0 only exists in the AArch64 encodings */ 8759 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 8760 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 8761 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 8762 /* 8763 * This API is only for Arm's system coprocessors (14 and 15) or 8764 * (M-profile or v7A-and-earlier only) for implementation defined 8765 * coprocessors in the range 0..7. Our decode assumes this, since 8766 * 8..13 can be used for other insns including VFP and Neon. See 8767 * valid_cp() in translate.c. Assert here that we haven't tried 8768 * to use an invalid coprocessor number. 8769 */ 8770 switch (r->state) { 8771 case ARM_CP_STATE_BOTH: 8772 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 8773 if (r->cp == 0) { 8774 break; 8775 } 8776 /* fall through */ 8777 case ARM_CP_STATE_AA32: 8778 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 8779 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 8780 assert(r->cp >= 14 && r->cp <= 15); 8781 } else { 8782 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 8783 } 8784 break; 8785 case ARM_CP_STATE_AA64: 8786 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 8787 break; 8788 default: 8789 g_assert_not_reached(); 8790 } 8791 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 8792 * encodes a minimum access level for the register. We roll this 8793 * runtime check into our general permission check code, so check 8794 * here that the reginfo's specified permissions are strict enough 8795 * to encompass the generic architectural permission check. 8796 */ 8797 if (r->state != ARM_CP_STATE_AA32) { 8798 int mask = 0; 8799 switch (r->opc1) { 8800 case 0: 8801 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 8802 mask = PL0U_R | PL1_RW; 8803 break; 8804 case 1: case 2: 8805 /* min_EL EL1 */ 8806 mask = PL1_RW; 8807 break; 8808 case 3: 8809 /* min_EL EL0 */ 8810 mask = PL0_RW; 8811 break; 8812 case 4: 8813 case 5: 8814 /* min_EL EL2 */ 8815 mask = PL2_RW; 8816 break; 8817 case 6: 8818 /* min_EL EL3 */ 8819 mask = PL3_RW; 8820 break; 8821 case 7: 8822 /* min_EL EL1, secure mode only (we don't check the latter) */ 8823 mask = PL1_RW; 8824 break; 8825 default: 8826 /* broken reginfo with out-of-range opc1 */ 8827 assert(false); 8828 break; 8829 } 8830 /* assert our permissions are not too lax (stricter is fine) */ 8831 assert((r->access & ~mask) == 0); 8832 } 8833 8834 /* Check that the register definition has enough info to handle 8835 * reads and writes if they are permitted. 8836 */ 8837 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 8838 if (r->access & PL3_R) { 8839 assert((r->fieldoffset || 8840 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8841 r->readfn); 8842 } 8843 if (r->access & PL3_W) { 8844 assert((r->fieldoffset || 8845 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 8846 r->writefn); 8847 } 8848 } 8849 /* Bad type field probably means missing sentinel at end of reg list */ 8850 assert(cptype_valid(r->type)); 8851 for (crm = crmmin; crm <= crmmax; crm++) { 8852 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 8853 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 8854 for (state = ARM_CP_STATE_AA32; 8855 state <= ARM_CP_STATE_AA64; state++) { 8856 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 8857 continue; 8858 } 8859 if (state == ARM_CP_STATE_AA32) { 8860 /* Under AArch32 CP registers can be common 8861 * (same for secure and non-secure world) or banked. 8862 */ 8863 char *name; 8864 8865 switch (r->secure) { 8866 case ARM_CP_SECSTATE_S: 8867 case ARM_CP_SECSTATE_NS: 8868 add_cpreg_to_hashtable(cpu, r, opaque, state, 8869 r->secure, crm, opc1, opc2, 8870 r->name); 8871 break; 8872 default: 8873 name = g_strdup_printf("%s_S", r->name); 8874 add_cpreg_to_hashtable(cpu, r, opaque, state, 8875 ARM_CP_SECSTATE_S, 8876 crm, opc1, opc2, name); 8877 g_free(name); 8878 add_cpreg_to_hashtable(cpu, r, opaque, state, 8879 ARM_CP_SECSTATE_NS, 8880 crm, opc1, opc2, r->name); 8881 break; 8882 } 8883 } else { 8884 /* AArch64 registers get mapped to non-secure instance 8885 * of AArch32 */ 8886 add_cpreg_to_hashtable(cpu, r, opaque, state, 8887 ARM_CP_SECSTATE_NS, 8888 crm, opc1, opc2, r->name); 8889 } 8890 } 8891 } 8892 } 8893 } 8894 } 8895 8896 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 8897 const ARMCPRegInfo *regs, void *opaque) 8898 { 8899 /* Define a whole list of registers */ 8900 const ARMCPRegInfo *r; 8901 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8902 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 8903 } 8904 } 8905 8906 /* 8907 * Modify ARMCPRegInfo for access from userspace. 8908 * 8909 * This is a data driven modification directed by 8910 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 8911 * user-space cannot alter any values and dynamic values pertaining to 8912 * execution state are hidden from user space view anyway. 8913 */ 8914 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods) 8915 { 8916 const ARMCPRegUserSpaceInfo *m; 8917 ARMCPRegInfo *r; 8918 8919 for (m = mods; m->name; m++) { 8920 GPatternSpec *pat = NULL; 8921 if (m->is_glob) { 8922 pat = g_pattern_spec_new(m->name); 8923 } 8924 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 8925 if (pat && g_pattern_match_string(pat, r->name)) { 8926 r->type = ARM_CP_CONST; 8927 r->access = PL0U_R; 8928 r->resetvalue = 0; 8929 /* continue */ 8930 } else if (strcmp(r->name, m->name) == 0) { 8931 r->type = ARM_CP_CONST; 8932 r->access = PL0U_R; 8933 r->resetvalue &= m->exported_bits; 8934 r->resetvalue |= m->fixed_bits; 8935 break; 8936 } 8937 } 8938 if (pat) { 8939 g_pattern_spec_free(pat); 8940 } 8941 } 8942 } 8943 8944 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 8945 { 8946 return g_hash_table_lookup(cpregs, &encoded_cp); 8947 } 8948 8949 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 8950 uint64_t value) 8951 { 8952 /* Helper coprocessor write function for write-ignore registers */ 8953 } 8954 8955 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 8956 { 8957 /* Helper coprocessor write function for read-as-zero registers */ 8958 return 0; 8959 } 8960 8961 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 8962 { 8963 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 8964 } 8965 8966 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 8967 { 8968 /* Return true if it is not valid for us to switch to 8969 * this CPU mode (ie all the UNPREDICTABLE cases in 8970 * the ARM ARM CPSRWriteByInstr pseudocode). 8971 */ 8972 8973 /* Changes to or from Hyp via MSR and CPS are illegal. */ 8974 if (write_type == CPSRWriteByInstr && 8975 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 8976 mode == ARM_CPU_MODE_HYP)) { 8977 return 1; 8978 } 8979 8980 switch (mode) { 8981 case ARM_CPU_MODE_USR: 8982 return 0; 8983 case ARM_CPU_MODE_SYS: 8984 case ARM_CPU_MODE_SVC: 8985 case ARM_CPU_MODE_ABT: 8986 case ARM_CPU_MODE_UND: 8987 case ARM_CPU_MODE_IRQ: 8988 case ARM_CPU_MODE_FIQ: 8989 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 8990 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 8991 */ 8992 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 8993 * and CPS are treated as illegal mode changes. 8994 */ 8995 if (write_type == CPSRWriteByInstr && 8996 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 8997 (arm_hcr_el2_eff(env) & HCR_TGE)) { 8998 return 1; 8999 } 9000 return 0; 9001 case ARM_CPU_MODE_HYP: 9002 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9003 case ARM_CPU_MODE_MON: 9004 return arm_current_el(env) < 3; 9005 default: 9006 return 1; 9007 } 9008 } 9009 9010 uint32_t cpsr_read(CPUARMState *env) 9011 { 9012 int ZF; 9013 ZF = (env->ZF == 0); 9014 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9015 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9016 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9017 | ((env->condexec_bits & 0xfc) << 8) 9018 | (env->GE << 16) | (env->daif & CPSR_AIF); 9019 } 9020 9021 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9022 CPSRWriteType write_type) 9023 { 9024 uint32_t changed_daif; 9025 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9026 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9027 9028 if (mask & CPSR_NZCV) { 9029 env->ZF = (~val) & CPSR_Z; 9030 env->NF = val; 9031 env->CF = (val >> 29) & 1; 9032 env->VF = (val << 3) & 0x80000000; 9033 } 9034 if (mask & CPSR_Q) 9035 env->QF = ((val & CPSR_Q) != 0); 9036 if (mask & CPSR_T) 9037 env->thumb = ((val & CPSR_T) != 0); 9038 if (mask & CPSR_IT_0_1) { 9039 env->condexec_bits &= ~3; 9040 env->condexec_bits |= (val >> 25) & 3; 9041 } 9042 if (mask & CPSR_IT_2_7) { 9043 env->condexec_bits &= 3; 9044 env->condexec_bits |= (val >> 8) & 0xfc; 9045 } 9046 if (mask & CPSR_GE) { 9047 env->GE = (val >> 16) & 0xf; 9048 } 9049 9050 /* In a V7 implementation that includes the security extensions but does 9051 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9052 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9053 * bits respectively. 9054 * 9055 * In a V8 implementation, it is permitted for privileged software to 9056 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9057 */ 9058 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9059 arm_feature(env, ARM_FEATURE_EL3) && 9060 !arm_feature(env, ARM_FEATURE_EL2) && 9061 !arm_is_secure(env)) { 9062 9063 changed_daif = (env->daif ^ val) & mask; 9064 9065 if (changed_daif & CPSR_A) { 9066 /* Check to see if we are allowed to change the masking of async 9067 * abort exceptions from a non-secure state. 9068 */ 9069 if (!(env->cp15.scr_el3 & SCR_AW)) { 9070 qemu_log_mask(LOG_GUEST_ERROR, 9071 "Ignoring attempt to switch CPSR_A flag from " 9072 "non-secure world with SCR.AW bit clear\n"); 9073 mask &= ~CPSR_A; 9074 } 9075 } 9076 9077 if (changed_daif & CPSR_F) { 9078 /* Check to see if we are allowed to change the masking of FIQ 9079 * exceptions from a non-secure state. 9080 */ 9081 if (!(env->cp15.scr_el3 & SCR_FW)) { 9082 qemu_log_mask(LOG_GUEST_ERROR, 9083 "Ignoring attempt to switch CPSR_F flag from " 9084 "non-secure world with SCR.FW bit clear\n"); 9085 mask &= ~CPSR_F; 9086 } 9087 9088 /* Check whether non-maskable FIQ (NMFI) support is enabled. 9089 * If this bit is set software is not allowed to mask 9090 * FIQs, but is allowed to set CPSR_F to 0. 9091 */ 9092 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9093 (val & CPSR_F)) { 9094 qemu_log_mask(LOG_GUEST_ERROR, 9095 "Ignoring attempt to enable CPSR_F flag " 9096 "(non-maskable FIQ [NMFI] support enabled)\n"); 9097 mask &= ~CPSR_F; 9098 } 9099 } 9100 } 9101 9102 env->daif &= ~(CPSR_AIF & mask); 9103 env->daif |= val & CPSR_AIF & mask; 9104 9105 if (write_type != CPSRWriteRaw && 9106 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9107 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9108 /* Note that we can only get here in USR mode if this is a 9109 * gdb stub write; for this case we follow the architectural 9110 * behaviour for guest writes in USR mode of ignoring an attempt 9111 * to switch mode. (Those are caught by translate.c for writes 9112 * triggered by guest instructions.) 9113 */ 9114 mask &= ~CPSR_M; 9115 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9116 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9117 * v7, and has defined behaviour in v8: 9118 * + leave CPSR.M untouched 9119 * + allow changes to the other CPSR fields 9120 * + set PSTATE.IL 9121 * For user changes via the GDB stub, we don't set PSTATE.IL, 9122 * as this would be unnecessarily harsh for a user error. 9123 */ 9124 mask &= ~CPSR_M; 9125 if (write_type != CPSRWriteByGDBStub && 9126 arm_feature(env, ARM_FEATURE_V8)) { 9127 mask |= CPSR_IL; 9128 val |= CPSR_IL; 9129 } 9130 qemu_log_mask(LOG_GUEST_ERROR, 9131 "Illegal AArch32 mode switch attempt from %s to %s\n", 9132 aarch32_mode_name(env->uncached_cpsr), 9133 aarch32_mode_name(val)); 9134 } else { 9135 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9136 write_type == CPSRWriteExceptionReturn ? 9137 "Exception return from AArch32" : 9138 "AArch32 mode switch from", 9139 aarch32_mode_name(env->uncached_cpsr), 9140 aarch32_mode_name(val), env->regs[15]); 9141 switch_mode(env, val & CPSR_M); 9142 } 9143 } 9144 mask &= ~CACHED_CPSR_BITS; 9145 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9146 if (rebuild_hflags) { 9147 arm_rebuild_hflags(env); 9148 } 9149 } 9150 9151 /* Sign/zero extend */ 9152 uint32_t HELPER(sxtb16)(uint32_t x) 9153 { 9154 uint32_t res; 9155 res = (uint16_t)(int8_t)x; 9156 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9157 return res; 9158 } 9159 9160 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9161 { 9162 /* 9163 * Take a division-by-zero exception if necessary; otherwise return 9164 * to get the usual non-trapping division behaviour (result of 0) 9165 */ 9166 if (arm_feature(env, ARM_FEATURE_M) 9167 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9168 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9169 } 9170 } 9171 9172 uint32_t HELPER(uxtb16)(uint32_t x) 9173 { 9174 uint32_t res; 9175 res = (uint16_t)(uint8_t)x; 9176 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9177 return res; 9178 } 9179 9180 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9181 { 9182 if (den == 0) { 9183 handle_possible_div0_trap(env, GETPC()); 9184 return 0; 9185 } 9186 if (num == INT_MIN && den == -1) { 9187 return INT_MIN; 9188 } 9189 return num / den; 9190 } 9191 9192 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9193 { 9194 if (den == 0) { 9195 handle_possible_div0_trap(env, GETPC()); 9196 return 0; 9197 } 9198 return num / den; 9199 } 9200 9201 uint32_t HELPER(rbit)(uint32_t x) 9202 { 9203 return revbit32(x); 9204 } 9205 9206 #ifdef CONFIG_USER_ONLY 9207 9208 static void switch_mode(CPUARMState *env, int mode) 9209 { 9210 ARMCPU *cpu = env_archcpu(env); 9211 9212 if (mode != ARM_CPU_MODE_USR) { 9213 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9214 } 9215 } 9216 9217 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9218 uint32_t cur_el, bool secure) 9219 { 9220 return 1; 9221 } 9222 9223 void aarch64_sync_64_to_32(CPUARMState *env) 9224 { 9225 g_assert_not_reached(); 9226 } 9227 9228 #else 9229 9230 static void switch_mode(CPUARMState *env, int mode) 9231 { 9232 int old_mode; 9233 int i; 9234 9235 old_mode = env->uncached_cpsr & CPSR_M; 9236 if (mode == old_mode) 9237 return; 9238 9239 if (old_mode == ARM_CPU_MODE_FIQ) { 9240 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9241 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9242 } else if (mode == ARM_CPU_MODE_FIQ) { 9243 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9244 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9245 } 9246 9247 i = bank_number(old_mode); 9248 env->banked_r13[i] = env->regs[13]; 9249 env->banked_spsr[i] = env->spsr; 9250 9251 i = bank_number(mode); 9252 env->regs[13] = env->banked_r13[i]; 9253 env->spsr = env->banked_spsr[i]; 9254 9255 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 9256 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 9257 } 9258 9259 /* Physical Interrupt Target EL Lookup Table 9260 * 9261 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 9262 * 9263 * The below multi-dimensional table is used for looking up the target 9264 * exception level given numerous condition criteria. Specifically, the 9265 * target EL is based on SCR and HCR routing controls as well as the 9266 * currently executing EL and secure state. 9267 * 9268 * Dimensions: 9269 * target_el_table[2][2][2][2][2][4] 9270 * | | | | | +--- Current EL 9271 * | | | | +------ Non-secure(0)/Secure(1) 9272 * | | | +--------- HCR mask override 9273 * | | +------------ SCR exec state control 9274 * | +--------------- SCR mask override 9275 * +------------------ 32-bit(0)/64-bit(1) EL3 9276 * 9277 * The table values are as such: 9278 * 0-3 = EL0-EL3 9279 * -1 = Cannot occur 9280 * 9281 * The ARM ARM target EL table includes entries indicating that an "exception 9282 * is not taken". The two cases where this is applicable are: 9283 * 1) An exception is taken from EL3 but the SCR does not have the exception 9284 * routed to EL3. 9285 * 2) An exception is taken from EL2 but the HCR does not have the exception 9286 * routed to EL2. 9287 * In these two cases, the below table contain a target of EL1. This value is 9288 * returned as it is expected that the consumer of the table data will check 9289 * for "target EL >= current EL" to ensure the exception is not taken. 9290 * 9291 * SCR HCR 9292 * 64 EA AMO From 9293 * BIT IRQ IMO Non-secure Secure 9294 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 9295 */ 9296 static const int8_t target_el_table[2][2][2][2][2][4] = { 9297 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9298 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 9299 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 9300 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 9301 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9302 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 9303 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 9304 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 9305 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 9306 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 9307 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 9308 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 9309 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 9310 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 9311 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 9312 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 9313 }; 9314 9315 /* 9316 * Determine the target EL for physical exceptions 9317 */ 9318 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9319 uint32_t cur_el, bool secure) 9320 { 9321 CPUARMState *env = cs->env_ptr; 9322 bool rw; 9323 bool scr; 9324 bool hcr; 9325 int target_el; 9326 /* Is the highest EL AArch64? */ 9327 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 9328 uint64_t hcr_el2; 9329 9330 if (arm_feature(env, ARM_FEATURE_EL3)) { 9331 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 9332 } else { 9333 /* Either EL2 is the highest EL (and so the EL2 register width 9334 * is given by is64); or there is no EL2 or EL3, in which case 9335 * the value of 'rw' does not affect the table lookup anyway. 9336 */ 9337 rw = is64; 9338 } 9339 9340 hcr_el2 = arm_hcr_el2_eff(env); 9341 switch (excp_idx) { 9342 case EXCP_IRQ: 9343 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 9344 hcr = hcr_el2 & HCR_IMO; 9345 break; 9346 case EXCP_FIQ: 9347 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 9348 hcr = hcr_el2 & HCR_FMO; 9349 break; 9350 default: 9351 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 9352 hcr = hcr_el2 & HCR_AMO; 9353 break; 9354 }; 9355 9356 /* 9357 * For these purposes, TGE and AMO/IMO/FMO both force the 9358 * interrupt to EL2. Fold TGE into the bit extracted above. 