xref: /openbmc/qemu/target/arm/helper.c (revision 3161f9f4)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "trace.h"
12 #include "cpu.h"
13 #include "internals.h"
14 #include "cpu-features.h"
15 #include "exec/helper-proto.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/timer.h"
18 #include "qemu/bitops.h"
19 #include "qemu/crc32c.h"
20 #include "qemu/qemu-print.h"
21 #include "exec/exec-all.h"
22 #include <zlib.h> /* For crc32 */
23 #include "hw/irq.h"
24 #include "sysemu/cpu-timers.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/tcg.h"
27 #include "qapi/error.h"
28 #include "qemu/guest-random.h"
29 #ifdef CONFIG_TCG
30 #include "semihosting/common-semi.h"
31 #endif
32 #include "cpregs.h"
33 
34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
35 
36 static void switch_mode(CPUARMState *env, int mode);
37 
38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
39 {
40     assert(ri->fieldoffset);
41     if (cpreg_field_is_64bit(ri)) {
42         return CPREG_FIELD64(env, ri);
43     } else {
44         return CPREG_FIELD32(env, ri);
45     }
46 }
47 
48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
49 {
50     assert(ri->fieldoffset);
51     if (cpreg_field_is_64bit(ri)) {
52         CPREG_FIELD64(env, ri) = value;
53     } else {
54         CPREG_FIELD32(env, ri) = value;
55     }
56 }
57 
58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
59 {
60     return (char *)env + ri->fieldoffset;
61 }
62 
63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
64 {
65     /* Raw read of a coprocessor register (as needed for migration, etc). */
66     if (ri->type & ARM_CP_CONST) {
67         return ri->resetvalue;
68     } else if (ri->raw_readfn) {
69         return ri->raw_readfn(env, ri);
70     } else if (ri->readfn) {
71         return ri->readfn(env, ri);
72     } else {
73         return raw_read(env, ri);
74     }
75 }
76 
77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
78                              uint64_t v)
79 {
80     /*
81      * Raw write of a coprocessor register (as needed for migration, etc).
82      * Note that constant registers are treated as write-ignored; the
83      * caller should check for success by whether a readback gives the
84      * value written.
85      */
86     if (ri->type & ARM_CP_CONST) {
87         return;
88     } else if (ri->raw_writefn) {
89         ri->raw_writefn(env, ri, v);
90     } else if (ri->writefn) {
91         ri->writefn(env, ri, v);
92     } else {
93         raw_write(env, ri, v);
94     }
95 }
96 
97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
98 {
99    /*
100     * Return true if the regdef would cause an assertion if you called
101     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
102     * program bug for it not to have the NO_RAW flag).
103     * NB that returning false here doesn't necessarily mean that calling
104     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
105     * read/write access functions which are safe for raw use" from "has
106     * read/write access functions which have side effects but has forgotten
107     * to provide raw access functions".
108     * The tests here line up with the conditions in read/write_raw_cp_reg()
109     * and assertions in raw_read()/raw_write().
110     */
111     if ((ri->type & ARM_CP_CONST) ||
112         ri->fieldoffset ||
113         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
114         return false;
115     }
116     return true;
117 }
118 
119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
120 {
121     /* Write the coprocessor state from cpu->env to the (index,value) list. */
122     int i;
123     bool ok = true;
124 
125     for (i = 0; i < cpu->cpreg_array_len; i++) {
126         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
127         const ARMCPRegInfo *ri;
128         uint64_t newval;
129 
130         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
131         if (!ri) {
132             ok = false;
133             continue;
134         }
135         if (ri->type & ARM_CP_NO_RAW) {
136             continue;
137         }
138 
139         newval = read_raw_cp_reg(&cpu->env, ri);
140         if (kvm_sync) {
141             /*
142              * Only sync if the previous list->cpustate sync succeeded.
143              * Rather than tracking the success/failure state for every
144              * item in the list, we just recheck "does the raw write we must
145              * have made in write_list_to_cpustate() read back OK" here.
146              */
147             uint64_t oldval = cpu->cpreg_values[i];
148 
149             if (oldval == newval) {
150                 continue;
151             }
152 
153             write_raw_cp_reg(&cpu->env, ri, oldval);
154             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
155                 continue;
156             }
157 
158             write_raw_cp_reg(&cpu->env, ri, newval);
159         }
160         cpu->cpreg_values[i] = newval;
161     }
162     return ok;
163 }
164 
165 bool write_list_to_cpustate(ARMCPU *cpu)
166 {
167     int i;
168     bool ok = true;
169 
170     for (i = 0; i < cpu->cpreg_array_len; i++) {
171         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
172         uint64_t v = cpu->cpreg_values[i];
173         const ARMCPRegInfo *ri;
174 
175         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
176         if (!ri) {
177             ok = false;
178             continue;
179         }
180         if (ri->type & ARM_CP_NO_RAW) {
181             continue;
182         }
183         /*
184          * Write value and confirm it reads back as written
185          * (to catch read-only registers and partially read-only
186          * registers where the incoming migration value doesn't match)
187          */
188         write_raw_cp_reg(&cpu->env, ri, v);
189         if (read_raw_cp_reg(&cpu->env, ri) != v) {
190             ok = false;
191         }
192     }
193     return ok;
194 }
195 
196 static void add_cpreg_to_list(gpointer key, gpointer opaque)
197 {
198     ARMCPU *cpu = opaque;
199     uint32_t regidx = (uintptr_t)key;
200     const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
201 
202     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
203         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
204         /* The value array need not be initialized at this point */
205         cpu->cpreg_array_len++;
206     }
207 }
208 
209 static void count_cpreg(gpointer key, gpointer opaque)
210 {
211     ARMCPU *cpu = opaque;
212     const ARMCPRegInfo *ri;
213 
214     ri = g_hash_table_lookup(cpu->cp_regs, key);
215 
216     if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
217         cpu->cpreg_array_len++;
218     }
219 }
220 
221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
222 {
223     uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
224     uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
225 
226     if (aidx > bidx) {
227         return 1;
228     }
229     if (aidx < bidx) {
230         return -1;
231     }
232     return 0;
233 }
234 
235 void init_cpreg_list(ARMCPU *cpu)
236 {
237     /*
238      * Initialise the cpreg_tuples[] array based on the cp_regs hash.
239      * Note that we require cpreg_tuples[] to be sorted by key ID.
240      */
241     GList *keys;
242     int arraylen;
243 
244     keys = g_hash_table_get_keys(cpu->cp_regs);
245     keys = g_list_sort(keys, cpreg_key_compare);
246 
247     cpu->cpreg_array_len = 0;
248 
249     g_list_foreach(keys, count_cpreg, cpu);
250 
251     arraylen = cpu->cpreg_array_len;
252     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
253     cpu->cpreg_values = g_new(uint64_t, arraylen);
254     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
255     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
256     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
257     cpu->cpreg_array_len = 0;
258 
259     g_list_foreach(keys, add_cpreg_to_list, cpu);
260 
261     assert(cpu->cpreg_array_len == arraylen);
262 
263     g_list_free(keys);
264 }
265 
266 /*
267  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
268  */
269 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
270                                         const ARMCPRegInfo *ri,
271                                         bool isread)
272 {
273     if (!is_a64(env) && arm_current_el(env) == 3 &&
274         arm_is_secure_below_el3(env)) {
275         return CP_ACCESS_TRAP_UNCATEGORIZED;
276     }
277     return CP_ACCESS_OK;
278 }
279 
280 /*
281  * Some secure-only AArch32 registers trap to EL3 if used from
282  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
283  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
284  * We assume that the .access field is set to PL1_RW.
285  */
286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
287                                             const ARMCPRegInfo *ri,
288                                             bool isread)
289 {
290     if (arm_current_el(env) == 3) {
291         return CP_ACCESS_OK;
292     }
293     if (arm_is_secure_below_el3(env)) {
294         if (env->cp15.scr_el3 & SCR_EEL2) {
295             return CP_ACCESS_TRAP_EL2;
296         }
297         return CP_ACCESS_TRAP_EL3;
298     }
299     /* This will be EL1 NS and EL2 NS, which just UNDEF */
300     return CP_ACCESS_TRAP_UNCATEGORIZED;
301 }
302 
303 /*
304  * Check for traps to performance monitor registers, which are controlled
305  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
306  */
307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
308                                  bool isread)
309 {
310     int el = arm_current_el(env);
311     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
312 
313     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
314         return CP_ACCESS_TRAP_EL2;
315     }
316     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
317         return CP_ACCESS_TRAP_EL3;
318     }
319     return CP_ACCESS_OK;
320 }
321 
322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
323 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
324                                bool isread)
325 {
326     if (arm_current_el(env) == 1) {
327         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
328         if (arm_hcr_el2_eff(env) & trap) {
329             return CP_ACCESS_TRAP_EL2;
330         }
331     }
332     return CP_ACCESS_OK;
333 }
334 
335 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
337                                  bool isread)
338 {
339     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
340         return CP_ACCESS_TRAP_EL2;
341     }
342     return CP_ACCESS_OK;
343 }
344 
345 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
347                                   bool isread)
348 {
349     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
350         return CP_ACCESS_TRAP_EL2;
351     }
352     return CP_ACCESS_OK;
353 }
354 
355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
357                                   bool isread)
358 {
359     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
360         return CP_ACCESS_TRAP_EL2;
361     }
362     return CP_ACCESS_OK;
363 }
364 
365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
367                                     bool isread)
368 {
369     if (arm_current_el(env) == 1 &&
370         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
371         return CP_ACCESS_TRAP_EL2;
372     }
373     return CP_ACCESS_OK;
374 }
375 
376 #ifdef TARGET_AARCH64
377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
379                                     bool isread)
380 {
381     if (arm_current_el(env) == 1 &&
382         (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
383         return CP_ACCESS_TRAP_EL2;
384     }
385     return CP_ACCESS_OK;
386 }
387 #endif
388 
389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
390 {
391     ARMCPU *cpu = env_archcpu(env);
392 
393     raw_write(env, ri, value);
394     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
395 }
396 
397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
398 {
399     ARMCPU *cpu = env_archcpu(env);
400 
401     if (raw_read(env, ri) != value) {
402         /*
403          * Unlike real hardware the qemu TLB uses virtual addresses,
404          * not modified virtual addresses, so this causes a TLB flush.
405          */
406         tlb_flush(CPU(cpu));
407         raw_write(env, ri, value);
408     }
409 }
410 
411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
412                              uint64_t value)
413 {
414     ARMCPU *cpu = env_archcpu(env);
415 
416     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
417         && !extended_addresses_enabled(env)) {
418         /*
419          * For VMSA (when not using the LPAE long descriptor page table
420          * format) this register includes the ASID, so do a TLB flush.
421          * For PMSA it is purely a process ID and no action is needed.
422          */
423         tlb_flush(CPU(cpu));
424     }
425     raw_write(env, ri, value);
426 }
427 
428 static int alle1_tlbmask(CPUARMState *env)
429 {
430     /*
431      * Note that the 'ALL' scope must invalidate both stage 1 and
432      * stage 2 translations, whereas most other scopes only invalidate
433      * stage 1 translations.
434      */
435     return (ARMMMUIdxBit_E10_1 |
436             ARMMMUIdxBit_E10_1_PAN |
437             ARMMMUIdxBit_E10_0 |
438             ARMMMUIdxBit_Stage2 |
439             ARMMMUIdxBit_Stage2_S);
440 }
441 
442 
443 /* IS variants of TLB operations must affect all cores */
444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
445                              uint64_t value)
446 {
447     CPUState *cs = env_cpu(env);
448 
449     tlb_flush_all_cpus_synced(cs);
450 }
451 
452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
453                              uint64_t value)
454 {
455     CPUState *cs = env_cpu(env);
456 
457     tlb_flush_all_cpus_synced(cs);
458 }
459 
460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
461                              uint64_t value)
462 {
463     CPUState *cs = env_cpu(env);
464 
465     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
466 }
467 
468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
469                              uint64_t value)
470 {
471     CPUState *cs = env_cpu(env);
472 
473     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
474 }
475 
476 /*
477  * Non-IS variants of TLB operations are upgraded to
478  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
479  * force broadcast of these operations.
480  */
481 static bool tlb_force_broadcast(CPUARMState *env)
482 {
483     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
484 }
485 
486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
487                           uint64_t value)
488 {
489     /* Invalidate all (TLBIALL) */
490     CPUState *cs = env_cpu(env);
491 
492     if (tlb_force_broadcast(env)) {
493         tlb_flush_all_cpus_synced(cs);
494     } else {
495         tlb_flush(cs);
496     }
497 }
498 
499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
500                           uint64_t value)
501 {
502     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
503     CPUState *cs = env_cpu(env);
504 
505     value &= TARGET_PAGE_MASK;
506     if (tlb_force_broadcast(env)) {
507         tlb_flush_page_all_cpus_synced(cs, value);
508     } else {
509         tlb_flush_page(cs, value);
510     }
511 }
512 
513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
514                            uint64_t value)
515 {
516     /* Invalidate by ASID (TLBIASID) */
517     CPUState *cs = env_cpu(env);
518 
519     if (tlb_force_broadcast(env)) {
520         tlb_flush_all_cpus_synced(cs);
521     } else {
522         tlb_flush(cs);
523     }
524 }
525 
526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
527                            uint64_t value)
528 {
529     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530     CPUState *cs = env_cpu(env);
531 
532     value &= TARGET_PAGE_MASK;
533     if (tlb_force_broadcast(env)) {
534         tlb_flush_page_all_cpus_synced(cs, value);
535     } else {
536         tlb_flush_page(cs, value);
537     }
538 }
539 
540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
541                                uint64_t value)
542 {
543     CPUState *cs = env_cpu(env);
544 
545     tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
546 }
547 
548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
549                                   uint64_t value)
550 {
551     CPUState *cs = env_cpu(env);
552 
553     tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
554 }
555 
556 
557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
558                               uint64_t value)
559 {
560     CPUState *cs = env_cpu(env);
561 
562     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
563 }
564 
565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566                                  uint64_t value)
567 {
568     CPUState *cs = env_cpu(env);
569 
570     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
571 }
572 
573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
574                               uint64_t value)
575 {
576     CPUState *cs = env_cpu(env);
577     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
578 
579     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
580 }
581 
582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
583                                  uint64_t value)
584 {
585     CPUState *cs = env_cpu(env);
586     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
587 
588     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
589                                              ARMMMUIdxBit_E2);
590 }
591 
592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
593                                 uint64_t value)
594 {
595     CPUState *cs = env_cpu(env);
596     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
597 
598     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
599 }
600 
601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
602                                 uint64_t value)
603 {
604     CPUState *cs = env_cpu(env);
605     uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
606 
607     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
608 }
609 
610 static const ARMCPRegInfo cp_reginfo[] = {
611     /*
612      * Define the secure and non-secure FCSE identifier CP registers
613      * separately because there is no secure bank in V8 (no _EL3).  This allows
614      * the secure register to be properly reset and migrated. There is also no
615      * v8 EL1 version of the register so the non-secure instance stands alone.
616      */
617     { .name = "FCSEIDR",
618       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
619       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
620       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
621       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
622     { .name = "FCSEIDR_S",
623       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
624       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
625       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
626       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
627     /*
628      * Define the secure and non-secure context identifier CP registers
629      * separately because there is no secure bank in V8 (no _EL3).  This allows
630      * the secure register to be properly reset and migrated.  In the
631      * non-secure case, the 32-bit register will have reset and migration
632      * disabled during registration as it is handled by the 64-bit instance.
633      */
634     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
635       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
636       .access = PL1_RW, .accessfn = access_tvm_trvm,
637       .fgt = FGT_CONTEXTIDR_EL1,
638       .secure = ARM_CP_SECSTATE_NS,
639       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
640       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
641     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
642       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
643       .access = PL1_RW, .accessfn = access_tvm_trvm,
644       .secure = ARM_CP_SECSTATE_S,
645       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
646       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
647 };
648 
649 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
650     /*
651      * NB: Some of these registers exist in v8 but with more precise
652      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
653      */
654     /* MMU Domain access control / MPU write buffer control */
655     { .name = "DACR",
656       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
657       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
658       .writefn = dacr_write, .raw_writefn = raw_write,
659       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
660                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
661     /*
662      * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
663      * For v6 and v5, these mappings are overly broad.
664      */
665     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
666       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
667     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
668       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
669     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
670       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
671     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
672       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
673     /* Cache maintenance ops; some of this space may be overridden later. */
674     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
675       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
676       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
677 };
678 
679 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
680     /*
681      * Not all pre-v6 cores implemented this WFI, so this is slightly
682      * over-broad.
683      */
684     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
685       .access = PL1_W, .type = ARM_CP_WFI },
686 };
687 
688 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
689     /*
690      * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
691      * is UNPREDICTABLE; we choose to NOP as most implementations do).
692      */
693     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
694       .access = PL1_W, .type = ARM_CP_WFI },
695     /*
696      * L1 cache lockdown. Not architectural in v6 and earlier but in practice
697      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
698      * OMAPCP will override this space.
699      */
700     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
701       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
702       .resetvalue = 0 },
703     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
704       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
705       .resetvalue = 0 },
706     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
707     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
708       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
709       .resetvalue = 0 },
710     /*
711      * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
712      * implementing it as RAZ means the "debug architecture version" bits
713      * will read as a reserved value, which should cause Linux to not try
714      * to use the debug hardware.
715      */
716     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
717       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
718     /*
719      * MMU TLB control. Note that the wildcarding means we cover not just
720      * the unified TLB ops but also the dside/iside/inner-shareable variants.
721      */
722     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
723       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
724       .type = ARM_CP_NO_RAW },
725     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
726       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
727       .type = ARM_CP_NO_RAW },
728     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
729       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
730       .type = ARM_CP_NO_RAW },
731     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
732       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
733       .type = ARM_CP_NO_RAW },
734     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
735       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
736     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
737       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
738 };
739 
740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
741                         uint64_t value)
742 {
743     uint32_t mask = 0;
744 
745     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
746     if (!arm_feature(env, ARM_FEATURE_V8)) {
747         /*
748          * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
749          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
750          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
751          */
752         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
753             /* VFP coprocessor: cp10 & cp11 [23:20] */
754             mask |= R_CPACR_ASEDIS_MASK |
755                     R_CPACR_D32DIS_MASK |
756                     R_CPACR_CP11_MASK |
757                     R_CPACR_CP10_MASK;
758 
759             if (!arm_feature(env, ARM_FEATURE_NEON)) {
760                 /* ASEDIS [31] bit is RAO/WI */
761                 value |= R_CPACR_ASEDIS_MASK;
762             }
763 
764             /*
765              * VFPv3 and upwards with NEON implement 32 double precision
766              * registers (D0-D31).
767              */
768             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
769                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
770                 value |= R_CPACR_D32DIS_MASK;
771             }
772         }
773         value &= mask;
774     }
775 
776     /*
777      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
778      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
779      */
780     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
781         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
782         mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
783         value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
784     }
785 
786     env->cp15.cpacr_el1 = value;
787 }
788 
789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
790 {
791     /*
792      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
793      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
794      */
795     uint64_t value = env->cp15.cpacr_el1;
796 
797     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
798         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
799         value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
800     }
801     return value;
802 }
803 
804 
805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
806 {
807     /*
808      * Call cpacr_write() so that we reset with the correct RAO bits set
809      * for our CPU features.
810      */
811     cpacr_write(env, ri, 0);
812 }
813 
814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
815                                    bool isread)
816 {
817     if (arm_feature(env, ARM_FEATURE_V8)) {
818         /* Check if CPACR accesses are to be trapped to EL2 */
819         if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
820             FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
821             return CP_ACCESS_TRAP_EL2;
822         /* Check if CPACR accesses are to be trapped to EL3 */
823         } else if (arm_current_el(env) < 3 &&
824                    FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
825             return CP_ACCESS_TRAP_EL3;
826         }
827     }
828 
829     return CP_ACCESS_OK;
830 }
831 
832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
833                                   bool isread)
834 {
835     /* Check if CPTR accesses are set to trap to EL3 */
836     if (arm_current_el(env) == 2 &&
837         FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
838         return CP_ACCESS_TRAP_EL3;
839     }
840 
841     return CP_ACCESS_OK;
842 }
843 
844 static const ARMCPRegInfo v6_cp_reginfo[] = {
845     /* prefetch by MVA in v6, NOP in v7 */
846     { .name = "MVA_prefetch",
847       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
848       .access = PL1_W, .type = ARM_CP_NOP },
849     /*
850      * We need to break the TB after ISB to execute self-modifying code
851      * correctly and also to take any pending interrupts immediately.
852      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
853      */
854     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
855       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
856     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
857       .access = PL0_W, .type = ARM_CP_NOP },
858     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
859       .access = PL0_W, .type = ARM_CP_NOP },
860     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
861       .access = PL1_RW, .accessfn = access_tvm_trvm,
862       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
863                              offsetof(CPUARMState, cp15.ifar_ns) },
864       .resetvalue = 0, },
865     /*
866      * Watchpoint Fault Address Register : should actually only be present
867      * for 1136, 1176, 11MPCore.
868      */
869     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
870       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
871     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
872       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
873       .fgt = FGT_CPACR_EL1,
874       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
876 };
877 
878 typedef struct pm_event {
879     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
880     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
881     bool (*supported)(CPUARMState *);
882     /*
883      * Retrieve the current count of the underlying event. The programmed
884      * counters hold a difference from the return value from this function
885      */
886     uint64_t (*get_count)(CPUARMState *);
887     /*
888      * Return how many nanoseconds it will take (at a minimum) for count events
889      * to occur. A negative value indicates the counter will never overflow, or
890      * that the counter has otherwise arranged for the overflow bit to be set
891      * and the PMU interrupt to be raised on overflow.
892      */
893     int64_t (*ns_per_count)(uint64_t);
894 } pm_event;
895 
896 static bool event_always_supported(CPUARMState *env)
897 {
898     return true;
899 }
900 
901 static uint64_t swinc_get_count(CPUARMState *env)
902 {
903     /*
904      * SW_INCR events are written directly to the pmevcntr's by writes to
905      * PMSWINC, so there is no underlying count maintained by the PMU itself
906      */
907     return 0;
908 }
909 
910 static int64_t swinc_ns_per(uint64_t ignored)
911 {
912     return -1;
913 }
914 
915 /*
916  * Return the underlying cycle count for the PMU cycle counters. If we're in
917  * usermode, simply return 0.
918  */
919 static uint64_t cycles_get_count(CPUARMState *env)
920 {
921 #ifndef CONFIG_USER_ONLY
922     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
923                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
924 #else
925     return cpu_get_host_ticks();
926 #endif
927 }
928 
929 #ifndef CONFIG_USER_ONLY
930 static int64_t cycles_ns_per(uint64_t cycles)
931 {
932     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
933 }
934 
935 static bool instructions_supported(CPUARMState *env)
936 {
937     return icount_enabled() == 1; /* Precise instruction counting */
938 }
939 
940 static uint64_t instructions_get_count(CPUARMState *env)
941 {
942     return (uint64_t)icount_get_raw();
943 }
944 
945 static int64_t instructions_ns_per(uint64_t icount)
946 {
947     return icount_to_ns((int64_t)icount);
948 }
949 #endif
950 
951 static bool pmuv3p1_events_supported(CPUARMState *env)
952 {
953     /* For events which are supported in any v8.1 PMU */
954     return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
955 }
956 
957 static bool pmuv3p4_events_supported(CPUARMState *env)
958 {
959     /* For events which are supported in any v8.1 PMU */
960     return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
961 }
962 
963 static uint64_t zero_event_get_count(CPUARMState *env)
964 {
965     /* For events which on QEMU never fire, so their count is always zero */
966     return 0;
967 }
968 
969 static int64_t zero_event_ns_per(uint64_t cycles)
970 {
971     /* An event which never fires can never overflow */
972     return -1;
973 }
974 
975 static const pm_event pm_events[] = {
976     { .number = 0x000, /* SW_INCR */
977       .supported = event_always_supported,
978       .get_count = swinc_get_count,
979       .ns_per_count = swinc_ns_per,
980     },
981 #ifndef CONFIG_USER_ONLY
982     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
983       .supported = instructions_supported,
984       .get_count = instructions_get_count,
985       .ns_per_count = instructions_ns_per,
986     },
987     { .number = 0x011, /* CPU_CYCLES, Cycle */
988       .supported = event_always_supported,
989       .get_count = cycles_get_count,
990       .ns_per_count = cycles_ns_per,
991     },
992 #endif
993     { .number = 0x023, /* STALL_FRONTEND */
994       .supported = pmuv3p1_events_supported,
995       .get_count = zero_event_get_count,
996       .ns_per_count = zero_event_ns_per,
997     },
998     { .number = 0x024, /* STALL_BACKEND */
999       .supported = pmuv3p1_events_supported,
1000       .get_count = zero_event_get_count,
1001       .ns_per_count = zero_event_ns_per,
1002     },
1003     { .number = 0x03c, /* STALL */
1004       .supported = pmuv3p4_events_supported,
1005       .get_count = zero_event_get_count,
1006       .ns_per_count = zero_event_ns_per,
1007     },
1008 };
1009 
1010 /*
1011  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1012  * events (i.e. the statistical profiling extension), this implementation
1013  * should first be updated to something sparse instead of the current
1014  * supported_event_map[] array.
1015  */
1016 #define MAX_EVENT_ID 0x3c
1017 #define UNSUPPORTED_EVENT UINT16_MAX
1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1019 
1020 /*
1021  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1022  * of ARM event numbers to indices in our pm_events array.
1023  *
1024  * Note: Events in the 0x40XX range are not currently supported.
1025  */
1026 void pmu_init(ARMCPU *cpu)
1027 {
1028     unsigned int i;
1029 
1030     /*
1031      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1032      * events to them
1033      */
1034     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1035         supported_event_map[i] = UNSUPPORTED_EVENT;
1036     }
1037     cpu->pmceid0 = 0;
1038     cpu->pmceid1 = 0;
1039 
1040     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1041         const pm_event *cnt = &pm_events[i];
1042         assert(cnt->number <= MAX_EVENT_ID);
1043         /* We do not currently support events in the 0x40xx range */
1044         assert(cnt->number <= 0x3f);
1045 
1046         if (cnt->supported(&cpu->env)) {
1047             supported_event_map[cnt->number] = i;
1048             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1049             if (cnt->number & 0x20) {
1050                 cpu->pmceid1 |= event_mask;
1051             } else {
1052                 cpu->pmceid0 |= event_mask;
1053             }
1054         }
1055     }
1056 }
1057 
1058 /*
1059  * Check at runtime whether a PMU event is supported for the current machine
1060  */
1061 static bool event_supported(uint16_t number)
1062 {
1063     if (number > MAX_EVENT_ID) {
1064         return false;
1065     }
1066     return supported_event_map[number] != UNSUPPORTED_EVENT;
1067 }
1068 
1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1070                                    bool isread)
1071 {
1072     /*
1073      * Performance monitor registers user accessibility is controlled
1074      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1075      * trapping to EL2 or EL3 for other accesses.
1076      */
1077     int el = arm_current_el(env);
1078     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1079 
1080     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1081         return CP_ACCESS_TRAP;
1082     }
1083     if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
1084         return CP_ACCESS_TRAP_EL2;
1085     }
1086     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1087         return CP_ACCESS_TRAP_EL3;
1088     }
1089 
1090     return CP_ACCESS_OK;
1091 }
1092 
1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1094                                            const ARMCPRegInfo *ri,
1095                                            bool isread)
1096 {
1097     /* ER: event counter read trap control */
1098     if (arm_feature(env, ARM_FEATURE_V8)
1099         && arm_current_el(env) == 0
1100         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1101         && isread) {
1102         return CP_ACCESS_OK;
1103     }
1104 
1105     return pmreg_access(env, ri, isread);
1106 }
1107 
1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1109                                          const ARMCPRegInfo *ri,
1110                                          bool isread)
1111 {
1112     /* SW: software increment write trap control */
1113     if (arm_feature(env, ARM_FEATURE_V8)
1114         && arm_current_el(env) == 0
1115         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1116         && !isread) {
1117         return CP_ACCESS_OK;
1118     }
1119 
1120     return pmreg_access(env, ri, isread);
1121 }
1122 
1123 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1124                                         const ARMCPRegInfo *ri,
1125                                         bool isread)
1126 {
1127     /* ER: event counter read trap control */
1128     if (arm_feature(env, ARM_FEATURE_V8)
1129         && arm_current_el(env) == 0
1130         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1131         return CP_ACCESS_OK;
1132     }
1133 
1134     return pmreg_access(env, ri, isread);
1135 }
1136 
1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1138                                          const ARMCPRegInfo *ri,
1139                                          bool isread)
1140 {
1141     /* CR: cycle counter read trap control */
1142     if (arm_feature(env, ARM_FEATURE_V8)
1143         && arm_current_el(env) == 0
1144         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1145         && isread) {
1146         return CP_ACCESS_OK;
1147     }
1148 
1149     return pmreg_access(env, ri, isread);
1150 }
1151 
1152 /*
1153  * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
1154  * We use these to decide whether we need to wrap a write to MDCR_EL2
1155  * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
1156  */
1157 #define MDCR_EL2_PMU_ENABLE_BITS \
1158     (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
1160 
1161 /*
1162  * Returns true if the counter (pass 31 for PMCCNTR) should count events using
1163  * the current EL, security state, and register configuration.
1164  */
1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1166 {
1167     uint64_t filter;
1168     bool e, p, u, nsk, nsu, nsh, m;
1169     bool enabled, prohibited = false, filtered;
1170     bool secure = arm_is_secure(env);
1171     int el = arm_current_el(env);
1172     uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
1173     uint8_t hpmn = mdcr_el2 & MDCR_HPMN;
1174 
1175     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1176         return false;
1177     }
1178 
1179     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1180             (counter < hpmn || counter == 31)) {
1181         e = env->cp15.c9_pmcr & PMCRE;
1182     } else {
1183         e = mdcr_el2 & MDCR_HPME;
1184     }
1185     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1186 
1187     /* Is event counting prohibited? */
1188     if (el == 2 && (counter < hpmn || counter == 31)) {
1189         prohibited = mdcr_el2 & MDCR_HPMD;
1190     }
1191     if (secure) {
1192         prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
1193     }
1194 
1195     if (counter == 31) {
1196         /*
1197          * The cycle counter defaults to running. PMCR.DP says "disable
1198          * the cycle counter when event counting is prohibited".
1199          * Some MDCR bits disable the cycle counter specifically.
1200          */
1201         prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
1202         if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1203             if (secure) {
1204                 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
1205             }
1206             if (el == 2) {
1207                 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
1208             }
1209         }
1210     }
1211 
1212     if (counter == 31) {
1213         filter = env->cp15.pmccfiltr_el0;
1214     } else {
1215         filter = env->cp15.c14_pmevtyper[counter];
1216     }
1217 
1218     p   = filter & PMXEVTYPER_P;
1219     u   = filter & PMXEVTYPER_U;
1220     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1221     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1222     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1223     m   = arm_el_is_aa64(env, 1) &&
1224               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1225 
1226     if (el == 0) {
1227         filtered = secure ? u : u != nsu;
1228     } else if (el == 1) {
1229         filtered = secure ? p : p != nsk;
1230     } else if (el == 2) {
1231         filtered = !nsh;
1232     } else { /* EL3 */
1233         filtered = m != p;
1234     }
1235 
1236     if (counter != 31) {
1237         /*
1238          * If not checking PMCCNTR, ensure the counter is setup to an event we
1239          * support
1240          */
1241         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1242         if (!event_supported(event)) {
1243             return false;
1244         }
1245     }
1246 
1247     return enabled && !prohibited && !filtered;
1248 }
1249 
1250 static void pmu_update_irq(CPUARMState *env)
1251 {
1252     ARMCPU *cpu = env_archcpu(env);
1253     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1254             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1255 }
1256 
1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env)
1258 {
1259     /*
1260      * Return true if the clock divider is enabled and the cycle counter
1261      * is supposed to tick only once every 64 clock cycles. This is
1262      * controlled by PMCR.D, but if PMCR.LC is set to enable the long
1263      * (64-bit) cycle counter PMCR.D has no effect.
1264      */
1265     return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
1266 }
1267 
1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
1269 {
1270     /* Return true if the specified event counter is configured to be 64 bit */
1271 
1272     /* This isn't intended to be used with the cycle counter */
1273     assert(counter < 31);
1274 
1275     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1276         return false;
1277     }
1278 
1279     if (arm_feature(env, ARM_FEATURE_EL2)) {
1280         /*
1281          * MDCR_EL2.HLP still applies even when EL2 is disabled in the
1282          * current security state, so we don't use arm_mdcr_el2_eff() here.
1283          */
1284         bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
1285         int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1286 
1287         if (counter >= hpmn) {
1288             return hlp;
1289         }
1290     }
1291     return env->cp15.c9_pmcr & PMCRLP;
1292 }
1293 
1294 /*
1295  * Ensure c15_ccnt is the guest-visible count so that operations such as
1296  * enabling/disabling the counter or filtering, modifying the count itself,
1297  * etc. can be done logically. This is essentially a no-op if the counter is
1298  * not enabled at the time of the call.
1299  */
1300 static void pmccntr_op_start(CPUARMState *env)
1301 {
1302     uint64_t cycles = cycles_get_count(env);
1303 
1304     if (pmu_counter_enabled(env, 31)) {
1305         uint64_t eff_cycles = cycles;
1306         if (pmccntr_clockdiv_enabled(env)) {
1307             eff_cycles /= 64;
1308         }
1309 
1310         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1311 
1312         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1313                                  1ull << 63 : 1ull << 31;
1314         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1315             env->cp15.c9_pmovsr |= (1ULL << 31);
1316             pmu_update_irq(env);
1317         }
1318 
1319         env->cp15.c15_ccnt = new_pmccntr;
1320     }
1321     env->cp15.c15_ccnt_delta = cycles;
1322 }
1323 
1324 /*
1325  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1326  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1327  * pmccntr_op_start.
1328  */
1329 static void pmccntr_op_finish(CPUARMState *env)
1330 {
1331     if (pmu_counter_enabled(env, 31)) {
1332 #ifndef CONFIG_USER_ONLY
1333         /* Calculate when the counter will next overflow */
1334         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1335         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1336             remaining_cycles = (uint32_t)remaining_cycles;
1337         }
1338         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1339 
1340         if (overflow_in > 0) {
1341             int64_t overflow_at;
1342 
1343             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1344                                  overflow_in, &overflow_at)) {
1345                 ARMCPU *cpu = env_archcpu(env);
1346                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1347             }
1348         }
1349 #endif
1350 
1351         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1352         if (pmccntr_clockdiv_enabled(env)) {
1353             prev_cycles /= 64;
1354         }
1355         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1356     }
1357 }
1358 
1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1360 {
1361 
1362     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1363     uint64_t count = 0;
1364     if (event_supported(event)) {
1365         uint16_t event_idx = supported_event_map[event];
1366         count = pm_events[event_idx].get_count(env);
1367     }
1368 
1369     if (pmu_counter_enabled(env, counter)) {
1370         uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1371         uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
1372             1ULL << 63 : 1ULL << 31;
1373 
1374         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
1375             env->cp15.c9_pmovsr |= (1 << counter);
1376             pmu_update_irq(env);
1377         }
1378         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1379     }
1380     env->cp15.c14_pmevcntr_delta[counter] = count;
1381 }
1382 
1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1384 {
1385     if (pmu_counter_enabled(env, counter)) {
1386 #ifndef CONFIG_USER_ONLY
1387         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1388         uint16_t event_idx = supported_event_map[event];
1389         uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
1390         int64_t overflow_in;
1391 
1392         if (!pmevcntr_is_64_bit(env, counter)) {
1393             delta = (uint32_t)delta;
1394         }
1395         overflow_in = pm_events[event_idx].ns_per_count(delta);
1396 
1397         if (overflow_in > 0) {
1398             int64_t overflow_at;
1399 
1400             if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1401                                  overflow_in, &overflow_at)) {
1402                 ARMCPU *cpu = env_archcpu(env);
1403                 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1404             }
1405         }
1406 #endif
1407 
1408         env->cp15.c14_pmevcntr_delta[counter] -=
1409             env->cp15.c14_pmevcntr[counter];
1410     }
1411 }
1412 
1413 void pmu_op_start(CPUARMState *env)
1414 {
1415     unsigned int i;
1416     pmccntr_op_start(env);
1417     for (i = 0; i < pmu_num_counters(env); i++) {
1418         pmevcntr_op_start(env, i);
1419     }
1420 }
1421 
1422 void pmu_op_finish(CPUARMState *env)
1423 {
1424     unsigned int i;
1425     pmccntr_op_finish(env);
1426     for (i = 0; i < pmu_num_counters(env); i++) {
1427         pmevcntr_op_finish(env, i);
1428     }
1429 }
1430 
1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1432 {
1433     pmu_op_start(&cpu->env);
1434 }
1435 
1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1437 {
1438     pmu_op_finish(&cpu->env);
1439 }
1440 
1441 void arm_pmu_timer_cb(void *opaque)
1442 {
1443     ARMCPU *cpu = opaque;
1444 
1445     /*
1446      * Update all the counter values based on the current underlying counts,
1447      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1448      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1449      * counter may expire.
1450      */
1451     pmu_op_start(&cpu->env);
1452     pmu_op_finish(&cpu->env);
1453 }
1454 
1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456                        uint64_t value)
1457 {
1458     pmu_op_start(env);
1459 
1460     if (value & PMCRC) {
1461         /* The counter has been reset */
1462         env->cp15.c15_ccnt = 0;
1463     }
1464 
1465     if (value & PMCRP) {
1466         unsigned int i;
1467         for (i = 0; i < pmu_num_counters(env); i++) {
1468             env->cp15.c14_pmevcntr[i] = 0;
1469         }
1470     }
1471 
1472     env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
1473     env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
1474 
1475     pmu_op_finish(env);
1476 }
1477 
1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1479                           uint64_t value)
1480 {
1481     unsigned int i;
1482     uint64_t overflow_mask, new_pmswinc;
1483 
1484     for (i = 0; i < pmu_num_counters(env); i++) {
1485         /* Increment a counter's count iff: */
1486         if ((value & (1 << i)) && /* counter's bit is set */
1487                 /* counter is enabled and not filtered */
1488                 pmu_counter_enabled(env, i) &&
1489                 /* counter is SW_INCR */
1490                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1491             pmevcntr_op_start(env, i);
1492 
1493             /*
1494              * Detect if this write causes an overflow since we can't predict
1495              * PMSWINC overflows like we can for other events
1496              */
1497             new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1498 
1499             overflow_mask = pmevcntr_is_64_bit(env, i) ?
1500                 1ULL << 63 : 1ULL << 31;
1501 
1502             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
1503                 env->cp15.c9_pmovsr |= (1 << i);
1504                 pmu_update_irq(env);
1505             }
1506 
1507             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1508 
1509             pmevcntr_op_finish(env, i);
1510         }
1511     }
1512 }
1513 
1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1515 {
1516     uint64_t ret;
1517     pmccntr_op_start(env);
1518     ret = env->cp15.c15_ccnt;
1519     pmccntr_op_finish(env);
1520     return ret;
1521 }
1522 
1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1524                          uint64_t value)
1525 {
1526     /*
1527      * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1528      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1529      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1530      * accessed.
1531      */
1532     env->cp15.c9_pmselr = value & 0x1f;
1533 }
1534 
1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1536                         uint64_t value)
1537 {
1538     pmccntr_op_start(env);
1539     env->cp15.c15_ccnt = value;
1540     pmccntr_op_finish(env);
1541 }
1542 
1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1544                             uint64_t value)
1545 {
1546     uint64_t cur_val = pmccntr_read(env, NULL);
1547 
1548     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1549 }
1550 
1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552                             uint64_t value)
1553 {
1554     pmccntr_op_start(env);
1555     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1556     pmccntr_op_finish(env);
1557 }
1558 
1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1560                             uint64_t value)
1561 {
1562     pmccntr_op_start(env);
1563     /* M is not accessible from AArch32 */
1564     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1565         (value & PMCCFILTR);
1566     pmccntr_op_finish(env);
1567 }
1568 
1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1570 {
1571     /* M is not visible in AArch32 */
1572     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1573 }
1574 
1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1576                             uint64_t value)
1577 {
1578     pmu_op_start(env);
1579     value &= pmu_counter_mask(env);
1580     env->cp15.c9_pmcnten |= value;
1581     pmu_op_finish(env);
1582 }
1583 
1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585                              uint64_t value)
1586 {
1587     pmu_op_start(env);
1588     value &= pmu_counter_mask(env);
1589     env->cp15.c9_pmcnten &= ~value;
1590     pmu_op_finish(env);
1591 }
1592 
1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1594                          uint64_t value)
1595 {
1596     value &= pmu_counter_mask(env);
1597     env->cp15.c9_pmovsr &= ~value;
1598     pmu_update_irq(env);
1599 }
1600 
1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1602                          uint64_t value)
1603 {
1604     value &= pmu_counter_mask(env);
1605     env->cp15.c9_pmovsr |= value;
1606     pmu_update_irq(env);
1607 }
1608 
1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610                              uint64_t value, const uint8_t counter)
1611 {
1612     if (counter == 31) {
1613         pmccfiltr_write(env, ri, value);
1614     } else if (counter < pmu_num_counters(env)) {
1615         pmevcntr_op_start(env, counter);
1616 
1617         /*
1618          * If this counter's event type is changing, store the current
1619          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1620          * pmevcntr_op_finish has the correct baseline when it converts back to
1621          * a delta.
1622          */
1623         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1624             PMXEVTYPER_EVTCOUNT;
1625         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1626         if (old_event != new_event) {
1627             uint64_t count = 0;
1628             if (event_supported(new_event)) {
1629                 uint16_t event_idx = supported_event_map[new_event];
1630                 count = pm_events[event_idx].get_count(env);
1631             }
1632             env->cp15.c14_pmevcntr_delta[counter] = count;
1633         }
1634 
1635         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1636         pmevcntr_op_finish(env, counter);
1637     }
1638     /*
1639      * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1640      * PMSELR value is equal to or greater than the number of implemented
1641      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1642      */
1643 }
1644 
1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1646                                const uint8_t counter)
1647 {
1648     if (counter == 31) {
1649         return env->cp15.pmccfiltr_el0;
1650     } else if (counter < pmu_num_counters(env)) {
1651         return env->cp15.c14_pmevtyper[counter];
1652     } else {
1653       /*
1654        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1655        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1656        */
1657         return 0;
1658     }
1659 }
1660 
1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1662                               uint64_t value)
1663 {
1664     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1665     pmevtyper_write(env, ri, value, counter);
1666 }
1667 
1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1669                                uint64_t value)
1670 {
1671     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1672     env->cp15.c14_pmevtyper[counter] = value;
1673 
1674     /*
1675      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1676      * pmu_op_finish calls when loading saved state for a migration. Because
1677      * we're potentially updating the type of event here, the value written to
1678      * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
1679      * different counter type. Therefore, we need to set this value to the
1680      * current count for the counter type we're writing so that pmu_op_finish
1681      * has the correct count for its calculation.
1682      */
1683     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1684     if (event_supported(event)) {
1685         uint16_t event_idx = supported_event_map[event];
1686         env->cp15.c14_pmevcntr_delta[counter] =
1687             pm_events[event_idx].get_count(env);
1688     }
1689 }
1690 
1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1692 {
1693     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1694     return pmevtyper_read(env, ri, counter);
1695 }
1696 
1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1698                              uint64_t value)
1699 {
1700     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1701 }
1702 
1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1704 {
1705     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1706 }
1707 
1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1709                              uint64_t value, uint8_t counter)
1710 {
1711     if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1712         /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1713         value &= MAKE_64BIT_MASK(0, 32);
1714     }
1715     if (counter < pmu_num_counters(env)) {
1716         pmevcntr_op_start(env, counter);
1717         env->cp15.c14_pmevcntr[counter] = value;
1718         pmevcntr_op_finish(env, counter);
1719     }
1720     /*
1721      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1722      * are CONSTRAINED UNPREDICTABLE.
1723      */
1724 }
1725 
1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1727                               uint8_t counter)
1728 {
1729     if (counter < pmu_num_counters(env)) {
1730         uint64_t ret;
1731         pmevcntr_op_start(env, counter);
1732         ret = env->cp15.c14_pmevcntr[counter];
1733         pmevcntr_op_finish(env, counter);
1734         if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
1735             /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
1736             ret &= MAKE_64BIT_MASK(0, 32);
1737         }
1738         return ret;
1739     } else {
1740       /*
1741        * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1742        * are CONSTRAINED UNPREDICTABLE.
