xref: /openbmc/qemu/target/arm/helper.c (revision 2fc5d01b)
1 /*
2  * ARM generic helpers.
3  *
4  * This code is licensed under the GNU GPL v2 or later.
5  *
6  * SPDX-License-Identifier: GPL-2.0-or-later
7  */
8 
9 #include "qemu/osdep.h"
10 #include "qemu/units.h"
11 #include "target/arm/idau.h"
12 #include "trace.h"
13 #include "cpu.h"
14 #include "internals.h"
15 #include "exec/gdbstub.h"
16 #include "exec/helper-proto.h"
17 #include "qemu/host-utils.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/bitops.h"
20 #include "qemu/crc32c.h"
21 #include "qemu/qemu-print.h"
22 #include "exec/exec-all.h"
23 #include <zlib.h> /* For crc32 */
24 #include "hw/irq.h"
25 #include "hw/semihosting/semihost.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/cpu-timers.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/tcg.h"
30 #include "qemu/range.h"
31 #include "qapi/qapi-commands-machine-target.h"
32 #include "qapi/error.h"
33 #include "qemu/guest-random.h"
34 #ifdef CONFIG_TCG
35 #include "arm_ldst.h"
36 #include "exec/cpu_ldst.h"
37 #endif
38 
39 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
40 
41 #ifndef CONFIG_USER_ONLY
42 
43 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
44                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
45                                bool s1_is_el0,
46                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
47                                target_ulong *page_size_ptr,
48                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
49     __attribute__((nonnull));
50 #endif
51 
52 static void switch_mode(CPUARMState *env, int mode);
53 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
54 
55 static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
56 {
57     ARMCPU *cpu = env_archcpu(env);
58     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
59 
60     /* VFP data registers are always little-endian.  */
61     if (reg < nregs) {
62         return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
63     }
64     if (arm_feature(env, ARM_FEATURE_NEON)) {
65         /* Aliases for Q regs.  */
66         nregs += 16;
67         if (reg < nregs) {
68             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
69             return gdb_get_reg128(buf, q[0], q[1]);
70         }
71     }
72     switch (reg - nregs) {
73     case 0: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]); break;
74     case 1: return gdb_get_reg32(buf, vfp_get_fpscr(env)); break;
75     case 2: return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]); break;
76     }
77     return 0;
78 }
79 
80 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
81 {
82     ARMCPU *cpu = env_archcpu(env);
83     int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
84 
85     if (reg < nregs) {
86         *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
87         return 8;
88     }
89     if (arm_feature(env, ARM_FEATURE_NEON)) {
90         nregs += 16;
91         if (reg < nregs) {
92             uint64_t *q = aa32_vfp_qreg(env, reg - 32);
93             q[0] = ldq_le_p(buf);
94             q[1] = ldq_le_p(buf + 8);
95             return 16;
96         }
97     }
98     switch (reg - nregs) {
99     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
100     case 1: vfp_set_fpscr(env, ldl_p(buf)); return 4;
101     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
102     }
103     return 0;
104 }
105 
106 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
107 {
108     switch (reg) {
109     case 0 ... 31:
110     {
111         /* 128 bit FP register - quads are in LE order */
112         uint64_t *q = aa64_vfp_qreg(env, reg);
113         return gdb_get_reg128(buf, q[1], q[0]);
114     }
115     case 32:
116         /* FPSR */
117         return gdb_get_reg32(buf, vfp_get_fpsr(env));
118     case 33:
119         /* FPCR */
120         return gdb_get_reg32(buf,vfp_get_fpcr(env));
121     default:
122         return 0;
123     }
124 }
125 
126 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
127 {
128     switch (reg) {
129     case 0 ... 31:
130         /* 128 bit FP register */
131         {
132             uint64_t *q = aa64_vfp_qreg(env, reg);
133             q[0] = ldq_le_p(buf);
134             q[1] = ldq_le_p(buf + 8);
135             return 16;
136         }
137     case 32:
138         /* FPSR */
139         vfp_set_fpsr(env, ldl_p(buf));
140         return 4;
141     case 33:
142         /* FPCR */
143         vfp_set_fpcr(env, ldl_p(buf));
144         return 4;
145     default:
146         return 0;
147     }
148 }
149 
150 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
151 {
152     assert(ri->fieldoffset);
153     if (cpreg_field_is_64bit(ri)) {
154         return CPREG_FIELD64(env, ri);
155     } else {
156         return CPREG_FIELD32(env, ri);
157     }
158 }
159 
160 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
161                       uint64_t value)
162 {
163     assert(ri->fieldoffset);
164     if (cpreg_field_is_64bit(ri)) {
165         CPREG_FIELD64(env, ri) = value;
166     } else {
167         CPREG_FIELD32(env, ri) = value;
168     }
169 }
170 
171 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
172 {
173     return (char *)env + ri->fieldoffset;
174 }
175 
176 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
177 {
178     /* Raw read of a coprocessor register (as needed for migration, etc). */
179     if (ri->type & ARM_CP_CONST) {
180         return ri->resetvalue;
181     } else if (ri->raw_readfn) {
182         return ri->raw_readfn(env, ri);
183     } else if (ri->readfn) {
184         return ri->readfn(env, ri);
185     } else {
186         return raw_read(env, ri);
187     }
188 }
189 
190 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
191                              uint64_t v)
192 {
193     /* Raw write of a coprocessor register (as needed for migration, etc).
194      * Note that constant registers are treated as write-ignored; the
195      * caller should check for success by whether a readback gives the
196      * value written.
197      */
198     if (ri->type & ARM_CP_CONST) {
199         return;
200     } else if (ri->raw_writefn) {
201         ri->raw_writefn(env, ri, v);
202     } else if (ri->writefn) {
203         ri->writefn(env, ri, v);
204     } else {
205         raw_write(env, ri, v);
206     }
207 }
208 
209 /**
210  * arm_get/set_gdb_*: get/set a gdb register
211  * @env: the CPU state
212  * @buf: a buffer to copy to/from
213  * @reg: register number (offset from start of group)
214  *
215  * We return the number of bytes copied
216  */
217 
218 static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
219 {
220     ARMCPU *cpu = env_archcpu(env);
221     const ARMCPRegInfo *ri;
222     uint32_t key;
223 
224     key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
225     ri = get_arm_cp_reginfo(cpu->cp_regs, key);
226     if (ri) {
227         if (cpreg_field_is_64bit(ri)) {
228             return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
229         } else {
230             return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
231         }
232     }
233     return 0;
234 }
235 
236 static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
237 {
238     return 0;
239 }
240 
241 #ifdef TARGET_AARCH64
242 static int arm_gdb_get_svereg(CPUARMState *env, GByteArray *buf, int reg)
243 {
244     ARMCPU *cpu = env_archcpu(env);
245 
246     switch (reg) {
247     /* The first 32 registers are the zregs */
248     case 0 ... 31:
249     {
250         int vq, len = 0;
251         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
252             len += gdb_get_reg128(buf,
253                                   env->vfp.zregs[reg].d[vq * 2 + 1],
254                                   env->vfp.zregs[reg].d[vq * 2]);
255         }
256         return len;
257     }
258     case 32:
259         return gdb_get_reg32(buf, vfp_get_fpsr(env));
260     case 33:
261         return gdb_get_reg32(buf, vfp_get_fpcr(env));
262     /* then 16 predicates and the ffr */
263     case 34 ... 50:
264     {
265         int preg = reg - 34;
266         int vq, len = 0;
267         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
268             len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
269         }
270         return len;
271     }
272     case 51:
273     {
274         /*
275          * We report in Vector Granules (VG) which is 64bit in a Z reg
276          * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
277          */
278         int vq = sve_zcr_len_for_el(env, arm_current_el(env)) + 1;
279         return gdb_get_reg32(buf, vq * 2);
280     }
281     default:
282         /* gdbstub asked for something out our range */
283         qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
284         break;
285     }
286 
287     return 0;
288 }
289 
290 static int arm_gdb_set_svereg(CPUARMState *env, uint8_t *buf, int reg)
291 {
292     ARMCPU *cpu = env_archcpu(env);
293 
294     /* The first 32 registers are the zregs */
295     switch (reg) {
296     /* The first 32 registers are the zregs */
297     case 0 ... 31:
298     {
299         int vq, len = 0;
300         uint64_t *p = (uint64_t *) buf;
301         for (vq = 0; vq < cpu->sve_max_vq; vq++) {
302             env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
303             env->vfp.zregs[reg].d[vq * 2] = *p++;
304             len += 16;
305         }
306         return len;
307     }
308     case 32:
309         vfp_set_fpsr(env, *(uint32_t *)buf);
310         return 4;
311     case 33:
312         vfp_set_fpcr(env, *(uint32_t *)buf);
313         return 4;
314     case 34 ... 50:
315     {
316         int preg = reg - 34;
317         int vq, len = 0;
318         uint64_t *p = (uint64_t *) buf;
319         for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
320             env->vfp.pregs[preg].p[vq / 4] = *p++;
321             len += 8;
322         }
323         return len;
324     }
325     case 51:
326         /* cannot set vg via gdbstub */
327         return 0;
328     default:
329         /* gdbstub asked for something out our range */
330         break;
331     }
332 
333     return 0;
334 }
335 #endif /* TARGET_AARCH64 */
336 
337 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
338 {
339    /* Return true if the regdef would cause an assertion if you called
340     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
341     * program bug for it not to have the NO_RAW flag).
342     * NB that returning false here doesn't necessarily mean that calling
343     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
344     * read/write access functions which are safe for raw use" from "has
345     * read/write access functions which have side effects but has forgotten
346     * to provide raw access functions".
347     * The tests here line up with the conditions in read/write_raw_cp_reg()
348     * and assertions in raw_read()/raw_write().
349     */
350     if ((ri->type & ARM_CP_CONST) ||
351         ri->fieldoffset ||
352         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
353         return false;
354     }
355     return true;
356 }
357 
358 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
359 {
360     /* Write the coprocessor state from cpu->env to the (index,value) list. */
361     int i;
362     bool ok = true;
363 
364     for (i = 0; i < cpu->cpreg_array_len; i++) {
365         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
366         const ARMCPRegInfo *ri;
367         uint64_t newval;
368 
369         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
370         if (!ri) {
371             ok = false;
372             continue;
373         }
374         if (ri->type & ARM_CP_NO_RAW) {
375             continue;
376         }
377 
378         newval = read_raw_cp_reg(&cpu->env, ri);
379         if (kvm_sync) {
380             /*
381              * Only sync if the previous list->cpustate sync succeeded.
382              * Rather than tracking the success/failure state for every
383              * item in the list, we just recheck "does the raw write we must
384              * have made in write_list_to_cpustate() read back OK" here.
385              */
386             uint64_t oldval = cpu->cpreg_values[i];
387 
388             if (oldval == newval) {
389                 continue;
390             }
391 
392             write_raw_cp_reg(&cpu->env, ri, oldval);
393             if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
394                 continue;
395             }
396 
397             write_raw_cp_reg(&cpu->env, ri, newval);
398         }
399         cpu->cpreg_values[i] = newval;
400     }
401     return ok;
402 }
403 
404 bool write_list_to_cpustate(ARMCPU *cpu)
405 {
406     int i;
407     bool ok = true;
408 
409     for (i = 0; i < cpu->cpreg_array_len; i++) {
410         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
411         uint64_t v = cpu->cpreg_values[i];
412         const ARMCPRegInfo *ri;
413 
414         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
415         if (!ri) {
416             ok = false;
417             continue;
418         }
419         if (ri->type & ARM_CP_NO_RAW) {
420             continue;
421         }
422         /* Write value and confirm it reads back as written
423          * (to catch read-only registers and partially read-only
424          * registers where the incoming migration value doesn't match)
425          */
426         write_raw_cp_reg(&cpu->env, ri, v);
427         if (read_raw_cp_reg(&cpu->env, ri) != v) {
428             ok = false;
429         }
430     }
431     return ok;
432 }
433 
434 static void add_cpreg_to_list(gpointer key, gpointer opaque)
435 {
436     ARMCPU *cpu = opaque;
437     uint64_t regidx;
438     const ARMCPRegInfo *ri;
439 
440     regidx = *(uint32_t *)key;
441     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
442 
443     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
444         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
445         /* The value array need not be initialized at this point */
446         cpu->cpreg_array_len++;
447     }
448 }
449 
450 static void count_cpreg(gpointer key, gpointer opaque)
451 {
452     ARMCPU *cpu = opaque;
453     uint64_t regidx;
454     const ARMCPRegInfo *ri;
455 
456     regidx = *(uint32_t *)key;
457     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
458 
459     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
460         cpu->cpreg_array_len++;
461     }
462 }
463 
464 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
465 {
466     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
467     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
468 
469     if (aidx > bidx) {
470         return 1;
471     }
472     if (aidx < bidx) {
473         return -1;
474     }
475     return 0;
476 }
477 
478 void init_cpreg_list(ARMCPU *cpu)
479 {
480     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
481      * Note that we require cpreg_tuples[] to be sorted by key ID.
482      */
483     GList *keys;
484     int arraylen;
485 
486     keys = g_hash_table_get_keys(cpu->cp_regs);
487     keys = g_list_sort(keys, cpreg_key_compare);
488 
489     cpu->cpreg_array_len = 0;
490 
491     g_list_foreach(keys, count_cpreg, cpu);
492 
493     arraylen = cpu->cpreg_array_len;
494     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
495     cpu->cpreg_values = g_new(uint64_t, arraylen);
496     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
497     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
498     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
499     cpu->cpreg_array_len = 0;
500 
501     g_list_foreach(keys, add_cpreg_to_list, cpu);
502 
503     assert(cpu->cpreg_array_len == arraylen);
504 
505     g_list_free(keys);
506 }
507 
508 /*
509  * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
510  */
511 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
512                                         const ARMCPRegInfo *ri,
513                                         bool isread)
514 {
515     if (!is_a64(env) && arm_current_el(env) == 3 &&
516         arm_is_secure_below_el3(env)) {
517         return CP_ACCESS_TRAP_UNCATEGORIZED;
518     }
519     return CP_ACCESS_OK;
520 }
521 
522 /* Some secure-only AArch32 registers trap to EL3 if used from
523  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
524  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
525  * We assume that the .access field is set to PL1_RW.
526  */
527 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
528                                             const ARMCPRegInfo *ri,
529                                             bool isread)
530 {
531     if (arm_current_el(env) == 3) {
532         return CP_ACCESS_OK;
533     }
534     if (arm_is_secure_below_el3(env)) {
535         return CP_ACCESS_TRAP_EL3;
536     }
537     /* This will be EL1 NS and EL2 NS, which just UNDEF */
538     return CP_ACCESS_TRAP_UNCATEGORIZED;
539 }
540 
541 /* Check for traps to "powerdown debug" registers, which are controlled
542  * by MDCR.TDOSA
543  */
544 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
545                                    bool isread)
546 {
547     int el = arm_current_el(env);
548     bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
549         (env->cp15.mdcr_el2 & MDCR_TDE) ||
550         (arm_hcr_el2_eff(env) & HCR_TGE);
551 
552     if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
553         return CP_ACCESS_TRAP_EL2;
554     }
555     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
556         return CP_ACCESS_TRAP_EL3;
557     }
558     return CP_ACCESS_OK;
559 }
560 
561 /* Check for traps to "debug ROM" registers, which are controlled
562  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
563  */
564 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
565                                   bool isread)
566 {
567     int el = arm_current_el(env);
568     bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
569         (env->cp15.mdcr_el2 & MDCR_TDE) ||
570         (arm_hcr_el2_eff(env) & HCR_TGE);
571 
572     if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
573         return CP_ACCESS_TRAP_EL2;
574     }
575     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
576         return CP_ACCESS_TRAP_EL3;
577     }
578     return CP_ACCESS_OK;
579 }
580 
581 /* Check for traps to general debug registers, which are controlled
582  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
583  */
584 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
585                                   bool isread)
586 {
587     int el = arm_current_el(env);
588     bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
589         (env->cp15.mdcr_el2 & MDCR_TDE) ||
590         (arm_hcr_el2_eff(env) & HCR_TGE);
591 
592     if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
593         return CP_ACCESS_TRAP_EL2;
594     }
595     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
596         return CP_ACCESS_TRAP_EL3;
597     }
598     return CP_ACCESS_OK;
599 }
600 
601 /* Check for traps to performance monitor registers, which are controlled
602  * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
603  */
604 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
605                                  bool isread)
606 {
607     int el = arm_current_el(env);
608 
609     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
610         && !arm_is_secure_below_el3(env)) {
611         return CP_ACCESS_TRAP_EL2;
612     }
613     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
614         return CP_ACCESS_TRAP_EL3;
615     }
616     return CP_ACCESS_OK;
617 }
618 
619 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM.  */
620 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
621                                       bool isread)
622 {
623     if (arm_current_el(env) == 1) {
624         uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
625         if (arm_hcr_el2_eff(env) & trap) {
626             return CP_ACCESS_TRAP_EL2;
627         }
628     }
629     return CP_ACCESS_OK;
630 }
631 
632 /* Check for traps from EL1 due to HCR_EL2.TSW.  */
633 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
634                                  bool isread)
635 {
636     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
637         return CP_ACCESS_TRAP_EL2;
638     }
639     return CP_ACCESS_OK;
640 }
641 
642 /* Check for traps from EL1 due to HCR_EL2.TACR.  */
643 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
644                                   bool isread)
645 {
646     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
647         return CP_ACCESS_TRAP_EL2;
648     }
649     return CP_ACCESS_OK;
650 }
651 
652 /* Check for traps from EL1 due to HCR_EL2.TTLB. */
653 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
654                                   bool isread)
655 {
656     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
657         return CP_ACCESS_TRAP_EL2;
658     }
659     return CP_ACCESS_OK;
660 }
661 
662 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
663 {
664     ARMCPU *cpu = env_archcpu(env);
665 
666     raw_write(env, ri, value);
667     tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
668 }
669 
670 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
671 {
672     ARMCPU *cpu = env_archcpu(env);
673 
674     if (raw_read(env, ri) != value) {
675         /* Unlike real hardware the qemu TLB uses virtual addresses,
676          * not modified virtual addresses, so this causes a TLB flush.
677          */
678         tlb_flush(CPU(cpu));
679         raw_write(env, ri, value);
680     }
681 }
682 
683 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
684                              uint64_t value)
685 {
686     ARMCPU *cpu = env_archcpu(env);
687 
688     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
689         && !extended_addresses_enabled(env)) {
690         /* For VMSA (when not using the LPAE long descriptor page table
691          * format) this register includes the ASID, so do a TLB flush.
692          * For PMSA it is purely a process ID and no action is needed.
693          */
694         tlb_flush(CPU(cpu));
695     }
696     raw_write(env, ri, value);
697 }
698 
699 /* IS variants of TLB operations must affect all cores */
700 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
701                              uint64_t value)
702 {
703     CPUState *cs = env_cpu(env);
704 
705     tlb_flush_all_cpus_synced(cs);
706 }
707 
708 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
709                              uint64_t value)
710 {
711     CPUState *cs = env_cpu(env);
712 
713     tlb_flush_all_cpus_synced(cs);
714 }
715 
716 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
717                              uint64_t value)
718 {
719     CPUState *cs = env_cpu(env);
720 
721     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
722 }
723 
724 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
725                              uint64_t value)
726 {
727     CPUState *cs = env_cpu(env);
728 
729     tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
730 }
731 
732 /*
733  * Non-IS variants of TLB operations are upgraded to
734  * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
735  * force broadcast of these operations.
736  */
737 static bool tlb_force_broadcast(CPUARMState *env)
738 {
739     return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
740 }
741 
742 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
743                           uint64_t value)
744 {
745     /* Invalidate all (TLBIALL) */
746     CPUState *cs = env_cpu(env);
747 
748     if (tlb_force_broadcast(env)) {
749         tlb_flush_all_cpus_synced(cs);
750     } else {
751         tlb_flush(cs);
752     }
753 }
754 
755 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
756                           uint64_t value)
757 {
758     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
759     CPUState *cs = env_cpu(env);
760 
761     value &= TARGET_PAGE_MASK;
762     if (tlb_force_broadcast(env)) {
763         tlb_flush_page_all_cpus_synced(cs, value);
764     } else {
765         tlb_flush_page(cs, value);
766     }
767 }
768 
769 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
770                            uint64_t value)
771 {
772     /* Invalidate by ASID (TLBIASID) */
773     CPUState *cs = env_cpu(env);
774 
775     if (tlb_force_broadcast(env)) {
776         tlb_flush_all_cpus_synced(cs);
777     } else {
778         tlb_flush(cs);
779     }
780 }
781 
782 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
783                            uint64_t value)
784 {
785     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
786     CPUState *cs = env_cpu(env);
787 
788     value &= TARGET_PAGE_MASK;
789     if (tlb_force_broadcast(env)) {
790         tlb_flush_page_all_cpus_synced(cs, value);
791     } else {
792         tlb_flush_page(cs, value);
793     }
794 }
795 
796 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
797                                uint64_t value)
798 {
799     CPUState *cs = env_cpu(env);
800 
801     tlb_flush_by_mmuidx(cs,
802                         ARMMMUIdxBit_E10_1 |
803                         ARMMMUIdxBit_E10_1_PAN |
804                         ARMMMUIdxBit_E10_0);
805 }
806 
807 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
808                                   uint64_t value)
809 {
810     CPUState *cs = env_cpu(env);
811 
812     tlb_flush_by_mmuidx_all_cpus_synced(cs,
813                                         ARMMMUIdxBit_E10_1 |
814                                         ARMMMUIdxBit_E10_1_PAN |
815                                         ARMMMUIdxBit_E10_0);
816 }
817 
818 
819 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
820                               uint64_t value)
821 {
822     CPUState *cs = env_cpu(env);
823 
824     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
825 }
826 
827 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
828                                  uint64_t value)
829 {
830     CPUState *cs = env_cpu(env);
831 
832     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
833 }
834 
835 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
836                               uint64_t value)
837 {
838     CPUState *cs = env_cpu(env);
839     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
840 
841     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
842 }
843 
844 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
845                                  uint64_t value)
846 {
847     CPUState *cs = env_cpu(env);
848     uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
849 
850     tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
851                                              ARMMMUIdxBit_E2);
852 }
853 
854 static const ARMCPRegInfo cp_reginfo[] = {
855     /* Define the secure and non-secure FCSE identifier CP registers
856      * separately because there is no secure bank in V8 (no _EL3).  This allows
857      * the secure register to be properly reset and migrated. There is also no
858      * v8 EL1 version of the register so the non-secure instance stands alone.
859      */
860     { .name = "FCSEIDR",
861       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
862       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
863       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
864       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
865     { .name = "FCSEIDR_S",
866       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
867       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
868       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
869       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
870     /* Define the secure and non-secure context identifier CP registers
871      * separately because there is no secure bank in V8 (no _EL3).  This allows
872      * the secure register to be properly reset and migrated.  In the
873      * non-secure case, the 32-bit register will have reset and migration
874      * disabled during registration as it is handled by the 64-bit instance.
875      */
876     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
877       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
878       .access = PL1_RW, .accessfn = access_tvm_trvm,
879       .secure = ARM_CP_SECSTATE_NS,
880       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
881       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
882     { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
883       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
884       .access = PL1_RW, .accessfn = access_tvm_trvm,
885       .secure = ARM_CP_SECSTATE_S,
886       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
887       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
888     REGINFO_SENTINEL
889 };
890 
891 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
892     /* NB: Some of these registers exist in v8 but with more precise
893      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
894      */
895     /* MMU Domain access control / MPU write buffer control */
896     { .name = "DACR",
897       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
898       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
899       .writefn = dacr_write, .raw_writefn = raw_write,
900       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
901                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
902     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
903      * For v6 and v5, these mappings are overly broad.
904      */
905     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
906       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
907     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
908       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
909     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
910       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
911     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
912       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
913     /* Cache maintenance ops; some of this space may be overridden later. */
914     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
915       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
916       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
917     REGINFO_SENTINEL
918 };
919 
920 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
921     /* Not all pre-v6 cores implemented this WFI, so this is slightly
922      * over-broad.
923      */
924     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
925       .access = PL1_W, .type = ARM_CP_WFI },
926     REGINFO_SENTINEL
927 };
928 
929 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
930     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
931      * is UNPREDICTABLE; we choose to NOP as most implementations do).
932      */
933     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
934       .access = PL1_W, .type = ARM_CP_WFI },
935     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
936      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
937      * OMAPCP will override this space.
938      */
939     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
940       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
941       .resetvalue = 0 },
942     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
943       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
944       .resetvalue = 0 },
945     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
946     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
947       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
948       .resetvalue = 0 },
949     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
950      * implementing it as RAZ means the "debug architecture version" bits
951      * will read as a reserved value, which should cause Linux to not try
952      * to use the debug hardware.
953      */
954     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
955       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
956     /* MMU TLB control. Note that the wildcarding means we cover not just
957      * the unified TLB ops but also the dside/iside/inner-shareable variants.
958      */
959     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
960       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
961       .type = ARM_CP_NO_RAW },
962     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
963       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
964       .type = ARM_CP_NO_RAW },
965     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
966       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
967       .type = ARM_CP_NO_RAW },
968     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
969       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
970       .type = ARM_CP_NO_RAW },
971     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
972       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
973     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
974       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
975     REGINFO_SENTINEL
976 };
977 
978 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
979                         uint64_t value)
980 {
981     uint32_t mask = 0;
982 
983     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
984     if (!arm_feature(env, ARM_FEATURE_V8)) {
985         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
986          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
987          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
988          */
989         if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
990             /* VFP coprocessor: cp10 & cp11 [23:20] */
991             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
992 
993             if (!arm_feature(env, ARM_FEATURE_NEON)) {
994                 /* ASEDIS [31] bit is RAO/WI */
995                 value |= (1 << 31);
996             }
997 
998             /* VFPv3 and upwards with NEON implement 32 double precision
999              * registers (D0-D31).
1000              */
1001             if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
1002                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
1003                 value |= (1 << 30);
1004             }
1005         }
1006         value &= mask;
1007     }
1008 
1009     /*
1010      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1011      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1012      */
1013     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1014         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1015         value &= ~(0xf << 20);
1016         value |= env->cp15.cpacr_el1 & (0xf << 20);
1017     }
1018 
1019     env->cp15.cpacr_el1 = value;
1020 }
1021 
1022 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1023 {
1024     /*
1025      * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
1026      * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
1027      */
1028     uint64_t value = env->cp15.cpacr_el1;
1029 
1030     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
1031         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
1032         value &= ~(0xf << 20);
1033     }
1034     return value;
1035 }
1036 
1037 
1038 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1039 {
1040     /* Call cpacr_write() so that we reset with the correct RAO bits set
1041      * for our CPU features.
1042      */
1043     cpacr_write(env, ri, 0);
1044 }
1045 
1046 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1047                                    bool isread)
1048 {
1049     if (arm_feature(env, ARM_FEATURE_V8)) {
1050         /* Check if CPACR accesses are to be trapped to EL2 */
1051         if (arm_current_el(env) == 1 &&
1052             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
1053             return CP_ACCESS_TRAP_EL2;
1054         /* Check if CPACR accesses are to be trapped to EL3 */
1055         } else if (arm_current_el(env) < 3 &&
1056                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1057             return CP_ACCESS_TRAP_EL3;
1058         }
1059     }
1060 
1061     return CP_ACCESS_OK;
1062 }
1063 
1064 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1065                                   bool isread)
1066 {
1067     /* Check if CPTR accesses are set to trap to EL3 */
1068     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
1069         return CP_ACCESS_TRAP_EL3;
1070     }
1071 
1072     return CP_ACCESS_OK;
1073 }
1074 
1075 static const ARMCPRegInfo v6_cp_reginfo[] = {
1076     /* prefetch by MVA in v6, NOP in v7 */
1077     { .name = "MVA_prefetch",
1078       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
1079       .access = PL1_W, .type = ARM_CP_NOP },
1080     /* We need to break the TB after ISB to execute self-modifying code
1081      * correctly and also to take any pending interrupts immediately.
1082      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
1083      */
1084     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
1085       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
1086     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
1087       .access = PL0_W, .type = ARM_CP_NOP },
1088     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
1089       .access = PL0_W, .type = ARM_CP_NOP },
1090     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
1091       .access = PL1_RW, .accessfn = access_tvm_trvm,
1092       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
1093                              offsetof(CPUARMState, cp15.ifar_ns) },
1094       .resetvalue = 0, },
1095     /* Watchpoint Fault Address Register : should actually only be present
1096      * for 1136, 1176, 11MPCore.
1097      */
1098     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
1099       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
1100     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
1101       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
1102       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
1103       .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
1104     REGINFO_SENTINEL
1105 };
1106 
1107 /* Definitions for the PMU registers */
1108 #define PMCRN_MASK  0xf800
1109 #define PMCRN_SHIFT 11
1110 #define PMCRLC  0x40
1111 #define PMCRDP  0x20
1112 #define PMCRX   0x10
1113 #define PMCRD   0x8
1114 #define PMCRC   0x4
1115 #define PMCRP   0x2
1116 #define PMCRE   0x1
1117 /*
1118  * Mask of PMCR bits writeable by guest (not including WO bits like C, P,
1119  * which can be written as 1 to trigger behaviour but which stay RAZ).
1120  */
1121 #define PMCR_WRITEABLE_MASK (PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
1122 
1123 #define PMXEVTYPER_P          0x80000000
1124 #define PMXEVTYPER_U          0x40000000
1125 #define PMXEVTYPER_NSK        0x20000000
1126 #define PMXEVTYPER_NSU        0x10000000
1127 #define PMXEVTYPER_NSH        0x08000000
1128 #define PMXEVTYPER_M          0x04000000
1129 #define PMXEVTYPER_MT         0x02000000
1130 #define PMXEVTYPER_EVTCOUNT   0x0000ffff
1131 #define PMXEVTYPER_MASK       (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
1132                                PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
1133                                PMXEVTYPER_M | PMXEVTYPER_MT | \
1134                                PMXEVTYPER_EVTCOUNT)
1135 
1136 #define PMCCFILTR             0xf8000000
1137 #define PMCCFILTR_M           PMXEVTYPER_M
1138 #define PMCCFILTR_EL0         (PMCCFILTR | PMCCFILTR_M)
1139 
1140 static inline uint32_t pmu_num_counters(CPUARMState *env)
1141 {
1142   return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT;
1143 }
1144 
1145 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1146 static inline uint64_t pmu_counter_mask(CPUARMState *env)
1147 {
1148   return (1 << 31) | ((1 << pmu_num_counters(env)) - 1);
1149 }
1150 
1151 typedef struct pm_event {
1152     uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
1153     /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1154     bool (*supported)(CPUARMState *);
1155     /*
1156      * Retrieve the current count of the underlying event. The programmed
1157      * counters hold a difference from the return value from this function
1158      */
1159     uint64_t (*get_count)(CPUARMState *);
1160     /*
1161      * Return how many nanoseconds it will take (at a minimum) for count events
1162      * to occur. A negative value indicates the counter will never overflow, or
1163      * that the counter has otherwise arranged for the overflow bit to be set
1164      * and the PMU interrupt to be raised on overflow.