9359 */ 9360 hcr |= (hcr_el2 & HCR_TGE) != 0; 9361 9362 /* Perform a table-lookup for the target EL given the current state */ 9363 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 9364 9365 assert(target_el > 0); 9366 9367 return target_el; 9368 } 9369 9370 void arm_log_exception(CPUState *cs) 9371 { 9372 int idx = cs->exception_index; 9373 9374 if (qemu_loglevel_mask(CPU_LOG_INT)) { 9375 const char *exc = NULL; 9376 static const char * const excnames[] = { 9377 [EXCP_UDEF] = "Undefined Instruction", 9378 [EXCP_SWI] = "SVC", 9379 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 9380 [EXCP_DATA_ABORT] = "Data Abort", 9381 [EXCP_IRQ] = "IRQ", 9382 [EXCP_FIQ] = "FIQ", 9383 [EXCP_BKPT] = "Breakpoint", 9384 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 9385 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 9386 [EXCP_HVC] = "Hypervisor Call", 9387 [EXCP_HYP_TRAP] = "Hypervisor Trap", 9388 [EXCP_SMC] = "Secure Monitor Call", 9389 [EXCP_VIRQ] = "Virtual IRQ", 9390 [EXCP_VFIQ] = "Virtual FIQ", 9391 [EXCP_SEMIHOST] = "Semihosting call", 9392 [EXCP_NOCP] = "v7M NOCP UsageFault", 9393 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 9394 [EXCP_STKOF] = "v8M STKOF UsageFault", 9395 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 9396 [EXCP_LSERR] = "v8M LSERR UsageFault", 9397 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 9398 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 9399 }; 9400 9401 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 9402 exc = excnames[idx]; 9403 } 9404 if (!exc) { 9405 exc = "unknown"; 9406 } 9407 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 9408 idx, exc, cs->cpu_index); 9409 } 9410 } 9411 9412 /* 9413 * Function used to synchronize QEMU's AArch64 register set with AArch32 9414 * register set. This is necessary when switching between AArch32 and AArch64 9415 * execution state. 9416 */ 9417 void aarch64_sync_32_to_64(CPUARMState *env) 9418 { 9419 int i; 9420 uint32_t mode = env->uncached_cpsr & CPSR_M; 9421 9422 /* We can blanket copy R[0:7] to X[0:7] */ 9423 for (i = 0; i < 8; i++) { 9424 env->xregs[i] = env->regs[i]; 9425 } 9426 9427 /* 9428 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 9429 * Otherwise, they come from the banked user regs. 9430 */ 9431 if (mode == ARM_CPU_MODE_FIQ) { 9432 for (i = 8; i < 13; i++) { 9433 env->xregs[i] = env->usr_regs[i - 8]; 9434 } 9435 } else { 9436 for (i = 8; i < 13; i++) { 9437 env->xregs[i] = env->regs[i]; 9438 } 9439 } 9440 9441 /* 9442 * Registers x13-x23 are the various mode SP and FP registers. Registers 9443 * r13 and r14 are only copied if we are in that mode, otherwise we copy 9444 * from the mode banked register. 9445 */ 9446 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9447 env->xregs[13] = env->regs[13]; 9448 env->xregs[14] = env->regs[14]; 9449 } else { 9450 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 9451 /* HYP is an exception in that it is copied from r14 */ 9452 if (mode == ARM_CPU_MODE_HYP) { 9453 env->xregs[14] = env->regs[14]; 9454 } else { 9455 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 9456 } 9457 } 9458 9459 if (mode == ARM_CPU_MODE_HYP) { 9460 env->xregs[15] = env->regs[13]; 9461 } else { 9462 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 9463 } 9464 9465 if (mode == ARM_CPU_MODE_IRQ) { 9466 env->xregs[16] = env->regs[14]; 9467 env->xregs[17] = env->regs[13]; 9468 } else { 9469 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 9470 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 9471 } 9472 9473 if (mode == ARM_CPU_MODE_SVC) { 9474 env->xregs[18] = env->regs[14]; 9475 env->xregs[19] = env->regs[13]; 9476 } else { 9477 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 9478 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 9479 } 9480 9481 if (mode == ARM_CPU_MODE_ABT) { 9482 env->xregs[20] = env->regs[14]; 9483 env->xregs[21] = env->regs[13]; 9484 } else { 9485 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 9486 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 9487 } 9488 9489 if (mode == ARM_CPU_MODE_UND) { 9490 env->xregs[22] = env->regs[14]; 9491 env->xregs[23] = env->regs[13]; 9492 } else { 9493 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 9494 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 9495 } 9496 9497 /* 9498 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9499 * mode, then we can copy from r8-r14. Otherwise, we copy from the 9500 * FIQ bank for r8-r14. 9501 */ 9502 if (mode == ARM_CPU_MODE_FIQ) { 9503 for (i = 24; i < 31; i++) { 9504 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 9505 } 9506 } else { 9507 for (i = 24; i < 29; i++) { 9508 env->xregs[i] = env->fiq_regs[i - 24]; 9509 } 9510 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 9511 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 9512 } 9513 9514 env->pc = env->regs[15]; 9515 } 9516 9517 /* 9518 * Function used to synchronize QEMU's AArch32 register set with AArch64 9519 * register set. This is necessary when switching between AArch32 and AArch64 9520 * execution state. 9521 */ 9522 void aarch64_sync_64_to_32(CPUARMState *env) 9523 { 9524 int i; 9525 uint32_t mode = env->uncached_cpsr & CPSR_M; 9526 9527 /* We can blanket copy X[0:7] to R[0:7] */ 9528 for (i = 0; i < 8; i++) { 9529 env->regs[i] = env->xregs[i]; 9530 } 9531 9532 /* 9533 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 9534 * Otherwise, we copy x8-x12 into the banked user regs. 9535 */ 9536 if (mode == ARM_CPU_MODE_FIQ) { 9537 for (i = 8; i < 13; i++) { 9538 env->usr_regs[i - 8] = env->xregs[i]; 9539 } 9540 } else { 9541 for (i = 8; i < 13; i++) { 9542 env->regs[i] = env->xregs[i]; 9543 } 9544 } 9545 9546 /* 9547 * Registers r13 & r14 depend on the current mode. 9548 * If we are in a given mode, we copy the corresponding x registers to r13 9549 * and r14. Otherwise, we copy the x register to the banked r13 and r14 9550 * for the mode. 9551 */ 9552 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 9553 env->regs[13] = env->xregs[13]; 9554 env->regs[14] = env->xregs[14]; 9555 } else { 9556 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 9557 9558 /* 9559 * HYP is an exception in that it does not have its own banked r14 but 9560 * shares the USR r14 9561 */ 9562 if (mode == ARM_CPU_MODE_HYP) { 9563 env->regs[14] = env->xregs[14]; 9564 } else { 9565 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 9566 } 9567 } 9568 9569 if (mode == ARM_CPU_MODE_HYP) { 9570 env->regs[13] = env->xregs[15]; 9571 } else { 9572 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 9573 } 9574 9575 if (mode == ARM_CPU_MODE_IRQ) { 9576 env->regs[14] = env->xregs[16]; 9577 env->regs[13] = env->xregs[17]; 9578 } else { 9579 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 9580 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 9581 } 9582 9583 if (mode == ARM_CPU_MODE_SVC) { 9584 env->regs[14] = env->xregs[18]; 9585 env->regs[13] = env->xregs[19]; 9586 } else { 9587 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 9588 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 9589 } 9590 9591 if (mode == ARM_CPU_MODE_ABT) { 9592 env->regs[14] = env->xregs[20]; 9593 env->regs[13] = env->xregs[21]; 9594 } else { 9595 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 9596 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 9597 } 9598 9599 if (mode == ARM_CPU_MODE_UND) { 9600 env->regs[14] = env->xregs[22]; 9601 env->regs[13] = env->xregs[23]; 9602 } else { 9603 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 9604 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 9605 } 9606 9607 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 9608 * mode, then we can copy to r8-r14. Otherwise, we copy to the 9609 * FIQ bank for r8-r14. 9610 */ 9611 if (mode == ARM_CPU_MODE_FIQ) { 9612 for (i = 24; i < 31; i++) { 9613 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 9614 } 9615 } else { 9616 for (i = 24; i < 29; i++) { 9617 env->fiq_regs[i - 24] = env->xregs[i]; 9618 } 9619 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 9620 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 9621 } 9622 9623 env->regs[15] = env->pc; 9624 } 9625 9626 static void take_aarch32_exception(CPUARMState *env, int new_mode, 9627 uint32_t mask, uint32_t offset, 9628 uint32_t newpc) 9629 { 9630 int new_el; 9631 9632 /* Change the CPU state so as to actually take the exception. */ 9633 switch_mode(env, new_mode); 9634 9635 /* 9636 * For exceptions taken to AArch32 we must clear the SS bit in both 9637 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 9638 */ 9639 env->pstate &= ~PSTATE_SS; 9640 env->spsr = cpsr_read(env); 9641 /* Clear IT bits. */ 9642 env->condexec_bits = 0; 9643 /* Switch to the new mode, and to the correct instruction set. */ 9644 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 9645 9646 /* This must be after mode switching. */ 9647 new_el = arm_current_el(env); 9648 9649 /* Set new mode endianness */ 9650 env->uncached_cpsr &= ~CPSR_E; 9651 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 9652 env->uncached_cpsr |= CPSR_E; 9653 } 9654 /* J and IL must always be cleared for exception entry */ 9655 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 9656 env->daif |= mask; 9657 9658 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 9659 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 9660 env->uncached_cpsr |= CPSR_SSBS; 9661 } else { 9662 env->uncached_cpsr &= ~CPSR_SSBS; 9663 } 9664 } 9665 9666 if (new_mode == ARM_CPU_MODE_HYP) { 9667 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 9668 env->elr_el[2] = env->regs[15]; 9669 } else { 9670 /* CPSR.PAN is normally preserved preserved unless... */ 9671 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 9672 switch (new_el) { 9673 case 3: 9674 if (!arm_is_secure_below_el3(env)) { 9675 /* ... the target is EL3, from non-secure state. */ 9676 env->uncached_cpsr &= ~CPSR_PAN; 9677 break; 9678 } 9679 /* ... the target is EL3, from secure state ... */ 9680 /* fall through */ 9681 case 1: 9682 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 9683 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 9684 env->uncached_cpsr |= CPSR_PAN; 9685 } 9686 break; 9687 } 9688 } 9689 /* 9690 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 9691 * and we should just guard the thumb mode on V4 9692 */ 9693 if (arm_feature(env, ARM_FEATURE_V4T)) { 9694 env->thumb = 9695 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 9696 } 9697 env->regs[14] = env->regs[15] + offset; 9698 } 9699 env->regs[15] = newpc; 9700 arm_rebuild_hflags(env); 9701 } 9702 9703 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 9704 { 9705 /* 9706 * Handle exception entry to Hyp mode; this is sufficiently 9707 * different to entry to other AArch32 modes that we handle it 9708 * separately here. 9709 * 9710 * The vector table entry used is always the 0x14 Hyp mode entry point, 9711 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 9712 * The offset applied to the preferred return address is always zero 9713 * (see DDI0487C.a section G1.12.3). 9714 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 9715 */ 9716 uint32_t addr, mask; 9717 ARMCPU *cpu = ARM_CPU(cs); 9718 CPUARMState *env = &cpu->env; 9719 9720 switch (cs->exception_index) { 9721 case EXCP_UDEF: 9722 addr = 0x04; 9723 break; 9724 case EXCP_SWI: 9725 addr = 0x08; 9726 break; 9727 case EXCP_BKPT: 9728 /* Fall through to prefetch abort. */ 9729 case EXCP_PREFETCH_ABORT: 9730 env->cp15.ifar_s = env->exception.vaddress; 9731 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 9732 (uint32_t)env->exception.vaddress); 9733 addr = 0x0c; 9734 break; 9735 case EXCP_DATA_ABORT: 9736 env->cp15.dfar_s = env->exception.vaddress; 9737 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 9738 (uint32_t)env->exception.vaddress); 9739 addr = 0x10; 9740 break; 9741 case EXCP_IRQ: 9742 addr = 0x18; 9743 break; 9744 case EXCP_FIQ: 9745 addr = 0x1c; 9746 break; 9747 case EXCP_HVC: 9748 addr = 0x08; 9749 break; 9750 case EXCP_HYP_TRAP: 9751 addr = 0x14; 9752 break; 9753 default: 9754 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9755 } 9756 9757 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 9758 if (!arm_feature(env, ARM_FEATURE_V8)) { 9759 /* 9760 * QEMU syndrome values are v8-style. v7 has the IL bit 9761 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 9762 * If this is a v7 CPU, squash the IL bit in those cases. 9763 */ 9764 if (cs->exception_index == EXCP_PREFETCH_ABORT || 9765 (cs->exception_index == EXCP_DATA_ABORT && 9766 !(env->exception.syndrome & ARM_EL_ISV)) || 9767 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 9768 env->exception.syndrome &= ~ARM_EL_IL; 9769 } 9770 } 9771 env->cp15.esr_el[2] = env->exception.syndrome; 9772 } 9773 9774 if (arm_current_el(env) != 2 && addr < 0x14) { 9775 addr = 0x14; 9776 } 9777 9778 mask = 0; 9779 if (!(env->cp15.scr_el3 & SCR_EA)) { 9780 mask |= CPSR_A; 9781 } 9782 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 9783 mask |= CPSR_I; 9784 } 9785 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 9786 mask |= CPSR_F; 9787 } 9788 9789 addr += env->cp15.hvbar; 9790 9791 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 9792 } 9793 9794 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 9795 { 9796 ARMCPU *cpu = ARM_CPU(cs); 9797 CPUARMState *env = &cpu->env; 9798 uint32_t addr; 9799 uint32_t mask; 9800 int new_mode; 9801 uint32_t offset; 9802 uint32_t moe; 9803 9804 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 9805 switch (syn_get_ec(env->exception.syndrome)) { 9806 case EC_BREAKPOINT: 9807 case EC_BREAKPOINT_SAME_EL: 9808 moe = 1; 9809 break; 9810 case EC_WATCHPOINT: 9811 case EC_WATCHPOINT_SAME_EL: 9812 moe = 10; 9813 break; 9814 case EC_AA32_BKPT: 9815 moe = 3; 9816 break; 9817 case EC_VECTORCATCH: 9818 moe = 5; 9819 break; 9820 default: 9821 moe = 0; 9822 break; 9823 } 9824 9825 if (moe) { 9826 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 9827 } 9828 9829 if (env->exception.target_el == 2) { 9830 arm_cpu_do_interrupt_aarch32_hyp(cs); 9831 return; 9832 } 9833 9834 switch (cs->exception_index) { 9835 case EXCP_UDEF: 9836 new_mode = ARM_CPU_MODE_UND; 9837 addr = 0x04; 9838 mask = CPSR_I; 9839 if (env->thumb) 9840 offset = 2; 9841 else 9842 offset = 4; 9843 break; 9844 case EXCP_SWI: 9845 new_mode = ARM_CPU_MODE_SVC; 9846 addr = 0x08; 9847 mask = CPSR_I; 9848 /* The PC already points to the next instruction. */ 9849 offset = 0; 9850 break; 9851 case EXCP_BKPT: 9852 /* Fall through to prefetch abort. */ 9853 case EXCP_PREFETCH_ABORT: 9854 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 9855 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 9856 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 9857 env->exception.fsr, (uint32_t)env->exception.vaddress); 9858 new_mode = ARM_CPU_MODE_ABT; 9859 addr = 0x0c; 9860 mask = CPSR_A | CPSR_I; 9861 offset = 4; 9862 break; 9863 case EXCP_DATA_ABORT: 9864 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 9865 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 9866 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 9867 env->exception.fsr, 9868 (uint32_t)env->exception.vaddress); 9869 new_mode = ARM_CPU_MODE_ABT; 9870 addr = 0x10; 9871 mask = CPSR_A | CPSR_I; 9872 offset = 8; 9873 break; 9874 case EXCP_IRQ: 9875 new_mode = ARM_CPU_MODE_IRQ; 9876 addr = 0x18; 9877 /* Disable IRQ and imprecise data aborts. */ 9878 mask = CPSR_A | CPSR_I; 9879 offset = 4; 9880 if (env->cp15.scr_el3 & SCR_IRQ) { 9881 /* IRQ routed to monitor mode */ 9882 new_mode = ARM_CPU_MODE_MON; 9883 mask |= CPSR_F; 9884 } 9885 break; 9886 case EXCP_FIQ: 9887 new_mode = ARM_CPU_MODE_FIQ; 9888 addr = 0x1c; 9889 /* Disable FIQ, IRQ and imprecise data aborts. */ 9890 mask = CPSR_A | CPSR_I | CPSR_F; 9891 if (env->cp15.scr_el3 & SCR_FIQ) { 9892 /* FIQ routed to monitor mode */ 9893 new_mode = ARM_CPU_MODE_MON; 9894 } 9895 offset = 4; 9896 break; 9897 case EXCP_VIRQ: 9898 new_mode = ARM_CPU_MODE_IRQ; 9899 addr = 0x18; 9900 /* Disable IRQ and imprecise data aborts. */ 9901 mask = CPSR_A | CPSR_I; 9902 offset = 4; 9903 break; 9904 case EXCP_VFIQ: 9905 new_mode = ARM_CPU_MODE_FIQ; 9906 addr = 0x1c; 9907 /* Disable FIQ, IRQ and imprecise data aborts. */ 9908 mask = CPSR_A | CPSR_I | CPSR_F; 9909 offset = 4; 9910 break; 9911 case EXCP_SMC: 9912 new_mode = ARM_CPU_MODE_MON; 9913 addr = 0x08; 9914 mask = CPSR_A | CPSR_I | CPSR_F; 9915 offset = 0; 9916 break; 9917 default: 9918 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 9919 return; /* Never happens. Keep compiler happy. */ 9920 } 9921 9922 if (new_mode == ARM_CPU_MODE_MON) { 9923 addr += env->cp15.mvbar; 9924 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 9925 /* High vectors. When enabled, base address cannot be remapped. */ 9926 addr += 0xffff0000; 9927 } else { 9928 /* ARM v7 architectures provide a vector base address register to remap 9929 * the interrupt vector table. 9930 * This register is only followed in non-monitor mode, and is banked. 9931 * Note: only bits 31:5 are valid. 9932 */ 9933 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 9934 } 9935 9936 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 9937 env->cp15.scr_el3 &= ~SCR_NS; 9938 } 9939 9940 take_aarch32_exception(env, new_mode, mask, offset, addr); 9941 } 9942 9943 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 9944 { 9945 /* 9946 * Return the register number of the AArch64 view of the AArch32 9947 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 9948 * be that of the AArch32 mode the exception came from. 9949 */ 9950 int mode = env->uncached_cpsr & CPSR_M; 9951 9952 switch (aarch32_reg) { 9953 case 0 ... 7: 9954 return aarch32_reg; 9955 case 8 ... 12: 9956 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 9957 case 13: 9958 switch (mode) { 9959 case ARM_CPU_MODE_USR: 9960 case ARM_CPU_MODE_SYS: 9961 return 13; 9962 case ARM_CPU_MODE_HYP: 9963 return 15; 9964 case ARM_CPU_MODE_IRQ: 9965 return 17; 9966 case ARM_CPU_MODE_SVC: 9967 return 19; 9968 case ARM_CPU_MODE_ABT: 9969 return 21; 9970 case ARM_CPU_MODE_UND: 9971 return 23; 9972 case ARM_CPU_MODE_FIQ: 9973 return 29; 9974 default: 9975 g_assert_not_reached(); 9976 } 9977 case 14: 9978 switch (mode) { 9979 case ARM_CPU_MODE_USR: 9980 case ARM_CPU_MODE_SYS: 9981 case ARM_CPU_MODE_HYP: 9982 return 14; 9983 case ARM_CPU_MODE_IRQ: 9984 return 16; 9985 case ARM_CPU_MODE_SVC: 9986 return 18; 9987 case ARM_CPU_MODE_ABT: 9988 return 20; 9989 case ARM_CPU_MODE_UND: 9990 return 22; 9991 case ARM_CPU_MODE_FIQ: 9992 return 30; 9993 default: 9994 g_assert_not_reached(); 9995 } 9996 case 15: 9997 return 31; 9998 default: 9999 g_assert_not_reached(); 10000 } 10001 } 10002 10003 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10004 { 10005 uint32_t ret = cpsr_read(env); 10006 10007 /* Move DIT to the correct location for SPSR_ELx */ 10008 if (ret & CPSR_DIT) { 10009 ret &= ~CPSR_DIT; 10010 ret |= PSTATE_DIT; 10011 } 10012 /* Merge PSTATE.SS into SPSR_ELx */ 10013 ret |= env->pstate & PSTATE_SS; 10014 10015 return ret; 10016 } 10017 10018 /* Handle exception entry to a target EL which is using AArch64 */ 10019 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10020 { 10021 ARMCPU *cpu = ARM_CPU(cs); 10022 CPUARMState *env = &cpu->env; 10023 unsigned int new_el = env->exception.target_el; 10024 target_ulong addr = env->cp15.vbar_el[new_el]; 10025 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10026 unsigned int old_mode; 10027 unsigned int cur_el = arm_current_el(env); 10028 int rt; 10029 10030 /* 10031 * Note that new_el can never be 0. If cur_el is 0, then 10032 * el0_a64 is is_a64(), else el0_a64 is ignored. 