1743        */
1744         return 0;
1745     }
1746 }
1747 
1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1749                              uint64_t value)
1750 {
1751     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1752     pmevcntr_write(env, ri, value, counter);
1753 }
1754 
1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1756 {
1757     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1758     return pmevcntr_read(env, ri, counter);
1759 }
1760 
1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1762                              uint64_t value)
1763 {
1764     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1765     assert(counter < pmu_num_counters(env));
1766     env->cp15.c14_pmevcntr[counter] = value;
1767     pmevcntr_write(env, ri, value, counter);
1768 }
1769 
1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1771 {
1772     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1773     assert(counter < pmu_num_counters(env));
1774     return env->cp15.c14_pmevcntr[counter];
1775 }
1776 
1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1778                              uint64_t value)
1779 {
1780     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1781 }
1782 
1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1784 {
1785     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1786 }
1787 
1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1789                             uint64_t value)
1790 {
1791     if (arm_feature(env, ARM_FEATURE_V8)) {
1792         env->cp15.c9_pmuserenr = value & 0xf;
1793     } else {
1794         env->cp15.c9_pmuserenr = value & 1;
1795     }
1796 }
1797 
1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1799                              uint64_t value)
1800 {
1801     /* We have no event counters so only the C bit can be changed */
1802     value &= pmu_counter_mask(env);
1803     env->cp15.c9_pminten |= value;
1804     pmu_update_irq(env);
1805 }
1806 
1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1808                              uint64_t value)
1809 {
1810     value &= pmu_counter_mask(env);
1811     env->cp15.c9_pminten &= ~value;
1812     pmu_update_irq(env);
1813 }
1814 
1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1816                        uint64_t value)
1817 {
1818     /*
1819      * Note that even though the AArch64 view of this register has bits
1820      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1821      * architectural requirements for bits which are RES0 only in some
1822      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1823      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1824      */
1825     raw_write(env, ri, value & ~0x1FULL);
1826 }
1827 
1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1829 {
1830     /* Begin with base v8.0 state.  */
1831     uint64_t valid_mask = 0x3fff;
1832     ARMCPU *cpu = env_archcpu(env);
1833     uint64_t changed;
1834 
1835     /*
1836      * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
1837      * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
1838      * Instead, choose the format based on the mode of EL3.
1839      */
1840     if (arm_el_is_aa64(env, 3)) {
1841         value |= SCR_FW | SCR_AW;      /* RES1 */
1842         valid_mask &= ~SCR_NET;        /* RES0 */
1843 
1844         if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
1845             !cpu_isar_feature(aa64_aa32_el2, cpu)) {
1846             value |= SCR_RW;           /* RAO/WI */
1847         }
1848         if (cpu_isar_feature(aa64_ras, cpu)) {
1849             valid_mask |= SCR_TERR;
1850         }
1851         if (cpu_isar_feature(aa64_lor, cpu)) {
1852             valid_mask |= SCR_TLOR;
1853         }
1854         if (cpu_isar_feature(aa64_pauth, cpu)) {
1855             valid_mask |= SCR_API | SCR_APK;
1856         }
1857         if (cpu_isar_feature(aa64_sel2, cpu)) {
1858             valid_mask |= SCR_EEL2;
1859         } else if (cpu_isar_feature(aa64_rme, cpu)) {
1860             /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
1861             value |= SCR_NS;
1862         }
1863         if (cpu_isar_feature(aa64_mte, cpu)) {
1864             valid_mask |= SCR_ATA;
1865         }
1866         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
1867             valid_mask |= SCR_ENSCXT;
1868         }
1869         if (cpu_isar_feature(aa64_doublefault, cpu)) {
1870             valid_mask |= SCR_EASE | SCR_NMEA;
1871         }
1872         if (cpu_isar_feature(aa64_sme, cpu)) {
1873             valid_mask |= SCR_ENTP2;
1874         }
1875         if (cpu_isar_feature(aa64_hcx, cpu)) {
1876             valid_mask |= SCR_HXEN;
1877         }
1878         if (cpu_isar_feature(aa64_fgt, cpu)) {
1879             valid_mask |= SCR_FGTEN;
1880         }
1881         if (cpu_isar_feature(aa64_rme, cpu)) {
1882             valid_mask |= SCR_NSE | SCR_GPF;
1883         }
1884     } else {
1885         valid_mask &= ~(SCR_RW | SCR_ST);
1886         if (cpu_isar_feature(aa32_ras, cpu)) {
1887             valid_mask |= SCR_TERR;
1888         }
1889     }
1890 
1891     if (!arm_feature(env, ARM_FEATURE_EL2)) {
1892         valid_mask &= ~SCR_HCE;
1893 
1894         /*
1895          * On ARMv7, SMD (or SCD as it is called in v7) is only
1896          * supported if EL2 exists. The bit is UNK/SBZP when
1897          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1898          * when EL2 is unavailable.
1899          * On ARMv8, this bit is always available.
1900          */
1901         if (arm_feature(env, ARM_FEATURE_V7) &&
1902             !arm_feature(env, ARM_FEATURE_V8)) {
1903             valid_mask &= ~SCR_SMD;
1904         }
1905     }
1906 
1907     /* Clear all-context RES0 bits.  */
1908     value &= valid_mask;
1909     changed = env->cp15.scr_el3 ^ value;
1910     env->cp15.scr_el3 = value;
1911 
1912     /*
1913      * If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
1914      * we must invalidate all TLBs below EL3.
1915      */
1916     if (changed & (SCR_NS | SCR_NSE)) {
1917         tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
1918                                            ARMMMUIdxBit_E20_0 |
1919                                            ARMMMUIdxBit_E10_1 |
1920                                            ARMMMUIdxBit_E20_2 |
1921                                            ARMMMUIdxBit_E10_1_PAN |
1922                                            ARMMMUIdxBit_E20_2_PAN |
1923                                            ARMMMUIdxBit_E2));
1924     }
1925 }
1926 
1927 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1928 {
1929     /*
1930      * scr_write will set the RES1 bits on an AArch64-only CPU.
1931      * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
1932      */
1933     scr_write(env, ri, 0);
1934 }
1935 
1936 static CPAccessResult access_tid4(CPUARMState *env,
1937                                   const ARMCPRegInfo *ri,
1938                                   bool isread)
1939 {
1940     if (arm_current_el(env) == 1 &&
1941         (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
1942         return CP_ACCESS_TRAP_EL2;
1943     }
1944 
1945     return CP_ACCESS_OK;
1946 }
1947 
1948 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1949 {
1950     ARMCPU *cpu = env_archcpu(env);
1951 
1952     /*
1953      * Acquire the CSSELR index from the bank corresponding to the CCSIDR
1954      * bank
1955      */
1956     uint32_t index = A32_BANKED_REG_GET(env, csselr,
1957                                         ri->secure & ARM_CP_SECSTATE_S);
1958 
1959     return cpu->ccsidr[index];
1960 }
1961 
1962 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1963                          uint64_t value)
1964 {
1965     raw_write(env, ri, value & 0xf);
1966 }
1967 
1968 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 {
1970     CPUState *cs = env_cpu(env);
1971     bool el1 = arm_current_el(env) == 1;
1972     uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
1973     uint64_t ret = 0;
1974 
1975     if (hcr_el2 & HCR_IMO) {
1976         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
1977             ret |= CPSR_I;
1978         }
1979     } else {
1980         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1981             ret |= CPSR_I;
1982         }
1983     }
1984 
1985     if (hcr_el2 & HCR_FMO) {
1986         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
1987             ret |= CPSR_F;
1988         }
1989     } else {
1990         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1991             ret |= CPSR_F;
1992         }
1993     }
1994 
1995     if (hcr_el2 & HCR_AMO) {
1996         if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
1997             ret |= CPSR_A;
1998         }
1999     }
2000 
2001     return ret;
2002 }
2003 
2004 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2005                                        bool isread)
2006 {
2007     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2008         return CP_ACCESS_TRAP_EL2;
2009     }
2010 
2011     return CP_ACCESS_OK;
2012 }
2013 
2014 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2015                                        bool isread)
2016 {
2017     if (arm_feature(env, ARM_FEATURE_V8)) {
2018         return access_aa64_tid1(env, ri, isread);
2019     }
2020 
2021     return CP_ACCESS_OK;
2022 }
2023 
2024 static const ARMCPRegInfo v7_cp_reginfo[] = {
2025     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2026     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2027       .access = PL1_W, .type = ARM_CP_NOP },
2028     /*
2029      * Performance monitors are implementation defined in v7,
2030      * but with an ARM recommended set of registers, which we
2031      * follow.
2032      *
2033      * Performance registers fall into three categories:
2034      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2035      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2036      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2037      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2038      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2039      */
2040     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2041       .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
2042       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2043       .writefn = pmcntenset_write,
2044       .accessfn = pmreg_access,
2045       .fgt = FGT_PMCNTEN,
2046       .raw_writefn = raw_write },
2047     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
2048       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2049       .access = PL0_RW, .accessfn = pmreg_access,
2050       .fgt = FGT_PMCNTEN,
2051       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2052       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2053     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2054       .access = PL0_RW,
2055       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2056       .accessfn = pmreg_access,
2057       .fgt = FGT_PMCNTEN,
2058       .writefn = pmcntenclr_write,
2059       .type = ARM_CP_ALIAS | ARM_CP_IO },
2060     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2061       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2062       .access = PL0_RW, .accessfn = pmreg_access,
2063       .fgt = FGT_PMCNTEN,
2064       .type = ARM_CP_ALIAS | ARM_CP_IO,
2065       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2066       .writefn = pmcntenclr_write },
2067     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2068       .access = PL0_RW, .type = ARM_CP_IO,
2069       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2070       .accessfn = pmreg_access,
2071       .fgt = FGT_PMOVS,
2072       .writefn = pmovsr_write,
2073       .raw_writefn = raw_write },
2074     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2075       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2076       .access = PL0_RW, .accessfn = pmreg_access,
2077       .fgt = FGT_PMOVS,
2078       .type = ARM_CP_ALIAS | ARM_CP_IO,
2079       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2080       .writefn = pmovsr_write,
2081       .raw_writefn = raw_write },
2082     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2083       .access = PL0_W, .accessfn = pmreg_access_swinc,
2084       .fgt = FGT_PMSWINC_EL0,
2085       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2086       .writefn = pmswinc_write },
2087     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2088       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2089       .access = PL0_W, .accessfn = pmreg_access_swinc,
2090       .fgt = FGT_PMSWINC_EL0,
2091       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2092       .writefn = pmswinc_write },
2093     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2094       .access = PL0_RW, .type = ARM_CP_ALIAS,
2095       .fgt = FGT_PMSELR_EL0,
2096       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2097       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2098       .raw_writefn = raw_write},
2099     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2100       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2101       .access = PL0_RW, .accessfn = pmreg_access_selr,
2102       .fgt = FGT_PMSELR_EL0,
2103       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2104       .writefn = pmselr_write, .raw_writefn = raw_write, },
2105     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2106       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2107       .fgt = FGT_PMCCNTR_EL0,
2108       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2109       .accessfn = pmreg_access_ccntr },
2110     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2111       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2112       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2113       .fgt = FGT_PMCCNTR_EL0,
2114       .type = ARM_CP_IO,
2115       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2116       .readfn = pmccntr_read, .writefn = pmccntr_write,
2117       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2118     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2119       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2120       .access = PL0_RW, .accessfn = pmreg_access,
2121       .fgt = FGT_PMCCFILTR_EL0,
2122       .type = ARM_CP_ALIAS | ARM_CP_IO,
2123       .resetvalue = 0, },
2124     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2125       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2126       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2127       .access = PL0_RW, .accessfn = pmreg_access,
2128       .fgt = FGT_PMCCFILTR_EL0,
2129       .type = ARM_CP_IO,
2130       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2131       .resetvalue = 0, },
2132     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2133       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2134       .accessfn = pmreg_access,
2135       .fgt = FGT_PMEVTYPERN_EL0,
2136       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2137     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2138       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2139       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2140       .accessfn = pmreg_access,
2141       .fgt = FGT_PMEVTYPERN_EL0,
2142       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2143     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2144       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2145       .accessfn = pmreg_access_xevcntr,
2146       .fgt = FGT_PMEVCNTRN_EL0,
2147       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2148     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2149       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2150       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2151       .accessfn = pmreg_access_xevcntr,
2152       .fgt = FGT_PMEVCNTRN_EL0,
2153       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2154     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2155       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2156       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2157       .resetvalue = 0,
2158       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2159     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2160       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2161       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2162       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2163       .resetvalue = 0,
2164       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2165     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2166       .access = PL1_RW, .accessfn = access_tpm,
2167       .fgt = FGT_PMINTEN,
2168       .type = ARM_CP_ALIAS | ARM_CP_IO,
2169       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2170       .resetvalue = 0,
2171       .writefn = pmintenset_write, .raw_writefn = raw_write },
2172     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2173       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2174       .access = PL1_RW, .accessfn = access_tpm,
2175       .fgt = FGT_PMINTEN,
2176       .type = ARM_CP_IO,
2177       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2178       .writefn = pmintenset_write, .raw_writefn = raw_write,
2179       .resetvalue = 0x0 },
2180     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2181       .access = PL1_RW, .accessfn = access_tpm,
2182       .fgt = FGT_PMINTEN,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2185       .writefn = pmintenclr_write, },
2186     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2187       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2188       .access = PL1_RW, .accessfn = access_tpm,
2189       .fgt = FGT_PMINTEN,
2190       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2191       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2192       .writefn = pmintenclr_write },
2193     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2194       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2195       .access = PL1_R,
2196       .accessfn = access_tid4,
2197       .fgt = FGT_CCSIDR_EL1,
2198       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2199     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2200       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2201       .access = PL1_RW,
2202       .accessfn = access_tid4,
2203       .fgt = FGT_CSSELR_EL1,
2204       .writefn = csselr_write, .resetvalue = 0,
2205       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2206                              offsetof(CPUARMState, cp15.csselr_ns) } },
2207     /*
2208      * Auxiliary ID register: this actually has an IMPDEF value but for now
2209      * just RAZ for all cores:
2210      */
2211     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2212       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2213       .access = PL1_R, .type = ARM_CP_CONST,
2214       .accessfn = access_aa64_tid1,
2215       .fgt = FGT_AIDR_EL1,
2216       .resetvalue = 0 },
2217     /*
2218      * Auxiliary fault status registers: these also are IMPDEF, and we
2219      * choose to RAZ/WI for all cores.
2220      */
2221     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2222       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2223       .access = PL1_RW, .accessfn = access_tvm_trvm,
2224       .fgt = FGT_AFSR0_EL1,
2225       .type = ARM_CP_CONST, .resetvalue = 0 },
2226     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2227       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2228       .access = PL1_RW, .accessfn = access_tvm_trvm,
2229       .fgt = FGT_AFSR1_EL1,
2230       .type = ARM_CP_CONST, .resetvalue = 0 },
2231     /*
2232      * MAIR can just read-as-written because we don't implement caches
2233      * and so don't need to care about memory attributes.
2234      */
2235     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2236       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2237       .access = PL1_RW, .accessfn = access_tvm_trvm,
2238       .fgt = FGT_MAIR_EL1,
2239       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2240       .resetvalue = 0 },
2241     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2242       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2243       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2244       .resetvalue = 0 },
2245     /*
2246      * For non-long-descriptor page tables these are PRRR and NMRR;
2247      * regardless they still act as reads-as-written for QEMU.
2248      */
2249      /*
2250       * MAIR0/1 are defined separately from their 64-bit counterpart which
2251       * allows them to assign the correct fieldoffset based on the endianness
2252       * handled in the field definitions.
2253       */
2254     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2255       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2256       .access = PL1_RW, .accessfn = access_tvm_trvm,
2257       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2258                              offsetof(CPUARMState, cp15.mair0_ns) },
2259       .resetfn = arm_cp_reset_ignore },
2260     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2261       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2262       .access = PL1_RW, .accessfn = access_tvm_trvm,
2263       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2264                              offsetof(CPUARMState, cp15.mair1_ns) },
2265       .resetfn = arm_cp_reset_ignore },
2266     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2267       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2268       .fgt = FGT_ISR_EL1,
2269       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2270     /* 32 bit ITLB invalidates */
2271     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2272       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2273       .writefn = tlbiall_write },
2274     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2275       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2276       .writefn = tlbimva_write },
2277     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2278       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2279       .writefn = tlbiasid_write },
2280     /* 32 bit DTLB invalidates */
2281     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2282       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2283       .writefn = tlbiall_write },
2284     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2285       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2286       .writefn = tlbimva_write },
2287     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2288       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2289       .writefn = tlbiasid_write },
2290     /* 32 bit TLB invalidates */
2291     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2292       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2293       .writefn = tlbiall_write },
2294     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2295       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2296       .writefn = tlbimva_write },
2297     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2298       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2299       .writefn = tlbiasid_write },
2300     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2301       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2302       .writefn = tlbimvaa_write },
2303 };
2304 
2305 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2306     /* 32 bit TLB invalidates, Inner Shareable */
2307     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2308       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2309       .writefn = tlbiall_is_write },
2310     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2311       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2312       .writefn = tlbimva_is_write },
2313     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2314       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2315       .writefn = tlbiasid_is_write },
2316     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2317       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
2318       .writefn = tlbimvaa_is_write },
2319 };
2320 
2321 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2322     /* PMOVSSET is not implemented in v7 before v7ve */
2323     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2324       .access = PL0_RW, .accessfn = pmreg_access,
2325       .fgt = FGT_PMOVS,
2326       .type = ARM_CP_ALIAS | ARM_CP_IO,
2327       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2328       .writefn = pmovsset_write,
2329       .raw_writefn = raw_write },
2330     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2331       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2332       .access = PL0_RW, .accessfn = pmreg_access,
2333       .fgt = FGT_PMOVS,
2334       .type = ARM_CP_ALIAS | ARM_CP_IO,
2335       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2336       .writefn = pmovsset_write,
2337       .raw_writefn = raw_write },
2338 };
2339 
2340 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2341                         uint64_t value)
2342 {
2343     value &= 1;
2344     env->teecr = value;
2345 }
2346 
2347 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2348                                    bool isread)
2349 {
2350     /*
2351      * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
2352      * at all, so we don't need to check whether we're v8A.
2353      */
2354     if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
2355         (env->cp15.hstr_el2 & HSTR_TTEE)) {
2356         return CP_ACCESS_TRAP_EL2;
2357     }
2358     return CP_ACCESS_OK;
2359 }
2360 
2361 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2362                                     bool isread)
2363 {
2364     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2365         return CP_ACCESS_TRAP;
2366     }
2367     return teecr_access(env, ri, isread);
2368 }
2369 
2370 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2371     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2372       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2373       .resetvalue = 0,
2374       .writefn = teecr_write, .accessfn = teecr_access },
2375     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2376       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2377       .accessfn = teehbr_access, .resetvalue = 0 },
2378 };
2379 
2380 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2381     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2382       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2383       .access = PL0_RW,
2384       .fgt = FGT_TPIDR_EL0,
2385       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2386     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2387       .access = PL0_RW,
2388       .fgt = FGT_TPIDR_EL0,
2389       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2390                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2391       .resetfn = arm_cp_reset_ignore },
2392     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2393       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2394       .access = PL0_R | PL1_W,
2395       .fgt = FGT_TPIDRRO_EL0,
2396       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2397       .resetvalue = 0},
2398     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2399       .access = PL0_R | PL1_W,
2400       .fgt = FGT_TPIDRRO_EL0,
2401       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2402                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2403       .resetfn = arm_cp_reset_ignore },
2404     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2405       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2406       .access = PL1_RW,
2407       .fgt = FGT_TPIDR_EL1,
2408       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2409     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2410       .access = PL1_RW,
2411       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2412                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2413       .resetvalue = 0 },
2414 };
2415 
2416 #ifndef CONFIG_USER_ONLY
2417 
2418 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2419                                        bool isread)
2420 {
2421     /*
2422      * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2423      * Writable only at the highest implemented exception level.
2424      */
2425     int el = arm_current_el(env);
2426     uint64_t hcr;
2427     uint32_t cntkctl;
2428 
2429     switch (el) {
2430     case 0:
2431         hcr = arm_hcr_el2_eff(env);
2432         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2433             cntkctl = env->cp15.cnthctl_el2;
2434         } else {
2435             cntkctl = env->cp15.c14_cntkctl;
2436         }
2437         if (!extract32(cntkctl, 0, 2)) {
2438             return CP_ACCESS_TRAP;
2439         }
2440         break;
2441     case 1:
2442         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2443             arm_is_secure_below_el3(env)) {
2444             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2445             return CP_ACCESS_TRAP_UNCATEGORIZED;
2446         }
2447         break;
2448     case 2:
2449     case 3:
2450         break;
2451     }
2452 
2453     if (!isread && el < arm_highest_el(env)) {
2454         return CP_ACCESS_TRAP_UNCATEGORIZED;
2455     }
2456 
2457     return CP_ACCESS_OK;
2458 }
2459 
2460 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2461                                         bool isread)
2462 {
2463     unsigned int cur_el = arm_current_el(env);
2464     bool has_el2 = arm_is_el2_enabled(env);
2465     uint64_t hcr = arm_hcr_el2_eff(env);
2466 
2467     switch (cur_el) {
2468     case 0:
2469         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2470         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2471             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2472                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2473         }
2474 
2475         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2476         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2477             return CP_ACCESS_TRAP;
2478         }
2479         /* fall through */
2480     case 1:
2481         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2482         if (has_el2 && timeridx == GTIMER_PHYS &&
2483             (hcr & HCR_E2H
2484              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2485              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2486             return CP_ACCESS_TRAP_EL2;
2487         }
2488         break;
2489     }
2490     return CP_ACCESS_OK;
2491 }
2492 
2493 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2494                                       bool isread)
2495 {
2496     unsigned int cur_el = arm_current_el(env);
2497     bool has_el2 = arm_is_el2_enabled(env);
2498     uint64_t hcr = arm_hcr_el2_eff(env);
2499 
2500     switch (cur_el) {
2501     case 0:
2502         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2503             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2504             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2505                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2506         }
2507 
2508         /*
2509          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2510          * EL0 if EL0[PV]TEN is zero.
2511          */
2512         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2513             return CP_ACCESS_TRAP;
2514         }
2515         /* fall through */
2516 
2517     case 1:
2518         if (has_el2 && timeridx == GTIMER_PHYS) {
2519             if (hcr & HCR_E2H) {
2520                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2521                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2522                     return CP_ACCESS_TRAP_EL2;
2523                 }
2524             } else {
2525                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2526                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2527                     return CP_ACCESS_TRAP_EL2;
2528                 }
2529             }
2530         }
2531         break;
2532     }
2533     return CP_ACCESS_OK;
2534 }
2535 
2536 static CPAccessResult gt_pct_access(CPUARMState *env,
2537                                     const ARMCPRegInfo *ri,
2538                                     bool isread)
2539 {
2540     return gt_counter_access(env, GTIMER_PHYS, isread);
2541 }
2542 
2543 static CPAccessResult gt_vct_access(CPUARMState *env,
2544                                     const ARMCPRegInfo *ri,
2545                                     bool isread)
2546 {
2547     return gt_counter_access(env, GTIMER_VIRT, isread);
2548 }
2549 
2550 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2551                                        bool isread)
2552 {
2553     return gt_timer_access(env, GTIMER_PHYS, isread);
2554 }
2555 
2556 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2557                                        bool isread)
2558 {
2559     return gt_timer_access(env, GTIMER_VIRT, isread);
2560 }
2561 
2562 static CPAccessResult gt_stimer_access(CPUARMState *env,
2563                                        const ARMCPRegInfo *ri,
2564                                        bool isread)
2565 {
2566     /*
2567      * The AArch64 register view of the secure physical timer is
2568      * always accessible from EL3, and configurably accessible from
2569      * Secure EL1.
2570      */
2571     switch (arm_current_el(env)) {
2572     case 1:
2573         if (!arm_is_secure(env)) {
2574             return CP_ACCESS_TRAP;
2575         }
2576         if (!(env->cp15.scr_el3 & SCR_ST)) {
2577             return CP_ACCESS_TRAP_EL3;
2578         }
2579         return CP_ACCESS_OK;
2580     case 0:
2581     case 2:
2582         return CP_ACCESS_TRAP;
2583     case 3:
2584         return CP_ACCESS_OK;
2585     default:
2586         g_assert_not_reached();
2587     }
2588 }
2589 
2590 static uint64_t gt_get_countervalue(CPUARMState *env)
2591 {
2592     ARMCPU *cpu = env_archcpu(env);
2593 
2594     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2595 }
2596 
2597 static void gt_update_irq(ARMCPU *cpu, int timeridx)
2598 {
2599     CPUARMState *env = &cpu->env;
2600     uint64_t cnthctl = env->cp15.cnthctl_el2;
2601     ARMSecuritySpace ss = arm_security_space(env);
2602     /* ISTATUS && !IMASK */
2603     int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
2604 
2605     /*
2606      * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
2607      * It is RES0 in Secure and NonSecure state.
2608      */
2609     if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
2610         ((timeridx == GTIMER_VIRT && (cnthctl & CNTHCTL_CNTVMASK)) ||
2611          (timeridx == GTIMER_PHYS && (cnthctl & CNTHCTL_CNTPMASK)))) {
2612         irqstate = 0;
2613     }
2614 
2615     qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2616     trace_arm_gt_update_irq(timeridx, irqstate);
2617 }
2618 
2619 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
2620 {
2621     /*
2622      * Changing security state between Root and Secure/NonSecure, which may
2623      * happen when switching EL, can change the effective value of CNTHCTL_EL2
2624      * mask bits. Update the IRQ state accordingly.
2625      */
2626     gt_update_irq(cpu, GTIMER_VIRT);
2627     gt_update_irq(cpu, GTIMER_PHYS);
2628 }
2629 
2630 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2631 {
2632     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2633 
2634     if (gt->ctl & 1) {
2635         /*
2636          * Timer enabled: calculate and set current ISTATUS, irq, and
2637          * reset timer to when ISTATUS next has to change
2638          */
2639         uint64_t offset = timeridx == GTIMER_VIRT ?
2640                                       cpu->env.cp15.cntvoff_el2 : 0;
2641         uint64_t count = gt_get_countervalue(&cpu->env);
2642         /* Note that this must be unsigned 64 bit arithmetic: */
2643         int istatus = count - offset >= gt->cval;
2644         uint64_t nexttick;
2645 
2646         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2647 
2648         if (istatus) {
2649             /* Next transition is when count rolls back over to zero */
2650             nexttick = UINT64_MAX;
2651         } else {
2652             /* Next transition is when we hit cval */
2653             nexttick = gt->cval + offset;
2654         }
2655         /*
2656          * Note that the desired next expiry time might be beyond the
2657          * signed-64-bit range of a QEMUTimer -- in this case we just
2658          * set the timer for as far in the future as possible. When the
2659          * timer expires we will reset the timer for any remaining period.
2660          */
2661         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2662             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2663         } else {
2664             timer_mod(cpu->gt_timer[timeridx], nexttick);
2665         }
2666         trace_arm_gt_recalc(timeridx, nexttick);
2667     } else {
2668         /* Timer disabled: ISTATUS and timer output always clear */
2669         gt->ctl &= ~4;
2670         timer_del(cpu->gt_timer[timeridx]);
2671         trace_arm_gt_recalc_disabled(timeridx);
2672     }
2673     gt_update_irq(cpu, timeridx);
2674 }
2675 
2676 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2677                            int timeridx)
2678 {
2679     ARMCPU *cpu = env_archcpu(env);
2680 
2681     timer_del(cpu->gt_timer[timeridx]);
2682 }
2683 
2684 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2685 {
2686     return gt_get_countervalue(env);
2687 }
2688 
2689 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2690 {
2691     uint64_t hcr;
2692 
2693     switch (arm_current_el(env)) {
2694     case 2:
2695         hcr = arm_hcr_el2_eff(env);
2696         if (hcr & HCR_E2H) {
2697             return 0;
2698         }
2699         break;
2700     case 0:
2701         hcr = arm_hcr_el2_eff(env);
2702         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2703             return 0;
2704         }
2705         break;
2706     }
2707 
2708     return env->cp15.cntvoff_el2;
2709 }
2710 
2711 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2712 {
2713     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2714 }
2715 
2716 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2717                           int timeridx,
2718                           uint64_t value)
2719 {
2720     trace_arm_gt_cval_write(timeridx, value);
2721     env->cp15.c14_timer[timeridx].cval = value;
2722     gt_recalc_timer(env_archcpu(env), timeridx);
2723 }
2724 
2725 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2726                              int timeridx)
2727 {
2728     uint64_t offset = 0;
2729 
2730     switch (timeridx) {
2731     case GTIMER_VIRT:
2732     case GTIMER_HYPVIRT:
2733         offset = gt_virt_cnt_offset(env);
2734         break;
2735     }
2736 
2737     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2738                       (gt_get_countervalue(env) - offset));
2739 }
2740 
2741 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2742                           int timeridx,
2743                           uint64_t value)
2744 {
2745     uint64_t offset = 0;
2746 
2747     switch (timeridx) {
2748     case GTIMER_VIRT:
2749     case GTIMER_HYPVIRT:
2750         offset = gt_virt_cnt_offset(env);
2751         break;
2752     }
2753 
2754     trace_arm_gt_tval_write(timeridx, value);
2755     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2756                                          sextract64(value, 0, 32);
2757     gt_recalc_timer(env_archcpu(env), timeridx);
2758 }
2759 
2760 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2761                          int timeridx,
2762                          uint64_t value)
2763 {
2764     ARMCPU *cpu = env_archcpu(env);
2765     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2766 
2767     trace_arm_gt_ctl_write(timeridx, value);
2768     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2769     if ((oldval ^ value) & 1) {
2770         /* Enable toggled */
2771         gt_recalc_timer(cpu, timeridx);
2772     } else if ((oldval ^ value) & 2) {
2773         /*
2774          * IMASK toggled: don't need to recalculate,
2775          * just set the interrupt line based on ISTATUS
2776          */
2777         trace_arm_gt_imask_toggle(timeridx);
2778         gt_update_irq(cpu, timeridx);
2779     }
2780 }
2781 
2782 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2783 {
2784     gt_timer_reset(env, ri, GTIMER_PHYS);
2785 }
2786 
2787 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2788                                uint64_t value)
2789 {
2790     gt_cval_write(env, ri, GTIMER_PHYS, value);
2791 }
2792 
2793 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2794 {
2795     return gt_tval_read(env, ri, GTIMER_PHYS);
2796 }
2797 
2798 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2799                                uint64_t value)
2800 {
2801     gt_tval_write(env, ri, GTIMER_PHYS, value);
2802 }
2803 
2804 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2805                               uint64_t value)
2806 {
2807     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2808 }
2809 
2810 static int gt_phys_redir_timeridx(CPUARMState *env)
2811 {
2812     switch (arm_mmu_idx(env)) {
2813     case ARMMMUIdx_E20_0:
2814     case ARMMMUIdx_E20_2:
2815     case ARMMMUIdx_E20_2_PAN:
2816         return GTIMER_HYP;
2817     default:
2818         return GTIMER_PHYS;
2819     }
2820 }
2821 
2822 static int gt_virt_redir_timeridx(CPUARMState *env)
2823 {
2824     switch (arm_mmu_idx(env)) {
2825     case ARMMMUIdx_E20_0:
2826     case ARMMMUIdx_E20_2:
2827     case ARMMMUIdx_E20_2_PAN:
2828         return GTIMER_HYPVIRT;
2829     default:
2830         return GTIMER_VIRT;
2831     }
2832 }
2833 
2834 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2835                                         const ARMCPRegInfo *ri)
2836 {
2837     int timeridx = gt_phys_redir_timeridx(env);
2838     return env->cp15.c14_timer[timeridx].cval;
2839 }
2840 
2841 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2842                                      uint64_t value)
2843 {
2844     int timeridx = gt_phys_redir_timeridx(env);
2845     gt_cval_write(env, ri, timeridx, value);
2846 }
2847 
2848 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2849                                         const ARMCPRegInfo *ri)
2850 {
2851     int timeridx = gt_phys_redir_timeridx(env);
2852     return gt_tval_read(env, ri, timeridx);
2853 }
2854 
2855 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2856                                      uint64_t value)
2857 {
2858     int timeridx = gt_phys_redir_timeridx(env);
2859     gt_tval_write(env, ri, timeridx, value);
2860 }
2861 
2862 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2863                                        const ARMCPRegInfo *ri)
2864 {
2865     int timeridx = gt_phys_redir_timeridx(env);
2866     return env->cp15.c14_timer[timeridx].ctl;
2867 }
2868 
2869 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2870                                     uint64_t value)
2871 {
2872     int timeridx = gt_phys_redir_timeridx(env);
2873     gt_ctl_write(env, ri, timeridx, value);
2874 }
2875 
2876 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2877 {
2878     gt_timer_reset(env, ri, GTIMER_VIRT);
2879 }
2880 
2881 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2882                                uint64_t value)
2883 {
2884     gt_cval_write(env, ri, GTIMER_VIRT, value);
2885 }
2886 
2887 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2888 {
2889     return gt_tval_read(env, ri, GTIMER_VIRT);
2890 }
2891 
2892 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2893                                uint64_t value)
2894 {
2895     gt_tval_write(env, ri, GTIMER_VIRT, value);
2896 }
2897 
2898 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2899                               uint64_t value)
2900 {
2901     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2902 }
2903 
2904 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2905                              uint64_t value)
2906 {
2907     ARMCPU *cpu = env_archcpu(env);
2908     uint32_t oldval = env->cp15.cnthctl_el2;
2909 
2910     raw_write(env, ri, value);
2911 
2912     if ((oldval ^ value) & CNTHCTL_CNTVMASK) {
2913         gt_update_irq(cpu, GTIMER_VIRT);
2914     } else if ((oldval ^ value) & CNTHCTL_CNTPMASK) {
2915         gt_update_irq(cpu, GTIMER_PHYS);
2916     }
2917 }
2918 
2919 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2920                               uint64_t value)
2921 {
2922     ARMCPU *cpu = env_archcpu(env);
2923 
2924     trace_arm_gt_cntvoff_write(value);
2925     raw_write(env, ri, value);
2926     gt_recalc_timer(cpu, GTIMER_VIRT);
2927 }
2928 
2929 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2930                                         const ARMCPRegInfo *ri)
2931 {
2932     int timeridx = gt_virt_redir_timeridx(env);
2933     return env->cp15.c14_timer[timeridx].cval;
2934 }
2935 
2936 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2937                                      uint64_t value)
2938 {
2939     int timeridx = gt_virt_redir_timeridx(env);
2940     gt_cval_write(env, ri, timeridx, value);
2941 }
2942 
2943 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2944                                         const ARMCPRegInfo *ri)
2945 {
2946     int timeridx = gt_virt_redir_timeridx(env);
2947     return gt_tval_read(env, ri, timeridx);
2948 }
2949 
2950 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2951                                      uint64_t value)
2952 {
2953     int timeridx = gt_virt_redir_timeridx(env);
2954     gt_tval_write(env, ri, timeridx, value);
2955 }
2956 
2957 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2958                                        const ARMCPRegInfo *ri)
2959 {
2960     int timeridx = gt_virt_redir_timeridx(env);
2961     return env->cp15.c14_timer[timeridx].ctl;
2962 }
2963 
2964 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2965                                     uint64_t value)
2966 {
2967     int timeridx = gt_virt_redir_timeridx(env);
2968     gt_ctl_write(env, ri, timeridx, value);
2969 }
2970 
2971 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2972 {
2973     gt_timer_reset(env, ri, GTIMER_HYP);
2974 }
2975 
2976 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2977                               uint64_t value)
2978 {
2979     gt_cval_write(env, ri, GTIMER_HYP, value);
2980 }
2981 
2982 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2983 {
2984     return gt_tval_read(env, ri, GTIMER_HYP);
2985 }
2986 
2987 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2988                               uint64_t value)
2989 {
2990     gt_tval_write(env, ri, GTIMER_HYP, value);
2991 }
2992 
2993 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2994                               uint64_t value)
2995 {
2996     gt_ctl_write(env, ri, GTIMER_HYP, value);
2997 }
2998 
2999 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3000 {
3001     gt_timer_reset(env, ri, GTIMER_SEC);
3002 }
3003 
3004 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3005                               uint64_t value)
3006 {
3007     gt_cval_write(env, ri, GTIMER_SEC, value);
3008 }
3009 
3010 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3011 {
3012     return gt_tval_read(env, ri, GTIMER_SEC);
3013 }
3014 
3015 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3016                               uint64_t value)
3017 {
3018     gt_tval_write(env, ri, GTIMER_SEC, value);
3019 }
3020 
3021 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3022                               uint64_t value)
3023 {
3024     gt_ctl_write(env, ri, GTIMER_SEC, value);
3025 }
3026 
3027 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3028 {
3029     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3030 }
3031 
3032 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3033                              uint64_t value)
3034 {
3035     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3036 }
3037 
3038 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3039 {
3040     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3041 }
3042 
3043 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3044                              uint64_t value)
3045 {
3046     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3047 }
3048 
3049 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3050                             uint64_t value)
3051 {
3052     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3053 }
3054 
3055 void arm_gt_ptimer_cb(void *opaque)
3056 {
3057     ARMCPU *cpu = opaque;
3058 
3059     gt_recalc_timer(cpu, GTIMER_PHYS);
3060 }
3061 
3062 void arm_gt_vtimer_cb(void *opaque)
3063 {
3064     ARMCPU *cpu = opaque;
3065 
3066     gt_recalc_timer(cpu, GTIMER_VIRT);
3067 }
3068 
3069 void arm_gt_htimer_cb(void *opaque)
3070 {
3071     ARMCPU *cpu = opaque;
3072 
3073     gt_recalc_timer(cpu, GTIMER_HYP);
3074 }
3075 
3076 void arm_gt_stimer_cb(void *opaque)
3077 {
3078     ARMCPU *cpu = opaque;
3079 
3080     gt_recalc_timer(cpu, GTIMER_SEC);
3081 }
3082 
3083 void arm_gt_hvtimer_cb(void *opaque)
3084 {
3085     ARMCPU *cpu = opaque;
3086 
3087     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3088 }
3089 
3090 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3091 {
3092     ARMCPU *cpu = env_archcpu(env);
3093 
3094     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3095 }
3096 
3097 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3098     /*
3099      * Note that CNTFRQ is purely reads-as-written for the benefit
3100      * of software; writing it doesn't actually change the timer frequency.
3101      * Our reset value matches the fixed frequency we implement the timer at.
3102      */
3103     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3104       .type = ARM_CP_ALIAS,
3105       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3106       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3107     },
3108     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3109       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3110       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3111       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3112       .resetfn = arm_gt_cntfrq_reset,
3113     },
3114     /* overall control: mostly access permissions */
3115     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3116       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3117       .access = PL1_RW,
3118       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3119       .resetvalue = 0,
3120     },
3121     /* per-timer control */
3122     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3123       .secure = ARM_CP_SECSTATE_NS,
3124       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3125       .accessfn = gt_ptimer_access,
3126       .fieldoffset = offsetoflow32(CPUARMState,
3127                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3128       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3129       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3130     },
3131     { .name = "CNTP_CTL_S",
3132       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3133       .secure = ARM_CP_SECSTATE_S,
3134       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3135       .accessfn = gt_ptimer_access,
3136       .fieldoffset = offsetoflow32(CPUARMState,
3137                                    cp15.c14_timer[GTIMER_SEC].ctl),
3138       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3139     },
3140     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3141       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3142       .type = ARM_CP_IO, .access = PL0_RW,
3143       .accessfn = gt_ptimer_access,
3144       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3145       .resetvalue = 0,
3146       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3147       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3148     },
3149     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3150       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3151       .accessfn = gt_vtimer_access,
3152       .fieldoffset = offsetoflow32(CPUARMState,
3153                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3154       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3155       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3156     },
3157     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3158       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3159       .type = ARM_CP_IO, .access = PL0_RW,
3160       .accessfn = gt_vtimer_access,
3161       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3162       .resetvalue = 0,
3163       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3164       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3165     },
3166     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3167     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3168       .secure = ARM_CP_SECSTATE_NS,
3169       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3170       .accessfn = gt_ptimer_access,
3171       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3172     },
3173     { .name = "CNTP_TVAL_S",
3174       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3175       .secure = ARM_CP_SECSTATE_S,
3176       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3177       .accessfn = gt_ptimer_access,
3178       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3179     },
3180     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3181       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3182       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3183       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3184       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3185     },
3186     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3187       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3188       .accessfn = gt_vtimer_access,
3189       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3190     },
3191     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3192       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3193       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3194       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3195       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3196     },
3197     /* The counter itself */
3198     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3199       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3200       .accessfn = gt_pct_access,
3201       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3202     },
3203     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3204       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3205       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3206       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3207     },
3208     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3209       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3210       .accessfn = gt_vct_access,
3211       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3212     },
3213     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3214       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3215       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3216       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3217     },
3218     /* Comparison value, indicating when the timer goes off */
3219     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3220       .secure = ARM_CP_SECSTATE_NS,
3221       .access = PL0_RW,
3222       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3223       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3224       .accessfn = gt_ptimer_access,
3225       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3226       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3227     },
3228     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3229       .secure = ARM_CP_SECSTATE_S,
3230       .access = PL0_RW,
3231       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3232       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3233       .accessfn = gt_ptimer_access,
3234       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3235     },
3236     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3237       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3238       .access = PL0_RW,
3239       .type = ARM_CP_IO,
3240       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3241       .resetvalue = 0, .accessfn = gt_ptimer_access,
3242       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3243       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3244     },
3245     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3246       .access = PL0_RW,
3247       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3248       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3249       .accessfn = gt_vtimer_access,
3250       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3251       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3252     },
3253     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3254       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3255       .access = PL0_RW,
3256       .type = ARM_CP_IO,
3257       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3258       .resetvalue = 0, .accessfn = gt_vtimer_access,
3259       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3260       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3261     },
3262     /*
3263      * Secure timer -- this is actually restricted to only EL3
3264      * and configurably Secure-EL1 via the accessfn.
3265      */
3266     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3267       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3268       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3269       .accessfn = gt_stimer_access,
3270       .readfn = gt_sec_tval_read,
3271       .writefn = gt_sec_tval_write,
3272       .resetfn = gt_sec_timer_reset,
3273     },
3274     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3275       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3276       .type = ARM_CP_IO, .access = PL1_RW,
3277       .accessfn = gt_stimer_access,
3278       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3279       .resetvalue = 0,
3280       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3281     },
3282     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3283       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3284       .type = ARM_CP_IO, .access = PL1_RW,
3285       .accessfn = gt_stimer_access,
3286       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3287       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3288     },
3289 };
3290 
3291 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3292                                  bool isread)
3293 {
3294     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3295         return CP_ACCESS_TRAP;
3296     }
3297     return CP_ACCESS_OK;
3298 }
3299 
3300 #else
3301 
3302 /*
3303  * In user-mode most of the generic timer registers are inaccessible
3304  * however modern kernels (4.12+) allow access to cntvct_el0
3305  */
3306 
3307 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3308 {
3309     ARMCPU *cpu = env_archcpu(env);
3310 
3311     /*
3312      * Currently we have no support for QEMUTimer in linux-user so we
3313      * can't call gt_get_countervalue(env), instead we directly
3314      * call the lower level functions.
3315      */
3316     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3317 }
3318 
3319 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3320     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3321       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3322       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3323       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3324       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3325     },
3326     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3327       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3328       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3329       .readfn = gt_virt_cnt_read,
3330     },
3331 };
3332 
3333 #endif
3334 
3335 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3336 {
3337     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3338         raw_write(env, ri, value);
3339     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3340         raw_write(env, ri, value & 0xfffff6ff);
3341     } else {
3342         raw_write(env, ri, value & 0xfffff1ff);
3343     }
3344 }
3345 
3346 #ifndef CONFIG_USER_ONLY
3347 /* get_phys_addr() isn't present for user-mode-only targets */
3348 
3349 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3350                                  bool isread)
3351 {
3352     if (ri->opc2 & 4) {
3353         /*
3354          * The ATS12NSO* operations must trap to EL3 or EL2 if executed in
3355          * Secure EL1 (which can only happen if EL3 is AArch64).
3356          * They are simply UNDEF if executed from NS EL1.
3357          * They function normally from EL2 or EL3.
3358          */
3359         if (arm_current_el(env) == 1) {
3360             if (arm_is_secure_below_el3(env)) {
3361                 if (env->cp15.scr_el3 & SCR_EEL2) {
3362                     return CP_ACCESS_TRAP_EL2;
3363                 }
3364                 return CP_ACCESS_TRAP_EL3;
3365             }
3366             return CP_ACCESS_TRAP_UNCATEGORIZED;
3367         }
3368     }
3369     return CP_ACCESS_OK;
3370 }
3371 
3372 #ifdef CONFIG_TCG
3373 static int par_el1_shareability(GetPhysAddrResult *res)
3374 {
3375     /*
3376      * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
3377      * memory -- see pseudocode PAREncodeShareability().
3378      */
3379     if (((res->cacheattrs.attrs & 0xf0) == 0) ||
3380         res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
3381         return 2;
3382     }
3383     return res->cacheattrs.shareability;
3384 }
3385 
3386 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3387                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
3388                              ARMSecuritySpace ss)
3389 {
3390     bool ret;
3391     uint64_t par64;
3392     bool format64 = false;
3393     ARMMMUFaultInfo fi = {};
3394     GetPhysAddrResult res = {};
3395 
3396     /*
3397      * I_MXTJT: Granule protection checks are not performed on the final address
3398      * of a successful translation.
3399      */
3400     ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
3401                                          &res, &fi);
3402 
3403     /*
3404      * ATS operations only do S1 or S1+S2 translations, so we never
3405      * have to deal with the ARMCacheAttrs format for S2 only.
3406      */
3407     assert(!res.cacheattrs.is_s2_format);
3408 
3409     if (ret) {
3410         /*
3411          * Some kinds of translation fault must cause exceptions rather
3412          * than being reported in the PAR.