1165      */
1166     int64_t (*ns_per_count)(uint64_t);
1167 } pm_event;
1168 
1169 static bool event_always_supported(CPUARMState *env)
1170 {
1171     return true;
1172 }
1173 
1174 static uint64_t swinc_get_count(CPUARMState *env)
1175 {
1176     /*
1177      * SW_INCR events are written directly to the pmevcntr's by writes to
1178      * PMSWINC, so there is no underlying count maintained by the PMU itself
1179      */
1180     return 0;
1181 }
1182 
1183 static int64_t swinc_ns_per(uint64_t ignored)
1184 {
1185     return -1;
1186 }
1187 
1188 /*
1189  * Return the underlying cycle count for the PMU cycle counters. If we're in
1190  * usermode, simply return 0.
1191  */
1192 static uint64_t cycles_get_count(CPUARMState *env)
1193 {
1194 #ifndef CONFIG_USER_ONLY
1195     return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
1196                    ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1197 #else
1198     return cpu_get_host_ticks();
1199 #endif
1200 }
1201 
1202 #ifndef CONFIG_USER_ONLY
1203 static int64_t cycles_ns_per(uint64_t cycles)
1204 {
1205     return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
1206 }
1207 
1208 static bool instructions_supported(CPUARMState *env)
1209 {
1210     return icount_enabled() == 1; /* Precise instruction counting */
1211 }
1212 
1213 static uint64_t instructions_get_count(CPUARMState *env)
1214 {
1215     return (uint64_t)icount_get_raw();
1216 }
1217 
1218 static int64_t instructions_ns_per(uint64_t icount)
1219 {
1220     return icount_to_ns((int64_t)icount);
1221 }
1222 #endif
1223 
1224 static bool pmu_8_1_events_supported(CPUARMState *env)
1225 {
1226     /* For events which are supported in any v8.1 PMU */
1227     return cpu_isar_feature(any_pmu_8_1, env_archcpu(env));
1228 }
1229 
1230 static bool pmu_8_4_events_supported(CPUARMState *env)
1231 {
1232     /* For events which are supported in any v8.1 PMU */
1233     return cpu_isar_feature(any_pmu_8_4, env_archcpu(env));
1234 }
1235 
1236 static uint64_t zero_event_get_count(CPUARMState *env)
1237 {
1238     /* For events which on QEMU never fire, so their count is always zero */
1239     return 0;
1240 }
1241 
1242 static int64_t zero_event_ns_per(uint64_t cycles)
1243 {
1244     /* An event which never fires can never overflow */
1245     return -1;
1246 }
1247 
1248 static const pm_event pm_events[] = {
1249     { .number = 0x000, /* SW_INCR */
1250       .supported = event_always_supported,
1251       .get_count = swinc_get_count,
1252       .ns_per_count = swinc_ns_per,
1253     },
1254 #ifndef CONFIG_USER_ONLY
1255     { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
1256       .supported = instructions_supported,
1257       .get_count = instructions_get_count,
1258       .ns_per_count = instructions_ns_per,
1259     },
1260     { .number = 0x011, /* CPU_CYCLES, Cycle */
1261       .supported = event_always_supported,
1262       .get_count = cycles_get_count,
1263       .ns_per_count = cycles_ns_per,
1264     },
1265 #endif
1266     { .number = 0x023, /* STALL_FRONTEND */
1267       .supported = pmu_8_1_events_supported,
1268       .get_count = zero_event_get_count,
1269       .ns_per_count = zero_event_ns_per,
1270     },
1271     { .number = 0x024, /* STALL_BACKEND */
1272       .supported = pmu_8_1_events_supported,
1273       .get_count = zero_event_get_count,
1274       .ns_per_count = zero_event_ns_per,
1275     },
1276     { .number = 0x03c, /* STALL */
1277       .supported = pmu_8_4_events_supported,
1278       .get_count = zero_event_get_count,
1279       .ns_per_count = zero_event_ns_per,
1280     },
1281 };
1282 
1283 /*
1284  * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1285  * events (i.e. the statistical profiling extension), this implementation
1286  * should first be updated to something sparse instead of the current
1287  * supported_event_map[] array.
1288  */
1289 #define MAX_EVENT_ID 0x3c
1290 #define UNSUPPORTED_EVENT UINT16_MAX
1291 static uint16_t supported_event_map[MAX_EVENT_ID + 1];
1292 
1293 /*
1294  * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1295  * of ARM event numbers to indices in our pm_events array.
1296  *
1297  * Note: Events in the 0x40XX range are not currently supported.
1298  */
1299 void pmu_init(ARMCPU *cpu)
1300 {
1301     unsigned int i;
1302 
1303     /*
1304      * Empty supported_event_map and cpu->pmceid[01] before adding supported
1305      * events to them
1306      */
1307     for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
1308         supported_event_map[i] = UNSUPPORTED_EVENT;
1309     }
1310     cpu->pmceid0 = 0;
1311     cpu->pmceid1 = 0;
1312 
1313     for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
1314         const pm_event *cnt = &pm_events[i];
1315         assert(cnt->number <= MAX_EVENT_ID);
1316         /* We do not currently support events in the 0x40xx range */
1317         assert(cnt->number <= 0x3f);
1318 
1319         if (cnt->supported(&cpu->env)) {
1320             supported_event_map[cnt->number] = i;
1321             uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
1322             if (cnt->number & 0x20) {
1323                 cpu->pmceid1 |= event_mask;
1324             } else {
1325                 cpu->pmceid0 |= event_mask;
1326             }
1327         }
1328     }
1329 }
1330 
1331 /*
1332  * Check at runtime whether a PMU event is supported for the current machine
1333  */
1334 static bool event_supported(uint16_t number)
1335 {
1336     if (number > MAX_EVENT_ID) {
1337         return false;
1338     }
1339     return supported_event_map[number] != UNSUPPORTED_EVENT;
1340 }
1341 
1342 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
1343                                    bool isread)
1344 {
1345     /* Performance monitor registers user accessibility is controlled
1346      * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1347      * trapping to EL2 or EL3 for other accesses.
1348      */
1349     int el = arm_current_el(env);
1350 
1351     if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
1352         return CP_ACCESS_TRAP;
1353     }
1354     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
1355         && !arm_is_secure_below_el3(env)) {
1356         return CP_ACCESS_TRAP_EL2;
1357     }
1358     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
1359         return CP_ACCESS_TRAP_EL3;
1360     }
1361 
1362     return CP_ACCESS_OK;
1363 }
1364 
1365 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
1366                                            const ARMCPRegInfo *ri,
1367                                            bool isread)
1368 {
1369     /* ER: event counter read trap control */
1370     if (arm_feature(env, ARM_FEATURE_V8)
1371         && arm_current_el(env) == 0
1372         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
1373         && isread) {
1374         return CP_ACCESS_OK;
1375     }
1376 
1377     return pmreg_access(env, ri, isread);
1378 }
1379 
1380 static CPAccessResult pmreg_access_swinc(CPUARMState *env,
1381                                          const ARMCPRegInfo *ri,
1382                                          bool isread)
1383 {
1384     /* SW: software increment write trap control */
1385     if (arm_feature(env, ARM_FEATURE_V8)
1386         && arm_current_el(env) == 0
1387         && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
1388         && !isread) {
1389         return CP_ACCESS_OK;
1390     }
1391 
1392     return pmreg_access(env, ri, isread);
1393 }
1394 
1395 static CPAccessResult pmreg_access_selr(CPUARMState *env,
1396                                         const ARMCPRegInfo *ri,
1397                                         bool isread)
1398 {
1399     /* ER: event counter read trap control */
1400     if (arm_feature(env, ARM_FEATURE_V8)
1401         && arm_current_el(env) == 0
1402         && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
1403         return CP_ACCESS_OK;
1404     }
1405 
1406     return pmreg_access(env, ri, isread);
1407 }
1408 
1409 static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
1410                                          const ARMCPRegInfo *ri,
1411                                          bool isread)
1412 {
1413     /* CR: cycle counter read trap control */
1414     if (arm_feature(env, ARM_FEATURE_V8)
1415         && arm_current_el(env) == 0
1416         && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
1417         && isread) {
1418         return CP_ACCESS_OK;
1419     }
1420 
1421     return pmreg_access(env, ri, isread);
1422 }
1423 
1424 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1425  * the current EL, security state, and register configuration.
1426  */
1427 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
1428 {
1429     uint64_t filter;
1430     bool e, p, u, nsk, nsu, nsh, m;
1431     bool enabled, prohibited, filtered;
1432     bool secure = arm_is_secure(env);
1433     int el = arm_current_el(env);
1434     uint8_t hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
1435 
1436     if (!arm_feature(env, ARM_FEATURE_PMU)) {
1437         return false;
1438     }
1439 
1440     if (!arm_feature(env, ARM_FEATURE_EL2) ||
1441             (counter < hpmn || counter == 31)) {
1442         e = env->cp15.c9_pmcr & PMCRE;
1443     } else {
1444         e = env->cp15.mdcr_el2 & MDCR_HPME;
1445     }
1446     enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
1447 
1448     if (!secure) {
1449         if (el == 2 && (counter < hpmn || counter == 31)) {
1450             prohibited = env->cp15.mdcr_el2 & MDCR_HPMD;
1451         } else {
1452             prohibited = false;
1453         }
1454     } else {
1455         prohibited = arm_feature(env, ARM_FEATURE_EL3) &&
1456            !(env->cp15.mdcr_el3 & MDCR_SPME);
1457     }
1458 
1459     if (prohibited && counter == 31) {
1460         prohibited = env->cp15.c9_pmcr & PMCRDP;
1461     }
1462 
1463     if (counter == 31) {
1464         filter = env->cp15.pmccfiltr_el0;
1465     } else {
1466         filter = env->cp15.c14_pmevtyper[counter];
1467     }
1468 
1469     p   = filter & PMXEVTYPER_P;
1470     u   = filter & PMXEVTYPER_U;
1471     nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
1472     nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
1473     nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
1474     m   = arm_el_is_aa64(env, 1) &&
1475               arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
1476 
1477     if (el == 0) {
1478         filtered = secure ? u : u != nsu;
1479     } else if (el == 1) {
1480         filtered = secure ? p : p != nsk;
1481     } else if (el == 2) {
1482         filtered = !nsh;
1483     } else { /* EL3 */
1484         filtered = m != p;
1485     }
1486 
1487     if (counter != 31) {
1488         /*
1489          * If not checking PMCCNTR, ensure the counter is setup to an event we
1490          * support
1491          */
1492         uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
1493         if (!event_supported(event)) {
1494             return false;
1495         }
1496     }
1497 
1498     return enabled && !prohibited && !filtered;
1499 }
1500 
1501 static void pmu_update_irq(CPUARMState *env)
1502 {
1503     ARMCPU *cpu = env_archcpu(env);
1504     qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
1505             (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
1506 }
1507 
1508 /*
1509  * Ensure c15_ccnt is the guest-visible count so that operations such as
1510  * enabling/disabling the counter or filtering, modifying the count itself,
1511  * etc. can be done logically. This is essentially a no-op if the counter is
1512  * not enabled at the time of the call.
1513  */
1514 static void pmccntr_op_start(CPUARMState *env)
1515 {
1516     uint64_t cycles = cycles_get_count(env);
1517 
1518     if (pmu_counter_enabled(env, 31)) {
1519         uint64_t eff_cycles = cycles;
1520         if (env->cp15.c9_pmcr & PMCRD) {
1521             /* Increment once every 64 processor clock cycles */
1522             eff_cycles /= 64;
1523         }
1524 
1525         uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
1526 
1527         uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
1528                                  1ull << 63 : 1ull << 31;
1529         if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
1530             env->cp15.c9_pmovsr |= (1 << 31);
1531             pmu_update_irq(env);
1532         }
1533 
1534         env->cp15.c15_ccnt = new_pmccntr;
1535     }
1536     env->cp15.c15_ccnt_delta = cycles;
1537 }
1538 
1539 /*
1540  * If PMCCNTR is enabled, recalculate the delta between the clock and the
1541  * guest-visible count. A call to pmccntr_op_finish should follow every call to
1542  * pmccntr_op_start.
1543  */
1544 static void pmccntr_op_finish(CPUARMState *env)
1545 {
1546     if (pmu_counter_enabled(env, 31)) {
1547 #ifndef CONFIG_USER_ONLY
1548         /* Calculate when the counter will next overflow */
1549         uint64_t remaining_cycles = -env->cp15.c15_ccnt;
1550         if (!(env->cp15.c9_pmcr & PMCRLC)) {
1551             remaining_cycles = (uint32_t)remaining_cycles;
1552         }
1553         int64_t overflow_in = cycles_ns_per(remaining_cycles);
1554 
1555         if (overflow_in > 0) {
1556             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1557                 overflow_in;
1558             ARMCPU *cpu = env_archcpu(env);
1559             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1560         }
1561 #endif
1562 
1563         uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
1564         if (env->cp15.c9_pmcr & PMCRD) {
1565             /* Increment once every 64 processor clock cycles */
1566             prev_cycles /= 64;
1567         }
1568         env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
1569     }
1570 }
1571 
1572 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
1573 {
1574 
1575     uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1576     uint64_t count = 0;
1577     if (event_supported(event)) {
1578         uint16_t event_idx = supported_event_map[event];
1579         count = pm_events[event_idx].get_count(env);
1580     }
1581 
1582     if (pmu_counter_enabled(env, counter)) {
1583         uint32_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
1584 
1585         if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & INT32_MIN) {
1586             env->cp15.c9_pmovsr |= (1 << counter);
1587             pmu_update_irq(env);
1588         }
1589         env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
1590     }
1591     env->cp15.c14_pmevcntr_delta[counter] = count;
1592 }
1593 
1594 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
1595 {
1596     if (pmu_counter_enabled(env, counter)) {
1597 #ifndef CONFIG_USER_ONLY
1598         uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
1599         uint16_t event_idx = supported_event_map[event];
1600         uint64_t delta = UINT32_MAX -
1601             (uint32_t)env->cp15.c14_pmevcntr[counter] + 1;
1602         int64_t overflow_in = pm_events[event_idx].ns_per_count(delta);
1603 
1604         if (overflow_in > 0) {
1605             int64_t overflow_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
1606                 overflow_in;
1607             ARMCPU *cpu = env_archcpu(env);
1608             timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
1609         }
1610 #endif
1611 
1612         env->cp15.c14_pmevcntr_delta[counter] -=
1613             env->cp15.c14_pmevcntr[counter];
1614     }
1615 }
1616 
1617 void pmu_op_start(CPUARMState *env)
1618 {
1619     unsigned int i;
1620     pmccntr_op_start(env);
1621     for (i = 0; i < pmu_num_counters(env); i++) {
1622         pmevcntr_op_start(env, i);
1623     }
1624 }
1625 
1626 void pmu_op_finish(CPUARMState *env)
1627 {
1628     unsigned int i;
1629     pmccntr_op_finish(env);
1630     for (i = 0; i < pmu_num_counters(env); i++) {
1631         pmevcntr_op_finish(env, i);
1632     }
1633 }
1634 
1635 void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
1636 {
1637     pmu_op_start(&cpu->env);
1638 }
1639 
1640 void pmu_post_el_change(ARMCPU *cpu, void *ignored)
1641 {
1642     pmu_op_finish(&cpu->env);
1643 }
1644 
1645 void arm_pmu_timer_cb(void *opaque)
1646 {
1647     ARMCPU *cpu = opaque;
1648 
1649     /*
1650      * Update all the counter values based on the current underlying counts,
1651      * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1652      * has the effect of setting the cpu->pmu_timer to the next earliest time a
1653      * counter may expire.
1654      */
1655     pmu_op_start(&cpu->env);
1656     pmu_op_finish(&cpu->env);
1657 }
1658 
1659 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660                        uint64_t value)
1661 {
1662     pmu_op_start(env);
1663 
1664     if (value & PMCRC) {
1665         /* The counter has been reset */
1666         env->cp15.c15_ccnt = 0;
1667     }
1668 
1669     if (value & PMCRP) {
1670         unsigned int i;
1671         for (i = 0; i < pmu_num_counters(env); i++) {
1672             env->cp15.c14_pmevcntr[i] = 0;
1673         }
1674     }
1675 
1676     env->cp15.c9_pmcr &= ~PMCR_WRITEABLE_MASK;
1677     env->cp15.c9_pmcr |= (value & PMCR_WRITEABLE_MASK);
1678 
1679     pmu_op_finish(env);
1680 }
1681 
1682 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
1683                           uint64_t value)
1684 {
1685     unsigned int i;
1686     for (i = 0; i < pmu_num_counters(env); i++) {
1687         /* Increment a counter's count iff: */
1688         if ((value & (1 << i)) && /* counter's bit is set */
1689                 /* counter is enabled and not filtered */
1690                 pmu_counter_enabled(env, i) &&
1691                 /* counter is SW_INCR */
1692                 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
1693             pmevcntr_op_start(env, i);
1694 
1695             /*
1696              * Detect if this write causes an overflow since we can't predict
1697              * PMSWINC overflows like we can for other events
1698              */
1699             uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
1700 
1701             if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
1702                 env->cp15.c9_pmovsr |= (1 << i);
1703                 pmu_update_irq(env);
1704             }
1705 
1706             env->cp15.c14_pmevcntr[i] = new_pmswinc;
1707 
1708             pmevcntr_op_finish(env, i);
1709         }
1710     }
1711 }
1712 
1713 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1714 {
1715     uint64_t ret;
1716     pmccntr_op_start(env);
1717     ret = env->cp15.c15_ccnt;
1718     pmccntr_op_finish(env);
1719     return ret;
1720 }
1721 
1722 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1723                          uint64_t value)
1724 {
1725     /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1726      * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1727      * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1728      * accessed.
1729      */
1730     env->cp15.c9_pmselr = value & 0x1f;
1731 }
1732 
1733 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1734                         uint64_t value)
1735 {
1736     pmccntr_op_start(env);
1737     env->cp15.c15_ccnt = value;
1738     pmccntr_op_finish(env);
1739 }
1740 
1741 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
1742                             uint64_t value)
1743 {
1744     uint64_t cur_val = pmccntr_read(env, NULL);
1745 
1746     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1747 }
1748 
1749 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1750                             uint64_t value)
1751 {
1752     pmccntr_op_start(env);
1753     env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
1754     pmccntr_op_finish(env);
1755 }
1756 
1757 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
1758                             uint64_t value)
1759 {
1760     pmccntr_op_start(env);
1761     /* M is not accessible from AArch32 */
1762     env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
1763         (value & PMCCFILTR);
1764     pmccntr_op_finish(env);
1765 }
1766 
1767 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
1768 {
1769     /* M is not visible in AArch32 */
1770     return env->cp15.pmccfiltr_el0 & PMCCFILTR;
1771 }
1772 
1773 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1774                             uint64_t value)
1775 {
1776     value &= pmu_counter_mask(env);
1777     env->cp15.c9_pmcnten |= value;
1778 }
1779 
1780 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1781                              uint64_t value)
1782 {
1783     value &= pmu_counter_mask(env);
1784     env->cp15.c9_pmcnten &= ~value;
1785 }
1786 
1787 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1788                          uint64_t value)
1789 {
1790     value &= pmu_counter_mask(env);
1791     env->cp15.c9_pmovsr &= ~value;
1792     pmu_update_irq(env);
1793 }
1794 
1795 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796                          uint64_t value)
1797 {
1798     value &= pmu_counter_mask(env);
1799     env->cp15.c9_pmovsr |= value;
1800     pmu_update_irq(env);
1801 }
1802 
1803 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1804                              uint64_t value, const uint8_t counter)
1805 {
1806     if (counter == 31) {
1807         pmccfiltr_write(env, ri, value);
1808     } else if (counter < pmu_num_counters(env)) {
1809         pmevcntr_op_start(env, counter);
1810 
1811         /*
1812          * If this counter's event type is changing, store the current
1813          * underlying count for the new type in c14_pmevcntr_delta[counter] so
1814          * pmevcntr_op_finish has the correct baseline when it converts back to
1815          * a delta.
1816          */
1817         uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
1818             PMXEVTYPER_EVTCOUNT;
1819         uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
1820         if (old_event != new_event) {
1821             uint64_t count = 0;
1822             if (event_supported(new_event)) {
1823                 uint16_t event_idx = supported_event_map[new_event];
1824                 count = pm_events[event_idx].get_count(env);
1825             }
1826             env->cp15.c14_pmevcntr_delta[counter] = count;
1827         }
1828 
1829         env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
1830         pmevcntr_op_finish(env, counter);
1831     }
1832     /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1833      * PMSELR value is equal to or greater than the number of implemented
1834      * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1835      */
1836 }
1837 
1838 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
1839                                const uint8_t counter)
1840 {
1841     if (counter == 31) {
1842         return env->cp15.pmccfiltr_el0;
1843     } else if (counter < pmu_num_counters(env)) {
1844         return env->cp15.c14_pmevtyper[counter];
1845     } else {
1846       /*
1847        * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1848        * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1849        */
1850         return 0;
1851     }
1852 }
1853 
1854 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1855                               uint64_t value)
1856 {
1857     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1858     pmevtyper_write(env, ri, value, counter);
1859 }
1860 
1861 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1862                                uint64_t value)
1863 {
1864     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1865     env->cp15.c14_pmevtyper[counter] = value;
1866 
1867     /*
1868      * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1869      * pmu_op_finish calls when loading saved state for a migration. Because
1870      * we're potentially updating the type of event here, the value written to
1871      * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1872      * different counter type. Therefore, we need to set this value to the
1873      * current count for the counter type we're writing so that pmu_op_finish
1874      * has the correct count for its calculation.
1875      */
1876     uint16_t event = value & PMXEVTYPER_EVTCOUNT;
1877     if (event_supported(event)) {
1878         uint16_t event_idx = supported_event_map[event];
1879         env->cp15.c14_pmevcntr_delta[counter] =
1880             pm_events[event_idx].get_count(env);
1881     }
1882 }
1883 
1884 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1885 {
1886     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1887     return pmevtyper_read(env, ri, counter);
1888 }
1889 
1890 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1891                              uint64_t value)
1892 {
1893     pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
1894 }
1895 
1896 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
1897 {
1898     return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
1899 }
1900 
1901 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1902                              uint64_t value, uint8_t counter)
1903 {
1904     if (counter < pmu_num_counters(env)) {
1905         pmevcntr_op_start(env, counter);
1906         env->cp15.c14_pmevcntr[counter] = value;
1907         pmevcntr_op_finish(env, counter);
1908     }
1909     /*
1910      * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1911      * are CONSTRAINED UNPREDICTABLE.
1912      */
1913 }
1914 
1915 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
1916                               uint8_t counter)
1917 {
1918     if (counter < pmu_num_counters(env)) {
1919         uint64_t ret;
1920         pmevcntr_op_start(env, counter);
1921         ret = env->cp15.c14_pmevcntr[counter];
1922         pmevcntr_op_finish(env, counter);
1923         return ret;
1924     } else {
1925       /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1926        * are CONSTRAINED UNPREDICTABLE. */
1927         return 0;
1928     }
1929 }
1930 
1931 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
1932                              uint64_t value)
1933 {
1934     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1935     pmevcntr_write(env, ri, value, counter);
1936 }
1937 
1938 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
1939 {
1940     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1941     return pmevcntr_read(env, ri, counter);
1942 }
1943 
1944 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
1945                              uint64_t value)
1946 {
1947     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1948     assert(counter < pmu_num_counters(env));
1949     env->cp15.c14_pmevcntr[counter] = value;
1950     pmevcntr_write(env, ri, value, counter);
1951 }
1952 
1953 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
1954 {
1955     uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
1956     assert(counter < pmu_num_counters(env));
1957     return env->cp15.c14_pmevcntr[counter];
1958 }
1959 
1960 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1961                              uint64_t value)
1962 {
1963     pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
1964 }
1965 
1966 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1967 {
1968     return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
1969 }
1970 
1971 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                             uint64_t value)
1973 {
1974     if (arm_feature(env, ARM_FEATURE_V8)) {
1975         env->cp15.c9_pmuserenr = value & 0xf;
1976     } else {
1977         env->cp15.c9_pmuserenr = value & 1;
1978     }
1979 }
1980 
1981 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1982                              uint64_t value)
1983 {
1984     /* We have no event counters so only the C bit can be changed */
1985     value &= pmu_counter_mask(env);
1986     env->cp15.c9_pminten |= value;
1987     pmu_update_irq(env);
1988 }
1989 
1990 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991                              uint64_t value)
1992 {
1993     value &= pmu_counter_mask(env);
1994     env->cp15.c9_pminten &= ~value;
1995     pmu_update_irq(env);
1996 }
1997 
1998 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1999                        uint64_t value)
2000 {
2001     /* Note that even though the AArch64 view of this register has bits
2002      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
2003      * architectural requirements for bits which are RES0 only in some
2004      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
2005      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
2006      */
2007     raw_write(env, ri, value & ~0x1FULL);
2008 }
2009 
2010 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2011 {
2012     /* Begin with base v8.0 state.  */
2013     uint32_t valid_mask = 0x3fff;
2014     ARMCPU *cpu = env_archcpu(env);
2015 
2016     if (ri->state == ARM_CP_STATE_AA64) {
2017         value |= SCR_FW | SCR_AW;   /* these two bits are RES1.  */
2018         valid_mask &= ~SCR_NET;
2019 
2020         if (cpu_isar_feature(aa64_lor, cpu)) {
2021             valid_mask |= SCR_TLOR;
2022         }
2023         if (cpu_isar_feature(aa64_pauth, cpu)) {
2024             valid_mask |= SCR_API | SCR_APK;
2025         }
2026         if (cpu_isar_feature(aa64_mte, cpu)) {
2027             valid_mask |= SCR_ATA;
2028         }
2029     } else {
2030         valid_mask &= ~(SCR_RW | SCR_ST);
2031     }
2032 
2033     if (!arm_feature(env, ARM_FEATURE_EL2)) {
2034         valid_mask &= ~SCR_HCE;
2035 
2036         /* On ARMv7, SMD (or SCD as it is called in v7) is only
2037          * supported if EL2 exists. The bit is UNK/SBZP when
2038          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
2039          * when EL2 is unavailable.
2040          * On ARMv8, this bit is always available.
2041          */
2042         if (arm_feature(env, ARM_FEATURE_V7) &&
2043             !arm_feature(env, ARM_FEATURE_V8)) {
2044             valid_mask &= ~SCR_SMD;
2045         }
2046     }
2047 
2048     /* Clear all-context RES0 bits.  */
2049     value &= valid_mask;
2050     raw_write(env, ri, value);
2051 }
2052 
2053 static CPAccessResult access_aa64_tid2(CPUARMState *env,
2054                                        const ARMCPRegInfo *ri,
2055                                        bool isread)
2056 {
2057     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID2)) {
2058         return CP_ACCESS_TRAP_EL2;
2059     }
2060 
2061     return CP_ACCESS_OK;
2062 }
2063 
2064 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2065 {
2066     ARMCPU *cpu = env_archcpu(env);
2067 
2068     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
2069      * bank
2070      */
2071     uint32_t index = A32_BANKED_REG_GET(env, csselr,
2072                                         ri->secure & ARM_CP_SECSTATE_S);
2073 
2074     return cpu->ccsidr[index];
2075 }
2076 
2077 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2078                          uint64_t value)
2079 {
2080     raw_write(env, ri, value & 0xf);
2081 }
2082 
2083 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2084 {
2085     CPUState *cs = env_cpu(env);
2086     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
2087     uint64_t ret = 0;
2088     bool allow_virt = (arm_current_el(env) == 1 &&
2089                        (!arm_is_secure_below_el3(env) ||
2090                         (env->cp15.scr_el3 & SCR_EEL2)));
2091 
2092     if (allow_virt && (hcr_el2 & HCR_IMO)) {
2093         if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
2094             ret |= CPSR_I;
2095         }
2096     } else {
2097         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
2098             ret |= CPSR_I;
2099         }
2100     }
2101 
2102     if (allow_virt && (hcr_el2 & HCR_FMO)) {
2103         if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
2104             ret |= CPSR_F;
2105         }
2106     } else {
2107         if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
2108             ret |= CPSR_F;
2109         }
2110     }
2111 
2112     /* External aborts are not possible in QEMU so A bit is always clear */
2113     return ret;
2114 }
2115 
2116 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2117                                        bool isread)
2118 {
2119     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
2120         return CP_ACCESS_TRAP_EL2;
2121     }
2122 
2123     return CP_ACCESS_OK;
2124 }
2125 
2126 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
2127                                        bool isread)
2128 {
2129     if (arm_feature(env, ARM_FEATURE_V8)) {
2130         return access_aa64_tid1(env, ri, isread);
2131     }
2132 
2133     return CP_ACCESS_OK;
2134 }
2135 
2136 static const ARMCPRegInfo v7_cp_reginfo[] = {
2137     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
2138     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
2139       .access = PL1_W, .type = ARM_CP_NOP },
2140     /* Performance monitors are implementation defined in v7,
2141      * but with an ARM recommended set of registers, which we
2142      * follow.