10033 */ 10034 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10035 10036 if (cur_el < new_el) { 10037 /* Entry vector offset depends on whether the implemented EL 10038 * immediately lower than the target level is using AArch32 or AArch64 10039 */ 10040 bool is_aa64; 10041 uint64_t hcr; 10042 10043 switch (new_el) { 10044 case 3: 10045 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10046 break; 10047 case 2: 10048 hcr = arm_hcr_el2_eff(env); 10049 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10050 is_aa64 = (hcr & HCR_RW) != 0; 10051 break; 10052 } 10053 /* fall through */ 10054 case 1: 10055 is_aa64 = is_a64(env); 10056 break; 10057 default: 10058 g_assert_not_reached(); 10059 } 10060 10061 if (is_aa64) { 10062 addr += 0x400; 10063 } else { 10064 addr += 0x600; 10065 } 10066 } else if (pstate_read(env) & PSTATE_SP) { 10067 addr += 0x200; 10068 } 10069 10070 switch (cs->exception_index) { 10071 case EXCP_PREFETCH_ABORT: 10072 case EXCP_DATA_ABORT: 10073 env->cp15.far_el[new_el] = env->exception.vaddress; 10074 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10075 env->cp15.far_el[new_el]); 10076 /* fall through */ 10077 case EXCP_BKPT: 10078 case EXCP_UDEF: 10079 case EXCP_SWI: 10080 case EXCP_HVC: 10081 case EXCP_HYP_TRAP: 10082 case EXCP_SMC: 10083 switch (syn_get_ec(env->exception.syndrome)) { 10084 case EC_ADVSIMDFPACCESSTRAP: 10085 /* 10086 * QEMU internal FP/SIMD syndromes from AArch32 include the 10087 * TA and coproc fields which are only exposed if the exception 10088 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10089 * AArch64 format syndrome. 10090 */ 10091 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10092 break; 10093 case EC_CP14RTTRAP: 10094 case EC_CP15RTTRAP: 10095 case EC_CP14DTTRAP: 10096 /* 10097 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10098 * the raw register field from the insn; when taking this to 10099 * AArch64 we must convert it to the AArch64 view of the register 10100 * number. Notice that we read a 4-bit AArch32 register number and 10101 * write back a 5-bit AArch64 one. 10102 */ 10103 rt = extract32(env->exception.syndrome, 5, 4); 10104 rt = aarch64_regnum(env, rt); 10105 env->exception.syndrome = deposit32(env->exception.syndrome, 10106 5, 5, rt); 10107 break; 10108 case EC_CP15RRTTRAP: 10109 case EC_CP14RRTTRAP: 10110 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10111 rt = extract32(env->exception.syndrome, 5, 4); 10112 rt = aarch64_regnum(env, rt); 10113 env->exception.syndrome = deposit32(env->exception.syndrome, 10114 5, 5, rt); 10115 rt = extract32(env->exception.syndrome, 10, 4); 10116 rt = aarch64_regnum(env, rt); 10117 env->exception.syndrome = deposit32(env->exception.syndrome, 10118 10, 5, rt); 10119 break; 10120 } 10121 env->cp15.esr_el[new_el] = env->exception.syndrome; 10122 break; 10123 case EXCP_IRQ: 10124 case EXCP_VIRQ: 10125 addr += 0x80; 10126 break; 10127 case EXCP_FIQ: 10128 case EXCP_VFIQ: 10129 addr += 0x100; 10130 break; 10131 default: 10132 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10133 } 10134 10135 if (is_a64(env)) { 10136 old_mode = pstate_read(env); 10137 aarch64_save_sp(env, arm_current_el(env)); 10138 env->elr_el[new_el] = env->pc; 10139 } else { 10140 old_mode = cpsr_read_for_spsr_elx(env); 10141 env->elr_el[new_el] = env->regs[15]; 10142 10143 aarch64_sync_32_to_64(env); 10144 10145 env->condexec_bits = 0; 10146 } 10147 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10148 10149 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10150 env->elr_el[new_el]); 10151 10152 if (cpu_isar_feature(aa64_pan, cpu)) { 10153 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10154 new_mode |= old_mode & PSTATE_PAN; 10155 switch (new_el) { 10156 case 2: 10157 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10158 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10159 != (HCR_E2H | HCR_TGE)) { 10160 break; 10161 } 10162 /* fall through */ 10163 case 1: 10164 /* ... the target is EL1 ... */ 10165 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10166 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10167 new_mode |= PSTATE_PAN; 10168 } 10169 break; 10170 } 10171 } 10172 if (cpu_isar_feature(aa64_mte, cpu)) { 10173 new_mode |= PSTATE_TCO; 10174 } 10175 10176 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10177 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 10178 new_mode |= PSTATE_SSBS; 10179 } else { 10180 new_mode &= ~PSTATE_SSBS; 10181 } 10182 } 10183 10184 pstate_write(env, PSTATE_DAIF | new_mode); 10185 env->aarch64 = 1; 10186 aarch64_restore_sp(env, new_el); 10187 helper_rebuild_hflags_a64(env, new_el); 10188 10189 env->pc = addr; 10190 10191 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 10192 new_el, env->pc, pstate_read(env)); 10193 } 10194 10195 /* 10196 * Do semihosting call and set the appropriate return value. All the 10197 * permission and validity checks have been done at translate time. 10198 * 10199 * We only see semihosting exceptions in TCG only as they are not 10200 * trapped to the hypervisor in KVM. 10201 */ 10202 #ifdef CONFIG_TCG 10203 static void handle_semihosting(CPUState *cs) 10204 { 10205 ARMCPU *cpu = ARM_CPU(cs); 10206 CPUARMState *env = &cpu->env; 10207 10208 if (is_a64(env)) { 10209 qemu_log_mask(CPU_LOG_INT, 10210 "...handling as semihosting call 0x%" PRIx64 "\n", 10211 env->xregs[0]); 10212 env->xregs[0] = do_common_semihosting(cs); 10213 env->pc += 4; 10214 } else { 10215 qemu_log_mask(CPU_LOG_INT, 10216 "...handling as semihosting call 0x%x\n", 10217 env->regs[0]); 10218 env->regs[0] = do_common_semihosting(cs); 10219 env->regs[15] += env->thumb ? 2 : 4; 10220 } 10221 } 10222 #endif 10223 10224 /* Handle a CPU exception for A and R profile CPUs. 10225 * Do any appropriate logging, handle PSCI calls, and then hand off 10226 * to the AArch64-entry or AArch32-entry function depending on the 10227 * target exception level's register width. 10228 * 10229 * Note: this is used for both TCG (as the do_interrupt tcg op), 10230 * and KVM to re-inject guest debug exceptions, and to 10231 * inject a Synchronous-External-Abort. 10232 */ 10233 void arm_cpu_do_interrupt(CPUState *cs) 10234 { 10235 ARMCPU *cpu = ARM_CPU(cs); 10236 CPUARMState *env = &cpu->env; 10237 unsigned int new_el = env->exception.target_el; 10238 10239 assert(!arm_feature(env, ARM_FEATURE_M)); 10240 10241 arm_log_exception(cs); 10242 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 10243 new_el); 10244 if (qemu_loglevel_mask(CPU_LOG_INT) 10245 && !excp_is_internal(cs->exception_index)) { 10246 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 10247 syn_get_ec(env->exception.syndrome), 10248 env->exception.syndrome); 10249 } 10250 10251 if (arm_is_psci_call(cpu, cs->exception_index)) { 10252 arm_handle_psci_call(cpu); 10253 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 10254 return; 10255 } 10256 10257 /* 10258 * Semihosting semantics depend on the register width of the code 10259 * that caused the exception, not the target exception level, so 10260 * must be handled here. 10261 */ 10262 #ifdef CONFIG_TCG 10263 if (cs->exception_index == EXCP_SEMIHOST) { 10264 handle_semihosting(cs); 10265 return; 10266 } 10267 #endif 10268 10269 /* Hooks may change global state so BQL should be held, also the 10270 * BQL needs to be held for any modification of 10271 * cs->interrupt_request. 10272 */ 10273 g_assert(qemu_mutex_iothread_locked()); 10274 10275 arm_call_pre_el_change_hook(cpu); 10276 10277 assert(!excp_is_internal(cs->exception_index)); 10278 if (arm_el_is_aa64(env, new_el)) { 10279 arm_cpu_do_interrupt_aarch64(cs); 10280 } else { 10281 arm_cpu_do_interrupt_aarch32(cs); 10282 } 10283 10284 arm_call_el_change_hook(cpu); 10285 10286 if (!kvm_enabled()) { 10287 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 10288 } 10289 } 10290 #endif /* !CONFIG_USER_ONLY */ 10291 10292 uint64_t arm_sctlr(CPUARMState *env, int el) 10293 { 10294 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 10295 if (el == 0) { 10296 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 10297 el = (mmu_idx == ARMMMUIdx_E20_0 || mmu_idx == ARMMMUIdx_SE20_0) 10298 ? 2 : 1; 10299 } 10300 return env->cp15.sctlr_el[el]; 10301 } 10302 10303 /* Return the SCTLR value which controls this address translation regime */ 10304 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 10305 { 10306 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 10307 } 10308 10309 #ifndef CONFIG_USER_ONLY 10310 10311 /* Return true if the specified stage of address translation is disabled */ 10312 static inline bool regime_translation_disabled(CPUARMState *env, 10313 ARMMMUIdx mmu_idx) 10314 { 10315 uint64_t hcr_el2; 10316 10317 if (arm_feature(env, ARM_FEATURE_M)) { 10318 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 10319 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 10320 case R_V7M_MPU_CTRL_ENABLE_MASK: 10321 /* Enabled, but not for HardFault and NMI */ 10322 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 10323 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 10324 /* Enabled for all cases */ 10325 return false; 10326 case 0: 10327 default: 10328 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 10329 * we warned about that in armv7m_nvic.c when the guest set it. 10330 */ 10331 return true; 10332 } 10333 } 10334 10335 hcr_el2 = arm_hcr_el2_eff(env); 10336 10337 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 10338 /* HCR.DC means HCR.VM behaves as 1 */ 10339 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0; 10340 } 10341 10342 if (hcr_el2 & HCR_TGE) { 10343 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */ 10344 if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) { 10345 return true; 10346 } 10347 } 10348 10349 if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 10350 /* HCR.DC means SCTLR_EL1.M behaves as 0 */ 10351 return true; 10352 } 10353 10354 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 10355 } 10356 10357 static inline bool regime_translation_big_endian(CPUARMState *env, 10358 ARMMMUIdx mmu_idx) 10359 { 10360 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 10361 } 10362 10363 /* Return the TTBR associated with this translation regime */ 10364 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 10365 int ttbrn) 10366 { 10367 if (mmu_idx == ARMMMUIdx_Stage2) { 10368 return env->cp15.vttbr_el2; 10369 } 10370 if (mmu_idx == ARMMMUIdx_Stage2_S) { 10371 return env->cp15.vsttbr_el2; 10372 } 10373 if (ttbrn == 0) { 10374 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 10375 } else { 10376 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 10377 } 10378 } 10379 10380 #endif /* !CONFIG_USER_ONLY */ 10381 10382 /* Convert a possible stage1+2 MMU index into the appropriate 10383 * stage 1 MMU index 10384 */ 10385 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 10386 { 10387 switch (mmu_idx) { 10388 case ARMMMUIdx_SE10_0: 10389 return ARMMMUIdx_Stage1_SE0; 10390 case ARMMMUIdx_SE10_1: 10391 return ARMMMUIdx_Stage1_SE1; 10392 case ARMMMUIdx_SE10_1_PAN: 10393 return ARMMMUIdx_Stage1_SE1_PAN; 10394 case ARMMMUIdx_E10_0: 10395 return ARMMMUIdx_Stage1_E0; 10396 case ARMMMUIdx_E10_1: 10397 return ARMMMUIdx_Stage1_E1; 10398 case ARMMMUIdx_E10_1_PAN: 10399 return ARMMMUIdx_Stage1_E1_PAN; 10400 default: 10401 return mmu_idx; 10402 } 10403 } 10404 10405 /* Return true if the translation regime is using LPAE format page tables */ 10406 static inline bool regime_using_lpae_format(CPUARMState *env, 10407 ARMMMUIdx mmu_idx) 10408 { 10409 int el = regime_el(env, mmu_idx); 10410 if (el == 2 || arm_el_is_aa64(env, el)) { 10411 return true; 10412 } 10413 if (arm_feature(env, ARM_FEATURE_LPAE) 10414 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 10415 return true; 10416 } 10417 return false; 10418 } 10419 10420 /* Returns true if the stage 1 translation regime is using LPAE format page 10421 * tables. Used when raising alignment exceptions, whose FSR changes depending 10422 * on whether the long or short descriptor format is in use. */ 10423 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 10424 { 10425 mmu_idx = stage_1_mmu_idx(mmu_idx); 10426 10427 return regime_using_lpae_format(env, mmu_idx); 10428 } 10429 10430 #ifndef CONFIG_USER_ONLY 10431 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 10432 { 10433 switch (mmu_idx) { 10434 case ARMMMUIdx_SE10_0: 10435 case ARMMMUIdx_E20_0: 10436 case ARMMMUIdx_SE20_0: 10437 case ARMMMUIdx_Stage1_E0: 10438 case ARMMMUIdx_Stage1_SE0: 10439 case ARMMMUIdx_MUser: 10440 case ARMMMUIdx_MSUser: 10441 case ARMMMUIdx_MUserNegPri: 10442 case ARMMMUIdx_MSUserNegPri: 10443 return true; 10444 default: 10445 return false; 10446 case ARMMMUIdx_E10_0: 10447 case ARMMMUIdx_E10_1: 10448 case ARMMMUIdx_E10_1_PAN: 10449 g_assert_not_reached(); 10450 } 10451 } 10452 10453 /* Translate section/page access permissions to page 10454 * R/W protection flags 10455 * 10456 * @env: CPUARMState 10457 * @mmu_idx: MMU index indicating required translation regime 10458 * @ap: The 3-bit access permissions (AP[2:0]) 10459 * @domain_prot: The 2-bit domain access permissions 10460 */ 10461 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 10462 int ap, int domain_prot) 10463 { 10464 bool is_user = regime_is_user(env, mmu_idx); 10465 10466 if (domain_prot == 3) { 10467 return PAGE_READ | PAGE_WRITE; 10468 } 10469 10470 switch (ap) { 10471 case 0: 10472 if (arm_feature(env, ARM_FEATURE_V7)) { 10473 return 0; 10474 } 10475 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 10476 case SCTLR_S: 10477 return is_user ? 0 : PAGE_READ; 10478 case SCTLR_R: 10479 return PAGE_READ; 10480 default: 10481 return 0; 10482 } 10483 case 1: 10484 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10485 case 2: 10486 if (is_user) { 10487 return PAGE_READ; 10488 } else { 10489 return PAGE_READ | PAGE_WRITE; 10490 } 10491 case 3: 10492 return PAGE_READ | PAGE_WRITE; 10493 case 4: /* Reserved. */ 10494 return 0; 10495 case 5: 10496 return is_user ? 0 : PAGE_READ; 10497 case 6: 10498 return PAGE_READ; 10499 case 7: 10500 if (!arm_feature(env, ARM_FEATURE_V6K)) { 10501 return 0; 10502 } 10503 return PAGE_READ; 10504 default: 10505 g_assert_not_reached(); 10506 } 10507 } 10508 10509 /* Translate section/page access permissions to page 10510 * R/W protection flags. 10511 * 10512 * @ap: The 2-bit simple AP (AP[2:1]) 10513 * @is_user: TRUE if accessing from PL0 10514 */ 10515 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 10516 { 10517 switch (ap) { 10518 case 0: 10519 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 10520 case 1: 10521 return PAGE_READ | PAGE_WRITE; 10522 case 2: 10523 return is_user ? 0 : PAGE_READ; 10524 case 3: 10525 return PAGE_READ; 10526 default: 10527 g_assert_not_reached(); 10528 } 10529 } 10530 10531 static inline int 10532 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 10533 { 10534 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 10535 } 10536 10537 /* Translate S2 section/page access permissions to protection flags 10538 * 10539 * @env: CPUARMState 10540 * @s2ap: The 2-bit stage2 access permissions (S2AP) 10541 * @xn: XN (execute-never) bits 10542 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0 10543 */ 10544 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0) 10545 { 10546 int prot = 0; 10547 10548 if (s2ap & 1) { 10549 prot |= PAGE_READ; 10550 } 10551 if (s2ap & 2) { 10552 prot |= PAGE_WRITE; 10553 } 10554 10555 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) { 10556 switch (xn) { 10557 case 0: 10558 prot |= PAGE_EXEC; 10559 break; 10560 case 1: 10561 if (s1_is_el0) { 10562 prot |= PAGE_EXEC; 10563 } 10564 break; 10565 case 2: 10566 break; 10567 case 3: 10568 if (!s1_is_el0) { 10569 prot |= PAGE_EXEC; 10570 } 10571 break; 10572 default: 10573 g_assert_not_reached(); 10574 } 10575 } else { 10576 if (!extract32(xn, 1, 1)) { 10577 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 10578 prot |= PAGE_EXEC; 10579 } 10580 } 10581 } 10582 return prot; 10583 } 10584 10585 /* Translate section/page access permissions to protection flags 10586 * 10587 * @env: CPUARMState 10588 * @mmu_idx: MMU index indicating required translation regime 10589 * @is_aa64: TRUE if AArch64 10590 * @ap: The 2-bit simple AP (AP[2:1]) 10591 * @ns: NS (non-secure) bit 10592 * @xn: XN (execute-never) bit 10593 * @pxn: PXN (privileged execute-never) bit 10594 */ 10595 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 10596 int ap, int ns, int xn, int pxn) 10597 { 10598 bool is_user = regime_is_user(env, mmu_idx); 10599 int prot_rw, user_rw; 10600 bool have_wxn; 10601 int wxn = 0; 10602 10603 assert(mmu_idx != ARMMMUIdx_Stage2); 10604 assert(mmu_idx != ARMMMUIdx_Stage2_S); 10605 10606 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 10607 if (is_user) { 10608 prot_rw = user_rw; 10609 } else { 10610 if (user_rw && regime_is_pan(env, mmu_idx)) { 10611 /* PAN forbids data accesses but doesn't affect insn fetch */ 10612 prot_rw = 0; 10613 } else { 10614 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 10615 } 10616 } 10617 10618 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 10619 return prot_rw; 10620 } 10621 10622 /* TODO have_wxn should be replaced with 10623 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 10624 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 10625 * compatible processors have EL2, which is required for [U]WXN. 10626 */ 10627 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 10628 10629 if (have_wxn) { 10630 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 10631 } 10632 10633 if (is_aa64) { 10634 if (regime_has_2_ranges(mmu_idx) && !is_user) { 10635 xn = pxn || (user_rw & PAGE_WRITE); 10636 } 10637 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10638 switch (regime_el(env, mmu_idx)) { 10639 case 1: 10640 case 3: 10641 if (is_user) { 10642 xn = xn || !(user_rw & PAGE_READ); 10643 } else { 10644 int uwxn = 0; 10645 if (have_wxn) { 10646 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 10647 } 10648 xn = xn || !(prot_rw & PAGE_READ) || pxn || 10649 (uwxn && (user_rw & PAGE_WRITE)); 10650 } 10651 break; 10652 case 2: 10653 break; 10654 } 10655 } else { 10656 xn = wxn = 0; 10657 } 10658 10659 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 10660 return prot_rw; 10661 } 10662 return prot_rw | PAGE_EXEC; 10663 } 10664 10665 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 10666 uint32_t *table, uint32_t address) 10667 { 10668 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 10669 TCR *tcr = regime_tcr(env, mmu_idx); 10670 10671 if (address & tcr->mask) { 10672 if (tcr->raw_tcr & TTBCR_PD1) { 10673 /* Translation table walk disabled for TTBR1 */ 10674 return false; 10675 } 10676 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 10677 } else { 10678 if (tcr->raw_tcr & TTBCR_PD0) { 10679 /* Translation table walk disabled for TTBR0 */ 10680 return false; 10681 } 10682 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 10683 } 10684 *table |= (address >> 18) & 0x3ffc; 10685 return true; 10686 } 10687 10688 /* Translate a S1 pagetable walk through S2 if needed. */ 10689 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 10690 hwaddr addr, bool *is_secure, 10691 ARMMMUFaultInfo *fi) 10692 { 10693 if (arm_mmu_idx_is_stage1_of_2(mmu_idx) && 10694 !regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 10695 target_ulong s2size; 10696 hwaddr s2pa; 10697 int s2prot; 10698 int ret; 10699 ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S 10700 : ARMMMUIdx_Stage2; 10701 ARMCacheAttrs cacheattrs = {}; 10702 MemTxAttrs txattrs = {}; 10703 10704 ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false, 10705 &s2pa, &txattrs, &s2prot, &s2size, fi, 10706 &cacheattrs); 10707 if (ret) { 10708 assert(fi->type != ARMFault_None); 10709 fi->s2addr = addr; 10710 fi->stage2 = true; 10711 fi->s1ptw = true; 10712 fi->s1ns = !*is_secure; 10713 return ~0; 10714 } 10715 if ((arm_hcr_el2_eff(env) & HCR_PTW) && 10716 (cacheattrs.attrs & 0xf0) == 0) { 10717 /* 10718 * PTW set and S1 walk touched S2 Device memory: 10719 * generate Permission fault. 