3413          */
3414         int current_el = arm_current_el(env);
3415         int target_el;
3416         uint32_t syn, fsr, fsc;
3417         bool take_exc = false;
3418 
3419         if (fi.s1ptw && current_el == 1
3420             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3421             /*
3422              * Synchronous stage 2 fault on an access made as part of the
3423              * translation table walk for AT S1E0* or AT S1E1* insn
3424              * executed from NS EL1. If this is a synchronous external abort
3425              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3426              * to EL3. Otherwise the fault is taken as an exception to EL2,
3427              * and HPFAR_EL2 holds the faulting IPA.
3428              */
3429             if (fi.type == ARMFault_SyncExternalOnWalk &&
3430                 (env->cp15.scr_el3 & SCR_EA)) {
3431                 target_el = 3;
3432             } else {
3433                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3434                 if (arm_is_secure_below_el3(env) && fi.s1ns) {
3435                     env->cp15.hpfar_el2 |= HPFAR_NS;
3436                 }
3437                 target_el = 2;
3438             }
3439             take_exc = true;
3440         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3441             /*
3442              * Synchronous external aborts during a translation table walk
3443              * are taken as Data Abort exceptions.
3444              */
3445             if (fi.stage2) {
3446                 if (current_el == 3) {
3447                     target_el = 3;
3448                 } else {
3449                     target_el = 2;
3450                 }
3451             } else {
3452                 target_el = exception_target_el(env);
3453             }
3454             take_exc = true;
3455         }
3456 
3457         if (take_exc) {
3458             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3459             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3460                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3461                 fsr = arm_fi_to_lfsc(&fi);
3462                 fsc = extract32(fsr, 0, 6);
3463             } else {
3464                 fsr = arm_fi_to_sfsc(&fi);
3465                 fsc = 0x3f;
3466             }
3467             /*
3468              * Report exception with ESR indicating a fault due to a
3469              * translation table walk for a cache maintenance instruction.
3470              */
3471             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3472                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3473             env->exception.vaddress = value;
3474             env->exception.fsr = fsr;
3475             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3476         }
3477     }
3478 
3479     if (is_a64(env)) {
3480         format64 = true;
3481     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3482         /*
3483          * ATS1Cxx:
3484          * * TTBCR.EAE determines whether the result is returned using the
3485          *   32-bit or the 64-bit PAR format
3486          * * Instructions executed in Hyp mode always use the 64bit format
3487          *
3488          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3489          * * The Non-secure TTBCR.EAE bit is set to 1
3490          * * The implementation includes EL2, and the value of HCR.VM is 1
3491          *
3492          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3493          *
3494          * ATS1Hx always uses the 64bit format.
3495          */
3496         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3497 
3498         if (arm_feature(env, ARM_FEATURE_EL2)) {
3499             if (mmu_idx == ARMMMUIdx_E10_0 ||
3500                 mmu_idx == ARMMMUIdx_E10_1 ||
3501                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3502                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3503             } else {
3504                 format64 |= arm_current_el(env) == 2;
3505             }
3506         }
3507     }
3508 
3509     if (format64) {
3510         /* Create a 64-bit PAR */
3511         par64 = (1 << 11); /* LPAE bit always set */
3512         if (!ret) {
3513             par64 |= res.f.phys_addr & ~0xfffULL;
3514             if (!res.f.attrs.secure) {
3515                 par64 |= (1 << 9); /* NS */
3516             }
3517             par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
3518             par64 |= par_el1_shareability(&res) << 7; /* SH */
3519         } else {
3520             uint32_t fsr = arm_fi_to_lfsc(&fi);
3521 
3522             par64 |= 1; /* F */
3523             par64 |= (fsr & 0x3f) << 1; /* FS */
3524             if (fi.stage2) {
3525                 par64 |= (1 << 9); /* S */
3526             }
3527             if (fi.s1ptw) {
3528                 par64 |= (1 << 8); /* PTW */
3529             }
3530         }
3531     } else {
3532         /*
3533          * fsr is a DFSR/IFSR value for the short descriptor
3534          * translation table format (with WnR always clear).
3535          * Convert it to a 32-bit PAR.
3536          */
3537         if (!ret) {
3538             /* We do not set any attribute bits in the PAR */
3539             if (res.f.lg_page_size == 24
3540                 && arm_feature(env, ARM_FEATURE_V7)) {
3541                 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
3542             } else {
3543                 par64 = res.f.phys_addr & 0xfffff000;
3544             }
3545             if (!res.f.attrs.secure) {
3546                 par64 |= (1 << 9); /* NS */
3547             }
3548         } else {
3549             uint32_t fsr = arm_fi_to_sfsc(&fi);
3550 
3551             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3552                     ((fsr & 0xf) << 1) | 1;
3553         }
3554     }
3555     return par64;
3556 }
3557 #endif /* CONFIG_TCG */
3558 
3559 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3560 {
3561 #ifdef CONFIG_TCG
3562     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3563     uint64_t par64;
3564     ARMMMUIdx mmu_idx;
3565     int el = arm_current_el(env);
3566     ARMSecuritySpace ss = arm_security_space(env);
3567 
3568     switch (ri->opc2 & 6) {
3569     case 0:
3570         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3571         switch (el) {
3572         case 3:
3573             mmu_idx = ARMMMUIdx_E3;
3574             break;
3575         case 2:
3576             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3577             /* fall through */
3578         case 1:
3579             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3580                 mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3581             } else {
3582                 mmu_idx = ARMMMUIdx_Stage1_E1;
3583             }
3584             break;
3585         default:
3586             g_assert_not_reached();
3587         }
3588         break;
3589     case 2:
3590         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3591         switch (el) {
3592         case 3:
3593             mmu_idx = ARMMMUIdx_E10_0;
3594             break;
3595         case 2:
3596             g_assert(ss != ARMSS_Secure);  /* ARMv8.4-SecEL2 is 64-bit only */
3597             mmu_idx = ARMMMUIdx_Stage1_E0;
3598             break;
3599         case 1:
3600             mmu_idx = ARMMMUIdx_Stage1_E0;
3601             break;
3602         default:
3603             g_assert_not_reached();
3604         }
3605         break;
3606     case 4:
3607         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3608         mmu_idx = ARMMMUIdx_E10_1;
3609         ss = ARMSS_NonSecure;
3610         break;
3611     case 6:
3612         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3613         mmu_idx = ARMMMUIdx_E10_0;
3614         ss = ARMSS_NonSecure;
3615         break;
3616     default:
3617         g_assert_not_reached();
3618     }
3619 
3620     par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
3621 
3622     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3623 #else
3624     /* Handled by hardware accelerator. */
3625     g_assert_not_reached();
3626 #endif /* CONFIG_TCG */
3627 }
3628 
3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3630                         uint64_t value)
3631 {
3632 #ifdef CONFIG_TCG
3633     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3634     uint64_t par64;
3635 
3636     /* There is no SecureEL2 for AArch32. */
3637     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
3638                          ARMSS_NonSecure);
3639 
3640     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3641 #else
3642     /* Handled by hardware accelerator. */
3643     g_assert_not_reached();
3644 #endif /* CONFIG_TCG */
3645 }
3646 
3647 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
3648                                      bool isread)
3649 {
3650     /*
3651      * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
3652      * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
3653      * only happen when executing at EL3 because that combination also causes an
3654      * illegal exception return. We don't need to check FEAT_RME either, because
3655      * scr_write() ensures that the NSE bit is not set otherwise.
3656      */
3657     if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
3658         return CP_ACCESS_TRAP;
3659     }
3660     return CP_ACCESS_OK;
3661 }
3662 
3663 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3664                                      bool isread)
3665 {
3666     if (arm_current_el(env) == 3 &&
3667         !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
3668         return CP_ACCESS_TRAP;
3669     }
3670     return at_e012_access(env, ri, isread);
3671 }
3672 
3673 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3674                         uint64_t value)
3675 {
3676 #ifdef CONFIG_TCG
3677     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3678     ARMMMUIdx mmu_idx;
3679     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
3680     bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
3681 
3682     switch (ri->opc2 & 6) {
3683     case 0:
3684         switch (ri->opc1) {
3685         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3686             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3687                 mmu_idx = regime_e20 ?
3688                           ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
3689             } else {
3690                 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
3691             }
3692             break;
3693         case 4: /* AT S1E2R, AT S1E2W */
3694             mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
3695             break;
3696         case 6: /* AT S1E3R, AT S1E3W */
3697             mmu_idx = ARMMMUIdx_E3;
3698             break;
3699         default:
3700             g_assert_not_reached();
3701         }
3702         break;
3703     case 2: /* AT S1E0R, AT S1E0W */
3704         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
3705         break;
3706     case 4: /* AT S12E1R, AT S12E1W */
3707         mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
3708         break;
3709     case 6: /* AT S12E0R, AT S12E0W */
3710         mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
3711         break;
3712     default:
3713         g_assert_not_reached();
3714     }
3715 
3716     env->cp15.par_el[1] = do_ats_write(env, value, access_type,
3717                                        mmu_idx, arm_security_space(env));
3718 #else
3719     /* Handled by hardware accelerator. */
3720     g_assert_not_reached();
3721 #endif /* CONFIG_TCG */
3722 }
3723 #endif
3724 
3725 /* Return basic MPU access permission bits.  */
3726 static uint32_t simple_mpu_ap_bits(uint32_t val)
3727 {
3728     uint32_t ret;
3729     uint32_t mask;
3730     int i;
3731     ret = 0;
3732     mask = 3;
3733     for (i = 0; i < 16; i += 2) {
3734         ret |= (val >> i) & mask;
3735         mask <<= 2;
3736     }
3737     return ret;
3738 }
3739 
3740 /* Pad basic MPU access permission bits to extended format.  */
3741 static uint32_t extended_mpu_ap_bits(uint32_t val)
3742 {
3743     uint32_t ret;
3744     uint32_t mask;
3745     int i;
3746     ret = 0;
3747     mask = 3;
3748     for (i = 0; i < 16; i += 2) {
3749         ret |= (val & mask) << i;
3750         mask <<= 2;
3751     }
3752     return ret;
3753 }
3754 
3755 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3756                                  uint64_t value)
3757 {
3758     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3759 }
3760 
3761 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3762 {
3763     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3764 }
3765 
3766 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3767                                  uint64_t value)
3768 {
3769     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3770 }
3771 
3772 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3773 {
3774     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3775 }
3776 
3777 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3778 {
3779     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3780 
3781     if (!u32p) {
3782         return 0;
3783     }
3784 
3785     u32p += env->pmsav7.rnr[M_REG_NS];
3786     return *u32p;
3787 }
3788 
3789 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3790                          uint64_t value)
3791 {
3792     ARMCPU *cpu = env_archcpu(env);
3793     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3794 
3795     if (!u32p) {
3796         return;
3797     }
3798 
3799     u32p += env->pmsav7.rnr[M_REG_NS];
3800     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3801     *u32p = value;
3802 }
3803 
3804 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3805                               uint64_t value)
3806 {
3807     ARMCPU *cpu = env_archcpu(env);
3808     uint32_t nrgs = cpu->pmsav7_dregion;
3809 
3810     if (value >= nrgs) {
3811         qemu_log_mask(LOG_GUEST_ERROR,
3812                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3813                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3814         return;
3815     }
3816 
3817     raw_write(env, ri, value);
3818 }
3819 
3820 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3821                           uint64_t value)
3822 {
3823     ARMCPU *cpu = env_archcpu(env);
3824 
3825     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3826     env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3827 }
3828 
3829 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3830 {
3831     return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3832 }
3833 
3834 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3835                           uint64_t value)
3836 {
3837     ARMCPU *cpu = env_archcpu(env);
3838 
3839     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3840     env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
3841 }
3842 
3843 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3844 {
3845     return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
3846 }
3847 
3848 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3849                            uint64_t value)
3850 {
3851     ARMCPU *cpu = env_archcpu(env);
3852 
3853     /*
3854      * Ignore writes that would select not implemented region.
3855      * This is architecturally UNPREDICTABLE.
3856      */
3857     if (value >= cpu->pmsav7_dregion) {
3858         return;
3859     }
3860 
3861     env->pmsav7.rnr[M_REG_NS] = value;
3862 }
3863 
3864 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3865                           uint64_t value)
3866 {
3867     ARMCPU *cpu = env_archcpu(env);
3868 
3869     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3870     env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
3871 }
3872 
3873 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3874 {
3875     return env->pmsav8.hprbar[env->pmsav8.hprselr];
3876 }
3877 
3878 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3879                           uint64_t value)
3880 {
3881     ARMCPU *cpu = env_archcpu(env);
3882 
3883     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3884     env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
3885 }
3886 
3887 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
3888 {
3889     return env->pmsav8.hprlar[env->pmsav8.hprselr];
3890 }
3891 
3892 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3893                           uint64_t value)
3894 {
3895     uint32_t n;
3896     uint32_t bit;
3897     ARMCPU *cpu = env_archcpu(env);
3898 
3899     /* Ignore writes to unimplemented regions */
3900     int rmax = MIN(cpu->pmsav8r_hdregion, 32);
3901     value &= MAKE_64BIT_MASK(0, rmax);
3902 
3903     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3904 
3905     /* Register alias is only valid for first 32 indexes */
3906     for (n = 0; n < rmax; ++n) {
3907         bit = extract32(value, n, 1);
3908         env->pmsav8.hprlar[n] = deposit32(
3909                     env->pmsav8.hprlar[n], 0, 1, bit);
3910     }
3911 }
3912 
3913 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
3914 {
3915     uint32_t n;
3916     uint32_t result = 0x0;
3917     ARMCPU *cpu = env_archcpu(env);
3918 
3919     /* Register alias is only valid for first 32 indexes */
3920     for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
3921         if (env->pmsav8.hprlar[n] & 0x1) {
3922             result |= (0x1 << n);
3923         }
3924     }
3925     return result;
3926 }
3927 
3928 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3929                            uint64_t value)
3930 {
3931     ARMCPU *cpu = env_archcpu(env);
3932 
3933     /*
3934      * Ignore writes that would select not implemented region.
3935      * This is architecturally UNPREDICTABLE.
3936      */
3937     if (value >= cpu->pmsav8r_hdregion) {
3938         return;
3939     }
3940 
3941     env->pmsav8.hprselr = value;
3942 }
3943 
3944 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
3945                           uint64_t value)
3946 {
3947     ARMCPU *cpu = env_archcpu(env);
3948     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3949                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3950 
3951     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3952 
3953     if (ri->opc1 & 4) {
3954         if (index >= cpu->pmsav8r_hdregion) {
3955             return;
3956         }
3957         if (ri->opc2 & 0x1) {
3958             env->pmsav8.hprlar[index] = value;
3959         } else {
3960             env->pmsav8.hprbar[index] = value;
3961         }
3962     } else {
3963         if (index >= cpu->pmsav7_dregion) {
3964             return;
3965         }
3966         if (ri->opc2 & 0x1) {
3967             env->pmsav8.rlar[M_REG_NS][index] = value;
3968         } else {
3969             env->pmsav8.rbar[M_REG_NS][index] = value;
3970         }
3971     }
3972 }
3973 
3974 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
3975 {
3976     ARMCPU *cpu = env_archcpu(env);
3977     uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
3978                     (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
3979 
3980     if (ri->opc1 & 4) {
3981         if (index >= cpu->pmsav8r_hdregion) {
3982             return 0x0;
3983         }
3984         if (ri->opc2 & 0x1) {
3985             return env->pmsav8.hprlar[index];
3986         } else {
3987             return env->pmsav8.hprbar[index];
3988         }
3989     } else {
3990         if (index >= cpu->pmsav7_dregion) {
3991             return 0x0;
3992         }
3993         if (ri->opc2 & 0x1) {
3994             return env->pmsav8.rlar[M_REG_NS][index];
3995         } else {
3996             return env->pmsav8.rbar[M_REG_NS][index];
3997         }
3998     }
3999 }
4000 
4001 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
4002     { .name = "PRBAR",
4003       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
4004       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4005       .accessfn = access_tvm_trvm,
4006       .readfn = prbar_read, .writefn = prbar_write },
4007     { .name = "PRLAR",
4008       .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
4009       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4010       .accessfn = access_tvm_trvm,
4011       .readfn = prlar_read, .writefn = prlar_write },
4012     { .name = "PRSELR", .resetvalue = 0,
4013       .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
4014       .access = PL1_RW, .accessfn = access_tvm_trvm,
4015       .writefn = prselr_write,
4016       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
4017     { .name = "HPRBAR", .resetvalue = 0,
4018       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
4019       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4020       .readfn = hprbar_read, .writefn = hprbar_write },
4021     { .name = "HPRLAR",
4022       .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
4023       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4024       .readfn = hprlar_read, .writefn = hprlar_write },
4025     { .name = "HPRSELR", .resetvalue = 0,
4026       .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
4027       .access = PL2_RW,
4028       .writefn = hprselr_write,
4029       .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
4030     { .name = "HPRENR",
4031       .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
4032       .access = PL2_RW, .type = ARM_CP_NO_RAW,
4033       .readfn = hprenr_read, .writefn = hprenr_write },
4034 };
4035 
4036 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
4037     /*
4038      * Reset for all these registers is handled in arm_cpu_reset(),
4039      * because the PMSAv7 is also used by M-profile CPUs, which do
4040      * not register cpregs but still need the state to be reset.
4041      */
4042     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
4043       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4044       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
4045       .readfn = pmsav7_read, .writefn = pmsav7_write,
4046       .resetfn = arm_cp_reset_ignore },
4047     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
4048       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4049       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
4050       .readfn = pmsav7_read, .writefn = pmsav7_write,
4051       .resetfn = arm_cp_reset_ignore },
4052     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
4053       .access = PL1_RW, .type = ARM_CP_NO_RAW,
4054       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
4055       .readfn = pmsav7_read, .writefn = pmsav7_write,
4056       .resetfn = arm_cp_reset_ignore },
4057     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
4058       .access = PL1_RW,
4059       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
4060       .writefn = pmsav7_rgnr_write,
4061       .resetfn = arm_cp_reset_ignore },
4062 };
4063 
4064 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
4065     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4066       .access = PL1_RW, .type = ARM_CP_ALIAS,
4067       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4068       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
4069     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4070       .access = PL1_RW, .type = ARM_CP_ALIAS,
4071       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4072       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
4073     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
4074       .access = PL1_RW,
4075       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
4076       .resetvalue = 0, },
4077     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
4078       .access = PL1_RW,
4079       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
4080       .resetvalue = 0, },
4081     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4082       .access = PL1_RW,
4083       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
4084     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
4085       .access = PL1_RW,
4086       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
4087     /* Protection region base and size registers */
4088     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
4089       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4090       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
4091     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
4092       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4093       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
4094     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
4095       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4096       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
4097     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
4098       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4099       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
4100     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
4101       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4102       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
4103     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
4104       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4105       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
4106     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
4107       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4108       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
4109     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
4110       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
4111       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
4112 };
4113 
4114 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4115                              uint64_t value)
4116 {
4117     ARMCPU *cpu = env_archcpu(env);
4118 
4119     if (!arm_feature(env, ARM_FEATURE_V8)) {
4120         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
4121             /*
4122              * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
4123              * using Long-descriptor translation table format
4124              */
4125             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
4126         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
4127             /*
4128              * In an implementation that includes the Security Extensions
4129              * TTBCR has additional fields PD0 [4] and PD1 [5] for
4130              * Short-descriptor translation table format.
4131              */
4132             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
4133         } else {
4134             value &= TTBCR_N;
4135         }
4136     }
4137 
4138     if (arm_feature(env, ARM_FEATURE_LPAE)) {
4139         /*
4140          * With LPAE the TTBCR could result in a change of ASID
4141          * via the TTBCR.A1 bit, so do a TLB flush.
4142          */
4143         tlb_flush(CPU(cpu));
4144     }
4145     raw_write(env, ri, value);
4146 }
4147 
4148 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
4149                                uint64_t value)
4150 {
4151     ARMCPU *cpu = env_archcpu(env);
4152 
4153     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
4154     tlb_flush(CPU(cpu));
4155     raw_write(env, ri, value);
4156 }
4157 
4158 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4159                             uint64_t value)
4160 {
4161     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
4162     if (cpreg_field_is_64bit(ri) &&
4163         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4164         ARMCPU *cpu = env_archcpu(env);
4165         tlb_flush(CPU(cpu));
4166     }
4167     raw_write(env, ri, value);
4168 }
4169 
4170 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4171                                     uint64_t value)
4172 {
4173     /*
4174      * If we are running with E2&0 regime, then an ASID is active.
4175      * Flush if that might be changing.  Note we're not checking
4176      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
4177      * holds the active ASID, only checking the field that might.
4178      */
4179     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
4180         (arm_hcr_el2_eff(env) & HCR_E2H)) {
4181         uint16_t mask = ARMMMUIdxBit_E20_2 |
4182                         ARMMMUIdxBit_E20_2_PAN |
4183                         ARMMMUIdxBit_E20_0;
4184         tlb_flush_by_mmuidx(env_cpu(env), mask);
4185     }
4186     raw_write(env, ri, value);
4187 }
4188 
4189 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4190                         uint64_t value)
4191 {
4192     ARMCPU *cpu = env_archcpu(env);
4193     CPUState *cs = CPU(cpu);
4194 
4195     /*
4196      * A change in VMID to the stage2 page table (Stage2) invalidates
4197      * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
4198      */
4199     if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
4200         tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
4201     }
4202     raw_write(env, ri, value);
4203 }
4204 
4205 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4206     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4207       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4208       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4209                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4210     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4211       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4212       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4213                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4214     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4215       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4216       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4217                              offsetof(CPUARMState, cp15.dfar_ns) } },
4218     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4219       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4220       .access = PL1_RW, .accessfn = access_tvm_trvm,
4221       .fgt = FGT_FAR_EL1,
4222       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4223       .resetvalue = 0, },
4224 };
4225 
4226 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4227     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4228       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4229       .access = PL1_RW, .accessfn = access_tvm_trvm,
4230       .fgt = FGT_ESR_EL1,
4231       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4232     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4233       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4234       .access = PL1_RW, .accessfn = access_tvm_trvm,
4235       .fgt = FGT_TTBR0_EL1,
4236       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4237       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4238                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4239     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4240       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4241       .access = PL1_RW, .accessfn = access_tvm_trvm,
4242       .fgt = FGT_TTBR1_EL1,
4243       .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
4244       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4245                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4246     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4247       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4248       .access = PL1_RW, .accessfn = access_tvm_trvm,
4249       .fgt = FGT_TCR_EL1,
4250       .writefn = vmsa_tcr_el12_write,
4251       .raw_writefn = raw_write,
4252       .resetvalue = 0,
4253       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4254     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4255       .access = PL1_RW, .accessfn = access_tvm_trvm,
4256       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4257       .raw_writefn = raw_write,
4258       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4259                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4260 };
4261 
4262 /*
4263  * Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4264  * qemu tlbs nor adjusting cached masks.
4265  */
4266 static const ARMCPRegInfo ttbcr2_reginfo = {
4267     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4268     .access = PL1_RW, .accessfn = access_tvm_trvm,
4269     .type = ARM_CP_ALIAS,
4270     .bank_fieldoffsets = {
4271         offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4272         offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
4273     },
4274 };
4275 
4276 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4277                                 uint64_t value)
4278 {
4279     env->cp15.c15_ticonfig = value & 0xe7;
4280     /* The OS_TYPE bit in this register changes the reported CPUID! */
4281     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4282         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4283 }
4284 
4285 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4286                                 uint64_t value)
4287 {
4288     env->cp15.c15_threadid = value & 0xffff;
4289 }
4290 
4291 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4292                            uint64_t value)
4293 {
4294     /* Wait-for-interrupt (deprecated) */
4295     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4296 }
4297 
4298 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4299                                   uint64_t value)
4300 {
4301     /*
4302      * On OMAP there are registers indicating the max/min index of dcache lines
4303      * containing a dirty line; cache flush operations have to reset these.
4304      */
4305     env->cp15.c15_i_max = 0x000;
4306     env->cp15.c15_i_min = 0xff0;
4307 }
4308 
4309 static const ARMCPRegInfo omap_cp_reginfo[] = {
4310     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4311       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4312       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4313       .resetvalue = 0, },
4314     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4315       .access = PL1_RW, .type = ARM_CP_NOP },
4316     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4317       .access = PL1_RW,
4318       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4319       .writefn = omap_ticonfig_write },
4320     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4321       .access = PL1_RW,
4322       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4323     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4324       .access = PL1_RW, .resetvalue = 0xff0,
4325       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4326     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4327       .access = PL1_RW,
4328       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4329       .writefn = omap_threadid_write },
4330     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4331       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4332       .type = ARM_CP_NO_RAW,
4333       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4334     /*
4335      * TODO: Peripheral port remap register:
4336      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4337      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4338      * when MMU is off.
4339      */
4340     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4341       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4342       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4343       .writefn = omap_cachemaint_write },
4344     { .name = "C9", .cp = 15, .crn = 9,
4345       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4346       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4347 };
4348 
4349 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4350                               uint64_t value)
4351 {
4352     env->cp15.c15_cpar = value & 0x3fff;
4353 }
4354 
4355 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4356     { .name = "XSCALE_CPAR",
4357       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4358       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4359       .writefn = xscale_cpar_write, },
4360     { .name = "XSCALE_AUXCR",
4361       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4362       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4363       .resetvalue = 0, },
4364     /*
4365      * XScale specific cache-lockdown: since we have no cache we NOP these
4366      * and hope the guest does not really rely on cache behaviour.
4367      */
4368     { .name = "XSCALE_LOCK_ICACHE_LINE",
4369       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4370       .access = PL1_W, .type = ARM_CP_NOP },
4371     { .name = "XSCALE_UNLOCK_ICACHE",
4372       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4373       .access = PL1_W, .type = ARM_CP_NOP },
4374     { .name = "XSCALE_DCACHE_LOCK",
4375       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4376       .access = PL1_RW, .type = ARM_CP_NOP },
4377     { .name = "XSCALE_UNLOCK_DCACHE",
4378       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4379       .access = PL1_W, .type = ARM_CP_NOP },
4380 };
4381 
4382 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4383     /*
4384      * RAZ/WI the whole crn=15 space, when we don't have a more specific
4385      * implementation of this implementation-defined space.
4386      * Ideally this should eventually disappear in favour of actually
4387      * implementing the correct behaviour for all cores.
4388      */
4389     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4390       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4391       .access = PL1_RW,
4392       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4393       .resetvalue = 0 },
4394 };
4395 
4396 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4397     /* Cache status: RAZ because we have no cache so it's always clean */
4398     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4399       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4400       .resetvalue = 0 },
4401 };
4402 
4403 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4404     /* We never have a block transfer operation in progress */
4405     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4406       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4407       .resetvalue = 0 },
4408     /* The cache ops themselves: these all NOP for QEMU */
4409     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4410       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4411     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4412       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4413     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4414       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4415     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4416       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4417     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4418       .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4419     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4420       .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
4421 };
4422 
4423 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4424     /*
4425      * The cache test-and-clean instructions always return (1 << 30)
4426      * to indicate that there are no dirty cache lines.
4427      */
4428     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4429       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4430       .resetvalue = (1 << 30) },
4431     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4432       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4433       .resetvalue = (1 << 30) },
4434 };
4435 
4436 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4437     /* Ignore ReadBuffer accesses */
4438     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4439       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4440       .access = PL1_RW, .resetvalue = 0,
4441       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4442 };
4443 
4444 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4445 {
4446     unsigned int cur_el = arm_current_el(env);
4447 
4448     if (arm_is_el2_enabled(env) && cur_el == 1) {
4449         return env->cp15.vpidr_el2;
4450     }
4451     return raw_read(env, ri);
4452 }
4453 
4454 static uint64_t mpidr_read_val(CPUARMState *env)
4455 {
4456     ARMCPU *cpu = env_archcpu(env);
4457     uint64_t mpidr = cpu->mp_affinity;
4458 
4459     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4460         mpidr |= (1U << 31);
4461         /*
4462          * Cores which are uniprocessor (non-coherent)
4463          * but still implement the MP extensions set
4464          * bit 30. (For instance, Cortex-R5).
4465          */
4466         if (cpu->mp_is_up) {
4467             mpidr |= (1u << 30);
4468         }
4469     }
4470     return mpidr;
4471 }
4472 
4473 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4474 {
4475     unsigned int cur_el = arm_current_el(env);
4476 
4477     if (arm_is_el2_enabled(env) && cur_el == 1) {
4478         return env->cp15.vmpidr_el2;
4479     }
4480     return mpidr_read_val(env);
4481 }
4482 
4483 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4484     /* NOP AMAIR0/1 */
4485     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4486       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4487       .access = PL1_RW, .accessfn = access_tvm_trvm,
4488       .fgt = FGT_AMAIR_EL1,
4489       .type = ARM_CP_CONST, .resetvalue = 0 },
4490     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4491     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4492       .access = PL1_RW, .accessfn = access_tvm_trvm,
4493       .type = ARM_CP_CONST, .resetvalue = 0 },
4494     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4495       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4496       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4497                              offsetof(CPUARMState, cp15.par_ns)} },
4498     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4499       .access = PL1_RW, .accessfn = access_tvm_trvm,
4500       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4501       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4502                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4503       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4504     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4505       .access = PL1_RW, .accessfn = access_tvm_trvm,
4506       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4507       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4508                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4509       .writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
4510 };
4511 
4512 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4513 {
4514     return vfp_get_fpcr(env);
4515 }
4516 
4517 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4518                             uint64_t value)
4519 {
4520     vfp_set_fpcr(env, value);
4521 }
4522 
4523 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4524 {
4525     return vfp_get_fpsr(env);
4526 }
4527 
4528 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4529                             uint64_t value)
4530 {
4531     vfp_set_fpsr(env, value);
4532 }
4533 
4534 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4535                                        bool isread)
4536 {
4537     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4538         return CP_ACCESS_TRAP;
4539     }
4540     return CP_ACCESS_OK;
4541 }
4542 
4543 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4544                             uint64_t value)
4545 {
4546     env->daif = value & PSTATE_DAIF;
4547 }
4548 
4549 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4550 {
4551     return env->pstate & PSTATE_PAN;
4552 }
4553 
4554 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4555                            uint64_t value)
4556 {
4557     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4558 }
4559 
4560 static const ARMCPRegInfo pan_reginfo = {
4561     .name = "PAN", .state = ARM_CP_STATE_AA64,
4562     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4563     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4564     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4565 };
4566 
4567 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4568 {
4569     return env->pstate & PSTATE_UAO;
4570 }
4571 
4572 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4573                            uint64_t value)
4574 {
4575     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4576 }
4577 
4578 static const ARMCPRegInfo uao_reginfo = {
4579     .name = "UAO", .state = ARM_CP_STATE_AA64,
4580     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4581     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4582     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4583 };
4584 
4585 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
4586 {
4587     return env->pstate & PSTATE_DIT;
4588 }
4589 
4590 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
4591                            uint64_t value)
4592 {
4593     env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
4594 }
4595 
4596 static const ARMCPRegInfo dit_reginfo = {
4597     .name = "DIT", .state = ARM_CP_STATE_AA64,
4598     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
4599     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4600     .readfn = aa64_dit_read, .writefn = aa64_dit_write
4601 };
4602 
4603 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
4604 {
4605     return env->pstate & PSTATE_SSBS;
4606 }
4607 
4608 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
4609                            uint64_t value)
4610 {
4611     env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
4612 }
4613 
4614 static const ARMCPRegInfo ssbs_reginfo = {
4615     .name = "SSBS", .state = ARM_CP_STATE_AA64,
4616     .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
4617     .type = ARM_CP_NO_RAW, .access = PL0_RW,
4618     .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
4619 };
4620 
4621 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4622                                               const ARMCPRegInfo *ri,
4623                                               bool isread)
4624 {
4625     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4626     switch (arm_current_el(env)) {
4627     case 0:
4628         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4629         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4630             return CP_ACCESS_TRAP;
4631         }
4632         /* fall through */
4633     case 1:
4634         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4635         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4636             return CP_ACCESS_TRAP_EL2;
4637         }
4638         break;
4639     }
4640     return CP_ACCESS_OK;
4641 }
4642 
4643 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
4644 {
4645     /* Cache invalidate/clean to Point of Unification... */
4646     switch (arm_current_el(env)) {
4647     case 0:
4648         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4649         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4650             return CP_ACCESS_TRAP;
4651         }
4652         /* fall through */
4653     case 1:
4654         /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set.  */
4655         if (arm_hcr_el2_eff(env) & hcrflags) {
4656             return CP_ACCESS_TRAP_EL2;
4657         }
4658         break;
4659     }
4660     return CP_ACCESS_OK;
4661 }
4662 
4663 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
4664                                    bool isread)
4665 {
4666     return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
4667 }
4668 
4669 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
4670                                   bool isread)
4671 {
4672     return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
4673 }
4674 
4675 /*
4676  * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4677  * Page D4-1736 (DDI0487A.b)
4678  */
4679 
4680 static int vae1_tlbmask(CPUARMState *env)
4681 {
4682     uint64_t hcr = arm_hcr_el2_eff(env);
4683     uint16_t mask;
4684 
4685     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4686         mask = ARMMMUIdxBit_E20_2 |
4687                ARMMMUIdxBit_E20_2_PAN |
4688                ARMMMUIdxBit_E20_0;
4689     } else {
4690         mask = ARMMMUIdxBit_E10_1 |
4691                ARMMMUIdxBit_E10_1_PAN |
4692                ARMMMUIdxBit_E10_0;
4693     }
4694     return mask;
4695 }
4696 
4697 static int vae2_tlbmask(CPUARMState *env)
4698 {
4699     uint64_t hcr = arm_hcr_el2_eff(env);
4700     uint16_t mask;
4701 
4702     if (hcr & HCR_E2H) {
4703         mask = ARMMMUIdxBit_E20_2 |
4704                ARMMMUIdxBit_E20_2_PAN |
4705                ARMMMUIdxBit_E20_0;
4706     } else {
4707         mask = ARMMMUIdxBit_E2;
4708     }
4709     return mask;
4710 }
4711 
4712 /* Return 56 if TBI is enabled, 64 otherwise. */
4713 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4714                               uint64_t addr)
4715 {
4716     uint64_t tcr = regime_tcr(env, mmu_idx);
4717     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4718     int select = extract64(addr, 55, 1);
4719 
4720     return (tbi >> select) & 1 ? 56 : 64;
4721 }
4722 
4723 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4724 {
4725     uint64_t hcr = arm_hcr_el2_eff(env);
4726     ARMMMUIdx mmu_idx;
4727 
4728     /* Only the regime of the mmu_idx below is significant. */
4729     if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4730         mmu_idx = ARMMMUIdx_E20_0;
4731     } else {
4732         mmu_idx = ARMMMUIdx_E10_0;
4733     }
4734 
4735     return tlbbits_for_regime(env, mmu_idx, addr);
4736 }
4737 
4738 static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
4739 {
4740     uint64_t hcr = arm_hcr_el2_eff(env);
4741     ARMMMUIdx mmu_idx;
4742 
4743     /*
4744      * Only the regime of the mmu_idx below is significant.
4745      * Regime EL2&0 has two ranges with separate TBI configuration, while EL2
4746      * only has one.
4747      */
4748     if (hcr & HCR_E2H) {
4749         mmu_idx = ARMMMUIdx_E20_2;
4750     } else {
4751         mmu_idx = ARMMMUIdx_E2;
4752     }
4753 
4754     return tlbbits_for_regime(env, mmu_idx, addr);
4755 }
4756 
4757 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4758                                       uint64_t value)
4759 {
4760     CPUState *cs = env_cpu(env);
4761     int mask = vae1_tlbmask(env);
4762 
4763     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4764 }
4765 
4766 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4767                                     uint64_t value)
4768 {
4769     CPUState *cs = env_cpu(env);
4770     int mask = vae1_tlbmask(env);
4771 
4772     if (tlb_force_broadcast(env)) {
4773         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4774     } else {
4775         tlb_flush_by_mmuidx(cs, mask);
4776     }
4777 }
4778 
4779 static int e2_tlbmask(CPUARMState *env)
4780 {
4781     return (ARMMMUIdxBit_E20_0 |
4782             ARMMMUIdxBit_E20_2 |
4783             ARMMMUIdxBit_E20_2_PAN |
4784             ARMMMUIdxBit_E2);
4785 }
4786 
4787 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4788                                   uint64_t value)
4789 {
4790     CPUState *cs = env_cpu(env);
4791     int mask = alle1_tlbmask(env);
4792 
4793     tlb_flush_by_mmuidx(cs, mask);
4794 }
4795 
4796 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4797                                   uint64_t value)
4798 {
4799     CPUState *cs = env_cpu(env);
4800     int mask = e2_tlbmask(env);
4801 
4802     tlb_flush_by_mmuidx(cs, mask);
4803 }
4804 
4805 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4806                                   uint64_t value)
4807 {
4808     ARMCPU *cpu = env_archcpu(env);
4809     CPUState *cs = CPU(cpu);
4810 
4811     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
4812 }
4813 
4814 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4815                                     uint64_t value)
4816 {
4817     CPUState *cs = env_cpu(env);
4818     int mask = alle1_tlbmask(env);
4819 
4820     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4821 }
4822 
4823 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4824                                     uint64_t value)
4825 {
4826     CPUState *cs = env_cpu(env);
4827     int mask = e2_tlbmask(env);
4828 
4829     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4830 }
4831 
4832 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4833                                     uint64_t value)
4834 {
4835     CPUState *cs = env_cpu(env);
4836 
4837     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
4838 }
4839 
4840 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4841                                  uint64_t value)
4842 {
4843     /*
4844      * Invalidate by VA, EL2
4845      * Currently handles both VAE2 and VALE2, since we don't support
4846      * flush-last-level-only.
4847      */
4848     CPUState *cs = env_cpu(env);
4849     int mask = vae2_tlbmask(env);
4850     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4851     int bits = vae2_tlbbits(env, pageaddr);
4852 
4853     tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4854 }
4855 
4856 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4857                                  uint64_t value)
4858 {
4859     /*
4860      * Invalidate by VA, EL3
4861      * Currently handles both VAE3 and VALE3, since we don't support
4862      * flush-last-level-only.
4863      */
4864     ARMCPU *cpu = env_archcpu(env);
4865     CPUState *cs = CPU(cpu);
4866     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4867 
4868     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
4869 }
4870 
4871 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4872                                    uint64_t value)
4873 {
4874     CPUState *cs = env_cpu(env);
4875     int mask = vae1_tlbmask(env);
4876     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4877     int bits = vae1_tlbbits(env, pageaddr);
4878 
4879     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4880 }
4881 
4882 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4883                                  uint64_t value)
4884 {
4885     /*
4886      * Invalidate by VA, EL1&0 (AArch64 version).
4887      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4888      * since we don't support flush-for-specific-ASID-only or
4889      * flush-last-level-only.
4890      */
4891     CPUState *cs = env_cpu(env);
4892     int mask = vae1_tlbmask(env);
4893     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4894     int bits = vae1_tlbbits(env, pageaddr);
4895 
4896     if (tlb_force_broadcast(env)) {
4897         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4898     } else {
4899         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4900     }
4901 }
4902 
4903 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4904                                    uint64_t value)
4905 {
4906     CPUState *cs = env_cpu(env);
4907     int mask = vae2_tlbmask(env);
4908     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4909     int bits = vae2_tlbbits(env, pageaddr);
4910 
4911     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4912 }
4913 
4914 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4915                                    uint64_t value)
4916 {
4917     CPUState *cs = env_cpu(env);
4918     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4919     int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
4920 
4921     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4922                                                   ARMMMUIdxBit_E3, bits);
4923 }
4924 
4925 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
4926 {
4927     /*
4928      * The MSB of value is the NS field, which only applies if SEL2
4929      * is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
4930      */
4931     return (value >= 0
4932             && cpu_isar_feature(aa64_sel2, env_archcpu(env))
4933             && arm_is_secure_below_el3(env)
4934             ? ARMMMUIdxBit_Stage2_S
4935             : ARMMMUIdxBit_Stage2);
4936 }
4937 
4938 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4939                                     uint64_t value)
4940 {
4941     CPUState *cs = env_cpu(env);
4942     int mask = ipas2e1_tlbmask(env, value);
4943     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4944 
4945     if (tlb_force_broadcast(env)) {
4946         tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4947     } else {
4948         tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4949     }
4950 }
4951 
4952 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4953                                       uint64_t value)
4954 {
4955     CPUState *cs = env_cpu(env);
4956     int mask = ipas2e1_tlbmask(env, value);
4957     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4958 
4959     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
4960 }
4961 
4962 #ifdef TARGET_AARCH64
4963 typedef struct {
4964     uint64_t base;
4965     uint64_t length;
4966 } TLBIRange;
4967 
4968 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
4969 {
4970     /*
4971      * Note that the TLBI range TG field encoding differs from both
4972      * TG0 and TG1 encodings.
4973      */
4974     switch (tg) {
4975     case 1:
4976         return Gran4K;
4977     case 2:
4978         return Gran16K;
4979     case 3:
4980         return Gran64K;
4981     default:
4982         return GranInvalid;
4983     }
4984 }
4985 
4986 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
4987                                      uint64_t value)
4988 {
4989     unsigned int page_size_granule, page_shift, num, scale, exponent;
4990     /* Extract one bit to represent the va selector in use. */
4991     uint64_t select = sextract64(value, 36, 1);
4992     ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
4993     TLBIRange ret = { };
4994     ARMGranuleSize gran;
4995 
4996     page_size_granule = extract64(value, 46, 2);
4997     gran = tlbi_range_tg_to_gran_size(page_size_granule);
4998 
4999     /* The granule encoded in value must match the granule in use. */
5000     if (gran != param.gran) {
5001         qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
5002                       page_size_granule);
5003         return ret;
5004     }
5005 
5006     page_shift = arm_granule_bits(gran);
5007     num = extract64(value, 39, 5);
5008     scale = extract64(value, 44, 2);
5009     exponent = (5 * scale) + 1;
5010 
5011     ret.length = (num + 1) << (exponent + page_shift);
5012 
5013     if (param.select) {
5014         ret.base = sextract64(value, 0, 37);
5015     } else {
5016         ret.base = extract64(value, 0, 37);
5017     }
5018     if (param.ds) {
5019         /*
5020          * With DS=1, BaseADDR is always shifted 16 so that it is able
5021          * to address all 52 va bits.  The input address is perforce
5022          * aligned on a 64k boundary regardless of translation granule.
5023          */
5024         page_shift = 16;
5025     }
5026     ret.base <<= page_shift;
5027 
5028     return ret;
5029 }
5030 
5031 static void do_rvae_write(CPUARMState *env, uint64_t value,
5032                           int idxmap, bool synced)
5033 {
5034     ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
5035     TLBIRange range;
5036     int bits;
5037 
5038     range = tlbi_aa64_get_range(env, one_idx, value);
5039     bits = tlbbits_for_regime(env, one_idx, range.base);
5040 
5041     if (synced) {
5042         tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
5043                                                   range.base,
5044                                                   range.length,
5045                                                   idxmap,
5046                                                   bits);
5047     } else {
5048         tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
5049                                   range.length, idxmap, bits);
5050     }
5051 }
5052 
5053 static void tlbi_aa64_rvae1_write(CPUARMState *env,
5054                                   const ARMCPRegInfo *ri,
5055                                   uint64_t value)
5056 {
5057     /*
5058      * Invalidate by VA range, EL1&0.
5059      * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
5060      * since we don't support flush-for-specific-ASID-only or
5061      * flush-last-level-only.
5062      */
5063 
5064     do_rvae_write(env, value, vae1_tlbmask(env),
5065                   tlb_force_broadcast(env));
5066 }
5067 
5068 static void tlbi_aa64_rvae1is_write(CPUARMState *env,
5069                                     const ARMCPRegInfo *ri,
5070                                     uint64_t value)
5071 {
5072     /*
5073      * Invalidate by VA range, Inner/Outer Shareable EL1&0.
5074      * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
5075      * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
5076      * flush-for-specific-ASID-only, flush-last-level-only or inner/outer
5077      * shareable specific flushes.
5078      */
5079 
5080     do_rvae_write(env, value, vae1_tlbmask(env), true);
5081 }
5082 
5083 static void tlbi_aa64_rvae2_write(CPUARMState *env,
5084                                   const ARMCPRegInfo *ri,
5085                                   uint64_t value)
5086 {
5087     /*
5088      * Invalidate by VA range, EL2.
5089      * Currently handles all of RVAE2 and RVALE2,
5090      * since we don't support flush-for-specific-ASID-only or
5091      * flush-last-level-only.
5092      */
5093 
5094     do_rvae_write(env, value, vae2_tlbmask(env),
5095                   tlb_force_broadcast(env));
5096 
5097 
5098 }
5099 
5100 static void tlbi_aa64_rvae2is_write(CPUARMState *env,
5101                                     const ARMCPRegInfo *ri,
5102                                     uint64_t value)
5103 {
5104     /*
5105      * Invalidate by VA range, Inner/Outer Shareable, EL2.
5106      * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
5107      * since we don't support flush-for-specific-ASID-only,
5108      * flush-last-level-only or inner/outer shareable specific flushes.