2143      *
2144      * Performance registers fall into three categories:
2145      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
2146      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
2147      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
2148      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
2149      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
2150      */
2151     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
2152       .access = PL0_RW, .type = ARM_CP_ALIAS,
2153       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2154       .writefn = pmcntenset_write,
2155       .accessfn = pmreg_access,
2156       .raw_writefn = raw_write },
2157     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
2158       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
2159       .access = PL0_RW, .accessfn = pmreg_access,
2160       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
2161       .writefn = pmcntenset_write, .raw_writefn = raw_write },
2162     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
2163       .access = PL0_RW,
2164       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
2165       .accessfn = pmreg_access,
2166       .writefn = pmcntenclr_write,
2167       .type = ARM_CP_ALIAS },
2168     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
2169       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
2170       .access = PL0_RW, .accessfn = pmreg_access,
2171       .type = ARM_CP_ALIAS,
2172       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
2173       .writefn = pmcntenclr_write },
2174     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
2175       .access = PL0_RW, .type = ARM_CP_IO,
2176       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2177       .accessfn = pmreg_access,
2178       .writefn = pmovsr_write,
2179       .raw_writefn = raw_write },
2180     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
2181       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
2182       .access = PL0_RW, .accessfn = pmreg_access,
2183       .type = ARM_CP_ALIAS | ARM_CP_IO,
2184       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2185       .writefn = pmovsr_write,
2186       .raw_writefn = raw_write },
2187     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
2188       .access = PL0_W, .accessfn = pmreg_access_swinc,
2189       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2190       .writefn = pmswinc_write },
2191     { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
2192       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
2193       .access = PL0_W, .accessfn = pmreg_access_swinc,
2194       .type = ARM_CP_NO_RAW | ARM_CP_IO,
2195       .writefn = pmswinc_write },
2196     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
2197       .access = PL0_RW, .type = ARM_CP_ALIAS,
2198       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
2199       .accessfn = pmreg_access_selr, .writefn = pmselr_write,
2200       .raw_writefn = raw_write},
2201     { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
2202       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
2203       .access = PL0_RW, .accessfn = pmreg_access_selr,
2204       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
2205       .writefn = pmselr_write, .raw_writefn = raw_write, },
2206     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
2207       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
2208       .readfn = pmccntr_read, .writefn = pmccntr_write32,
2209       .accessfn = pmreg_access_ccntr },
2210     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
2211       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
2212       .access = PL0_RW, .accessfn = pmreg_access_ccntr,
2213       .type = ARM_CP_IO,
2214       .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
2215       .readfn = pmccntr_read, .writefn = pmccntr_write,
2216       .raw_readfn = raw_read, .raw_writefn = raw_write, },
2217     { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
2218       .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
2219       .access = PL0_RW, .accessfn = pmreg_access,
2220       .type = ARM_CP_ALIAS | ARM_CP_IO,
2221       .resetvalue = 0, },
2222     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
2223       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
2224       .writefn = pmccfiltr_write, .raw_writefn = raw_write,
2225       .access = PL0_RW, .accessfn = pmreg_access,
2226       .type = ARM_CP_IO,
2227       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
2228       .resetvalue = 0, },
2229     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
2230       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2231       .accessfn = pmreg_access,
2232       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2233     { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
2234       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
2235       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2236       .accessfn = pmreg_access,
2237       .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
2238     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
2239       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2240       .accessfn = pmreg_access_xevcntr,
2241       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2242     { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
2243       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
2244       .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2245       .accessfn = pmreg_access_xevcntr,
2246       .writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
2247     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
2248       .access = PL0_R | PL1_RW, .accessfn = access_tpm,
2249       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
2250       .resetvalue = 0,
2251       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2252     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
2253       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
2254       .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
2255       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
2256       .resetvalue = 0,
2257       .writefn = pmuserenr_write, .raw_writefn = raw_write },
2258     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
2259       .access = PL1_RW, .accessfn = access_tpm,
2260       .type = ARM_CP_ALIAS | ARM_CP_IO,
2261       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
2262       .resetvalue = 0,
2263       .writefn = pmintenset_write, .raw_writefn = raw_write },
2264     { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
2265       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
2266       .access = PL1_RW, .accessfn = access_tpm,
2267       .type = ARM_CP_IO,
2268       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2269       .writefn = pmintenset_write, .raw_writefn = raw_write,
2270       .resetvalue = 0x0 },
2271     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
2272       .access = PL1_RW, .accessfn = access_tpm,
2273       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2274       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2275       .writefn = pmintenclr_write, },
2276     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
2277       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
2278       .access = PL1_RW, .accessfn = access_tpm,
2279       .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
2280       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
2281       .writefn = pmintenclr_write },
2282     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
2283       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
2284       .access = PL1_R,
2285       .accessfn = access_aa64_tid2,
2286       .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
2287     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
2288       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
2289       .access = PL1_RW,
2290       .accessfn = access_aa64_tid2,
2291       .writefn = csselr_write, .resetvalue = 0,
2292       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
2293                              offsetof(CPUARMState, cp15.csselr_ns) } },
2294     /* Auxiliary ID register: this actually has an IMPDEF value but for now
2295      * just RAZ for all cores:
2296      */
2297     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
2298       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
2299       .access = PL1_R, .type = ARM_CP_CONST,
2300       .accessfn = access_aa64_tid1,
2301       .resetvalue = 0 },
2302     /* Auxiliary fault status registers: these also are IMPDEF, and we
2303      * choose to RAZ/WI for all cores.
2304      */
2305     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
2306       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
2307       .access = PL1_RW, .accessfn = access_tvm_trvm,
2308       .type = ARM_CP_CONST, .resetvalue = 0 },
2309     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
2310       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
2311       .access = PL1_RW, .accessfn = access_tvm_trvm,
2312       .type = ARM_CP_CONST, .resetvalue = 0 },
2313     /* MAIR can just read-as-written because we don't implement caches
2314      * and so don't need to care about memory attributes.
2315      */
2316     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
2317       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2318       .access = PL1_RW, .accessfn = access_tvm_trvm,
2319       .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
2320       .resetvalue = 0 },
2321     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
2322       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
2323       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
2324       .resetvalue = 0 },
2325     /* For non-long-descriptor page tables these are PRRR and NMRR;
2326      * regardless they still act as reads-as-written for QEMU.
2327      */
2328      /* MAIR0/1 are defined separately from their 64-bit counterpart which
2329       * allows them to assign the correct fieldoffset based on the endianness
2330       * handled in the field definitions.
2331       */
2332     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
2333       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
2334       .access = PL1_RW, .accessfn = access_tvm_trvm,
2335       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
2336                              offsetof(CPUARMState, cp15.mair0_ns) },
2337       .resetfn = arm_cp_reset_ignore },
2338     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
2339       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
2340       .access = PL1_RW, .accessfn = access_tvm_trvm,
2341       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
2342                              offsetof(CPUARMState, cp15.mair1_ns) },
2343       .resetfn = arm_cp_reset_ignore },
2344     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
2345       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
2346       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
2347     /* 32 bit ITLB invalidates */
2348     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
2349       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2350       .writefn = tlbiall_write },
2351     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
2352       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2353       .writefn = tlbimva_write },
2354     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
2355       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2356       .writefn = tlbiasid_write },
2357     /* 32 bit DTLB invalidates */
2358     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
2359       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2360       .writefn = tlbiall_write },
2361     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
2362       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2363       .writefn = tlbimva_write },
2364     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
2365       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2366       .writefn = tlbiasid_write },
2367     /* 32 bit TLB invalidates */
2368     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
2369       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2370       .writefn = tlbiall_write },
2371     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
2372       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2373       .writefn = tlbimva_write },
2374     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
2375       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2376       .writefn = tlbiasid_write },
2377     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
2378       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2379       .writefn = tlbimvaa_write },
2380     REGINFO_SENTINEL
2381 };
2382 
2383 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
2384     /* 32 bit TLB invalidates, Inner Shareable */
2385     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
2386       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2387       .writefn = tlbiall_is_write },
2388     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
2389       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2390       .writefn = tlbimva_is_write },
2391     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
2392       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2393       .writefn = tlbiasid_is_write },
2394     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
2395       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
2396       .writefn = tlbimvaa_is_write },
2397     REGINFO_SENTINEL
2398 };
2399 
2400 static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
2401     /* PMOVSSET is not implemented in v7 before v7ve */
2402     { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
2403       .access = PL0_RW, .accessfn = pmreg_access,
2404       .type = ARM_CP_ALIAS | ARM_CP_IO,
2405       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
2406       .writefn = pmovsset_write,
2407       .raw_writefn = raw_write },
2408     { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
2409       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
2410       .access = PL0_RW, .accessfn = pmreg_access,
2411       .type = ARM_CP_ALIAS | ARM_CP_IO,
2412       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
2413       .writefn = pmovsset_write,
2414       .raw_writefn = raw_write },
2415     REGINFO_SENTINEL
2416 };
2417 
2418 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2419                         uint64_t value)
2420 {
2421     value &= 1;
2422     env->teecr = value;
2423 }
2424 
2425 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
2426                                     bool isread)
2427 {
2428     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
2429         return CP_ACCESS_TRAP;
2430     }
2431     return CP_ACCESS_OK;
2432 }
2433 
2434 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
2435     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
2436       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
2437       .resetvalue = 0,
2438       .writefn = teecr_write },
2439     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
2440       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
2441       .accessfn = teehbr_access, .resetvalue = 0 },
2442     REGINFO_SENTINEL
2443 };
2444 
2445 static const ARMCPRegInfo v6k_cp_reginfo[] = {
2446     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
2447       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
2448       .access = PL0_RW,
2449       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
2450     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
2451       .access = PL0_RW,
2452       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
2453                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
2454       .resetfn = arm_cp_reset_ignore },
2455     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
2456       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
2457       .access = PL0_R|PL1_W,
2458       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
2459       .resetvalue = 0},
2460     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
2461       .access = PL0_R|PL1_W,
2462       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
2463                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
2464       .resetfn = arm_cp_reset_ignore },
2465     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
2466       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
2467       .access = PL1_RW,
2468       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
2469     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
2470       .access = PL1_RW,
2471       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
2472                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
2473       .resetvalue = 0 },
2474     REGINFO_SENTINEL
2475 };
2476 
2477 #ifndef CONFIG_USER_ONLY
2478 
2479 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
2480                                        bool isread)
2481 {
2482     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2483      * Writable only at the highest implemented exception level.
2484      */
2485     int el = arm_current_el(env);
2486     uint64_t hcr;
2487     uint32_t cntkctl;
2488 
2489     switch (el) {
2490     case 0:
2491         hcr = arm_hcr_el2_eff(env);
2492         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2493             cntkctl = env->cp15.cnthctl_el2;
2494         } else {
2495             cntkctl = env->cp15.c14_cntkctl;
2496         }
2497         if (!extract32(cntkctl, 0, 2)) {
2498             return CP_ACCESS_TRAP;
2499         }
2500         break;
2501     case 1:
2502         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
2503             arm_is_secure_below_el3(env)) {
2504             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2505             return CP_ACCESS_TRAP_UNCATEGORIZED;
2506         }
2507         break;
2508     case 2:
2509     case 3:
2510         break;
2511     }
2512 
2513     if (!isread && el < arm_highest_el(env)) {
2514         return CP_ACCESS_TRAP_UNCATEGORIZED;
2515     }
2516 
2517     return CP_ACCESS_OK;
2518 }
2519 
2520 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
2521                                         bool isread)
2522 {
2523     unsigned int cur_el = arm_current_el(env);
2524     bool secure = arm_is_secure(env);
2525     uint64_t hcr = arm_hcr_el2_eff(env);
2526 
2527     switch (cur_el) {
2528     case 0:
2529         /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
2530         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2531             return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
2532                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2533         }
2534 
2535         /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
2536         if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
2537             return CP_ACCESS_TRAP;
2538         }
2539 
2540         /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */
2541         if (hcr & HCR_E2H) {
2542             if (timeridx == GTIMER_PHYS &&
2543                 !extract32(env->cp15.cnthctl_el2, 10, 1)) {
2544                 return CP_ACCESS_TRAP_EL2;
2545             }
2546         } else {
2547             /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2548             if (arm_feature(env, ARM_FEATURE_EL2) &&
2549                 timeridx == GTIMER_PHYS && !secure &&
2550                 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
2551                 return CP_ACCESS_TRAP_EL2;
2552             }
2553         }
2554         break;
2555 
2556     case 1:
2557         /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
2558         if (arm_feature(env, ARM_FEATURE_EL2) &&
2559             timeridx == GTIMER_PHYS && !secure &&
2560             (hcr & HCR_E2H
2561              ? !extract32(env->cp15.cnthctl_el2, 10, 1)
2562              : !extract32(env->cp15.cnthctl_el2, 0, 1))) {
2563             return CP_ACCESS_TRAP_EL2;
2564         }
2565         break;
2566     }
2567     return CP_ACCESS_OK;
2568 }
2569 
2570 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
2571                                       bool isread)
2572 {
2573     unsigned int cur_el = arm_current_el(env);
2574     bool secure = arm_is_secure(env);
2575     uint64_t hcr = arm_hcr_el2_eff(env);
2576 
2577     switch (cur_el) {
2578     case 0:
2579         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2580             /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
2581             return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
2582                     ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
2583         }
2584 
2585         /*
2586          * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
2587          * EL0 if EL0[PV]TEN is zero.
2588          */
2589         if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
2590             return CP_ACCESS_TRAP;
2591         }
2592         /* fall through */
2593 
2594     case 1:
2595         if (arm_feature(env, ARM_FEATURE_EL2) &&
2596             timeridx == GTIMER_PHYS && !secure) {
2597             if (hcr & HCR_E2H) {
2598                 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
2599                 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
2600                     return CP_ACCESS_TRAP_EL2;
2601                 }
2602             } else {
2603                 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
2604                 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
2605                     return CP_ACCESS_TRAP_EL2;
2606                 }
2607             }
2608         }
2609         break;
2610     }
2611     return CP_ACCESS_OK;
2612 }
2613 
2614 static CPAccessResult gt_pct_access(CPUARMState *env,
2615                                     const ARMCPRegInfo *ri,
2616                                     bool isread)
2617 {
2618     return gt_counter_access(env, GTIMER_PHYS, isread);
2619 }
2620 
2621 static CPAccessResult gt_vct_access(CPUARMState *env,
2622                                     const ARMCPRegInfo *ri,
2623                                     bool isread)
2624 {
2625     return gt_counter_access(env, GTIMER_VIRT, isread);
2626 }
2627 
2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2629                                        bool isread)
2630 {
2631     return gt_timer_access(env, GTIMER_PHYS, isread);
2632 }
2633 
2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
2635                                        bool isread)
2636 {
2637     return gt_timer_access(env, GTIMER_VIRT, isread);
2638 }
2639 
2640 static CPAccessResult gt_stimer_access(CPUARMState *env,
2641                                        const ARMCPRegInfo *ri,
2642                                        bool isread)
2643 {
2644     /* The AArch64 register view of the secure physical timer is
2645      * always accessible from EL3, and configurably accessible from
2646      * Secure EL1.
2647      */
2648     switch (arm_current_el(env)) {
2649     case 1:
2650         if (!arm_is_secure(env)) {
2651             return CP_ACCESS_TRAP;
2652         }
2653         if (!(env->cp15.scr_el3 & SCR_ST)) {
2654             return CP_ACCESS_TRAP_EL3;
2655         }
2656         return CP_ACCESS_OK;
2657     case 0:
2658     case 2:
2659         return CP_ACCESS_TRAP;
2660     case 3:
2661         return CP_ACCESS_OK;
2662     default:
2663         g_assert_not_reached();
2664     }
2665 }
2666 
2667 static uint64_t gt_get_countervalue(CPUARMState *env)
2668 {
2669     ARMCPU *cpu = env_archcpu(env);
2670 
2671     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
2672 }
2673 
2674 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
2675 {
2676     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
2677 
2678     if (gt->ctl & 1) {
2679         /* Timer enabled: calculate and set current ISTATUS, irq, and
2680          * reset timer to when ISTATUS next has to change
2681          */
2682         uint64_t offset = timeridx == GTIMER_VIRT ?
2683                                       cpu->env.cp15.cntvoff_el2 : 0;
2684         uint64_t count = gt_get_countervalue(&cpu->env);
2685         /* Note that this must be unsigned 64 bit arithmetic: */
2686         int istatus = count - offset >= gt->cval;
2687         uint64_t nexttick;
2688         int irqstate;
2689 
2690         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
2691 
2692         irqstate = (istatus && !(gt->ctl & 2));
2693         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2694 
2695         if (istatus) {
2696             /* Next transition is when count rolls back over to zero */
2697             nexttick = UINT64_MAX;
2698         } else {
2699             /* Next transition is when we hit cval */
2700             nexttick = gt->cval + offset;
2701         }
2702         /* Note that the desired next expiry time might be beyond the
2703          * signed-64-bit range of a QEMUTimer -- in this case we just
2704          * set the timer for as far in the future as possible. When the
2705          * timer expires we will reset the timer for any remaining period.
2706          */
2707         if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
2708             timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
2709         } else {
2710             timer_mod(cpu->gt_timer[timeridx], nexttick);
2711         }
2712         trace_arm_gt_recalc(timeridx, irqstate, nexttick);
2713     } else {
2714         /* Timer disabled: ISTATUS and timer output always clear */
2715         gt->ctl &= ~4;
2716         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
2717         timer_del(cpu->gt_timer[timeridx]);
2718         trace_arm_gt_recalc_disabled(timeridx);
2719     }
2720 }
2721 
2722 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
2723                            int timeridx)
2724 {
2725     ARMCPU *cpu = env_archcpu(env);
2726 
2727     timer_del(cpu->gt_timer[timeridx]);
2728 }
2729 
2730 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2731 {
2732     return gt_get_countervalue(env);
2733 }
2734 
2735 static uint64_t gt_virt_cnt_offset(CPUARMState *env)
2736 {
2737     uint64_t hcr;
2738 
2739     switch (arm_current_el(env)) {
2740     case 2:
2741         hcr = arm_hcr_el2_eff(env);
2742         if (hcr & HCR_E2H) {
2743             return 0;
2744         }
2745         break;
2746     case 0:
2747         hcr = arm_hcr_el2_eff(env);
2748         if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
2749             return 0;
2750         }
2751         break;
2752     }
2753 
2754     return env->cp15.cntvoff_el2;
2755 }
2756 
2757 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
2758 {
2759     return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
2760 }
2761 
2762 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2763                           int timeridx,
2764                           uint64_t value)
2765 {
2766     trace_arm_gt_cval_write(timeridx, value);
2767     env->cp15.c14_timer[timeridx].cval = value;
2768     gt_recalc_timer(env_archcpu(env), timeridx);
2769 }
2770 
2771 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
2772                              int timeridx)
2773 {
2774     uint64_t offset = 0;
2775 
2776     switch (timeridx) {
2777     case GTIMER_VIRT:
2778     case GTIMER_HYPVIRT:
2779         offset = gt_virt_cnt_offset(env);
2780         break;
2781     }
2782 
2783     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
2784                       (gt_get_countervalue(env) - offset));
2785 }
2786 
2787 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2788                           int timeridx,
2789                           uint64_t value)
2790 {
2791     uint64_t offset = 0;
2792 
2793     switch (timeridx) {
2794     case GTIMER_VIRT:
2795     case GTIMER_HYPVIRT:
2796         offset = gt_virt_cnt_offset(env);
2797         break;
2798     }
2799 
2800     trace_arm_gt_tval_write(timeridx, value);
2801     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
2802                                          sextract64(value, 0, 32);
2803     gt_recalc_timer(env_archcpu(env), timeridx);
2804 }
2805 
2806 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2807                          int timeridx,
2808                          uint64_t value)
2809 {
2810     ARMCPU *cpu = env_archcpu(env);
2811     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
2812 
2813     trace_arm_gt_ctl_write(timeridx, value);
2814     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
2815     if ((oldval ^ value) & 1) {
2816         /* Enable toggled */
2817         gt_recalc_timer(cpu, timeridx);
2818     } else if ((oldval ^ value) & 2) {
2819         /* IMASK toggled: don't need to recalculate,
2820          * just set the interrupt line based on ISTATUS
2821          */
2822         int irqstate = (oldval & 4) && !(value & 2);
2823 
2824         trace_arm_gt_imask_toggle(timeridx, irqstate);
2825         qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
2826     }
2827 }
2828 
2829 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2830 {
2831     gt_timer_reset(env, ri, GTIMER_PHYS);
2832 }
2833 
2834 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2835                                uint64_t value)
2836 {
2837     gt_cval_write(env, ri, GTIMER_PHYS, value);
2838 }
2839 
2840 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2841 {
2842     return gt_tval_read(env, ri, GTIMER_PHYS);
2843 }
2844 
2845 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2846                                uint64_t value)
2847 {
2848     gt_tval_write(env, ri, GTIMER_PHYS, value);
2849 }
2850 
2851 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2852                               uint64_t value)
2853 {
2854     gt_ctl_write(env, ri, GTIMER_PHYS, value);
2855 }
2856 
2857 static int gt_phys_redir_timeridx(CPUARMState *env)
2858 {
2859     switch (arm_mmu_idx(env)) {
2860     case ARMMMUIdx_E20_0:
2861     case ARMMMUIdx_E20_2:
2862     case ARMMMUIdx_E20_2_PAN:
2863         return GTIMER_HYP;
2864     default:
2865         return GTIMER_PHYS;
2866     }
2867 }
2868 
2869 static int gt_virt_redir_timeridx(CPUARMState *env)
2870 {
2871     switch (arm_mmu_idx(env)) {
2872     case ARMMMUIdx_E20_0:
2873     case ARMMMUIdx_E20_2:
2874     case ARMMMUIdx_E20_2_PAN:
2875         return GTIMER_HYPVIRT;
2876     default:
2877         return GTIMER_VIRT;
2878     }
2879 }
2880 
2881 static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
2882                                         const ARMCPRegInfo *ri)
2883 {
2884     int timeridx = gt_phys_redir_timeridx(env);
2885     return env->cp15.c14_timer[timeridx].cval;
2886 }
2887 
2888 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2889                                      uint64_t value)
2890 {
2891     int timeridx = gt_phys_redir_timeridx(env);
2892     gt_cval_write(env, ri, timeridx, value);
2893 }
2894 
2895 static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
2896                                         const ARMCPRegInfo *ri)
2897 {
2898     int timeridx = gt_phys_redir_timeridx(env);
2899     return gt_tval_read(env, ri, timeridx);
2900 }
2901 
2902 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2903                                      uint64_t value)
2904 {
2905     int timeridx = gt_phys_redir_timeridx(env);
2906     gt_tval_write(env, ri, timeridx, value);
2907 }
2908 
2909 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
2910                                        const ARMCPRegInfo *ri)
2911 {
2912     int timeridx = gt_phys_redir_timeridx(env);
2913     return env->cp15.c14_timer[timeridx].ctl;
2914 }
2915 
2916 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2917                                     uint64_t value)
2918 {
2919     int timeridx = gt_phys_redir_timeridx(env);
2920     gt_ctl_write(env, ri, timeridx, value);
2921 }
2922 
2923 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2924 {
2925     gt_timer_reset(env, ri, GTIMER_VIRT);
2926 }
2927 
2928 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2929                                uint64_t value)
2930 {
2931     gt_cval_write(env, ri, GTIMER_VIRT, value);
2932 }
2933 
2934 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
2935 {
2936     return gt_tval_read(env, ri, GTIMER_VIRT);
2937 }
2938 
2939 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2940                                uint64_t value)
2941 {
2942     gt_tval_write(env, ri, GTIMER_VIRT, value);
2943 }
2944 
2945 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2946                               uint64_t value)
2947 {
2948     gt_ctl_write(env, ri, GTIMER_VIRT, value);
2949 }
2950 
2951 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
2952                               uint64_t value)
2953 {
2954     ARMCPU *cpu = env_archcpu(env);
2955 
2956     trace_arm_gt_cntvoff_write(value);
2957     raw_write(env, ri, value);
2958     gt_recalc_timer(cpu, GTIMER_VIRT);
2959 }
2960 
2961 static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
2962                                         const ARMCPRegInfo *ri)
2963 {
2964     int timeridx = gt_virt_redir_timeridx(env);
2965     return env->cp15.c14_timer[timeridx].cval;
2966 }
2967 
2968 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2969                                      uint64_t value)
2970 {
2971     int timeridx = gt_virt_redir_timeridx(env);
2972     gt_cval_write(env, ri, timeridx, value);
2973 }
2974 
2975 static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
2976                                         const ARMCPRegInfo *ri)
2977 {
2978     int timeridx = gt_virt_redir_timeridx(env);
2979     return gt_tval_read(env, ri, timeridx);
2980 }
2981 
2982 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
2983                                      uint64_t value)
2984 {
2985     int timeridx = gt_virt_redir_timeridx(env);
2986     gt_tval_write(env, ri, timeridx, value);
2987 }
2988 
2989 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
2990                                        const ARMCPRegInfo *ri)
2991 {
2992     int timeridx = gt_virt_redir_timeridx(env);
2993     return env->cp15.c14_timer[timeridx].ctl;
2994 }
2995 
2996 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
2997                                     uint64_t value)
2998 {
2999     int timeridx = gt_virt_redir_timeridx(env);
3000     gt_ctl_write(env, ri, timeridx, value);
3001 }
3002 
3003 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3004 {
3005     gt_timer_reset(env, ri, GTIMER_HYP);
3006 }
3007 
3008 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3009                               uint64_t value)
3010 {
3011     gt_cval_write(env, ri, GTIMER_HYP, value);
3012 }
3013 
3014 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3015 {
3016     return gt_tval_read(env, ri, GTIMER_HYP);
3017 }
3018 
3019 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3020                               uint64_t value)
3021 {
3022     gt_tval_write(env, ri, GTIMER_HYP, value);
3023 }
3024 
3025 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3026                               uint64_t value)
3027 {
3028     gt_ctl_write(env, ri, GTIMER_HYP, value);
3029 }
3030 
3031 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3032 {
3033     gt_timer_reset(env, ri, GTIMER_SEC);
3034 }
3035 
3036 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3037                               uint64_t value)
3038 {
3039     gt_cval_write(env, ri, GTIMER_SEC, value);
3040 }
3041 
3042 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3043 {
3044     return gt_tval_read(env, ri, GTIMER_SEC);
3045 }
3046 
3047 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3048                               uint64_t value)
3049 {
3050     gt_tval_write(env, ri, GTIMER_SEC, value);
3051 }
3052 
3053 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3054                               uint64_t value)
3055 {
3056     gt_ctl_write(env, ri, GTIMER_SEC, value);
3057 }
3058 
3059 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3060 {
3061     gt_timer_reset(env, ri, GTIMER_HYPVIRT);
3062 }
3063 
3064 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3065                              uint64_t value)
3066 {
3067     gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
3068 }
3069 
3070 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
3071 {
3072     return gt_tval_read(env, ri, GTIMER_HYPVIRT);
3073 }
3074 
3075 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
3076                              uint64_t value)
3077 {
3078     gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
3079 }
3080 
3081 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
3082                             uint64_t value)
3083 {
3084     gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
3085 }
3086 
3087 void arm_gt_ptimer_cb(void *opaque)
3088 {
3089     ARMCPU *cpu = opaque;
3090 
3091     gt_recalc_timer(cpu, GTIMER_PHYS);
3092 }
3093 
3094 void arm_gt_vtimer_cb(void *opaque)
3095 {
3096     ARMCPU *cpu = opaque;
3097 
3098     gt_recalc_timer(cpu, GTIMER_VIRT);
3099 }
3100 
3101 void arm_gt_htimer_cb(void *opaque)
3102 {
3103     ARMCPU *cpu = opaque;
3104 
3105     gt_recalc_timer(cpu, GTIMER_HYP);
3106 }
3107 
3108 void arm_gt_stimer_cb(void *opaque)
3109 {
3110     ARMCPU *cpu = opaque;
3111 
3112     gt_recalc_timer(cpu, GTIMER_SEC);
3113 }
3114 
3115 void arm_gt_hvtimer_cb(void *opaque)
3116 {
3117     ARMCPU *cpu = opaque;
3118 
3119     gt_recalc_timer(cpu, GTIMER_HYPVIRT);
3120 }
3121 
3122 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
3123 {
3124     ARMCPU *cpu = env_archcpu(env);
3125 
3126     cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
3127 }
3128 
3129 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3130     /* Note that CNTFRQ is purely reads-as-written for the benefit
3131      * of software; writing it doesn't actually change the timer frequency.
3132      * Our reset value matches the fixed frequency we implement the timer at.
3133      */
3134     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
3135       .type = ARM_CP_ALIAS,
3136       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3137       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
3138     },
3139     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3140       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3141       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
3142       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3143       .resetfn = arm_gt_cntfrq_reset,
3144     },
3145     /* overall control: mostly access permissions */
3146     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
3147       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
3148       .access = PL1_RW,
3149       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
3150       .resetvalue = 0,
3151     },
3152     /* per-timer control */
3153     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3154       .secure = ARM_CP_SECSTATE_NS,
3155       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3156       .accessfn = gt_ptimer_access,
3157       .fieldoffset = offsetoflow32(CPUARMState,
3158                                    cp15.c14_timer[GTIMER_PHYS].ctl),
3159       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3160       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3161     },
3162     { .name = "CNTP_CTL_S",
3163       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
3164       .secure = ARM_CP_SECSTATE_S,
3165       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3166       .accessfn = gt_ptimer_access,
3167       .fieldoffset = offsetoflow32(CPUARMState,
3168                                    cp15.c14_timer[GTIMER_SEC].ctl),
3169       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3170     },
3171     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
3172       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
3173       .type = ARM_CP_IO, .access = PL0_RW,
3174       .accessfn = gt_ptimer_access,
3175       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
3176       .resetvalue = 0,
3177       .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
3178       .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
3179     },
3180     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
3181       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
3182       .accessfn = gt_vtimer_access,
3183       .fieldoffset = offsetoflow32(CPUARMState,
3184                                    cp15.c14_timer[GTIMER_VIRT].ctl),
3185       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3186       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3187     },
3188     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
3189       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
3190       .type = ARM_CP_IO, .access = PL0_RW,
3191       .accessfn = gt_vtimer_access,
3192       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
3193       .resetvalue = 0,
3194       .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
3195       .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
3196     },
3197     /* TimerValue views: a 32 bit downcounting view of the underlying state */
3198     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3199       .secure = ARM_CP_SECSTATE_NS,
3200       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3201       .accessfn = gt_ptimer_access,
3202       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3203     },
3204     { .name = "CNTP_TVAL_S",
3205       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
3206       .secure = ARM_CP_SECSTATE_S,
3207       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3208       .accessfn = gt_ptimer_access,
3209       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
3210     },
3211     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3212       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
3213       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3214       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
3215       .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
3216     },
3217     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
3218       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3219       .accessfn = gt_vtimer_access,
3220       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3221     },
3222     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
3223       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
3224       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
3225       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
3226       .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
3227     },
3228     /* The counter itself */
3229     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
3230       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3231       .accessfn = gt_pct_access,
3232       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
3233     },
3234     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
3235       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
3236       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3237       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
3238     },
3239     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
3240       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
3241       .accessfn = gt_vct_access,
3242       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
3243     },
3244     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3245       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3246       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3247       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
3248     },
3249     /* Comparison value, indicating when the timer goes off */
3250     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
3251       .secure = ARM_CP_SECSTATE_NS,
3252       .access = PL0_RW,
3253       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3254       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3255       .accessfn = gt_ptimer_access,
3256       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3257       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3258     },
3259     { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
3260       .secure = ARM_CP_SECSTATE_S,
3261       .access = PL0_RW,
3262       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3263       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3264       .accessfn = gt_ptimer_access,
3265       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3266     },
3267     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3268       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
3269       .access = PL0_RW,
3270       .type = ARM_CP_IO,
3271       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
3272       .resetvalue = 0, .accessfn = gt_ptimer_access,
3273       .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
3274       .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
3275     },
3276     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
3277       .access = PL0_RW,
3278       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
3279       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3280       .accessfn = gt_vtimer_access,
3281       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3282       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3283     },
3284     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
3285       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
3286       .access = PL0_RW,
3287       .type = ARM_CP_IO,
3288       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
3289       .resetvalue = 0, .accessfn = gt_vtimer_access,
3290       .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
3291       .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
3292     },
3293     /* Secure timer -- this is actually restricted to only EL3
3294      * and configurably Secure-EL1 via the accessfn.