10720 */ 10721 fi->type = ARMFault_Permission; 10722 fi->s2addr = addr; 10723 fi->stage2 = true; 10724 fi->s1ptw = true; 10725 fi->s1ns = !*is_secure; 10726 return ~0; 10727 } 10728 10729 if (arm_is_secure_below_el3(env)) { 10730 /* Check if page table walk is to secure or non-secure PA space. */ 10731 if (*is_secure) { 10732 *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW); 10733 } else { 10734 *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW); 10735 } 10736 } else { 10737 assert(!*is_secure); 10738 } 10739 10740 addr = s2pa; 10741 } 10742 return addr; 10743 } 10744 10745 /* All loads done in the course of a page table walk go through here. */ 10746 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10747 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10748 { 10749 ARMCPU *cpu = ARM_CPU(cs); 10750 CPUARMState *env = &cpu->env; 10751 MemTxAttrs attrs = {}; 10752 MemTxResult result = MEMTX_OK; 10753 AddressSpace *as; 10754 uint32_t data; 10755 10756 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10757 attrs.secure = is_secure; 10758 as = arm_addressspace(cs, attrs); 10759 if (fi->s1ptw) { 10760 return 0; 10761 } 10762 if (regime_translation_big_endian(env, mmu_idx)) { 10763 data = address_space_ldl_be(as, addr, attrs, &result); 10764 } else { 10765 data = address_space_ldl_le(as, addr, attrs, &result); 10766 } 10767 if (result == MEMTX_OK) { 10768 return data; 10769 } 10770 fi->type = ARMFault_SyncExternalOnWalk; 10771 fi->ea = arm_extabort_type(result); 10772 return 0; 10773 } 10774 10775 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 10776 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 10777 { 10778 ARMCPU *cpu = ARM_CPU(cs); 10779 CPUARMState *env = &cpu->env; 10780 MemTxAttrs attrs = {}; 10781 MemTxResult result = MEMTX_OK; 10782 AddressSpace *as; 10783 uint64_t data; 10784 10785 addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi); 10786 attrs.secure = is_secure; 10787 as = arm_addressspace(cs, attrs); 10788 if (fi->s1ptw) { 10789 return 0; 10790 } 10791 if (regime_translation_big_endian(env, mmu_idx)) { 10792 data = address_space_ldq_be(as, addr, attrs, &result); 10793 } else { 10794 data = address_space_ldq_le(as, addr, attrs, &result); 10795 } 10796 if (result == MEMTX_OK) { 10797 return data; 10798 } 10799 fi->type = ARMFault_SyncExternalOnWalk; 10800 fi->ea = arm_extabort_type(result); 10801 return 0; 10802 } 10803 10804 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 10805 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10806 hwaddr *phys_ptr, int *prot, 10807 target_ulong *page_size, 10808 ARMMMUFaultInfo *fi) 10809 { 10810 CPUState *cs = env_cpu(env); 10811 int level = 1; 10812 uint32_t table; 10813 uint32_t desc; 10814 int type; 10815 int ap; 10816 int domain = 0; 10817 int domain_prot; 10818 hwaddr phys_addr; 10819 uint32_t dacr; 10820 10821 /* Pagetable walk. */ 10822 /* Lookup l1 descriptor. */ 10823 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10824 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10825 fi->type = ARMFault_Translation; 10826 goto do_fault; 10827 } 10828 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10829 mmu_idx, fi); 10830 if (fi->type != ARMFault_None) { 10831 goto do_fault; 10832 } 10833 type = (desc & 3); 10834 domain = (desc >> 5) & 0x0f; 10835 if (regime_el(env, mmu_idx) == 1) { 10836 dacr = env->cp15.dacr_ns; 10837 } else { 10838 dacr = env->cp15.dacr_s; 10839 } 10840 domain_prot = (dacr >> (domain * 2)) & 3; 10841 if (type == 0) { 10842 /* Section translation fault. */ 10843 fi->type = ARMFault_Translation; 10844 goto do_fault; 10845 } 10846 if (type != 2) { 10847 level = 2; 10848 } 10849 if (domain_prot == 0 || domain_prot == 2) { 10850 fi->type = ARMFault_Domain; 10851 goto do_fault; 10852 } 10853 if (type == 2) { 10854 /* 1Mb section. */ 10855 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10856 ap = (desc >> 10) & 3; 10857 *page_size = 1024 * 1024; 10858 } else { 10859 /* Lookup l2 entry. */ 10860 if (type == 1) { 10861 /* Coarse pagetable. */ 10862 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 10863 } else { 10864 /* Fine pagetable. */ 10865 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 10866 } 10867 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10868 mmu_idx, fi); 10869 if (fi->type != ARMFault_None) { 10870 goto do_fault; 10871 } 10872 switch (desc & 3) { 10873 case 0: /* Page translation fault. */ 10874 fi->type = ARMFault_Translation; 10875 goto do_fault; 10876 case 1: /* 64k page. */ 10877 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 10878 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 10879 *page_size = 0x10000; 10880 break; 10881 case 2: /* 4k page. */ 10882 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10883 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 10884 *page_size = 0x1000; 10885 break; 10886 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 10887 if (type == 1) { 10888 /* ARMv6/XScale extended small page format */ 10889 if (arm_feature(env, ARM_FEATURE_XSCALE) 10890 || arm_feature(env, ARM_FEATURE_V6)) { 10891 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 10892 *page_size = 0x1000; 10893 } else { 10894 /* UNPREDICTABLE in ARMv5; we choose to take a 10895 * page translation fault. 10896 */ 10897 fi->type = ARMFault_Translation; 10898 goto do_fault; 10899 } 10900 } else { 10901 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 10902 *page_size = 0x400; 10903 } 10904 ap = (desc >> 4) & 3; 10905 break; 10906 default: 10907 /* Never happens, but compiler isn't smart enough to tell. */ 10908 abort(); 10909 } 10910 } 10911 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 10912 *prot |= *prot ? PAGE_EXEC : 0; 10913 if (!(*prot & (1 << access_type))) { 10914 /* Access permission fault. */ 10915 fi->type = ARMFault_Permission; 10916 goto do_fault; 10917 } 10918 *phys_ptr = phys_addr; 10919 return false; 10920 do_fault: 10921 fi->domain = domain; 10922 fi->level = level; 10923 return true; 10924 } 10925 10926 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 10927 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10928 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10929 target_ulong *page_size, ARMMMUFaultInfo *fi) 10930 { 10931 CPUState *cs = env_cpu(env); 10932 ARMCPU *cpu = env_archcpu(env); 10933 int level = 1; 10934 uint32_t table; 10935 uint32_t desc; 10936 uint32_t xn; 10937 uint32_t pxn = 0; 10938 int type; 10939 int ap; 10940 int domain = 0; 10941 int domain_prot; 10942 hwaddr phys_addr; 10943 uint32_t dacr; 10944 bool ns; 10945 10946 /* Pagetable walk. */ 10947 /* Lookup l1 descriptor. */ 10948 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 10949 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 10950 fi->type = ARMFault_Translation; 10951 goto do_fault; 10952 } 10953 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 10954 mmu_idx, fi); 10955 if (fi->type != ARMFault_None) { 10956 goto do_fault; 10957 } 10958 type = (desc & 3); 10959 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) { 10960 /* Section translation fault, or attempt to use the encoding 10961 * which is Reserved on implementations without PXN. 10962 */ 10963 fi->type = ARMFault_Translation; 10964 goto do_fault; 10965 } 10966 if ((type == 1) || !(desc & (1 << 18))) { 10967 /* Page or Section. */ 10968 domain = (desc >> 5) & 0x0f; 10969 } 10970 if (regime_el(env, mmu_idx) == 1) { 10971 dacr = env->cp15.dacr_ns; 10972 } else { 10973 dacr = env->cp15.dacr_s; 10974 } 10975 if (type == 1) { 10976 level = 2; 10977 } 10978 domain_prot = (dacr >> (domain * 2)) & 3; 10979 if (domain_prot == 0 || domain_prot == 2) { 10980 /* Section or Page domain fault */ 10981 fi->type = ARMFault_Domain; 10982 goto do_fault; 10983 } 10984 if (type != 1) { 10985 if (desc & (1 << 18)) { 10986 /* Supersection. */ 10987 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 10988 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 10989 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 10990 *page_size = 0x1000000; 10991 } else { 10992 /* Section. */ 10993 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 10994 *page_size = 0x100000; 10995 } 10996 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 10997 xn = desc & (1 << 4); 10998 pxn = desc & 1; 10999 ns = extract32(desc, 19, 1); 11000 } else { 11001 if (cpu_isar_feature(aa32_pxn, cpu)) { 11002 pxn = (desc >> 2) & 1; 11003 } 11004 ns = extract32(desc, 3, 1); 11005 /* Lookup l2 entry. */ 11006 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 11007 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 11008 mmu_idx, fi); 11009 if (fi->type != ARMFault_None) { 11010 goto do_fault; 11011 } 11012 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 11013 switch (desc & 3) { 11014 case 0: /* Page translation fault. */ 11015 fi->type = ARMFault_Translation; 11016 goto do_fault; 11017 case 1: /* 64k page. */ 11018 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 11019 xn = desc & (1 << 15); 11020 *page_size = 0x10000; 11021 break; 11022 case 2: case 3: /* 4k page. */ 11023 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 11024 xn = desc & 1; 11025 *page_size = 0x1000; 11026 break; 11027 default: 11028 /* Never happens, but compiler isn't smart enough to tell. */ 11029 abort(); 11030 } 11031 } 11032 if (domain_prot == 3) { 11033 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11034 } else { 11035 if (pxn && !regime_is_user(env, mmu_idx)) { 11036 xn = 1; 11037 } 11038 if (xn && access_type == MMU_INST_FETCH) { 11039 fi->type = ARMFault_Permission; 11040 goto do_fault; 11041 } 11042 11043 if (arm_feature(env, ARM_FEATURE_V6K) && 11044 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 11045 /* The simplified model uses AP[0] as an access control bit. */ 11046 if ((ap & 1) == 0) { 11047 /* Access flag fault. */ 11048 fi->type = ARMFault_AccessFlag; 11049 goto do_fault; 11050 } 11051 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 11052 } else { 11053 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 11054 } 11055 if (*prot && !xn) { 11056 *prot |= PAGE_EXEC; 11057 } 11058 if (!(*prot & (1 << access_type))) { 11059 /* Access permission fault. */ 11060 fi->type = ARMFault_Permission; 11061 goto do_fault; 11062 } 11063 } 11064 if (ns) { 11065 /* The NS bit will (as required by the architecture) have no effect if 11066 * the CPU doesn't support TZ or this is a non-secure translation 11067 * regime, because the attribute will already be non-secure. 11068 */ 11069 attrs->secure = false; 11070 } 11071 *phys_ptr = phys_addr; 11072 return false; 11073 do_fault: 11074 fi->domain = domain; 11075 fi->level = level; 11076 return true; 11077 } 11078 11079 /* 11080 * check_s2_mmu_setup 11081 * @cpu: ARMCPU 11082 * @is_aa64: True if the translation regime is in AArch64 state 11083 * @startlevel: Suggested starting level 11084 * @inputsize: Bitsize of IPAs 11085 * @stride: Page-table stride (See the ARM ARM) 11086 * 11087 * Returns true if the suggested S2 translation parameters are OK and 11088 * false otherwise. 11089 */ 11090 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 11091 int inputsize, int stride, int outputsize) 11092 { 11093 const int grainsize = stride + 3; 11094 int startsizecheck; 11095 11096 /* 11097 * Negative levels are usually not allowed... 11098 * Except for FEAT_LPA2, 4k page table, 52-bit address space, which 11099 * begins with level -1. Note that previous feature tests will have 11100 * eliminated this combination if it is not enabled. 11101 */ 11102 if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) { 11103 return false; 11104 } 11105 11106 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 11107 if (startsizecheck < 1 || startsizecheck > stride + 4) { 11108 return false; 11109 } 11110 11111 if (is_aa64) { 11112 switch (stride) { 11113 case 13: /* 64KB Pages. */ 11114 if (level == 0 || (level == 1 && outputsize <= 42)) { 11115 return false; 11116 } 11117 break; 11118 case 11: /* 16KB Pages. */ 11119 if (level == 0 || (level == 1 && outputsize <= 40)) { 11120 return false; 11121 } 11122 break; 11123 case 9: /* 4KB Pages. */ 11124 if (level == 0 && outputsize <= 42) { 11125 return false; 11126 } 11127 break; 11128 default: 11129 g_assert_not_reached(); 11130 } 11131 11132 /* Inputsize checks. */ 11133 if (inputsize > outputsize && 11134 (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) { 11135 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 11136 return false; 11137 } 11138 } else { 11139 /* AArch32 only supports 4KB pages. Assert on that. */ 11140 assert(stride == 9); 11141 11142 if (level == 0) { 11143 return false; 11144 } 11145 } 11146 return true; 11147 } 11148 11149 /* Translate from the 4-bit stage 2 representation of 11150 * memory attributes (without cache-allocation hints) to 11151 * the 8-bit representation of the stage 1 MAIR registers 11152 * (which includes allocation hints). 11153 * 11154 * ref: shared/translation/attrs/S2AttrDecode() 11155 * .../S2ConvertAttrsHints() 11156 */ 11157 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 11158 { 11159 uint8_t hiattr = extract32(s2attrs, 2, 2); 11160 uint8_t loattr = extract32(s2attrs, 0, 2); 11161 uint8_t hihint = 0, lohint = 0; 11162 11163 if (hiattr != 0) { /* normal memory */ 11164 if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */ 11165 hiattr = loattr = 1; /* non-cacheable */ 11166 } else { 11167 if (hiattr != 1) { /* Write-through or write-back */ 11168 hihint = 3; /* RW allocate */ 11169 } 11170 if (loattr != 1) { /* Write-through or write-back */ 11171 lohint = 3; /* RW allocate */ 11172 } 11173 } 11174 } 11175 11176 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 11177 } 11178 #endif /* !CONFIG_USER_ONLY */ 11179 11180 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */ 11181 static const uint8_t pamax_map[] = { 11182 [0] = 32, 11183 [1] = 36, 11184 [2] = 40, 11185 [3] = 42, 11186 [4] = 44, 11187 [5] = 48, 11188 [6] = 52, 11189 }; 11190 11191 /* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */ 11192 unsigned int arm_pamax(ARMCPU *cpu) 11193 { 11194 unsigned int parange = 11195 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11196 11197 /* 11198 * id_aa64mmfr0 is a read-only register so values outside of the 11199 * supported mappings can be considered an implementation error. 11200 */ 11201 assert(parange < ARRAY_SIZE(pamax_map)); 11202 return pamax_map[parange]; 11203 } 11204 11205 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11206 { 11207 if (regime_has_2_ranges(mmu_idx)) { 11208 return extract64(tcr, 37, 2); 11209 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11210 return 0; /* VTCR_EL2 */ 11211 } else { 11212 /* Replicate the single TBI bit so we always have 2 bits. */ 11213 return extract32(tcr, 20, 1) * 3; 11214 } 11215 } 11216 11217 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11218 { 11219 if (regime_has_2_ranges(mmu_idx)) { 11220 return extract64(tcr, 51, 2); 11221 } else if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11222 return 0; /* VTCR_EL2 */ 11223 } else { 11224 /* Replicate the single TBID bit so we always have 2 bits. */ 11225 return extract32(tcr, 29, 1) * 3; 11226 } 11227 } 11228 11229 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11230 { 11231 if (regime_has_2_ranges(mmu_idx)) { 11232 return extract64(tcr, 57, 2); 11233 } else { 11234 /* Replicate the single TCMA bit so we always have 2 bits. */ 11235 return extract32(tcr, 30, 1) * 3; 11236 } 11237 } 11238 11239 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11240 ARMMMUIdx mmu_idx, bool data) 11241 { 11242 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11243 bool epd, hpd, using16k, using64k, tsz_oob, ds; 11244 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11245 ARMCPU *cpu = env_archcpu(env); 11246 11247 if (!regime_has_2_ranges(mmu_idx)) { 11248 select = 0; 11249 tsz = extract32(tcr, 0, 6); 11250 using64k = extract32(tcr, 14, 1); 11251 using16k = extract32(tcr, 15, 1); 11252 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11253 /* VTCR_EL2 */ 11254 hpd = false; 11255 } else { 11256 hpd = extract32(tcr, 24, 1); 11257 } 11258 epd = false; 11259 sh = extract32(tcr, 12, 2); 11260 ps = extract32(tcr, 16, 3); 11261 ds = extract64(tcr, 32, 1); 11262 } else { 11263 /* 11264 * Bit 55 is always between the two regions, and is canonical for 11265 * determining if address tagging is enabled. 11266 */ 11267 select = extract64(va, 55, 1); 11268 if (!select) { 11269 tsz = extract32(tcr, 0, 6); 11270 epd = extract32(tcr, 7, 1); 11271 sh = extract32(tcr, 12, 2); 11272 using64k = extract32(tcr, 14, 1); 11273 using16k = extract32(tcr, 15, 1); 11274 hpd = extract64(tcr, 41, 1); 11275 } else { 11276 int tg = extract32(tcr, 30, 2); 11277 using16k = tg == 1; 11278 using64k = tg == 3; 11279 tsz = extract32(tcr, 16, 6); 11280 epd = extract32(tcr, 23, 1); 11281 sh = extract32(tcr, 28, 2); 11282 hpd = extract64(tcr, 42, 1); 11283 } 11284 ps = extract64(tcr, 32, 3); 11285 ds = extract64(tcr, 59, 1); 11286 } 11287 11288 if (cpu_isar_feature(aa64_st, cpu)) { 11289 max_tsz = 48 - using64k; 11290 } else { 11291 max_tsz = 39; 11292 } 11293 11294 /* 11295 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11296 * adjust the effective value of DS, as documented. 11297 */ 11298 min_tsz = 16; 11299 if (using64k) { 11300 if (cpu_isar_feature(aa64_lva, cpu)) { 11301 min_tsz = 12; 11302 } 11303 ds = false; 11304 } else if (ds) { 11305 switch (mmu_idx) { 11306 case ARMMMUIdx_Stage2: 11307 case ARMMMUIdx_Stage2_S: 11308 if (using16k) { 11309 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11310 } else { 11311 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11312 } 11313 break; 11314 default: 11315 if (using16k) { 11316 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11317 } else { 11318 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11319 } 11320 break; 11321 } 11322 if (ds) { 11323 min_tsz = 12; 11324 } 11325 } 11326 11327 if (tsz > max_tsz) { 11328 tsz = max_tsz; 11329 tsz_oob = true; 11330 } else if (tsz < min_tsz) { 11331 tsz = min_tsz; 11332 tsz_oob = true; 11333 } else { 11334 tsz_oob = false; 11335 } 11336 11337 /* Present TBI as a composite with TBID. */ 11338 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11339 if (!data) { 11340 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11341 } 11342 tbi = (tbi >> select) & 1; 11343 11344 return (ARMVAParameters) { 11345 .tsz = tsz, 11346 .ps = ps, 11347 .sh = sh, 11348 .select = select, 11349 .tbi = tbi, 11350 .epd = epd, 11351 .hpd = hpd, 11352 .using16k = using16k, 11353 .using64k = using64k, 11354 .tsz_oob = tsz_oob, 11355 .ds = ds, 11356 }; 11357 } 11358 11359 #ifndef CONFIG_USER_ONLY 11360 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va, 11361 ARMMMUIdx mmu_idx) 11362 { 11363 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 11364 uint32_t el = regime_el(env, mmu_idx); 11365 int select, tsz; 11366 bool epd, hpd; 11367 11368 assert(mmu_idx != ARMMMUIdx_Stage2_S); 11369 11370 if (mmu_idx == ARMMMUIdx_Stage2) { 11371 /* VTCR */ 11372 bool sext = extract32(tcr, 4, 1); 11373 bool sign = extract32(tcr, 3, 1); 11374 11375 /* 11376 * If the sign-extend bit is not the same as t0sz[3], the result 11377 * is unpredictable. Flag this as a guest error. 