5109      */
5110 
5111     do_rvae_write(env, value, vae2_tlbmask(env), true);
5112 
5113 }
5114 
5115 static void tlbi_aa64_rvae3_write(CPUARMState *env,
5116                                   const ARMCPRegInfo *ri,
5117                                   uint64_t value)
5118 {
5119     /*
5120      * Invalidate by VA range, EL3.
5121      * Currently handles all of RVAE3 and RVALE3,
5122      * since we don't support flush-for-specific-ASID-only or
5123      * flush-last-level-only.
5124      */
5125 
5126     do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
5127 }
5128 
5129 static void tlbi_aa64_rvae3is_write(CPUARMState *env,
5130                                     const ARMCPRegInfo *ri,
5131                                     uint64_t value)
5132 {
5133     /*
5134      * Invalidate by VA range, EL3, Inner/Outer Shareable.
5135      * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
5136      * since we don't support flush-for-specific-ASID-only,
5137      * flush-last-level-only or inner/outer specific flushes.
5138      */
5139 
5140     do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
5141 }
5142 
5143 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
5144                                      uint64_t value)
5145 {
5146     do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
5147                   tlb_force_broadcast(env));
5148 }
5149 
5150 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
5151                                        const ARMCPRegInfo *ri,
5152                                        uint64_t value)
5153 {
5154     do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
5155 }
5156 #endif
5157 
5158 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
5159                                       bool isread)
5160 {
5161     int cur_el = arm_current_el(env);
5162 
5163     if (cur_el < 2) {
5164         uint64_t hcr = arm_hcr_el2_eff(env);
5165 
5166         if (cur_el == 0) {
5167             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5168                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
5169                     return CP_ACCESS_TRAP_EL2;
5170                 }
5171             } else {
5172                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
5173                     return CP_ACCESS_TRAP;
5174                 }
5175                 if (hcr & HCR_TDZ) {
5176                     return CP_ACCESS_TRAP_EL2;
5177                 }
5178             }
5179         } else if (hcr & HCR_TDZ) {
5180             return CP_ACCESS_TRAP_EL2;
5181         }
5182     }
5183     return CP_ACCESS_OK;
5184 }
5185 
5186 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
5187 {
5188     ARMCPU *cpu = env_archcpu(env);
5189     int dzp_bit = 1 << 4;
5190 
5191     /* DZP indicates whether DC ZVA access is allowed */
5192     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
5193         dzp_bit = 0;
5194     }
5195     return cpu->dcz_blocksize | dzp_bit;
5196 }
5197 
5198 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5199                                     bool isread)
5200 {
5201     if (!(env->pstate & PSTATE_SP)) {
5202         /*
5203          * Access to SP_EL0 is undefined if it's being used as
5204          * the stack pointer.
5205          */
5206         return CP_ACCESS_TRAP_UNCATEGORIZED;
5207     }
5208     return CP_ACCESS_OK;
5209 }
5210 
5211 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
5212 {
5213     return env->pstate & PSTATE_SP;
5214 }
5215 
5216 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
5217 {
5218     update_spsel(env, val);
5219 }
5220 
5221 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5222                         uint64_t value)
5223 {
5224     ARMCPU *cpu = env_archcpu(env);
5225 
5226     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
5227         /* M bit is RAZ/WI for PMSA with no MPU implemented */
5228         value &= ~SCTLR_M;
5229     }
5230 
5231     /* ??? Lots of these bits are not implemented.  */
5232 
5233     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
5234         if (ri->opc1 == 6) { /* SCTLR_EL3 */
5235             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
5236         } else {
5237             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
5238                        SCTLR_ATA0 | SCTLR_ATA);
5239         }
5240     }
5241 
5242     if (raw_read(env, ri) == value) {
5243         /*
5244          * Skip the TLB flush if nothing actually changed; Linux likes
5245          * to do a lot of pointless SCTLR writes.
5246          */
5247         return;
5248     }
5249 
5250     raw_write(env, ri, value);
5251 
5252     /* This may enable/disable the MMU, so do a TLB flush.  */
5253     tlb_flush(CPU(cpu));
5254 
5255     if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
5256         /*
5257          * Normally we would always end the TB on an SCTLR write; see the
5258          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
5259          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
5260          * of hflags from the translator, so do it here.
5261          */
5262         arm_rebuild_hflags(env);
5263     }
5264 }
5265 
5266 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
5267                            uint64_t value)
5268 {
5269     /*
5270      * Some MDCR_EL3 bits affect whether PMU counters are running:
5271      * if we are trying to change any of those then we must
5272      * bracket this update with PMU start/finish calls.
5273      */
5274     bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
5275 
5276     if (pmu_op) {
5277         pmu_op_start(env);
5278     }
5279     env->cp15.mdcr_el3 = value;
5280     if (pmu_op) {
5281         pmu_op_finish(env);
5282     }
5283 }
5284 
5285 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
5286                        uint64_t value)
5287 {
5288     /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
5289     mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
5290 }
5291 
5292 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5293                            uint64_t value)
5294 {
5295     /*
5296      * Some MDCR_EL2 bits affect whether PMU counters are running:
5297      * if we are trying to change any of those then we must
5298      * bracket this update with PMU start/finish calls.
5299      */
5300     bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
5301 
5302     if (pmu_op) {
5303         pmu_op_start(env);
5304     }
5305     env->cp15.mdcr_el2 = value;
5306     if (pmu_op) {
5307         pmu_op_finish(env);
5308     }
5309 }
5310 
5311 #ifdef CONFIG_USER_ONLY
5312 /*
5313  * `IC IVAU` is handled to improve compatibility with JITs that dual-map their
5314  * code to get around W^X restrictions, where one region is writable and the
5315  * other is executable.
5316  *
5317  * Since the executable region is never written to we cannot detect code
5318  * changes when running in user mode, and rely on the emulated JIT telling us
5319  * that the code has changed by executing this instruction.
5320  */
5321 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
5322                           uint64_t value)
5323 {
5324     uint64_t icache_line_mask, start_address, end_address;
5325     const ARMCPU *cpu;
5326 
5327     cpu = env_archcpu(env);
5328 
5329     icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
5330     start_address = value & ~icache_line_mask;
5331     end_address = value | icache_line_mask;
5332 
5333     mmap_lock();
5334 
5335     tb_invalidate_phys_range(start_address, end_address);
5336 
5337     mmap_unlock();
5338 }
5339 #endif
5340 
5341 static const ARMCPRegInfo v8_cp_reginfo[] = {
5342     /*
5343      * Minimal set of EL0-visible registers. This will need to be expanded
5344      * significantly for system emulation of AArch64 CPUs.
5345      */
5346     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
5347       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
5348       .access = PL0_RW, .type = ARM_CP_NZCV },
5349     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
5350       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
5351       .type = ARM_CP_NO_RAW,
5352       .access = PL0_RW, .accessfn = aa64_daif_access,
5353       .fieldoffset = offsetof(CPUARMState, daif),
5354       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
5355     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
5356       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
5357       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5358       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
5359     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
5360       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
5361       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
5362       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
5363     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
5364       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
5365       .access = PL0_R, .type = ARM_CP_NO_RAW,
5366       .fgt = FGT_DCZID_EL0,
5367       .readfn = aa64_dczid_read },
5368     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
5369       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
5370       .access = PL0_W, .type = ARM_CP_DC_ZVA,
5371 #ifndef CONFIG_USER_ONLY
5372       /* Avoid overhead of an access check that always passes in user-mode */
5373       .accessfn = aa64_zva_access,
5374       .fgt = FGT_DCZVA,
5375 #endif
5376     },
5377     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
5378       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
5379       .access = PL1_R, .type = ARM_CP_CURRENTEL },
5380     /*
5381      * Instruction cache ops. All of these except `IC IVAU` NOP because we
5382      * don't emulate caches.
5383      */
5384     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
5385       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5386       .access = PL1_W, .type = ARM_CP_NOP,
5387       .fgt = FGT_ICIALLUIS,
5388       .accessfn = access_ticab },
5389     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
5390       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5391       .access = PL1_W, .type = ARM_CP_NOP,
5392       .fgt = FGT_ICIALLU,
5393       .accessfn = access_tocu },
5394     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
5395       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
5396       .access = PL0_W,
5397       .fgt = FGT_ICIVAU,
5398       .accessfn = access_tocu,
5399 #ifdef CONFIG_USER_ONLY
5400       .type = ARM_CP_NO_RAW,
5401       .writefn = ic_ivau_write
5402 #else
5403       .type = ARM_CP_NOP
5404 #endif
5405     },
5406     /* Cache ops: all NOPs since we don't emulate caches */
5407     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
5408       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5409       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
5410       .fgt = FGT_DCIVAC,
5411       .type = ARM_CP_NOP },
5412     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
5413       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5414       .fgt = FGT_DCISW,
5415       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5416     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
5417       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
5418       .access = PL0_W, .type = ARM_CP_NOP,
5419       .fgt = FGT_DCCVAC,
5420       .accessfn = aa64_cacheop_poc_access },
5421     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
5422       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5423       .fgt = FGT_DCCSW,
5424       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5425     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
5426       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
5427       .access = PL0_W, .type = ARM_CP_NOP,
5428       .fgt = FGT_DCCVAU,
5429       .accessfn = access_tocu },
5430     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
5431       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
5432       .access = PL0_W, .type = ARM_CP_NOP,
5433       .fgt = FGT_DCCIVAC,
5434       .accessfn = aa64_cacheop_poc_access },
5435     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
5436       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5437       .fgt = FGT_DCCISW,
5438       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
5439     /* TLBI operations */
5440     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
5441       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
5442       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5443       .fgt = FGT_TLBIVMALLE1IS,
5444       .writefn = tlbi_aa64_vmalle1is_write },
5445     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
5446       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
5447       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5448       .fgt = FGT_TLBIVAE1IS,
5449       .writefn = tlbi_aa64_vae1is_write },
5450     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
5451       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
5452       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5453       .fgt = FGT_TLBIASIDE1IS,
5454       .writefn = tlbi_aa64_vmalle1is_write },
5455     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
5456       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
5457       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5458       .fgt = FGT_TLBIVAAE1IS,
5459       .writefn = tlbi_aa64_vae1is_write },
5460     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
5461       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5462       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5463       .fgt = FGT_TLBIVALE1IS,
5464       .writefn = tlbi_aa64_vae1is_write },
5465     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
5466       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5467       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
5468       .fgt = FGT_TLBIVAALE1IS,
5469       .writefn = tlbi_aa64_vae1is_write },
5470     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
5471       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
5472       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5473       .fgt = FGT_TLBIVMALLE1,
5474       .writefn = tlbi_aa64_vmalle1_write },
5475     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
5476       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
5477       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5478       .fgt = FGT_TLBIVAE1,
5479       .writefn = tlbi_aa64_vae1_write },
5480     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
5481       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
5482       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5483       .fgt = FGT_TLBIASIDE1,
5484       .writefn = tlbi_aa64_vmalle1_write },
5485     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
5486       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
5487       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5488       .fgt = FGT_TLBIVAAE1,
5489       .writefn = tlbi_aa64_vae1_write },
5490     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
5491       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5492       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5493       .fgt = FGT_TLBIVALE1,
5494       .writefn = tlbi_aa64_vae1_write },
5495     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
5496       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5497       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
5498       .fgt = FGT_TLBIVAALE1,
5499       .writefn = tlbi_aa64_vae1_write },
5500     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
5501       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5502       .access = PL2_W, .type = ARM_CP_NO_RAW,
5503       .writefn = tlbi_aa64_ipas2e1is_write },
5504     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
5505       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5506       .access = PL2_W, .type = ARM_CP_NO_RAW,
5507       .writefn = tlbi_aa64_ipas2e1is_write },
5508     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
5509       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5510       .access = PL2_W, .type = ARM_CP_NO_RAW,
5511       .writefn = tlbi_aa64_alle1is_write },
5512     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
5513       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
5514       .access = PL2_W, .type = ARM_CP_NO_RAW,
5515       .writefn = tlbi_aa64_alle1is_write },
5516     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
5517       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5518       .access = PL2_W, .type = ARM_CP_NO_RAW,
5519       .writefn = tlbi_aa64_ipas2e1_write },
5520     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
5521       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5522       .access = PL2_W, .type = ARM_CP_NO_RAW,
5523       .writefn = tlbi_aa64_ipas2e1_write },
5524     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
5525       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5526       .access = PL2_W, .type = ARM_CP_NO_RAW,
5527       .writefn = tlbi_aa64_alle1_write },
5528     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
5529       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
5530       .access = PL2_W, .type = ARM_CP_NO_RAW,
5531       .writefn = tlbi_aa64_alle1is_write },
5532 #ifndef CONFIG_USER_ONLY
5533     /* 64 bit address translation operations */
5534     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
5535       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
5536       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5537       .fgt = FGT_ATS1E1R,
5538       .accessfn = at_e012_access, .writefn = ats_write64 },
5539     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
5540       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
5541       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5542       .fgt = FGT_ATS1E1W,
5543       .accessfn = at_e012_access, .writefn = ats_write64 },
5544     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
5545       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
5546       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5547       .fgt = FGT_ATS1E0R,
5548       .accessfn = at_e012_access, .writefn = ats_write64 },
5549     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
5550       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
5551       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5552       .fgt = FGT_ATS1E0W,
5553       .accessfn = at_e012_access, .writefn = ats_write64 },
5554     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
5555       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
5556       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5557       .accessfn = at_e012_access, .writefn = ats_write64 },
5558     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
5559       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
5560       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5561       .accessfn = at_e012_access, .writefn = ats_write64 },
5562     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
5563       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
5564       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5565       .accessfn = at_e012_access, .writefn = ats_write64 },
5566     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
5567       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
5568       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5569       .accessfn = at_e012_access, .writefn = ats_write64 },
5570     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
5571     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
5572       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
5573       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5574       .writefn = ats_write64 },
5575     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
5576       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
5577       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
5578       .writefn = ats_write64 },
5579     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
5580       .type = ARM_CP_ALIAS,
5581       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
5582       .access = PL1_RW, .resetvalue = 0,
5583       .fgt = FGT_PAR_EL1,
5584       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
5585       .writefn = par_write },
5586 #endif
5587     /* TLB invalidate last level of translation table walk */
5588     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
5589       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5590       .writefn = tlbimva_is_write },
5591     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5592       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
5593       .writefn = tlbimvaa_is_write },
5594     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5595       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5596       .writefn = tlbimva_write },
5597     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5598       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5599       .writefn = tlbimvaa_write },
5600     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5601       .type = ARM_CP_NO_RAW, .access = PL2_W,
5602       .writefn = tlbimva_hyp_write },
5603     { .name = "TLBIMVALHIS",
5604       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5605       .type = ARM_CP_NO_RAW, .access = PL2_W,
5606       .writefn = tlbimva_hyp_is_write },
5607     { .name = "TLBIIPAS2",
5608       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5609       .type = ARM_CP_NO_RAW, .access = PL2_W,
5610       .writefn = tlbiipas2_hyp_write },
5611     { .name = "TLBIIPAS2IS",
5612       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5613       .type = ARM_CP_NO_RAW, .access = PL2_W,
5614       .writefn = tlbiipas2is_hyp_write },
5615     { .name = "TLBIIPAS2L",
5616       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5617       .type = ARM_CP_NO_RAW, .access = PL2_W,
5618       .writefn = tlbiipas2_hyp_write },
5619     { .name = "TLBIIPAS2LIS",
5620       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5621       .type = ARM_CP_NO_RAW, .access = PL2_W,
5622       .writefn = tlbiipas2is_hyp_write },
5623     /* 32 bit cache operations */
5624     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5625       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
5626     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5627       .type = ARM_CP_NOP, .access = PL1_W },
5628     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5629       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5630     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5631       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5632     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5633       .type = ARM_CP_NOP, .access = PL1_W },
5634     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5635       .type = ARM_CP_NOP, .access = PL1_W },
5636     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5637       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5638     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5639       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5640     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5641       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5642     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5643       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5644     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5645       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
5646     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5647       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5648     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5649       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5650     /* MMU Domain access control / MPU write buffer control */
5651     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5652       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5653       .writefn = dacr_write, .raw_writefn = raw_write,
5654       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5655                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5656     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5657       .type = ARM_CP_ALIAS,
5658       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5659       .access = PL1_RW,
5660       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5661     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5662       .type = ARM_CP_ALIAS,
5663       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5664       .access = PL1_RW,
5665       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5666     /*
5667      * We rely on the access checks not allowing the guest to write to the
5668      * state field when SPSel indicates that it's being used as the stack
5669      * pointer.
5670      */
5671     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5672       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5673       .access = PL1_RW, .accessfn = sp_el0_access,
5674       .type = ARM_CP_ALIAS,
5675       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5676     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5677       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5678       .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
5679       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5680     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5681       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5682       .type = ARM_CP_NO_RAW,
5683       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5684     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5685       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5686       .access = PL2_RW,
5687       .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
5688       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
5689     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5690       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5691       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5692       .writefn = dacr_write, .raw_writefn = raw_write,
5693       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5694     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5695       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5696       .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
5697       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5698     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5699       .type = ARM_CP_ALIAS,
5700       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5701       .access = PL2_RW,
5702       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5703     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5704       .type = ARM_CP_ALIAS,
5705       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5706       .access = PL2_RW,
5707       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5708     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5709       .type = ARM_CP_ALIAS,
5710       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5711       .access = PL2_RW,
5712       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5713     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5714       .type = ARM_CP_ALIAS,
5715       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5716       .access = PL2_RW,
5717       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5718     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5719       .type = ARM_CP_IO,
5720       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5721       .resetvalue = 0,
5722       .access = PL3_RW,
5723       .writefn = mdcr_el3_write,
5724       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5725     { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
5726       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5727       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5728       .writefn = sdcr_write,
5729       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5730 };
5731 
5732 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5733 {
5734     ARMCPU *cpu = env_archcpu(env);
5735 
5736     if (arm_feature(env, ARM_FEATURE_V8)) {
5737         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5738     } else {
5739         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5740     }
5741 
5742     if (arm_feature(env, ARM_FEATURE_EL3)) {
5743         valid_mask &= ~HCR_HCD;
5744     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5745         /*
5746          * Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5747          * However, if we're using the SMC PSCI conduit then QEMU is
5748          * effectively acting like EL3 firmware and so the guest at
5749          * EL2 should retain the ability to prevent EL1 from being
5750          * able to make SMC calls into the ersatz firmware, so in
5751          * that case HCR.TSC should be read/write.
5752          */
5753         valid_mask &= ~HCR_TSC;
5754     }
5755 
5756     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5757         if (cpu_isar_feature(aa64_vh, cpu)) {
5758             valid_mask |= HCR_E2H;
5759         }
5760         if (cpu_isar_feature(aa64_ras, cpu)) {
5761             valid_mask |= HCR_TERR | HCR_TEA;
5762         }
5763         if (cpu_isar_feature(aa64_lor, cpu)) {
5764             valid_mask |= HCR_TLOR;
5765         }
5766         if (cpu_isar_feature(aa64_pauth, cpu)) {
5767             valid_mask |= HCR_API | HCR_APK;
5768         }
5769         if (cpu_isar_feature(aa64_mte, cpu)) {
5770             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5771         }
5772         if (cpu_isar_feature(aa64_scxtnum, cpu)) {
5773             valid_mask |= HCR_ENSCXT;
5774         }
5775         if (cpu_isar_feature(aa64_fwb, cpu)) {
5776             valid_mask |= HCR_FWB;
5777         }
5778         if (cpu_isar_feature(aa64_rme, cpu)) {
5779             valid_mask |= HCR_GPF;
5780         }
5781     }
5782 
5783     if (cpu_isar_feature(any_evt, cpu)) {
5784         valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
5785     } else if (cpu_isar_feature(any_half_evt, cpu)) {
5786         valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
5787     }
5788 
5789     /* Clear RES0 bits.  */
5790     value &= valid_mask;
5791 
5792     /*
5793      * These bits change the MMU setup:
5794      * HCR_VM enables stage 2 translation
5795      * HCR_PTW forbids certain page-table setups
5796      * HCR_DC disables stage1 and enables stage2 translation
5797      * HCR_DCT enables tagging on (disabled) stage1 translation
5798      * HCR_FWB changes the interpretation of stage2 descriptor bits
5799      */
5800     if ((env->cp15.hcr_el2 ^ value) &
5801         (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) {
5802         tlb_flush(CPU(cpu));
5803     }
5804     env->cp15.hcr_el2 = value;
5805 
5806     /*
5807      * Updates to VI and VF require us to update the status of
5808      * virtual interrupts, which are the logical OR of these bits
5809      * and the state of the input lines from the GIC. (This requires
5810      * that we have the iothread lock, which is done by marking the
5811      * reginfo structs as ARM_CP_IO.)
5812      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5813      * possible for it to be taken immediately, because VIRQ and
5814      * VFIQ are masked unless running at EL0 or EL1, and HCR
5815      * can only be written at EL2.
5816      */
5817     g_assert(qemu_mutex_iothread_locked());
5818     arm_cpu_update_virq(cpu);
5819     arm_cpu_update_vfiq(cpu);
5820     arm_cpu_update_vserr(cpu);
5821 }
5822 
5823 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5824 {
5825     do_hcr_write(env, value, 0);
5826 }
5827 
5828 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5829                           uint64_t value)
5830 {
5831     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5832     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5833     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5834 }
5835 
5836 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5837                          uint64_t value)
5838 {
5839     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5840     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5841     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5842 }
5843 
5844 /*
5845  * Return the effective value of HCR_EL2, at the given security state.
5846  * Bits that are not included here:
5847  * RW       (read from SCR_EL3.RW as needed)
5848  */
5849 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
5850 {
5851     uint64_t ret = env->cp15.hcr_el2;
5852 
5853     assert(space != ARMSS_Root);
5854 
5855     if (!arm_is_el2_enabled_secstate(env, space)) {
5856         /*
5857          * "This register has no effect if EL2 is not enabled in the
5858          * current Security state".  This is ARMv8.4-SecEL2 speak for
5859          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5860          *
5861          * Prior to that, the language was "In an implementation that
5862          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5863          * as if this field is 0 for all purposes other than a direct
5864          * read or write access of HCR_EL2".  With lots of enumeration
5865          * on a per-field basis.  In current QEMU, this is condition
5866          * is arm_is_secure_below_el3.
5867          *
5868          * Since the v8.4 language applies to the entire register, and
5869          * appears to be backward compatible, use that.
5870          */
5871         return 0;
5872     }
5873 
5874     /*
5875      * For a cpu that supports both aarch64 and aarch32, we can set bits
5876      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5877      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5878      */
5879     if (!arm_el_is_aa64(env, 2)) {
5880         uint64_t aa32_valid;
5881 
5882         /*
5883          * These bits are up-to-date as of ARMv8.6.
5884          * For HCR, it's easiest to list just the 2 bits that are invalid.
5885          * For HCR2, list those that are valid.
5886          */
5887         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5888         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5889                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5890         ret &= aa32_valid;
5891     }
5892 
5893     if (ret & HCR_TGE) {
5894         /* These bits are up-to-date as of ARMv8.6.  */
5895         if (ret & HCR_E2H) {
5896             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5897                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5898                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5899                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5900                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5901                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5902         } else {
5903             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5904         }
5905         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5906                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5907                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5908                  HCR_TLOR);
5909     }
5910 
5911     return ret;
5912 }
5913 
5914 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5915 {
5916     if (arm_feature(env, ARM_FEATURE_M)) {
5917         return 0;
5918     }
5919     return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
5920 }
5921 
5922 /*
5923  * Corresponds to ARM pseudocode function ELIsInHost().
5924  */
5925 bool el_is_in_host(CPUARMState *env, int el)
5926 {
5927     uint64_t mask;
5928 
5929     /*
5930      * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
5931      * Perform the simplest bit tests first, and validate EL2 afterward.
5932      */
5933     if (el & 1) {
5934         return false; /* EL1 or EL3 */
5935     }
5936 
5937     /*
5938      * Note that hcr_write() checks isar_feature_aa64_vh(),
5939      * aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
5940      */
5941     mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
5942     if ((env->cp15.hcr_el2 & mask) != mask) {
5943         return false;
5944     }
5945 
5946     /* TGE and/or E2H set: double check those bits are currently legal. */
5947     return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
5948 }
5949 
5950 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
5951                        uint64_t value)
5952 {
5953     uint64_t valid_mask = 0;
5954 
5955     /* FEAT_MOPS adds MSCEn and MCE2 */
5956     if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5957         valid_mask |= HCRX_MSCEN | HCRX_MCE2;
5958     }
5959 
5960     /* Clear RES0 bits.  */
5961     env->cp15.hcrx_el2 = value & valid_mask;
5962 }
5963 
5964 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
5965                                   bool isread)
5966 {
5967     if (arm_current_el(env) < 3
5968         && arm_feature(env, ARM_FEATURE_EL3)
5969         && !(env->cp15.scr_el3 & SCR_HXEN)) {
5970         return CP_ACCESS_TRAP_EL3;
5971     }
5972     return CP_ACCESS_OK;
5973 }
5974 
5975 static const ARMCPRegInfo hcrx_el2_reginfo = {
5976     .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
5977     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
5978     .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
5979     .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
5980 };
5981 
5982 /* Return the effective value of HCRX_EL2.  */
5983 uint64_t arm_hcrx_el2_eff(CPUARMState *env)
5984 {
5985     /*
5986      * The bits in this register behave as 0 for all purposes other than
5987      * direct reads of the register if SCR_EL3.HXEn is 0.
5988      * If EL2 is not enabled in the current security state, then the
5989      * bit may behave as if 0, or as if 1, depending on the bit.
5990      * For the moment, we treat the EL2-disabled case as taking
5991      * priority over the HXEn-disabled case. This is true for the only
5992      * bit for a feature which we implement where the answer is different
5993      * for the two cases (MSCEn for FEAT_MOPS).
5994      * This may need to be revisited for future bits.
5995      */
5996     if (!arm_is_el2_enabled(env)) {
5997         uint64_t hcrx = 0;
5998         if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
5999             /* MSCEn behaves as 1 if EL2 is not enabled */
6000             hcrx |= HCRX_MSCEN;
6001         }
6002         return hcrx;
6003     }
6004     if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
6005         return 0;
6006     }
6007     return env->cp15.hcrx_el2;
6008 }
6009 
6010 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
6011                            uint64_t value)
6012 {
6013     /*
6014      * For A-profile AArch32 EL3, if NSACR.CP10
6015      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6016      */
6017     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6018         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6019         uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6020         value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
6021     }
6022     env->cp15.cptr_el[2] = value;
6023 }
6024 
6025 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
6026 {
6027     /*
6028      * For A-profile AArch32 EL3, if NSACR.CP10
6029      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
6030      */
6031     uint64_t value = env->cp15.cptr_el[2];
6032 
6033     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
6034         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
6035         value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
6036     }
6037     return value;
6038 }
6039 
6040 static const ARMCPRegInfo el2_cp_reginfo[] = {
6041     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
6042       .type = ARM_CP_IO,
6043       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6044       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6045       .writefn = hcr_write, .raw_writefn = raw_write },
6046     { .name = "HCR", .state = ARM_CP_STATE_AA32,
6047       .type = ARM_CP_ALIAS | ARM_CP_IO,
6048       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
6049       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
6050       .writefn = hcr_writelow },
6051     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
6052       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
6053       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
6054     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
6055       .type = ARM_CP_ALIAS,
6056       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
6057       .access = PL2_RW,
6058       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
6059     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
6060       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
6061       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
6062     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
6063       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
6064       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
6065     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
6066       .type = ARM_CP_ALIAS,
6067       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
6068       .access = PL2_RW,
6069       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
6070     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
6071       .type = ARM_CP_ALIAS,
6072       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
6073       .access = PL2_RW,
6074       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
6075     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
6076       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
6077       .access = PL2_RW, .writefn = vbar_write,
6078       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
6079       .resetvalue = 0 },
6080     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
6081       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
6082       .access = PL3_RW, .type = ARM_CP_ALIAS,
6083       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
6084     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
6085       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
6086       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
6087       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
6088       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
6089     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
6090       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
6091       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
6092       .resetvalue = 0 },
6093     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
6094       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
6095       .access = PL2_RW, .type = ARM_CP_ALIAS,
6096       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
6097     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
6098       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
6099       .access = PL2_RW, .type = ARM_CP_CONST,
6100       .resetvalue = 0 },
6101     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
6102     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
6103       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
6104       .access = PL2_RW, .type = ARM_CP_CONST,
6105       .resetvalue = 0 },
6106     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
6107       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
6108       .access = PL2_RW, .type = ARM_CP_CONST,
6109       .resetvalue = 0 },
6110     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
6111       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
6112       .access = PL2_RW, .type = ARM_CP_CONST,
6113       .resetvalue = 0 },
6114     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
6115       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
6116       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
6117       .raw_writefn = raw_write,
6118       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
6119     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
6120       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6121       .type = ARM_CP_ALIAS,
6122       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6123       .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
6124     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
6125       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
6126       .access = PL2_RW,
6127       /* no .writefn needed as this can't cause an ASID change */
6128       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
6129     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
6130       .cp = 15, .opc1 = 6, .crm = 2,
6131       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6132       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6133       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
6134       .writefn = vttbr_write, .raw_writefn = raw_write },
6135     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
6136       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
6137       .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
6138       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
6139     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
6140       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
6141       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
6142       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
6143     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
6144       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
6145       .access = PL2_RW, .resetvalue = 0,
6146       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
6147     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
6148       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
6149       .access = PL2_RW, .resetvalue = 0,
6150       .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
6151       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6152     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
6153       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
6154       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
6155     { .name = "TLBIALLNSNH",
6156       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
6157       .type = ARM_CP_NO_RAW, .access = PL2_W,
6158       .writefn = tlbiall_nsnh_write },
6159     { .name = "TLBIALLNSNHIS",
6160       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
6161       .type = ARM_CP_NO_RAW, .access = PL2_W,
6162       .writefn = tlbiall_nsnh_is_write },
6163     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6164       .type = ARM_CP_NO_RAW, .access = PL2_W,
6165       .writefn = tlbiall_hyp_write },
6166     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6167       .type = ARM_CP_NO_RAW, .access = PL2_W,
6168       .writefn = tlbiall_hyp_is_write },
6169     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6170       .type = ARM_CP_NO_RAW, .access = PL2_W,
6171       .writefn = tlbimva_hyp_write },
6172     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6173       .type = ARM_CP_NO_RAW, .access = PL2_W,
6174       .writefn = tlbimva_hyp_is_write },
6175     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
6176       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
6177       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6178       .writefn = tlbi_aa64_alle2_write },
6179     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
6180       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
6181       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6182       .writefn = tlbi_aa64_vae2_write },
6183     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
6184       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
6185       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6186       .writefn = tlbi_aa64_vae2_write },
6187     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
6188       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
6189       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6190       .writefn = tlbi_aa64_alle2is_write },
6191     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
6192       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
6193       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6194       .writefn = tlbi_aa64_vae2is_write },
6195     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
6196       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
6197       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
6198       .writefn = tlbi_aa64_vae2is_write },
6199 #ifndef CONFIG_USER_ONLY
6200     /*
6201      * Unlike the other EL2-related AT operations, these must
6202      * UNDEF from EL3 if EL2 is not implemented, which is why we
6203      * define them here rather than with the rest of the AT ops.
6204      */
6205     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
6206       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6207       .access = PL2_W, .accessfn = at_s1e2_access,
6208       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6209       .writefn = ats_write64 },
6210     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
6211       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6212       .access = PL2_W, .accessfn = at_s1e2_access,
6213       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
6214       .writefn = ats_write64 },
6215     /*
6216      * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
6217      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
6218      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
6219      * to behave as if SCR.NS was 1.
6220      */
6221     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
6222       .access = PL2_W,
6223       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6224     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
6225       .access = PL2_W,
6226       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
6227     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
6228       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
6229       /*
6230        * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
6231        * reset values as IMPDEF. We choose to reset to 3 to comply with
6232        * both ARMv7 and ARMv8.
6233        */
6234       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
6235       .writefn = gt_cnthctl_write, .raw_writefn = raw_write,
6236       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
6237     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
6238       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
6239       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
6240       .writefn = gt_cntvoff_write,
6241       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6242     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
6243       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
6244       .writefn = gt_cntvoff_write,
6245       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
6246     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
6247       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
6248       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6249       .type = ARM_CP_IO, .access = PL2_RW,
6250       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6251     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
6252       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
6253       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
6254       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
6255     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
6256       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
6257       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
6258       .resetfn = gt_hyp_timer_reset,
6259       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
6260     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
6261       .type = ARM_CP_IO,
6262       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
6263       .access = PL2_RW,
6264       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
6265       .resetvalue = 0,
6266       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
6267 #endif
6268     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
6269       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6270       .access = PL2_RW, .accessfn = access_el3_aa32ns,
6271       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6272     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
6273       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
6274       .access = PL2_RW,
6275       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
6276     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
6277       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
6278       .access = PL2_RW,
6279       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
6280 };
6281 
6282 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
6283     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
6284       .type = ARM_CP_ALIAS | ARM_CP_IO,
6285       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
6286       .access = PL2_RW,
6287       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
6288       .writefn = hcr_writehigh },
6289 };
6290 
6291 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
6292                                   bool isread)
6293 {
6294     if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
6295         return CP_ACCESS_OK;
6296     }
6297     return CP_ACCESS_TRAP_UNCATEGORIZED;
6298 }
6299 
6300 static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
6301     { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
6302       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
6303       .access = PL2_RW, .accessfn = sel2_access,
6304       .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
6305     { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
6306       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
6307       .access = PL2_RW, .accessfn = sel2_access,
6308       .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
6309 };
6310 
6311 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
6312                                    bool isread)
6313 {
6314     /*
6315      * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
6316      * At Secure EL1 it traps to EL3 or EL2.
6317      */
6318     if (arm_current_el(env) == 3) {
6319         return CP_ACCESS_OK;
6320     }
6321     if (arm_is_secure_below_el3(env)) {
6322         if (env->cp15.scr_el3 & SCR_EEL2) {
6323             return CP_ACCESS_TRAP_EL2;
6324         }
6325         return CP_ACCESS_TRAP_EL3;
6326     }
6327     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
6328     if (isread) {
6329         return CP_ACCESS_OK;
6330     }
6331     return CP_ACCESS_TRAP_UNCATEGORIZED;
6332 }
6333 
6334 static const ARMCPRegInfo el3_cp_reginfo[] = {
6335     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
6336       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
6337       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
6338       .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
6339     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
6340       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
6341       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6342       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
6343       .writefn = scr_write, .raw_writefn = raw_write },
6344     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
6345       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
6346       .access = PL3_RW, .resetvalue = 0,
6347       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
6348     { .name = "SDER",
6349       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
6350       .access = PL3_RW, .resetvalue = 0,
6351       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
6352     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
6353       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
6354       .writefn = vbar_write, .resetvalue = 0,
6355       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
6356     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
6357       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
6358       .access = PL3_RW, .resetvalue = 0,
6359       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
6360     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
6361       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
6362       .access = PL3_RW,
6363       /* no .writefn needed as this can't cause an ASID change */
6364       .resetvalue = 0,
6365       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
6366     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
6367       .type = ARM_CP_ALIAS,
6368       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
6369       .access = PL3_RW,
6370       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
6371     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
6372       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
6373       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
6374     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
6375       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
6376       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
6377     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
6378       .type = ARM_CP_ALIAS,
6379       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
6380       .access = PL3_RW,
6381       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
6382     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
6383       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
6384       .access = PL3_RW, .writefn = vbar_write,
6385       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
6386       .resetvalue = 0 },
6387     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
6388       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
6389       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
6390       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
6391     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
6392       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
6393       .access = PL3_RW, .resetvalue = 0,
6394       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
6395     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
6396       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
6397       .access = PL3_RW, .type = ARM_CP_CONST,
6398       .resetvalue = 0 },
6399     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
6400       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
6401       .access = PL3_RW, .type = ARM_CP_CONST,
6402       .resetvalue = 0 },
6403     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
6404       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
6405       .access = PL3_RW, .type = ARM_CP_CONST,
6406       .resetvalue = 0 },
6407     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
6408       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
6409       .access = PL3_W, .type = ARM_CP_NO_RAW,
6410       .writefn = tlbi_aa64_alle3is_write },
6411     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
6412       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
6413       .access = PL3_W, .type = ARM_CP_NO_RAW,
6414       .writefn = tlbi_aa64_vae3is_write },
6415     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
6416       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
6417       .access = PL3_W, .type = ARM_CP_NO_RAW,
6418       .writefn = tlbi_aa64_vae3is_write },
6419     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
6420       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
6421       .access = PL3_W, .type = ARM_CP_NO_RAW,
6422       .writefn = tlbi_aa64_alle3_write },
6423     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
6424       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
6425       .access = PL3_W, .type = ARM_CP_NO_RAW,
6426       .writefn = tlbi_aa64_vae3_write },
6427     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
6428       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
6429       .access = PL3_W, .type = ARM_CP_NO_RAW,
6430       .writefn = tlbi_aa64_vae3_write },
6431 };
6432 
6433 #ifndef CONFIG_USER_ONLY
6434 /* Test if system register redirection is to occur in the current state.  */
6435 static bool redirect_for_e2h(CPUARMState *env)
6436 {
6437     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
6438 }
6439 
6440 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
6441 {
6442     CPReadFn *readfn;
6443 
6444     if (redirect_for_e2h(env)) {
6445         /* Switch to the saved EL2 version of the register.  */
6446         ri = ri->opaque;
6447         readfn = ri->readfn;
6448     } else {
6449         readfn = ri->orig_readfn;
6450     }
6451     if (readfn == NULL) {
6452         readfn = raw_read;
6453     }
6454     return readfn(env, ri);
6455 }
6456 
6457 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
6458                           uint64_t value)
6459 {
6460     CPWriteFn *writefn;
6461 
6462     if (redirect_for_e2h(env)) {
6463         /* Switch to the saved EL2 version of the register.  */
6464         ri = ri->opaque;
6465         writefn = ri->writefn;
6466     } else {
6467         writefn = ri->orig_writefn;
6468     }
6469     if (writefn == NULL) {
6470         writefn = raw_write;
6471     }
6472     writefn(env, ri, value);
6473 }
6474 
6475 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
6476 {
6477     struct E2HAlias {
6478         uint32_t src_key, dst_key, new_key;
6479         const char *src_name, *dst_name, *new_name;
6480         bool (*feature)(const ARMISARegisters *id);
6481     };
6482 
6483 #define K(op0, op1, crn, crm, op2) \
6484     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
6485 
6486     static const struct E2HAlias aliases[] = {
6487         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
6488           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
6489         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
6490           "CPACR", "CPTR_EL2", "CPACR_EL12" },
6491         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
6492           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
6493         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
6494           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
6495         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
6496           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
6497         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
6498           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
6499         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
6500           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
6501         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
6502           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
6503         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
6504           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
6505         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
6506           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
6507         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
6508           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
6509         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
6510           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
6511         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
6512           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
6513         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
6514           "VBAR", "VBAR_EL2", "VBAR_EL12" },
6515         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
6516           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
6517         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
6518           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
6519 
6520         /*
6521          * Note that redirection of ZCR is mentioned in the description
6522          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
6523          * not in the summary table.
6524          */
6525         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
6526           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
6527         { K(3, 0,  1, 2, 6), K(3, 4,  1, 2, 6), K(3, 5, 1, 2, 6),
6528           "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
6529 
6530         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
6531           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
6532 
6533         { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
6534           "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
6535           isar_feature_aa64_scxtnum },
6536 
6537         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
6538         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
6539     };
6540 #undef K
6541 
6542     size_t i;
6543 
6544     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
6545         const struct E2HAlias *a = &aliases[i];
6546         ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
6547         bool ok;
6548 
6549         if (a->feature && !a->feature(&cpu->isar)) {
6550             continue;
6551         }
6552 
6553         src_reg = g_hash_table_lookup(cpu->cp_regs,
6554                                       (gpointer)(uintptr_t)a->src_key);
6555         dst_reg = g_hash_table_lookup(cpu->cp_regs,
6556                                       (gpointer)(uintptr_t)a->dst_key);
6557         g_assert(src_reg != NULL);
6558         g_assert(dst_reg != NULL);
6559 
6560         /* Cross-compare names to detect typos in the keys.  */
6561         g_assert(strcmp(src_reg->name, a->src_name) == 0);
6562         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
6563 
6564         /* None of the core system registers use opaque; we will.  */
6565         g_assert(src_reg->opaque == NULL);
6566 
6567         /* Create alias before redirection so we dup the right data. */
6568         new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
6569 
6570         new_reg->name = a->new_name;
6571         new_reg->type |= ARM_CP_ALIAS;
6572         /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
6573         new_reg->access &= PL2_RW | PL3_RW;
6574 
6575         ok = g_hash_table_insert(cpu->cp_regs,
6576                                  (gpointer)(uintptr_t)a->new_key, new_reg);
6577         g_assert(ok);
6578 
6579         src_reg->opaque = dst_reg;
6580         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
6581         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
6582         if (!src_reg->raw_readfn) {
6583             src_reg->raw_readfn = raw_read;
6584         }
6585         if (!src_reg->raw_writefn) {
6586             src_reg->raw_writefn = raw_write;
6587         }
6588         src_reg->readfn = el2_e2h_read;
6589         src_reg->writefn = el2_e2h_write;
6590     }
6591 }
6592 #endif
6593 
6594 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
6595                                      bool isread)
6596 {
6597     int cur_el = arm_current_el(env);
6598 
6599     if (cur_el < 2) {
6600         uint64_t hcr = arm_hcr_el2_eff(env);
6601 
6602         if (cur_el == 0) {
6603             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
6604                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
6605                     return CP_ACCESS_TRAP_EL2;
6606                 }
6607             } else {
6608                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
6609                     return CP_ACCESS_TRAP;
6610                 }
6611                 if (hcr & HCR_TID2) {
6612                     return CP_ACCESS_TRAP_EL2;
6613                 }
6614             }
6615         } else if (hcr & HCR_TID2) {
6616             return CP_ACCESS_TRAP_EL2;
6617         }
6618     }
6619 
6620     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6621         return CP_ACCESS_TRAP_EL2;
6622     }
6623 
6624     return CP_ACCESS_OK;
6625 }
6626 
6627 /*
6628  * Check for traps to RAS registers, which are controlled
6629  * by HCR_EL2.TERR and SCR_EL3.TERR.
6630  */
6631 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
6632                                   bool isread)
6633 {
6634     int el = arm_current_el(env);
6635 
6636     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
6637         return CP_ACCESS_TRAP_EL2;
6638     }
6639     if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
6640         return CP_ACCESS_TRAP_EL3;
6641     }
6642     return CP_ACCESS_OK;
6643 }
6644 
6645 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
6646 {
6647     int el = arm_current_el(env);
6648 
6649     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6650         return env->cp15.vdisr_el2;
6651     }
6652     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6653         return 0; /* RAZ/WI */
6654     }
6655     return env->cp15.disr_el1;
6656 }
6657 
6658 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6659 {
6660     int el = arm_current_el(env);
6661 
6662     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
6663         env->cp15.vdisr_el2 = val;
6664         return;
6665     }
6666     if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
6667         return; /* RAZ/WI */
6668     }
6669     env->cp15.disr_el1 = val;
6670 }
6671 
6672 /*
6673  * Minimal RAS implementation with no Error Records.
6674  * Which means that all of the Error Record registers:
6675  *   ERXADDR_EL1
6676  *   ERXCTLR_EL1
6677  *   ERXFR_EL1
6678  *   ERXMISC0_EL1
6679  *   ERXMISC1_EL1
6680  *   ERXMISC2_EL1
6681  *   ERXMISC3_EL1
6682  *   ERXPFGCDN_EL1  (RASv1p1)
6683  *   ERXPFGCTL_EL1  (RASv1p1)
6684  *   ERXPFGF_EL1    (RASv1p1)
6685  *   ERXSTATUS_EL1
6686  * and
6687  *   ERRSELR_EL1
6688  * may generate UNDEFINED, which is the effect we get by not
6689  * listing them at all.
6690  *
6691  * These registers have fine-grained trap bits, but UNDEF-to-EL1
6692  * is higher priority than FGT-to-EL2 so we do not need to list them
6693  * in order to check for an FGT.
6694  */
6695 static const ARMCPRegInfo minimal_ras_reginfo[] = {
6696     { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
6697       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
6698       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
6699       .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
6700     { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
6701       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
6702       .access = PL1_R, .accessfn = access_terr,
6703       .fgt = FGT_ERRIDR_EL1,
6704       .type = ARM_CP_CONST, .resetvalue = 0 },
6705     { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
6706       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
6707       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
6708     { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
6709       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
6710       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
6711 };
6712 
6713 /*
6714  * Return the exception level to which exceptions should be taken
6715  * via SVEAccessTrap.  This excludes the check for whether the exception
6716  * should be routed through AArch64.AdvSIMDFPAccessTrap.  That can easily
6717  * be found by testing 0 < fp_exception_el < sve_exception_el.
6718  *
6719  * C.f. the ARM pseudocode function CheckSVEEnabled.  Note that the
6720  * pseudocode does *not* separate out the FP trap checks, but has them
6721  * all in one function.