3295      */
3296     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
3297       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
3298       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
3299       .accessfn = gt_stimer_access,
3300       .readfn = gt_sec_tval_read,
3301       .writefn = gt_sec_tval_write,
3302       .resetfn = gt_sec_timer_reset,
3303     },
3304     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
3305       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
3306       .type = ARM_CP_IO, .access = PL1_RW,
3307       .accessfn = gt_stimer_access,
3308       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
3309       .resetvalue = 0,
3310       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
3311     },
3312     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
3313       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
3314       .type = ARM_CP_IO, .access = PL1_RW,
3315       .accessfn = gt_stimer_access,
3316       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
3317       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
3318     },
3319     REGINFO_SENTINEL
3320 };
3321 
3322 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
3323                                  bool isread)
3324 {
3325     if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
3326         return CP_ACCESS_TRAP;
3327     }
3328     return CP_ACCESS_OK;
3329 }
3330 
3331 #else
3332 
3333 /* In user-mode most of the generic timer registers are inaccessible
3334  * however modern kernels (4.12+) allow access to cntvct_el0
3335  */
3336 
3337 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
3338 {
3339     ARMCPU *cpu = env_archcpu(env);
3340 
3341     /* Currently we have no support for QEMUTimer in linux-user so we
3342      * can't call gt_get_countervalue(env), instead we directly
3343      * call the lower level functions.
3344      */
3345     return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
3346 }
3347 
3348 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
3349     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
3350       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
3351       .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
3352       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
3353       .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE,
3354     },
3355     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
3356       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
3357       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
3358       .readfn = gt_virt_cnt_read,
3359     },
3360     REGINFO_SENTINEL
3361 };
3362 
3363 #endif
3364 
3365 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3366 {
3367     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3368         raw_write(env, ri, value);
3369     } else if (arm_feature(env, ARM_FEATURE_V7)) {
3370         raw_write(env, ri, value & 0xfffff6ff);
3371     } else {
3372         raw_write(env, ri, value & 0xfffff1ff);
3373     }
3374 }
3375 
3376 #ifndef CONFIG_USER_ONLY
3377 /* get_phys_addr() isn't present for user-mode-only targets */
3378 
3379 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
3380                                  bool isread)
3381 {
3382     if (ri->opc2 & 4) {
3383         /* The ATS12NSO* operations must trap to EL3 if executed in
3384          * Secure EL1 (which can only happen if EL3 is AArch64).
3385          * They are simply UNDEF if executed from NS EL1.
3386          * They function normally from EL2 or EL3.
3387          */
3388         if (arm_current_el(env) == 1) {
3389             if (arm_is_secure_below_el3(env)) {
3390                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
3391             }
3392             return CP_ACCESS_TRAP_UNCATEGORIZED;
3393         }
3394     }
3395     return CP_ACCESS_OK;
3396 }
3397 
3398 #ifdef CONFIG_TCG
3399 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
3400                              MMUAccessType access_type, ARMMMUIdx mmu_idx)
3401 {
3402     hwaddr phys_addr;
3403     target_ulong page_size;
3404     int prot;
3405     bool ret;
3406     uint64_t par64;
3407     bool format64 = false;
3408     MemTxAttrs attrs = {};
3409     ARMMMUFaultInfo fi = {};
3410     ARMCacheAttrs cacheattrs = {};
3411 
3412     ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
3413                         &prot, &page_size, &fi, &cacheattrs);
3414 
3415     if (ret) {
3416         /*
3417          * Some kinds of translation fault must cause exceptions rather
3418          * than being reported in the PAR.
3419          */
3420         int current_el = arm_current_el(env);
3421         int target_el;
3422         uint32_t syn, fsr, fsc;
3423         bool take_exc = false;
3424 
3425         if (fi.s1ptw && current_el == 1 && !arm_is_secure(env)
3426             && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
3427             /*
3428              * Synchronous stage 2 fault on an access made as part of the
3429              * translation table walk for AT S1E0* or AT S1E1* insn
3430              * executed from NS EL1. If this is a synchronous external abort
3431              * and SCR_EL3.EA == 1, then we take a synchronous external abort
3432              * to EL3. Otherwise the fault is taken as an exception to EL2,
3433              * and HPFAR_EL2 holds the faulting IPA.
3434              */
3435             if (fi.type == ARMFault_SyncExternalOnWalk &&
3436                 (env->cp15.scr_el3 & SCR_EA)) {
3437                 target_el = 3;
3438             } else {
3439                 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
3440                 target_el = 2;
3441             }
3442             take_exc = true;
3443         } else if (fi.type == ARMFault_SyncExternalOnWalk) {
3444             /*
3445              * Synchronous external aborts during a translation table walk
3446              * are taken as Data Abort exceptions.
3447              */
3448             if (fi.stage2) {
3449                 if (current_el == 3) {
3450                     target_el = 3;
3451                 } else {
3452                     target_el = 2;
3453                 }
3454             } else {
3455                 target_el = exception_target_el(env);
3456             }
3457             take_exc = true;
3458         }
3459 
3460         if (take_exc) {
3461             /* Construct FSR and FSC using same logic as arm_deliver_fault() */
3462             if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
3463                 arm_s1_regime_using_lpae_format(env, mmu_idx)) {
3464                 fsr = arm_fi_to_lfsc(&fi);
3465                 fsc = extract32(fsr, 0, 6);
3466             } else {
3467                 fsr = arm_fi_to_sfsc(&fi);
3468                 fsc = 0x3f;
3469             }
3470             /*
3471              * Report exception with ESR indicating a fault due to a
3472              * translation table walk for a cache maintenance instruction.
3473              */
3474             syn = syn_data_abort_no_iss(current_el == target_el, 0,
3475                                         fi.ea, 1, fi.s1ptw, 1, fsc);
3476             env->exception.vaddress = value;
3477             env->exception.fsr = fsr;
3478             raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
3479         }
3480     }
3481 
3482     if (is_a64(env)) {
3483         format64 = true;
3484     } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
3485         /*
3486          * ATS1Cxx:
3487          * * TTBCR.EAE determines whether the result is returned using the
3488          *   32-bit or the 64-bit PAR format
3489          * * Instructions executed in Hyp mode always use the 64bit format
3490          *
3491          * ATS1S2NSOxx uses the 64bit format if any of the following is true:
3492          * * The Non-secure TTBCR.EAE bit is set to 1
3493          * * The implementation includes EL2, and the value of HCR.VM is 1
3494          *
3495          * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
3496          *
3497          * ATS1Hx always uses the 64bit format.
3498          */
3499         format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
3500 
3501         if (arm_feature(env, ARM_FEATURE_EL2)) {
3502             if (mmu_idx == ARMMMUIdx_E10_0 ||
3503                 mmu_idx == ARMMMUIdx_E10_1 ||
3504                 mmu_idx == ARMMMUIdx_E10_1_PAN) {
3505                 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
3506             } else {
3507                 format64 |= arm_current_el(env) == 2;
3508             }
3509         }
3510     }
3511 
3512     if (format64) {
3513         /* Create a 64-bit PAR */
3514         par64 = (1 << 11); /* LPAE bit always set */
3515         if (!ret) {
3516             par64 |= phys_addr & ~0xfffULL;
3517             if (!attrs.secure) {
3518                 par64 |= (1 << 9); /* NS */
3519             }
3520             par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
3521             par64 |= cacheattrs.shareability << 7; /* SH */
3522         } else {
3523             uint32_t fsr = arm_fi_to_lfsc(&fi);
3524 
3525             par64 |= 1; /* F */
3526             par64 |= (fsr & 0x3f) << 1; /* FS */
3527             if (fi.stage2) {
3528                 par64 |= (1 << 9); /* S */
3529             }
3530             if (fi.s1ptw) {
3531                 par64 |= (1 << 8); /* PTW */
3532             }
3533         }
3534     } else {
3535         /* fsr is a DFSR/IFSR value for the short descriptor
3536          * translation table format (with WnR always clear).
3537          * Convert it to a 32-bit PAR.
3538          */
3539         if (!ret) {
3540             /* We do not set any attribute bits in the PAR */
3541             if (page_size == (1 << 24)
3542                 && arm_feature(env, ARM_FEATURE_V7)) {
3543                 par64 = (phys_addr & 0xff000000) | (1 << 1);
3544             } else {
3545                 par64 = phys_addr & 0xfffff000;
3546             }
3547             if (!attrs.secure) {
3548                 par64 |= (1 << 9); /* NS */
3549             }
3550         } else {
3551             uint32_t fsr = arm_fi_to_sfsc(&fi);
3552 
3553             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
3554                     ((fsr & 0xf) << 1) | 1;
3555         }
3556     }
3557     return par64;
3558 }
3559 #endif /* CONFIG_TCG */
3560 
3561 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3562 {
3563 #ifdef CONFIG_TCG
3564     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3565     uint64_t par64;
3566     ARMMMUIdx mmu_idx;
3567     int el = arm_current_el(env);
3568     bool secure = arm_is_secure_below_el3(env);
3569 
3570     switch (ri->opc2 & 6) {
3571     case 0:
3572         /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
3573         switch (el) {
3574         case 3:
3575             mmu_idx = ARMMMUIdx_SE3;
3576             break;
3577         case 2:
3578             g_assert(!secure);  /* TODO: ARMv8.4-SecEL2 */
3579             /* fall through */
3580         case 1:
3581             if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) {
3582                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3583                            : ARMMMUIdx_Stage1_E1_PAN);
3584             } else {
3585                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3586             }
3587             break;
3588         default:
3589             g_assert_not_reached();
3590         }
3591         break;
3592     case 2:
3593         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3594         switch (el) {
3595         case 3:
3596             mmu_idx = ARMMMUIdx_SE10_0;
3597             break;
3598         case 2:
3599             mmu_idx = ARMMMUIdx_Stage1_E0;
3600             break;
3601         case 1:
3602             mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3603             break;
3604         default:
3605             g_assert_not_reached();
3606         }
3607         break;
3608     case 4:
3609         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3610         mmu_idx = ARMMMUIdx_E10_1;
3611         break;
3612     case 6:
3613         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3614         mmu_idx = ARMMMUIdx_E10_0;
3615         break;
3616     default:
3617         g_assert_not_reached();
3618     }
3619 
3620     par64 = do_ats_write(env, value, access_type, mmu_idx);
3621 
3622     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3623 #else
3624     /* Handled by hardware accelerator. */
3625     g_assert_not_reached();
3626 #endif /* CONFIG_TCG */
3627 }
3628 
3629 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
3630                         uint64_t value)
3631 {
3632 #ifdef CONFIG_TCG
3633     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3634     uint64_t par64;
3635 
3636     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
3637 
3638     A32_BANKED_CURRENT_REG_SET(env, par, par64);
3639 #else
3640     /* Handled by hardware accelerator. */
3641     g_assert_not_reached();
3642 #endif /* CONFIG_TCG */
3643 }
3644 
3645 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
3646                                      bool isread)
3647 {
3648     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
3649         return CP_ACCESS_TRAP;
3650     }
3651     return CP_ACCESS_OK;
3652 }
3653 
3654 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
3655                         uint64_t value)
3656 {
3657 #ifdef CONFIG_TCG
3658     MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
3659     ARMMMUIdx mmu_idx;
3660     int secure = arm_is_secure_below_el3(env);
3661 
3662     switch (ri->opc2 & 6) {
3663     case 0:
3664         switch (ri->opc1) {
3665         case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
3666             if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) {
3667                 mmu_idx = (secure ? ARMMMUIdx_SE10_1_PAN
3668                            : ARMMMUIdx_Stage1_E1_PAN);
3669             } else {
3670                 mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_Stage1_E1;
3671             }
3672             break;
3673         case 4: /* AT S1E2R, AT S1E2W */
3674             mmu_idx = ARMMMUIdx_E2;
3675             break;
3676         case 6: /* AT S1E3R, AT S1E3W */
3677             mmu_idx = ARMMMUIdx_SE3;
3678             break;
3679         default:
3680             g_assert_not_reached();
3681         }
3682         break;
3683     case 2: /* AT S1E0R, AT S1E0W */
3684         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_Stage1_E0;
3685         break;
3686     case 4: /* AT S12E1R, AT S12E1W */
3687         mmu_idx = secure ? ARMMMUIdx_SE10_1 : ARMMMUIdx_E10_1;
3688         break;
3689     case 6: /* AT S12E0R, AT S12E0W */
3690         mmu_idx = secure ? ARMMMUIdx_SE10_0 : ARMMMUIdx_E10_0;
3691         break;
3692     default:
3693         g_assert_not_reached();
3694     }
3695 
3696     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
3697 #else
3698     /* Handled by hardware accelerator. */
3699     g_assert_not_reached();
3700 #endif /* CONFIG_TCG */
3701 }
3702 #endif
3703 
3704 static const ARMCPRegInfo vapa_cp_reginfo[] = {
3705     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
3706       .access = PL1_RW, .resetvalue = 0,
3707       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
3708                              offsetoflow32(CPUARMState, cp15.par_ns) },
3709       .writefn = par_write },
3710 #ifndef CONFIG_USER_ONLY
3711     /* This underdecoding is safe because the reginfo is NO_RAW. */
3712     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
3713       .access = PL1_W, .accessfn = ats_access,
3714       .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
3715 #endif
3716     REGINFO_SENTINEL
3717 };
3718 
3719 /* Return basic MPU access permission bits.  */
3720 static uint32_t simple_mpu_ap_bits(uint32_t val)
3721 {
3722     uint32_t ret;
3723     uint32_t mask;
3724     int i;
3725     ret = 0;
3726     mask = 3;
3727     for (i = 0; i < 16; i += 2) {
3728         ret |= (val >> i) & mask;
3729         mask <<= 2;
3730     }
3731     return ret;
3732 }
3733 
3734 /* Pad basic MPU access permission bits to extended format.  */
3735 static uint32_t extended_mpu_ap_bits(uint32_t val)
3736 {
3737     uint32_t ret;
3738     uint32_t mask;
3739     int i;
3740     ret = 0;
3741     mask = 3;
3742     for (i = 0; i < 16; i += 2) {
3743         ret |= (val & mask) << i;
3744         mask <<= 2;
3745     }
3746     return ret;
3747 }
3748 
3749 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3750                                  uint64_t value)
3751 {
3752     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
3753 }
3754 
3755 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3756 {
3757     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
3758 }
3759 
3760 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
3761                                  uint64_t value)
3762 {
3763     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
3764 }
3765 
3766 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
3767 {
3768     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
3769 }
3770 
3771 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
3772 {
3773     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3774 
3775     if (!u32p) {
3776         return 0;
3777     }
3778 
3779     u32p += env->pmsav7.rnr[M_REG_NS];
3780     return *u32p;
3781 }
3782 
3783 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
3784                          uint64_t value)
3785 {
3786     ARMCPU *cpu = env_archcpu(env);
3787     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
3788 
3789     if (!u32p) {
3790         return;
3791     }
3792 
3793     u32p += env->pmsav7.rnr[M_REG_NS];
3794     tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
3795     *u32p = value;
3796 }
3797 
3798 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3799                               uint64_t value)
3800 {
3801     ARMCPU *cpu = env_archcpu(env);
3802     uint32_t nrgs = cpu->pmsav7_dregion;
3803 
3804     if (value >= nrgs) {
3805         qemu_log_mask(LOG_GUEST_ERROR,
3806                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3807                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
3808         return;
3809     }
3810 
3811     raw_write(env, ri, value);
3812 }
3813 
3814 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
3815     /* Reset for all these registers is handled in arm_cpu_reset(),
3816      * because the PMSAv7 is also used by M-profile CPUs, which do
3817      * not register cpregs but still need the state to be reset.
3818      */
3819     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
3820       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3821       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
3822       .readfn = pmsav7_read, .writefn = pmsav7_write,
3823       .resetfn = arm_cp_reset_ignore },
3824     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
3825       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3826       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
3827       .readfn = pmsav7_read, .writefn = pmsav7_write,
3828       .resetfn = arm_cp_reset_ignore },
3829     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
3830       .access = PL1_RW, .type = ARM_CP_NO_RAW,
3831       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
3832       .readfn = pmsav7_read, .writefn = pmsav7_write,
3833       .resetfn = arm_cp_reset_ignore },
3834     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
3835       .access = PL1_RW,
3836       .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
3837       .writefn = pmsav7_rgnr_write,
3838       .resetfn = arm_cp_reset_ignore },
3839     REGINFO_SENTINEL
3840 };
3841 
3842 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
3843     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
3844       .access = PL1_RW, .type = ARM_CP_ALIAS,
3845       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3846       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
3847     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
3848       .access = PL1_RW, .type = ARM_CP_ALIAS,
3849       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3850       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
3851     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
3852       .access = PL1_RW,
3853       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
3854       .resetvalue = 0, },
3855     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
3856       .access = PL1_RW,
3857       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
3858       .resetvalue = 0, },
3859     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
3860       .access = PL1_RW,
3861       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
3862     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
3863       .access = PL1_RW,
3864       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
3865     /* Protection region base and size registers */
3866     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
3867       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3868       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
3869     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
3870       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3871       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
3872     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
3873       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3874       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
3875     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
3876       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3877       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
3878     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
3879       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3880       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
3881     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
3882       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3883       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
3884     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
3885       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3886       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
3887     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
3888       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
3889       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
3890     REGINFO_SENTINEL
3891 };
3892 
3893 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
3894                                  uint64_t value)
3895 {
3896     TCR *tcr = raw_ptr(env, ri);
3897     int maskshift = extract32(value, 0, 3);
3898 
3899     if (!arm_feature(env, ARM_FEATURE_V8)) {
3900         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
3901             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3902              * using Long-desciptor translation table format */
3903             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
3904         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
3905             /* In an implementation that includes the Security Extensions
3906              * TTBCR has additional fields PD0 [4] and PD1 [5] for
3907              * Short-descriptor translation table format.
3908              */
3909             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
3910         } else {
3911             value &= TTBCR_N;
3912         }
3913     }
3914 
3915     /* Update the masks corresponding to the TCR bank being written
3916      * Note that we always calculate mask and base_mask, but
3917      * they are only used for short-descriptor tables (ie if EAE is 0);
3918      * for long-descriptor tables the TCR fields are used differently
3919      * and the mask and base_mask values are meaningless.
3920      */
3921     tcr->raw_tcr = value;
3922     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
3923     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
3924 }
3925 
3926 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3927                              uint64_t value)
3928 {
3929     ARMCPU *cpu = env_archcpu(env);
3930     TCR *tcr = raw_ptr(env, ri);
3931 
3932     if (arm_feature(env, ARM_FEATURE_LPAE)) {
3933         /* With LPAE the TTBCR could result in a change of ASID
3934          * via the TTBCR.A1 bit, so do a TLB flush.
3935          */
3936         tlb_flush(CPU(cpu));
3937     }
3938     /* Preserve the high half of TCR_EL1, set via TTBCR2.  */
3939     value = deposit64(tcr->raw_tcr, 0, 32, value);
3940     vmsa_ttbcr_raw_write(env, ri, value);
3941 }
3942 
3943 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
3944 {
3945     TCR *tcr = raw_ptr(env, ri);
3946 
3947     /* Reset both the TCR as well as the masks corresponding to the bank of
3948      * the TCR being reset.
3949      */
3950     tcr->raw_tcr = 0;
3951     tcr->mask = 0;
3952     tcr->base_mask = 0xffffc000u;
3953 }
3954 
3955 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
3956                                uint64_t value)
3957 {
3958     ARMCPU *cpu = env_archcpu(env);
3959     TCR *tcr = raw_ptr(env, ri);
3960 
3961     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3962     tlb_flush(CPU(cpu));
3963     tcr->raw_tcr = value;
3964 }
3965 
3966 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3967                             uint64_t value)
3968 {
3969     /* If the ASID changes (with a 64-bit write), we must flush the TLB.  */
3970     if (cpreg_field_is_64bit(ri) &&
3971         extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
3972         ARMCPU *cpu = env_archcpu(env);
3973         tlb_flush(CPU(cpu));
3974     }
3975     raw_write(env, ri, value);
3976 }
3977 
3978 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3979                                     uint64_t value)
3980 {
3981     /*
3982      * If we are running with E2&0 regime, then an ASID is active.
3983      * Flush if that might be changing.  Note we're not checking
3984      * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
3985      * holds the active ASID, only checking the field that might.
3986      */
3987     if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
3988         (arm_hcr_el2_eff(env) & HCR_E2H)) {
3989         tlb_flush_by_mmuidx(env_cpu(env),
3990                             ARMMMUIdxBit_E20_2 |
3991                             ARMMMUIdxBit_E20_2_PAN |
3992                             ARMMMUIdxBit_E20_0);
3993     }
3994     raw_write(env, ri, value);
3995 }
3996 
3997 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3998                         uint64_t value)
3999 {
4000     ARMCPU *cpu = env_archcpu(env);
4001     CPUState *cs = CPU(cpu);
4002 
4003     /*
4004      * A change in VMID to the stage2 page table (Stage2) invalidates
4005      * the combined stage 1&2 tlbs (EL10_1 and EL10_0).
4006      */
4007     if (raw_read(env, ri) != value) {
4008         tlb_flush_by_mmuidx(cs,
4009                             ARMMMUIdxBit_E10_1 |
4010                             ARMMMUIdxBit_E10_1_PAN |
4011                             ARMMMUIdxBit_E10_0);
4012         raw_write(env, ri, value);
4013     }
4014 }
4015 
4016 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
4017     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
4018       .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
4019       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
4020                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
4021     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
4022       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4023       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
4024                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
4025     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
4026       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
4027       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
4028                              offsetof(CPUARMState, cp15.dfar_ns) } },
4029     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
4030       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
4031       .access = PL1_RW, .accessfn = access_tvm_trvm,
4032       .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
4033       .resetvalue = 0, },
4034     REGINFO_SENTINEL
4035 };
4036 
4037 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
4038     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
4039       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
4040       .access = PL1_RW, .accessfn = access_tvm_trvm,
4041       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
4042     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
4043       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
4044       .access = PL1_RW, .accessfn = access_tvm_trvm,
4045       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4046       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4047                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
4048     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
4049       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
4050       .access = PL1_RW, .accessfn = access_tvm_trvm,
4051       .writefn = vmsa_ttbr_write, .resetvalue = 0,
4052       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4053                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
4054     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
4055       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4056       .access = PL1_RW, .accessfn = access_tvm_trvm,
4057       .writefn = vmsa_tcr_el12_write,
4058       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
4059       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
4060     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
4061       .access = PL1_RW, .accessfn = access_tvm_trvm,
4062       .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
4063       .raw_writefn = vmsa_ttbcr_raw_write,
4064       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
4065                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
4066     REGINFO_SENTINEL
4067 };
4068 
4069 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
4070  * qemu tlbs nor adjusting cached masks.
4071  */
4072 static const ARMCPRegInfo ttbcr2_reginfo = {
4073     .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
4074     .access = PL1_RW, .accessfn = access_tvm_trvm,
4075     .type = ARM_CP_ALIAS,
4076     .bank_fieldoffsets = { offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
4077                            offsetofhigh32(CPUARMState, cp15.tcr_el[1]) },
4078 };
4079 
4080 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
4081                                 uint64_t value)
4082 {
4083     env->cp15.c15_ticonfig = value & 0xe7;
4084     /* The OS_TYPE bit in this register changes the reported CPUID! */
4085     env->cp15.c0_cpuid = (value & (1 << 5)) ?
4086         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
4087 }
4088 
4089 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
4090                                 uint64_t value)
4091 {
4092     env->cp15.c15_threadid = value & 0xffff;
4093 }
4094 
4095 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
4096                            uint64_t value)
4097 {
4098     /* Wait-for-interrupt (deprecated) */
4099     cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
4100 }
4101 
4102 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
4103                                   uint64_t value)
4104 {
4105     /* On OMAP there are registers indicating the max/min index of dcache lines
4106      * containing a dirty line; cache flush operations have to reset these.
4107      */
4108     env->cp15.c15_i_max = 0x000;
4109     env->cp15.c15_i_min = 0xff0;
4110 }
4111 
4112 static const ARMCPRegInfo omap_cp_reginfo[] = {
4113     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
4114       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
4115       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
4116       .resetvalue = 0, },
4117     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
4118       .access = PL1_RW, .type = ARM_CP_NOP },
4119     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
4120       .access = PL1_RW,
4121       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
4122       .writefn = omap_ticonfig_write },
4123     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
4124       .access = PL1_RW,
4125       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
4126     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
4127       .access = PL1_RW, .resetvalue = 0xff0,
4128       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
4129     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
4130       .access = PL1_RW,
4131       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
4132       .writefn = omap_threadid_write },
4133     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
4134       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4135       .type = ARM_CP_NO_RAW,
4136       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
4137     /* TODO: Peripheral port remap register:
4138      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
4139      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
4140      * when MMU is off.
4141      */
4142     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
4143       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
4144       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
4145       .writefn = omap_cachemaint_write },
4146     { .name = "C9", .cp = 15, .crn = 9,
4147       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
4148       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
4149     REGINFO_SENTINEL
4150 };
4151 
4152 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
4153                               uint64_t value)
4154 {
4155     env->cp15.c15_cpar = value & 0x3fff;
4156 }
4157 
4158 static const ARMCPRegInfo xscale_cp_reginfo[] = {
4159     { .name = "XSCALE_CPAR",
4160       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
4161       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
4162       .writefn = xscale_cpar_write, },
4163     { .name = "XSCALE_AUXCR",
4164       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
4165       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
4166       .resetvalue = 0, },
4167     /* XScale specific cache-lockdown: since we have no cache we NOP these
4168      * and hope the guest does not really rely on cache behaviour.
4169      */
4170     { .name = "XSCALE_LOCK_ICACHE_LINE",
4171       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
4172       .access = PL1_W, .type = ARM_CP_NOP },
4173     { .name = "XSCALE_UNLOCK_ICACHE",
4174       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
4175       .access = PL1_W, .type = ARM_CP_NOP },
4176     { .name = "XSCALE_DCACHE_LOCK",
4177       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
4178       .access = PL1_RW, .type = ARM_CP_NOP },
4179     { .name = "XSCALE_UNLOCK_DCACHE",
4180       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
4181       .access = PL1_W, .type = ARM_CP_NOP },
4182     REGINFO_SENTINEL
4183 };
4184 
4185 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
4186     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
4187      * implementation of this implementation-defined space.
4188      * Ideally this should eventually disappear in favour of actually
4189      * implementing the correct behaviour for all cores.
4190      */
4191     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
4192       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4193       .access = PL1_RW,
4194       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
4195       .resetvalue = 0 },
4196     REGINFO_SENTINEL
4197 };
4198 
4199 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
4200     /* Cache status: RAZ because we have no cache so it's always clean */
4201     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
4202       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4203       .resetvalue = 0 },
4204     REGINFO_SENTINEL
4205 };
4206 
4207 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
4208     /* We never have a a block transfer operation in progress */
4209     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
4210       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4211       .resetvalue = 0 },
4212     /* The cache ops themselves: these all NOP for QEMU */
4213     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
4214       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4215     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
4216       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4217     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
4218       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4219     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
4220       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4221     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
4222       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4223     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
4224       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
4225     REGINFO_SENTINEL
4226 };
4227 
4228 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
4229     /* The cache test-and-clean instructions always return (1 << 30)
4230      * to indicate that there are no dirty cache lines.
4231      */
4232     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
4233       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4234       .resetvalue = (1 << 30) },
4235     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
4236       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
4237       .resetvalue = (1 << 30) },
4238     REGINFO_SENTINEL
4239 };
4240 
4241 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
4242     /* Ignore ReadBuffer accesses */
4243     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
4244       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
4245       .access = PL1_RW, .resetvalue = 0,
4246       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
4247     REGINFO_SENTINEL
4248 };
4249 
4250 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4251 {
4252     ARMCPU *cpu = env_archcpu(env);
4253     unsigned int cur_el = arm_current_el(env);
4254     bool secure = arm_is_secure(env);
4255 
4256     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4257         return env->cp15.vpidr_el2;
4258     }
4259     return raw_read(env, ri);
4260 }
4261 
4262 static uint64_t mpidr_read_val(CPUARMState *env)
4263 {
4264     ARMCPU *cpu = env_archcpu(env);
4265     uint64_t mpidr = cpu->mp_affinity;
4266 
4267     if (arm_feature(env, ARM_FEATURE_V7MP)) {
4268         mpidr |= (1U << 31);
4269         /* Cores which are uniprocessor (non-coherent)
4270          * but still implement the MP extensions set
4271          * bit 30. (For instance, Cortex-R5).