11378 */ 11379 if (sign != sext) { 11380 qemu_log_mask(LOG_GUEST_ERROR, 11381 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 11382 } 11383 tsz = sextract32(tcr, 0, 4) + 8; 11384 select = 0; 11385 hpd = false; 11386 epd = false; 11387 } else if (el == 2) { 11388 /* HTCR */ 11389 tsz = extract32(tcr, 0, 3); 11390 select = 0; 11391 hpd = extract64(tcr, 24, 1); 11392 epd = false; 11393 } else { 11394 int t0sz = extract32(tcr, 0, 3); 11395 int t1sz = extract32(tcr, 16, 3); 11396 11397 if (t1sz == 0) { 11398 select = va > (0xffffffffu >> t0sz); 11399 } else { 11400 /* Note that we will detect errors later. */ 11401 select = va >= ~(0xffffffffu >> t1sz); 11402 } 11403 if (!select) { 11404 tsz = t0sz; 11405 epd = extract32(tcr, 7, 1); 11406 hpd = extract64(tcr, 41, 1); 11407 } else { 11408 tsz = t1sz; 11409 epd = extract32(tcr, 23, 1); 11410 hpd = extract64(tcr, 42, 1); 11411 } 11412 /* For aarch32, hpd0 is not enabled without t2e as well. */ 11413 hpd &= extract32(tcr, 6, 1); 11414 } 11415 11416 return (ARMVAParameters) { 11417 .tsz = tsz, 11418 .select = select, 11419 .epd = epd, 11420 .hpd = hpd, 11421 }; 11422 } 11423 11424 /** 11425 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format 11426 * 11427 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 11428 * prot and page_size may not be filled in, and the populated fsr value provides 11429 * information on why the translation aborted, in the format of a long-format 11430 * DFSR/IFSR fault register, with the following caveats: 11431 * * the WnR bit is never set (the caller must do this). 11432 * 11433 * @env: CPUARMState 11434 * @address: virtual address to get physical address for 11435 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH 11436 * @mmu_idx: MMU index indicating required translation regime 11437 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table 11438 * walk), must be true if this is stage 2 of a stage 1+2 walk for an 11439 * EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored. 11440 * @phys_ptr: set to the physical address corresponding to the virtual address 11441 * @attrs: set to the memory transaction attributes to use 11442 * @prot: set to the permissions for the page containing phys_ptr 11443 * @page_size_ptr: set to the size of the page containing phys_ptr 11444 * @fi: set to fault info if the translation fails 11445 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 11446 */ 11447 static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address, 11448 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11449 bool s1_is_el0, 11450 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 11451 target_ulong *page_size_ptr, 11452 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 11453 { 11454 ARMCPU *cpu = env_archcpu(env); 11455 CPUState *cs = CPU(cpu); 11456 /* Read an LPAE long-descriptor translation table. */ 11457 ARMFaultType fault_type = ARMFault_Translation; 11458 uint32_t level; 11459 ARMVAParameters param; 11460 uint64_t ttbr; 11461 hwaddr descaddr, indexmask, indexmask_grainsize; 11462 uint32_t tableattrs; 11463 target_ulong page_size; 11464 uint32_t attrs; 11465 int32_t stride; 11466 int addrsize, inputsize, outputsize; 11467 TCR *tcr = regime_tcr(env, mmu_idx); 11468 int ap, ns, xn, pxn; 11469 uint32_t el = regime_el(env, mmu_idx); 11470 uint64_t descaddrmask; 11471 bool aarch64 = arm_el_is_aa64(env, el); 11472 bool guarded = false; 11473 11474 /* TODO: This code does not support shareability levels. */ 11475 if (aarch64) { 11476 int ps; 11477 11478 param = aa64_va_parameters(env, address, mmu_idx, 11479 access_type != MMU_INST_FETCH); 11480 level = 0; 11481 11482 /* 11483 * If TxSZ is programmed to a value larger than the maximum, 11484 * or smaller than the effective minimum, it is IMPLEMENTATION 11485 * DEFINED whether we behave as if the field were programmed 11486 * within bounds, or if a level 0 Translation fault is generated. 11487 * 11488 * With FEAT_LVA, fault on less than minimum becomes required, 11489 * so our choice is to always raise the fault. 11490 */ 11491 if (param.tsz_oob) { 11492 fault_type = ARMFault_Translation; 11493 goto do_fault; 11494 } 11495 11496 addrsize = 64 - 8 * param.tbi; 11497 inputsize = 64 - param.tsz; 11498 11499 /* 11500 * Bound PS by PARANGE to find the effective output address size. 11501 * ID_AA64MMFR0 is a read-only register so values outside of the 11502 * supported mappings can be considered an implementation error. 11503 */ 11504 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE); 11505 ps = MIN(ps, param.ps); 11506 assert(ps < ARRAY_SIZE(pamax_map)); 11507 outputsize = pamax_map[ps]; 11508 } else { 11509 param = aa32_va_parameters(env, address, mmu_idx); 11510 level = 1; 11511 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32); 11512 inputsize = addrsize - param.tsz; 11513 outputsize = 40; 11514 } 11515 11516 /* 11517 * We determined the region when collecting the parameters, but we 11518 * have not yet validated that the address is valid for the region. 11519 * Extract the top bits and verify that they all match select. 11520 * 11521 * For aa32, if inputsize == addrsize, then we have selected the 11522 * region by exclusion in aa32_va_parameters and there is no more 11523 * validation to do here. 11524 */ 11525 if (inputsize < addrsize) { 11526 target_ulong top_bits = sextract64(address, inputsize, 11527 addrsize - inputsize); 11528 if (-top_bits != param.select) { 11529 /* The gap between the two regions is a Translation fault */ 11530 fault_type = ARMFault_Translation; 11531 goto do_fault; 11532 } 11533 } 11534 11535 if (param.using64k) { 11536 stride = 13; 11537 } else if (param.using16k) { 11538 stride = 11; 11539 } else { 11540 stride = 9; 11541 } 11542 11543 /* Note that QEMU ignores shareability and cacheability attributes, 11544 * so we don't need to do anything with the SH, ORGN, IRGN fields 11545 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 11546 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 11547 * implement any ASID-like capability so we can ignore it (instead 11548 * we will always flush the TLB any time the ASID is changed). 11549 */ 11550 ttbr = regime_ttbr(env, mmu_idx, param.select); 11551 11552 /* Here we should have set up all the parameters for the translation: 11553 * inputsize, ttbr, epd, stride, tbi 11554 */ 11555 11556 if (param.epd) { 11557 /* Translation table walk disabled => Translation fault on TLB miss 11558 * Note: This is always 0 on 64-bit EL2 and EL3. 11559 */ 11560 goto do_fault; 11561 } 11562 11563 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 11564 /* The starting level depends on the virtual address size (which can 11565 * be up to 48 bits) and the translation granule size. It indicates 11566 * the number of strides (stride bits at a time) needed to 11567 * consume the bits of the input address. In the pseudocode this is: 11568 * level = 4 - RoundUp((inputsize - grainsize) / stride) 11569 * where their 'inputsize' is our 'inputsize', 'grainsize' is 11570 * our 'stride + 3' and 'stride' is our 'stride'. 11571 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 11572 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 11573 * = 4 - (inputsize - 4) / stride; 11574 */ 11575 level = 4 - (inputsize - 4) / stride; 11576 } else { 11577 /* For stage 2 translations the starting level is specified by the 11578 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 11579 */ 11580 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 11581 uint32_t sl2 = extract64(tcr->raw_tcr, 33, 1); 11582 uint32_t startlevel; 11583 bool ok; 11584 11585 /* SL2 is RES0 unless DS=1 & 4kb granule. */ 11586 if (param.ds && stride == 9 && sl2) { 11587 if (sl0 != 0) { 11588 level = 0; 11589 fault_type = ARMFault_Translation; 11590 goto do_fault; 11591 } 11592 startlevel = -1; 11593 } else if (!aarch64 || stride == 9) { 11594 /* AArch32 or 4KB pages */ 11595 startlevel = 2 - sl0; 11596 11597 if (cpu_isar_feature(aa64_st, cpu)) { 11598 startlevel &= 3; 11599 } 11600 } else { 11601 /* 16KB or 64KB pages */ 11602 startlevel = 3 - sl0; 11603 } 11604 11605 /* Check that the starting level is valid. */ 11606 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 11607 inputsize, stride, outputsize); 11608 if (!ok) { 11609 fault_type = ARMFault_Translation; 11610 goto do_fault; 11611 } 11612 level = startlevel; 11613 } 11614 11615 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3); 11616 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level))); 11617 11618 /* Now we can extract the actual base address from the TTBR */ 11619 descaddr = extract64(ttbr, 0, 48); 11620 11621 /* 11622 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR. 11623 * 11624 * Otherwise, if the base address is out of range, raise AddressSizeFault. 11625 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>), 11626 * but we've just cleared the bits above 47, so simplify the test. 11627 */ 11628 if (outputsize > 48) { 11629 descaddr |= extract64(ttbr, 2, 4) << 48; 11630 } else if (descaddr >> outputsize) { 11631 level = 0; 11632 fault_type = ARMFault_AddressSize; 11633 goto do_fault; 11634 } 11635 11636 /* 11637 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR 11638 * and also to mask out CnP (bit 0) which could validly be non-zero. 11639 */ 11640 descaddr &= ~indexmask; 11641 11642 /* 11643 * For AArch32, the address field in the descriptor goes up to bit 39 11644 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0 11645 * or an AddressSize fault is raised. So for v8 we extract those SBZ 11646 * bits as part of the address, which will be checked via outputsize. 11647 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2; 11648 * the highest bits of a 52-bit output are placed elsewhere. 11649 */ 11650 if (param.ds) { 11651 descaddrmask = MAKE_64BIT_MASK(0, 50); 11652 } else if (arm_feature(env, ARM_FEATURE_V8)) { 11653 descaddrmask = MAKE_64BIT_MASK(0, 48); 11654 } else { 11655 descaddrmask = MAKE_64BIT_MASK(0, 40); 11656 } 11657 descaddrmask &= ~indexmask_grainsize; 11658 11659 /* Secure accesses start with the page table in secure memory and 11660 * can be downgraded to non-secure at any step. Non-secure accesses 11661 * remain non-secure. We implement this by just ORing in the NSTable/NS 11662 * bits at each step. 11663 */ 11664 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 11665 for (;;) { 11666 uint64_t descriptor; 11667 bool nstable; 11668 11669 descaddr |= (address >> (stride * (4 - level))) & indexmask; 11670 descaddr &= ~7ULL; 11671 nstable = extract32(tableattrs, 4, 1); 11672 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 11673 if (fi->type != ARMFault_None) { 11674 goto do_fault; 11675 } 11676 11677 if (!(descriptor & 1) || 11678 (!(descriptor & 2) && (level == 3))) { 11679 /* Invalid, or the Reserved level 3 encoding */ 11680 goto do_fault; 11681 } 11682 11683 descaddr = descriptor & descaddrmask; 11684 11685 /* 11686 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12] 11687 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of 11688 * descaddr are in [9:8]. Otherwise, if descaddr is out of range, 11689 * raise AddressSizeFault. 11690 */ 11691 if (outputsize > 48) { 11692 if (param.ds) { 11693 descaddr |= extract64(descriptor, 8, 2) << 50; 11694 } else { 11695 descaddr |= extract64(descriptor, 12, 4) << 48; 11696 } 11697 } else if (descaddr >> outputsize) { 11698 fault_type = ARMFault_AddressSize; 11699 goto do_fault; 11700 } 11701 11702 if ((descriptor & 2) && (level < 3)) { 11703 /* Table entry. The top five bits are attributes which may 11704 * propagate down through lower levels of the table (and 11705 * which are all arranged so that 0 means "no effect", so 11706 * we can gather them up by ORing in the bits at each level). 11707 */ 11708 tableattrs |= extract64(descriptor, 59, 5); 11709 level++; 11710 indexmask = indexmask_grainsize; 11711 continue; 11712 } 11713 /* 11714 * Block entry at level 1 or 2, or page entry at level 3. 11715 * These are basically the same thing, although the number 11716 * of bits we pull in from the vaddr varies. Note that although 11717 * descaddrmask masks enough of the low bits of the descriptor 11718 * to give a correct page or table address, the address field 11719 * in a block descriptor is smaller; so we need to explicitly 11720 * clear the lower bits here before ORing in the low vaddr bits. 11721 */ 11722 page_size = (1ULL << ((stride * (4 - level)) + 3)); 11723 descaddr &= ~(page_size - 1); 11724 descaddr |= (address & (page_size - 1)); 11725 /* Extract attributes from the descriptor */ 11726 attrs = extract64(descriptor, 2, 10) 11727 | (extract64(descriptor, 52, 12) << 10); 11728 11729 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11730 /* Stage 2 table descriptors do not include any attribute fields */ 11731 break; 11732 } 11733 /* Merge in attributes from table descriptors */ 11734 attrs |= nstable << 3; /* NS */ 11735 guarded = extract64(descriptor, 50, 1); /* GP */ 11736 if (param.hpd) { 11737 /* HPD disables all the table attributes except NSTable. */ 11738 break; 11739 } 11740 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 11741 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 11742 * means "force PL1 access only", which means forcing AP[1] to 0. 11743 */ 11744 attrs &= ~(extract32(tableattrs, 2, 1) << 4); /* !APT[0] => AP[1] */ 11745 attrs |= extract32(tableattrs, 3, 1) << 5; /* APT[1] => AP[2] */ 11746 break; 11747 } 11748 /* Here descaddr is the final physical address, and attributes 11749 * are all in attrs. 11750 */ 11751 fault_type = ARMFault_AccessFlag; 11752 if ((attrs & (1 << 8)) == 0) { 11753 /* Access flag */ 11754 goto do_fault; 11755 } 11756 11757 ap = extract32(attrs, 4, 2); 11758 11759 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11760 ns = mmu_idx == ARMMMUIdx_Stage2; 11761 xn = extract32(attrs, 11, 2); 11762 *prot = get_S2prot(env, ap, xn, s1_is_el0); 11763 } else { 11764 ns = extract32(attrs, 3, 1); 11765 xn = extract32(attrs, 12, 1); 11766 pxn = extract32(attrs, 11, 1); 11767 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 11768 } 11769 11770 fault_type = ARMFault_Permission; 11771 if (!(*prot & (1 << access_type))) { 11772 goto do_fault; 11773 } 11774 11775 if (ns) { 11776 /* The NS bit will (as required by the architecture) have no effect if 11777 * the CPU doesn't support TZ or this is a non-secure translation 11778 * regime, because the attribute will already be non-secure. 11779 */ 11780 txattrs->secure = false; 11781 } 11782 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */ 11783 if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) { 11784 arm_tlb_bti_gp(txattrs) = true; 11785 } 11786 11787 if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) { 11788 cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4)); 11789 } else { 11790 /* Index into MAIR registers for cache attributes */ 11791 uint8_t attrindx = extract32(attrs, 0, 3); 11792 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 11793 assert(attrindx <= 7); 11794 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 11795 } 11796 11797 /* 11798 * For FEAT_LPA2 and effective DS, the SH field in the attributes 11799 * was re-purposed for output address bits. The SH attribute in 11800 * that case comes from TCR_ELx, which we extracted earlier. 11801 */ 11802 if (param.ds) { 11803 cacheattrs->shareability = param.sh; 11804 } else { 11805 cacheattrs->shareability = extract32(attrs, 6, 2); 11806 } 11807 11808 *phys_ptr = descaddr; 11809 *page_size_ptr = page_size; 11810 return false; 11811 11812 do_fault: 11813 fi->type = fault_type; 11814 fi->level = level; 11815 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 11816 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 || 11817 mmu_idx == ARMMMUIdx_Stage2_S); 11818 fi->s1ns = mmu_idx == ARMMMUIdx_Stage2; 11819 return true; 11820 } 11821 11822 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 11823 ARMMMUIdx mmu_idx, 11824 int32_t address, int *prot) 11825 { 11826 if (!arm_feature(env, ARM_FEATURE_M)) { 11827 *prot = PAGE_READ | PAGE_WRITE; 11828 switch (address) { 11829 case 0xF0000000 ... 0xFFFFFFFF: 11830 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 11831 /* hivecs execing is ok */ 11832 *prot |= PAGE_EXEC; 11833 } 11834 break; 11835 case 0x00000000 ... 0x7FFFFFFF: 11836 *prot |= PAGE_EXEC; 11837 break; 11838 } 11839 } else { 11840 /* Default system address map for M profile cores. 11841 * The architecture specifies which regions are execute-never; 11842 * at the MPU level no other checks are defined. 11843 */ 11844 switch (address) { 11845 case 0x00000000 ... 0x1fffffff: /* ROM */ 11846 case 0x20000000 ... 0x3fffffff: /* SRAM */ 11847 case 0x60000000 ... 0x7fffffff: /* RAM */ 11848 case 0x80000000 ... 0x9fffffff: /* RAM */ 11849 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 11850 break; 11851 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 11852 case 0xa0000000 ... 0xbfffffff: /* Device */ 11853 case 0xc0000000 ... 0xdfffffff: /* Device */ 11854 case 0xe0000000 ... 0xffffffff: /* System */ 11855 *prot = PAGE_READ | PAGE_WRITE; 11856 break; 11857 default: 11858 g_assert_not_reached(); 11859 } 11860 } 11861 } 11862 11863 static bool pmsav7_use_background_region(ARMCPU *cpu, 11864 ARMMMUIdx mmu_idx, bool is_user) 11865 { 11866 /* Return true if we should use the default memory map as a 11867 * "background" region if there are no hits against any MPU regions. 11868 */ 11869 CPUARMState *env = &cpu->env; 11870 11871 if (is_user) { 11872 return false; 11873 } 11874 11875 if (arm_feature(env, ARM_FEATURE_M)) { 11876 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 11877 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 11878 } else { 11879 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 11880 } 11881 } 11882 11883 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 11884 { 11885 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 11886 return arm_feature(env, ARM_FEATURE_M) && 11887 extract32(address, 20, 12) == 0xe00; 11888 } 11889 11890 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 11891 { 11892 /* True if address is in the M profile system region 11893 * 0xe0000000 - 0xffffffff 11894 */ 11895 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 11896 } 11897 11898 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 11899 MMUAccessType access_type, ARMMMUIdx mmu_idx, 11900 hwaddr *phys_ptr, int *prot, 11901 target_ulong *page_size, 11902 ARMMMUFaultInfo *fi) 11903 { 11904 ARMCPU *cpu = env_archcpu(env); 11905 int n; 11906 bool is_user = regime_is_user(env, mmu_idx); 11907 11908 *phys_ptr = address; 11909 *page_size = TARGET_PAGE_SIZE; 11910 *prot = 0; 11911 11912 if (regime_translation_disabled(env, mmu_idx) || 11913 m_is_ppb_region(env, address)) { 11914 /* MPU disabled or M profile PPB access: use default memory map. 11915 * The other case which uses the default memory map in the 11916 * v7M ARM ARM pseudocode is exception vector reads from the vector 11917 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 11918 * which always does a direct read using address_space_ldl(), rather 11919 * than going via this function, so we don't need to check that here. 11920 */ 11921 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 11922 } else { /* MPU enabled */ 11923 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 11924 /* region search */ 11925 uint32_t base = env->pmsav7.drbar[n]; 11926 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 11927 uint32_t rmask; 11928 bool srdis = false; 11929 11930 if (!(env->pmsav7.drsr[n] & 0x1)) { 11931 continue; 11932 } 11933 11934 if (!rsize) { 11935 qemu_log_mask(LOG_GUEST_ERROR, 11936 "DRSR[%d]: Rsize field cannot be 0\n", n); 11937 continue; 11938 } 11939 rsize++; 11940 rmask = (1ull << rsize) - 1; 11941 11942 if (base & rmask) { 11943 qemu_log_mask(LOG_GUEST_ERROR, 11944 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 11945 "to DRSR region size, mask = 0x%" PRIx32 "\n", 11946 n, base, rmask); 11947 continue; 11948 } 11949 11950 if (address < base || address > base + rmask) { 11951 /* 11952 * Address not in this region. We must check whether the 11953 * region covers addresses in the same page as our address. 