6722  */
6723 int sve_exception_el(CPUARMState *env, int el)
6724 {
6725 #ifndef CONFIG_USER_ONLY
6726     if (el <= 1 && !el_is_in_host(env, el)) {
6727         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
6728         case 1:
6729             if (el != 0) {
6730                 break;
6731             }
6732             /* fall through */
6733         case 0:
6734         case 2:
6735             return 1;
6736         }
6737     }
6738 
6739     if (el <= 2 && arm_is_el2_enabled(env)) {
6740         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6741         if (env->cp15.hcr_el2 & HCR_E2H) {
6742             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
6743             case 1:
6744                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6745                     break;
6746                 }
6747                 /* fall through */
6748             case 0:
6749             case 2:
6750                 return 2;
6751             }
6752         } else {
6753             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
6754                 return 2;
6755             }
6756         }
6757     }
6758 
6759     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6760     if (arm_feature(env, ARM_FEATURE_EL3)
6761         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
6762         return 3;
6763     }
6764 #endif
6765     return 0;
6766 }
6767 
6768 /*
6769  * Return the exception level to which exceptions should be taken for SME.
6770  * C.f. the ARM pseudocode function CheckSMEAccess.
6771  */
6772 int sme_exception_el(CPUARMState *env, int el)
6773 {
6774 #ifndef CONFIG_USER_ONLY
6775     if (el <= 1 && !el_is_in_host(env, el)) {
6776         switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
6777         case 1:
6778             if (el != 0) {
6779                 break;
6780             }
6781             /* fall through */
6782         case 0:
6783         case 2:
6784             return 1;
6785         }
6786     }
6787 
6788     if (el <= 2 && arm_is_el2_enabled(env)) {
6789         /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
6790         if (env->cp15.hcr_el2 & HCR_E2H) {
6791             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
6792             case 1:
6793                 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
6794                     break;
6795                 }
6796                 /* fall through */
6797             case 0:
6798             case 2:
6799                 return 2;
6800             }
6801         } else {
6802             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
6803                 return 2;
6804             }
6805         }
6806     }
6807 
6808     /* CPTR_EL3.  Since ESM is negative we must check for EL3.  */
6809     if (arm_feature(env, ARM_FEATURE_EL3)
6810         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6811         return 3;
6812     }
6813 #endif
6814     return 0;
6815 }
6816 
6817 /*
6818  * Given that SVE is enabled, return the vector length for EL.
6819  */
6820 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
6821 {
6822     ARMCPU *cpu = env_archcpu(env);
6823     uint64_t *cr = env->vfp.zcr_el;
6824     uint32_t map = cpu->sve_vq.map;
6825     uint32_t len = ARM_MAX_VQ - 1;
6826 
6827     if (sm) {
6828         cr = env->vfp.smcr_el;
6829         map = cpu->sme_vq.map;
6830     }
6831 
6832     if (el <= 1 && !el_is_in_host(env, el)) {
6833         len = MIN(len, 0xf & (uint32_t)cr[1]);
6834     }
6835     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6836         len = MIN(len, 0xf & (uint32_t)cr[2]);
6837     }
6838     if (arm_feature(env, ARM_FEATURE_EL3)) {
6839         len = MIN(len, 0xf & (uint32_t)cr[3]);
6840     }
6841 
6842     map &= MAKE_64BIT_MASK(0, len + 1);
6843     if (map != 0) {
6844         return 31 - clz32(map);
6845     }
6846 
6847     /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
6848     assert(sm);
6849     return ctz32(cpu->sme_vq.map);
6850 }
6851 
6852 uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
6853 {
6854     return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
6855 }
6856 
6857 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6858                       uint64_t value)
6859 {
6860     int cur_el = arm_current_el(env);
6861     int old_len = sve_vqm1_for_el(env, cur_el);
6862     int new_len;
6863 
6864     /* Bits other than [3:0] are RAZ/WI.  */
6865     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6866     raw_write(env, ri, value & 0xf);
6867 
6868     /*
6869      * Because we arrived here, we know both FP and SVE are enabled;
6870      * otherwise we would have trapped access to the ZCR_ELn register.
6871      */
6872     new_len = sve_vqm1_for_el(env, cur_el);
6873     if (new_len < old_len) {
6874         aarch64_sve_narrow_vq(env, new_len + 1);
6875     }
6876 }
6877 
6878 static const ARMCPRegInfo zcr_reginfo[] = {
6879     { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6880       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6881       .access = PL1_RW, .type = ARM_CP_SVE,
6882       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6883       .writefn = zcr_write, .raw_writefn = raw_write },
6884     { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6885       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6886       .access = PL2_RW, .type = ARM_CP_SVE,
6887       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6888       .writefn = zcr_write, .raw_writefn = raw_write },
6889     { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6890       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6891       .access = PL3_RW, .type = ARM_CP_SVE,
6892       .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6893       .writefn = zcr_write, .raw_writefn = raw_write },
6894 };
6895 
6896 #ifdef TARGET_AARCH64
6897 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
6898                                     bool isread)
6899 {
6900     int el = arm_current_el(env);
6901 
6902     if (el == 0) {
6903         uint64_t sctlr = arm_sctlr(env, el);
6904         if (!(sctlr & SCTLR_EnTP2)) {
6905             return CP_ACCESS_TRAP;
6906         }
6907     }
6908     /* TODO: FEAT_FGT */
6909     if (el < 3
6910         && arm_feature(env, ARM_FEATURE_EL3)
6911         && !(env->cp15.scr_el3 & SCR_ENTP2)) {
6912         return CP_ACCESS_TRAP_EL3;
6913     }
6914     return CP_ACCESS_OK;
6915 }
6916 
6917 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri,
6918                                  bool isread)
6919 {
6920     /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */
6921     if (arm_current_el(env) < 3
6922         && arm_feature(env, ARM_FEATURE_EL3)
6923         && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
6924         return CP_ACCESS_TRAP_EL3;
6925     }
6926     return CP_ACCESS_OK;
6927 }
6928 
6929 /* ResetSVEState */
6930 static void arm_reset_sve_state(CPUARMState *env)
6931 {
6932     memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
6933     /* Recall that FFR is stored as pregs[16]. */
6934     memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
6935     vfp_set_fpcr(env, 0x0800009f);
6936 }
6937 
6938 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
6939 {
6940     uint64_t change = (env->svcr ^ new) & mask;
6941 
6942     if (change == 0) {
6943         return;
6944     }
6945     env->svcr ^= change;
6946 
6947     if (change & R_SVCR_SM_MASK) {
6948         arm_reset_sve_state(env);
6949     }
6950 
6951     /*
6952      * ResetSMEState.
6953      *
6954      * SetPSTATE_ZA zeros on enable and disable.  We can zero this only
6955      * on enable: while disabled, the storage is inaccessible and the
6956      * value does not matter.  We're not saving the storage in vmstate
6957      * when disabled either.
6958      */
6959     if (change & new & R_SVCR_ZA_MASK) {
6960         memset(env->zarray, 0, sizeof(env->zarray));
6961     }
6962 
6963     if (tcg_enabled()) {
6964         arm_rebuild_hflags(env);
6965     }
6966 }
6967 
6968 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6969                        uint64_t value)
6970 {
6971     aarch64_set_svcr(env, value, -1);
6972 }
6973 
6974 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6975                        uint64_t value)
6976 {
6977     int cur_el = arm_current_el(env);
6978     int old_len = sve_vqm1_for_el(env, cur_el);
6979     int new_len;
6980 
6981     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
6982     value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
6983     raw_write(env, ri, value);
6984 
6985     /*
6986      * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
6987      * when SVL is widened (old values kept, or zeros).  Choose to keep the
6988      * current values for simplicity.  But for QEMU internals, we must still
6989      * apply the narrower SVL to the Zregs and Pregs -- see the comment
6990      * above aarch64_sve_narrow_vq.
6991      */
6992     new_len = sve_vqm1_for_el(env, cur_el);
6993     if (new_len < old_len) {
6994         aarch64_sve_narrow_vq(env, new_len + 1);
6995     }
6996 }
6997 
6998 static const ARMCPRegInfo sme_reginfo[] = {
6999     { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
7000       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
7001       .access = PL0_RW, .accessfn = access_tpidr2,
7002       .fgt = FGT_NTPIDR2_EL0,
7003       .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
7004     { .name = "SVCR", .state = ARM_CP_STATE_AA64,
7005       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
7006       .access = PL0_RW, .type = ARM_CP_SME,
7007       .fieldoffset = offsetof(CPUARMState, svcr),
7008       .writefn = svcr_write, .raw_writefn = raw_write },
7009     { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
7010       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
7011       .access = PL1_RW, .type = ARM_CP_SME,
7012       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
7013       .writefn = smcr_write, .raw_writefn = raw_write },
7014     { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
7015       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
7016       .access = PL2_RW, .type = ARM_CP_SME,
7017       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
7018       .writefn = smcr_write, .raw_writefn = raw_write },
7019     { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
7020       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
7021       .access = PL3_RW, .type = ARM_CP_SME,
7022       .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
7023       .writefn = smcr_write, .raw_writefn = raw_write },
7024     { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
7025       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
7026       .access = PL1_R, .accessfn = access_aa64_tid1,
7027       /*
7028        * IMPLEMENTOR = 0 (software)
7029        * REVISION    = 0 (implementation defined)
7030        * SMPS        = 0 (no streaming execution priority in QEMU)
7031        * AFFINITY    = 0 (streaming sve mode not shared with other PEs)
7032        */
7033       .type = ARM_CP_CONST, .resetvalue = 0, },
7034     /*
7035      * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
7036      */
7037     { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
7038       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
7039       .access = PL1_RW, .accessfn = access_esm,
7040       .fgt = FGT_NSMPRI_EL1,
7041       .type = ARM_CP_CONST, .resetvalue = 0 },
7042     { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
7043       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
7044       .access = PL2_RW, .accessfn = access_esm,
7045       .type = ARM_CP_CONST, .resetvalue = 0 },
7046 };
7047 
7048 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
7049                                   uint64_t value)
7050 {
7051     CPUState *cs = env_cpu(env);
7052 
7053     tlb_flush(cs);
7054 }
7055 
7056 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
7057                         uint64_t value)
7058 {
7059     /* L0GPTSZ is RO; other bits not mentioned are RES0. */
7060     uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
7061         R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
7062         R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
7063 
7064     env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
7065 }
7066 
7067 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
7068 {
7069     env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
7070                                      env_archcpu(env)->reset_l0gptsz);
7071 }
7072 
7073 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
7074                                     uint64_t value)
7075 {
7076     CPUState *cs = env_cpu(env);
7077 
7078     tlb_flush_all_cpus_synced(cs);
7079 }
7080 
7081 static const ARMCPRegInfo rme_reginfo[] = {
7082     { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
7083       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
7084       .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
7085       .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
7086     { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
7087       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
7088       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
7089     { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
7090       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
7091       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
7092     { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
7093       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
7094       .access = PL3_W, .type = ARM_CP_NO_RAW,
7095       .writefn = tlbi_aa64_paall_write },
7096     { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
7097       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
7098       .access = PL3_W, .type = ARM_CP_NO_RAW,
7099       .writefn = tlbi_aa64_paallos_write },
7100     /*
7101      * QEMU does not have a way to invalidate by physical address, thus
7102      * invalidating a range of physical addresses is accomplished by
7103      * flushing all tlb entries in the outer shareable domain,
7104      * just like PAALLOS.
7105      */
7106     { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
7107       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
7108       .access = PL3_W, .type = ARM_CP_NO_RAW,
7109       .writefn = tlbi_aa64_paallos_write },
7110     { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
7111       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
7112       .access = PL3_W, .type = ARM_CP_NO_RAW,
7113       .writefn = tlbi_aa64_paallos_write },
7114     { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
7115       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
7116       .access = PL3_W, .type = ARM_CP_NOP },
7117 };
7118 
7119 static const ARMCPRegInfo rme_mte_reginfo[] = {
7120     { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
7121       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
7122       .access = PL3_W, .type = ARM_CP_NOP },
7123 };
7124 #endif /* TARGET_AARCH64 */
7125 
7126 static void define_pmu_regs(ARMCPU *cpu)
7127 {
7128     /*
7129      * v7 performance monitor control register: same implementor
7130      * field as main ID register, and we implement four counters in
7131      * addition to the cycle count register.
7132      */
7133     unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
7134     ARMCPRegInfo pmcr = {
7135         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
7136         .access = PL0_RW,
7137         .fgt = FGT_PMCR_EL0,
7138         .type = ARM_CP_IO | ARM_CP_ALIAS,
7139         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
7140         .accessfn = pmreg_access, .writefn = pmcr_write,
7141         .raw_writefn = raw_write,
7142     };
7143     ARMCPRegInfo pmcr64 = {
7144         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
7145         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
7146         .access = PL0_RW, .accessfn = pmreg_access,
7147         .fgt = FGT_PMCR_EL0,
7148         .type = ARM_CP_IO,
7149         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
7150         .resetvalue = cpu->isar.reset_pmcr_el0,
7151         .writefn = pmcr_write, .raw_writefn = raw_write,
7152     };
7153 
7154     define_one_arm_cp_reg(cpu, &pmcr);
7155     define_one_arm_cp_reg(cpu, &pmcr64);
7156     for (i = 0; i < pmcrn; i++) {
7157         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
7158         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
7159         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
7160         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
7161         ARMCPRegInfo pmev_regs[] = {
7162             { .name = pmevcntr_name, .cp = 15, .crn = 14,
7163               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7164               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7165               .fgt = FGT_PMEVCNTRN_EL0,
7166               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7167               .accessfn = pmreg_access_xevcntr },
7168             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
7169               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
7170               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
7171               .type = ARM_CP_IO,
7172               .fgt = FGT_PMEVCNTRN_EL0,
7173               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
7174               .raw_readfn = pmevcntr_rawread,
7175               .raw_writefn = pmevcntr_rawwrite },
7176             { .name = pmevtyper_name, .cp = 15, .crn = 14,
7177               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
7178               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
7179               .fgt = FGT_PMEVTYPERN_EL0,
7180               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7181               .accessfn = pmreg_access },
7182             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
7183               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
7184               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
7185               .fgt = FGT_PMEVTYPERN_EL0,
7186               .type = ARM_CP_IO,
7187               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
7188               .raw_writefn = pmevtyper_rawwrite },
7189         };
7190         define_arm_cp_regs(cpu, pmev_regs);
7191         g_free(pmevcntr_name);
7192         g_free(pmevcntr_el0_name);
7193         g_free(pmevtyper_name);
7194         g_free(pmevtyper_el0_name);
7195     }
7196     if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
7197         ARMCPRegInfo v81_pmu_regs[] = {
7198             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
7199               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
7200               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7201               .fgt = FGT_PMCEIDN_EL0,
7202               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
7203             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
7204               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
7205               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7206               .fgt = FGT_PMCEIDN_EL0,
7207               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
7208         };
7209         define_arm_cp_regs(cpu, v81_pmu_regs);
7210     }
7211     if (cpu_isar_feature(any_pmuv3p4, cpu)) {
7212         static const ARMCPRegInfo v84_pmmir = {
7213             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
7214             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
7215             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7216             .fgt = FGT_PMMIR_EL1,
7217             .resetvalue = 0
7218         };
7219         define_one_arm_cp_reg(cpu, &v84_pmmir);
7220     }
7221 }
7222 
7223 #ifndef CONFIG_USER_ONLY
7224 /*
7225  * We don't know until after realize whether there's a GICv3
7226  * attached, and that is what registers the gicv3 sysregs.
7227  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
7228  * at runtime.
7229  */
7230 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
7231 {
7232     ARMCPU *cpu = env_archcpu(env);
7233     uint64_t pfr1 = cpu->isar.id_pfr1;
7234 
7235     if (env->gicv3state) {
7236         pfr1 |= 1 << 28;
7237     }
7238     return pfr1;
7239 }
7240 
7241 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
7242 {
7243     ARMCPU *cpu = env_archcpu(env);
7244     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
7245 
7246     if (env->gicv3state) {
7247         pfr0 |= 1 << 24;
7248     }
7249     return pfr0;
7250 }
7251 #endif
7252 
7253 /*
7254  * Shared logic between LORID and the rest of the LOR* registers.
7255  * Secure state exclusion has already been dealt with.
7256  */
7257 static CPAccessResult access_lor_ns(CPUARMState *env,
7258                                     const ARMCPRegInfo *ri, bool isread)
7259 {
7260     int el = arm_current_el(env);
7261 
7262     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
7263         return CP_ACCESS_TRAP_EL2;
7264     }
7265     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
7266         return CP_ACCESS_TRAP_EL3;
7267     }
7268     return CP_ACCESS_OK;
7269 }
7270 
7271 static CPAccessResult access_lor_other(CPUARMState *env,
7272                                        const ARMCPRegInfo *ri, bool isread)
7273 {
7274     if (arm_is_secure_below_el3(env)) {
7275         /* Access denied in secure mode.  */
7276         return CP_ACCESS_TRAP;
7277     }
7278     return access_lor_ns(env, ri, isread);
7279 }
7280 
7281 /*
7282  * A trivial implementation of ARMv8.1-LOR leaves all of these
7283  * registers fixed at 0, which indicates that there are zero
7284  * supported Limited Ordering regions.
7285  */
7286 static const ARMCPRegInfo lor_reginfo[] = {
7287     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
7288       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
7289       .access = PL1_RW, .accessfn = access_lor_other,
7290       .fgt = FGT_LORSA_EL1,
7291       .type = ARM_CP_CONST, .resetvalue = 0 },
7292     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
7293       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
7294       .access = PL1_RW, .accessfn = access_lor_other,
7295       .fgt = FGT_LOREA_EL1,
7296       .type = ARM_CP_CONST, .resetvalue = 0 },
7297     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
7298       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
7299       .access = PL1_RW, .accessfn = access_lor_other,
7300       .fgt = FGT_LORN_EL1,
7301       .type = ARM_CP_CONST, .resetvalue = 0 },
7302     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
7303       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
7304       .access = PL1_RW, .accessfn = access_lor_other,
7305       .fgt = FGT_LORC_EL1,
7306       .type = ARM_CP_CONST, .resetvalue = 0 },
7307     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
7308       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
7309       .access = PL1_R, .accessfn = access_lor_ns,
7310       .fgt = FGT_LORID_EL1,
7311       .type = ARM_CP_CONST, .resetvalue = 0 },
7312 };
7313 
7314 #ifdef TARGET_AARCH64
7315 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
7316                                    bool isread)
7317 {
7318     int el = arm_current_el(env);
7319 
7320     if (el < 2 &&
7321         arm_is_el2_enabled(env) &&
7322         !(arm_hcr_el2_eff(env) & HCR_APK)) {
7323         return CP_ACCESS_TRAP_EL2;
7324     }
7325     if (el < 3 &&
7326         arm_feature(env, ARM_FEATURE_EL3) &&
7327         !(env->cp15.scr_el3 & SCR_APK)) {
7328         return CP_ACCESS_TRAP_EL3;
7329     }
7330     return CP_ACCESS_OK;
7331 }
7332 
7333 static const ARMCPRegInfo pauth_reginfo[] = {
7334     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7335       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
7336       .access = PL1_RW, .accessfn = access_pauth,
7337       .fgt = FGT_APDAKEY,
7338       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
7339     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7340       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
7341       .access = PL1_RW, .accessfn = access_pauth,
7342       .fgt = FGT_APDAKEY,
7343       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
7344     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7345       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
7346       .access = PL1_RW, .accessfn = access_pauth,
7347       .fgt = FGT_APDBKEY,
7348       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
7349     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7350       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
7351       .access = PL1_RW, .accessfn = access_pauth,
7352       .fgt = FGT_APDBKEY,
7353       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
7354     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7355       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
7356       .access = PL1_RW, .accessfn = access_pauth,
7357       .fgt = FGT_APGAKEY,
7358       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
7359     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7360       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
7361       .access = PL1_RW, .accessfn = access_pauth,
7362       .fgt = FGT_APGAKEY,
7363       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
7364     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7365       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
7366       .access = PL1_RW, .accessfn = access_pauth,
7367       .fgt = FGT_APIAKEY,
7368       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
7369     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7370       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
7371       .access = PL1_RW, .accessfn = access_pauth,
7372       .fgt = FGT_APIAKEY,
7373       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
7374     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
7375       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
7376       .access = PL1_RW, .accessfn = access_pauth,
7377       .fgt = FGT_APIBKEY,
7378       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
7379     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
7380       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
7381       .access = PL1_RW, .accessfn = access_pauth,
7382       .fgt = FGT_APIBKEY,
7383       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
7384 };
7385 
7386 static const ARMCPRegInfo tlbirange_reginfo[] = {
7387     { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
7388       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
7389       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7390       .fgt = FGT_TLBIRVAE1IS,
7391       .writefn = tlbi_aa64_rvae1is_write },
7392     { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
7393       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
7394       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7395       .fgt = FGT_TLBIRVAAE1IS,
7396       .writefn = tlbi_aa64_rvae1is_write },
7397    { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
7398       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
7399       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7400       .fgt = FGT_TLBIRVALE1IS,
7401       .writefn = tlbi_aa64_rvae1is_write },
7402     { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
7403       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
7404       .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
7405       .fgt = FGT_TLBIRVAALE1IS,
7406       .writefn = tlbi_aa64_rvae1is_write },
7407     { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
7408       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
7409       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7410       .fgt = FGT_TLBIRVAE1OS,
7411       .writefn = tlbi_aa64_rvae1is_write },
7412     { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
7413       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
7414       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7415       .fgt = FGT_TLBIRVAAE1OS,
7416       .writefn = tlbi_aa64_rvae1is_write },
7417    { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
7418       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
7419       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7420       .fgt = FGT_TLBIRVALE1OS,
7421       .writefn = tlbi_aa64_rvae1is_write },
7422     { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
7423       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
7424       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7425       .fgt = FGT_TLBIRVAALE1OS,
7426       .writefn = tlbi_aa64_rvae1is_write },
7427     { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
7428       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
7429       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7430       .fgt = FGT_TLBIRVAE1,
7431       .writefn = tlbi_aa64_rvae1_write },
7432     { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
7433       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
7434       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7435       .fgt = FGT_TLBIRVAAE1,
7436       .writefn = tlbi_aa64_rvae1_write },
7437    { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
7438       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
7439       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7440       .fgt = FGT_TLBIRVALE1,
7441       .writefn = tlbi_aa64_rvae1_write },
7442     { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
7443       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
7444       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
7445       .fgt = FGT_TLBIRVAALE1,
7446       .writefn = tlbi_aa64_rvae1_write },
7447     { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
7448       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
7449       .access = PL2_W, .type = ARM_CP_NO_RAW,
7450       .writefn = tlbi_aa64_ripas2e1is_write },
7451     { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
7452       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
7453       .access = PL2_W, .type = ARM_CP_NO_RAW,
7454       .writefn = tlbi_aa64_ripas2e1is_write },
7455     { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
7456       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
7457       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7458       .writefn = tlbi_aa64_rvae2is_write },
7459    { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
7460       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
7461       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7462       .writefn = tlbi_aa64_rvae2is_write },
7463     { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
7464       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
7465       .access = PL2_W, .type = ARM_CP_NO_RAW,
7466       .writefn = tlbi_aa64_ripas2e1_write },
7467     { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
7468       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
7469       .access = PL2_W, .type = ARM_CP_NO_RAW,
7470       .writefn = tlbi_aa64_ripas2e1_write },
7471    { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
7472       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
7473       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7474       .writefn = tlbi_aa64_rvae2is_write },
7475    { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
7476       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
7477       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7478       .writefn = tlbi_aa64_rvae2is_write },
7479     { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
7480       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
7481       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7482       .writefn = tlbi_aa64_rvae2_write },
7483    { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
7484       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
7485       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7486       .writefn = tlbi_aa64_rvae2_write },
7487    { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
7488       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
7489       .access = PL3_W, .type = ARM_CP_NO_RAW,
7490       .writefn = tlbi_aa64_rvae3is_write },
7491    { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
7492       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
7493       .access = PL3_W, .type = ARM_CP_NO_RAW,
7494       .writefn = tlbi_aa64_rvae3is_write },
7495    { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
7496       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
7497       .access = PL3_W, .type = ARM_CP_NO_RAW,
7498       .writefn = tlbi_aa64_rvae3is_write },
7499    { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
7500       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
7501       .access = PL3_W, .type = ARM_CP_NO_RAW,
7502       .writefn = tlbi_aa64_rvae3is_write },
7503    { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
7504       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
7505       .access = PL3_W, .type = ARM_CP_NO_RAW,
7506       .writefn = tlbi_aa64_rvae3_write },
7507    { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
7508       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
7509       .access = PL3_W, .type = ARM_CP_NO_RAW,
7510       .writefn = tlbi_aa64_rvae3_write },
7511 };
7512 
7513 static const ARMCPRegInfo tlbios_reginfo[] = {
7514     { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
7515       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
7516       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7517       .fgt = FGT_TLBIVMALLE1OS,
7518       .writefn = tlbi_aa64_vmalle1is_write },
7519     { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
7520       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
7521       .fgt = FGT_TLBIVAE1OS,
7522       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7523       .writefn = tlbi_aa64_vae1is_write },
7524     { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
7525       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
7526       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7527       .fgt = FGT_TLBIASIDE1OS,
7528       .writefn = tlbi_aa64_vmalle1is_write },
7529     { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
7530       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
7531       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7532       .fgt = FGT_TLBIVAAE1OS,
7533       .writefn = tlbi_aa64_vae1is_write },
7534     { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
7535       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
7536       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7537       .fgt = FGT_TLBIVALE1OS,
7538       .writefn = tlbi_aa64_vae1is_write },
7539     { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
7540       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
7541       .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
7542       .fgt = FGT_TLBIVAALE1OS,
7543       .writefn = tlbi_aa64_vae1is_write },
7544     { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
7545       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
7546       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7547       .writefn = tlbi_aa64_alle2is_write },
7548     { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
7549       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
7550       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7551       .writefn = tlbi_aa64_vae2is_write },
7552    { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
7553       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
7554       .access = PL2_W, .type = ARM_CP_NO_RAW,
7555       .writefn = tlbi_aa64_alle1is_write },
7556     { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
7557       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
7558       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
7559       .writefn = tlbi_aa64_vae2is_write },
7560     { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
7561       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
7562       .access = PL2_W, .type = ARM_CP_NO_RAW,
7563       .writefn = tlbi_aa64_alle1is_write },
7564     { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
7565       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
7566       .access = PL2_W, .type = ARM_CP_NOP },
7567     { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
7568       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
7569       .access = PL2_W, .type = ARM_CP_NOP },
7570     { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7571       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
7572       .access = PL2_W, .type = ARM_CP_NOP },
7573     { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
7574       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
7575       .access = PL2_W, .type = ARM_CP_NOP },
7576     { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
7577       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
7578       .access = PL3_W, .type = ARM_CP_NO_RAW,
7579       .writefn = tlbi_aa64_alle3is_write },
7580     { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
7581       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
7582       .access = PL3_W, .type = ARM_CP_NO_RAW,
7583       .writefn = tlbi_aa64_vae3is_write },
7584     { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
7585       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
7586       .access = PL3_W, .type = ARM_CP_NO_RAW,
7587       .writefn = tlbi_aa64_vae3is_write },
7588 };
7589 
7590 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
7591 {
7592     Error *err = NULL;
7593     uint64_t ret;
7594 
7595     /* Success sets NZCV = 0000.  */
7596     env->NF = env->CF = env->VF = 0, env->ZF = 1;
7597 
7598     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
7599         /*
7600          * ??? Failed, for unknown reasons in the crypto subsystem.
7601          * The best we can do is log the reason and return the
7602          * timed-out indication to the guest.  There is no reason
7603          * we know to expect this failure to be transitory, so the
7604          * guest may well hang retrying the operation.
7605          */
7606         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
7607                       ri->name, error_get_pretty(err));
7608         error_free(err);
7609 
7610         env->ZF = 0; /* NZCF = 0100 */
7611         return 0;
7612     }
7613     return ret;
7614 }
7615 
7616 /* We do not support re-seeding, so the two registers operate the same.  */
7617 static const ARMCPRegInfo rndr_reginfo[] = {
7618     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
7619       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7620       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
7621       .access = PL0_R, .readfn = rndr_readfn },
7622     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
7623       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
7624       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
7625       .access = PL0_R, .readfn = rndr_readfn },
7626 };
7627 
7628 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
7629                           uint64_t value)
7630 {
7631     ARMCPU *cpu = env_archcpu(env);
7632     /* CTR_EL0 System register -> DminLine, bits [19:16] */
7633     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
7634     uint64_t vaddr_in = (uint64_t) value;
7635     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
7636     void *haddr;
7637     int mem_idx = cpu_mmu_index(env, false);
7638 
7639     /* This won't be crossing page boundaries */
7640     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
7641     if (haddr) {
7642 #ifndef CONFIG_USER_ONLY
7643 
7644         ram_addr_t offset;
7645         MemoryRegion *mr;
7646 
7647         /* RCU lock is already being held */
7648         mr = memory_region_from_host(haddr, &offset);
7649 
7650         if (mr) {
7651             memory_region_writeback(mr, offset, dline_size);
7652         }
7653 #endif /*CONFIG_USER_ONLY*/
7654     }
7655 }
7656 
7657 static const ARMCPRegInfo dcpop_reg[] = {
7658     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
7659       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
7660       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7661       .fgt = FGT_DCCVAP,
7662       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7663 };
7664 
7665 static const ARMCPRegInfo dcpodp_reg[] = {
7666     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
7667       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
7668       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
7669       .fgt = FGT_DCCVADP,
7670       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
7671 };
7672 
7673 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
7674                                        bool isread)
7675 {
7676     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
7677         return CP_ACCESS_TRAP_EL2;
7678     }
7679 
7680     return CP_ACCESS_OK;
7681 }
7682 
7683 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
7684                                  bool isread)
7685 {
7686     int el = arm_current_el(env);
7687 
7688     if (el < 2 && arm_is_el2_enabled(env)) {
7689         uint64_t hcr = arm_hcr_el2_eff(env);
7690         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
7691             return CP_ACCESS_TRAP_EL2;
7692         }
7693     }
7694     if (el < 3 &&
7695         arm_feature(env, ARM_FEATURE_EL3) &&
7696         !(env->cp15.scr_el3 & SCR_ATA)) {
7697         return CP_ACCESS_TRAP_EL3;
7698     }
7699     return CP_ACCESS_OK;
7700 }
7701 
7702 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
7703 {
7704     return env->pstate & PSTATE_TCO;
7705 }
7706 
7707 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
7708 {
7709     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
7710 }
7711 
7712 static const ARMCPRegInfo mte_reginfo[] = {
7713     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
7714       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
7715       .access = PL1_RW, .accessfn = access_mte,
7716       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
7717     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
7718       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
7719       .access = PL1_RW, .accessfn = access_mte,
7720       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
7721     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
7722       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
7723       .access = PL2_RW, .accessfn = access_mte,
7724       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
7725     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
7726       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
7727       .access = PL3_RW,
7728       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
7729     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
7730       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
7731       .access = PL1_RW, .accessfn = access_mte,
7732       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
7733     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
7734       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
7735       .access = PL1_RW, .accessfn = access_mte,
7736       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
7737     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7738       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7739       .type = ARM_CP_NO_RAW,
7740       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
7741     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
7742       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
7743       .type = ARM_CP_NOP, .access = PL1_W,
7744       .fgt = FGT_DCIVAC,
7745       .accessfn = aa64_cacheop_poc_access },
7746     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
7747       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
7748       .fgt = FGT_DCISW,
7749       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7750     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
7751       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
7752       .type = ARM_CP_NOP, .access = PL1_W,
7753       .fgt = FGT_DCIVAC,
7754       .accessfn = aa64_cacheop_poc_access },
7755     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
7756       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
7757       .fgt = FGT_DCISW,
7758       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7759     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
7760       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
7761       .fgt = FGT_DCCSW,
7762       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7763     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
7764       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
7765       .fgt = FGT_DCCSW,
7766       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7767     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
7768       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
7769       .fgt = FGT_DCCISW,
7770       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7771     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
7772       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
7773       .fgt = FGT_DCCISW,
7774       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
7775 };
7776 
7777 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
7778     { .name = "TCO", .state = ARM_CP_STATE_AA64,
7779       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
7780       .type = ARM_CP_CONST, .access = PL0_RW, },
7781 };
7782 
7783 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
7784     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
7785       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
7786       .type = ARM_CP_NOP, .access = PL0_W,
7787       .fgt = FGT_DCCVAC,
7788       .accessfn = aa64_cacheop_poc_access },
7789     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
7790       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
7791       .type = ARM_CP_NOP, .access = PL0_W,
7792       .fgt = FGT_DCCVAC,
7793       .accessfn = aa64_cacheop_poc_access },
7794     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7795       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7796       .type = ARM_CP_NOP, .access = PL0_W,
7797       .fgt = FGT_DCCVAP,
7798       .accessfn = aa64_cacheop_poc_access },
7799     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7800       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7801       .type = ARM_CP_NOP, .access = PL0_W,
7802       .fgt = FGT_DCCVAP,
7803       .accessfn = aa64_cacheop_poc_access },
7804     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7805       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7806       .type = ARM_CP_NOP, .access = PL0_W,
7807       .fgt = FGT_DCCVADP,
7808       .accessfn = aa64_cacheop_poc_access },
7809     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7810       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7811       .type = ARM_CP_NOP, .access = PL0_W,
7812       .fgt = FGT_DCCVADP,
7813       .accessfn = aa64_cacheop_poc_access },
7814     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7815       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7816       .type = ARM_CP_NOP, .access = PL0_W,
7817       .fgt = FGT_DCCIVAC,
7818       .accessfn = aa64_cacheop_poc_access },
7819     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7820       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7821       .type = ARM_CP_NOP, .access = PL0_W,
7822       .fgt = FGT_DCCIVAC,
7823       .accessfn = aa64_cacheop_poc_access },
7824     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7825       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7826       .access = PL0_W, .type = ARM_CP_DC_GVA,
7827 #ifndef CONFIG_USER_ONLY
7828       /* Avoid overhead of an access check that always passes in user-mode */
7829       .accessfn = aa64_zva_access,
7830       .fgt = FGT_DCZVA,
7831 #endif
7832     },
7833     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7834       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7835       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7836 #ifndef CONFIG_USER_ONLY
7837       /* Avoid overhead of an access check that always passes in user-mode */
7838       .accessfn = aa64_zva_access,
7839       .fgt = FGT_DCZVA,
7840 #endif
7841     },
7842 };
7843 
7844 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
7845                                      bool isread)
7846 {
7847     uint64_t hcr = arm_hcr_el2_eff(env);
7848     int el = arm_current_el(env);
7849 
7850     if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
7851         if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
7852             if (hcr & HCR_TGE) {
7853                 return CP_ACCESS_TRAP_EL2;
7854             }
7855             return CP_ACCESS_TRAP;
7856         }
7857     } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
7858         return CP_ACCESS_TRAP_EL2;
7859     }
7860     if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
7861         return CP_ACCESS_TRAP_EL2;
7862     }
7863     if (el < 3
7864         && arm_feature(env, ARM_FEATURE_EL3)
7865         && !(env->cp15.scr_el3 & SCR_ENSCXT)) {
7866         return CP_ACCESS_TRAP_EL3;
7867     }
7868     return CP_ACCESS_OK;
7869 }
7870 
7871 static const ARMCPRegInfo scxtnum_reginfo[] = {
7872     { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
7873       .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
7874       .access = PL0_RW, .accessfn = access_scxtnum,
7875       .fgt = FGT_SCXTNUM_EL0,
7876       .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
7877     { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
7878       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
7879       .access = PL1_RW, .accessfn = access_scxtnum,
7880       .fgt = FGT_SCXTNUM_EL1,
7881       .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
7882     { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
7883       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
7884       .access = PL2_RW, .accessfn = access_scxtnum,
7885       .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
7886     { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
7887       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
7888       .access = PL3_RW,
7889       .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
7890 };
7891 
7892 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
7893                                  bool isread)
7894 {
7895     if (arm_current_el(env) == 2 &&
7896         arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
7897         return CP_ACCESS_TRAP_EL3;
7898     }
7899     return CP_ACCESS_OK;
7900 }
7901 
7902 static const ARMCPRegInfo fgt_reginfo[] = {
7903     { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7904       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
7905       .access = PL2_RW, .accessfn = access_fgt,
7906       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
7907     { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7908       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
7909       .access = PL2_RW, .accessfn = access_fgt,
7910       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
7911     { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
7912       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
7913       .access = PL2_RW, .accessfn = access_fgt,
7914       .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
7915     { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
7916       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
7917       .access = PL2_RW, .accessfn = access_fgt,
7918       .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
7919     { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
7920       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
7921       .access = PL2_RW, .accessfn = access_fgt,
7922       .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
7923 };
7924 #endif /* TARGET_AARCH64 */
7925 
7926 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7927                                      bool isread)
7928 {
7929     int el = arm_current_el(env);
7930 
7931     if (el == 0) {
7932         uint64_t sctlr = arm_sctlr(env, el);
7933         if (!(sctlr & SCTLR_EnRCTX)) {
7934             return CP_ACCESS_TRAP;
7935         }
7936     } else if (el == 1) {
7937         uint64_t hcr = arm_hcr_el2_eff(env);
7938         if (hcr & HCR_NV) {
7939             return CP_ACCESS_TRAP_EL2;
7940         }
7941     }
7942     return CP_ACCESS_OK;
7943 }
7944 
7945 static const ARMCPRegInfo predinv_reginfo[] = {
7946     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7947       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7948       .fgt = FGT_CFPRCTX,
7949       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7950     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7951       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7952       .fgt = FGT_DVPRCTX,
7953       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7954     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7955       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7956       .fgt = FGT_CPPRCTX,
7957       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7958     /*
7959      * Note the AArch32 opcodes have a different OPC1.
7960      */
7961     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7962       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7963       .fgt = FGT_CFPRCTX,
7964       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7965     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7966       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7967       .fgt = FGT_DVPRCTX,
7968       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7969     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7970       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7971       .fgt = FGT_CPPRCTX,
7972       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7973 };
7974 
7975 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7976 {
7977     /* Read the high 32 bits of the current CCSIDR */
7978     return extract64(ccsidr_read(env, ri), 32, 32);
7979 }
7980 
7981 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7982     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7983       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7984       .access = PL1_R,
7985       .accessfn = access_tid4,
7986       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7987 };
7988 
7989 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7990                                        bool isread)
7991 {
7992     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7993         return CP_ACCESS_TRAP_EL2;
7994     }
7995 
7996     return CP_ACCESS_OK;
7997 }
7998 
7999 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
8000                                        bool isread)
8001 {
8002     if (arm_feature(env, ARM_FEATURE_V8)) {
8003         return access_aa64_tid3(env, ri, isread);
8004     }
8005 
8006     return CP_ACCESS_OK;
8007 }
8008 
8009 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
8010                                      bool isread)
8011 {
8012     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
8013         return CP_ACCESS_TRAP_EL2;
8014     }
8015 
8016     return CP_ACCESS_OK;
8017 }
8018 
8019 static CPAccessResult access_joscr_jmcr(CPUARMState *env,
8020                                         const ARMCPRegInfo *ri, bool isread)
8021 {
8022     /*
8023      * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
8024      * in v7A, not in v8A.
8025      */
8026     if (!arm_feature(env, ARM_FEATURE_V8) &&
8027         arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
8028         (env->cp15.hstr_el2 & HSTR_TJDBX)) {
8029         return CP_ACCESS_TRAP_EL2;
8030     }
8031     return CP_ACCESS_OK;
8032 }
8033 
8034 static const ARMCPRegInfo jazelle_regs[] = {
8035     { .name = "JIDR",
8036       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
8037       .access = PL1_R, .accessfn = access_jazelle,
8038       .type = ARM_CP_CONST, .resetvalue = 0 },
8039     { .name = "JOSCR",
8040       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
8041       .accessfn = access_joscr_jmcr,
8042       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8043     { .name = "JMCR",
8044       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
8045       .accessfn = access_joscr_jmcr,
8046       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
8047 };
8048 
8049 static const ARMCPRegInfo contextidr_el2 = {
8050     .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
8051     .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
8052     .access = PL2_RW,
8053     .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
8054 };
8055 
8056 static const ARMCPRegInfo vhe_reginfo[] = {
8057     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
8058       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
8059       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
8060       .raw_writefn = raw_write,
8061       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
8062 #ifndef CONFIG_USER_ONLY
8063     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
8064       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
8065       .fieldoffset =
8066         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
8067       .type = ARM_CP_IO, .access = PL2_RW,
8068       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
8069     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
8070       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
8071       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
8072       .resetfn = gt_hv_timer_reset,
8073       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
8074     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
8075       .type = ARM_CP_IO,
8076       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
8077       .access = PL2_RW,
8078       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
8079       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
8080     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
8081       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
8082       .type = ARM_CP_IO | ARM_CP_ALIAS,
8083       .access = PL2_RW, .accessfn = e2h_access,
8084       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
8085       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
8086     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
8087       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
8088       .type = ARM_CP_IO | ARM_CP_ALIAS,
8089       .access = PL2_RW, .accessfn = e2h_access,
8090       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
8091       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
8092     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8093       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
8094       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8095       .access = PL2_RW, .accessfn = e2h_access,
8096       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
8097     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
8098       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
8099       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
8100       .access = PL2_RW, .accessfn = e2h_access,
8101       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
8102     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8103       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
8104       .type = ARM_CP_IO | ARM_CP_ALIAS,
8105       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
8106       .access = PL2_RW, .accessfn = e2h_access,
8107       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
8108     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
8109       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
8110       .type = ARM_CP_IO | ARM_CP_ALIAS,
8111       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
8112       .access = PL2_RW, .accessfn = e2h_access,
8113       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
8114 #endif
8115 };
8116 
8117 #ifndef CONFIG_USER_ONLY
8118 static const ARMCPRegInfo ats1e1_reginfo[] = {
8119     { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
8120       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8121       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8122       .fgt = FGT_ATS1E1RP,
8123       .accessfn = at_e012_access, .writefn = ats_write64 },
8124     { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
8125       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8126       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8127       .fgt = FGT_ATS1E1WP,
8128       .accessfn = at_e012_access, .writefn = ats_write64 },
8129 };
8130 
8131 static const ARMCPRegInfo ats1cp_reginfo[] = {
8132     { .name = "ATS1CPRP",
8133       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
8134       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8135       .writefn = ats_write },
8136     { .name = "ATS1CPWP",
8137       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
8138       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
8139       .writefn = ats_write },
8140 };
8141 #endif
8142 
8143 /*
8144  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
8145  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
8146  * is non-zero, which is never for ARMv7, optionally in ARMv8
8147  * and mandatorily for ARMv8.2 and up.
8148  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
8149  * implementation is RAZ/WI we can ignore this detail, as we
8150  * do for ACTLR.
8151  */
8152 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
8153     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
8154       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
8155       .access = PL1_RW, .accessfn = access_tacr,
8156       .type = ARM_CP_CONST, .resetvalue = 0 },
8157     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
8158       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
8159       .access = PL2_RW, .type = ARM_CP_CONST,
8160       .resetvalue = 0 },
8161 };
8162 
8163 void register_cp_regs_for_features(ARMCPU *cpu)
8164 {
8165     /* Register all the coprocessor registers based on feature bits */
8166     CPUARMState *env = &cpu->env;
8167     if (arm_feature(env, ARM_FEATURE_M)) {
8168         /* M profile has no coprocessor registers */
8169         return;
8170     }
8171 
8172     define_arm_cp_regs(cpu, cp_reginfo);
8173     if (!arm_feature(env, ARM_FEATURE_V8)) {
8174         /*
8175          * Must go early as it is full of wildcards that may be
8176          * overridden by later definitions.
8177          */
8178         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
8179     }
8180 
8181     if (arm_feature(env, ARM_FEATURE_V6)) {
8182         /* The ID registers all have impdef reset values */
8183         ARMCPRegInfo v6_idregs[] = {
8184             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
8185               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
8186               .access = PL1_R, .type = ARM_CP_CONST,
8187               .accessfn = access_aa32_tid3,
8188               .resetvalue = cpu->isar.id_pfr0 },
8189             /*
8190              * ID_PFR1 is not a plain ARM_CP_CONST because we don't know
8191              * the value of the GIC field until after we define these regs.