4272          */
4273         if (cpu->mp_is_up) {
4274             mpidr |= (1u << 30);
4275         }
4276     }
4277     return mpidr;
4278 }
4279 
4280 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4281 {
4282     unsigned int cur_el = arm_current_el(env);
4283     bool secure = arm_is_secure(env);
4284 
4285     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
4286         return env->cp15.vmpidr_el2;
4287     }
4288     return mpidr_read_val(env);
4289 }
4290 
4291 static const ARMCPRegInfo lpae_cp_reginfo[] = {
4292     /* NOP AMAIR0/1 */
4293     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
4294       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
4295       .access = PL1_RW, .accessfn = access_tvm_trvm,
4296       .type = ARM_CP_CONST, .resetvalue = 0 },
4297     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
4298     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
4299       .access = PL1_RW, .accessfn = access_tvm_trvm,
4300       .type = ARM_CP_CONST, .resetvalue = 0 },
4301     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
4302       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
4303       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
4304                              offsetof(CPUARMState, cp15.par_ns)} },
4305     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
4306       .access = PL1_RW, .accessfn = access_tvm_trvm,
4307       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4308       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
4309                              offsetof(CPUARMState, cp15.ttbr0_ns) },
4310       .writefn = vmsa_ttbr_write, },
4311     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
4312       .access = PL1_RW, .accessfn = access_tvm_trvm,
4313       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
4314       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
4315                              offsetof(CPUARMState, cp15.ttbr1_ns) },
4316       .writefn = vmsa_ttbr_write, },
4317     REGINFO_SENTINEL
4318 };
4319 
4320 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4321 {
4322     return vfp_get_fpcr(env);
4323 }
4324 
4325 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4326                             uint64_t value)
4327 {
4328     vfp_set_fpcr(env, value);
4329 }
4330 
4331 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
4332 {
4333     return vfp_get_fpsr(env);
4334 }
4335 
4336 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4337                             uint64_t value)
4338 {
4339     vfp_set_fpsr(env, value);
4340 }
4341 
4342 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
4343                                        bool isread)
4344 {
4345     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
4346         return CP_ACCESS_TRAP;
4347     }
4348     return CP_ACCESS_OK;
4349 }
4350 
4351 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
4352                             uint64_t value)
4353 {
4354     env->daif = value & PSTATE_DAIF;
4355 }
4356 
4357 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
4358 {
4359     return env->pstate & PSTATE_PAN;
4360 }
4361 
4362 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
4363                            uint64_t value)
4364 {
4365     env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
4366 }
4367 
4368 static const ARMCPRegInfo pan_reginfo = {
4369     .name = "PAN", .state = ARM_CP_STATE_AA64,
4370     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
4371     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4372     .readfn = aa64_pan_read, .writefn = aa64_pan_write
4373 };
4374 
4375 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
4376 {
4377     return env->pstate & PSTATE_UAO;
4378 }
4379 
4380 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
4381                            uint64_t value)
4382 {
4383     env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
4384 }
4385 
4386 static const ARMCPRegInfo uao_reginfo = {
4387     .name = "UAO", .state = ARM_CP_STATE_AA64,
4388     .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
4389     .type = ARM_CP_NO_RAW, .access = PL1_RW,
4390     .readfn = aa64_uao_read, .writefn = aa64_uao_write
4391 };
4392 
4393 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
4394                                               const ARMCPRegInfo *ri,
4395                                               bool isread)
4396 {
4397     /* Cache invalidate/clean to Point of Coherency or Persistence...  */
4398     switch (arm_current_el(env)) {
4399     case 0:
4400         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4401         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4402             return CP_ACCESS_TRAP;
4403         }
4404         /* fall through */
4405     case 1:
4406         /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set.  */
4407         if (arm_hcr_el2_eff(env) & HCR_TPCP) {
4408             return CP_ACCESS_TRAP_EL2;
4409         }
4410         break;
4411     }
4412     return CP_ACCESS_OK;
4413 }
4414 
4415 static CPAccessResult aa64_cacheop_pou_access(CPUARMState *env,
4416                                               const ARMCPRegInfo *ri,
4417                                               bool isread)
4418 {
4419     /* Cache invalidate/clean to Point of Unification... */
4420     switch (arm_current_el(env)) {
4421     case 0:
4422         /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set.  */
4423         if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
4424             return CP_ACCESS_TRAP;
4425         }
4426         /* fall through */
4427     case 1:
4428         /* ... EL1 must trap to EL2 if HCR_EL2.TPU is set.  */
4429         if (arm_hcr_el2_eff(env) & HCR_TPU) {
4430             return CP_ACCESS_TRAP_EL2;
4431         }
4432         break;
4433     }
4434     return CP_ACCESS_OK;
4435 }
4436 
4437 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
4438  * Page D4-1736 (DDI0487A.b)
4439  */
4440 
4441 static int vae1_tlbmask(CPUARMState *env)
4442 {
4443     /* Since we exclude secure first, we may read HCR_EL2 directly. */
4444     if (arm_is_secure_below_el3(env)) {
4445         return ARMMMUIdxBit_SE10_1 |
4446                ARMMMUIdxBit_SE10_1_PAN |
4447                ARMMMUIdxBit_SE10_0;
4448     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4449                == (HCR_E2H | HCR_TGE)) {
4450         return ARMMMUIdxBit_E20_2 |
4451                ARMMMUIdxBit_E20_2_PAN |
4452                ARMMMUIdxBit_E20_0;
4453     } else {
4454         return ARMMMUIdxBit_E10_1 |
4455                ARMMMUIdxBit_E10_1_PAN |
4456                ARMMMUIdxBit_E10_0;
4457     }
4458 }
4459 
4460 /* Return 56 if TBI is enabled, 64 otherwise. */
4461 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
4462                               uint64_t addr)
4463 {
4464     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
4465     int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
4466     int select = extract64(addr, 55, 1);
4467 
4468     return (tbi >> select) & 1 ? 56 : 64;
4469 }
4470 
4471 static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
4472 {
4473     ARMMMUIdx mmu_idx;
4474 
4475     /* Only the regime of the mmu_idx below is significant. */
4476     if (arm_is_secure_below_el3(env)) {
4477         mmu_idx = ARMMMUIdx_SE10_0;
4478     } else if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE))
4479                == (HCR_E2H | HCR_TGE)) {
4480         mmu_idx = ARMMMUIdx_E20_0;
4481     } else {
4482         mmu_idx = ARMMMUIdx_E10_0;
4483     }
4484     return tlbbits_for_regime(env, mmu_idx, addr);
4485 }
4486 
4487 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4488                                       uint64_t value)
4489 {
4490     CPUState *cs = env_cpu(env);
4491     int mask = vae1_tlbmask(env);
4492 
4493     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4494 }
4495 
4496 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4497                                     uint64_t value)
4498 {
4499     CPUState *cs = env_cpu(env);
4500     int mask = vae1_tlbmask(env);
4501 
4502     if (tlb_force_broadcast(env)) {
4503         tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4504     } else {
4505         tlb_flush_by_mmuidx(cs, mask);
4506     }
4507 }
4508 
4509 static int alle1_tlbmask(CPUARMState *env)
4510 {
4511     /*
4512      * Note that the 'ALL' scope must invalidate both stage 1 and
4513      * stage 2 translations, whereas most other scopes only invalidate
4514      * stage 1 translations.
4515      */
4516     if (arm_is_secure_below_el3(env)) {
4517         return ARMMMUIdxBit_SE10_1 |
4518                ARMMMUIdxBit_SE10_1_PAN |
4519                ARMMMUIdxBit_SE10_0;
4520     } else {
4521         return ARMMMUIdxBit_E10_1 |
4522                ARMMMUIdxBit_E10_1_PAN |
4523                ARMMMUIdxBit_E10_0;
4524     }
4525 }
4526 
4527 static int e2_tlbmask(CPUARMState *env)
4528 {
4529     /* TODO: ARMv8.4-SecEL2 */
4530     return ARMMMUIdxBit_E20_0 |
4531            ARMMMUIdxBit_E20_2 |
4532            ARMMMUIdxBit_E20_2_PAN |
4533            ARMMMUIdxBit_E2;
4534 }
4535 
4536 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4537                                   uint64_t value)
4538 {
4539     CPUState *cs = env_cpu(env);
4540     int mask = alle1_tlbmask(env);
4541 
4542     tlb_flush_by_mmuidx(cs, mask);
4543 }
4544 
4545 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4546                                   uint64_t value)
4547 {
4548     CPUState *cs = env_cpu(env);
4549     int mask = e2_tlbmask(env);
4550 
4551     tlb_flush_by_mmuidx(cs, mask);
4552 }
4553 
4554 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4555                                   uint64_t value)
4556 {
4557     ARMCPU *cpu = env_archcpu(env);
4558     CPUState *cs = CPU(cpu);
4559 
4560     tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_SE3);
4561 }
4562 
4563 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4564                                     uint64_t value)
4565 {
4566     CPUState *cs = env_cpu(env);
4567     int mask = alle1_tlbmask(env);
4568 
4569     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4570 }
4571 
4572 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4573                                     uint64_t value)
4574 {
4575     CPUState *cs = env_cpu(env);
4576     int mask = e2_tlbmask(env);
4577 
4578     tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
4579 }
4580 
4581 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4582                                     uint64_t value)
4583 {
4584     CPUState *cs = env_cpu(env);
4585 
4586     tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_SE3);
4587 }
4588 
4589 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
4590                                  uint64_t value)
4591 {
4592     /* Invalidate by VA, EL2
4593      * Currently handles both VAE2 and VALE2, since we don't support
4594      * flush-last-level-only.
4595      */
4596     CPUState *cs = env_cpu(env);
4597     int mask = e2_tlbmask(env);
4598     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4599 
4600     tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
4601 }
4602 
4603 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
4604                                  uint64_t value)
4605 {
4606     /* Invalidate by VA, EL3
4607      * Currently handles both VAE3 and VALE3, since we don't support
4608      * flush-last-level-only.
4609      */
4610     ARMCPU *cpu = env_archcpu(env);
4611     CPUState *cs = CPU(cpu);
4612     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4613 
4614     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_SE3);
4615 }
4616 
4617 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4618                                    uint64_t value)
4619 {
4620     CPUState *cs = env_cpu(env);
4621     int mask = vae1_tlbmask(env);
4622     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4623     int bits = vae1_tlbbits(env, pageaddr);
4624 
4625     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4626 }
4627 
4628 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
4629                                  uint64_t value)
4630 {
4631     /* Invalidate by VA, EL1&0 (AArch64 version).
4632      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
4633      * since we don't support flush-for-specific-ASID-only or
4634      * flush-last-level-only.
4635      */
4636     CPUState *cs = env_cpu(env);
4637     int mask = vae1_tlbmask(env);
4638     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4639     int bits = vae1_tlbbits(env, pageaddr);
4640 
4641     if (tlb_force_broadcast(env)) {
4642         tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
4643     } else {
4644         tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
4645     }
4646 }
4647 
4648 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4649                                    uint64_t value)
4650 {
4651     CPUState *cs = env_cpu(env);
4652     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4653     int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr);
4654 
4655     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4656                                                   ARMMMUIdxBit_E2, bits);
4657 }
4658 
4659 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
4660                                    uint64_t value)
4661 {
4662     CPUState *cs = env_cpu(env);
4663     uint64_t pageaddr = sextract64(value << 12, 0, 56);
4664     int bits = tlbbits_for_regime(env, ARMMMUIdx_SE3, pageaddr);
4665 
4666     tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
4667                                                   ARMMMUIdxBit_SE3, bits);
4668 }
4669 
4670 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
4671                                       bool isread)
4672 {
4673     int cur_el = arm_current_el(env);
4674 
4675     if (cur_el < 2) {
4676         uint64_t hcr = arm_hcr_el2_eff(env);
4677 
4678         if (cur_el == 0) {
4679             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
4680                 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
4681                     return CP_ACCESS_TRAP_EL2;
4682                 }
4683             } else {
4684                 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
4685                     return CP_ACCESS_TRAP;
4686                 }
4687                 if (hcr & HCR_TDZ) {
4688                     return CP_ACCESS_TRAP_EL2;
4689                 }
4690             }
4691         } else if (hcr & HCR_TDZ) {
4692             return CP_ACCESS_TRAP_EL2;
4693         }
4694     }
4695     return CP_ACCESS_OK;
4696 }
4697 
4698 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
4699 {
4700     ARMCPU *cpu = env_archcpu(env);
4701     int dzp_bit = 1 << 4;
4702 
4703     /* DZP indicates whether DC ZVA access is allowed */
4704     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
4705         dzp_bit = 0;
4706     }
4707     return cpu->dcz_blocksize | dzp_bit;
4708 }
4709 
4710 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
4711                                     bool isread)
4712 {
4713     if (!(env->pstate & PSTATE_SP)) {
4714         /* Access to SP_EL0 is undefined if it's being used as
4715          * the stack pointer.
4716          */
4717         return CP_ACCESS_TRAP_UNCATEGORIZED;
4718     }
4719     return CP_ACCESS_OK;
4720 }
4721 
4722 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
4723 {
4724     return env->pstate & PSTATE_SP;
4725 }
4726 
4727 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
4728 {
4729     update_spsel(env, val);
4730 }
4731 
4732 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4733                         uint64_t value)
4734 {
4735     ARMCPU *cpu = env_archcpu(env);
4736 
4737     if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
4738         /* M bit is RAZ/WI for PMSA with no MPU implemented */
4739         value &= ~SCTLR_M;
4740     }
4741 
4742     /* ??? Lots of these bits are not implemented.  */
4743 
4744     if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
4745         if (ri->opc1 == 6) { /* SCTLR_EL3 */
4746             value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
4747         } else {
4748             value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
4749                        SCTLR_ATA0 | SCTLR_ATA);
4750         }
4751     }
4752 
4753     if (raw_read(env, ri) == value) {
4754         /* Skip the TLB flush if nothing actually changed; Linux likes
4755          * to do a lot of pointless SCTLR writes.
4756          */
4757         return;
4758     }
4759 
4760     raw_write(env, ri, value);
4761 
4762     /* This may enable/disable the MMU, so do a TLB flush.  */
4763     tlb_flush(CPU(cpu));
4764 
4765     if (ri->type & ARM_CP_SUPPRESS_TB_END) {
4766         /*
4767          * Normally we would always end the TB on an SCTLR write; see the
4768          * comment in ARMCPRegInfo sctlr initialization below for why Xscale
4769          * is special.  Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
4770          * of hflags from the translator, so do it here.
4771          */
4772         arm_rebuild_hflags(env);
4773     }
4774 }
4775 
4776 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
4777                                      bool isread)
4778 {
4779     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
4780         return CP_ACCESS_TRAP_FP_EL2;
4781     }
4782     if (env->cp15.cptr_el[3] & CPTR_TFP) {
4783         return CP_ACCESS_TRAP_FP_EL3;
4784     }
4785     return CP_ACCESS_OK;
4786 }
4787 
4788 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4789                        uint64_t value)
4790 {
4791     env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
4792 }
4793 
4794 static const ARMCPRegInfo v8_cp_reginfo[] = {
4795     /* Minimal set of EL0-visible registers. This will need to be expanded
4796      * significantly for system emulation of AArch64 CPUs.
4797      */
4798     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
4799       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
4800       .access = PL0_RW, .type = ARM_CP_NZCV },
4801     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
4802       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
4803       .type = ARM_CP_NO_RAW,
4804       .access = PL0_RW, .accessfn = aa64_daif_access,
4805       .fieldoffset = offsetof(CPUARMState, daif),
4806       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
4807     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
4808       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
4809       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4810       .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
4811     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
4812       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
4813       .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
4814       .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
4815     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
4816       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
4817       .access = PL0_R, .type = ARM_CP_NO_RAW,
4818       .readfn = aa64_dczid_read },
4819     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
4820       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
4821       .access = PL0_W, .type = ARM_CP_DC_ZVA,
4822 #ifndef CONFIG_USER_ONLY
4823       /* Avoid overhead of an access check that always passes in user-mode */
4824       .accessfn = aa64_zva_access,
4825 #endif
4826     },
4827     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
4828       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
4829       .access = PL1_R, .type = ARM_CP_CURRENTEL },
4830     /* Cache ops: all NOPs since we don't emulate caches */
4831     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
4832       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
4833       .access = PL1_W, .type = ARM_CP_NOP,
4834       .accessfn = aa64_cacheop_pou_access },
4835     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
4836       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
4837       .access = PL1_W, .type = ARM_CP_NOP,
4838       .accessfn = aa64_cacheop_pou_access },
4839     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
4840       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
4841       .access = PL0_W, .type = ARM_CP_NOP,
4842       .accessfn = aa64_cacheop_pou_access },
4843     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
4844       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
4845       .access = PL1_W, .accessfn = aa64_cacheop_poc_access,
4846       .type = ARM_CP_NOP },
4847     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
4848       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
4849       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4850     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
4851       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
4852       .access = PL0_W, .type = ARM_CP_NOP,
4853       .accessfn = aa64_cacheop_poc_access },
4854     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
4855       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
4856       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4857     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
4858       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
4859       .access = PL0_W, .type = ARM_CP_NOP,
4860       .accessfn = aa64_cacheop_pou_access },
4861     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
4862       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
4863       .access = PL0_W, .type = ARM_CP_NOP,
4864       .accessfn = aa64_cacheop_poc_access },
4865     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
4866       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
4867       .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
4868     /* TLBI operations */
4869     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
4870       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
4871       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4872       .writefn = tlbi_aa64_vmalle1is_write },
4873     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
4874       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
4875       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4876       .writefn = tlbi_aa64_vae1is_write },
4877     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
4878       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
4879       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4880       .writefn = tlbi_aa64_vmalle1is_write },
4881     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
4882       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
4883       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4884       .writefn = tlbi_aa64_vae1is_write },
4885     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
4886       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4887       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4888       .writefn = tlbi_aa64_vae1is_write },
4889     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
4890       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
4891       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4892       .writefn = tlbi_aa64_vae1is_write },
4893     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
4894       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
4895       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4896       .writefn = tlbi_aa64_vmalle1_write },
4897     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
4898       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
4899       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4900       .writefn = tlbi_aa64_vae1_write },
4901     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
4902       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
4903       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4904       .writefn = tlbi_aa64_vmalle1_write },
4905     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
4906       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
4907       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4908       .writefn = tlbi_aa64_vae1_write },
4909     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
4910       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
4911       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4912       .writefn = tlbi_aa64_vae1_write },
4913     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
4914       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
4915       .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
4916       .writefn = tlbi_aa64_vae1_write },
4917     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
4918       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
4919       .access = PL2_W, .type = ARM_CP_NOP },
4920     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
4921       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
4922       .access = PL2_W, .type = ARM_CP_NOP },
4923     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
4924       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
4925       .access = PL2_W, .type = ARM_CP_NO_RAW,
4926       .writefn = tlbi_aa64_alle1is_write },
4927     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
4928       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
4929       .access = PL2_W, .type = ARM_CP_NO_RAW,
4930       .writefn = tlbi_aa64_alle1is_write },
4931     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
4932       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
4933       .access = PL2_W, .type = ARM_CP_NOP },
4934     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
4935       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
4936       .access = PL2_W, .type = ARM_CP_NOP },
4937     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
4938       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
4939       .access = PL2_W, .type = ARM_CP_NO_RAW,
4940       .writefn = tlbi_aa64_alle1_write },
4941     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
4942       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
4943       .access = PL2_W, .type = ARM_CP_NO_RAW,
4944       .writefn = tlbi_aa64_alle1is_write },
4945 #ifndef CONFIG_USER_ONLY
4946     /* 64 bit address translation operations */
4947     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
4948       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
4949       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4950       .writefn = ats_write64 },
4951     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
4952       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
4953       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4954       .writefn = ats_write64 },
4955     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
4956       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
4957       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4958       .writefn = ats_write64 },
4959     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
4960       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
4961       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4962       .writefn = ats_write64 },
4963     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
4964       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
4965       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4966       .writefn = ats_write64 },
4967     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
4968       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
4969       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4970       .writefn = ats_write64 },
4971     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
4972       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
4973       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4974       .writefn = ats_write64 },
4975     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
4976       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
4977       .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4978       .writefn = ats_write64 },
4979     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4980     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
4981       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
4982       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4983       .writefn = ats_write64 },
4984     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
4985       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
4986       .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
4987       .writefn = ats_write64 },
4988     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
4989       .type = ARM_CP_ALIAS,
4990       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
4991       .access = PL1_RW, .resetvalue = 0,
4992       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
4993       .writefn = par_write },
4994 #endif
4995     /* TLB invalidate last level of translation table walk */
4996     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
4997       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
4998       .writefn = tlbimva_is_write },
4999     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
5000       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5001       .writefn = tlbimvaa_is_write },
5002     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
5003       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5004       .writefn = tlbimva_write },
5005     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
5006       .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
5007       .writefn = tlbimvaa_write },
5008     { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5009       .type = ARM_CP_NO_RAW, .access = PL2_W,
5010       .writefn = tlbimva_hyp_write },
5011     { .name = "TLBIMVALHIS",
5012       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5013       .type = ARM_CP_NO_RAW, .access = PL2_W,
5014       .writefn = tlbimva_hyp_is_write },
5015     { .name = "TLBIIPAS2",
5016       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
5017       .type = ARM_CP_NOP, .access = PL2_W },
5018     { .name = "TLBIIPAS2IS",
5019       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
5020       .type = ARM_CP_NOP, .access = PL2_W },
5021     { .name = "TLBIIPAS2L",
5022       .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
5023       .type = ARM_CP_NOP, .access = PL2_W },
5024     { .name = "TLBIIPAS2LIS",
5025       .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
5026       .type = ARM_CP_NOP, .access = PL2_W },
5027     /* 32 bit cache operations */
5028     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
5029       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5030     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
5031       .type = ARM_CP_NOP, .access = PL1_W },
5032     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
5033       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5034     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
5035       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5036     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
5037       .type = ARM_CP_NOP, .access = PL1_W },
5038     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
5039       .type = ARM_CP_NOP, .access = PL1_W },
5040     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
5041       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5042     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
5043       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5044     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
5045       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5046     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
5047       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5048     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
5049       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_pou_access },
5050     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
5051       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
5052     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
5053       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
5054     /* MMU Domain access control / MPU write buffer control */
5055     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
5056       .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
5057       .writefn = dacr_write, .raw_writefn = raw_write,
5058       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
5059                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
5060     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
5061       .type = ARM_CP_ALIAS,
5062       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
5063       .access = PL1_RW,
5064       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
5065     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
5066       .type = ARM_CP_ALIAS,
5067       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
5068       .access = PL1_RW,
5069       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
5070     /* We rely on the access checks not allowing the guest to write to the
5071      * state field when SPSel indicates that it's being used as the stack
5072      * pointer.
5073      */
5074     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
5075       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
5076       .access = PL1_RW, .accessfn = sp_el0_access,
5077       .type = ARM_CP_ALIAS,
5078       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
5079     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
5080       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
5081       .access = PL2_RW, .type = ARM_CP_ALIAS,
5082       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
5083     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
5084       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
5085       .type = ARM_CP_NO_RAW,
5086       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
5087     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
5088       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
5089       .type = ARM_CP_ALIAS,
5090       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
5091       .access = PL2_RW, .accessfn = fpexc32_access },
5092     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
5093       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
5094       .access = PL2_RW, .resetvalue = 0,
5095       .writefn = dacr_write, .raw_writefn = raw_write,
5096       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
5097     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
5098       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
5099       .access = PL2_RW, .resetvalue = 0,
5100       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
5101     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
5102       .type = ARM_CP_ALIAS,
5103       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
5104       .access = PL2_RW,
5105       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
5106     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
5107       .type = ARM_CP_ALIAS,
5108       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
5109       .access = PL2_RW,
5110       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
5111     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
5112       .type = ARM_CP_ALIAS,
5113       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
5114       .access = PL2_RW,
5115       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
5116     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
5117       .type = ARM_CP_ALIAS,
5118       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
5119       .access = PL2_RW,
5120       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
5121     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
5122       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
5123       .resetvalue = 0,
5124       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
5125     { .name = "SDCR", .type = ARM_CP_ALIAS,
5126       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
5127       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5128       .writefn = sdcr_write,
5129       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
5130     REGINFO_SENTINEL
5131 };
5132 
5133 /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
5134 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
5135     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5136       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5137       .access = PL2_RW,
5138       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
5139     { .name = "HCR_EL2", .state = ARM_CP_STATE_BOTH,
5140       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5141       .access = PL2_RW,
5142       .type = ARM_CP_CONST, .resetvalue = 0 },
5143     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5144       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5145       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5146     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5147       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5148       .access = PL2_RW,
5149       .type = ARM_CP_CONST, .resetvalue = 0 },
5150     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5151       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5152       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5153     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5154       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5155       .access = PL2_RW, .type = ARM_CP_CONST,
5156       .resetvalue = 0 },
5157     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5158       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5159       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5160     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5161       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5162       .access = PL2_RW, .type = ARM_CP_CONST,
5163       .resetvalue = 0 },
5164     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5165       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5166       .access = PL2_RW, .type = ARM_CP_CONST,
5167       .resetvalue = 0 },
5168     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5169       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5170       .access = PL2_RW, .type = ARM_CP_CONST,
5171       .resetvalue = 0 },
5172     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5173       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5174       .access = PL2_RW, .type = ARM_CP_CONST,
5175       .resetvalue = 0 },
5176     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5177       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5178       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5179     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
5180       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5181       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5182       .type = ARM_CP_CONST, .resetvalue = 0 },
5183     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5184       .cp = 15, .opc1 = 6, .crm = 2,
5185       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5186       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
5187     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5188       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5189       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5190     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5191       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5192       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5193     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5194       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5195       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5196     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5197       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5198       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5199     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5200       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5201       .resetvalue = 0 },
5202     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5203       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5204       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5205     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5206       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5207       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5208     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5209       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5210       .resetvalue = 0 },
5211     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5212       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5213       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5214     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5215       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
5216       .resetvalue = 0 },
5217     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5218       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5219       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5220     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5221       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5222       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5223     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5224       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5225       .access = PL2_RW, .accessfn = access_tda,
5226       .type = ARM_CP_CONST, .resetvalue = 0 },
5227     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
5228       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5229       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5230       .type = ARM_CP_CONST, .resetvalue = 0 },
5231     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5232       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5233       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5234     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5235       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5236       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5237     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5238       .type = ARM_CP_CONST,
5239       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5240       .access = PL2_RW, .resetvalue = 0 },
5241     REGINFO_SENTINEL
5242 };
5243 
5244 /* Ditto, but for registers which exist in ARMv8 but not v7 */
5245 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo[] = {
5246     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5247       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5248       .access = PL2_RW,
5249       .type = ARM_CP_CONST, .resetvalue = 0 },
5250     REGINFO_SENTINEL
5251 };
5252 
5253 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
5254 {
5255     ARMCPU *cpu = env_archcpu(env);
5256 
5257     if (arm_feature(env, ARM_FEATURE_V8)) {
5258         valid_mask |= MAKE_64BIT_MASK(0, 34);  /* ARMv8.0 */
5259     } else {
5260         valid_mask |= MAKE_64BIT_MASK(0, 28);  /* ARMv7VE */
5261     }
5262 
5263     if (arm_feature(env, ARM_FEATURE_EL3)) {
5264         valid_mask &= ~HCR_HCD;
5265     } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
5266         /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
5267          * However, if we're using the SMC PSCI conduit then QEMU is
5268          * effectively acting like EL3 firmware and so the guest at
5269          * EL2 should retain the ability to prevent EL1 from being
5270          * able to make SMC calls into the ersatz firmware, so in
5271          * that case HCR.TSC should be read/write.
5272          */
5273         valid_mask &= ~HCR_TSC;
5274     }
5275 
5276     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5277         if (cpu_isar_feature(aa64_vh, cpu)) {
5278             valid_mask |= HCR_E2H;
5279         }
5280         if (cpu_isar_feature(aa64_lor, cpu)) {
5281             valid_mask |= HCR_TLOR;
5282         }
5283         if (cpu_isar_feature(aa64_pauth, cpu)) {
5284             valid_mask |= HCR_API | HCR_APK;
5285         }
5286         if (cpu_isar_feature(aa64_mte, cpu)) {
5287             valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
5288         }
5289     }
5290 
5291     /* Clear RES0 bits.  */
5292     value &= valid_mask;
5293 
5294     /*
5295      * These bits change the MMU setup:
5296      * HCR_VM enables stage 2 translation
5297      * HCR_PTW forbids certain page-table setups
5298      * HCR_DC disables stage1 and enables stage2 translation
5299      * HCR_DCT enables tagging on (disabled) stage1 translation
5300      */
5301     if ((env->cp15.hcr_el2 ^ value) & (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT)) {
5302         tlb_flush(CPU(cpu));
5303     }
5304     env->cp15.hcr_el2 = value;
5305 
5306     /*
5307      * Updates to VI and VF require us to update the status of
5308      * virtual interrupts, which are the logical OR of these bits
5309      * and the state of the input lines from the GIC. (This requires
5310      * that we have the iothread lock, which is done by marking the
5311      * reginfo structs as ARM_CP_IO.)
5312      * Note that if a write to HCR pends a VIRQ or VFIQ it is never
5313      * possible for it to be taken immediately, because VIRQ and
5314      * VFIQ are masked unless running at EL0 or EL1, and HCR
5315      * can only be written at EL2.
5316      */
5317     g_assert(qemu_mutex_iothread_locked());
5318     arm_cpu_update_virq(cpu);
5319     arm_cpu_update_vfiq(cpu);
5320 }
5321 
5322 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
5323 {
5324     do_hcr_write(env, value, 0);
5325 }
5326 
5327 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
5328                           uint64_t value)
5329 {
5330     /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
5331     value = deposit64(env->cp15.hcr_el2, 32, 32, value);
5332     do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
5333 }
5334 
5335 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
5336                          uint64_t value)
5337 {
5338     /* Handle HCR write, i.e. write to low half of HCR_EL2 */
5339     value = deposit64(env->cp15.hcr_el2, 0, 32, value);
5340     do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
5341 }
5342 
5343 /*
5344  * Return the effective value of HCR_EL2.
5345  * Bits that are not included here:
5346  * RW       (read from SCR_EL3.RW as needed)
5347  */
5348 uint64_t arm_hcr_el2_eff(CPUARMState *env)
5349 {
5350     uint64_t ret = env->cp15.hcr_el2;
5351 
5352     if (arm_is_secure_below_el3(env)) {
5353         /*
5354          * "This register has no effect if EL2 is not enabled in the
5355          * current Security state".  This is ARMv8.4-SecEL2 speak for
5356          * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
5357          *
5358          * Prior to that, the language was "In an implementation that
5359          * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
5360          * as if this field is 0 for all purposes other than a direct
5361          * read or write access of HCR_EL2".  With lots of enumeration
5362          * on a per-field basis.  In current QEMU, this is condition
5363          * is arm_is_secure_below_el3.
5364          *
5365          * Since the v8.4 language applies to the entire register, and
5366          * appears to be backward compatible, use that.
5367          */
5368         return 0;
5369     }
5370 
5371     /*
5372      * For a cpu that supports both aarch64 and aarch32, we can set bits
5373      * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
5374      * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
5375      */
5376     if (!arm_el_is_aa64(env, 2)) {
5377         uint64_t aa32_valid;
5378 
5379         /*
5380          * These bits are up-to-date as of ARMv8.6.
5381          * For HCR, it's easiest to list just the 2 bits that are invalid.