11954 * In that case we must not report a size that covers the 11955 * whole page for a subsequent hit against a different MPU 11956 * region or the background region, because it would result in 11957 * incorrect TLB hits for subsequent accesses to addresses that 11958 * are in this MPU region. 11959 */ 11960 if (ranges_overlap(base, rmask, 11961 address & TARGET_PAGE_MASK, 11962 TARGET_PAGE_SIZE)) { 11963 *page_size = 1; 11964 } 11965 continue; 11966 } 11967 11968 /* Region matched */ 11969 11970 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 11971 int i, snd; 11972 uint32_t srdis_mask; 11973 11974 rsize -= 3; /* sub region size (power of 2) */ 11975 snd = ((address - base) >> rsize) & 0x7; 11976 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 11977 11978 srdis_mask = srdis ? 0x3 : 0x0; 11979 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 11980 /* This will check in groups of 2, 4 and then 8, whether 11981 * the subregion bits are consistent. rsize is incremented 11982 * back up to give the region size, considering consistent 11983 * adjacent subregions as one region. Stop testing if rsize 11984 * is already big enough for an entire QEMU page. 11985 */ 11986 int snd_rounded = snd & ~(i - 1); 11987 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 11988 snd_rounded + 8, i); 11989 if (srdis_mask ^ srdis_multi) { 11990 break; 11991 } 11992 srdis_mask = (srdis_mask << i) | srdis_mask; 11993 rsize++; 11994 } 11995 } 11996 if (srdis) { 11997 continue; 11998 } 11999 if (rsize < TARGET_PAGE_BITS) { 12000 *page_size = 1 << rsize; 12001 } 12002 break; 12003 } 12004 12005 if (n == -1) { /* no hits */ 12006 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12007 /* background fault */ 12008 fi->type = ARMFault_Background; 12009 return true; 12010 } 12011 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12012 } else { /* a MPU hit! */ 12013 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 12014 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 12015 12016 if (m_is_system_region(env, address)) { 12017 /* System space is always execute never */ 12018 xn = 1; 12019 } 12020 12021 if (is_user) { /* User mode AP bit decoding */ 12022 switch (ap) { 12023 case 0: 12024 case 1: 12025 case 5: 12026 break; /* no access */ 12027 case 3: 12028 *prot |= PAGE_WRITE; 12029 /* fall through */ 12030 case 2: 12031 case 6: 12032 *prot |= PAGE_READ | PAGE_EXEC; 12033 break; 12034 case 7: 12035 /* for v7M, same as 6; for R profile a reserved value */ 12036 if (arm_feature(env, ARM_FEATURE_M)) { 12037 *prot |= PAGE_READ | PAGE_EXEC; 12038 break; 12039 } 12040 /* fall through */ 12041 default: 12042 qemu_log_mask(LOG_GUEST_ERROR, 12043 "DRACR[%d]: Bad value for AP bits: 0x%" 12044 PRIx32 "\n", n, ap); 12045 } 12046 } else { /* Priv. mode AP bits decoding */ 12047 switch (ap) { 12048 case 0: 12049 break; /* no access */ 12050 case 1: 12051 case 2: 12052 case 3: 12053 *prot |= PAGE_WRITE; 12054 /* fall through */ 12055 case 5: 12056 case 6: 12057 *prot |= PAGE_READ | PAGE_EXEC; 12058 break; 12059 case 7: 12060 /* for v7M, same as 6; for R profile a reserved value */ 12061 if (arm_feature(env, ARM_FEATURE_M)) { 12062 *prot |= PAGE_READ | PAGE_EXEC; 12063 break; 12064 } 12065 /* fall through */ 12066 default: 12067 qemu_log_mask(LOG_GUEST_ERROR, 12068 "DRACR[%d]: Bad value for AP bits: 0x%" 12069 PRIx32 "\n", n, ap); 12070 } 12071 } 12072 12073 /* execute never */ 12074 if (xn) { 12075 *prot &= ~PAGE_EXEC; 12076 } 12077 } 12078 } 12079 12080 fi->type = ARMFault_Permission; 12081 fi->level = 1; 12082 return !(*prot & (1 << access_type)); 12083 } 12084 12085 static bool v8m_is_sau_exempt(CPUARMState *env, 12086 uint32_t address, MMUAccessType access_type) 12087 { 12088 /* The architecture specifies that certain address ranges are 12089 * exempt from v8M SAU/IDAU checks. 12090 */ 12091 return 12092 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 12093 (address >= 0xe0000000 && address <= 0xe0002fff) || 12094 (address >= 0xe000e000 && address <= 0xe000efff) || 12095 (address >= 0xe002e000 && address <= 0xe002efff) || 12096 (address >= 0xe0040000 && address <= 0xe0041fff) || 12097 (address >= 0xe00ff000 && address <= 0xe00fffff); 12098 } 12099 12100 void v8m_security_lookup(CPUARMState *env, uint32_t address, 12101 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12102 V8M_SAttributes *sattrs) 12103 { 12104 /* Look up the security attributes for this address. Compare the 12105 * pseudocode SecurityCheck() function. 12106 * We assume the caller has zero-initialized *sattrs. 12107 */ 12108 ARMCPU *cpu = env_archcpu(env); 12109 int r; 12110 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 12111 int idau_region = IREGION_NOTVALID; 12112 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12113 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12114 12115 if (cpu->idau) { 12116 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 12117 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 12118 12119 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 12120 &idau_nsc); 12121 } 12122 12123 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 12124 /* 0xf0000000..0xffffffff is always S for insn fetches */ 12125 return; 12126 } 12127 12128 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 12129 sattrs->ns = !regime_is_secure(env, mmu_idx); 12130 return; 12131 } 12132 12133 if (idau_region != IREGION_NOTVALID) { 12134 sattrs->irvalid = true; 12135 sattrs->iregion = idau_region; 12136 } 12137 12138 switch (env->sau.ctrl & 3) { 12139 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 12140 break; 12141 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 12142 sattrs->ns = true; 12143 break; 12144 default: /* SAU.ENABLE == 1 */ 12145 for (r = 0; r < cpu->sau_sregion; r++) { 12146 if (env->sau.rlar[r] & 1) { 12147 uint32_t base = env->sau.rbar[r] & ~0x1f; 12148 uint32_t limit = env->sau.rlar[r] | 0x1f; 12149 12150 if (base <= address && limit >= address) { 12151 if (base > addr_page_base || limit < addr_page_limit) { 12152 sattrs->subpage = true; 12153 } 12154 if (sattrs->srvalid) { 12155 /* If we hit in more than one region then we must report 12156 * as Secure, not NS-Callable, with no valid region 12157 * number info. 12158 */ 12159 sattrs->ns = false; 12160 sattrs->nsc = false; 12161 sattrs->sregion = 0; 12162 sattrs->srvalid = false; 12163 break; 12164 } else { 12165 if (env->sau.rlar[r] & 2) { 12166 sattrs->nsc = true; 12167 } else { 12168 sattrs->ns = true; 12169 } 12170 sattrs->srvalid = true; 12171 sattrs->sregion = r; 12172 } 12173 } else { 12174 /* 12175 * Address not in this region. We must check whether the 12176 * region covers addresses in the same page as our address. 12177 * In that case we must not report a size that covers the 12178 * whole page for a subsequent hit against a different MPU 12179 * region or the background region, because it would result 12180 * in incorrect TLB hits for subsequent accesses to 12181 * addresses that are in this MPU region. 12182 */ 12183 if (limit >= base && 12184 ranges_overlap(base, limit - base + 1, 12185 addr_page_base, 12186 TARGET_PAGE_SIZE)) { 12187 sattrs->subpage = true; 12188 } 12189 } 12190 } 12191 } 12192 break; 12193 } 12194 12195 /* 12196 * The IDAU will override the SAU lookup results if it specifies 12197 * higher security than the SAU does. 12198 */ 12199 if (!idau_ns) { 12200 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 12201 sattrs->ns = false; 12202 sattrs->nsc = idau_nsc; 12203 } 12204 } 12205 } 12206 12207 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 12208 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12209 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12210 int *prot, bool *is_subpage, 12211 ARMMMUFaultInfo *fi, uint32_t *mregion) 12212 { 12213 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 12214 * that a full phys-to-virt translation does). 12215 * mregion is (if not NULL) set to the region number which matched, 12216 * or -1 if no region number is returned (MPU off, address did not 12217 * hit a region, address hit in multiple regions). 12218 * We set is_subpage to true if the region hit doesn't cover the 12219 * entire TARGET_PAGE the address is within. 12220 */ 12221 ARMCPU *cpu = env_archcpu(env); 12222 bool is_user = regime_is_user(env, mmu_idx); 12223 uint32_t secure = regime_is_secure(env, mmu_idx); 12224 int n; 12225 int matchregion = -1; 12226 bool hit = false; 12227 uint32_t addr_page_base = address & TARGET_PAGE_MASK; 12228 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1); 12229 12230 *is_subpage = false; 12231 *phys_ptr = address; 12232 *prot = 0; 12233 if (mregion) { 12234 *mregion = -1; 12235 } 12236 12237 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 12238 * was an exception vector read from the vector table (which is always 12239 * done using the default system address map), because those accesses 12240 * are done in arm_v7m_load_vector(), which always does a direct 12241 * read using address_space_ldl(), rather than going via this function. 12242 */ 12243 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 12244 hit = true; 12245 } else if (m_is_ppb_region(env, address)) { 12246 hit = true; 12247 } else { 12248 if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 12249 hit = true; 12250 } 12251 12252 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 12253 /* region search */ 12254 /* Note that the base address is bits [31:5] from the register 12255 * with bits [4:0] all zeroes, but the limit address is bits 12256 * [31:5] from the register with bits [4:0] all ones. 12257 */ 12258 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 12259 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 12260 12261 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 12262 /* Region disabled */ 12263 continue; 12264 } 12265 12266 if (address < base || address > limit) { 12267 /* 12268 * Address not in this region. We must check whether the 12269 * region covers addresses in the same page as our address. 12270 * In that case we must not report a size that covers the 12271 * whole page for a subsequent hit against a different MPU 12272 * region or the background region, because it would result in 12273 * incorrect TLB hits for subsequent accesses to addresses that 12274 * are in this MPU region. 12275 */ 12276 if (limit >= base && 12277 ranges_overlap(base, limit - base + 1, 12278 addr_page_base, 12279 TARGET_PAGE_SIZE)) { 12280 *is_subpage = true; 12281 } 12282 continue; 12283 } 12284 12285 if (base > addr_page_base || limit < addr_page_limit) { 12286 *is_subpage = true; 12287 } 12288 12289 if (matchregion != -1) { 12290 /* Multiple regions match -- always a failure (unlike 12291 * PMSAv7 where highest-numbered-region wins) 12292 */ 12293 fi->type = ARMFault_Permission; 12294 fi->level = 1; 12295 return true; 12296 } 12297 12298 matchregion = n; 12299 hit = true; 12300 } 12301 } 12302 12303 if (!hit) { 12304 /* background fault */ 12305 fi->type = ARMFault_Background; 12306 return true; 12307 } 12308 12309 if (matchregion == -1) { 12310 /* hit using the background region */ 12311 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 12312 } else { 12313 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 12314 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 12315 bool pxn = false; 12316 12317 if (arm_feature(env, ARM_FEATURE_V8_1M)) { 12318 pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1); 12319 } 12320 12321 if (m_is_system_region(env, address)) { 12322 /* System space is always execute never */ 12323 xn = 1; 12324 } 12325 12326 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 12327 if (*prot && !xn && !(pxn && !is_user)) { 12328 *prot |= PAGE_EXEC; 12329 } 12330 /* We don't need to look the attribute up in the MAIR0/MAIR1 12331 * registers because that only tells us about cacheability. 12332 */ 12333 if (mregion) { 12334 *mregion = matchregion; 12335 } 12336 } 12337 12338 fi->type = ARMFault_Permission; 12339 fi->level = 1; 12340 return !(*prot & (1 << access_type)); 12341 } 12342 12343 12344 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 12345 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12346 hwaddr *phys_ptr, MemTxAttrs *txattrs, 12347 int *prot, target_ulong *page_size, 12348 ARMMMUFaultInfo *fi) 12349 { 12350 uint32_t secure = regime_is_secure(env, mmu_idx); 12351 V8M_SAttributes sattrs = {}; 12352 bool ret; 12353 bool mpu_is_subpage; 12354 12355 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 12356 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 12357 if (access_type == MMU_INST_FETCH) { 12358 /* Instruction fetches always use the MMU bank and the 12359 * transaction attribute determined by the fetch address, 12360 * regardless of CPU state. This is painful for QEMU 12361 * to handle, because it would mean we need to encode 12362 * into the mmu_idx not just the (user, negpri) information 12363 * for the current security state but also that for the 12364 * other security state, which would balloon the number 12365 * of mmu_idx values needed alarmingly. 12366 * Fortunately we can avoid this because it's not actually 12367 * possible to arbitrarily execute code from memory with 12368 * the wrong security attribute: it will always generate 12369 * an exception of some kind or another, apart from the 12370 * special case of an NS CPU executing an SG instruction 12371 * in S&NSC memory. So we always just fail the translation 12372 * here and sort things out in the exception handler 12373 * (including possibly emulating an SG instruction). 12374 */ 12375 if (sattrs.ns != !secure) { 12376 if (sattrs.nsc) { 12377 fi->type = ARMFault_QEMU_NSCExec; 12378 } else { 12379 fi->type = ARMFault_QEMU_SFault; 12380 } 12381 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12382 *phys_ptr = address; 12383 *prot = 0; 12384 return true; 12385 } 12386 } else { 12387 /* For data accesses we always use the MMU bank indicated 12388 * by the current CPU state, but the security attributes 12389 * might downgrade a secure access to nonsecure. 12390 */ 12391 if (sattrs.ns) { 12392 txattrs->secure = false; 12393 } else if (!secure) { 12394 /* NS access to S memory must fault. 12395 * Architecturally we should first check whether the 12396 * MPU information for this address indicates that we 12397 * are doing an unaligned access to Device memory, which 12398 * should generate a UsageFault instead. QEMU does not 12399 * currently check for that kind of unaligned access though. 12400 * If we added it we would need to do so as a special case 12401 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 12402 */ 12403 fi->type = ARMFault_QEMU_SFault; 12404 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE; 12405 *phys_ptr = address; 12406 *prot = 0; 12407 return true; 12408 } 12409 } 12410 } 12411 12412 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 12413 txattrs, prot, &mpu_is_subpage, fi, NULL); 12414 *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE; 12415 return ret; 12416 } 12417 12418 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 12419 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12420 hwaddr *phys_ptr, int *prot, 12421 ARMMMUFaultInfo *fi) 12422 { 12423 int n; 12424 uint32_t mask; 12425 uint32_t base; 12426 bool is_user = regime_is_user(env, mmu_idx); 12427 12428 if (regime_translation_disabled(env, mmu_idx)) { 12429 /* MPU disabled. */ 12430 *phys_ptr = address; 12431 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12432 return false; 12433 } 12434 12435 *phys_ptr = address; 12436 for (n = 7; n >= 0; n--) { 12437 base = env->cp15.c6_region[n]; 12438 if ((base & 1) == 0) { 12439 continue; 12440 } 12441 mask = 1 << ((base >> 1) & 0x1f); 12442 /* Keep this shift separate from the above to avoid an 12443 (undefined) << 32. */ 12444 mask = (mask << 1) - 1; 12445 if (((base ^ address) & ~mask) == 0) { 12446 break; 12447 } 12448 } 12449 if (n < 0) { 12450 fi->type = ARMFault_Background; 12451 return true; 12452 } 12453 12454 if (access_type == MMU_INST_FETCH) { 12455 mask = env->cp15.pmsav5_insn_ap; 12456 } else { 12457 mask = env->cp15.pmsav5_data_ap; 12458 } 12459 mask = (mask >> (n * 4)) & 0xf; 12460 switch (mask) { 12461 case 0: 12462 fi->type = ARMFault_Permission; 12463 fi->level = 1; 12464 return true; 12465 case 1: 12466 if (is_user) { 12467 fi->type = ARMFault_Permission; 12468 fi->level = 1; 12469 return true; 12470 } 12471 *prot = PAGE_READ | PAGE_WRITE; 12472 break; 12473 case 2: 12474 *prot = PAGE_READ; 12475 if (!is_user) { 12476 *prot |= PAGE_WRITE; 12477 } 12478 break; 12479 case 3: 12480 *prot = PAGE_READ | PAGE_WRITE; 12481 break; 12482 case 5: 12483 if (is_user) { 12484 fi->type = ARMFault_Permission; 12485 fi->level = 1; 12486 return true; 12487 } 12488 *prot = PAGE_READ; 12489 break; 12490 case 6: 12491 *prot = PAGE_READ; 12492 break; 12493 default: 12494 /* Bad permission. */ 12495 fi->type = ARMFault_Permission; 12496 fi->level = 1; 12497 return true; 12498 } 12499 *prot |= PAGE_EXEC; 12500 return false; 12501 } 12502 12503 /* Combine either inner or outer cacheability attributes for normal 12504 * memory, according to table D4-42 and pseudocode procedure 12505 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 12506 * 12507 * NB: only stage 1 includes allocation hints (RW bits), leading to 12508 * some asymmetry. 12509 */ 12510 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 12511 { 12512 if (s1 == 4 || s2 == 4) { 12513 /* non-cacheable has precedence */ 12514 return 4; 12515 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 12516 /* stage 1 write-through takes precedence */ 12517 return s1; 12518 } else if (extract32(s2, 2, 2) == 2) { 12519 /* stage 2 write-through takes precedence, but the allocation hint 12520 * is still taken from stage 1 12521 */ 12522 return (2 << 2) | extract32(s1, 0, 2); 12523 } else { /* write-back */ 12524 return s1; 12525 } 12526 } 12527 12528 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 12529 * and CombineS1S2Desc() 12530 * 12531 * @s1: Attributes from stage 1 walk 12532 * @s2: Attributes from stage 2 walk 12533 */ 12534 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 12535 { 12536 uint8_t s1lo, s2lo, s1hi, s2hi; 12537 ARMCacheAttrs ret; 12538 bool tagged = false; 12539 12540 if (s1.attrs == 0xf0) { 12541 tagged = true; 12542 s1.attrs = 0xff; 12543 } 12544 12545 s1lo = extract32(s1.attrs, 0, 4); 12546 s2lo = extract32(s2.attrs, 0, 4); 12547 s1hi = extract32(s1.attrs, 4, 4); 12548 s2hi = extract32(s2.attrs, 4, 4); 12549 12550 /* Combine shareability attributes (table D4-43) */ 12551 if (s1.shareability == 2 || s2.shareability == 2) { 12552 /* if either are outer-shareable, the result is outer-shareable */ 12553 ret.shareability = 2; 12554 } else if (s1.shareability == 3 || s2.shareability == 3) { 12555 /* if either are inner-shareable, the result is inner-shareable */ 12556 ret.shareability = 3; 12557 } else { 12558 /* both non-shareable */ 12559 ret.shareability = 0; 12560 } 12561 12562 /* Combine memory type and cacheability attributes */ 12563 if (s1hi == 0 || s2hi == 0) { 12564 /* Device has precedence over normal */ 12565 if (s1lo == 0 || s2lo == 0) { 12566 /* nGnRnE has precedence over anything */ 12567 ret.attrs = 0; 12568 } else if (s1lo == 4 || s2lo == 4) { 12569 /* non-Reordering has precedence over Reordering */ 12570 ret.attrs = 4; /* nGnRE */ 12571 } else if (s1lo == 8 || s2lo == 8) { 12572 /* non-Gathering has precedence over Gathering */ 12573 ret.attrs = 8; /* nGRE */ 12574 } else { 12575 ret.attrs = 0xc; /* GRE */ 12576 } 12577 12578 /* Any location for which the resultant memory type is any 12579 * type of Device memory is always treated as Outer Shareable. 