8192              */
8193             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
8194               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
8195               .access = PL1_R, .type = ARM_CP_NO_RAW,
8196               .accessfn = access_aa32_tid3,
8197 #ifdef CONFIG_USER_ONLY
8198               .type = ARM_CP_CONST,
8199               .resetvalue = cpu->isar.id_pfr1,
8200 #else
8201               .type = ARM_CP_NO_RAW,
8202               .accessfn = access_aa32_tid3,
8203               .readfn = id_pfr1_read,
8204               .writefn = arm_cp_write_ignore
8205 #endif
8206             },
8207             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
8208               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
8209               .access = PL1_R, .type = ARM_CP_CONST,
8210               .accessfn = access_aa32_tid3,
8211               .resetvalue = cpu->isar.id_dfr0 },
8212             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
8213               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
8214               .access = PL1_R, .type = ARM_CP_CONST,
8215               .accessfn = access_aa32_tid3,
8216               .resetvalue = cpu->id_afr0 },
8217             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
8218               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
8219               .access = PL1_R, .type = ARM_CP_CONST,
8220               .accessfn = access_aa32_tid3,
8221               .resetvalue = cpu->isar.id_mmfr0 },
8222             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
8223               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
8224               .access = PL1_R, .type = ARM_CP_CONST,
8225               .accessfn = access_aa32_tid3,
8226               .resetvalue = cpu->isar.id_mmfr1 },
8227             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
8228               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
8229               .access = PL1_R, .type = ARM_CP_CONST,
8230               .accessfn = access_aa32_tid3,
8231               .resetvalue = cpu->isar.id_mmfr2 },
8232             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
8233               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
8234               .access = PL1_R, .type = ARM_CP_CONST,
8235               .accessfn = access_aa32_tid3,
8236               .resetvalue = cpu->isar.id_mmfr3 },
8237             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
8238               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
8239               .access = PL1_R, .type = ARM_CP_CONST,
8240               .accessfn = access_aa32_tid3,
8241               .resetvalue = cpu->isar.id_isar0 },
8242             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
8243               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
8244               .access = PL1_R, .type = ARM_CP_CONST,
8245               .accessfn = access_aa32_tid3,
8246               .resetvalue = cpu->isar.id_isar1 },
8247             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
8248               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
8249               .access = PL1_R, .type = ARM_CP_CONST,
8250               .accessfn = access_aa32_tid3,
8251               .resetvalue = cpu->isar.id_isar2 },
8252             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
8253               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
8254               .access = PL1_R, .type = ARM_CP_CONST,
8255               .accessfn = access_aa32_tid3,
8256               .resetvalue = cpu->isar.id_isar3 },
8257             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
8258               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
8259               .access = PL1_R, .type = ARM_CP_CONST,
8260               .accessfn = access_aa32_tid3,
8261               .resetvalue = cpu->isar.id_isar4 },
8262             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
8263               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
8264               .access = PL1_R, .type = ARM_CP_CONST,
8265               .accessfn = access_aa32_tid3,
8266               .resetvalue = cpu->isar.id_isar5 },
8267             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
8268               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
8269               .access = PL1_R, .type = ARM_CP_CONST,
8270               .accessfn = access_aa32_tid3,
8271               .resetvalue = cpu->isar.id_mmfr4 },
8272             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
8273               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
8274               .access = PL1_R, .type = ARM_CP_CONST,
8275               .accessfn = access_aa32_tid3,
8276               .resetvalue = cpu->isar.id_isar6 },
8277         };
8278         define_arm_cp_regs(cpu, v6_idregs);
8279         define_arm_cp_regs(cpu, v6_cp_reginfo);
8280     } else {
8281         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
8282     }
8283     if (arm_feature(env, ARM_FEATURE_V6K)) {
8284         define_arm_cp_regs(cpu, v6k_cp_reginfo);
8285     }
8286     if (arm_feature(env, ARM_FEATURE_V7MP) &&
8287         !arm_feature(env, ARM_FEATURE_PMSA)) {
8288         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
8289     }
8290     if (arm_feature(env, ARM_FEATURE_V7VE)) {
8291         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
8292     }
8293     if (arm_feature(env, ARM_FEATURE_V7)) {
8294         ARMCPRegInfo clidr = {
8295             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
8296             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
8297             .access = PL1_R, .type = ARM_CP_CONST,
8298             .accessfn = access_tid4,
8299             .fgt = FGT_CLIDR_EL1,
8300             .resetvalue = cpu->clidr
8301         };
8302         define_one_arm_cp_reg(cpu, &clidr);
8303         define_arm_cp_regs(cpu, v7_cp_reginfo);
8304         define_debug_regs(cpu);
8305         define_pmu_regs(cpu);
8306     } else {
8307         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
8308     }
8309     if (arm_feature(env, ARM_FEATURE_V8)) {
8310         /*
8311          * v8 ID registers, which all have impdef reset values.
8312          * Note that within the ID register ranges the unused slots
8313          * must all RAZ, not UNDEF; future architecture versions may
8314          * define new registers here.
8315          * ID registers which are AArch64 views of the AArch32 ID registers
8316          * which already existed in v6 and v7 are handled elsewhere,
8317          * in v6_idregs[].
8318          */
8319         int i;
8320         ARMCPRegInfo v8_idregs[] = {
8321             /*
8322              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
8323              * emulation because we don't know the right value for the
8324              * GIC field until after we define these regs.
8325              */
8326             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
8327               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
8328               .access = PL1_R,
8329 #ifdef CONFIG_USER_ONLY
8330               .type = ARM_CP_CONST,
8331               .resetvalue = cpu->isar.id_aa64pfr0
8332 #else
8333               .type = ARM_CP_NO_RAW,
8334               .accessfn = access_aa64_tid3,
8335               .readfn = id_aa64pfr0_read,
8336               .writefn = arm_cp_write_ignore
8337 #endif
8338             },
8339             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
8340               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
8341               .access = PL1_R, .type = ARM_CP_CONST,
8342               .accessfn = access_aa64_tid3,
8343               .resetvalue = cpu->isar.id_aa64pfr1},
8344             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8345               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
8346               .access = PL1_R, .type = ARM_CP_CONST,
8347               .accessfn = access_aa64_tid3,
8348               .resetvalue = 0 },
8349             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8350               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
8351               .access = PL1_R, .type = ARM_CP_CONST,
8352               .accessfn = access_aa64_tid3,
8353               .resetvalue = 0 },
8354             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
8355               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
8356               .access = PL1_R, .type = ARM_CP_CONST,
8357               .accessfn = access_aa64_tid3,
8358               .resetvalue = cpu->isar.id_aa64zfr0 },
8359             { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
8360               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
8361               .access = PL1_R, .type = ARM_CP_CONST,
8362               .accessfn = access_aa64_tid3,
8363               .resetvalue = cpu->isar.id_aa64smfr0 },
8364             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8365               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
8366               .access = PL1_R, .type = ARM_CP_CONST,
8367               .accessfn = access_aa64_tid3,
8368               .resetvalue = 0 },
8369             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8370               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
8371               .access = PL1_R, .type = ARM_CP_CONST,
8372               .accessfn = access_aa64_tid3,
8373               .resetvalue = 0 },
8374             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
8375               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
8376               .access = PL1_R, .type = ARM_CP_CONST,
8377               .accessfn = access_aa64_tid3,
8378               .resetvalue = cpu->isar.id_aa64dfr0 },
8379             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
8380               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
8381               .access = PL1_R, .type = ARM_CP_CONST,
8382               .accessfn = access_aa64_tid3,
8383               .resetvalue = cpu->isar.id_aa64dfr1 },
8384             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8385               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
8386               .access = PL1_R, .type = ARM_CP_CONST,
8387               .accessfn = access_aa64_tid3,
8388               .resetvalue = 0 },
8389             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8390               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
8391               .access = PL1_R, .type = ARM_CP_CONST,
8392               .accessfn = access_aa64_tid3,
8393               .resetvalue = 0 },
8394             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
8395               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
8396               .access = PL1_R, .type = ARM_CP_CONST,
8397               .accessfn = access_aa64_tid3,
8398               .resetvalue = cpu->id_aa64afr0 },
8399             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
8400               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
8401               .access = PL1_R, .type = ARM_CP_CONST,
8402               .accessfn = access_aa64_tid3,
8403               .resetvalue = cpu->id_aa64afr1 },
8404             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8405               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
8406               .access = PL1_R, .type = ARM_CP_CONST,
8407               .accessfn = access_aa64_tid3,
8408               .resetvalue = 0 },
8409             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8410               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
8411               .access = PL1_R, .type = ARM_CP_CONST,
8412               .accessfn = access_aa64_tid3,
8413               .resetvalue = 0 },
8414             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
8415               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
8416               .access = PL1_R, .type = ARM_CP_CONST,
8417               .accessfn = access_aa64_tid3,
8418               .resetvalue = cpu->isar.id_aa64isar0 },
8419             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
8420               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
8421               .access = PL1_R, .type = ARM_CP_CONST,
8422               .accessfn = access_aa64_tid3,
8423               .resetvalue = cpu->isar.id_aa64isar1 },
8424             { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
8425               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
8426               .access = PL1_R, .type = ARM_CP_CONST,
8427               .accessfn = access_aa64_tid3,
8428               .resetvalue = cpu->isar.id_aa64isar2 },
8429             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8430               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
8431               .access = PL1_R, .type = ARM_CP_CONST,
8432               .accessfn = access_aa64_tid3,
8433               .resetvalue = 0 },
8434             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8435               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
8436               .access = PL1_R, .type = ARM_CP_CONST,
8437               .accessfn = access_aa64_tid3,
8438               .resetvalue = 0 },
8439             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8440               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
8441               .access = PL1_R, .type = ARM_CP_CONST,
8442               .accessfn = access_aa64_tid3,
8443               .resetvalue = 0 },
8444             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8445               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
8446               .access = PL1_R, .type = ARM_CP_CONST,
8447               .accessfn = access_aa64_tid3,
8448               .resetvalue = 0 },
8449             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8450               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
8451               .access = PL1_R, .type = ARM_CP_CONST,
8452               .accessfn = access_aa64_tid3,
8453               .resetvalue = 0 },
8454             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
8455               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
8456               .access = PL1_R, .type = ARM_CP_CONST,
8457               .accessfn = access_aa64_tid3,
8458               .resetvalue = cpu->isar.id_aa64mmfr0 },
8459             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
8460               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
8461               .access = PL1_R, .type = ARM_CP_CONST,
8462               .accessfn = access_aa64_tid3,
8463               .resetvalue = cpu->isar.id_aa64mmfr1 },
8464             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
8465               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
8466               .access = PL1_R, .type = ARM_CP_CONST,
8467               .accessfn = access_aa64_tid3,
8468               .resetvalue = cpu->isar.id_aa64mmfr2 },
8469             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8470               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
8471               .access = PL1_R, .type = ARM_CP_CONST,
8472               .accessfn = access_aa64_tid3,
8473               .resetvalue = 0 },
8474             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8475               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
8476               .access = PL1_R, .type = ARM_CP_CONST,
8477               .accessfn = access_aa64_tid3,
8478               .resetvalue = 0 },
8479             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8480               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
8481               .access = PL1_R, .type = ARM_CP_CONST,
8482               .accessfn = access_aa64_tid3,
8483               .resetvalue = 0 },
8484             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8485               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
8486               .access = PL1_R, .type = ARM_CP_CONST,
8487               .accessfn = access_aa64_tid3,
8488               .resetvalue = 0 },
8489             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
8490               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
8491               .access = PL1_R, .type = ARM_CP_CONST,
8492               .accessfn = access_aa64_tid3,
8493               .resetvalue = 0 },
8494             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
8495               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8496               .access = PL1_R, .type = ARM_CP_CONST,
8497               .accessfn = access_aa64_tid3,
8498               .resetvalue = cpu->isar.mvfr0 },
8499             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
8500               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8501               .access = PL1_R, .type = ARM_CP_CONST,
8502               .accessfn = access_aa64_tid3,
8503               .resetvalue = cpu->isar.mvfr1 },
8504             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
8505               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8506               .access = PL1_R, .type = ARM_CP_CONST,
8507               .accessfn = access_aa64_tid3,
8508               .resetvalue = cpu->isar.mvfr2 },
8509             /*
8510              * "0, c0, c3, {0,1,2}" are the encodings corresponding to
8511              * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
8512              * as RAZ, since it is in the "reserved for future ID
8513              * registers, RAZ" part of the AArch32 encoding space.
8514              */
8515             { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
8516               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
8517               .access = PL1_R, .type = ARM_CP_CONST,
8518               .accessfn = access_aa64_tid3,
8519               .resetvalue = 0 },
8520             { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
8521               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
8522               .access = PL1_R, .type = ARM_CP_CONST,
8523               .accessfn = access_aa64_tid3,
8524               .resetvalue = 0 },
8525             { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
8526               .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
8527               .access = PL1_R, .type = ARM_CP_CONST,
8528               .accessfn = access_aa64_tid3,
8529               .resetvalue = 0 },
8530             /*
8531              * Other encodings in "0, c0, c3, ..." are STATE_BOTH because
8532              * they're also RAZ for AArch64, and in v8 are gradually
8533              * being filled with AArch64-view-of-AArch32-ID-register
8534              * for new ID registers.
8535              */
8536             { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
8537               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
8538               .access = PL1_R, .type = ARM_CP_CONST,
8539               .accessfn = access_aa64_tid3,
8540               .resetvalue = 0 },
8541             { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
8542               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
8543               .access = PL1_R, .type = ARM_CP_CONST,
8544               .accessfn = access_aa64_tid3,
8545               .resetvalue = cpu->isar.id_pfr2 },
8546             { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
8547               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
8548               .access = PL1_R, .type = ARM_CP_CONST,
8549               .accessfn = access_aa64_tid3,
8550               .resetvalue = cpu->isar.id_dfr1 },
8551             { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
8552               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
8553               .access = PL1_R, .type = ARM_CP_CONST,
8554               .accessfn = access_aa64_tid3,
8555               .resetvalue = cpu->isar.id_mmfr5 },
8556             { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
8557               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
8558               .access = PL1_R, .type = ARM_CP_CONST,
8559               .accessfn = access_aa64_tid3,
8560               .resetvalue = 0 },
8561             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
8562               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
8563               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8564               .fgt = FGT_PMCEIDN_EL0,
8565               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
8566             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
8567               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
8568               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8569               .fgt = FGT_PMCEIDN_EL0,
8570               .resetvalue = cpu->pmceid0 },
8571             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
8572               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
8573               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8574               .fgt = FGT_PMCEIDN_EL0,
8575               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
8576             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
8577               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
8578               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
8579               .fgt = FGT_PMCEIDN_EL0,
8580               .resetvalue = cpu->pmceid1 },
8581         };
8582 #ifdef CONFIG_USER_ONLY
8583         static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
8584             { .name = "ID_AA64PFR0_EL1",
8585               .exported_bits = R_ID_AA64PFR0_FP_MASK |
8586                                R_ID_AA64PFR0_ADVSIMD_MASK |
8587                                R_ID_AA64PFR0_SVE_MASK |
8588                                R_ID_AA64PFR0_DIT_MASK,
8589               .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
8590                             (0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
8591             { .name = "ID_AA64PFR1_EL1",
8592               .exported_bits = R_ID_AA64PFR1_BT_MASK |
8593                                R_ID_AA64PFR1_SSBS_MASK |
8594                                R_ID_AA64PFR1_MTE_MASK |
8595                                R_ID_AA64PFR1_SME_MASK },
8596             { .name = "ID_AA64PFR*_EL1_RESERVED",
8597               .is_glob = true },
8598             { .name = "ID_AA64ZFR0_EL1",
8599               .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
8600                                R_ID_AA64ZFR0_AES_MASK |
8601                                R_ID_AA64ZFR0_BITPERM_MASK |
8602                                R_ID_AA64ZFR0_BFLOAT16_MASK |
8603                                R_ID_AA64ZFR0_SHA3_MASK |
8604                                R_ID_AA64ZFR0_SM4_MASK |
8605                                R_ID_AA64ZFR0_I8MM_MASK |
8606                                R_ID_AA64ZFR0_F32MM_MASK |
8607                                R_ID_AA64ZFR0_F64MM_MASK },
8608             { .name = "ID_AA64SMFR0_EL1",
8609               .exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
8610                                R_ID_AA64SMFR0_BI32I32_MASK |
8611                                R_ID_AA64SMFR0_B16F32_MASK |
8612                                R_ID_AA64SMFR0_F16F32_MASK |
8613                                R_ID_AA64SMFR0_I8I32_MASK |
8614                                R_ID_AA64SMFR0_F16F16_MASK |
8615                                R_ID_AA64SMFR0_B16B16_MASK |
8616                                R_ID_AA64SMFR0_I16I32_MASK |
8617                                R_ID_AA64SMFR0_F64F64_MASK |
8618                                R_ID_AA64SMFR0_I16I64_MASK |
8619                                R_ID_AA64SMFR0_SMEVER_MASK |
8620                                R_ID_AA64SMFR0_FA64_MASK },
8621             { .name = "ID_AA64MMFR0_EL1",
8622               .exported_bits = R_ID_AA64MMFR0_ECV_MASK,
8623               .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
8624                             (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
8625             { .name = "ID_AA64MMFR1_EL1",
8626               .exported_bits = R_ID_AA64MMFR1_AFP_MASK },
8627             { .name = "ID_AA64MMFR2_EL1",
8628               .exported_bits = R_ID_AA64MMFR2_AT_MASK },
8629             { .name = "ID_AA64MMFR*_EL1_RESERVED",
8630               .is_glob = true },
8631             { .name = "ID_AA64DFR0_EL1",
8632               .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
8633             { .name = "ID_AA64DFR1_EL1" },
8634             { .name = "ID_AA64DFR*_EL1_RESERVED",
8635               .is_glob = true },
8636             { .name = "ID_AA64AFR*",
8637               .is_glob = true },
8638             { .name = "ID_AA64ISAR0_EL1",
8639               .exported_bits = R_ID_AA64ISAR0_AES_MASK |
8640                                R_ID_AA64ISAR0_SHA1_MASK |
8641                                R_ID_AA64ISAR0_SHA2_MASK |
8642                                R_ID_AA64ISAR0_CRC32_MASK |
8643                                R_ID_AA64ISAR0_ATOMIC_MASK |
8644                                R_ID_AA64ISAR0_RDM_MASK |
8645                                R_ID_AA64ISAR0_SHA3_MASK |
8646                                R_ID_AA64ISAR0_SM3_MASK |
8647                                R_ID_AA64ISAR0_SM4_MASK |
8648                                R_ID_AA64ISAR0_DP_MASK |
8649                                R_ID_AA64ISAR0_FHM_MASK |
8650                                R_ID_AA64ISAR0_TS_MASK |
8651                                R_ID_AA64ISAR0_RNDR_MASK },
8652             { .name = "ID_AA64ISAR1_EL1",
8653               .exported_bits = R_ID_AA64ISAR1_DPB_MASK |
8654                                R_ID_AA64ISAR1_APA_MASK |
8655                                R_ID_AA64ISAR1_API_MASK |
8656                                R_ID_AA64ISAR1_JSCVT_MASK |
8657                                R_ID_AA64ISAR1_FCMA_MASK |
8658                                R_ID_AA64ISAR1_LRCPC_MASK |
8659                                R_ID_AA64ISAR1_GPA_MASK |
8660                                R_ID_AA64ISAR1_GPI_MASK |
8661                                R_ID_AA64ISAR1_FRINTTS_MASK |
8662                                R_ID_AA64ISAR1_SB_MASK |
8663                                R_ID_AA64ISAR1_BF16_MASK |
8664                                R_ID_AA64ISAR1_DGH_MASK |
8665                                R_ID_AA64ISAR1_I8MM_MASK },
8666             { .name = "ID_AA64ISAR2_EL1",
8667               .exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
8668                                R_ID_AA64ISAR2_RPRES_MASK |
8669                                R_ID_AA64ISAR2_GPA3_MASK |
8670                                R_ID_AA64ISAR2_APA3_MASK |
8671                                R_ID_AA64ISAR2_MOPS_MASK |
8672                                R_ID_AA64ISAR2_BC_MASK |
8673                                R_ID_AA64ISAR2_RPRFM_MASK |
8674                                R_ID_AA64ISAR2_CSSC_MASK },
8675             { .name = "ID_AA64ISAR*_EL1_RESERVED",
8676               .is_glob = true },
8677         };
8678         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
8679 #endif
8680         /*
8681          * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
8682          * TODO: For RMR, a write with bit 1 set should do something with
8683          * cpu_reset(). In the meantime, "the bit is strictly a request",
8684          * so we are in spec just ignoring writes.
8685          */
8686         if (!arm_feature(env, ARM_FEATURE_EL3) &&
8687             !arm_feature(env, ARM_FEATURE_EL2)) {
8688             ARMCPRegInfo el1_reset_regs[] = {
8689                 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
8690                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8691                   .access = PL1_R,
8692                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8693                 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
8694                   .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8695                   .access = PL1_RW, .type = ARM_CP_CONST,
8696                   .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
8697             };
8698             define_arm_cp_regs(cpu, el1_reset_regs);
8699         }
8700         define_arm_cp_regs(cpu, v8_idregs);
8701         define_arm_cp_regs(cpu, v8_cp_reginfo);
8702 
8703         for (i = 4; i < 16; i++) {
8704             /*
8705              * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
8706              * For pre-v8 cores there are RAZ patterns for these in
8707              * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
8708              * v8 extends the "must RAZ" part of the ID register space
8709              * to also cover c0, 0, c{8-15}, {0-7}.
8710              * These are STATE_AA32 because in the AArch64 sysreg space
8711              * c4-c7 is where the AArch64 ID registers live (and we've
8712              * already defined those in v8_idregs[]), and c8-c15 are not
8713              * "must RAZ" for AArch64.
8714              */
8715             g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
8716             ARMCPRegInfo v8_aa32_raz_idregs = {
8717                 .name = name,
8718                 .state = ARM_CP_STATE_AA32,
8719                 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
8720                 .access = PL1_R, .type = ARM_CP_CONST,
8721                 .accessfn = access_aa64_tid3,
8722                 .resetvalue = 0 };
8723             define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
8724         }
8725     }
8726 
8727     /*
8728      * Register the base EL2 cpregs.
8729      * Pre v8, these registers are implemented only as part of the
8730      * Virtualization Extensions (EL2 present).  Beginning with v8,
8731      * if EL2 is missing but EL3 is enabled, mostly these become
8732      * RES0 from EL3, with some specific exceptions.
8733      */
8734     if (arm_feature(env, ARM_FEATURE_EL2)
8735         || (arm_feature(env, ARM_FEATURE_EL3)
8736             && arm_feature(env, ARM_FEATURE_V8))) {
8737         uint64_t vmpidr_def = mpidr_read_val(env);
8738         ARMCPRegInfo vpidr_regs[] = {
8739             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
8740               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8741               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8742               .resetvalue = cpu->midr,
8743               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8744               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
8745             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
8746               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
8747               .access = PL2_RW, .resetvalue = cpu->midr,
8748               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8749               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
8750             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
8751               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8752               .access = PL2_RW, .accessfn = access_el3_aa32ns,
8753               .resetvalue = vmpidr_def,
8754               .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
8755               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
8756             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
8757               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
8758               .access = PL2_RW, .resetvalue = vmpidr_def,
8759               .type = ARM_CP_EL3_NO_EL2_C_NZ,
8760               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
8761         };
8762         /*
8763          * The only field of MDCR_EL2 that has a defined architectural reset
8764          * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
8765          */
8766         ARMCPRegInfo mdcr_el2 = {
8767             .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
8768             .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
8769             .writefn = mdcr_el2_write,
8770             .access = PL2_RW, .resetvalue = pmu_num_counters(env),
8771             .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
8772         };
8773         define_one_arm_cp_reg(cpu, &mdcr_el2);
8774         define_arm_cp_regs(cpu, vpidr_regs);
8775         define_arm_cp_regs(cpu, el2_cp_reginfo);
8776         if (arm_feature(env, ARM_FEATURE_V8)) {
8777             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
8778         }
8779         if (cpu_isar_feature(aa64_sel2, cpu)) {
8780             define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
8781         }
8782         /*
8783          * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
8784          * See commentary near RMR_EL1.
8785          */
8786         if (!arm_feature(env, ARM_FEATURE_EL3)) {
8787             static const ARMCPRegInfo el2_reset_regs[] = {
8788                 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
8789                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
8790                   .access = PL2_R,
8791                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8792                 { .name = "RVBAR", .type = ARM_CP_ALIAS,
8793                   .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
8794                   .access = PL2_R,
8795                   .fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
8796                 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
8797                   .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
8798                   .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8799             };
8800             define_arm_cp_regs(cpu, el2_reset_regs);
8801         }
8802     }
8803 
8804     /* Register the base EL3 cpregs. */
8805     if (arm_feature(env, ARM_FEATURE_EL3)) {
8806         define_arm_cp_regs(cpu, el3_cp_reginfo);
8807         ARMCPRegInfo el3_regs[] = {
8808             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
8809               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
8810               .access = PL3_R,
8811               .fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
8812             { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
8813               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
8814               .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
8815             { .name = "RMR", .state = ARM_CP_STATE_AA32,
8816               .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
8817               .access = PL3_RW, .type = ARM_CP_CONST,
8818               .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
8819             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
8820               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
8821               .access = PL3_RW,
8822               .raw_writefn = raw_write, .writefn = sctlr_write,
8823               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
8824               .resetvalue = cpu->reset_sctlr },
8825         };
8826 
8827         define_arm_cp_regs(cpu, el3_regs);
8828     }
8829     /*
8830      * The behaviour of NSACR is sufficiently various that we don't
8831      * try to describe it in a single reginfo:
8832      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
8833      *     reads as constant 0xc00 from NS EL1 and NS EL2
8834      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
8835      *  if v7 without EL3, register doesn't exist
8836      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
8837      */
8838     if (arm_feature(env, ARM_FEATURE_EL3)) {
8839         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8840             static const ARMCPRegInfo nsacr = {
8841                 .name = "NSACR", .type = ARM_CP_CONST,
8842                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8843                 .access = PL1_RW, .accessfn = nsacr_access,
8844                 .resetvalue = 0xc00
8845             };
8846             define_one_arm_cp_reg(cpu, &nsacr);
8847         } else {
8848             static const ARMCPRegInfo nsacr = {
8849                 .name = "NSACR",
8850                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8851                 .access = PL3_RW | PL1_R,
8852                 .resetvalue = 0,
8853                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
8854             };
8855             define_one_arm_cp_reg(cpu, &nsacr);
8856         }
8857     } else {
8858         if (arm_feature(env, ARM_FEATURE_V8)) {
8859             static const ARMCPRegInfo nsacr = {
8860                 .name = "NSACR", .type = ARM_CP_CONST,
8861                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
8862                 .access = PL1_R,
8863                 .resetvalue = 0xc00
8864             };
8865             define_one_arm_cp_reg(cpu, &nsacr);
8866         }
8867     }
8868 
8869     if (arm_feature(env, ARM_FEATURE_PMSA)) {
8870         if (arm_feature(env, ARM_FEATURE_V6)) {
8871             /* PMSAv6 not implemented */
8872             assert(arm_feature(env, ARM_FEATURE_V7));
8873             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8874             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
8875         } else {
8876             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
8877         }
8878     } else {
8879         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
8880         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
8881         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
8882         if (cpu_isar_feature(aa32_hpd, cpu)) {
8883             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
8884         }
8885     }
8886     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
8887         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
8888     }
8889     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
8890         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
8891     }
8892     if (arm_feature(env, ARM_FEATURE_VAPA)) {
8893         ARMCPRegInfo vapa_cp_reginfo[] = {
8894             { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
8895               .access = PL1_RW, .resetvalue = 0,
8896               .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
8897                                      offsetoflow32(CPUARMState, cp15.par_ns) },
8898               .writefn = par_write},
8899 #ifndef CONFIG_USER_ONLY
8900             /* This underdecoding is safe because the reginfo is NO_RAW. */
8901             { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
8902               .access = PL1_W, .accessfn = ats_access,
8903               .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
8904 #endif
8905         };
8906 
8907         /*
8908          * When LPAE exists this 32-bit PAR register is an alias of the
8909          * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
8910          */
8911         if (arm_feature(env, ARM_FEATURE_LPAE)) {
8912             vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
8913         }
8914         define_arm_cp_regs(cpu, vapa_cp_reginfo);
8915     }
8916     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
8917         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
8918     }
8919     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
8920         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
8921     }
8922     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
8923         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
8924     }
8925     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
8926         define_arm_cp_regs(cpu, omap_cp_reginfo);
8927     }
8928     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
8929         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
8930     }
8931     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8932         define_arm_cp_regs(cpu, xscale_cp_reginfo);
8933     }
8934     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
8935         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
8936     }
8937     if (arm_feature(env, ARM_FEATURE_LPAE)) {
8938         define_arm_cp_regs(cpu, lpae_cp_reginfo);
8939     }
8940     if (cpu_isar_feature(aa32_jazelle, cpu)) {
8941         define_arm_cp_regs(cpu, jazelle_regs);
8942     }
8943     /*
8944      * Slightly awkwardly, the OMAP and StrongARM cores need all of
8945      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
8946      * be read-only (ie write causes UNDEF exception).
8947      */
8948     {
8949         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
8950             /*
8951              * Pre-v8 MIDR space.
8952              * Note that the MIDR isn't a simple constant register because
8953              * of the TI925 behaviour where writes to another register can
8954              * cause the MIDR value to change.
8955              *
8956              * Unimplemented registers in the c15 0 0 0 space default to
8957              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
8958              * and friends override accordingly.
8959              */
8960             { .name = "MIDR",
8961               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
8962               .access = PL1_R, .resetvalue = cpu->midr,
8963               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
8964               .readfn = midr_read,
8965               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8966               .type = ARM_CP_OVERRIDE },
8967             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
8968             { .name = "DUMMY",
8969               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
8970               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8971             { .name = "DUMMY",
8972               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
8973               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8974             { .name = "DUMMY",
8975               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
8976               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8977             { .name = "DUMMY",
8978               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
8979               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8980             { .name = "DUMMY",
8981               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
8982               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
8983         };
8984         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
8985             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
8986               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
8987               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
8988               .fgt = FGT_MIDR_EL1,
8989               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
8990               .readfn = midr_read },
8991             /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
8992             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
8993               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
8994               .access = PL1_R, .resetvalue = cpu->midr },
8995             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
8996               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
8997               .access = PL1_R,
8998               .accessfn = access_aa64_tid1,
8999               .fgt = FGT_REVIDR_EL1,
9000               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
9001         };
9002         ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
9003             .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
9004             .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9005             .access = PL1_R, .resetvalue = cpu->midr
9006         };
9007         ARMCPRegInfo id_cp_reginfo[] = {
9008             /* These are common to v8 and pre-v8 */
9009             { .name = "CTR",
9010               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
9011               .access = PL1_R, .accessfn = ctr_el0_access,
9012               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9013             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
9014               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
9015               .access = PL0_R, .accessfn = ctr_el0_access,
9016               .fgt = FGT_CTR_EL0,
9017               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
9018             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
9019             { .name = "TCMTR",
9020               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
9021               .access = PL1_R,
9022               .accessfn = access_aa32_tid1,
9023               .type = ARM_CP_CONST, .resetvalue = 0 },
9024         };
9025         /* TLBTR is specific to VMSA */
9026         ARMCPRegInfo id_tlbtr_reginfo = {
9027               .name = "TLBTR",
9028               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
9029               .access = PL1_R,
9030               .accessfn = access_aa32_tid1,
9031               .type = ARM_CP_CONST, .resetvalue = 0,
9032         };
9033         /* MPUIR is specific to PMSA V6+ */
9034         ARMCPRegInfo id_mpuir_reginfo = {
9035               .name = "MPUIR",
9036               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
9037               .access = PL1_R, .type = ARM_CP_CONST,
9038               .resetvalue = cpu->pmsav7_dregion << 8
9039         };
9040         /* HMPUIR is specific to PMSA V8 */
9041         ARMCPRegInfo id_hmpuir_reginfo = {
9042             .name = "HMPUIR",
9043             .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
9044             .access = PL2_R, .type = ARM_CP_CONST,
9045             .resetvalue = cpu->pmsav8r_hdregion
9046         };
9047         static const ARMCPRegInfo crn0_wi_reginfo = {
9048             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
9049             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
9050             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
9051         };
9052 #ifdef CONFIG_USER_ONLY
9053         static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
9054             { .name = "MIDR_EL1",
9055               .exported_bits = R_MIDR_EL1_REVISION_MASK |
9056                                R_MIDR_EL1_PARTNUM_MASK |
9057                                R_MIDR_EL1_ARCHITECTURE_MASK |
9058                                R_MIDR_EL1_VARIANT_MASK |
9059                                R_MIDR_EL1_IMPLEMENTER_MASK },
9060             { .name = "REVIDR_EL1" },
9061         };
9062         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
9063 #endif
9064         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
9065             arm_feature(env, ARM_FEATURE_STRONGARM)) {
9066             size_t i;
9067             /*
9068              * Register the blanket "writes ignored" value first to cover the
9069              * whole space. Then update the specific ID registers to allow write
9070              * access, so that they ignore writes rather than causing them to
9071              * UNDEF.
9072              */
9073             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
9074             for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
9075                 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
9076             }
9077             for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
9078                 id_cp_reginfo[i].access = PL1_RW;
9079             }
9080             id_mpuir_reginfo.access = PL1_RW;
9081             id_tlbtr_reginfo.access = PL1_RW;
9082         }
9083         if (arm_feature(env, ARM_FEATURE_V8)) {
9084             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
9085             if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9086                 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
9087             }
9088         } else {
9089             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
9090         }
9091         define_arm_cp_regs(cpu, id_cp_reginfo);
9092         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
9093             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
9094         } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
9095                    arm_feature(env, ARM_FEATURE_V8)) {
9096             uint32_t i = 0;
9097             char *tmp_string;
9098 
9099             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9100             define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
9101             define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
9102 
9103             /* Register alias is only valid for first 32 indexes */
9104             for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
9105                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9106                 uint8_t opc1 = extract32(i, 4, 1);
9107                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9108 
9109                 tmp_string = g_strdup_printf("PRBAR%u", i);
9110                 ARMCPRegInfo tmp_prbarn_reginfo = {
9111                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9112                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9113                     .access = PL1_RW, .resetvalue = 0,
9114                     .accessfn = access_tvm_trvm,
9115                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9116                 };
9117                 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
9118                 g_free(tmp_string);
9119 
9120                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9121                 tmp_string = g_strdup_printf("PRLAR%u", i);
9122                 ARMCPRegInfo tmp_prlarn_reginfo = {
9123                     .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
9124                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9125                     .access = PL1_RW, .resetvalue = 0,
9126                     .accessfn = access_tvm_trvm,
9127                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9128                 };
9129                 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
9130                 g_free(tmp_string);
9131             }
9132 
9133             /* Register alias is only valid for first 32 indexes */
9134             for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
9135                 uint8_t crm = 0b1000 | extract32(i, 1, 3);
9136                 uint8_t opc1 = 0b100 | extract32(i, 4, 1);
9137                 uint8_t opc2 = extract32(i, 0, 1) << 2;
9138 
9139                 tmp_string = g_strdup_printf("HPRBAR%u", i);
9140                 ARMCPRegInfo tmp_hprbarn_reginfo = {
9141                     .name = tmp_string,
9142                     .type = ARM_CP_NO_RAW,
9143                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9144                     .access = PL2_RW, .resetvalue = 0,
9145                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9146                 };
9147                 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
9148                 g_free(tmp_string);
9149 
9150                 opc2 = extract32(i, 0, 1) << 2 | 0x1;
9151                 tmp_string = g_strdup_printf("HPRLAR%u", i);
9152                 ARMCPRegInfo tmp_hprlarn_reginfo = {
9153                     .name = tmp_string,
9154                     .type = ARM_CP_NO_RAW,
9155                     .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
9156                     .access = PL2_RW, .resetvalue = 0,
9157                     .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
9158                 };
9159                 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
9160                 g_free(tmp_string);
9161             }
9162         } else if (arm_feature(env, ARM_FEATURE_V7)) {
9163             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
9164         }
9165     }
9166 
9167     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
9168         ARMCPRegInfo mpidr_cp_reginfo[] = {
9169             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
9170               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
9171               .fgt = FGT_MPIDR_EL1,
9172               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
9173         };
9174 #ifdef CONFIG_USER_ONLY
9175         static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
9176             { .name = "MPIDR_EL1",
9177               .fixed_bits = 0x0000000080000000 },
9178         };
9179         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
9180 #endif
9181         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
9182     }
9183 
9184     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
9185         ARMCPRegInfo auxcr_reginfo[] = {
9186             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
9187               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
9188               .access = PL1_RW, .accessfn = access_tacr,
9189               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
9190             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
9191               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
9192               .access = PL2_RW, .type = ARM_CP_CONST,
9193               .resetvalue = 0 },
9194             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
9195               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
9196               .access = PL3_RW, .type = ARM_CP_CONST,
9197               .resetvalue = 0 },
9198         };
9199         define_arm_cp_regs(cpu, auxcr_reginfo);
9200         if (cpu_isar_feature(aa32_ac2, cpu)) {
9201             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
9202         }
9203     }
9204 
9205     if (arm_feature(env, ARM_FEATURE_CBAR)) {
9206         /*
9207          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
9208          * There are two flavours:
9209          *  (1) older 32-bit only cores have a simple 32-bit CBAR
9210          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
9211          *      32-bit register visible to AArch32 at a different encoding
9212          *      to the "flavour 1" register and with the bits rearranged to
9213          *      be able to squash a 64-bit address into the 32-bit view.
9214          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
9215          * in future if we support AArch32-only configs of some of the
9216          * AArch64 cores we might need to add a specific feature flag
9217          * to indicate cores with "flavour 2" CBAR.
9218          */
9219         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
9220             /* 32 bit view is [31:18] 0...0 [43:32]. */
9221             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
9222                 | extract64(cpu->reset_cbar, 32, 12);
9223             ARMCPRegInfo cbar_reginfo[] = {
9224                 { .name = "CBAR",
9225                   .type = ARM_CP_CONST,
9226                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
9227                   .access = PL1_R, .resetvalue = cbar32 },
9228                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
9229                   .type = ARM_CP_CONST,
9230                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
9231                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
9232             };
9233             /* We don't implement a r/w 64 bit CBAR currently */
9234             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
9235             define_arm_cp_regs(cpu, cbar_reginfo);
9236         } else {
9237             ARMCPRegInfo cbar = {
9238                 .name = "CBAR",
9239                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
9240                 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
9241                 .fieldoffset = offsetof(CPUARMState,
9242                                         cp15.c15_config_base_address)
9243             };
9244             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
9245                 cbar.access = PL1_R;
9246                 cbar.fieldoffset = 0;
9247                 cbar.type = ARM_CP_CONST;
9248             }
9249             define_one_arm_cp_reg(cpu, &cbar);
9250         }
9251     }
9252 
9253     if (arm_feature(env, ARM_FEATURE_VBAR)) {
9254         static const ARMCPRegInfo vbar_cp_reginfo[] = {
9255             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
9256               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
9257               .access = PL1_RW, .writefn = vbar_write,
9258               .fgt = FGT_VBAR_EL1,
9259               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
9260                                      offsetof(CPUARMState, cp15.vbar_ns) },
9261               .resetvalue = 0 },
9262         };
9263         define_arm_cp_regs(cpu, vbar_cp_reginfo);
9264     }
9265 
9266     /* Generic registers whose values depend on the implementation */
9267     {
9268         ARMCPRegInfo sctlr = {
9269             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
9270             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
9271             .access = PL1_RW, .accessfn = access_tvm_trvm,
9272             .fgt = FGT_SCTLR_EL1,
9273             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
9274                                    offsetof(CPUARMState, cp15.sctlr_ns) },
9275             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
9276             .raw_writefn = raw_write,
9277         };
9278         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
9279             /*
9280              * Normally we would always end the TB on an SCTLR write, but Linux
9281              * arch/arm/mach-pxa/sleep.S expects two instructions following
9282              * an MMU enable to execute from cache.  Imitate this behaviour.
9283              */
9284             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
9285         }
9286         define_one_arm_cp_reg(cpu, &sctlr);
9287 
9288         if (arm_feature(env, ARM_FEATURE_PMSA) &&
9289             arm_feature(env, ARM_FEATURE_V8)) {
9290             ARMCPRegInfo vsctlr = {
9291                 .name = "VSCTLR", .state = ARM_CP_STATE_AA32,
9292                 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
9293                 .access = PL2_RW, .resetvalue = 0x0,
9294                 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
9295             };
9296             define_one_arm_cp_reg(cpu, &vsctlr);
9297         }
9298     }
9299 
9300     if (cpu_isar_feature(aa64_lor, cpu)) {
9301         define_arm_cp_regs(cpu, lor_reginfo);
9302     }
9303     if (cpu_isar_feature(aa64_pan, cpu)) {
9304         define_one_arm_cp_reg(cpu, &pan_reginfo);
9305     }
9306 #ifndef CONFIG_USER_ONLY
9307     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
9308         define_arm_cp_regs(cpu, ats1e1_reginfo);
9309     }
9310     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
9311         define_arm_cp_regs(cpu, ats1cp_reginfo);
9312     }
9313 #endif
9314     if (cpu_isar_feature(aa64_uao, cpu)) {
9315         define_one_arm_cp_reg(cpu, &uao_reginfo);
9316     }
9317 
9318     if (cpu_isar_feature(aa64_dit, cpu)) {
9319         define_one_arm_cp_reg(cpu, &dit_reginfo);
9320     }
9321     if (cpu_isar_feature(aa64_ssbs, cpu)) {
9322         define_one_arm_cp_reg(cpu, &ssbs_reginfo);
9323     }
9324     if (cpu_isar_feature(any_ras, cpu)) {
9325         define_arm_cp_regs(cpu, minimal_ras_reginfo);
9326     }
9327 
9328     if (cpu_isar_feature(aa64_vh, cpu) ||
9329         cpu_isar_feature(aa64_debugv8p2, cpu)) {
9330         define_one_arm_cp_reg(cpu, &contextidr_el2);
9331     }
9332     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9333         define_arm_cp_regs(cpu, vhe_reginfo);
9334     }
9335 
9336     if (cpu_isar_feature(aa64_sve, cpu)) {
9337         define_arm_cp_regs(cpu, zcr_reginfo);
9338     }
9339 
9340     if (cpu_isar_feature(aa64_hcx, cpu)) {
9341         define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
9342     }
9343 
9344 #ifdef TARGET_AARCH64
9345     if (cpu_isar_feature(aa64_sme, cpu)) {
9346         define_arm_cp_regs(cpu, sme_reginfo);
9347     }
9348     if (cpu_isar_feature(aa64_pauth, cpu)) {
9349         define_arm_cp_regs(cpu, pauth_reginfo);
9350     }
9351     if (cpu_isar_feature(aa64_rndr, cpu)) {
9352         define_arm_cp_regs(cpu, rndr_reginfo);
9353     }
9354     if (cpu_isar_feature(aa64_tlbirange, cpu)) {
9355         define_arm_cp_regs(cpu, tlbirange_reginfo);
9356     }
9357     if (cpu_isar_feature(aa64_tlbios, cpu)) {
9358         define_arm_cp_regs(cpu, tlbios_reginfo);
9359     }
9360     /* Data Cache clean instructions up to PoP */
9361     if (cpu_isar_feature(aa64_dcpop, cpu)) {
9362         define_one_arm_cp_reg(cpu, dcpop_reg);
9363 
9364         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
9365             define_one_arm_cp_reg(cpu, dcpodp_reg);
9366         }
9367     }
9368 
9369     /*
9370      * If full MTE is enabled, add all of the system registers.
9371      * If only "instructions available at EL0" are enabled,
9372      * then define only a RAZ/WI version of PSTATE.TCO.
9373      */
9374     if (cpu_isar_feature(aa64_mte, cpu)) {
9375         ARMCPRegInfo gmid_reginfo = {
9376             .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
9377             .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
9378             .access = PL1_R, .accessfn = access_aa64_tid5,
9379             .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
9380         };
9381         define_one_arm_cp_reg(cpu, &gmid_reginfo);
9382         define_arm_cp_regs(cpu, mte_reginfo);
9383         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9384     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
9385         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
9386         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
9387     }
9388 
9389     if (cpu_isar_feature(aa64_scxtnum, cpu)) {
9390         define_arm_cp_regs(cpu, scxtnum_reginfo);
9391     }
9392 
9393     if (cpu_isar_feature(aa64_fgt, cpu)) {
9394         define_arm_cp_regs(cpu, fgt_reginfo);
9395     }
9396 
9397     if (cpu_isar_feature(aa64_rme, cpu)) {
9398         define_arm_cp_regs(cpu, rme_reginfo);
9399         if (cpu_isar_feature(aa64_mte, cpu)) {
9400             define_arm_cp_regs(cpu, rme_mte_reginfo);
9401         }
9402     }
9403 #endif
9404 
9405     if (cpu_isar_feature(any_predinv, cpu)) {
9406         define_arm_cp_regs(cpu, predinv_reginfo);
9407     }
9408 
9409     if (cpu_isar_feature(any_ccidx, cpu)) {
9410         define_arm_cp_regs(cpu, ccsidr2_reginfo);
9411     }
9412 
9413 #ifndef CONFIG_USER_ONLY
9414     /*
9415      * Register redirections and aliases must be done last,
9416      * after the registers from the other extensions have been defined.