5382          * For HCR2, list those that are valid.
5383          */
5384         aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
5385         aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
5386                        HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
5387         ret &= aa32_valid;
5388     }
5389 
5390     if (ret & HCR_TGE) {
5391         /* These bits are up-to-date as of ARMv8.6.  */
5392         if (ret & HCR_E2H) {
5393             ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
5394                      HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
5395                      HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
5396                      HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
5397                      HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
5398                      HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
5399         } else {
5400             ret |= HCR_FMO | HCR_IMO | HCR_AMO;
5401         }
5402         ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
5403                  HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
5404                  HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
5405                  HCR_TLOR);
5406     }
5407 
5408     return ret;
5409 }
5410 
5411 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
5412                            uint64_t value)
5413 {
5414     /*
5415      * For A-profile AArch32 EL3, if NSACR.CP10
5416      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5417      */
5418     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5419         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5420         value &= ~(0x3 << 10);
5421         value |= env->cp15.cptr_el[2] & (0x3 << 10);
5422     }
5423     env->cp15.cptr_el[2] = value;
5424 }
5425 
5426 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
5427 {
5428     /*
5429      * For A-profile AArch32 EL3, if NSACR.CP10
5430      * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
5431      */
5432     uint64_t value = env->cp15.cptr_el[2];
5433 
5434     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
5435         !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
5436         value |= 0x3 << 10;
5437     }
5438     return value;
5439 }
5440 
5441 static const ARMCPRegInfo el2_cp_reginfo[] = {
5442     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
5443       .type = ARM_CP_IO,
5444       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5445       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5446       .writefn = hcr_write },
5447     { .name = "HCR", .state = ARM_CP_STATE_AA32,
5448       .type = ARM_CP_ALIAS | ARM_CP_IO,
5449       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
5450       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
5451       .writefn = hcr_writelow },
5452     { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
5453       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
5454       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
5455     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
5456       .type = ARM_CP_ALIAS,
5457       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
5458       .access = PL2_RW,
5459       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
5460     { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
5461       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
5462       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
5463     { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
5464       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
5465       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
5466     { .name = "HIFAR", .state = ARM_CP_STATE_AA32,
5467       .type = ARM_CP_ALIAS,
5468       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
5469       .access = PL2_RW,
5470       .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
5471     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
5472       .type = ARM_CP_ALIAS,
5473       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
5474       .access = PL2_RW,
5475       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
5476     { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
5477       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
5478       .access = PL2_RW, .writefn = vbar_write,
5479       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
5480       .resetvalue = 0 },
5481     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
5482       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
5483       .access = PL3_RW, .type = ARM_CP_ALIAS,
5484       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
5485     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
5486       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
5487       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
5488       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
5489       .readfn = cptr_el2_read, .writefn = cptr_el2_write },
5490     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
5491       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
5492       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
5493       .resetvalue = 0 },
5494     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
5495       .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
5496       .access = PL2_RW, .type = ARM_CP_ALIAS,
5497       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
5498     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
5499       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
5500       .access = PL2_RW, .type = ARM_CP_CONST,
5501       .resetvalue = 0 },
5502     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
5503     { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
5504       .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
5505       .access = PL2_RW, .type = ARM_CP_CONST,
5506       .resetvalue = 0 },
5507     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
5508       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
5509       .access = PL2_RW, .type = ARM_CP_CONST,
5510       .resetvalue = 0 },
5511     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
5512       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
5513       .access = PL2_RW, .type = ARM_CP_CONST,
5514       .resetvalue = 0 },
5515     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
5516       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
5517       .access = PL2_RW, .writefn = vmsa_tcr_el12_write,
5518       /* no .raw_writefn or .resetfn needed as we never use mask/base_mask */
5519       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
5520     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
5521       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5522       .type = ARM_CP_ALIAS,
5523       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5524       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5525     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
5526       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
5527       .access = PL2_RW,
5528       /* no .writefn needed as this can't cause an ASID change;
5529        * no .raw_writefn or .resetfn needed as we never use mask/base_mask
5530        */
5531       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
5532     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
5533       .cp = 15, .opc1 = 6, .crm = 2,
5534       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5535       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5536       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
5537       .writefn = vttbr_write },
5538     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
5539       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
5540       .access = PL2_RW, .writefn = vttbr_write,
5541       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
5542     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
5543       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
5544       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
5545       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
5546     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
5547       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
5548       .access = PL2_RW, .resetvalue = 0,
5549       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
5550     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
5551       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
5552       .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write,
5553       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5554     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
5555       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
5556       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
5557     { .name = "TLBIALLNSNH",
5558       .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
5559       .type = ARM_CP_NO_RAW, .access = PL2_W,
5560       .writefn = tlbiall_nsnh_write },
5561     { .name = "TLBIALLNSNHIS",
5562       .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
5563       .type = ARM_CP_NO_RAW, .access = PL2_W,
5564       .writefn = tlbiall_nsnh_is_write },
5565     { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5566       .type = ARM_CP_NO_RAW, .access = PL2_W,
5567       .writefn = tlbiall_hyp_write },
5568     { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5569       .type = ARM_CP_NO_RAW, .access = PL2_W,
5570       .writefn = tlbiall_hyp_is_write },
5571     { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5572       .type = ARM_CP_NO_RAW, .access = PL2_W,
5573       .writefn = tlbimva_hyp_write },
5574     { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5575       .type = ARM_CP_NO_RAW, .access = PL2_W,
5576       .writefn = tlbimva_hyp_is_write },
5577     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
5578       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
5579       .type = ARM_CP_NO_RAW, .access = PL2_W,
5580       .writefn = tlbi_aa64_alle2_write },
5581     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
5582       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
5583       .type = ARM_CP_NO_RAW, .access = PL2_W,
5584       .writefn = tlbi_aa64_vae2_write },
5585     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
5586       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
5587       .access = PL2_W, .type = ARM_CP_NO_RAW,
5588       .writefn = tlbi_aa64_vae2_write },
5589     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
5590       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
5591       .access = PL2_W, .type = ARM_CP_NO_RAW,
5592       .writefn = tlbi_aa64_alle2is_write },
5593     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
5594       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
5595       .type = ARM_CP_NO_RAW, .access = PL2_W,
5596       .writefn = tlbi_aa64_vae2is_write },
5597     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
5598       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
5599       .access = PL2_W, .type = ARM_CP_NO_RAW,
5600       .writefn = tlbi_aa64_vae2is_write },
5601 #ifndef CONFIG_USER_ONLY
5602     /* Unlike the other EL2-related AT operations, these must
5603      * UNDEF from EL3 if EL2 is not implemented, which is why we
5604      * define them here rather than with the rest of the AT ops.
5605      */
5606     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
5607       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5608       .access = PL2_W, .accessfn = at_s1e2_access,
5609       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5610     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
5611       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5612       .access = PL2_W, .accessfn = at_s1e2_access,
5613       .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, .writefn = ats_write64 },
5614     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
5615      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
5616      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
5617      * to behave as if SCR.NS was 1.
5618      */
5619     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
5620       .access = PL2_W,
5621       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5622     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
5623       .access = PL2_W,
5624       .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
5625     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
5626       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
5627       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
5628        * reset values as IMPDEF. We choose to reset to 3 to comply with
5629        * both ARMv7 and ARMv8.
5630        */
5631       .access = PL2_RW, .resetvalue = 3,
5632       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
5633     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
5634       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
5635       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
5636       .writefn = gt_cntvoff_write,
5637       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5638     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
5639       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
5640       .writefn = gt_cntvoff_write,
5641       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
5642     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
5643       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
5644       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5645       .type = ARM_CP_IO, .access = PL2_RW,
5646       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5647     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
5648       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
5649       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
5650       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
5651     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
5652       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
5653       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
5654       .resetfn = gt_hyp_timer_reset,
5655       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
5656     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
5657       .type = ARM_CP_IO,
5658       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
5659       .access = PL2_RW,
5660       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
5661       .resetvalue = 0,
5662       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
5663 #endif
5664     /* The only field of MDCR_EL2 that has a defined architectural reset value
5665      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
5666      * don't implement any PMU event counters, so using zero as a reset
5667      * value for MDCR_EL2 is okay
5668      */
5669     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
5670       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
5671       .access = PL2_RW, .resetvalue = 0,
5672       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
5673     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
5674       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5675       .access = PL2_RW, .accessfn = access_el3_aa32ns,
5676       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5677     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
5678       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
5679       .access = PL2_RW,
5680       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
5681     { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
5682       .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
5683       .access = PL2_RW,
5684       .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
5685     REGINFO_SENTINEL
5686 };
5687 
5688 static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
5689     { .name = "HCR2", .state = ARM_CP_STATE_AA32,
5690       .type = ARM_CP_ALIAS | ARM_CP_IO,
5691       .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
5692       .access = PL2_RW,
5693       .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
5694       .writefn = hcr_writehigh },
5695     REGINFO_SENTINEL
5696 };
5697 
5698 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
5699                                    bool isread)
5700 {
5701     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
5702      * At Secure EL1 it traps to EL3.
5703      */
5704     if (arm_current_el(env) == 3) {
5705         return CP_ACCESS_OK;
5706     }
5707     if (arm_is_secure_below_el3(env)) {
5708         return CP_ACCESS_TRAP_EL3;
5709     }
5710     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
5711     if (isread) {
5712         return CP_ACCESS_OK;
5713     }
5714     return CP_ACCESS_TRAP_UNCATEGORIZED;
5715 }
5716 
5717 static const ARMCPRegInfo el3_cp_reginfo[] = {
5718     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
5719       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
5720       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
5721       .resetvalue = 0, .writefn = scr_write },
5722     { .name = "SCR",  .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
5723       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
5724       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5725       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
5726       .writefn = scr_write },
5727     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
5728       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
5729       .access = PL3_RW, .resetvalue = 0,
5730       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
5731     { .name = "SDER",
5732       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
5733       .access = PL3_RW, .resetvalue = 0,
5734       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
5735     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
5736       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
5737       .writefn = vbar_write, .resetvalue = 0,
5738       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
5739     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
5740       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
5741       .access = PL3_RW, .resetvalue = 0,
5742       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
5743     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
5744       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
5745       .access = PL3_RW,
5746       /* no .writefn needed as this can't cause an ASID change;
5747        * we must provide a .raw_writefn and .resetfn because we handle
5748        * reset and migration for the AArch32 TTBCR(S), which might be
5749        * using mask and base_mask.
5750        */
5751       .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
5752       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
5753     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
5754       .type = ARM_CP_ALIAS,
5755       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
5756       .access = PL3_RW,
5757       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
5758     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
5759       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
5760       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
5761     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
5762       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
5763       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
5764     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
5765       .type = ARM_CP_ALIAS,
5766       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
5767       .access = PL3_RW,
5768       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
5769     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
5770       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
5771       .access = PL3_RW, .writefn = vbar_write,
5772       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
5773       .resetvalue = 0 },
5774     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
5775       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
5776       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
5777       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
5778     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
5779       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
5780       .access = PL3_RW, .resetvalue = 0,
5781       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
5782     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
5783       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
5784       .access = PL3_RW, .type = ARM_CP_CONST,
5785       .resetvalue = 0 },
5786     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
5787       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
5788       .access = PL3_RW, .type = ARM_CP_CONST,
5789       .resetvalue = 0 },
5790     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
5791       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
5792       .access = PL3_RW, .type = ARM_CP_CONST,
5793       .resetvalue = 0 },
5794     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
5795       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
5796       .access = PL3_W, .type = ARM_CP_NO_RAW,
5797       .writefn = tlbi_aa64_alle3is_write },
5798     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
5799       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
5800       .access = PL3_W, .type = ARM_CP_NO_RAW,
5801       .writefn = tlbi_aa64_vae3is_write },
5802     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
5803       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
5804       .access = PL3_W, .type = ARM_CP_NO_RAW,
5805       .writefn = tlbi_aa64_vae3is_write },
5806     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
5807       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
5808       .access = PL3_W, .type = ARM_CP_NO_RAW,
5809       .writefn = tlbi_aa64_alle3_write },
5810     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
5811       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
5812       .access = PL3_W, .type = ARM_CP_NO_RAW,
5813       .writefn = tlbi_aa64_vae3_write },
5814     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
5815       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
5816       .access = PL3_W, .type = ARM_CP_NO_RAW,
5817       .writefn = tlbi_aa64_vae3_write },
5818     REGINFO_SENTINEL
5819 };
5820 
5821 #ifndef CONFIG_USER_ONLY
5822 /* Test if system register redirection is to occur in the current state.  */
5823 static bool redirect_for_e2h(CPUARMState *env)
5824 {
5825     return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
5826 }
5827 
5828 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
5829 {
5830     CPReadFn *readfn;
5831 
5832     if (redirect_for_e2h(env)) {
5833         /* Switch to the saved EL2 version of the register.  */
5834         ri = ri->opaque;
5835         readfn = ri->readfn;
5836     } else {
5837         readfn = ri->orig_readfn;
5838     }
5839     if (readfn == NULL) {
5840         readfn = raw_read;
5841     }
5842     return readfn(env, ri);
5843 }
5844 
5845 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
5846                           uint64_t value)
5847 {
5848     CPWriteFn *writefn;
5849 
5850     if (redirect_for_e2h(env)) {
5851         /* Switch to the saved EL2 version of the register.  */
5852         ri = ri->opaque;
5853         writefn = ri->writefn;
5854     } else {
5855         writefn = ri->orig_writefn;
5856     }
5857     if (writefn == NULL) {
5858         writefn = raw_write;
5859     }
5860     writefn(env, ri, value);
5861 }
5862 
5863 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
5864 {
5865     struct E2HAlias {
5866         uint32_t src_key, dst_key, new_key;
5867         const char *src_name, *dst_name, *new_name;
5868         bool (*feature)(const ARMISARegisters *id);
5869     };
5870 
5871 #define K(op0, op1, crn, crm, op2) \
5872     ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
5873 
5874     static const struct E2HAlias aliases[] = {
5875         { K(3, 0,  1, 0, 0), K(3, 4,  1, 0, 0), K(3, 5, 1, 0, 0),
5876           "SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
5877         { K(3, 0,  1, 0, 2), K(3, 4,  1, 1, 2), K(3, 5, 1, 0, 2),
5878           "CPACR", "CPTR_EL2", "CPACR_EL12" },
5879         { K(3, 0,  2, 0, 0), K(3, 4,  2, 0, 0), K(3, 5, 2, 0, 0),
5880           "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
5881         { K(3, 0,  2, 0, 1), K(3, 4,  2, 0, 1), K(3, 5, 2, 0, 1),
5882           "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
5883         { K(3, 0,  2, 0, 2), K(3, 4,  2, 0, 2), K(3, 5, 2, 0, 2),
5884           "TCR_EL1", "TCR_EL2", "TCR_EL12" },
5885         { K(3, 0,  4, 0, 0), K(3, 4,  4, 0, 0), K(3, 5, 4, 0, 0),
5886           "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
5887         { K(3, 0,  4, 0, 1), K(3, 4,  4, 0, 1), K(3, 5, 4, 0, 1),
5888           "ELR_EL1", "ELR_EL2", "ELR_EL12" },
5889         { K(3, 0,  5, 1, 0), K(3, 4,  5, 1, 0), K(3, 5, 5, 1, 0),
5890           "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
5891         { K(3, 0,  5, 1, 1), K(3, 4,  5, 1, 1), K(3, 5, 5, 1, 1),
5892           "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
5893         { K(3, 0,  5, 2, 0), K(3, 4,  5, 2, 0), K(3, 5, 5, 2, 0),
5894           "ESR_EL1", "ESR_EL2", "ESR_EL12" },
5895         { K(3, 0,  6, 0, 0), K(3, 4,  6, 0, 0), K(3, 5, 6, 0, 0),
5896           "FAR_EL1", "FAR_EL2", "FAR_EL12" },
5897         { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
5898           "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
5899         { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
5900           "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
5901         { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
5902           "VBAR", "VBAR_EL2", "VBAR_EL12" },
5903         { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
5904           "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
5905         { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
5906           "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
5907 
5908         /*
5909          * Note that redirection of ZCR is mentioned in the description
5910          * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
5911          * not in the summary table.
5912          */
5913         { K(3, 0,  1, 2, 0), K(3, 4,  1, 2, 0), K(3, 5, 1, 2, 0),
5914           "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
5915 
5916         { K(3, 0,  5, 6, 0), K(3, 4,  5, 6, 0), K(3, 5, 5, 6, 0),
5917           "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
5918 
5919         /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
5920         /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
5921     };
5922 #undef K
5923 
5924     size_t i;
5925 
5926     for (i = 0; i < ARRAY_SIZE(aliases); i++) {
5927         const struct E2HAlias *a = &aliases[i];
5928         ARMCPRegInfo *src_reg, *dst_reg;
5929 
5930         if (a->feature && !a->feature(&cpu->isar)) {
5931             continue;
5932         }
5933 
5934         src_reg = g_hash_table_lookup(cpu->cp_regs, &a->src_key);
5935         dst_reg = g_hash_table_lookup(cpu->cp_regs, &a->dst_key);
5936         g_assert(src_reg != NULL);
5937         g_assert(dst_reg != NULL);
5938 
5939         /* Cross-compare names to detect typos in the keys.  */
5940         g_assert(strcmp(src_reg->name, a->src_name) == 0);
5941         g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
5942 
5943         /* None of the core system registers use opaque; we will.  */
5944         g_assert(src_reg->opaque == NULL);
5945 
5946         /* Create alias before redirection so we dup the right data. */
5947         if (a->new_key) {
5948             ARMCPRegInfo *new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
5949             uint32_t *new_key = g_memdup(&a->new_key, sizeof(uint32_t));
5950             bool ok;
5951 
5952             new_reg->name = a->new_name;
5953             new_reg->type |= ARM_CP_ALIAS;
5954             /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place.  */
5955             new_reg->access &= PL2_RW | PL3_RW;
5956 
5957             ok = g_hash_table_insert(cpu->cp_regs, new_key, new_reg);
5958             g_assert(ok);
5959         }
5960 
5961         src_reg->opaque = dst_reg;
5962         src_reg->orig_readfn = src_reg->readfn ?: raw_read;
5963         src_reg->orig_writefn = src_reg->writefn ?: raw_write;
5964         if (!src_reg->raw_readfn) {
5965             src_reg->raw_readfn = raw_read;
5966         }
5967         if (!src_reg->raw_writefn) {
5968             src_reg->raw_writefn = raw_write;
5969         }
5970         src_reg->readfn = el2_e2h_read;
5971         src_reg->writefn = el2_e2h_write;
5972     }
5973 }
5974 #endif
5975 
5976 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
5977                                      bool isread)
5978 {
5979     int cur_el = arm_current_el(env);
5980 
5981     if (cur_el < 2) {
5982         uint64_t hcr = arm_hcr_el2_eff(env);
5983 
5984         if (cur_el == 0) {
5985             if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
5986                 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
5987                     return CP_ACCESS_TRAP_EL2;
5988                 }
5989             } else {
5990                 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
5991                     return CP_ACCESS_TRAP;
5992                 }
5993                 if (hcr & HCR_TID2) {
5994                     return CP_ACCESS_TRAP_EL2;
5995                 }
5996             }
5997         } else if (hcr & HCR_TID2) {
5998             return CP_ACCESS_TRAP_EL2;
5999         }
6000     }
6001 
6002     if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
6003         return CP_ACCESS_TRAP_EL2;
6004     }
6005 
6006     return CP_ACCESS_OK;
6007 }
6008 
6009 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
6010                         uint64_t value)
6011 {
6012     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
6013      * read via a bit in OSLSR_EL1.
6014      */
6015     int oslock;
6016 
6017     if (ri->state == ARM_CP_STATE_AA32) {
6018         oslock = (value == 0xC5ACCE55);
6019     } else {
6020         oslock = value & 1;
6021     }
6022 
6023     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
6024 }
6025 
6026 static const ARMCPRegInfo debug_cp_reginfo[] = {
6027     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
6028      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
6029      * unlike DBGDRAR it is never accessible from EL0.
6030      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
6031      * accessor.
6032      */
6033     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
6034       .access = PL0_R, .accessfn = access_tdra,
6035       .type = ARM_CP_CONST, .resetvalue = 0 },
6036     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
6037       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
6038       .access = PL1_R, .accessfn = access_tdra,
6039       .type = ARM_CP_CONST, .resetvalue = 0 },
6040     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
6041       .access = PL0_R, .accessfn = access_tdra,
6042       .type = ARM_CP_CONST, .resetvalue = 0 },
6043     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
6044     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
6045       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
6046       .access = PL1_RW, .accessfn = access_tda,
6047       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
6048       .resetvalue = 0 },
6049     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
6050      * We don't implement the configurable EL0 access.
6051      */
6052     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
6053       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
6054       .type = ARM_CP_ALIAS,
6055       .access = PL1_R, .accessfn = access_tda,
6056       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
6057     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
6058       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
6059       .access = PL1_W, .type = ARM_CP_NO_RAW,
6060       .accessfn = access_tdosa,
6061       .writefn = oslar_write },
6062     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
6063       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
6064       .access = PL1_R, .resetvalue = 10,
6065       .accessfn = access_tdosa,
6066       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
6067     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
6068     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
6069       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
6070       .access = PL1_RW, .accessfn = access_tdosa,
6071       .type = ARM_CP_NOP },
6072     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
6073      * implement vector catch debug events yet.
6074      */
6075     { .name = "DBGVCR",
6076       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
6077       .access = PL1_RW, .accessfn = access_tda,
6078       .type = ARM_CP_NOP },
6079     /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
6080      * to save and restore a 32-bit guest's DBGVCR)
6081      */
6082     { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
6083       .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
6084       .access = PL2_RW, .accessfn = access_tda,
6085       .type = ARM_CP_NOP },
6086     /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
6087      * Channel but Linux may try to access this register. The 32-bit
6088      * alias is DBGDCCINT.
6089      */
6090     { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
6091       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
6092       .access = PL1_RW, .accessfn = access_tda,
6093       .type = ARM_CP_NOP },
6094     REGINFO_SENTINEL
6095 };
6096 
6097 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
6098     /* 64 bit access versions of the (dummy) debug registers */
6099     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
6100       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6101     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
6102       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
6103     REGINFO_SENTINEL
6104 };
6105 
6106 /* Return the exception level to which exceptions should be taken
6107  * via SVEAccessTrap.  If an exception should be routed through
6108  * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
6109  * take care of raising that exception.
6110  * C.f. the ARM pseudocode function CheckSVEEnabled.
6111  */
6112 int sve_exception_el(CPUARMState *env, int el)
6113 {
6114 #ifndef CONFIG_USER_ONLY
6115     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
6116 
6117     if (el <= 1 && (hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
6118         bool disabled = false;
6119 
6120         /* The CPACR.ZEN controls traps to EL1:
6121          * 0, 2 : trap EL0 and EL1 accesses
6122          * 1    : trap only EL0 accesses
6123          * 3    : trap no accesses
6124          */
6125         if (!extract32(env->cp15.cpacr_el1, 16, 1)) {
6126             disabled = true;
6127         } else if (!extract32(env->cp15.cpacr_el1, 17, 1)) {
6128             disabled = el == 0;
6129         }
6130         if (disabled) {
6131             /* route_to_el2 */
6132             return hcr_el2 & HCR_TGE ? 2 : 1;
6133         }
6134 
6135         /* Check CPACR.FPEN.  */
6136         if (!extract32(env->cp15.cpacr_el1, 20, 1)) {
6137             disabled = true;
6138         } else if (!extract32(env->cp15.cpacr_el1, 21, 1)) {
6139             disabled = el == 0;
6140         }
6141         if (disabled) {
6142             return 0;
6143         }
6144     }
6145 
6146     /* CPTR_EL2.  Since TZ and TFP are positive,
6147      * they will be zero when EL2 is not present.
6148      */
6149     if (el <= 2 && !arm_is_secure_below_el3(env)) {
6150         if (env->cp15.cptr_el[2] & CPTR_TZ) {
6151             return 2;
6152         }
6153         if (env->cp15.cptr_el[2] & CPTR_TFP) {
6154             return 0;
6155         }
6156     }
6157 
6158     /* CPTR_EL3.  Since EZ is negative we must check for EL3.  */
6159     if (arm_feature(env, ARM_FEATURE_EL3)
6160         && !(env->cp15.cptr_el[3] & CPTR_EZ)) {
6161         return 3;
6162     }
6163 #endif
6164     return 0;
6165 }
6166 
6167 static uint32_t sve_zcr_get_valid_len(ARMCPU *cpu, uint32_t start_len)
6168 {
6169     uint32_t end_len;
6170 
6171     end_len = start_len &= 0xf;
6172     if (!test_bit(start_len, cpu->sve_vq_map)) {
6173         end_len = find_last_bit(cpu->sve_vq_map, start_len);
6174         assert(end_len < start_len);
6175     }
6176     return end_len;
6177 }
6178 
6179 /*
6180  * Given that SVE is enabled, return the vector length for EL.
6181  */
6182 uint32_t sve_zcr_len_for_el(CPUARMState *env, int el)
6183 {
6184     ARMCPU *cpu = env_archcpu(env);
6185     uint32_t zcr_len = cpu->sve_max_vq - 1;
6186 
6187     if (el <= 1) {
6188         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[1]);
6189     }
6190     if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6191         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
6192     }
6193     if (arm_feature(env, ARM_FEATURE_EL3)) {
6194         zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
6195     }
6196 
6197     return sve_zcr_get_valid_len(cpu, zcr_len);
6198 }
6199 
6200 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6201                       uint64_t value)
6202 {
6203     int cur_el = arm_current_el(env);
6204     int old_len = sve_zcr_len_for_el(env, cur_el);
6205     int new_len;
6206 
6207     /* Bits other than [3:0] are RAZ/WI.  */
6208     QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
6209     raw_write(env, ri, value & 0xf);
6210 
6211     /*
6212      * Because we arrived here, we know both FP and SVE are enabled;
6213      * otherwise we would have trapped access to the ZCR_ELn register.
6214      */
6215     new_len = sve_zcr_len_for_el(env, cur_el);
6216     if (new_len < old_len) {
6217         aarch64_sve_narrow_vq(env, new_len + 1);
6218     }
6219 }
6220 
6221 static const ARMCPRegInfo zcr_el1_reginfo = {
6222     .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
6223     .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
6224     .access = PL1_RW, .type = ARM_CP_SVE,
6225     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
6226     .writefn = zcr_write, .raw_writefn = raw_write
6227 };
6228 
6229 static const ARMCPRegInfo zcr_el2_reginfo = {
6230     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6231     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6232     .access = PL2_RW, .type = ARM_CP_SVE,
6233     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
6234     .writefn = zcr_write, .raw_writefn = raw_write
6235 };
6236 
6237 static const ARMCPRegInfo zcr_no_el2_reginfo = {
6238     .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
6239     .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
6240     .access = PL2_RW, .type = ARM_CP_SVE,
6241     .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
6242 };
6243 
6244 static const ARMCPRegInfo zcr_el3_reginfo = {
6245     .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
6246     .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
6247     .access = PL3_RW, .type = ARM_CP_SVE,
6248     .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
6249     .writefn = zcr_write, .raw_writefn = raw_write
6250 };
6251 
6252 void hw_watchpoint_update(ARMCPU *cpu, int n)
6253 {
6254     CPUARMState *env = &cpu->env;
6255     vaddr len = 0;
6256     vaddr wvr = env->cp15.dbgwvr[n];
6257     uint64_t wcr = env->cp15.dbgwcr[n];
6258     int mask;
6259     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
6260 
6261     if (env->cpu_watchpoint[n]) {
6262         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
6263         env->cpu_watchpoint[n] = NULL;
6264     }
6265 
6266     if (!extract64(wcr, 0, 1)) {
6267         /* E bit clear : watchpoint disabled */
6268         return;
6269     }
6270 
6271     switch (extract64(wcr, 3, 2)) {
6272     case 0:
6273         /* LSC 00 is reserved and must behave as if the wp is disabled */
6274         return;
6275     case 1:
6276         flags |= BP_MEM_READ;
6277         break;
6278     case 2:
6279         flags |= BP_MEM_WRITE;
6280         break;
6281     case 3:
6282         flags |= BP_MEM_ACCESS;
6283         break;
6284     }
6285 
6286     /* Attempts to use both MASK and BAS fields simultaneously are
6287      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
6288      * thus generating a watchpoint for every byte in the masked region.
6289      */
6290     mask = extract64(wcr, 24, 4);
6291     if (mask == 1 || mask == 2) {
6292         /* Reserved values of MASK; we must act as if the mask value was
6293          * some non-reserved value, or as if the watchpoint were disabled.
6294          * We choose the latter.
6295          */
6296         return;
6297     } else if (mask) {
6298         /* Watchpoint covers an aligned area up to 2GB in size */
6299         len = 1ULL << mask;
6300         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
6301          * whether the watchpoint fires when the unmasked bits match; we opt
6302          * to generate the exceptions.
6303          */
6304         wvr &= ~(len - 1);
6305     } else {
6306         /* Watchpoint covers bytes defined by the byte address select bits */
6307         int bas = extract64(wcr, 5, 8);
6308         int basstart;
6309 
6310         if (extract64(wvr, 2, 1)) {
6311             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
6312              * ignored, and BAS[3:0] define which bytes to watch.
6313              */
6314             bas &= 0xf;
6315         }
6316 
6317         if (bas == 0) {
6318             /* This must act as if the watchpoint is disabled */
6319             return;
6320         }
6321 
6322         /* The BAS bits are supposed to be programmed to indicate a contiguous
6323          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
6324          * we fire for each byte in the word/doubleword addressed by the WVR.
6325          * We choose to ignore any non-zero bits after the first range of 1s.
6326          */
6327         basstart = ctz32(bas);
6328         len = cto32(bas >> basstart);
6329         wvr += basstart;
6330     }
6331 
6332     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
6333                           &env->cpu_watchpoint[n]);
6334 }
6335 
6336 void hw_watchpoint_update_all(ARMCPU *cpu)
6337 {
6338     int i;
6339     CPUARMState *env = &cpu->env;
6340 
6341     /* Completely clear out existing QEMU watchpoints and our array, to
6342      * avoid possible stale entries following migration load.
6343      */
6344     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
6345     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
6346 
6347     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
6348         hw_watchpoint_update(cpu, i);
6349     }
6350 }
6351 
6352 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6353                          uint64_t value)
6354 {
6355     ARMCPU *cpu = env_archcpu(env);
6356     int i = ri->crm;
6357 
6358     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
6359      * register reads and behaves as if values written are sign extended.