12580 */ 12581 ret.shareability = 2; 12582 } else { /* Normal memory */ 12583 /* Outer/inner cacheability combine independently */ 12584 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 12585 | combine_cacheattr_nibble(s1lo, s2lo); 12586 12587 if (ret.attrs == 0x44) { 12588 /* Any location for which the resultant memory type is Normal 12589 * Inner Non-cacheable, Outer Non-cacheable is always treated 12590 * as Outer Shareable. 12591 */ 12592 ret.shareability = 2; 12593 } 12594 } 12595 12596 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */ 12597 if (tagged && ret.attrs == 0xff) { 12598 ret.attrs = 0xf0; 12599 } 12600 12601 return ret; 12602 } 12603 12604 12605 /* get_phys_addr - get the physical address for this virtual address 12606 * 12607 * Find the physical address corresponding to the given virtual address, 12608 * by doing a translation table walk on MMU based systems or using the 12609 * MPU state on MPU based systems. 12610 * 12611 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 12612 * prot and page_size may not be filled in, and the populated fsr value provides 12613 * information on why the translation aborted, in the format of a 12614 * DFSR/IFSR fault register, with the following caveats: 12615 * * we honour the short vs long DFSR format differences. 12616 * * the WnR bit is never set (the caller must do this). 12617 * * for PSMAv5 based systems we don't bother to return a full FSR format 12618 * value. 12619 * 12620 * @env: CPUARMState 12621 * @address: virtual address to get physical address for 12622 * @access_type: 0 for read, 1 for write, 2 for execute 12623 * @mmu_idx: MMU index indicating required translation regime 12624 * @phys_ptr: set to the physical address corresponding to the virtual address 12625 * @attrs: set to the memory transaction attributes to use 12626 * @prot: set to the permissions for the page containing phys_ptr 12627 * @page_size: set to the size of the page containing phys_ptr 12628 * @fi: set to fault info if the translation fails 12629 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 12630 */ 12631 bool get_phys_addr(CPUARMState *env, target_ulong address, 12632 MMUAccessType access_type, ARMMMUIdx mmu_idx, 12633 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 12634 target_ulong *page_size, 12635 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 12636 { 12637 ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx); 12638 12639 if (mmu_idx != s1_mmu_idx) { 12640 /* Call ourselves recursively to do the stage 1 and then stage 2 12641 * translations if mmu_idx is a two-stage regime. 12642 */ 12643 if (arm_feature(env, ARM_FEATURE_EL2)) { 12644 hwaddr ipa; 12645 int s2_prot; 12646 int ret; 12647 ARMCacheAttrs cacheattrs2 = {}; 12648 ARMMMUIdx s2_mmu_idx; 12649 bool is_el0; 12650 12651 ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa, 12652 attrs, prot, page_size, fi, cacheattrs); 12653 12654 /* If S1 fails or S2 is disabled, return early. */ 12655 if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) { 12656 *phys_ptr = ipa; 12657 return ret; 12658 } 12659 12660 s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2; 12661 is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0; 12662 12663 /* S1 is done. Now do S2 translation. */ 12664 ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0, 12665 phys_ptr, attrs, &s2_prot, 12666 page_size, fi, &cacheattrs2); 12667 fi->s2addr = ipa; 12668 /* Combine the S1 and S2 perms. */ 12669 *prot &= s2_prot; 12670 12671 /* If S2 fails, return early. */ 12672 if (ret) { 12673 return ret; 12674 } 12675 12676 /* Combine the S1 and S2 cache attributes. */ 12677 if (arm_hcr_el2_eff(env) & HCR_DC) { 12678 /* 12679 * HCR.DC forces the first stage attributes to 12680 * Normal Non-Shareable, 12681 * Inner Write-Back Read-Allocate Write-Allocate, 12682 * Outer Write-Back Read-Allocate Write-Allocate. 12683 * Do not overwrite Tagged within attrs. 12684 */ 12685 if (cacheattrs->attrs != 0xf0) { 12686 cacheattrs->attrs = 0xff; 12687 } 12688 cacheattrs->shareability = 0; 12689 } 12690 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 12691 12692 /* Check if IPA translates to secure or non-secure PA space. */ 12693 if (arm_is_secure_below_el3(env)) { 12694 if (attrs->secure) { 12695 attrs->secure = 12696 !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)); 12697 } else { 12698 attrs->secure = 12699 !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW)) 12700 || (env->cp15.vstcr_el2.raw_tcr & VSTCR_SA)); 12701 } 12702 } 12703 return 0; 12704 } else { 12705 /* 12706 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 12707 */ 12708 mmu_idx = stage_1_mmu_idx(mmu_idx); 12709 } 12710 } 12711 12712 /* The page table entries may downgrade secure to non-secure, but 12713 * cannot upgrade an non-secure translation regime's attributes 12714 * to secure. 12715 */ 12716 attrs->secure = regime_is_secure(env, mmu_idx); 12717 attrs->user = regime_is_user(env, mmu_idx); 12718 12719 /* Fast Context Switch Extension. This doesn't exist at all in v8. 12720 * In v7 and earlier it affects all stage 1 translations. 12721 */ 12722 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2 12723 && !arm_feature(env, ARM_FEATURE_V8)) { 12724 if (regime_el(env, mmu_idx) == 3) { 12725 address += env->cp15.fcseidr_s; 12726 } else { 12727 address += env->cp15.fcseidr_ns; 12728 } 12729 } 12730 12731 if (arm_feature(env, ARM_FEATURE_PMSA)) { 12732 bool ret; 12733 *page_size = TARGET_PAGE_SIZE; 12734 12735 if (arm_feature(env, ARM_FEATURE_V8)) { 12736 /* PMSAv8 */ 12737 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 12738 phys_ptr, attrs, prot, page_size, fi); 12739 } else if (arm_feature(env, ARM_FEATURE_V7)) { 12740 /* PMSAv7 */ 12741 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 12742 phys_ptr, prot, page_size, fi); 12743 } else { 12744 /* Pre-v7 MPU */ 12745 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 12746 phys_ptr, prot, fi); 12747 } 12748 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 12749 " mmu_idx %u -> %s (prot %c%c%c)\n", 12750 access_type == MMU_DATA_LOAD ? "reading" : 12751 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 12752 (uint32_t)address, mmu_idx, 12753 ret ? "Miss" : "Hit", 12754 *prot & PAGE_READ ? 'r' : '-', 12755 *prot & PAGE_WRITE ? 'w' : '-', 12756 *prot & PAGE_EXEC ? 'x' : '-'); 12757 12758 return ret; 12759 } 12760 12761 /* Definitely a real MMU, not an MPU */ 12762 12763 if (regime_translation_disabled(env, mmu_idx)) { 12764 uint64_t hcr; 12765 uint8_t memattr; 12766 12767 /* 12768 * MMU disabled. S1 addresses within aa64 translation regimes are 12769 * still checked for bounds -- see AArch64.TranslateAddressS1Off. 12770 */ 12771 if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) { 12772 int r_el = regime_el(env, mmu_idx); 12773 if (arm_el_is_aa64(env, r_el)) { 12774 int pamax = arm_pamax(env_archcpu(env)); 12775 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr; 12776 int addrtop, tbi; 12777 12778 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12779 if (access_type == MMU_INST_FETCH) { 12780 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12781 } 12782 tbi = (tbi >> extract64(address, 55, 1)) & 1; 12783 addrtop = (tbi ? 55 : 63); 12784 12785 if (extract64(address, pamax, addrtop - pamax + 1) != 0) { 12786 fi->type = ARMFault_AddressSize; 12787 fi->level = 0; 12788 fi->stage2 = false; 12789 return 1; 12790 } 12791 12792 /* 12793 * When TBI is disabled, we've just validated that all of the 12794 * bits above PAMax are zero, so logically we only need to 12795 * clear the top byte for TBI. But it's clearer to follow 12796 * the pseudocode set of addrdesc.paddress. 12797 */ 12798 address = extract64(address, 0, 52); 12799 } 12800 } 12801 *phys_ptr = address; 12802 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 12803 *page_size = TARGET_PAGE_SIZE; 12804 12805 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */ 12806 hcr = arm_hcr_el2_eff(env); 12807 cacheattrs->shareability = 0; 12808 if (hcr & HCR_DC) { 12809 if (hcr & HCR_DCT) { 12810 memattr = 0xf0; /* Tagged, Normal, WB, RWA */ 12811 } else { 12812 memattr = 0xff; /* Normal, WB, RWA */ 12813 } 12814 } else if (access_type == MMU_INST_FETCH) { 12815 if (regime_sctlr(env, mmu_idx) & SCTLR_I) { 12816 memattr = 0xee; /* Normal, WT, RA, NT */ 12817 } else { 12818 memattr = 0x44; /* Normal, NC, No */ 12819 } 12820 cacheattrs->shareability = 2; /* outer sharable */ 12821 } else { 12822 memattr = 0x00; /* Device, nGnRnE */ 12823 } 12824 cacheattrs->attrs = memattr; 12825 return 0; 12826 } 12827 12828 if (regime_using_lpae_format(env, mmu_idx)) { 12829 return get_phys_addr_lpae(env, address, access_type, mmu_idx, false, 12830 phys_ptr, attrs, prot, page_size, 12831 fi, cacheattrs); 12832 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 12833 return get_phys_addr_v6(env, address, access_type, mmu_idx, 12834 phys_ptr, attrs, prot, page_size, fi); 12835 } else { 12836 return get_phys_addr_v5(env, address, access_type, mmu_idx, 12837 phys_ptr, prot, page_size, fi); 12838 } 12839 } 12840 12841 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 12842 MemTxAttrs *attrs) 12843 { 12844 ARMCPU *cpu = ARM_CPU(cs); 12845 CPUARMState *env = &cpu->env; 12846 hwaddr phys_addr; 12847 target_ulong page_size; 12848 int prot; 12849 bool ret; 12850 ARMMMUFaultInfo fi = {}; 12851 ARMMMUIdx mmu_idx = arm_mmu_idx(env); 12852 ARMCacheAttrs cacheattrs = {}; 12853 12854 *attrs = (MemTxAttrs) {}; 12855 12856 ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr, 12857 attrs, &prot, &page_size, &fi, &cacheattrs); 12858 12859 if (ret) { 12860 return -1; 12861 } 12862 return phys_addr; 12863 } 12864 12865 #endif 12866 12867 /* Note that signed overflow is undefined in C. The following routines are 12868 careful to use unsigned types where modulo arithmetic is required. 12869 Failure to do so _will_ break on newer gcc. */ 12870 12871 /* Signed saturating arithmetic. */ 12872 12873 /* Perform 16-bit signed saturating addition. */ 12874 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12875 { 12876 uint16_t res; 12877 12878 res = a + b; 12879 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12880 if (a & 0x8000) 12881 res = 0x8000; 12882 else 12883 res = 0x7fff; 12884 } 12885 return res; 12886 } 12887 12888 /* Perform 8-bit signed saturating addition. */ 12889 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12890 { 12891 uint8_t res; 12892 12893 res = a + b; 12894 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12895 if (a & 0x80) 12896 res = 0x80; 12897 else 12898 res = 0x7f; 12899 } 12900 return res; 12901 } 12902 12903 /* Perform 16-bit signed saturating subtraction. */ 12904 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12905 { 12906 uint16_t res; 12907 12908 res = a - b; 12909 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12910 if (a & 0x8000) 12911 res = 0x8000; 12912 else 12913 res = 0x7fff; 12914 } 12915 return res; 12916 } 12917 12918 /* Perform 8-bit signed saturating subtraction. */ 12919 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12920 { 12921 uint8_t res; 12922 12923 res = a - b; 12924 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12925 if (a & 0x80) 12926 res = 0x80; 12927 else 12928 res = 0x7f; 12929 } 12930 return res; 12931 } 12932 12933 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12934 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12935 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12936 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12937 #define PFX q 12938 12939 #include "op_addsub.h" 12940 12941 /* Unsigned saturating arithmetic. */ 12942 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12943 { 12944 uint16_t res; 12945 res = a + b; 12946 if (res < a) 12947 res = 0xffff; 12948 return res; 12949 } 12950 12951 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12952 { 12953 if (a > b) 12954 return a - b; 12955 else 12956 return 0; 12957 } 12958 12959 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12960 { 12961 uint8_t res; 12962 res = a + b; 12963 if (res < a) 12964 res = 0xff; 12965 return res; 12966 } 12967 12968 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12969 { 12970 if (a > b) 12971 return a - b; 12972 else 12973 return 0; 12974 } 12975 12976 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12977 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12978 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12979 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12980 #define PFX uq 12981 12982 #include "op_addsub.h" 12983 12984 /* Signed modulo arithmetic. */ 12985 #define SARITH16(a, b, n, op) do { \ 12986 int32_t sum; \ 12987 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12988 RESULT(sum, n, 16); \ 12989 if (sum >= 0) \ 12990 ge |= 3 << (n * 2); \ 12991 } while(0) 12992 12993 #define SARITH8(a, b, n, op) do { \ 12994 int32_t sum; \ 12995 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12996 RESULT(sum, n, 8); \ 12997 if (sum >= 0) \ 12998 ge |= 1 << n; \ 12999 } while(0) 13000 13001 13002 #define ADD16(a, b, n) SARITH16(a, b, n, +) 13003 #define SUB16(a, b, n) SARITH16(a, b, n, -) 13004 #define ADD8(a, b, n) SARITH8(a, b, n, +) 13005 #define SUB8(a, b, n) SARITH8(a, b, n, -) 13006 #define PFX s 13007 #define ARITH_GE 13008 13009 #include "op_addsub.h" 13010 13011 /* Unsigned modulo arithmetic. */ 13012 #define ADD16(a, b, n) do { \ 13013 uint32_t sum; \ 13014 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 13015 RESULT(sum, n, 16); \ 13016 if ((sum >> 16) == 1) \ 13017 ge |= 3 << (n * 2); \ 13018 } while(0) 13019 13020 #define ADD8(a, b, n) do { \ 13021 uint32_t sum; \ 13022 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 13023 RESULT(sum, n, 8); \ 13024 if ((sum >> 8) == 1) \ 13025 ge |= 1 << n; \ 13026 } while(0) 13027 13028 #define SUB16(a, b, n) do { \ 13029 uint32_t sum; \ 13030 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 13031 RESULT(sum, n, 16); \ 13032 if ((sum >> 16) == 0) \ 13033 ge |= 3 << (n * 2); \ 13034 } while(0) 13035 13036 #define SUB8(a, b, n) do { \ 13037 uint32_t sum; \ 13038 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 13039 RESULT(sum, n, 8); \ 13040 if ((sum >> 8) == 0) \ 13041 ge |= 1 << n; \ 13042 } while(0) 13043 13044 #define PFX u 13045 #define ARITH_GE 13046 13047 #include "op_addsub.h" 13048 13049 /* Halved signed arithmetic. */ 13050 #define ADD16(a, b, n) \ 13051 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 13052 #define SUB16(a, b, n) \ 13053 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 13054 #define ADD8(a, b, n) \ 13055 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 13056 #define SUB8(a, b, n) \ 13057 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 13058 #define PFX sh 13059 13060 #include "op_addsub.h" 13061 13062 /* Halved unsigned arithmetic. */ 13063 #define ADD16(a, b, n) \ 13064 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13065 #define SUB16(a, b, n) \ 13066 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 13067 #define ADD8(a, b, n) \ 13068 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13069 #define SUB8(a, b, n) \ 13070 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 13071 #define PFX uh 13072 13073 #include "op_addsub.h" 13074 13075 static inline uint8_t do_usad(uint8_t a, uint8_t b) 13076 { 13077 if (a > b) 13078 return a - b; 13079 else 13080 return b - a; 13081 } 13082 13083 /* Unsigned sum of absolute byte differences. */ 13084 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 13085 { 13086 uint32_t sum; 13087 sum = do_usad(a, b); 13088 sum += do_usad(a >> 8, b >> 8); 13089 sum += do_usad(a >> 16, b >> 16); 13090 sum += do_usad(a >> 24, b >> 24); 13091 return sum; 13092 } 13093 13094 /* For ARMv6 SEL instruction. */ 13095 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 13096 { 13097 uint32_t mask; 13098 13099 mask = 0; 13100 if (flags & 1) 13101 mask |= 0xff; 13102 if (flags & 2) 13103 mask |= 0xff00; 13104 if (flags & 4) 13105 mask |= 0xff0000; 13106 if (flags & 8) 13107 mask |= 0xff000000; 13108 return (a & mask) | (b & ~mask); 13109 } 13110 13111 /* CRC helpers. 13112 * The upper bytes of val (above the number specified by 'bytes') must have 13113 * been zeroed out by the caller. 13114 */ 13115 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 13116 { 13117 uint8_t buf[4]; 13118 13119 stl_le_p(buf, val); 13120 13121 /* zlib crc32 converts the accumulator and output to one's complement. */ 13122 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 13123 } 13124 13125 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 13126 { 13127 uint8_t buf[4]; 13128 13129 stl_le_p(buf, val); 13130 13131 /* Linux crc32c converts the output to one's complement. */ 13132 return crc32c(acc, buf, bytes) ^ 0xffffffff; 13133 } 13134 13135 /* Return the exception level to which FP-disabled exceptions should 13136 * be taken, or 0 if FP is enabled. 13137 */ 13138 int fp_exception_el(CPUARMState *env, int cur_el) 13139 { 13140 #ifndef CONFIG_USER_ONLY 13141 uint64_t hcr_el2; 13142 13143 /* CPACR and the CPTR registers don't exist before v6, so FP is 13144 * always accessible 13145 */ 13146 if (!arm_feature(env, ARM_FEATURE_V6)) { 13147 return 0; 13148 } 13149 13150 if (arm_feature(env, ARM_FEATURE_M)) { 13151 /* CPACR can cause a NOCP UsageFault taken to current security state */ 13152 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 13153 return 1; 13154 } 13155 13156 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 13157 if (!extract32(env->v7m.nsacr, 10, 1)) { 13158 /* FP insns cause a NOCP UsageFault taken to Secure */ 13159 return 3; 13160 } 13161 } 13162 13163 return 0; 13164 } 13165 13166 hcr_el2 = arm_hcr_el2_eff(env); 13167 13168 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 13169 * 0, 2 : trap EL0 and EL1/PL1 accesses 13170 * 1 : trap only EL0 accesses 13171 * 3 : trap no accesses 13172 * This register is ignored if E2H+TGE are both set. 13173 */ 13174 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13175 int fpen = extract32(env->cp15.cpacr_el1, 20, 2); 13176 13177 switch (fpen) { 13178 case 0: 13179 case 2: 13180 if (cur_el == 0 || cur_el == 1) { 13181 /* Trap to PL1, which might be EL1 or EL3 */ 13182 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 13183 return 3; 13184 } 13185 return 1; 13186 } 13187 if (cur_el == 3 && !is_a64(env)) { 13188 /* Secure PL1 running at EL3 */ 13189 return 3; 13190 } 13191 break; 13192 case 1: 13193 if (cur_el == 0) { 13194 return 1; 13195 } 13196 break; 13197 case 3: 13198 break; 13199 } 13200 } 13201 13202 /* 13203 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 13204 * to control non-secure access to the FPU. It doesn't have any 13205 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 13206 */ 13207 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 13208 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 13209 if (!extract32(env->cp15.nsacr, 10, 1)) { 13210 /* FP insns act as UNDEF */ 13211 return cur_el == 2 ? 2 : 1; 13212 } 13213 } 13214 13215 /* 13216 * CPTR_EL2 is present in v7VE or v8, and changes format 13217 * with HCR_EL2.E2H (regardless of TGE). 