9417      */
9418     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
9419         define_arm_vh_e2h_redirects_aliases(cpu);
9420     }
9421 #endif
9422 }
9423 
9424 /* Sort alphabetically by type name, except for "any". */
9425 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
9426 {
9427     ObjectClass *class_a = (ObjectClass *)a;
9428     ObjectClass *class_b = (ObjectClass *)b;
9429     const char *name_a, *name_b;
9430 
9431     name_a = object_class_get_name(class_a);
9432     name_b = object_class_get_name(class_b);
9433     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
9434         return 1;
9435     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
9436         return -1;
9437     } else {
9438         return strcmp(name_a, name_b);
9439     }
9440 }
9441 
9442 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
9443 {
9444     ObjectClass *oc = data;
9445     CPUClass *cc = CPU_CLASS(oc);
9446     const char *typename;
9447     char *name;
9448 
9449     typename = object_class_get_name(oc);
9450     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
9451     if (cc->deprecation_note) {
9452         qemu_printf("  %s (deprecated)\n", name);
9453     } else {
9454         qemu_printf("  %s\n", name);
9455     }
9456     g_free(name);
9457 }
9458 
9459 void arm_cpu_list(void)
9460 {
9461     GSList *list;
9462 
9463     list = object_class_get_list(TYPE_ARM_CPU, false);
9464     list = g_slist_sort(list, arm_cpu_list_compare);
9465     qemu_printf("Available CPUs:\n");
9466     g_slist_foreach(list, arm_cpu_list_entry, NULL);
9467     g_slist_free(list);
9468 }
9469 
9470 /*
9471  * Private utility function for define_one_arm_cp_reg_with_opaque():
9472  * add a single reginfo struct to the hash table.
9473  */
9474 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
9475                                    void *opaque, CPState state,
9476                                    CPSecureState secstate,
9477                                    int crm, int opc1, int opc2,
9478                                    const char *name)
9479 {
9480     CPUARMState *env = &cpu->env;
9481     uint32_t key;
9482     ARMCPRegInfo *r2;
9483     bool is64 = r->type & ARM_CP_64BIT;
9484     bool ns = secstate & ARM_CP_SECSTATE_NS;
9485     int cp = r->cp;
9486     size_t name_len;
9487     bool make_const;
9488 
9489     switch (state) {
9490     case ARM_CP_STATE_AA32:
9491         /* We assume it is a cp15 register if the .cp field is left unset. */
9492         if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
9493             cp = 15;
9494         }
9495         key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
9496         break;
9497     case ARM_CP_STATE_AA64:
9498         /*
9499          * To allow abbreviation of ARMCPRegInfo definitions, we treat
9500          * cp == 0 as equivalent to the value for "standard guest-visible
9501          * sysreg".  STATE_BOTH definitions are also always "standard sysreg"
9502          * in their AArch64 view (the .cp value may be non-zero for the
9503          * benefit of the AArch32 view).
9504          */
9505         if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
9506             cp = CP_REG_ARM64_SYSREG_CP;
9507         }
9508         key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
9509         break;
9510     default:
9511         g_assert_not_reached();
9512     }
9513 
9514     /* Overriding of an existing definition must be explicitly requested. */
9515     if (!(r->type & ARM_CP_OVERRIDE)) {
9516         const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
9517         if (oldreg) {
9518             assert(oldreg->type & ARM_CP_OVERRIDE);
9519         }
9520     }
9521 
9522     /*
9523      * Eliminate registers that are not present because the EL is missing.
9524      * Doing this here makes it easier to put all registers for a given
9525      * feature into the same ARMCPRegInfo array and define them all at once.
9526      */
9527     make_const = false;
9528     if (arm_feature(env, ARM_FEATURE_EL3)) {
9529         /*
9530          * An EL2 register without EL2 but with EL3 is (usually) RES0.
9531          * See rule RJFFP in section D1.1.3 of DDI0487H.a.
9532          */
9533         int min_el = ctz32(r->access) / 2;
9534         if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
9535             if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
9536                 return;
9537             }
9538             make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
9539         }
9540     } else {
9541         CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
9542                                  ? PL2_RW : PL1_RW);
9543         if ((r->access & max_el) == 0) {
9544             return;
9545         }
9546     }
9547 
9548     /* Combine cpreg and name into one allocation. */
9549     name_len = strlen(name) + 1;
9550     r2 = g_malloc(sizeof(*r2) + name_len);
9551     *r2 = *r;
9552     r2->name = memcpy(r2 + 1, name, name_len);
9553 
9554     /*
9555      * Update fields to match the instantiation, overwiting wildcards
9556      * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
9557      */
9558     r2->cp = cp;
9559     r2->crm = crm;
9560     r2->opc1 = opc1;
9561     r2->opc2 = opc2;
9562     r2->state = state;
9563     r2->secure = secstate;
9564     if (opaque) {
9565         r2->opaque = opaque;
9566     }
9567 
9568     if (make_const) {
9569         /* This should not have been a very special register to begin. */
9570         int old_special = r2->type & ARM_CP_SPECIAL_MASK;
9571         assert(old_special == 0 || old_special == ARM_CP_NOP);
9572         /*
9573          * Set the special function to CONST, retaining the other flags.
9574          * This is important for e.g. ARM_CP_SVE so that we still
9575          * take the SVE trap if CPTR_EL3.EZ == 0.
9576          */
9577         r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
9578         /*
9579          * Usually, these registers become RES0, but there are a few
9580          * special cases like VPIDR_EL2 which have a constant non-zero
9581          * value with writes ignored.
9582          */
9583         if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
9584             r2->resetvalue = 0;
9585         }
9586         /*
9587          * ARM_CP_CONST has precedence, so removing the callbacks and
9588          * offsets are not strictly necessary, but it is potentially
9589          * less confusing to debug later.
9590          */
9591         r2->readfn = NULL;
9592         r2->writefn = NULL;
9593         r2->raw_readfn = NULL;
9594         r2->raw_writefn = NULL;
9595         r2->resetfn = NULL;
9596         r2->fieldoffset = 0;
9597         r2->bank_fieldoffsets[0] = 0;
9598         r2->bank_fieldoffsets[1] = 0;
9599     } else {
9600         bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
9601 
9602         if (isbanked) {
9603             /*
9604              * Register is banked (using both entries in array).
9605              * Overwriting fieldoffset as the array is only used to define
9606              * banked registers but later only fieldoffset is used.
9607              */
9608             r2->fieldoffset = r->bank_fieldoffsets[ns];
9609         }
9610         if (state == ARM_CP_STATE_AA32) {
9611             if (isbanked) {
9612                 /*
9613                  * If the register is banked then we don't need to migrate or
9614                  * reset the 32-bit instance in certain cases:
9615                  *
9616                  * 1) If the register has both 32-bit and 64-bit instances
9617                  *    then we can count on the 64-bit instance taking care
9618                  *    of the non-secure bank.
9619                  * 2) If ARMv8 is enabled then we can count on a 64-bit
9620                  *    version taking care of the secure bank.  This requires
9621                  *    that separate 32 and 64-bit definitions are provided.
9622                  */
9623                 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
9624                     (arm_feature(env, ARM_FEATURE_V8) && !ns)) {
9625                     r2->type |= ARM_CP_ALIAS;
9626                 }
9627             } else if ((secstate != r->secure) && !ns) {
9628                 /*
9629                  * The register is not banked so we only want to allow
9630                  * migration of the non-secure instance.
9631                  */
9632                 r2->type |= ARM_CP_ALIAS;
9633             }
9634 
9635             if (HOST_BIG_ENDIAN &&
9636                 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
9637                 r2->fieldoffset += sizeof(uint32_t);
9638             }
9639         }
9640     }
9641 
9642     /*
9643      * By convention, for wildcarded registers only the first
9644      * entry is used for migration; the others are marked as
9645      * ALIAS so we don't try to transfer the register
9646      * multiple times. Special registers (ie NOP/WFI) are
9647      * never migratable and not even raw-accessible.
9648      */
9649     if (r2->type & ARM_CP_SPECIAL_MASK) {
9650         r2->type |= ARM_CP_NO_RAW;
9651     }
9652     if (((r->crm == CP_ANY) && crm != 0) ||
9653         ((r->opc1 == CP_ANY) && opc1 != 0) ||
9654         ((r->opc2 == CP_ANY) && opc2 != 0)) {
9655         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
9656     }
9657 
9658     /*
9659      * Check that raw accesses are either forbidden or handled. Note that
9660      * we can't assert this earlier because the setup of fieldoffset for
9661      * banked registers has to be done first.
9662      */
9663     if (!(r2->type & ARM_CP_NO_RAW)) {
9664         assert(!raw_accessors_invalid(r2));
9665     }
9666 
9667     g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
9668 }
9669 
9670 
9671 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
9672                                        const ARMCPRegInfo *r, void *opaque)
9673 {
9674     /*
9675      * Define implementations of coprocessor registers.
9676      * We store these in a hashtable because typically
9677      * there are less than 150 registers in a space which
9678      * is 16*16*16*8*8 = 262144 in size.
9679      * Wildcarding is supported for the crm, opc1 and opc2 fields.
9680      * If a register is defined twice then the second definition is
9681      * used, so this can be used to define some generic registers and
9682      * then override them with implementation specific variations.
9683      * At least one of the original and the second definition should
9684      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
9685      * against accidental use.
9686      *
9687      * The state field defines whether the register is to be
9688      * visible in the AArch32 or AArch64 execution state. If the
9689      * state is set to ARM_CP_STATE_BOTH then we synthesise a
9690      * reginfo structure for the AArch32 view, which sees the lower
9691      * 32 bits of the 64 bit register.
9692      *
9693      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
9694      * be wildcarded. AArch64 registers are always considered to be 64
9695      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
9696      * the register, if any.
9697      */
9698     int crm, opc1, opc2;
9699     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
9700     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
9701     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
9702     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
9703     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
9704     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
9705     CPState state;
9706 
9707     /* 64 bit registers have only CRm and Opc1 fields */
9708     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
9709     /* op0 only exists in the AArch64 encodings */
9710     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
9711     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
9712     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
9713     /*
9714      * This API is only for Arm's system coprocessors (14 and 15) or
9715      * (M-profile or v7A-and-earlier only) for implementation defined
9716      * coprocessors in the range 0..7.  Our decode assumes this, since
9717      * 8..13 can be used for other insns including VFP and Neon. See
9718      * valid_cp() in translate.c.  Assert here that we haven't tried
9719      * to use an invalid coprocessor number.
9720      */
9721     switch (r->state) {
9722     case ARM_CP_STATE_BOTH:
9723         /* 0 has a special meaning, but otherwise the same rules as AA32. */
9724         if (r->cp == 0) {
9725             break;
9726         }
9727         /* fall through */
9728     case ARM_CP_STATE_AA32:
9729         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
9730             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
9731             assert(r->cp >= 14 && r->cp <= 15);
9732         } else {
9733             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
9734         }
9735         break;
9736     case ARM_CP_STATE_AA64:
9737         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
9738         break;
9739     default:
9740         g_assert_not_reached();
9741     }
9742     /*
9743      * The AArch64 pseudocode CheckSystemAccess() specifies that op1
9744      * encodes a minimum access level for the register. We roll this
9745      * runtime check into our general permission check code, so check
9746      * here that the reginfo's specified permissions are strict enough
9747      * to encompass the generic architectural permission check.
9748      */
9749     if (r->state != ARM_CP_STATE_AA32) {
9750         CPAccessRights mask;
9751         switch (r->opc1) {
9752         case 0:
9753             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
9754             mask = PL0U_R | PL1_RW;
9755             break;
9756         case 1: case 2:
9757             /* min_EL EL1 */
9758             mask = PL1_RW;
9759             break;
9760         case 3:
9761             /* min_EL EL0 */
9762             mask = PL0_RW;
9763             break;
9764         case 4:
9765         case 5:
9766             /* min_EL EL2 */
9767             mask = PL2_RW;
9768             break;
9769         case 6:
9770             /* min_EL EL3 */
9771             mask = PL3_RW;
9772             break;
9773         case 7:
9774             /* min_EL EL1, secure mode only (we don't check the latter) */
9775             mask = PL1_RW;
9776             break;
9777         default:
9778             /* broken reginfo with out-of-range opc1 */
9779             g_assert_not_reached();
9780         }
9781         /* assert our permissions are not too lax (stricter is fine) */
9782         assert((r->access & ~mask) == 0);
9783     }
9784 
9785     /*
9786      * Check that the register definition has enough info to handle
9787      * reads and writes if they are permitted.
9788      */
9789     if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
9790         if (r->access & PL3_R) {
9791             assert((r->fieldoffset ||
9792                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9793                    r->readfn);
9794         }
9795         if (r->access & PL3_W) {
9796             assert((r->fieldoffset ||
9797                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
9798                    r->writefn);
9799         }
9800     }
9801 
9802     for (crm = crmmin; crm <= crmmax; crm++) {
9803         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
9804             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
9805                 for (state = ARM_CP_STATE_AA32;
9806                      state <= ARM_CP_STATE_AA64; state++) {
9807                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
9808                         continue;
9809                     }
9810                     if (state == ARM_CP_STATE_AA32) {
9811                         /*
9812                          * Under AArch32 CP registers can be common
9813                          * (same for secure and non-secure world) or banked.
9814                          */
9815                         char *name;
9816 
9817                         switch (r->secure) {
9818                         case ARM_CP_SECSTATE_S:
9819                         case ARM_CP_SECSTATE_NS:
9820                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9821                                                    r->secure, crm, opc1, opc2,
9822                                                    r->name);
9823                             break;
9824                         case ARM_CP_SECSTATE_BOTH:
9825                             name = g_strdup_printf("%s_S", r->name);
9826                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9827                                                    ARM_CP_SECSTATE_S,
9828                                                    crm, opc1, opc2, name);
9829                             g_free(name);
9830                             add_cpreg_to_hashtable(cpu, r, opaque, state,
9831                                                    ARM_CP_SECSTATE_NS,
9832                                                    crm, opc1, opc2, r->name);
9833                             break;
9834                         default:
9835                             g_assert_not_reached();
9836                         }
9837                     } else {
9838                         /*
9839                          * AArch64 registers get mapped to non-secure instance
9840                          * of AArch32
9841                          */
9842                         add_cpreg_to_hashtable(cpu, r, opaque, state,
9843                                                ARM_CP_SECSTATE_NS,
9844                                                crm, opc1, opc2, r->name);
9845                     }
9846                 }
9847             }
9848         }
9849     }
9850 }
9851 
9852 /* Define a whole list of registers */
9853 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
9854                                         void *opaque, size_t len)
9855 {
9856     size_t i;
9857     for (i = 0; i < len; ++i) {
9858         define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
9859     }
9860 }
9861 
9862 /*
9863  * Modify ARMCPRegInfo for access from userspace.
9864  *
9865  * This is a data driven modification directed by
9866  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
9867  * user-space cannot alter any values and dynamic values pertaining to
9868  * execution state are hidden from user space view anyway.
9869  */
9870 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
9871                                  const ARMCPRegUserSpaceInfo *mods,
9872                                  size_t mods_len)
9873 {
9874     for (size_t mi = 0; mi < mods_len; ++mi) {
9875         const ARMCPRegUserSpaceInfo *m = mods + mi;
9876         GPatternSpec *pat = NULL;
9877 
9878         if (m->is_glob) {
9879             pat = g_pattern_spec_new(m->name);
9880         }
9881         for (size_t ri = 0; ri < regs_len; ++ri) {
9882             ARMCPRegInfo *r = regs + ri;
9883 
9884             if (pat && g_pattern_match_string(pat, r->name)) {
9885                 r->type = ARM_CP_CONST;
9886                 r->access = PL0U_R;
9887                 r->resetvalue = 0;
9888                 /* continue */
9889             } else if (strcmp(r->name, m->name) == 0) {
9890                 r->type = ARM_CP_CONST;
9891                 r->access = PL0U_R;
9892                 r->resetvalue &= m->exported_bits;
9893                 r->resetvalue |= m->fixed_bits;
9894                 break;
9895             }
9896         }
9897         if (pat) {
9898             g_pattern_spec_free(pat);
9899         }
9900     }
9901 }
9902 
9903 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
9904 {
9905     return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
9906 }
9907 
9908 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
9909                          uint64_t value)
9910 {
9911     /* Helper coprocessor write function for write-ignore registers */
9912 }
9913 
9914 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
9915 {
9916     /* Helper coprocessor write function for read-as-zero registers */
9917     return 0;
9918 }
9919 
9920 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
9921 {
9922     /* Helper coprocessor reset function for do-nothing-on-reset registers */
9923 }
9924 
9925 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
9926 {
9927     /*
9928      * Return true if it is not valid for us to switch to
9929      * this CPU mode (ie all the UNPREDICTABLE cases in
9930      * the ARM ARM CPSRWriteByInstr pseudocode).
9931      */
9932 
9933     /* Changes to or from Hyp via MSR and CPS are illegal. */
9934     if (write_type == CPSRWriteByInstr &&
9935         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
9936          mode == ARM_CPU_MODE_HYP)) {
9937         return 1;
9938     }
9939 
9940     switch (mode) {
9941     case ARM_CPU_MODE_USR:
9942         return 0;
9943     case ARM_CPU_MODE_SYS:
9944     case ARM_CPU_MODE_SVC:
9945     case ARM_CPU_MODE_ABT:
9946     case ARM_CPU_MODE_UND:
9947     case ARM_CPU_MODE_IRQ:
9948     case ARM_CPU_MODE_FIQ:
9949         /*
9950          * Note that we don't implement the IMPDEF NSACR.RFR which in v7
9951          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
9952          */
9953         /*
9954          * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
9955          * and CPS are treated as illegal mode changes.
9956          */
9957         if (write_type == CPSRWriteByInstr &&
9958             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
9959             (arm_hcr_el2_eff(env) & HCR_TGE)) {
9960             return 1;
9961         }
9962         return 0;
9963     case ARM_CPU_MODE_HYP:
9964         return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
9965     case ARM_CPU_MODE_MON:
9966         return arm_current_el(env) < 3;
9967     default:
9968         return 1;
9969     }
9970 }
9971 
9972 uint32_t cpsr_read(CPUARMState *env)
9973 {
9974     int ZF;
9975     ZF = (env->ZF == 0);
9976     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
9977         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
9978         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
9979         | ((env->condexec_bits & 0xfc) << 8)
9980         | (env->GE << 16) | (env->daif & CPSR_AIF);
9981 }
9982 
9983 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
9984                 CPSRWriteType write_type)
9985 {
9986     uint32_t changed_daif;
9987     bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
9988         (mask & (CPSR_M | CPSR_E | CPSR_IL));
9989 
9990     if (mask & CPSR_NZCV) {
9991         env->ZF = (~val) & CPSR_Z;
9992         env->NF = val;
9993         env->CF = (val >> 29) & 1;
9994         env->VF = (val << 3) & 0x80000000;
9995     }
9996     if (mask & CPSR_Q) {
9997         env->QF = ((val & CPSR_Q) != 0);
9998     }
9999     if (mask & CPSR_T) {
10000         env->thumb = ((val & CPSR_T) != 0);
10001     }
10002     if (mask & CPSR_IT_0_1) {
10003         env->condexec_bits &= ~3;
10004         env->condexec_bits |= (val >> 25) & 3;
10005     }
10006     if (mask & CPSR_IT_2_7) {
10007         env->condexec_bits &= 3;
10008         env->condexec_bits |= (val >> 8) & 0xfc;
10009     }
10010     if (mask & CPSR_GE) {
10011         env->GE = (val >> 16) & 0xf;
10012     }
10013 
10014     /*
10015      * In a V7 implementation that includes the security extensions but does
10016      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
10017      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
10018      * bits respectively.
10019      *
10020      * In a V8 implementation, it is permitted for privileged software to
10021      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
10022      */
10023     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
10024         arm_feature(env, ARM_FEATURE_EL3) &&
10025         !arm_feature(env, ARM_FEATURE_EL2) &&
10026         !arm_is_secure(env)) {
10027 
10028         changed_daif = (env->daif ^ val) & mask;
10029 
10030         if (changed_daif & CPSR_A) {
10031             /*
10032              * Check to see if we are allowed to change the masking of async
10033              * abort exceptions from a non-secure state.
10034              */
10035             if (!(env->cp15.scr_el3 & SCR_AW)) {
10036                 qemu_log_mask(LOG_GUEST_ERROR,
10037                               "Ignoring attempt to switch CPSR_A flag from "
10038                               "non-secure world with SCR.AW bit clear\n");
10039                 mask &= ~CPSR_A;
10040             }
10041         }
10042 
10043         if (changed_daif & CPSR_F) {
10044             /*
10045              * Check to see if we are allowed to change the masking of FIQ
10046              * exceptions from a non-secure state.
10047              */
10048             if (!(env->cp15.scr_el3 & SCR_FW)) {
10049                 qemu_log_mask(LOG_GUEST_ERROR,
10050                               "Ignoring attempt to switch CPSR_F flag from "
10051                               "non-secure world with SCR.FW bit clear\n");
10052                 mask &= ~CPSR_F;
10053             }
10054 
10055             /*
10056              * Check whether non-maskable FIQ (NMFI) support is enabled.
10057              * If this bit is set software is not allowed to mask
10058              * FIQs, but is allowed to set CPSR_F to 0.
10059              */
10060             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
10061                 (val & CPSR_F)) {
10062                 qemu_log_mask(LOG_GUEST_ERROR,
10063                               "Ignoring attempt to enable CPSR_F flag "
10064                               "(non-maskable FIQ [NMFI] support enabled)\n");
10065                 mask &= ~CPSR_F;
10066             }
10067         }
10068     }
10069 
10070     env->daif &= ~(CPSR_AIF & mask);
10071     env->daif |= val & CPSR_AIF & mask;
10072 
10073     if (write_type != CPSRWriteRaw &&
10074         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
10075         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
10076             /*
10077              * Note that we can only get here in USR mode if this is a
10078              * gdb stub write; for this case we follow the architectural
10079              * behaviour for guest writes in USR mode of ignoring an attempt
10080              * to switch mode. (Those are caught by translate.c for writes
10081              * triggered by guest instructions.)
10082              */
10083             mask &= ~CPSR_M;
10084         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
10085             /*
10086              * Attempt to switch to an invalid mode: this is UNPREDICTABLE in
10087              * v7, and has defined behaviour in v8:
10088              *  + leave CPSR.M untouched
10089              *  + allow changes to the other CPSR fields
10090              *  + set PSTATE.IL
10091              * For user changes via the GDB stub, we don't set PSTATE.IL,
10092              * as this would be unnecessarily harsh for a user error.
10093              */
10094             mask &= ~CPSR_M;
10095             if (write_type != CPSRWriteByGDBStub &&
10096                 arm_feature(env, ARM_FEATURE_V8)) {
10097                 mask |= CPSR_IL;
10098                 val |= CPSR_IL;
10099             }
10100             qemu_log_mask(LOG_GUEST_ERROR,
10101                           "Illegal AArch32 mode switch attempt from %s to %s\n",
10102                           aarch32_mode_name(env->uncached_cpsr),
10103                           aarch32_mode_name(val));
10104         } else {
10105             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
10106                           write_type == CPSRWriteExceptionReturn ?
10107                           "Exception return from AArch32" :
10108                           "AArch32 mode switch from",
10109                           aarch32_mode_name(env->uncached_cpsr),
10110                           aarch32_mode_name(val), env->regs[15]);
10111             switch_mode(env, val & CPSR_M);
10112         }
10113     }
10114     mask &= ~CACHED_CPSR_BITS;
10115     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
10116     if (tcg_enabled() && rebuild_hflags) {
10117         arm_rebuild_hflags(env);
10118     }
10119 }
10120 
10121 /* Sign/zero extend */
10122 uint32_t HELPER(sxtb16)(uint32_t x)
10123 {
10124     uint32_t res;
10125     res = (uint16_t)(int8_t)x;
10126     res |= (uint32_t)(int8_t)(x >> 16) << 16;
10127     return res;
10128 }
10129 
10130 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
10131 {
10132     /*
10133      * Take a division-by-zero exception if necessary; otherwise return
10134      * to get the usual non-trapping division behaviour (result of 0)
10135      */
10136     if (arm_feature(env, ARM_FEATURE_M)
10137         && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
10138         raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
10139     }
10140 }
10141 
10142 uint32_t HELPER(uxtb16)(uint32_t x)
10143 {
10144     uint32_t res;
10145     res = (uint16_t)(uint8_t)x;
10146     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
10147     return res;
10148 }
10149 
10150 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
10151 {
10152     if (den == 0) {
10153         handle_possible_div0_trap(env, GETPC());
10154         return 0;
10155     }
10156     if (num == INT_MIN && den == -1) {
10157         return INT_MIN;
10158     }
10159     return num / den;
10160 }
10161 
10162 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
10163 {
10164     if (den == 0) {
10165         handle_possible_div0_trap(env, GETPC());
10166         return 0;
10167     }
10168     return num / den;
10169 }
10170 
10171 uint32_t HELPER(rbit)(uint32_t x)
10172 {
10173     return revbit32(x);
10174 }
10175 
10176 #ifdef CONFIG_USER_ONLY
10177 
10178 static void switch_mode(CPUARMState *env, int mode)
10179 {
10180     ARMCPU *cpu = env_archcpu(env);
10181 
10182     if (mode != ARM_CPU_MODE_USR) {
10183         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
10184     }
10185 }
10186 
10187 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10188                                  uint32_t cur_el, bool secure)
10189 {
10190     return 1;
10191 }
10192 
10193 void aarch64_sync_64_to_32(CPUARMState *env)
10194 {
10195     g_assert_not_reached();
10196 }
10197 
10198 #else
10199 
10200 static void switch_mode(CPUARMState *env, int mode)
10201 {
10202     int old_mode;
10203     int i;
10204 
10205     old_mode = env->uncached_cpsr & CPSR_M;
10206     if (mode == old_mode) {
10207         return;
10208     }
10209 
10210     if (old_mode == ARM_CPU_MODE_FIQ) {
10211         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
10212         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
10213     } else if (mode == ARM_CPU_MODE_FIQ) {
10214         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
10215         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
10216     }
10217 
10218     i = bank_number(old_mode);
10219     env->banked_r13[i] = env->regs[13];
10220     env->banked_spsr[i] = env->spsr;
10221 
10222     i = bank_number(mode);
10223     env->regs[13] = env->banked_r13[i];
10224     env->spsr = env->banked_spsr[i];
10225 
10226     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
10227     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
10228 }
10229 
10230 /*
10231  * Physical Interrupt Target EL Lookup Table
10232  *
10233  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
10234  *
10235  * The below multi-dimensional table is used for looking up the target
10236  * exception level given numerous condition criteria.  Specifically, the
10237  * target EL is based on SCR and HCR routing controls as well as the
10238  * currently executing EL and secure state.
10239  *
10240  *    Dimensions:
10241  *    target_el_table[2][2][2][2][2][4]
10242  *                    |  |  |  |  |  +--- Current EL
10243  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
10244  *                    |  |  |  +--------- HCR mask override
10245  *                    |  |  +------------ SCR exec state control
10246  *                    |  +--------------- SCR mask override
10247  *                    +------------------ 32-bit(0)/64-bit(1) EL3
10248  *
10249  *    The table values are as such:
10250  *    0-3 = EL0-EL3
10251  *     -1 = Cannot occur
10252  *
10253  * The ARM ARM target EL table includes entries indicating that an "exception
10254  * is not taken".  The two cases where this is applicable are:
10255  *    1) An exception is taken from EL3 but the SCR does not have the exception
10256  *    routed to EL3.
10257  *    2) An exception is taken from EL2 but the HCR does not have the exception
10258  *    routed to EL2.
10259  * In these two cases, the below table contain a target of EL1.  This value is
10260  * returned as it is expected that the consumer of the table data will check
10261  * for "target EL >= current EL" to ensure the exception is not taken.
10262  *
10263  *            SCR     HCR
10264  *         64  EA     AMO                 From
10265  *        BIT IRQ     IMO      Non-secure         Secure
10266  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
10267  */
10268 static const int8_t target_el_table[2][2][2][2][2][4] = {
10269     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10270        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
10271       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
10272        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
10273      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10274        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
10275       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
10276        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
10277     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
10278        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 2,  2, -1,  1 },},},
10279       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1,  1,  1 },},
10280        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 2,  2,  2,  1 },},},},
10281      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
10282        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
10283       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},
10284        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3,  3,  3 },},},},},
10285 };
10286 
10287 /*
10288  * Determine the target EL for physical exceptions
10289  */
10290 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
10291                                  uint32_t cur_el, bool secure)
10292 {
10293     CPUARMState *env = cpu_env(cs);
10294     bool rw;
10295     bool scr;
10296     bool hcr;
10297     int target_el;
10298     /* Is the highest EL AArch64? */
10299     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
10300     uint64_t hcr_el2;
10301 
10302     if (arm_feature(env, ARM_FEATURE_EL3)) {
10303         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
10304     } else {
10305         /*
10306          * Either EL2 is the highest EL (and so the EL2 register width
10307          * is given by is64); or there is no EL2 or EL3, in which case
10308          * the value of 'rw' does not affect the table lookup anyway.
10309          */
10310         rw = is64;
10311     }
10312 
10313     hcr_el2 = arm_hcr_el2_eff(env);
10314     switch (excp_idx) {
10315     case EXCP_IRQ:
10316         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
10317         hcr = hcr_el2 & HCR_IMO;
10318         break;
10319     case EXCP_FIQ:
10320         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
10321         hcr = hcr_el2 & HCR_FMO;
10322         break;
10323     default:
10324         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
10325         hcr = hcr_el2 & HCR_AMO;
10326         break;
10327     };
10328 
10329     /*
10330      * For these purposes, TGE and AMO/IMO/FMO both force the
10331      * interrupt to EL2.  Fold TGE into the bit extracted above.
10332      */
10333     hcr |= (hcr_el2 & HCR_TGE) != 0;
10334 
10335     /* Perform a table-lookup for the target EL given the current state */
10336     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
10337 
10338     assert(target_el > 0);
10339 
10340     return target_el;
10341 }
10342 
10343 void arm_log_exception(CPUState *cs)
10344 {
10345     int idx = cs->exception_index;
10346 
10347     if (qemu_loglevel_mask(CPU_LOG_INT)) {
10348         const char *exc = NULL;
10349         static const char * const excnames[] = {
10350             [EXCP_UDEF] = "Undefined Instruction",
10351             [EXCP_SWI] = "SVC",
10352             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
10353             [EXCP_DATA_ABORT] = "Data Abort",
10354             [EXCP_IRQ] = "IRQ",
10355             [EXCP_FIQ] = "FIQ",
10356             [EXCP_BKPT] = "Breakpoint",
10357             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
10358             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
10359             [EXCP_HVC] = "Hypervisor Call",
10360             [EXCP_HYP_TRAP] = "Hypervisor Trap",
10361             [EXCP_SMC] = "Secure Monitor Call",
10362             [EXCP_VIRQ] = "Virtual IRQ",
10363             [EXCP_VFIQ] = "Virtual FIQ",
10364             [EXCP_SEMIHOST] = "Semihosting call",
10365             [EXCP_NOCP] = "v7M NOCP UsageFault",
10366             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
10367             [EXCP_STKOF] = "v8M STKOF UsageFault",
10368             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
10369             [EXCP_LSERR] = "v8M LSERR UsageFault",
10370             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
10371             [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
10372             [EXCP_VSERR] = "Virtual SERR",
10373             [EXCP_GPC] = "Granule Protection Check",
10374         };
10375 
10376         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
10377             exc = excnames[idx];
10378         }
10379         if (!exc) {
10380             exc = "unknown";
10381         }
10382         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
10383                       idx, exc, cs->cpu_index);
10384     }
10385 }
10386 
10387 /*
10388  * Function used to synchronize QEMU's AArch64 register set with AArch32
10389  * register set.  This is necessary when switching between AArch32 and AArch64
10390  * execution state.
10391  */
10392 void aarch64_sync_32_to_64(CPUARMState *env)
10393 {
10394     int i;
10395     uint32_t mode = env->uncached_cpsr & CPSR_M;
10396 
10397     /* We can blanket copy R[0:7] to X[0:7] */
10398     for (i = 0; i < 8; i++) {
10399         env->xregs[i] = env->regs[i];
10400     }
10401 
10402     /*
10403      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
10404      * Otherwise, they come from the banked user regs.
10405      */
10406     if (mode == ARM_CPU_MODE_FIQ) {
10407         for (i = 8; i < 13; i++) {
10408             env->xregs[i] = env->usr_regs[i - 8];
10409         }
10410     } else {
10411         for (i = 8; i < 13; i++) {
10412             env->xregs[i] = env->regs[i];
10413         }
10414     }
10415 
10416     /*
10417      * Registers x13-x23 are the various mode SP and FP registers. Registers
10418      * r13 and r14 are only copied if we are in that mode, otherwise we copy
10419      * from the mode banked register.
10420      */
10421     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10422         env->xregs[13] = env->regs[13];
10423         env->xregs[14] = env->regs[14];
10424     } else {
10425         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
10426         /* HYP is an exception in that it is copied from r14 */
10427         if (mode == ARM_CPU_MODE_HYP) {
10428             env->xregs[14] = env->regs[14];
10429         } else {
10430             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
10431         }
10432     }
10433 
10434     if (mode == ARM_CPU_MODE_HYP) {
10435         env->xregs[15] = env->regs[13];
10436     } else {
10437         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
10438     }
10439 
10440     if (mode == ARM_CPU_MODE_IRQ) {
10441         env->xregs[16] = env->regs[14];
10442         env->xregs[17] = env->regs[13];
10443     } else {
10444         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
10445         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
10446     }
10447 
10448     if (mode == ARM_CPU_MODE_SVC) {
10449         env->xregs[18] = env->regs[14];
10450         env->xregs[19] = env->regs[13];
10451     } else {
10452         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
10453         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
10454     }
10455 
10456     if (mode == ARM_CPU_MODE_ABT) {
10457         env->xregs[20] = env->regs[14];
10458         env->xregs[21] = env->regs[13];
10459     } else {
10460         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
10461         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
10462     }
10463 
10464     if (mode == ARM_CPU_MODE_UND) {
10465         env->xregs[22] = env->regs[14];
10466         env->xregs[23] = env->regs[13];
10467     } else {
10468         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
10469         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
10470     }
10471 
10472     /*
10473      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10474      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
10475      * FIQ bank for r8-r14.
10476      */
10477     if (mode == ARM_CPU_MODE_FIQ) {
10478         for (i = 24; i < 31; i++) {
10479             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
10480         }
10481     } else {
10482         for (i = 24; i < 29; i++) {
10483             env->xregs[i] = env->fiq_regs[i - 24];
10484         }
10485         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
10486         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
10487     }
10488 
10489     env->pc = env->regs[15];
10490 }
10491 
10492 /*
10493  * Function used to synchronize QEMU's AArch32 register set with AArch64
10494  * register set.  This is necessary when switching between AArch32 and AArch64
10495  * execution state.
10496  */
10497 void aarch64_sync_64_to_32(CPUARMState *env)
10498 {
10499     int i;
10500     uint32_t mode = env->uncached_cpsr & CPSR_M;
10501 
10502     /* We can blanket copy X[0:7] to R[0:7] */
10503     for (i = 0; i < 8; i++) {
10504         env->regs[i] = env->xregs[i];
10505     }
10506 
10507     /*
10508      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
10509      * Otherwise, we copy x8-x12 into the banked user regs.
10510      */
10511     if (mode == ARM_CPU_MODE_FIQ) {
10512         for (i = 8; i < 13; i++) {
10513             env->usr_regs[i - 8] = env->xregs[i];
10514         }
10515     } else {
10516         for (i = 8; i < 13; i++) {
10517             env->regs[i] = env->xregs[i];
10518         }
10519     }
10520 
10521     /*
10522      * Registers r13 & r14 depend on the current mode.
10523      * If we are in a given mode, we copy the corresponding x registers to r13
10524      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
10525      * for the mode.
10526      */
10527     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
10528         env->regs[13] = env->xregs[13];
10529         env->regs[14] = env->xregs[14];
10530     } else {
10531         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
10532 
10533         /*
10534          * HYP is an exception in that it does not have its own banked r14 but
10535          * shares the USR r14
10536          */
10537         if (mode == ARM_CPU_MODE_HYP) {
10538             env->regs[14] = env->xregs[14];
10539         } else {
10540             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
10541         }
10542     }
10543 
10544     if (mode == ARM_CPU_MODE_HYP) {
10545         env->regs[13] = env->xregs[15];
10546     } else {
10547         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
10548     }
10549 
10550     if (mode == ARM_CPU_MODE_IRQ) {
10551         env->regs[14] = env->xregs[16];
10552         env->regs[13] = env->xregs[17];
10553     } else {
10554         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
10555         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
10556     }
10557 
10558     if (mode == ARM_CPU_MODE_SVC) {
10559         env->regs[14] = env->xregs[18];
10560         env->regs[13] = env->xregs[19];
10561     } else {
10562         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
10563         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
10564     }
10565 
10566     if (mode == ARM_CPU_MODE_ABT) {
10567         env->regs[14] = env->xregs[20];
10568         env->regs[13] = env->xregs[21];
10569     } else {
10570         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
10571         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
10572     }
10573 
10574     if (mode == ARM_CPU_MODE_UND) {
10575         env->regs[14] = env->xregs[22];
10576         env->regs[13] = env->xregs[23];
10577     } else {
10578         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
10579         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
10580     }
10581 
10582     /*
10583      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
10584      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
10585      * FIQ bank for r8-r14.
10586      */
10587     if (mode == ARM_CPU_MODE_FIQ) {
10588         for (i = 24; i < 31; i++) {
10589             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
10590         }
10591     } else {
10592         for (i = 24; i < 29; i++) {
10593             env->fiq_regs[i - 24] = env->xregs[i];
10594         }
10595         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
10596         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
10597     }
10598 
10599     env->regs[15] = env->pc;
10600 }
10601 
10602 static void take_aarch32_exception(CPUARMState *env, int new_mode,
10603                                    uint32_t mask, uint32_t offset,
10604                                    uint32_t newpc)
10605 {
10606     int new_el;
10607 
10608     /* Change the CPU state so as to actually take the exception. */
10609     switch_mode(env, new_mode);
10610 
10611     /*
10612      * For exceptions taken to AArch32 we must clear the SS bit in both
10613      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
10614      */
10615     env->pstate &= ~PSTATE_SS;
10616     env->spsr = cpsr_read(env);
10617     /* Clear IT bits.  */
10618     env->condexec_bits = 0;
10619     /* Switch to the new mode, and to the correct instruction set.  */
10620     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
10621 
10622     /* This must be after mode switching. */
10623     new_el = arm_current_el(env);
10624 
10625     /* Set new mode endianness */
10626     env->uncached_cpsr &= ~CPSR_E;
10627     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
10628         env->uncached_cpsr |= CPSR_E;
10629     }
10630     /* J and IL must always be cleared for exception entry */
10631     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
10632     env->daif |= mask;
10633 
10634     if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
10635         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
10636             env->uncached_cpsr |= CPSR_SSBS;
10637         } else {
10638             env->uncached_cpsr &= ~CPSR_SSBS;
10639         }
10640     }
10641 
10642     if (new_mode == ARM_CPU_MODE_HYP) {
10643         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
10644         env->elr_el[2] = env->regs[15];
10645     } else {
10646         /* CPSR.PAN is normally preserved preserved unless...  */
10647         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
10648             switch (new_el) {
10649             case 3:
10650                 if (!arm_is_secure_below_el3(env)) {
10651                     /* ... the target is EL3, from non-secure state.  */
10652                     env->uncached_cpsr &= ~CPSR_PAN;
10653                     break;
10654                 }
10655                 /* ... the target is EL3, from secure state ... */
10656                 /* fall through */
10657             case 1:
10658                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
10659                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
10660                     env->uncached_cpsr |= CPSR_PAN;
10661                 }
10662                 break;
10663             }
10664         }
10665         /*
10666          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
10667          * and we should just guard the thumb mode on V4
10668          */
10669         if (arm_feature(env, ARM_FEATURE_V4T)) {
10670             env->thumb =
10671                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
10672         }
10673         env->regs[14] = env->regs[15] + offset;
10674     }
10675     env->regs[15] = newpc;
10676 
10677     if (tcg_enabled()) {
10678         arm_rebuild_hflags(env);
10679     }
10680 }
10681 
10682 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
10683 {
10684     /*
10685      * Handle exception entry to Hyp mode; this is sufficiently
10686      * different to entry to other AArch32 modes that we handle it
10687      * separately here.
10688      *
10689      * The vector table entry used is always the 0x14 Hyp mode entry point,
10690      * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
10691      * The offset applied to the preferred return address is always zero
10692      * (see DDI0487C.a section G1.12.3).
10693      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
10694      */
10695     uint32_t addr, mask;
10696     ARMCPU *cpu = ARM_CPU(cs);
10697     CPUARMState *env = &cpu->env;
10698 
10699     switch (cs->exception_index) {
10700     case EXCP_UDEF:
10701         addr = 0x04;
10702         break;
10703     case EXCP_SWI:
10704         addr = 0x08;
10705         break;
10706     case EXCP_BKPT:
10707         /* Fall through to prefetch abort.  */
10708     case EXCP_PREFETCH_ABORT:
10709         env->cp15.ifar_s = env->exception.vaddress;
10710         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
10711                       (uint32_t)env->exception.vaddress);
10712         addr = 0x0c;
10713         break;
10714     case EXCP_DATA_ABORT:
10715         env->cp15.dfar_s = env->exception.vaddress;
10716         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
10717                       (uint32_t)env->exception.vaddress);
10718         addr = 0x10;
10719         break;
10720     case EXCP_IRQ:
10721         addr = 0x18;
10722         break;
10723     case EXCP_FIQ:
10724         addr = 0x1c;
10725         break;
10726     case EXCP_HVC:
10727         addr = 0x08;
10728         break;
10729     case EXCP_HYP_TRAP:
10730         addr = 0x14;
10731         break;
10732     default:
10733         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10734     }
10735 
10736     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
10737         if (!arm_feature(env, ARM_FEATURE_V8)) {
10738             /*
10739              * QEMU syndrome values are v8-style. v7 has the IL bit
10740              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
10741              * If this is a v7 CPU, squash the IL bit in those cases.
10742              */
10743             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
10744                 (cs->exception_index == EXCP_DATA_ABORT &&
10745                  !(env->exception.syndrome & ARM_EL_ISV)) ||
10746                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
10747                 env->exception.syndrome &= ~ARM_EL_IL;
10748             }
10749         }
10750         env->cp15.esr_el[2] = env->exception.syndrome;
10751     }
10752 
10753     if (arm_current_el(env) != 2 && addr < 0x14) {
10754         addr = 0x14;
10755     }
10756 
10757     mask = 0;
10758     if (!(env->cp15.scr_el3 & SCR_EA)) {
10759         mask |= CPSR_A;
10760     }
10761     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
10762         mask |= CPSR_I;
10763     }
10764     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
10765         mask |= CPSR_F;
10766     }
10767 
10768     addr += env->cp15.hvbar;
10769 
10770     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
10771 }
10772 
10773 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
10774 {
10775     ARMCPU *cpu = ARM_CPU(cs);
10776     CPUARMState *env = &cpu->env;
10777     uint32_t addr;
10778     uint32_t mask;
10779     int new_mode;
10780     uint32_t offset;
10781     uint32_t moe;
10782 
10783     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
10784     switch (syn_get_ec(env->exception.syndrome)) {
10785     case EC_BREAKPOINT:
10786     case EC_BREAKPOINT_SAME_EL:
10787         moe = 1;
10788         break;
10789     case EC_WATCHPOINT:
10790     case EC_WATCHPOINT_SAME_EL:
10791         moe = 10;
10792         break;
10793     case EC_AA32_BKPT:
10794         moe = 3;
10795         break;
10796     case EC_VECTORCATCH:
10797         moe = 5;
10798         break;
10799     default:
10800         moe = 0;
10801         break;
10802     }
10803 
10804     if (moe) {
10805         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
10806     }
10807 
10808     if (env->exception.target_el == 2) {
10809         arm_cpu_do_interrupt_aarch32_hyp(cs);
10810         return;
10811     }
10812 
10813     switch (cs->exception_index) {
10814     case EXCP_UDEF:
10815         new_mode = ARM_CPU_MODE_UND;
10816         addr = 0x04;
10817         mask = CPSR_I;
10818         if (env->thumb) {
10819             offset = 2;
10820         } else {
10821             offset = 4;
10822         }
10823         break;
10824     case EXCP_SWI:
10825         new_mode = ARM_CPU_MODE_SVC;
10826         addr = 0x08;
10827         mask = CPSR_I;
10828         /* The PC already points to the next instruction.  */
10829         offset = 0;
10830         break;
10831     case EXCP_BKPT:
10832         /* Fall through to prefetch abort.  */
10833     case EXCP_PREFETCH_ABORT:
10834         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
10835         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
10836         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
10837                       env->exception.fsr, (uint32_t)env->exception.vaddress);
10838         new_mode = ARM_CPU_MODE_ABT;
10839         addr = 0x0c;
10840         mask = CPSR_A | CPSR_I;
10841         offset = 4;
10842         break;
10843     case EXCP_DATA_ABORT:
10844         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10845         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
10846         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
10847                       env->exception.fsr,
10848                       (uint32_t)env->exception.vaddress);
10849         new_mode = ARM_CPU_MODE_ABT;
10850         addr = 0x10;
10851         mask = CPSR_A | CPSR_I;
10852         offset = 8;
10853         break;
10854     case EXCP_IRQ:
10855         new_mode = ARM_CPU_MODE_IRQ;
10856         addr = 0x18;
10857         /* Disable IRQ and imprecise data aborts.  */
10858         mask = CPSR_A | CPSR_I;
10859         offset = 4;
10860         if (env->cp15.scr_el3 & SCR_IRQ) {
10861             /* IRQ routed to monitor mode */
10862             new_mode = ARM_CPU_MODE_MON;
10863             mask |= CPSR_F;
10864         }
10865         break;
10866     case EXCP_FIQ:
10867         new_mode = ARM_CPU_MODE_FIQ;
10868         addr = 0x1c;
10869         /* Disable FIQ, IRQ and imprecise data aborts.  */
10870         mask = CPSR_A | CPSR_I | CPSR_F;
10871         if (env->cp15.scr_el3 & SCR_FIQ) {
10872             /* FIQ routed to monitor mode */
10873             new_mode = ARM_CPU_MODE_MON;
10874         }
10875         offset = 4;
10876         break;
10877     case EXCP_VIRQ:
10878         new_mode = ARM_CPU_MODE_IRQ;
10879         addr = 0x18;
10880         /* Disable IRQ and imprecise data aborts.  */
10881         mask = CPSR_A | CPSR_I;
10882         offset = 4;
10883         break;
10884     case EXCP_VFIQ:
10885         new_mode = ARM_CPU_MODE_FIQ;
10886         addr = 0x1c;
10887         /* Disable FIQ, IRQ and imprecise data aborts.  */
10888         mask = CPSR_A | CPSR_I | CPSR_F;
10889         offset = 4;
10890         break;
10891     case EXCP_VSERR:
10892         {
10893             /*
10894              * Note that this is reported as a data abort, but the DFAR
10895              * has an UNKNOWN value.  Construct the SError syndrome from
10896              * AET and ExT fields.