6360      * Bits [1:0] are RES0.
6361      */
6362     value = sextract64(value, 0, 49) & ~3ULL;
6363 
6364     raw_write(env, ri, value);
6365     hw_watchpoint_update(cpu, i);
6366 }
6367 
6368 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6369                          uint64_t value)
6370 {
6371     ARMCPU *cpu = env_archcpu(env);
6372     int i = ri->crm;
6373 
6374     raw_write(env, ri, value);
6375     hw_watchpoint_update(cpu, i);
6376 }
6377 
6378 void hw_breakpoint_update(ARMCPU *cpu, int n)
6379 {
6380     CPUARMState *env = &cpu->env;
6381     uint64_t bvr = env->cp15.dbgbvr[n];
6382     uint64_t bcr = env->cp15.dbgbcr[n];
6383     vaddr addr;
6384     int bt;
6385     int flags = BP_CPU;
6386 
6387     if (env->cpu_breakpoint[n]) {
6388         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
6389         env->cpu_breakpoint[n] = NULL;
6390     }
6391 
6392     if (!extract64(bcr, 0, 1)) {
6393         /* E bit clear : watchpoint disabled */
6394         return;
6395     }
6396 
6397     bt = extract64(bcr, 20, 4);
6398 
6399     switch (bt) {
6400     case 4: /* unlinked address mismatch (reserved if AArch64) */
6401     case 5: /* linked address mismatch (reserved if AArch64) */
6402         qemu_log_mask(LOG_UNIMP,
6403                       "arm: address mismatch breakpoint types not implemented\n");
6404         return;
6405     case 0: /* unlinked address match */
6406     case 1: /* linked address match */
6407     {
6408         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
6409          * we behave as if the register was sign extended. Bits [1:0] are
6410          * RES0. The BAS field is used to allow setting breakpoints on 16
6411          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
6412          * a bp will fire if the addresses covered by the bp and the addresses
6413          * covered by the insn overlap but the insn doesn't start at the
6414          * start of the bp address range. We choose to require the insn and
6415          * the bp to have the same address. The constraints on writing to
6416          * BAS enforced in dbgbcr_write mean we have only four cases:
6417          *  0b0000  => no breakpoint
6418          *  0b0011  => breakpoint on addr
6419          *  0b1100  => breakpoint on addr + 2
6420          *  0b1111  => breakpoint on addr
6421          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
6422          */
6423         int bas = extract64(bcr, 5, 4);
6424         addr = sextract64(bvr, 0, 49) & ~3ULL;
6425         if (bas == 0) {
6426             return;
6427         }
6428         if (bas == 0xc) {
6429             addr += 2;
6430         }
6431         break;
6432     }
6433     case 2: /* unlinked context ID match */
6434     case 8: /* unlinked VMID match (reserved if no EL2) */
6435     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
6436         qemu_log_mask(LOG_UNIMP,
6437                       "arm: unlinked context breakpoint types not implemented\n");
6438         return;
6439     case 9: /* linked VMID match (reserved if no EL2) */
6440     case 11: /* linked context ID and VMID match (reserved if no EL2) */
6441     case 3: /* linked context ID match */
6442     default:
6443         /* We must generate no events for Linked context matches (unless
6444          * they are linked to by some other bp/wp, which is handled in
6445          * updates for the linking bp/wp). We choose to also generate no events
6446          * for reserved values.
6447          */
6448         return;
6449     }
6450 
6451     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
6452 }
6453 
6454 void hw_breakpoint_update_all(ARMCPU *cpu)
6455 {
6456     int i;
6457     CPUARMState *env = &cpu->env;
6458 
6459     /* Completely clear out existing QEMU breakpoints and our array, to
6460      * avoid possible stale entries following migration load.
6461      */
6462     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
6463     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
6464 
6465     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
6466         hw_breakpoint_update(cpu, i);
6467     }
6468 }
6469 
6470 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6471                          uint64_t value)
6472 {
6473     ARMCPU *cpu = env_archcpu(env);
6474     int i = ri->crm;
6475 
6476     raw_write(env, ri, value);
6477     hw_breakpoint_update(cpu, i);
6478 }
6479 
6480 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
6481                          uint64_t value)
6482 {
6483     ARMCPU *cpu = env_archcpu(env);
6484     int i = ri->crm;
6485 
6486     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
6487      * copy of BAS[0].
6488      */
6489     value = deposit64(value, 6, 1, extract64(value, 5, 1));
6490     value = deposit64(value, 8, 1, extract64(value, 7, 1));
6491 
6492     raw_write(env, ri, value);
6493     hw_breakpoint_update(cpu, i);
6494 }
6495 
6496 static void define_debug_regs(ARMCPU *cpu)
6497 {
6498     /* Define v7 and v8 architectural debug registers.
6499      * These are just dummy implementations for now.
6500      */
6501     int i;
6502     int wrps, brps, ctx_cmps;
6503     ARMCPRegInfo dbgdidr = {
6504         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
6505         .access = PL0_R, .accessfn = access_tda,
6506         .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
6507     };
6508 
6509     /* Note that all these register fields hold "number of Xs minus 1". */
6510     brps = arm_num_brps(cpu);
6511     wrps = arm_num_wrps(cpu);
6512     ctx_cmps = arm_num_ctx_cmps(cpu);
6513 
6514     assert(ctx_cmps <= brps);
6515 
6516     define_one_arm_cp_reg(cpu, &dbgdidr);
6517     define_arm_cp_regs(cpu, debug_cp_reginfo);
6518 
6519     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
6520         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
6521     }
6522 
6523     for (i = 0; i < brps; i++) {
6524         ARMCPRegInfo dbgregs[] = {
6525             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
6526               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
6527               .access = PL1_RW, .accessfn = access_tda,
6528               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
6529               .writefn = dbgbvr_write, .raw_writefn = raw_write
6530             },
6531             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
6532               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
6533               .access = PL1_RW, .accessfn = access_tda,
6534               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
6535               .writefn = dbgbcr_write, .raw_writefn = raw_write
6536             },
6537             REGINFO_SENTINEL
6538         };
6539         define_arm_cp_regs(cpu, dbgregs);
6540     }
6541 
6542     for (i = 0; i < wrps; i++) {
6543         ARMCPRegInfo dbgregs[] = {
6544             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
6545               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
6546               .access = PL1_RW, .accessfn = access_tda,
6547               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
6548               .writefn = dbgwvr_write, .raw_writefn = raw_write
6549             },
6550             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
6551               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
6552               .access = PL1_RW, .accessfn = access_tda,
6553               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
6554               .writefn = dbgwcr_write, .raw_writefn = raw_write
6555             },
6556             REGINFO_SENTINEL
6557         };
6558         define_arm_cp_regs(cpu, dbgregs);
6559     }
6560 }
6561 
6562 static void define_pmu_regs(ARMCPU *cpu)
6563 {
6564     /*
6565      * v7 performance monitor control register: same implementor
6566      * field as main ID register, and we implement four counters in
6567      * addition to the cycle count register.
6568      */
6569     unsigned int i, pmcrn = 4;
6570     ARMCPRegInfo pmcr = {
6571         .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
6572         .access = PL0_RW,
6573         .type = ARM_CP_IO | ARM_CP_ALIAS,
6574         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
6575         .accessfn = pmreg_access, .writefn = pmcr_write,
6576         .raw_writefn = raw_write,
6577     };
6578     ARMCPRegInfo pmcr64 = {
6579         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
6580         .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
6581         .access = PL0_RW, .accessfn = pmreg_access,
6582         .type = ARM_CP_IO,
6583         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
6584         .resetvalue = (cpu->midr & 0xff000000) | (pmcrn << PMCRN_SHIFT) |
6585                       PMCRLC,
6586         .writefn = pmcr_write, .raw_writefn = raw_write,
6587     };
6588     define_one_arm_cp_reg(cpu, &pmcr);
6589     define_one_arm_cp_reg(cpu, &pmcr64);
6590     for (i = 0; i < pmcrn; i++) {
6591         char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
6592         char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
6593         char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
6594         char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
6595         ARMCPRegInfo pmev_regs[] = {
6596             { .name = pmevcntr_name, .cp = 15, .crn = 14,
6597               .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6598               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6599               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6600               .accessfn = pmreg_access },
6601             { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
6602               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
6603               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6604               .type = ARM_CP_IO,
6605               .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
6606               .raw_readfn = pmevcntr_rawread,
6607               .raw_writefn = pmevcntr_rawwrite },
6608             { .name = pmevtyper_name, .cp = 15, .crn = 14,
6609               .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
6610               .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
6611               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6612               .accessfn = pmreg_access },
6613             { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
6614               .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
6615               .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
6616               .type = ARM_CP_IO,
6617               .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
6618               .raw_writefn = pmevtyper_rawwrite },
6619             REGINFO_SENTINEL
6620         };
6621         define_arm_cp_regs(cpu, pmev_regs);
6622         g_free(pmevcntr_name);
6623         g_free(pmevcntr_el0_name);
6624         g_free(pmevtyper_name);
6625         g_free(pmevtyper_el0_name);
6626     }
6627     if (cpu_isar_feature(aa32_pmu_8_1, cpu)) {
6628         ARMCPRegInfo v81_pmu_regs[] = {
6629             { .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
6630               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
6631               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6632               .resetvalue = extract64(cpu->pmceid0, 32, 32) },
6633             { .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
6634               .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
6635               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6636               .resetvalue = extract64(cpu->pmceid1, 32, 32) },
6637             REGINFO_SENTINEL
6638         };
6639         define_arm_cp_regs(cpu, v81_pmu_regs);
6640     }
6641     if (cpu_isar_feature(any_pmu_8_4, cpu)) {
6642         static const ARMCPRegInfo v84_pmmir = {
6643             .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
6644             .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
6645             .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
6646             .resetvalue = 0
6647         };
6648         define_one_arm_cp_reg(cpu, &v84_pmmir);
6649     }
6650 }
6651 
6652 /* We don't know until after realize whether there's a GICv3
6653  * attached, and that is what registers the gicv3 sysregs.
6654  * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
6655  * at runtime.
6656  */
6657 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
6658 {
6659     ARMCPU *cpu = env_archcpu(env);
6660     uint64_t pfr1 = cpu->isar.id_pfr1;
6661 
6662     if (env->gicv3state) {
6663         pfr1 |= 1 << 28;
6664     }
6665     return pfr1;
6666 }
6667 
6668 #ifndef CONFIG_USER_ONLY
6669 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
6670 {
6671     ARMCPU *cpu = env_archcpu(env);
6672     uint64_t pfr0 = cpu->isar.id_aa64pfr0;
6673 
6674     if (env->gicv3state) {
6675         pfr0 |= 1 << 24;
6676     }
6677     return pfr0;
6678 }
6679 #endif
6680 
6681 /* Shared logic between LORID and the rest of the LOR* registers.
6682  * Secure state exclusion has already been dealt with.
6683  */
6684 static CPAccessResult access_lor_ns(CPUARMState *env,
6685                                     const ARMCPRegInfo *ri, bool isread)
6686 {
6687     int el = arm_current_el(env);
6688 
6689     if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
6690         return CP_ACCESS_TRAP_EL2;
6691     }
6692     if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
6693         return CP_ACCESS_TRAP_EL3;
6694     }
6695     return CP_ACCESS_OK;
6696 }
6697 
6698 static CPAccessResult access_lor_other(CPUARMState *env,
6699                                        const ARMCPRegInfo *ri, bool isread)
6700 {
6701     if (arm_is_secure_below_el3(env)) {
6702         /* Access denied in secure mode.  */
6703         return CP_ACCESS_TRAP;
6704     }
6705     return access_lor_ns(env, ri, isread);
6706 }
6707 
6708 /*
6709  * A trivial implementation of ARMv8.1-LOR leaves all of these
6710  * registers fixed at 0, which indicates that there are zero
6711  * supported Limited Ordering regions.
6712  */
6713 static const ARMCPRegInfo lor_reginfo[] = {
6714     { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
6715       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
6716       .access = PL1_RW, .accessfn = access_lor_other,
6717       .type = ARM_CP_CONST, .resetvalue = 0 },
6718     { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
6719       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
6720       .access = PL1_RW, .accessfn = access_lor_other,
6721       .type = ARM_CP_CONST, .resetvalue = 0 },
6722     { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
6723       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
6724       .access = PL1_RW, .accessfn = access_lor_other,
6725       .type = ARM_CP_CONST, .resetvalue = 0 },
6726     { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
6727       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
6728       .access = PL1_RW, .accessfn = access_lor_other,
6729       .type = ARM_CP_CONST, .resetvalue = 0 },
6730     { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
6731       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
6732       .access = PL1_R, .accessfn = access_lor_ns,
6733       .type = ARM_CP_CONST, .resetvalue = 0 },
6734     REGINFO_SENTINEL
6735 };
6736 
6737 #ifdef TARGET_AARCH64
6738 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
6739                                    bool isread)
6740 {
6741     int el = arm_current_el(env);
6742 
6743     if (el < 2 &&
6744         arm_feature(env, ARM_FEATURE_EL2) &&
6745         !(arm_hcr_el2_eff(env) & HCR_APK)) {
6746         return CP_ACCESS_TRAP_EL2;
6747     }
6748     if (el < 3 &&
6749         arm_feature(env, ARM_FEATURE_EL3) &&
6750         !(env->cp15.scr_el3 & SCR_APK)) {
6751         return CP_ACCESS_TRAP_EL3;
6752     }
6753     return CP_ACCESS_OK;
6754 }
6755 
6756 static const ARMCPRegInfo pauth_reginfo[] = {
6757     { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6758       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
6759       .access = PL1_RW, .accessfn = access_pauth,
6760       .fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
6761     { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6762       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
6763       .access = PL1_RW, .accessfn = access_pauth,
6764       .fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
6765     { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6766       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
6767       .access = PL1_RW, .accessfn = access_pauth,
6768       .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
6769     { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6770       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
6771       .access = PL1_RW, .accessfn = access_pauth,
6772       .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
6773     { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6774       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
6775       .access = PL1_RW, .accessfn = access_pauth,
6776       .fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
6777     { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6778       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
6779       .access = PL1_RW, .accessfn = access_pauth,
6780       .fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
6781     { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6782       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
6783       .access = PL1_RW, .accessfn = access_pauth,
6784       .fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
6785     { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6786       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
6787       .access = PL1_RW, .accessfn = access_pauth,
6788       .fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
6789     { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
6790       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
6791       .access = PL1_RW, .accessfn = access_pauth,
6792       .fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
6793     { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
6794       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
6795       .access = PL1_RW, .accessfn = access_pauth,
6796       .fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
6797     REGINFO_SENTINEL
6798 };
6799 
6800 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
6801 {
6802     Error *err = NULL;
6803     uint64_t ret;
6804 
6805     /* Success sets NZCV = 0000.  */
6806     env->NF = env->CF = env->VF = 0, env->ZF = 1;
6807 
6808     if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
6809         /*
6810          * ??? Failed, for unknown reasons in the crypto subsystem.
6811          * The best we can do is log the reason and return the
6812          * timed-out indication to the guest.  There is no reason
6813          * we know to expect this failure to be transitory, so the
6814          * guest may well hang retrying the operation.
6815          */
6816         qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
6817                       ri->name, error_get_pretty(err));
6818         error_free(err);
6819 
6820         env->ZF = 0; /* NZCF = 0100 */
6821         return 0;
6822     }
6823     return ret;
6824 }
6825 
6826 /* We do not support re-seeding, so the two registers operate the same.  */
6827 static const ARMCPRegInfo rndr_reginfo[] = {
6828     { .name = "RNDR", .state = ARM_CP_STATE_AA64,
6829       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6830       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
6831       .access = PL0_R, .readfn = rndr_readfn },
6832     { .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
6833       .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
6834       .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
6835       .access = PL0_R, .readfn = rndr_readfn },
6836     REGINFO_SENTINEL
6837 };
6838 
6839 #ifndef CONFIG_USER_ONLY
6840 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
6841                           uint64_t value)
6842 {
6843     ARMCPU *cpu = env_archcpu(env);
6844     /* CTR_EL0 System register -> DminLine, bits [19:16] */
6845     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
6846     uint64_t vaddr_in = (uint64_t) value;
6847     uint64_t vaddr = vaddr_in & ~(dline_size - 1);
6848     void *haddr;
6849     int mem_idx = cpu_mmu_index(env, false);
6850 
6851     /* This won't be crossing page boundaries */
6852     haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
6853     if (haddr) {
6854 
6855         ram_addr_t offset;
6856         MemoryRegion *mr;
6857 
6858         /* RCU lock is already being held */
6859         mr = memory_region_from_host(haddr, &offset);
6860 
6861         if (mr) {
6862             memory_region_writeback(mr, offset, dline_size);
6863         }
6864     }
6865 }
6866 
6867 static const ARMCPRegInfo dcpop_reg[] = {
6868     { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
6869       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
6870       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6871       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6872     REGINFO_SENTINEL
6873 };
6874 
6875 static const ARMCPRegInfo dcpodp_reg[] = {
6876     { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
6877       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
6878       .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
6879       .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
6880     REGINFO_SENTINEL
6881 };
6882 #endif /*CONFIG_USER_ONLY*/
6883 
6884 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
6885                                        bool isread)
6886 {
6887     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
6888         return CP_ACCESS_TRAP_EL2;
6889     }
6890 
6891     return CP_ACCESS_OK;
6892 }
6893 
6894 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
6895                                  bool isread)
6896 {
6897     int el = arm_current_el(env);
6898 
6899     if (el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
6900         uint64_t hcr = arm_hcr_el2_eff(env);
6901         if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
6902             return CP_ACCESS_TRAP_EL2;
6903         }
6904     }
6905     if (el < 3 &&
6906         arm_feature(env, ARM_FEATURE_EL3) &&
6907         !(env->cp15.scr_el3 & SCR_ATA)) {
6908         return CP_ACCESS_TRAP_EL3;
6909     }
6910     return CP_ACCESS_OK;
6911 }
6912 
6913 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
6914 {
6915     return env->pstate & PSTATE_TCO;
6916 }
6917 
6918 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
6919 {
6920     env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
6921 }
6922 
6923 static const ARMCPRegInfo mte_reginfo[] = {
6924     { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
6925       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
6926       .access = PL1_RW, .accessfn = access_mte,
6927       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
6928     { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
6929       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
6930       .access = PL1_RW, .accessfn = access_mte,
6931       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
6932     { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
6933       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
6934       .access = PL2_RW, .accessfn = access_mte,
6935       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
6936     { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
6937       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
6938       .access = PL3_RW,
6939       .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
6940     { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
6941       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
6942       .access = PL1_RW, .accessfn = access_mte,
6943       .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
6944     { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
6945       .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
6946       .access = PL1_RW, .accessfn = access_mte,
6947       .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
6948     { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
6949       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
6950       .access = PL1_R, .accessfn = access_aa64_tid5,
6951       .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS },
6952     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6953       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6954       .type = ARM_CP_NO_RAW,
6955       .access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
6956     { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
6957       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
6958       .type = ARM_CP_NOP, .access = PL1_W,
6959       .accessfn = aa64_cacheop_poc_access },
6960     { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
6961       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
6962       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6963     { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
6964       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
6965       .type = ARM_CP_NOP, .access = PL1_W,
6966       .accessfn = aa64_cacheop_poc_access },
6967     { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
6968       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
6969       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6970     { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
6971       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
6972       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6973     { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
6974       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
6975       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6976     { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
6977       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
6978       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6979     { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
6980       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
6981       .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
6982     REGINFO_SENTINEL
6983 };
6984 
6985 static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
6986     { .name = "TCO", .state = ARM_CP_STATE_AA64,
6987       .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
6988       .type = ARM_CP_CONST, .access = PL0_RW, },
6989     REGINFO_SENTINEL
6990 };
6991 
6992 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
6993     { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
6994       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
6995       .type = ARM_CP_NOP, .access = PL0_W,
6996       .accessfn = aa64_cacheop_poc_access },
6997     { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
6998       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
6999       .type = ARM_CP_NOP, .access = PL0_W,
7000       .accessfn = aa64_cacheop_poc_access },
7001     { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
7002       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
7003       .type = ARM_CP_NOP, .access = PL0_W,
7004       .accessfn = aa64_cacheop_poc_access },
7005     { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
7006       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
7007       .type = ARM_CP_NOP, .access = PL0_W,
7008       .accessfn = aa64_cacheop_poc_access },
7009     { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
7010       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
7011       .type = ARM_CP_NOP, .access = PL0_W,
7012       .accessfn = aa64_cacheop_poc_access },
7013     { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
7014       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
7015       .type = ARM_CP_NOP, .access = PL0_W,
7016       .accessfn = aa64_cacheop_poc_access },
7017     { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
7018       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
7019       .type = ARM_CP_NOP, .access = PL0_W,
7020       .accessfn = aa64_cacheop_poc_access },
7021     { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
7022       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
7023       .type = ARM_CP_NOP, .access = PL0_W,
7024       .accessfn = aa64_cacheop_poc_access },
7025     { .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
7026       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
7027       .access = PL0_W, .type = ARM_CP_DC_GVA,
7028 #ifndef CONFIG_USER_ONLY
7029       /* Avoid overhead of an access check that always passes in user-mode */
7030       .accessfn = aa64_zva_access,
7031 #endif
7032     },
7033     { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
7034       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
7035       .access = PL0_W, .type = ARM_CP_DC_GZVA,
7036 #ifndef CONFIG_USER_ONLY
7037       /* Avoid overhead of an access check that always passes in user-mode */
7038       .accessfn = aa64_zva_access,
7039 #endif
7040     },
7041     REGINFO_SENTINEL
7042 };
7043 
7044 #endif
7045 
7046 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
7047                                      bool isread)
7048 {
7049     int el = arm_current_el(env);
7050 
7051     if (el == 0) {
7052         uint64_t sctlr = arm_sctlr(env, el);
7053         if (!(sctlr & SCTLR_EnRCTX)) {
7054             return CP_ACCESS_TRAP;
7055         }
7056     } else if (el == 1) {
7057         uint64_t hcr = arm_hcr_el2_eff(env);
7058         if (hcr & HCR_NV) {
7059             return CP_ACCESS_TRAP_EL2;
7060         }
7061     }
7062     return CP_ACCESS_OK;
7063 }
7064 
7065 static const ARMCPRegInfo predinv_reginfo[] = {
7066     { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
7067       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
7068       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7069     { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
7070       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
7071       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7072     { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
7073       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
7074       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7075     /*
7076      * Note the AArch32 opcodes have a different OPC1.
7077      */
7078     { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
7079       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
7080       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7081     { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
7082       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
7083       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7084     { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
7085       .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
7086       .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
7087     REGINFO_SENTINEL
7088 };
7089 
7090 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
7091 {
7092     /* Read the high 32 bits of the current CCSIDR */
7093     return extract64(ccsidr_read(env, ri), 32, 32);
7094 }
7095 
7096 static const ARMCPRegInfo ccsidr2_reginfo[] = {
7097     { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
7098       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
7099       .access = PL1_R,
7100       .accessfn = access_aa64_tid2,
7101       .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
7102     REGINFO_SENTINEL
7103 };
7104 
7105 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7106                                        bool isread)
7107 {
7108     if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
7109         return CP_ACCESS_TRAP_EL2;
7110     }
7111 
7112     return CP_ACCESS_OK;
7113 }
7114 
7115 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
7116                                        bool isread)
7117 {
7118     if (arm_feature(env, ARM_FEATURE_V8)) {
7119         return access_aa64_tid3(env, ri, isread);
7120     }
7121 
7122     return CP_ACCESS_OK;
7123 }
7124 
7125 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
7126                                      bool isread)
7127 {
7128     if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
7129         return CP_ACCESS_TRAP_EL2;
7130     }
7131 
7132     return CP_ACCESS_OK;
7133 }
7134 
7135 static const ARMCPRegInfo jazelle_regs[] = {
7136     { .name = "JIDR",
7137       .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
7138       .access = PL1_R, .accessfn = access_jazelle,
7139       .type = ARM_CP_CONST, .resetvalue = 0 },
7140     { .name = "JOSCR",
7141       .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
7142       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7143     { .name = "JMCR",
7144       .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
7145       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
7146     REGINFO_SENTINEL
7147 };
7148 
7149 static const ARMCPRegInfo vhe_reginfo[] = {
7150     { .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
7151       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
7152       .access = PL2_RW,
7153       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) },
7154     { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
7155       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
7156       .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
7157       .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
7158 #ifndef CONFIG_USER_ONLY
7159     { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
7160       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
7161       .fieldoffset =
7162         offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
7163       .type = ARM_CP_IO, .access = PL2_RW,
7164       .writefn = gt_hv_cval_write, .raw_writefn = raw_write },
7165     { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
7166       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
7167       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
7168       .resetfn = gt_hv_timer_reset,
7169       .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
7170     { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
7171       .type = ARM_CP_IO,
7172       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
7173       .access = PL2_RW,
7174       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
7175       .writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
7176     { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
7177       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
7178       .type = ARM_CP_IO | ARM_CP_ALIAS,
7179       .access = PL2_RW, .accessfn = e2h_access,
7180       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
7181       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
7182     { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
7183       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
7184       .type = ARM_CP_IO | ARM_CP_ALIAS,
7185       .access = PL2_RW, .accessfn = e2h_access,
7186       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
7187       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
7188     { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7189       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
7190       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7191       .access = PL2_RW, .accessfn = e2h_access,
7192       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
7193     { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
7194       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
7195       .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
7196       .access = PL2_RW, .accessfn = e2h_access,
7197       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
7198     { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7199       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
7200       .type = ARM_CP_IO | ARM_CP_ALIAS,
7201       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
7202       .access = PL2_RW, .accessfn = e2h_access,
7203       .writefn = gt_phys_cval_write, .raw_writefn = raw_write },
7204     { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
7205       .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
7206       .type = ARM_CP_IO | ARM_CP_ALIAS,
7207       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
7208       .access = PL2_RW, .accessfn = e2h_access,
7209       .writefn = gt_virt_cval_write, .raw_writefn = raw_write },
7210 #endif
7211     REGINFO_SENTINEL
7212 };
7213 
7214 #ifndef CONFIG_USER_ONLY
7215 static const ARMCPRegInfo ats1e1_reginfo[] = {
7216     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
7217       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7218       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7219       .writefn = ats_write64 },
7220     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
7221       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7222       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7223       .writefn = ats_write64 },
7224     REGINFO_SENTINEL
7225 };
7226 
7227 static const ARMCPRegInfo ats1cp_reginfo[] = {
7228     { .name = "ATS1CPRP",
7229       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
7230       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7231       .writefn = ats_write },
7232     { .name = "ATS1CPWP",
7233       .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
7234       .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
7235       .writefn = ats_write },
7236     REGINFO_SENTINEL
7237 };
7238 #endif
7239 
7240 /*
7241  * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
7242  * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
7243  * is non-zero, which is never for ARMv7, optionally in ARMv8
7244  * and mandatorily for ARMv8.2 and up.
7245  * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
7246  * implementation is RAZ/WI we can ignore this detail, as we
7247  * do for ACTLR.
7248  */
7249 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
7250     { .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
7251       .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
7252       .access = PL1_RW, .accessfn = access_tacr,
7253       .type = ARM_CP_CONST, .resetvalue = 0 },
7254     { .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
7255       .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
7256       .access = PL2_RW, .type = ARM_CP_CONST,
7257       .resetvalue = 0 },
7258     REGINFO_SENTINEL
7259 };
7260 
7261 void register_cp_regs_for_features(ARMCPU *cpu)
7262 {
7263     /* Register all the coprocessor registers based on feature bits */
7264     CPUARMState *env = &cpu->env;
7265     if (arm_feature(env, ARM_FEATURE_M)) {
7266         /* M profile has no coprocessor registers */
7267         return;
7268     }
7269 
7270     define_arm_cp_regs(cpu, cp_reginfo);
7271     if (!arm_feature(env, ARM_FEATURE_V8)) {
7272         /* Must go early as it is full of wildcards that may be
7273          * overridden by later definitions.
7274          */
7275         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
7276     }
7277 
7278     if (arm_feature(env, ARM_FEATURE_V6)) {
7279         /* The ID registers all have impdef reset values */
7280         ARMCPRegInfo v6_idregs[] = {
7281             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
7282               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
7283               .access = PL1_R, .type = ARM_CP_CONST,
7284               .accessfn = access_aa32_tid3,
7285               .resetvalue = cpu->isar.id_pfr0 },
7286             /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
7287              * the value of the GIC field until after we define these regs.