13218 */ 13219 if (cur_el <= 2) { 13220 if (hcr_el2 & HCR_E2H) { 13221 /* Check CPTR_EL2.FPEN. */ 13222 switch (extract32(env->cp15.cptr_el[2], 20, 2)) { 13223 case 1: 13224 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 13225 break; 13226 } 13227 /* fall through */ 13228 case 0: 13229 case 2: 13230 return 2; 13231 } 13232 } else if (arm_is_el2_enabled(env)) { 13233 if (env->cp15.cptr_el[2] & CPTR_TFP) { 13234 return 2; 13235 } 13236 } 13237 } 13238 13239 /* CPTR_EL3 : present in v8 */ 13240 if (env->cp15.cptr_el[3] & CPTR_TFP) { 13241 /* Trap all FP ops to EL3 */ 13242 return 3; 13243 } 13244 #endif 13245 return 0; 13246 } 13247 13248 /* Return the exception level we're running at if this is our mmu_idx */ 13249 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 13250 { 13251 if (mmu_idx & ARM_MMU_IDX_M) { 13252 return mmu_idx & ARM_MMU_IDX_M_PRIV; 13253 } 13254 13255 switch (mmu_idx) { 13256 case ARMMMUIdx_E10_0: 13257 case ARMMMUIdx_E20_0: 13258 case ARMMMUIdx_SE10_0: 13259 case ARMMMUIdx_SE20_0: 13260 return 0; 13261 case ARMMMUIdx_E10_1: 13262 case ARMMMUIdx_E10_1_PAN: 13263 case ARMMMUIdx_SE10_1: 13264 case ARMMMUIdx_SE10_1_PAN: 13265 return 1; 13266 case ARMMMUIdx_E2: 13267 case ARMMMUIdx_E20_2: 13268 case ARMMMUIdx_E20_2_PAN: 13269 case ARMMMUIdx_SE2: 13270 case ARMMMUIdx_SE20_2: 13271 case ARMMMUIdx_SE20_2_PAN: 13272 return 2; 13273 case ARMMMUIdx_SE3: 13274 return 3; 13275 default: 13276 g_assert_not_reached(); 13277 } 13278 } 13279 13280 #ifndef CONFIG_TCG 13281 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 13282 { 13283 g_assert_not_reached(); 13284 } 13285 #endif 13286 13287 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 13288 { 13289 ARMMMUIdx idx; 13290 uint64_t hcr; 13291 13292 if (arm_feature(env, ARM_FEATURE_M)) { 13293 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 13294 } 13295 13296 /* See ARM pseudo-function ELIsInHost. */ 13297 switch (el) { 13298 case 0: 13299 hcr = arm_hcr_el2_eff(env); 13300 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 13301 idx = ARMMMUIdx_E20_0; 13302 } else { 13303 idx = ARMMMUIdx_E10_0; 13304 } 13305 break; 13306 case 1: 13307 if (env->pstate & PSTATE_PAN) { 13308 idx = ARMMMUIdx_E10_1_PAN; 13309 } else { 13310 idx = ARMMMUIdx_E10_1; 13311 } 13312 break; 13313 case 2: 13314 /* Note that TGE does not apply at EL2. */ 13315 if (arm_hcr_el2_eff(env) & HCR_E2H) { 13316 if (env->pstate & PSTATE_PAN) { 13317 idx = ARMMMUIdx_E20_2_PAN; 13318 } else { 13319 idx = ARMMMUIdx_E20_2; 13320 } 13321 } else { 13322 idx = ARMMMUIdx_E2; 13323 } 13324 break; 13325 case 3: 13326 return ARMMMUIdx_SE3; 13327 default: 13328 g_assert_not_reached(); 13329 } 13330 13331 if (arm_is_secure_below_el3(env)) { 13332 idx &= ~ARM_MMU_IDX_A_NS; 13333 } 13334 13335 return idx; 13336 } 13337 13338 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 13339 { 13340 return arm_mmu_idx_el(env, arm_current_el(env)); 13341 } 13342 13343 #ifndef CONFIG_USER_ONLY 13344 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env) 13345 { 13346 return stage_1_mmu_idx(arm_mmu_idx(env)); 13347 } 13348 #endif 13349 13350 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 13351 ARMMMUIdx mmu_idx, 13352 CPUARMTBFlags flags) 13353 { 13354 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 13355 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 13356 13357 if (arm_singlestep_active(env)) { 13358 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 13359 } 13360 return flags; 13361 } 13362 13363 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 13364 ARMMMUIdx mmu_idx, 13365 CPUARMTBFlags flags) 13366 { 13367 bool sctlr_b = arm_sctlr_b(env); 13368 13369 if (sctlr_b) { 13370 DP_TBFLAG_A32(flags, SCTLR__B, 1); 13371 } 13372 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 13373 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13374 } 13375 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 13376 13377 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13378 } 13379 13380 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 13381 ARMMMUIdx mmu_idx) 13382 { 13383 CPUARMTBFlags flags = {}; 13384 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 13385 13386 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 13387 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 13388 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13389 } 13390 13391 if (arm_v7m_is_handler_mode(env)) { 13392 DP_TBFLAG_M32(flags, HANDLER, 1); 13393 } 13394 13395 /* 13396 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 13397 * is suppressing them because the requested execution priority 13398 * is less than 0. 13399 */ 13400 if (arm_feature(env, ARM_FEATURE_V8) && 13401 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 13402 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 13403 DP_TBFLAG_M32(flags, STACKCHECK, 1); 13404 } 13405 13406 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13407 } 13408 13409 static CPUARMTBFlags rebuild_hflags_aprofile(CPUARMState *env) 13410 { 13411 CPUARMTBFlags flags = {}; 13412 13413 DP_TBFLAG_ANY(flags, DEBUG_TARGET_EL, arm_debug_target_el(env)); 13414 return flags; 13415 } 13416 13417 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 13418 ARMMMUIdx mmu_idx) 13419 { 13420 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13421 int el = arm_current_el(env); 13422 13423 if (arm_sctlr(env, el) & SCTLR_A) { 13424 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13425 } 13426 13427 if (arm_el_is_aa64(env, 1)) { 13428 DP_TBFLAG_A32(flags, VFPEN, 1); 13429 } 13430 13431 if (el < 2 && env->cp15.hstr_el2 && 13432 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 13433 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 13434 } 13435 13436 if (env->uncached_cpsr & CPSR_IL) { 13437 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13438 } 13439 13440 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 13441 } 13442 13443 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 13444 ARMMMUIdx mmu_idx) 13445 { 13446 CPUARMTBFlags flags = rebuild_hflags_aprofile(env); 13447 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 13448 uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr; 13449 uint64_t sctlr; 13450 int tbii, tbid; 13451 13452 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 13453 13454 /* Get control bits for tagged addresses. */ 13455 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 13456 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 13457 13458 DP_TBFLAG_A64(flags, TBII, tbii); 13459 DP_TBFLAG_A64(flags, TBID, tbid); 13460 13461 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 13462 int sve_el = sve_exception_el(env, el); 13463 uint32_t zcr_len; 13464 13465 /* 13466 * If SVE is disabled, but FP is enabled, 13467 * then the effective len is 0. 13468 */ 13469 if (sve_el != 0 && fp_el == 0) { 13470 zcr_len = 0; 13471 } else { 13472 zcr_len = sve_zcr_len_for_el(env, el); 13473 } 13474 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 13475 DP_TBFLAG_A64(flags, ZCR_LEN, zcr_len); 13476 } 13477 13478 sctlr = regime_sctlr(env, stage1); 13479 13480 if (sctlr & SCTLR_A) { 13481 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 13482 } 13483 13484 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 13485 DP_TBFLAG_ANY(flags, BE_DATA, 1); 13486 } 13487 13488 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 13489 /* 13490 * In order to save space in flags, we record only whether 13491 * pauth is "inactive", meaning all insns are implemented as 13492 * a nop, or "active" when some action must be performed. 13493 * The decision of which action to take is left to a helper. 13494 */ 13495 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 13496 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 13497 } 13498 } 13499 13500 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13501 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 13502 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 13503 DP_TBFLAG_A64(flags, BT, 1); 13504 } 13505 } 13506 13507 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 13508 if (!(env->pstate & PSTATE_UAO)) { 13509 switch (mmu_idx) { 13510 case ARMMMUIdx_E10_1: 13511 case ARMMMUIdx_E10_1_PAN: 13512 case ARMMMUIdx_SE10_1: 13513 case ARMMMUIdx_SE10_1_PAN: 13514 /* TODO: ARMv8.3-NV */ 13515 DP_TBFLAG_A64(flags, UNPRIV, 1); 13516 break; 13517 case ARMMMUIdx_E20_2: 13518 case ARMMMUIdx_E20_2_PAN: 13519 case ARMMMUIdx_SE20_2: 13520 case ARMMMUIdx_SE20_2_PAN: 13521 /* 13522 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 13523 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 13524 */ 13525 if (env->cp15.hcr_el2 & HCR_TGE) { 13526 DP_TBFLAG_A64(flags, UNPRIV, 1); 13527 } 13528 break; 13529 default: 13530 break; 13531 } 13532 } 13533 13534 if (env->pstate & PSTATE_IL) { 13535 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 13536 } 13537 13538 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 13539 /* 13540 * Set MTE_ACTIVE if any access may be Checked, and leave clear 13541 * if all accesses must be Unchecked: 13542 * 1) If no TBI, then there are no tags in the address to check, 13543 * 2) If Tag Check Override, then all accesses are Unchecked, 13544 * 3) If Tag Check Fail == 0, then Checked access have no effect, 13545 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 13546 */ 13547 if (allocation_tag_access_enabled(env, el, sctlr)) { 13548 DP_TBFLAG_A64(flags, ATA, 1); 13549 if (tbid 13550 && !(env->pstate & PSTATE_TCO) 13551 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 13552 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 13553 } 13554 } 13555 /* And again for unprivileged accesses, if required. */ 13556 if (EX_TBFLAG_A64(flags, UNPRIV) 13557 && tbid 13558 && !(env->pstate & PSTATE_TCO) 13559 && (sctlr & SCTLR_TCF0) 13560 && allocation_tag_access_enabled(env, 0, sctlr)) { 13561 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 13562 } 13563 /* Cache TCMA as well as TBI. */ 13564 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 13565 } 13566 13567 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 13568 } 13569 13570 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 13571 { 13572 int el = arm_current_el(env); 13573 int fp_el = fp_exception_el(env, el); 13574 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13575 13576 if (is_a64(env)) { 13577 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13578 } else if (arm_feature(env, ARM_FEATURE_M)) { 13579 return rebuild_hflags_m32(env, fp_el, mmu_idx); 13580 } else { 13581 return rebuild_hflags_a32(env, fp_el, mmu_idx); 13582 } 13583 } 13584 13585 void arm_rebuild_hflags(CPUARMState *env) 13586 { 13587 env->hflags = rebuild_hflags_internal(env); 13588 } 13589 13590 /* 13591 * If we have triggered a EL state change we can't rely on the 13592 * translator having passed it to us, we need to recompute. 13593 */ 13594 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 13595 { 13596 int el = arm_current_el(env); 13597 int fp_el = fp_exception_el(env, el); 13598 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13599 13600 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13601 } 13602 13603 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 13604 { 13605 int fp_el = fp_exception_el(env, el); 13606 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13607 13608 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 13609 } 13610 13611 /* 13612 * If we have triggered a EL state change we can't rely on the 13613 * translator having passed it to us, we need to recompute. 13614 */ 13615 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 13616 { 13617 int el = arm_current_el(env); 13618 int fp_el = fp_exception_el(env, el); 13619 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13620 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13621 } 13622 13623 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 13624 { 13625 int fp_el = fp_exception_el(env, el); 13626 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13627 13628 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 13629 } 13630 13631 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 13632 { 13633 int fp_el = fp_exception_el(env, el); 13634 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 13635 13636 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 13637 } 13638 13639 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 13640 { 13641 #ifdef CONFIG_DEBUG_TCG 13642 CPUARMTBFlags c = env->hflags; 13643 CPUARMTBFlags r = rebuild_hflags_internal(env); 13644 13645 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 13646 fprintf(stderr, "TCG hflags mismatch " 13647 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 13648 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 13649 c.flags, c.flags2, r.flags, r.flags2); 13650 abort(); 13651 } 13652 #endif 13653 } 13654 13655 static bool mve_no_pred(CPUARMState *env) 13656 { 13657 /* 13658 * Return true if there is definitely no predication of MVE 13659 * instructions by VPR or LTPSIZE. (Returning false even if there 13660 * isn't any predication is OK; generated code will just be 13661 * a little worse.) 13662 * If the CPU does not implement MVE then this TB flag is always 0. 13663 * 13664 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 13665 * logic in gen_update_fp_context() needs to be updated to match. 13666 * 13667 * We do not include the effect of the ECI bits here -- they are 13668 * tracked in other TB flags. This simplifies the logic for 13669 * "when did we emit code that changes the MVE_NO_PRED TB flag 13670 * and thus need to end the TB?". 13671 */ 13672 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 13673 return false; 13674 } 13675 if (env->v7m.vpr) { 13676 return false; 13677 } 13678 if (env->v7m.ltpsize < 4) { 13679 return false; 13680 } 13681 return true; 13682 } 13683 13684 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 13685 target_ulong *cs_base, uint32_t *pflags) 13686 { 13687 CPUARMTBFlags flags; 13688 13689 assert_hflags_rebuild_correctly(env); 13690 flags = env->hflags; 13691 13692 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 13693 *pc = env->pc; 13694 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 13695 DP_TBFLAG_A64(flags, BTYPE, env->btype); 13696 } 13697 } else { 13698 *pc = env->regs[15]; 13699 13700 if (arm_feature(env, ARM_FEATURE_M)) { 13701 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 13702 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 13703 != env->v7m.secure) { 13704 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 13705 } 13706 13707 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 13708 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 13709 (env->v7m.secure && 13710 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 13711 /* 13712 * ASPEN is set, but FPCA/SFPA indicate that there is no 13713 * active FP context; we must create a new FP context before 13714 * executing any FP insn. 13715 */ 13716 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 13717 } 13718 13719 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 13720 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 13721 DP_TBFLAG_M32(flags, LSPACT, 1); 13722 } 13723 13724 if (mve_no_pred(env)) { 13725 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 13726 } 13727 } else { 13728 /* 13729 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 13730 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 13731 */ 13732 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 13733 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 13734 } else { 13735 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 13736 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 13737 } 13738 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 13739 DP_TBFLAG_A32(flags, VFPEN, 1); 13740 } 13741 } 13742 13743 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 13744 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 13745 } 13746 13747 /* 13748 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 13749 * states defined in the ARM ARM for software singlestep: 13750 * SS_ACTIVE PSTATE.SS State 13751 * 0 x Inactive (the TB flag for SS is always 0) 13752 * 1 0 Active-pending 13753 * 1 1 Active-not-pending 13754 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 13755 */ 13756 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 13757 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 13758 } 13759 13760 *pflags = flags.flags; 13761 *cs_base = flags.flags2; 13762 } 13763 13764 #ifdef TARGET_AARCH64 13765 /* 13766 * The manual says that when SVE is enabled and VQ is widened the 13767 * implementation is allowed to zero the previously inaccessible 13768 * portion of the registers. The corollary to that is that when 13769 * SVE is enabled and VQ is narrowed we are also allowed to zero 13770 * the now inaccessible portion of the registers. 13771 * 13772 * The intent of this is that no predicate bit beyond VQ is ever set. 13773 * Which means that some operations on predicate registers themselves 13774 * may operate on full uint64_t or even unrolled across the maximum 13775 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 13776 * may well be cheaper than conditionals to restrict the operation 13777 * to the relevant portion of a uint16_t[16]. 13778 */ 13779 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 13780 { 13781 int i, j; 13782 uint64_t pmask; 13783 13784 assert(vq >= 1 && vq <= ARM_MAX_VQ); 13785 assert(vq <= env_archcpu(env)->sve_max_vq); 13786 13787 /* Zap the high bits of the zregs. */ 13788 for (i = 0; i < 32; i++) { 13789 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 13790 } 13791 13792 /* Zap the high bits of the pregs and ffr. */ 13793 pmask = 0; 13794 if (vq & 3) { 13795 pmask = ~(-1ULL << (16 * (vq & 3))); 13796 } 13797 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 13798 for (i = 0; i < 17; ++i) { 13799 env->vfp.pregs[i].p[j] &= pmask; 13800 } 13801 pmask = 0; 13802 } 13803 } 13804 13805 /* 13806 * Notice a change in SVE vector size when changing EL. 13807 */ 13808 void aarch64_sve_change_el(CPUARMState *env, int old_el, 13809 int new_el, bool el0_a64) 13810 { 13811 ARMCPU *cpu = env_archcpu(env); 13812 int old_len, new_len; 13813 bool old_a64, new_a64; 13814 13815 /* Nothing to do if no SVE. */ 13816 if (!cpu_isar_feature(aa64_sve, cpu)) { 13817 return; 13818 } 13819 13820 /* Nothing to do if FP is disabled in either EL. */ 13821 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 13822 return; 13823 } 13824 13825 /* 13826 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 13827 * at ELx, or not available because the EL is in AArch32 state, then 13828 * for all purposes other than a direct read, the ZCR_ELx.LEN field 13829 * has an effective value of 0". 13830 * 13831 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 13832 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 13833 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 13834 * we already have the correct register contents when encountering the 13835 * vq0->vq0 transition between EL0->EL1. 13836 */ 13837 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 13838 old_len = (old_a64 && !sve_exception_el(env, old_el) 13839 ? sve_zcr_len_for_el(env, old_el) : 0); 13840 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 13841 new_len = (new_a64 && !sve_exception_el(env, new_el) 13842 ? sve_zcr_len_for_el(env, new_el) : 0); 13843 13844 /* When changing vector length, clear inaccessible state. */ 13845 if (new_len < old_len) { 13846 aarch64_sve_narrow_vq(env, new_len + 1); 13847 } 13848 } 13849 #endif 13850