10897              */
10898             ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
10899 
10900             if (extended_addresses_enabled(env)) {
10901                 env->exception.fsr = arm_fi_to_lfsc(&fi);
10902             } else {
10903                 env->exception.fsr = arm_fi_to_sfsc(&fi);
10904             }
10905             env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
10906             A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
10907             qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
10908                           env->exception.fsr);
10909 
10910             new_mode = ARM_CPU_MODE_ABT;
10911             addr = 0x10;
10912             mask = CPSR_A | CPSR_I;
10913             offset = 8;
10914         }
10915         break;
10916     case EXCP_SMC:
10917         new_mode = ARM_CPU_MODE_MON;
10918         addr = 0x08;
10919         mask = CPSR_A | CPSR_I | CPSR_F;
10920         offset = 0;
10921         break;
10922     default:
10923         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
10924         return; /* Never happens.  Keep compiler happy.  */
10925     }
10926 
10927     if (new_mode == ARM_CPU_MODE_MON) {
10928         addr += env->cp15.mvbar;
10929     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
10930         /* High vectors. When enabled, base address cannot be remapped. */
10931         addr += 0xffff0000;
10932     } else {
10933         /*
10934          * ARM v7 architectures provide a vector base address register to remap
10935          * the interrupt vector table.
10936          * This register is only followed in non-monitor mode, and is banked.
10937          * Note: only bits 31:5 are valid.
10938          */
10939         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
10940     }
10941 
10942     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
10943         env->cp15.scr_el3 &= ~SCR_NS;
10944     }
10945 
10946     take_aarch32_exception(env, new_mode, mask, offset, addr);
10947 }
10948 
10949 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
10950 {
10951     /*
10952      * Return the register number of the AArch64 view of the AArch32
10953      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
10954      * be that of the AArch32 mode the exception came from.
10955      */
10956     int mode = env->uncached_cpsr & CPSR_M;
10957 
10958     switch (aarch32_reg) {
10959     case 0 ... 7:
10960         return aarch32_reg;
10961     case 8 ... 12:
10962         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
10963     case 13:
10964         switch (mode) {
10965         case ARM_CPU_MODE_USR:
10966         case ARM_CPU_MODE_SYS:
10967             return 13;
10968         case ARM_CPU_MODE_HYP:
10969             return 15;
10970         case ARM_CPU_MODE_IRQ:
10971             return 17;
10972         case ARM_CPU_MODE_SVC:
10973             return 19;
10974         case ARM_CPU_MODE_ABT:
10975             return 21;
10976         case ARM_CPU_MODE_UND:
10977             return 23;
10978         case ARM_CPU_MODE_FIQ:
10979             return 29;
10980         default:
10981             g_assert_not_reached();
10982         }
10983     case 14:
10984         switch (mode) {
10985         case ARM_CPU_MODE_USR:
10986         case ARM_CPU_MODE_SYS:
10987         case ARM_CPU_MODE_HYP:
10988             return 14;
10989         case ARM_CPU_MODE_IRQ:
10990             return 16;
10991         case ARM_CPU_MODE_SVC:
10992             return 18;
10993         case ARM_CPU_MODE_ABT:
10994             return 20;
10995         case ARM_CPU_MODE_UND:
10996             return 22;
10997         case ARM_CPU_MODE_FIQ:
10998             return 30;
10999         default:
11000             g_assert_not_reached();
11001         }
11002     case 15:
11003         return 31;
11004     default:
11005         g_assert_not_reached();
11006     }
11007 }
11008 
11009 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
11010 {
11011     uint32_t ret = cpsr_read(env);
11012 
11013     /* Move DIT to the correct location for SPSR_ELx */
11014     if (ret & CPSR_DIT) {
11015         ret &= ~CPSR_DIT;
11016         ret |= PSTATE_DIT;
11017     }
11018     /* Merge PSTATE.SS into SPSR_ELx */
11019     ret |= env->pstate & PSTATE_SS;
11020 
11021     return ret;
11022 }
11023 
11024 static bool syndrome_is_sync_extabt(uint32_t syndrome)
11025 {
11026     /* Return true if this syndrome value is a synchronous external abort */
11027     switch (syn_get_ec(syndrome)) {
11028     case EC_INSNABORT:
11029     case EC_INSNABORT_SAME_EL:
11030     case EC_DATAABORT:
11031     case EC_DATAABORT_SAME_EL:
11032         /* Look at fault status code for all the synchronous ext abort cases */
11033         switch (syndrome & 0x3f) {
11034         case 0x10:
11035         case 0x13:
11036         case 0x14:
11037         case 0x15:
11038         case 0x16:
11039         case 0x17:
11040             return true;
11041         default:
11042             return false;
11043         }
11044     default:
11045         return false;
11046     }
11047 }
11048 
11049 /* Handle exception entry to a target EL which is using AArch64 */
11050 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
11051 {
11052     ARMCPU *cpu = ARM_CPU(cs);
11053     CPUARMState *env = &cpu->env;
11054     unsigned int new_el = env->exception.target_el;
11055     target_ulong addr = env->cp15.vbar_el[new_el];
11056     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
11057     unsigned int old_mode;
11058     unsigned int cur_el = arm_current_el(env);
11059     int rt;
11060 
11061     if (tcg_enabled()) {
11062         /*
11063          * Note that new_el can never be 0.  If cur_el is 0, then
11064          * el0_a64 is is_a64(), else el0_a64 is ignored.
11065          */
11066         aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
11067     }
11068 
11069     if (cur_el < new_el) {
11070         /*
11071          * Entry vector offset depends on whether the implemented EL
11072          * immediately lower than the target level is using AArch32 or AArch64
11073          */
11074         bool is_aa64;
11075         uint64_t hcr;
11076 
11077         switch (new_el) {
11078         case 3:
11079             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
11080             break;
11081         case 2:
11082             hcr = arm_hcr_el2_eff(env);
11083             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11084                 is_aa64 = (hcr & HCR_RW) != 0;
11085                 break;
11086             }
11087             /* fall through */
11088         case 1:
11089             is_aa64 = is_a64(env);
11090             break;
11091         default:
11092             g_assert_not_reached();
11093         }
11094 
11095         if (is_aa64) {
11096             addr += 0x400;
11097         } else {
11098             addr += 0x600;
11099         }
11100     } else if (pstate_read(env) & PSTATE_SP) {
11101         addr += 0x200;
11102     }
11103 
11104     switch (cs->exception_index) {
11105     case EXCP_GPC:
11106         qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
11107                       env->cp15.mfar_el3);
11108         /* fall through */
11109     case EXCP_PREFETCH_ABORT:
11110     case EXCP_DATA_ABORT:
11111         /*
11112          * FEAT_DoubleFault allows synchronous external aborts taken to EL3
11113          * to be taken to the SError vector entrypoint.
11114          */
11115         if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
11116             syndrome_is_sync_extabt(env->exception.syndrome)) {
11117             addr += 0x180;
11118         }
11119         env->cp15.far_el[new_el] = env->exception.vaddress;
11120         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
11121                       env->cp15.far_el[new_el]);
11122         /* fall through */
11123     case EXCP_BKPT:
11124     case EXCP_UDEF:
11125     case EXCP_SWI:
11126     case EXCP_HVC:
11127     case EXCP_HYP_TRAP:
11128     case EXCP_SMC:
11129         switch (syn_get_ec(env->exception.syndrome)) {
11130         case EC_ADVSIMDFPACCESSTRAP:
11131             /*
11132              * QEMU internal FP/SIMD syndromes from AArch32 include the
11133              * TA and coproc fields which are only exposed if the exception
11134              * is taken to AArch32 Hyp mode. Mask them out to get a valid
11135              * AArch64 format syndrome.
11136              */
11137             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
11138             break;
11139         case EC_CP14RTTRAP:
11140         case EC_CP15RTTRAP:
11141         case EC_CP14DTTRAP:
11142             /*
11143              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
11144              * the raw register field from the insn; when taking this to
11145              * AArch64 we must convert it to the AArch64 view of the register
11146              * number. Notice that we read a 4-bit AArch32 register number and
11147              * write back a 5-bit AArch64 one.
11148              */
11149             rt = extract32(env->exception.syndrome, 5, 4);
11150             rt = aarch64_regnum(env, rt);
11151             env->exception.syndrome = deposit32(env->exception.syndrome,
11152                                                 5, 5, rt);
11153             break;
11154         case EC_CP15RRTTRAP:
11155         case EC_CP14RRTTRAP:
11156             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
11157             rt = extract32(env->exception.syndrome, 5, 4);
11158             rt = aarch64_regnum(env, rt);
11159             env->exception.syndrome = deposit32(env->exception.syndrome,
11160                                                 5, 5, rt);
11161             rt = extract32(env->exception.syndrome, 10, 4);
11162             rt = aarch64_regnum(env, rt);
11163             env->exception.syndrome = deposit32(env->exception.syndrome,
11164                                                 10, 5, rt);
11165             break;
11166         }
11167         env->cp15.esr_el[new_el] = env->exception.syndrome;
11168         break;
11169     case EXCP_IRQ:
11170     case EXCP_VIRQ:
11171         addr += 0x80;
11172         break;
11173     case EXCP_FIQ:
11174     case EXCP_VFIQ:
11175         addr += 0x100;
11176         break;
11177     case EXCP_VSERR:
11178         addr += 0x180;
11179         /* Construct the SError syndrome from IDS and ISS fields. */
11180         env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
11181         env->cp15.esr_el[new_el] = env->exception.syndrome;
11182         break;
11183     default:
11184         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
11185     }
11186 
11187     if (is_a64(env)) {
11188         old_mode = pstate_read(env);
11189         aarch64_save_sp(env, arm_current_el(env));
11190         env->elr_el[new_el] = env->pc;
11191     } else {
11192         old_mode = cpsr_read_for_spsr_elx(env);
11193         env->elr_el[new_el] = env->regs[15];
11194 
11195         aarch64_sync_32_to_64(env);
11196 
11197         env->condexec_bits = 0;
11198     }
11199     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
11200 
11201     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
11202                   env->elr_el[new_el]);
11203 
11204     if (cpu_isar_feature(aa64_pan, cpu)) {
11205         /* The value of PSTATE.PAN is normally preserved, except when ... */
11206         new_mode |= old_mode & PSTATE_PAN;
11207         switch (new_el) {
11208         case 2:
11209             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
11210             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
11211                 != (HCR_E2H | HCR_TGE)) {
11212                 break;
11213             }
11214             /* fall through */
11215         case 1:
11216             /* ... the target is EL1 ... */
11217             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
11218             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
11219                 new_mode |= PSTATE_PAN;
11220             }
11221             break;
11222         }
11223     }
11224     if (cpu_isar_feature(aa64_mte, cpu)) {
11225         new_mode |= PSTATE_TCO;
11226     }
11227 
11228     if (cpu_isar_feature(aa64_ssbs, cpu)) {
11229         if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
11230             new_mode |= PSTATE_SSBS;
11231         } else {
11232             new_mode &= ~PSTATE_SSBS;
11233         }
11234     }
11235 
11236     pstate_write(env, PSTATE_DAIF | new_mode);
11237     env->aarch64 = true;
11238     aarch64_restore_sp(env, new_el);
11239 
11240     if (tcg_enabled()) {
11241         helper_rebuild_hflags_a64(env, new_el);
11242     }
11243 
11244     env->pc = addr;
11245 
11246     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
11247                   new_el, env->pc, pstate_read(env));
11248 }
11249 
11250 /*
11251  * Do semihosting call and set the appropriate return value. All the
11252  * permission and validity checks have been done at translate time.
11253  *
11254  * We only see semihosting exceptions in TCG only as they are not
11255  * trapped to the hypervisor in KVM.
11256  */
11257 #ifdef CONFIG_TCG
11258 static void tcg_handle_semihosting(CPUState *cs)
11259 {
11260     ARMCPU *cpu = ARM_CPU(cs);
11261     CPUARMState *env = &cpu->env;
11262 
11263     if (is_a64(env)) {
11264         qemu_log_mask(CPU_LOG_INT,
11265                       "...handling as semihosting call 0x%" PRIx64 "\n",
11266                       env->xregs[0]);
11267         do_common_semihosting(cs);
11268         env->pc += 4;
11269     } else {
11270         qemu_log_mask(CPU_LOG_INT,
11271                       "...handling as semihosting call 0x%x\n",
11272                       env->regs[0]);
11273         do_common_semihosting(cs);
11274         env->regs[15] += env->thumb ? 2 : 4;
11275     }
11276 }
11277 #endif
11278 
11279 /*
11280  * Handle a CPU exception for A and R profile CPUs.
11281  * Do any appropriate logging, handle PSCI calls, and then hand off
11282  * to the AArch64-entry or AArch32-entry function depending on the
11283  * target exception level's register width.
11284  *
11285  * Note: this is used for both TCG (as the do_interrupt tcg op),
11286  *       and KVM to re-inject guest debug exceptions, and to
11287  *       inject a Synchronous-External-Abort.
11288  */
11289 void arm_cpu_do_interrupt(CPUState *cs)
11290 {
11291     ARMCPU *cpu = ARM_CPU(cs);
11292     CPUARMState *env = &cpu->env;
11293     unsigned int new_el = env->exception.target_el;
11294 
11295     assert(!arm_feature(env, ARM_FEATURE_M));
11296 
11297     arm_log_exception(cs);
11298     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
11299                   new_el);
11300     if (qemu_loglevel_mask(CPU_LOG_INT)
11301         && !excp_is_internal(cs->exception_index)) {
11302         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
11303                       syn_get_ec(env->exception.syndrome),
11304                       env->exception.syndrome);
11305     }
11306 
11307     if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
11308         arm_handle_psci_call(cpu);
11309         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
11310         return;
11311     }
11312 
11313     /*
11314      * Semihosting semantics depend on the register width of the code
11315      * that caused the exception, not the target exception level, so
11316      * must be handled here.
11317      */
11318 #ifdef CONFIG_TCG
11319     if (cs->exception_index == EXCP_SEMIHOST) {
11320         tcg_handle_semihosting(cs);
11321         return;
11322     }
11323 #endif
11324 
11325     /*
11326      * Hooks may change global state so BQL should be held, also the
11327      * BQL needs to be held for any modification of
11328      * cs->interrupt_request.
11329      */
11330     g_assert(qemu_mutex_iothread_locked());
11331 
11332     arm_call_pre_el_change_hook(cpu);
11333 
11334     assert(!excp_is_internal(cs->exception_index));
11335     if (arm_el_is_aa64(env, new_el)) {
11336         arm_cpu_do_interrupt_aarch64(cs);
11337     } else {
11338         arm_cpu_do_interrupt_aarch32(cs);
11339     }
11340 
11341     arm_call_el_change_hook(cpu);
11342 
11343     if (!kvm_enabled()) {
11344         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
11345     }
11346 }
11347 #endif /* !CONFIG_USER_ONLY */
11348 
11349 uint64_t arm_sctlr(CPUARMState *env, int el)
11350 {
11351     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
11352     if (el == 0) {
11353         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
11354         el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
11355     }
11356     return env->cp15.sctlr_el[el];
11357 }
11358 
11359 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
11360 {
11361     if (regime_has_2_ranges(mmu_idx)) {
11362         return extract64(tcr, 37, 2);
11363     } else if (regime_is_stage2(mmu_idx)) {
11364         return 0; /* VTCR_EL2 */
11365     } else {
11366         /* Replicate the single TBI bit so we always have 2 bits.  */
11367         return extract32(tcr, 20, 1) * 3;
11368     }
11369 }
11370 
11371 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
11372 {
11373     if (regime_has_2_ranges(mmu_idx)) {
11374         return extract64(tcr, 51, 2);
11375     } else if (regime_is_stage2(mmu_idx)) {
11376         return 0; /* VTCR_EL2 */
11377     } else {
11378         /* Replicate the single TBID bit so we always have 2 bits.  */
11379         return extract32(tcr, 29, 1) * 3;
11380     }
11381 }
11382 
11383 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
11384 {
11385     if (regime_has_2_ranges(mmu_idx)) {
11386         return extract64(tcr, 57, 2);
11387     } else {
11388         /* Replicate the single TCMA bit so we always have 2 bits.  */
11389         return extract32(tcr, 30, 1) * 3;
11390     }
11391 }
11392 
11393 static ARMGranuleSize tg0_to_gran_size(int tg)
11394 {
11395     switch (tg) {
11396     case 0:
11397         return Gran4K;
11398     case 1:
11399         return Gran64K;
11400     case 2:
11401         return Gran16K;
11402     default:
11403         return GranInvalid;
11404     }
11405 }
11406 
11407 static ARMGranuleSize tg1_to_gran_size(int tg)
11408 {
11409     switch (tg) {
11410     case 1:
11411         return Gran16K;
11412     case 2:
11413         return Gran4K;
11414     case 3:
11415         return Gran64K;
11416     default:
11417         return GranInvalid;
11418     }
11419 }
11420 
11421 static inline bool have4k(ARMCPU *cpu, bool stage2)
11422 {
11423     return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
11424         : cpu_isar_feature(aa64_tgran4, cpu);
11425 }
11426 
11427 static inline bool have16k(ARMCPU *cpu, bool stage2)
11428 {
11429     return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
11430         : cpu_isar_feature(aa64_tgran16, cpu);
11431 }
11432 
11433 static inline bool have64k(ARMCPU *cpu, bool stage2)
11434 {
11435     return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
11436         : cpu_isar_feature(aa64_tgran64, cpu);
11437 }
11438 
11439 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
11440                                          bool stage2)
11441 {
11442     switch (gran) {
11443     case Gran4K:
11444         if (have4k(cpu, stage2)) {
11445             return gran;
11446         }
11447         break;
11448     case Gran16K:
11449         if (have16k(cpu, stage2)) {
11450             return gran;
11451         }
11452         break;
11453     case Gran64K:
11454         if (have64k(cpu, stage2)) {
11455             return gran;
11456         }
11457         break;
11458     case GranInvalid:
11459         break;
11460     }
11461     /*
11462      * If the guest selects a granule size that isn't implemented,
11463      * the architecture requires that we behave as if it selected one
11464      * that is (with an IMPDEF choice of which one to pick). We choose
11465      * to implement the smallest supported granule size.
11466      */
11467     if (have4k(cpu, stage2)) {
11468         return Gran4K;
11469     }
11470     if (have16k(cpu, stage2)) {
11471         return Gran16K;
11472     }
11473     assert(have64k(cpu, stage2));
11474     return Gran64K;
11475 }
11476 
11477 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
11478                                    ARMMMUIdx mmu_idx, bool data,
11479                                    bool el1_is_aa32)
11480 {
11481     uint64_t tcr = regime_tcr(env, mmu_idx);
11482     bool epd, hpd, tsz_oob, ds, ha, hd;
11483     int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
11484     ARMGranuleSize gran;
11485     ARMCPU *cpu = env_archcpu(env);
11486     bool stage2 = regime_is_stage2(mmu_idx);
11487 
11488     if (!regime_has_2_ranges(mmu_idx)) {
11489         select = 0;
11490         tsz = extract32(tcr, 0, 6);
11491         gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11492         if (stage2) {
11493             /* VTCR_EL2 */
11494             hpd = false;
11495         } else {
11496             hpd = extract32(tcr, 24, 1);
11497         }
11498         epd = false;
11499         sh = extract32(tcr, 12, 2);
11500         ps = extract32(tcr, 16, 3);
11501         ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
11502         hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11503         ds = extract64(tcr, 32, 1);
11504     } else {
11505         bool e0pd;
11506 
11507         /*
11508          * Bit 55 is always between the two regions, and is canonical for
11509          * determining if address tagging is enabled.
11510          */
11511         select = extract64(va, 55, 1);
11512         if (!select) {
11513             tsz = extract32(tcr, 0, 6);
11514             gran = tg0_to_gran_size(extract32(tcr, 14, 2));
11515             epd = extract32(tcr, 7, 1);
11516             sh = extract32(tcr, 12, 2);
11517             hpd = extract64(tcr, 41, 1);
11518             e0pd = extract64(tcr, 55, 1);
11519         } else {
11520             tsz = extract32(tcr, 16, 6);
11521             gran = tg1_to_gran_size(extract32(tcr, 30, 2));
11522             epd = extract32(tcr, 23, 1);
11523             sh = extract32(tcr, 28, 2);
11524             hpd = extract64(tcr, 42, 1);
11525             e0pd = extract64(tcr, 56, 1);
11526         }
11527         ps = extract64(tcr, 32, 3);
11528         ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
11529         hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
11530         ds = extract64(tcr, 59, 1);
11531 
11532         if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
11533             regime_is_user(env, mmu_idx)) {
11534             epd = true;
11535         }
11536     }
11537 
11538     gran = sanitize_gran_size(cpu, gran, stage2);
11539 
11540     if (cpu_isar_feature(aa64_st, cpu)) {
11541         max_tsz = 48 - (gran == Gran64K);
11542     } else {
11543         max_tsz = 39;
11544     }
11545 
11546     /*
11547      * DS is RES0 unless FEAT_LPA2 is supported for the given page size;
11548      * adjust the effective value of DS, as documented.
11549      */
11550     min_tsz = 16;
11551     if (gran == Gran64K) {
11552         if (cpu_isar_feature(aa64_lva, cpu)) {
11553             min_tsz = 12;
11554         }
11555         ds = false;
11556     } else if (ds) {
11557         if (regime_is_stage2(mmu_idx)) {
11558             if (gran == Gran16K) {
11559                 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
11560             } else {
11561                 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
11562             }
11563         } else {
11564             if (gran == Gran16K) {
11565                 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
11566             } else {
11567                 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
11568             }
11569         }
11570         if (ds) {
11571             min_tsz = 12;
11572         }
11573     }
11574 
11575     if (stage2 && el1_is_aa32) {
11576         /*
11577          * For AArch32 EL1 the min txsz (and thus max IPA size) requirements
11578          * are loosened: a configured IPA of 40 bits is permitted even if
11579          * the implemented PA is less than that (and so a 40 bit IPA would
11580          * fault for an AArch64 EL1). See R_DTLMN.
11581          */
11582         min_tsz = MIN(min_tsz, 24);
11583     }
11584 
11585     if (tsz > max_tsz) {
11586         tsz = max_tsz;
11587         tsz_oob = true;
11588     } else if (tsz < min_tsz) {
11589         tsz = min_tsz;
11590         tsz_oob = true;
11591     } else {
11592         tsz_oob = false;
11593     }
11594 
11595     /* Present TBI as a composite with TBID.  */
11596     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
11597     if (!data) {
11598         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
11599     }
11600     tbi = (tbi >> select) & 1;
11601 
11602     return (ARMVAParameters) {
11603         .tsz = tsz,
11604         .ps = ps,
11605         .sh = sh,
11606         .select = select,
11607         .tbi = tbi,
11608         .epd = epd,
11609         .hpd = hpd,
11610         .tsz_oob = tsz_oob,
11611         .ds = ds,
11612         .ha = ha,
11613         .hd = ha && hd,
11614         .gran = gran,
11615     };
11616 }
11617 
11618 /*
11619  * Note that signed overflow is undefined in C.  The following routines are
11620  * careful to use unsigned types where modulo arithmetic is required.
11621  * Failure to do so _will_ break on newer gcc.
11622  */
11623 
11624 /* Signed saturating arithmetic.  */
11625 
11626 /* Perform 16-bit signed saturating addition.  */
11627 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
11628 {
11629     uint16_t res;
11630 
11631     res = a + b;
11632     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
11633         if (a & 0x8000) {
11634             res = 0x8000;
11635         } else {
11636             res = 0x7fff;
11637         }
11638     }
11639     return res;
11640 }
11641 
11642 /* Perform 8-bit signed saturating addition.  */
11643 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
11644 {
11645     uint8_t res;
11646 
11647     res = a + b;
11648     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
11649         if (a & 0x80) {
11650             res = 0x80;
11651         } else {
11652             res = 0x7f;
11653         }
11654     }
11655     return res;
11656 }
11657 
11658 /* Perform 16-bit signed saturating subtraction.  */
11659 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
11660 {
11661     uint16_t res;
11662 
11663     res = a - b;
11664     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
11665         if (a & 0x8000) {
11666             res = 0x8000;
11667         } else {
11668             res = 0x7fff;
11669         }
11670     }
11671     return res;
11672 }
11673 
11674 /* Perform 8-bit signed saturating subtraction.  */
11675 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
11676 {
11677     uint8_t res;
11678 
11679     res = a - b;
11680     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
11681         if (a & 0x80) {
11682             res = 0x80;
11683         } else {
11684             res = 0x7f;
11685         }
11686     }
11687     return res;
11688 }
11689 
11690 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11691 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11692 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
11693 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
11694 #define PFX q
11695 
11696 #include "op_addsub.h"
11697 
11698 /* Unsigned saturating arithmetic.  */
11699 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
11700 {
11701     uint16_t res;
11702     res = a + b;
11703     if (res < a) {
11704         res = 0xffff;
11705     }
11706     return res;
11707 }
11708 
11709 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
11710 {
11711     if (a > b) {
11712         return a - b;
11713     } else {
11714         return 0;
11715     }
11716 }
11717 
11718 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
11719 {
11720     uint8_t res;
11721     res = a + b;
11722     if (res < a) {
11723         res = 0xff;
11724     }
11725     return res;
11726 }
11727 
11728 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
11729 {
11730     if (a > b) {
11731         return a - b;
11732     } else {
11733         return 0;
11734     }
11735 }
11736 
11737 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11738 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11739 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
11740 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
11741 #define PFX uq
11742 
11743 #include "op_addsub.h"
11744 
11745 /* Signed modulo arithmetic.  */
11746 #define SARITH16(a, b, n, op) do { \
11747     int32_t sum; \
11748     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11749     RESULT(sum, n, 16); \
11750     if (sum >= 0) \
11751         ge |= 3 << (n * 2); \
11752     } while (0)
11753 
11754 #define SARITH8(a, b, n, op) do { \
11755     int32_t sum; \
11756     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11757     RESULT(sum, n, 8); \
11758     if (sum >= 0) \
11759         ge |= 1 << n; \
11760     } while (0)
11761 
11762 
11763 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11764 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11765 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
11766 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
11767 #define PFX s
11768 #define ARITH_GE
11769 
11770 #include "op_addsub.h"
11771 
11772 /* Unsigned modulo arithmetic.  */
11773 #define ADD16(a, b, n) do { \
11774     uint32_t sum; \
11775     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11776     RESULT(sum, n, 16); \
11777     if ((sum >> 16) == 1) \
11778         ge |= 3 << (n * 2); \
11779     } while (0)
11780 
11781 #define ADD8(a, b, n) do { \
11782     uint32_t sum; \
11783     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11784     RESULT(sum, n, 8); \
11785     if ((sum >> 8) == 1) \
11786         ge |= 1 << n; \
11787     } while (0)
11788 
11789 #define SUB16(a, b, n) do { \
11790     uint32_t sum; \
11791     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11792     RESULT(sum, n, 16); \
11793     if ((sum >> 16) == 0) \
11794         ge |= 3 << (n * 2); \
11795     } while (0)
11796 
11797 #define SUB8(a, b, n) do { \
11798     uint32_t sum; \
11799     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11800     RESULT(sum, n, 8); \
11801     if ((sum >> 8) == 0) \
11802         ge |= 1 << n; \
11803     } while (0)
11804 
11805 #define PFX u
11806 #define ARITH_GE
11807 
11808 #include "op_addsub.h"
11809 
11810 /* Halved signed arithmetic.  */
11811 #define ADD16(a, b, n) \
11812   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11813 #define SUB16(a, b, n) \
11814   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11815 #define ADD8(a, b, n) \
11816   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11817 #define SUB8(a, b, n) \
11818   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11819 #define PFX sh
11820 
11821 #include "op_addsub.h"
11822 
11823 /* Halved unsigned arithmetic.  */
11824 #define ADD16(a, b, n) \
11825   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11826 #define SUB16(a, b, n) \
11827   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11828 #define ADD8(a, b, n) \
11829   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11830 #define SUB8(a, b, n) \
11831   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11832 #define PFX uh
11833 
11834 #include "op_addsub.h"
11835 
11836 static inline uint8_t do_usad(uint8_t a, uint8_t b)
11837 {
11838     if (a > b) {
11839         return a - b;
11840     } else {
11841         return b - a;
11842     }
11843 }
11844 
11845 /* Unsigned sum of absolute byte differences.  */
11846 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
11847 {
11848     uint32_t sum;
11849     sum = do_usad(a, b);
11850     sum += do_usad(a >> 8, b >> 8);
11851     sum += do_usad(a >> 16, b >> 16);
11852     sum += do_usad(a >> 24, b >> 24);
11853     return sum;
11854 }
11855 
11856 /* For ARMv6 SEL instruction.  */
11857 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
11858 {
11859     uint32_t mask;
11860 
11861     mask = 0;
11862     if (flags & 1) {
11863         mask |= 0xff;
11864     }
11865     if (flags & 2) {
11866         mask |= 0xff00;
11867     }
11868     if (flags & 4) {
11869         mask |= 0xff0000;
11870     }
11871     if (flags & 8) {
11872         mask |= 0xff000000;
11873     }
11874     return (a & mask) | (b & ~mask);
11875 }
11876 
11877 /*
11878  * CRC helpers.
11879  * The upper bytes of val (above the number specified by 'bytes') must have
11880  * been zeroed out by the caller.
11881  */
11882 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
11883 {
11884     uint8_t buf[4];
11885 
11886     stl_le_p(buf, val);
11887 
11888     /* zlib crc32 converts the accumulator and output to one's complement.  */
11889     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
11890 }
11891 
11892 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
11893 {
11894     uint8_t buf[4];
11895 
11896     stl_le_p(buf, val);
11897 
11898     /* Linux crc32c converts the output to one's complement.  */
11899     return crc32c(acc, buf, bytes) ^ 0xffffffff;
11900 }
11901 
11902 /*
11903  * Return the exception level to which FP-disabled exceptions should
11904  * be taken, or 0 if FP is enabled.
11905  */
11906 int fp_exception_el(CPUARMState *env, int cur_el)
11907 {
11908 #ifndef CONFIG_USER_ONLY
11909     uint64_t hcr_el2;
11910 
11911     /*
11912      * CPACR and the CPTR registers don't exist before v6, so FP is
11913      * always accessible
11914      */
11915     if (!arm_feature(env, ARM_FEATURE_V6)) {
11916         return 0;
11917     }
11918 
11919     if (arm_feature(env, ARM_FEATURE_M)) {
11920         /* CPACR can cause a NOCP UsageFault taken to current security state */
11921         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
11922             return 1;
11923         }
11924 
11925         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
11926             if (!extract32(env->v7m.nsacr, 10, 1)) {
11927                 /* FP insns cause a NOCP UsageFault taken to Secure */
11928                 return 3;
11929             }
11930         }
11931 
11932         return 0;
11933     }
11934 
11935     hcr_el2 = arm_hcr_el2_eff(env);
11936 
11937     /*
11938      * The CPACR controls traps to EL1, or PL1 if we're 32 bit:
11939      * 0, 2 : trap EL0 and EL1/PL1 accesses
11940      * 1    : trap only EL0 accesses
11941      * 3    : trap no accesses
11942      * This register is ignored if E2H+TGE are both set.
11943      */
11944     if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
11945         int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
11946 
11947         switch (fpen) {
11948         case 1:
11949             if (cur_el != 0) {
11950                 break;
11951             }
11952             /* fall through */
11953         case 0:
11954         case 2:
11955             /* Trap from Secure PL0 or PL1 to Secure PL1. */
11956             if (!arm_el_is_aa64(env, 3)
11957                 && (cur_el == 3 || arm_is_secure_below_el3(env))) {
11958                 return 3;
11959             }
11960             if (cur_el <= 1) {
11961                 return 1;
11962             }
11963             break;
11964         }
11965     }
11966 
11967     /*
11968      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
11969      * to control non-secure access to the FPU. It doesn't have any
11970      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
11971      */
11972     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
11973          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
11974         if (!extract32(env->cp15.nsacr, 10, 1)) {
11975             /* FP insns act as UNDEF */
11976             return cur_el == 2 ? 2 : 1;
11977         }
11978     }
11979 
11980     /*
11981      * CPTR_EL2 is present in v7VE or v8, and changes format
11982      * with HCR_EL2.E2H (regardless of TGE).
11983      */
11984     if (cur_el <= 2) {
11985         if (hcr_el2 & HCR_E2H) {
11986             switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
11987             case 1:
11988                 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
11989                     break;
11990                 }
11991                 /* fall through */
11992             case 0:
11993             case 2:
11994                 return 2;
11995             }
11996         } else if (arm_is_el2_enabled(env)) {
11997             if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
11998                 return 2;
11999             }
12000         }
12001     }
12002 
12003     /* CPTR_EL3 : present in v8 */
12004     if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
12005         /* Trap all FP ops to EL3 */
12006         return 3;
12007     }
12008 #endif
12009     return 0;
12010 }
12011 
12012 /* Return the exception level we're running at if this is our mmu_idx */
12013 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12014 {
12015     if (mmu_idx & ARM_MMU_IDX_M) {
12016         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12017     }
12018 
12019     switch (mmu_idx) {
12020     case ARMMMUIdx_E10_0:
12021     case ARMMMUIdx_E20_0:
12022         return 0;
12023     case ARMMMUIdx_E10_1:
12024     case ARMMMUIdx_E10_1_PAN:
12025         return 1;
12026     case ARMMMUIdx_E2:
12027     case ARMMMUIdx_E20_2:
12028     case ARMMMUIdx_E20_2_PAN:
12029         return 2;
12030     case ARMMMUIdx_E3:
12031         return 3;
12032     default:
12033         g_assert_not_reached();
12034     }
12035 }
12036 
12037 #ifndef CONFIG_TCG
12038 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12039 {
12040     g_assert_not_reached();
12041 }
12042 #endif
12043 
12044 static bool arm_pan_enabled(CPUARMState *env)
12045 {
12046     if (is_a64(env)) {
12047         return env->pstate & PSTATE_PAN;
12048     } else {
12049         return env->uncached_cpsr & CPSR_PAN;
12050     }
12051 }
12052 
12053 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12054 {
12055     ARMMMUIdx idx;
12056     uint64_t hcr;
12057 
12058     if (arm_feature(env, ARM_FEATURE_M)) {
12059         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12060     }
12061 
12062     /* See ARM pseudo-function ELIsInHost.  */
12063     switch (el) {
12064     case 0:
12065         hcr = arm_hcr_el2_eff(env);
12066         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
12067             idx = ARMMMUIdx_E20_0;
12068         } else {
12069             idx = ARMMMUIdx_E10_0;
12070         }
12071         break;
12072     case 1:
12073         if (arm_pan_enabled(env)) {
12074             idx = ARMMMUIdx_E10_1_PAN;
12075         } else {
12076             idx = ARMMMUIdx_E10_1;
12077         }
12078         break;
12079     case 2:
12080         /* Note that TGE does not apply at EL2.  */
12081         if (arm_hcr_el2_eff(env) & HCR_E2H) {
12082             if (arm_pan_enabled(env)) {
12083                 idx = ARMMMUIdx_E20_2_PAN;
12084             } else {
12085                 idx = ARMMMUIdx_E20_2;
12086             }
12087         } else {
12088             idx = ARMMMUIdx_E2;
12089         }
12090         break;
12091     case 3:
12092         return ARMMMUIdx_E3;
12093     default:
12094         g_assert_not_reached();
12095     }
12096 
12097     return idx;
12098 }
12099 
12100 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12101 {
12102     return arm_mmu_idx_el(env, arm_current_el(env));
12103 }
12104 
12105 static bool mve_no_pred(CPUARMState *env)
12106 {
12107     /*
12108      * Return true if there is definitely no predication of MVE
12109      * instructions by VPR or LTPSIZE. (Returning false even if there
12110      * isn't any predication is OK; generated code will just be
12111      * a little worse.)
12112      * If the CPU does not implement MVE then this TB flag is always 0.
12113      *
12114      * NOTE: if you change this logic, the "recalculate s->mve_no_pred"
12115      * logic in gen_update_fp_context() needs to be updated to match.
12116      *
12117      * We do not include the effect of the ECI bits here -- they are
12118      * tracked in other TB flags. This simplifies the logic for
12119      * "when did we emit code that changes the MVE_NO_PRED TB flag
12120      * and thus need to end the TB?".
12121      */
12122     if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
12123         return false;
12124     }
12125     if (env->v7m.vpr) {
12126         return false;
12127     }
12128     if (env->v7m.ltpsize < 4) {
12129         return false;
12130     }
12131     return true;
12132 }
12133 
12134 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
12135                           uint64_t *cs_base, uint32_t *pflags)
12136 {
12137     CPUARMTBFlags flags;
12138 
12139     assert_hflags_rebuild_correctly(env);
12140     flags = env->hflags;
12141 
12142     if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
12143         *pc = env->pc;
12144         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12145             DP_TBFLAG_A64(flags, BTYPE, env->btype);
12146         }
12147     } else {
12148         *pc = env->regs[15];
12149 
12150         if (arm_feature(env, ARM_FEATURE_M)) {
12151             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
12152                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
12153                 != env->v7m.secure) {
12154                 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
12155             }
12156 
12157             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
12158                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
12159                  (env->v7m.secure &&
12160                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
12161                 /*
12162                  * ASPEN is set, but FPCA/SFPA indicate that there is no
12163                  * active FP context; we must create a new FP context before
12164                  * executing any FP insn.
12165                  */
12166                 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
12167             }
12168 
12169             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
12170             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
12171                 DP_TBFLAG_M32(flags, LSPACT, 1);
12172             }
12173 
12174             if (mve_no_pred(env)) {
12175                 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
12176             }
12177         } else {
12178             /*
12179              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
12180              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
12181              */
12182             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
12183                 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
12184             } else {
12185                 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
12186                 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
12187             }
12188             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
12189                 DP_TBFLAG_A32(flags, VFPEN, 1);
12190             }
12191         }
12192 
12193         DP_TBFLAG_AM32(flags, THUMB, env->thumb);
12194         DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
12195     }
12196 
12197     /*
12198      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
12199      * states defined in the ARM ARM for software singlestep:
12200      *  SS_ACTIVE   PSTATE.SS   State
12201      *     0            x       Inactive (the TB flag for SS is always 0)
12202      *     1            0       Active-pending
12203      *     1            1       Active-not-pending
12204      * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
12205      */
12206     if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
12207         DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
12208     }
12209 
12210     *pflags = flags.flags;
12211     *cs_base = flags.flags2;
12212 }
12213 
12214 #ifdef TARGET_AARCH64
12215 /*
12216  * The manual says that when SVE is enabled and VQ is widened the
12217  * implementation is allowed to zero the previously inaccessible
12218  * portion of the registers.  The corollary to that is that when
12219  * SVE is enabled and VQ is narrowed we are also allowed to zero
12220  * the now inaccessible portion of the registers.
12221  *
12222  * The intent of this is that no predicate bit beyond VQ is ever set.
12223  * Which means that some operations on predicate registers themselves
12224  * may operate on full uint64_t or even unrolled across the maximum
12225  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
12226  * may well be cheaper than conditionals to restrict the operation
12227  * to the relevant portion of a uint16_t[16].
12228  */
12229 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
12230 {
12231     int i, j;
12232     uint64_t pmask;
12233 
12234     assert(vq >= 1 && vq <= ARM_MAX_VQ);
12235     assert(vq <= env_archcpu(env)->sve_max_vq);
12236 
12237     /* Zap the high bits of the zregs.  */
12238     for (i = 0; i < 32; i++) {
12239         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
12240     }
12241 
12242     /* Zap the high bits of the pregs and ffr.  */
12243     pmask = 0;
12244     if (vq & 3) {
12245         pmask = ~(-1ULL << (16 * (vq & 3)));
12246     }
12247     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
12248         for (i = 0; i < 17; ++i) {
12249             env->vfp.pregs[i].p[j] &= pmask;
12250         }
12251         pmask = 0;
12252     }
12253 }
12254 
12255 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
12256 {
12257     int exc_el;
12258 
12259     if (sm) {
12260         exc_el = sme_exception_el(env, el);
12261     } else {
12262         exc_el = sve_exception_el(env, el);
12263     }
12264     if (exc_el) {
12265         return 0; /* disabled */
12266     }
12267     return sve_vqm1_for_el_sm(env, el, sm);
12268 }
12269 
12270 /*
12271  * Notice a change in SVE vector size when changing EL.
12272  */
12273 void aarch64_sve_change_el(CPUARMState *env, int old_el,
12274                            int new_el, bool el0_a64)
12275 {
12276     ARMCPU *cpu = env_archcpu(env);
12277     int old_len, new_len;
12278     bool old_a64, new_a64, sm;
12279 
12280     /* Nothing to do if no SVE.  */
12281     if (!cpu_isar_feature(aa64_sve, cpu)) {
12282         return;
12283     }
12284 
12285     /* Nothing to do if FP is disabled in either EL.  */
12286     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
12287         return;
12288     }
12289 
12290     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
12291     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
12292 
12293     /*
12294      * Both AArch64.TakeException and AArch64.ExceptionReturn
12295      * invoke ResetSVEState when taking an exception from, or
12296      * returning to, AArch32 state when PSTATE.SM is enabled.
12297      */
12298     sm = FIELD_EX64(env->svcr, SVCR, SM);
12299     if (old_a64 != new_a64 && sm) {
12300         arm_reset_sve_state(env);
12301         return;
12302     }
12303 
12304     /*
12305      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
12306      * at ELx, or not available because the EL is in AArch32 state, then
12307      * for all purposes other than a direct read, the ZCR_ELx.LEN field
12308      * has an effective value of 0".
12309      *
12310      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
12311      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
12312      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
12313      * we already have the correct register contents when encountering the
12314      * vq0->vq0 transition between EL0->EL1.
12315      */
12316     old_len = new_len = 0;
12317     if (old_a64) {
12318         old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
12319     }
12320     if (new_a64) {
12321         new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
12322     }
12323 
12324     /* When changing vector length, clear inaccessible state.  */
12325     if (new_len < old_len) {
12326         aarch64_sve_narrow_vq(env, new_len + 1);
12327     }
12328 }
12329 #endif
12330 
12331 #ifndef CONFIG_USER_ONLY
12332 ARMSecuritySpace arm_security_space(CPUARMState *env)
12333 {
12334     if (arm_feature(env, ARM_FEATURE_M)) {
12335         return arm_secure_to_space(env->v7m.secure);
12336     }
12337 
12338     /*
12339      * If EL3 is not supported then the secure state is implementation
12340      * defined, in which case QEMU defaults to non-secure.
12341      */
12342     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12343         return ARMSS_NonSecure;
12344     }
12345 
12346     /* Check for AArch64 EL3 or AArch32 Mon. */
12347     if (is_a64(env)) {
12348         if (extract32(env->pstate, 2, 2) == 3) {
12349             if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
12350                 return ARMSS_Root;
12351             } else {
12352                 return ARMSS_Secure;
12353             }
12354         }
12355     } else {
12356         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
12357             return ARMSS_Secure;
12358         }
12359     }
12360 
12361     return arm_security_space_below_el3(env);
12362 }
12363 
12364 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
12365 {
12366     assert(!arm_feature(env, ARM_FEATURE_M));
12367 
12368     /*
12369      * If EL3 is not supported then the secure state is implementation
12370      * defined, in which case QEMU defaults to non-secure.
12371      */
12372     if (!arm_feature(env, ARM_FEATURE_EL3)) {
12373         return ARMSS_NonSecure;
12374     }
12375 
12376     /*
12377      * Note NSE cannot be set without RME, and NSE & !NS is Reserved.
12378      * Ignoring NSE when !NS retains consistency without having to
12379      * modify other predicates.
12380      */
12381     if (!(env->cp15.scr_el3 & SCR_NS)) {
12382         return ARMSS_Secure;
12383     } else if (env->cp15.scr_el3 & SCR_NSE) {
12384         return ARMSS_Realm;
12385     } else {
12386         return ARMSS_NonSecure;
12387     }
12388 }
12389 #endif /* !CONFIG_USER_ONLY */
12390