7288              */
7289             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
7290               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
7291               .access = PL1_R, .type = ARM_CP_NO_RAW,
7292               .accessfn = access_aa32_tid3,
7293               .readfn = id_pfr1_read,
7294               .writefn = arm_cp_write_ignore },
7295             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
7296               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
7297               .access = PL1_R, .type = ARM_CP_CONST,
7298               .accessfn = access_aa32_tid3,
7299               .resetvalue = cpu->isar.id_dfr0 },
7300             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
7301               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
7302               .access = PL1_R, .type = ARM_CP_CONST,
7303               .accessfn = access_aa32_tid3,
7304               .resetvalue = cpu->id_afr0 },
7305             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
7306               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
7307               .access = PL1_R, .type = ARM_CP_CONST,
7308               .accessfn = access_aa32_tid3,
7309               .resetvalue = cpu->isar.id_mmfr0 },
7310             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
7311               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
7312               .access = PL1_R, .type = ARM_CP_CONST,
7313               .accessfn = access_aa32_tid3,
7314               .resetvalue = cpu->isar.id_mmfr1 },
7315             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
7316               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
7317               .access = PL1_R, .type = ARM_CP_CONST,
7318               .accessfn = access_aa32_tid3,
7319               .resetvalue = cpu->isar.id_mmfr2 },
7320             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
7321               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
7322               .access = PL1_R, .type = ARM_CP_CONST,
7323               .accessfn = access_aa32_tid3,
7324               .resetvalue = cpu->isar.id_mmfr3 },
7325             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
7326               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
7327               .access = PL1_R, .type = ARM_CP_CONST,
7328               .accessfn = access_aa32_tid3,
7329               .resetvalue = cpu->isar.id_isar0 },
7330             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
7331               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
7332               .access = PL1_R, .type = ARM_CP_CONST,
7333               .accessfn = access_aa32_tid3,
7334               .resetvalue = cpu->isar.id_isar1 },
7335             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
7336               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
7337               .access = PL1_R, .type = ARM_CP_CONST,
7338               .accessfn = access_aa32_tid3,
7339               .resetvalue = cpu->isar.id_isar2 },
7340             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
7341               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
7342               .access = PL1_R, .type = ARM_CP_CONST,
7343               .accessfn = access_aa32_tid3,
7344               .resetvalue = cpu->isar.id_isar3 },
7345             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
7346               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
7347               .access = PL1_R, .type = ARM_CP_CONST,
7348               .accessfn = access_aa32_tid3,
7349               .resetvalue = cpu->isar.id_isar4 },
7350             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
7351               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
7352               .access = PL1_R, .type = ARM_CP_CONST,
7353               .accessfn = access_aa32_tid3,
7354               .resetvalue = cpu->isar.id_isar5 },
7355             { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
7356               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
7357               .access = PL1_R, .type = ARM_CP_CONST,
7358               .accessfn = access_aa32_tid3,
7359               .resetvalue = cpu->isar.id_mmfr4 },
7360             { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
7361               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
7362               .access = PL1_R, .type = ARM_CP_CONST,
7363               .accessfn = access_aa32_tid3,
7364               .resetvalue = cpu->isar.id_isar6 },
7365             REGINFO_SENTINEL
7366         };
7367         define_arm_cp_regs(cpu, v6_idregs);
7368         define_arm_cp_regs(cpu, v6_cp_reginfo);
7369     } else {
7370         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
7371     }
7372     if (arm_feature(env, ARM_FEATURE_V6K)) {
7373         define_arm_cp_regs(cpu, v6k_cp_reginfo);
7374     }
7375     if (arm_feature(env, ARM_FEATURE_V7MP) &&
7376         !arm_feature(env, ARM_FEATURE_PMSA)) {
7377         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
7378     }
7379     if (arm_feature(env, ARM_FEATURE_V7VE)) {
7380         define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
7381     }
7382     if (arm_feature(env, ARM_FEATURE_V7)) {
7383         ARMCPRegInfo clidr = {
7384             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
7385             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
7386             .access = PL1_R, .type = ARM_CP_CONST,
7387             .accessfn = access_aa64_tid2,
7388             .resetvalue = cpu->clidr
7389         };
7390         define_one_arm_cp_reg(cpu, &clidr);
7391         define_arm_cp_regs(cpu, v7_cp_reginfo);
7392         define_debug_regs(cpu);
7393         define_pmu_regs(cpu);
7394     } else {
7395         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
7396     }
7397     if (arm_feature(env, ARM_FEATURE_V8)) {
7398         /* AArch64 ID registers, which all have impdef reset values.
7399          * Note that within the ID register ranges the unused slots
7400          * must all RAZ, not UNDEF; future architecture versions may
7401          * define new registers here.
7402          */
7403         ARMCPRegInfo v8_idregs[] = {
7404             /*
7405              * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
7406              * emulation because we don't know the right value for the
7407              * GIC field until after we define these regs.
7408              */
7409             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
7410               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
7411               .access = PL1_R,
7412 #ifdef CONFIG_USER_ONLY
7413               .type = ARM_CP_CONST,
7414               .resetvalue = cpu->isar.id_aa64pfr0
7415 #else
7416               .type = ARM_CP_NO_RAW,
7417               .accessfn = access_aa64_tid3,
7418               .readfn = id_aa64pfr0_read,
7419               .writefn = arm_cp_write_ignore
7420 #endif
7421             },
7422             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
7423               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
7424               .access = PL1_R, .type = ARM_CP_CONST,
7425               .accessfn = access_aa64_tid3,
7426               .resetvalue = cpu->isar.id_aa64pfr1},
7427             { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7428               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
7429               .access = PL1_R, .type = ARM_CP_CONST,
7430               .accessfn = access_aa64_tid3,
7431               .resetvalue = 0 },
7432             { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7433               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
7434               .access = PL1_R, .type = ARM_CP_CONST,
7435               .accessfn = access_aa64_tid3,
7436               .resetvalue = 0 },
7437             { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
7438               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
7439               .access = PL1_R, .type = ARM_CP_CONST,
7440               .accessfn = access_aa64_tid3,
7441               /* At present, only SVEver == 0 is defined anyway.  */
7442               .resetvalue = 0 },
7443             { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7444               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
7445               .access = PL1_R, .type = ARM_CP_CONST,
7446               .accessfn = access_aa64_tid3,
7447               .resetvalue = 0 },
7448             { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7449               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
7450               .access = PL1_R, .type = ARM_CP_CONST,
7451               .accessfn = access_aa64_tid3,
7452               .resetvalue = 0 },
7453             { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7454               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
7455               .access = PL1_R, .type = ARM_CP_CONST,
7456               .accessfn = access_aa64_tid3,
7457               .resetvalue = 0 },
7458             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
7459               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
7460               .access = PL1_R, .type = ARM_CP_CONST,
7461               .accessfn = access_aa64_tid3,
7462               .resetvalue = cpu->isar.id_aa64dfr0 },
7463             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
7464               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
7465               .access = PL1_R, .type = ARM_CP_CONST,
7466               .accessfn = access_aa64_tid3,
7467               .resetvalue = cpu->isar.id_aa64dfr1 },
7468             { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7469               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
7470               .access = PL1_R, .type = ARM_CP_CONST,
7471               .accessfn = access_aa64_tid3,
7472               .resetvalue = 0 },
7473             { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7474               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
7475               .access = PL1_R, .type = ARM_CP_CONST,
7476               .accessfn = access_aa64_tid3,
7477               .resetvalue = 0 },
7478             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
7479               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
7480               .access = PL1_R, .type = ARM_CP_CONST,
7481               .accessfn = access_aa64_tid3,
7482               .resetvalue = cpu->id_aa64afr0 },
7483             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
7484               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
7485               .access = PL1_R, .type = ARM_CP_CONST,
7486               .accessfn = access_aa64_tid3,
7487               .resetvalue = cpu->id_aa64afr1 },
7488             { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7489               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
7490               .access = PL1_R, .type = ARM_CP_CONST,
7491               .accessfn = access_aa64_tid3,
7492               .resetvalue = 0 },
7493             { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7494               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
7495               .access = PL1_R, .type = ARM_CP_CONST,
7496               .accessfn = access_aa64_tid3,
7497               .resetvalue = 0 },
7498             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
7499               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
7500               .access = PL1_R, .type = ARM_CP_CONST,
7501               .accessfn = access_aa64_tid3,
7502               .resetvalue = cpu->isar.id_aa64isar0 },
7503             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
7504               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
7505               .access = PL1_R, .type = ARM_CP_CONST,
7506               .accessfn = access_aa64_tid3,
7507               .resetvalue = cpu->isar.id_aa64isar1 },
7508             { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7509               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
7510               .access = PL1_R, .type = ARM_CP_CONST,
7511               .accessfn = access_aa64_tid3,
7512               .resetvalue = 0 },
7513             { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7514               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
7515               .access = PL1_R, .type = ARM_CP_CONST,
7516               .accessfn = access_aa64_tid3,
7517               .resetvalue = 0 },
7518             { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7519               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
7520               .access = PL1_R, .type = ARM_CP_CONST,
7521               .accessfn = access_aa64_tid3,
7522               .resetvalue = 0 },
7523             { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7524               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
7525               .access = PL1_R, .type = ARM_CP_CONST,
7526               .accessfn = access_aa64_tid3,
7527               .resetvalue = 0 },
7528             { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7529               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
7530               .access = PL1_R, .type = ARM_CP_CONST,
7531               .accessfn = access_aa64_tid3,
7532               .resetvalue = 0 },
7533             { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7534               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
7535               .access = PL1_R, .type = ARM_CP_CONST,
7536               .accessfn = access_aa64_tid3,
7537               .resetvalue = 0 },
7538             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
7539               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
7540               .access = PL1_R, .type = ARM_CP_CONST,
7541               .accessfn = access_aa64_tid3,
7542               .resetvalue = cpu->isar.id_aa64mmfr0 },
7543             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
7544               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
7545               .access = PL1_R, .type = ARM_CP_CONST,
7546               .accessfn = access_aa64_tid3,
7547               .resetvalue = cpu->isar.id_aa64mmfr1 },
7548             { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
7549               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
7550               .access = PL1_R, .type = ARM_CP_CONST,
7551               .accessfn = access_aa64_tid3,
7552               .resetvalue = cpu->isar.id_aa64mmfr2 },
7553             { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7554               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
7555               .access = PL1_R, .type = ARM_CP_CONST,
7556               .accessfn = access_aa64_tid3,
7557               .resetvalue = 0 },
7558             { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7559               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
7560               .access = PL1_R, .type = ARM_CP_CONST,
7561               .accessfn = access_aa64_tid3,
7562               .resetvalue = 0 },
7563             { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7564               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
7565               .access = PL1_R, .type = ARM_CP_CONST,
7566               .accessfn = access_aa64_tid3,
7567               .resetvalue = 0 },
7568             { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7569               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
7570               .access = PL1_R, .type = ARM_CP_CONST,
7571               .accessfn = access_aa64_tid3,
7572               .resetvalue = 0 },
7573             { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7574               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
7575               .access = PL1_R, .type = ARM_CP_CONST,
7576               .accessfn = access_aa64_tid3,
7577               .resetvalue = 0 },
7578             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
7579               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
7580               .access = PL1_R, .type = ARM_CP_CONST,
7581               .accessfn = access_aa64_tid3,
7582               .resetvalue = cpu->isar.mvfr0 },
7583             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
7584               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
7585               .access = PL1_R, .type = ARM_CP_CONST,
7586               .accessfn = access_aa64_tid3,
7587               .resetvalue = cpu->isar.mvfr1 },
7588             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
7589               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
7590               .access = PL1_R, .type = ARM_CP_CONST,
7591               .accessfn = access_aa64_tid3,
7592               .resetvalue = cpu->isar.mvfr2 },
7593             { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7594               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
7595               .access = PL1_R, .type = ARM_CP_CONST,
7596               .accessfn = access_aa64_tid3,
7597               .resetvalue = 0 },
7598             { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7599               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
7600               .access = PL1_R, .type = ARM_CP_CONST,
7601               .accessfn = access_aa64_tid3,
7602               .resetvalue = 0 },
7603             { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7604               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
7605               .access = PL1_R, .type = ARM_CP_CONST,
7606               .accessfn = access_aa64_tid3,
7607               .resetvalue = 0 },
7608             { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7609               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
7610               .access = PL1_R, .type = ARM_CP_CONST,
7611               .accessfn = access_aa64_tid3,
7612               .resetvalue = 0 },
7613             { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
7614               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
7615               .access = PL1_R, .type = ARM_CP_CONST,
7616               .accessfn = access_aa64_tid3,
7617               .resetvalue = 0 },
7618             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
7619               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
7620               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7621               .resetvalue = extract64(cpu->pmceid0, 0, 32) },
7622             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
7623               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
7624               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7625               .resetvalue = cpu->pmceid0 },
7626             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
7627               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
7628               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7629               .resetvalue = extract64(cpu->pmceid1, 0, 32) },
7630             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
7631               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
7632               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
7633               .resetvalue = cpu->pmceid1 },
7634             REGINFO_SENTINEL
7635         };
7636 #ifdef CONFIG_USER_ONLY
7637         ARMCPRegUserSpaceInfo v8_user_idregs[] = {
7638             { .name = "ID_AA64PFR0_EL1",
7639               .exported_bits = 0x000f000f00ff0000,
7640               .fixed_bits    = 0x0000000000000011 },
7641             { .name = "ID_AA64PFR1_EL1",
7642               .exported_bits = 0x00000000000000f0 },
7643             { .name = "ID_AA64PFR*_EL1_RESERVED",
7644               .is_glob = true                     },
7645             { .name = "ID_AA64ZFR0_EL1"           },
7646             { .name = "ID_AA64MMFR0_EL1",
7647               .fixed_bits    = 0x00000000ff000000 },
7648             { .name = "ID_AA64MMFR1_EL1"          },
7649             { .name = "ID_AA64MMFR*_EL1_RESERVED",
7650               .is_glob = true                     },
7651             { .name = "ID_AA64DFR0_EL1",
7652               .fixed_bits    = 0x0000000000000006 },
7653             { .name = "ID_AA64DFR1_EL1"           },
7654             { .name = "ID_AA64DFR*_EL1_RESERVED",
7655               .is_glob = true                     },
7656             { .name = "ID_AA64AFR*",
7657               .is_glob = true                     },
7658             { .name = "ID_AA64ISAR0_EL1",
7659               .exported_bits = 0x00fffffff0fffff0 },
7660             { .name = "ID_AA64ISAR1_EL1",
7661               .exported_bits = 0x000000f0ffffffff },
7662             { .name = "ID_AA64ISAR*_EL1_RESERVED",
7663               .is_glob = true                     },
7664             REGUSERINFO_SENTINEL
7665         };
7666         modify_arm_cp_regs(v8_idregs, v8_user_idregs);
7667 #endif
7668         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
7669         if (!arm_feature(env, ARM_FEATURE_EL3) &&
7670             !arm_feature(env, ARM_FEATURE_EL2)) {
7671             ARMCPRegInfo rvbar = {
7672                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
7673                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
7674                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
7675             };
7676             define_one_arm_cp_reg(cpu, &rvbar);
7677         }
7678         define_arm_cp_regs(cpu, v8_idregs);
7679         define_arm_cp_regs(cpu, v8_cp_reginfo);
7680     }
7681     if (arm_feature(env, ARM_FEATURE_EL2)) {
7682         uint64_t vmpidr_def = mpidr_read_val(env);
7683         ARMCPRegInfo vpidr_regs[] = {
7684             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
7685               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7686               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7687               .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
7688               .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
7689             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
7690               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7691               .access = PL2_RW, .resetvalue = cpu->midr,
7692               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7693             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
7694               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7695               .access = PL2_RW, .accessfn = access_el3_aa32ns,
7696               .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
7697               .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
7698             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
7699               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7700               .access = PL2_RW,
7701               .resetvalue = vmpidr_def,
7702               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
7703             REGINFO_SENTINEL
7704         };
7705         define_arm_cp_regs(cpu, vpidr_regs);
7706         define_arm_cp_regs(cpu, el2_cp_reginfo);
7707         if (arm_feature(env, ARM_FEATURE_V8)) {
7708             define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
7709         }
7710         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
7711         if (!arm_feature(env, ARM_FEATURE_EL3)) {
7712             ARMCPRegInfo rvbar = {
7713                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
7714                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
7715                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
7716             };
7717             define_one_arm_cp_reg(cpu, &rvbar);
7718         }
7719     } else {
7720         /* If EL2 is missing but higher ELs are enabled, we need to
7721          * register the no_el2 reginfos.
7722          */
7723         if (arm_feature(env, ARM_FEATURE_EL3)) {
7724             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
7725              * of MIDR_EL1 and MPIDR_EL1.
7726              */
7727             ARMCPRegInfo vpidr_regs[] = {
7728                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7729                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
7730                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7731                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
7732                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
7733                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
7734                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
7735                   .access = PL2_RW, .accessfn = access_el3_aa32ns,
7736                   .type = ARM_CP_NO_RAW,
7737                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
7738                 REGINFO_SENTINEL
7739             };
7740             define_arm_cp_regs(cpu, vpidr_regs);
7741             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
7742             if (arm_feature(env, ARM_FEATURE_V8)) {
7743                 define_arm_cp_regs(cpu, el3_no_el2_v8_cp_reginfo);
7744             }
7745         }
7746     }
7747     if (arm_feature(env, ARM_FEATURE_EL3)) {
7748         define_arm_cp_regs(cpu, el3_cp_reginfo);
7749         ARMCPRegInfo el3_regs[] = {
7750             { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
7751               .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
7752               .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
7753             { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
7754               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
7755               .access = PL3_RW,
7756               .raw_writefn = raw_write, .writefn = sctlr_write,
7757               .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
7758               .resetvalue = cpu->reset_sctlr },
7759             REGINFO_SENTINEL
7760         };
7761 
7762         define_arm_cp_regs(cpu, el3_regs);
7763     }
7764     /* The behaviour of NSACR is sufficiently various that we don't
7765      * try to describe it in a single reginfo:
7766      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
7767      *     reads as constant 0xc00 from NS EL1 and NS EL2
7768      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
7769      *  if v7 without EL3, register doesn't exist
7770      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
7771      */
7772     if (arm_feature(env, ARM_FEATURE_EL3)) {
7773         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
7774             ARMCPRegInfo nsacr = {
7775                 .name = "NSACR", .type = ARM_CP_CONST,
7776                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7777                 .access = PL1_RW, .accessfn = nsacr_access,
7778                 .resetvalue = 0xc00
7779             };
7780             define_one_arm_cp_reg(cpu, &nsacr);
7781         } else {
7782             ARMCPRegInfo nsacr = {
7783                 .name = "NSACR",
7784                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7785                 .access = PL3_RW | PL1_R,
7786                 .resetvalue = 0,
7787                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
7788             };
7789             define_one_arm_cp_reg(cpu, &nsacr);
7790         }
7791     } else {
7792         if (arm_feature(env, ARM_FEATURE_V8)) {
7793             ARMCPRegInfo nsacr = {
7794                 .name = "NSACR", .type = ARM_CP_CONST,
7795                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
7796                 .access = PL1_R,
7797                 .resetvalue = 0xc00
7798             };
7799             define_one_arm_cp_reg(cpu, &nsacr);
7800         }
7801     }
7802 
7803     if (arm_feature(env, ARM_FEATURE_PMSA)) {
7804         if (arm_feature(env, ARM_FEATURE_V6)) {
7805             /* PMSAv6 not implemented */
7806             assert(arm_feature(env, ARM_FEATURE_V7));
7807             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7808             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
7809         } else {
7810             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
7811         }
7812     } else {
7813         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
7814         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
7815         /* TTCBR2 is introduced with ARMv8.2-AA32HPD.  */
7816         if (cpu_isar_feature(aa32_hpd, cpu)) {
7817             define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
7818         }
7819     }
7820     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
7821         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
7822     }
7823     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
7824         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
7825     }
7826     if (arm_feature(env, ARM_FEATURE_VAPA)) {
7827         define_arm_cp_regs(cpu, vapa_cp_reginfo);
7828     }
7829     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
7830         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
7831     }
7832     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
7833         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
7834     }
7835     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
7836         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
7837     }
7838     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
7839         define_arm_cp_regs(cpu, omap_cp_reginfo);
7840     }
7841     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
7842         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
7843     }
7844     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
7845         define_arm_cp_regs(cpu, xscale_cp_reginfo);
7846     }
7847     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
7848         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
7849     }
7850     if (arm_feature(env, ARM_FEATURE_LPAE)) {
7851         define_arm_cp_regs(cpu, lpae_cp_reginfo);
7852     }
7853     if (cpu_isar_feature(aa32_jazelle, cpu)) {
7854         define_arm_cp_regs(cpu, jazelle_regs);
7855     }
7856     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
7857      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
7858      * be read-only (ie write causes UNDEF exception).
7859      */
7860     {
7861         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
7862             /* Pre-v8 MIDR space.
7863              * Note that the MIDR isn't a simple constant register because
7864              * of the TI925 behaviour where writes to another register can
7865              * cause the MIDR value to change.
7866              *
7867              * Unimplemented registers in the c15 0 0 0 space default to
7868              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
7869              * and friends override accordingly.
7870              */
7871             { .name = "MIDR",
7872               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
7873               .access = PL1_R, .resetvalue = cpu->midr,
7874               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
7875               .readfn = midr_read,
7876               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7877               .type = ARM_CP_OVERRIDE },
7878             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
7879             { .name = "DUMMY",
7880               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
7881               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7882             { .name = "DUMMY",
7883               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
7884               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7885             { .name = "DUMMY",
7886               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
7887               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7888             { .name = "DUMMY",
7889               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
7890               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7891             { .name = "DUMMY",
7892               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
7893               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
7894             REGINFO_SENTINEL
7895         };
7896         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
7897             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
7898               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
7899               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
7900               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
7901               .readfn = midr_read },
7902             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
7903             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7904               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7905               .access = PL1_R, .resetvalue = cpu->midr },
7906             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
7907               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
7908               .access = PL1_R, .resetvalue = cpu->midr },
7909             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
7910               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
7911               .access = PL1_R,
7912               .accessfn = access_aa64_tid1,
7913               .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
7914             REGINFO_SENTINEL
7915         };
7916         ARMCPRegInfo id_cp_reginfo[] = {
7917             /* These are common to v8 and pre-v8 */
7918             { .name = "CTR",
7919               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
7920               .access = PL1_R, .accessfn = ctr_el0_access,
7921               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7922             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
7923               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
7924               .access = PL0_R, .accessfn = ctr_el0_access,
7925               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
7926             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
7927             { .name = "TCMTR",
7928               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
7929               .access = PL1_R,
7930               .accessfn = access_aa32_tid1,
7931               .type = ARM_CP_CONST, .resetvalue = 0 },
7932             REGINFO_SENTINEL
7933         };
7934         /* TLBTR is specific to VMSA */
7935         ARMCPRegInfo id_tlbtr_reginfo = {
7936               .name = "TLBTR",
7937               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
7938               .access = PL1_R,
7939               .accessfn = access_aa32_tid1,
7940               .type = ARM_CP_CONST, .resetvalue = 0,
7941         };
7942         /* MPUIR is specific to PMSA V6+ */
7943         ARMCPRegInfo id_mpuir_reginfo = {
7944               .name = "MPUIR",
7945               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
7946               .access = PL1_R, .type = ARM_CP_CONST,
7947               .resetvalue = cpu->pmsav7_dregion << 8
7948         };
7949         ARMCPRegInfo crn0_wi_reginfo = {
7950             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
7951             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
7952             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
7953         };
7954 #ifdef CONFIG_USER_ONLY
7955         ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
7956             { .name = "MIDR_EL1",
7957               .exported_bits = 0x00000000ffffffff },
7958             { .name = "REVIDR_EL1"                },
7959             REGUSERINFO_SENTINEL
7960         };
7961         modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
7962 #endif
7963         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
7964             arm_feature(env, ARM_FEATURE_STRONGARM)) {
7965             ARMCPRegInfo *r;
7966             /* Register the blanket "writes ignored" value first to cover the
7967              * whole space. Then update the specific ID registers to allow write
7968              * access, so that they ignore writes rather than causing them to
7969              * UNDEF.
7970              */
7971             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
7972             for (r = id_pre_v8_midr_cp_reginfo;
7973                  r->type != ARM_CP_SENTINEL; r++) {
7974                 r->access = PL1_RW;
7975             }
7976             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
7977                 r->access = PL1_RW;
7978             }
7979             id_mpuir_reginfo.access = PL1_RW;
7980             id_tlbtr_reginfo.access = PL1_RW;
7981         }
7982         if (arm_feature(env, ARM_FEATURE_V8)) {
7983             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
7984         } else {
7985             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
7986         }
7987         define_arm_cp_regs(cpu, id_cp_reginfo);
7988         if (!arm_feature(env, ARM_FEATURE_PMSA)) {
7989             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
7990         } else if (arm_feature(env, ARM_FEATURE_V7)) {
7991             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
7992         }
7993     }
7994 
7995     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
7996         ARMCPRegInfo mpidr_cp_reginfo[] = {
7997             { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
7998               .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
7999               .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
8000             REGINFO_SENTINEL
8001         };
8002 #ifdef CONFIG_USER_ONLY
8003         ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
8004             { .name = "MPIDR_EL1",
8005               .fixed_bits = 0x0000000080000000 },
8006             REGUSERINFO_SENTINEL
8007         };
8008         modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
8009 #endif
8010         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
8011     }
8012 
8013     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
8014         ARMCPRegInfo auxcr_reginfo[] = {
8015             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
8016               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
8017               .access = PL1_RW, .accessfn = access_tacr,
8018               .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
8019             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
8020               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
8021               .access = PL2_RW, .type = ARM_CP_CONST,
8022               .resetvalue = 0 },
8023             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
8024               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
8025               .access = PL3_RW, .type = ARM_CP_CONST,
8026               .resetvalue = 0 },
8027             REGINFO_SENTINEL
8028         };
8029         define_arm_cp_regs(cpu, auxcr_reginfo);
8030         if (cpu_isar_feature(aa32_ac2, cpu)) {
8031             define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
8032         }
8033     }
8034 
8035     if (arm_feature(env, ARM_FEATURE_CBAR)) {
8036         /*
8037          * CBAR is IMPDEF, but common on Arm Cortex-A implementations.
8038          * There are two flavours:
8039          *  (1) older 32-bit only cores have a simple 32-bit CBAR
8040          *  (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
8041          *      32-bit register visible to AArch32 at a different encoding
8042          *      to the "flavour 1" register and with the bits rearranged to
8043          *      be able to squash a 64-bit address into the 32-bit view.
8044          * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
8045          * in future if we support AArch32-only configs of some of the
8046          * AArch64 cores we might need to add a specific feature flag
8047          * to indicate cores with "flavour 2" CBAR.
8048          */
8049         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8050             /* 32 bit view is [31:18] 0...0 [43:32]. */
8051             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
8052                 | extract64(cpu->reset_cbar, 32, 12);
8053             ARMCPRegInfo cbar_reginfo[] = {
8054                 { .name = "CBAR",
8055                   .type = ARM_CP_CONST,
8056                   .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
8057                   .access = PL1_R, .resetvalue = cbar32 },
8058                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
8059                   .type = ARM_CP_CONST,
8060                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
8061                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
8062                 REGINFO_SENTINEL
8063             };
8064             /* We don't implement a r/w 64 bit CBAR currently */
8065             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
8066             define_arm_cp_regs(cpu, cbar_reginfo);
8067         } else {
8068             ARMCPRegInfo cbar = {
8069                 .name = "CBAR",
8070                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
8071                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
8072                 .fieldoffset = offsetof(CPUARMState,
8073                                         cp15.c15_config_base_address)
8074             };
8075             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
8076                 cbar.access = PL1_R;
8077                 cbar.fieldoffset = 0;
8078                 cbar.type = ARM_CP_CONST;
8079             }
8080             define_one_arm_cp_reg(cpu, &cbar);
8081         }
8082     }
8083 
8084     if (arm_feature(env, ARM_FEATURE_VBAR)) {
8085         ARMCPRegInfo vbar_cp_reginfo[] = {
8086             { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
8087               .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
8088               .access = PL1_RW, .writefn = vbar_write,
8089               .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
8090                                      offsetof(CPUARMState, cp15.vbar_ns) },
8091               .resetvalue = 0 },
8092             REGINFO_SENTINEL
8093         };
8094         define_arm_cp_regs(cpu, vbar_cp_reginfo);
8095     }
8096 
8097     /* Generic registers whose values depend on the implementation */
8098     {
8099         ARMCPRegInfo sctlr = {
8100             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
8101             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
8102             .access = PL1_RW, .accessfn = access_tvm_trvm,
8103             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
8104                                    offsetof(CPUARMState, cp15.sctlr_ns) },
8105             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
8106             .raw_writefn = raw_write,
8107         };
8108         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
8109             /* Normally we would always end the TB on an SCTLR write, but Linux
8110              * arch/arm/mach-pxa/sleep.S expects two instructions following
8111              * an MMU enable to execute from cache.  Imitate this behaviour.
8112              */
8113             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
8114         }
8115         define_one_arm_cp_reg(cpu, &sctlr);
8116     }
8117 
8118     if (cpu_isar_feature(aa64_lor, cpu)) {
8119         define_arm_cp_regs(cpu, lor_reginfo);
8120     }
8121     if (cpu_isar_feature(aa64_pan, cpu)) {
8122         define_one_arm_cp_reg(cpu, &pan_reginfo);
8123     }
8124 #ifndef CONFIG_USER_ONLY
8125     if (cpu_isar_feature(aa64_ats1e1, cpu)) {
8126         define_arm_cp_regs(cpu, ats1e1_reginfo);
8127     }
8128     if (cpu_isar_feature(aa32_ats1e1, cpu)) {
8129         define_arm_cp_regs(cpu, ats1cp_reginfo);
8130     }
8131 #endif
8132     if (cpu_isar_feature(aa64_uao, cpu)) {
8133         define_one_arm_cp_reg(cpu, &uao_reginfo);
8134     }
8135 
8136     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8137         define_arm_cp_regs(cpu, vhe_reginfo);
8138     }
8139 
8140     if (cpu_isar_feature(aa64_sve, cpu)) {
8141         define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
8142         if (arm_feature(env, ARM_FEATURE_EL2)) {
8143             define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
8144         } else {
8145             define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
8146         }
8147         if (arm_feature(env, ARM_FEATURE_EL3)) {
8148             define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
8149         }
8150     }
8151 
8152 #ifdef TARGET_AARCH64
8153     if (cpu_isar_feature(aa64_pauth, cpu)) {
8154         define_arm_cp_regs(cpu, pauth_reginfo);
8155     }
8156     if (cpu_isar_feature(aa64_rndr, cpu)) {
8157         define_arm_cp_regs(cpu, rndr_reginfo);
8158     }
8159 #ifndef CONFIG_USER_ONLY
8160     /* Data Cache clean instructions up to PoP */
8161     if (cpu_isar_feature(aa64_dcpop, cpu)) {
8162         define_one_arm_cp_reg(cpu, dcpop_reg);
8163 
8164         if (cpu_isar_feature(aa64_dcpodp, cpu)) {
8165             define_one_arm_cp_reg(cpu, dcpodp_reg);
8166         }
8167     }
8168 #endif /*CONFIG_USER_ONLY*/
8169 
8170     /*
8171      * If full MTE is enabled, add all of the system registers.
8172      * If only "instructions available at EL0" are enabled,
8173      * then define only a RAZ/WI version of PSTATE.TCO.
8174      */
8175     if (cpu_isar_feature(aa64_mte, cpu)) {
8176         define_arm_cp_regs(cpu, mte_reginfo);
8177         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8178     } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
8179         define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
8180         define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
8181     }
8182 #endif
8183 
8184     if (cpu_isar_feature(any_predinv, cpu)) {
8185         define_arm_cp_regs(cpu, predinv_reginfo);
8186     }
8187 
8188     if (cpu_isar_feature(any_ccidx, cpu)) {
8189         define_arm_cp_regs(cpu, ccsidr2_reginfo);
8190     }
8191 
8192 #ifndef CONFIG_USER_ONLY
8193     /*
8194      * Register redirections and aliases must be done last,
8195      * after the registers from the other extensions have been defined.
8196      */
8197     if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
8198         define_arm_vh_e2h_redirects_aliases(cpu);
8199     }
8200 #endif
8201 }
8202 
8203 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
8204 {
8205     CPUState *cs = CPU(cpu);
8206     CPUARMState *env = &cpu->env;
8207 
8208     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
8209         /*
8210          * The lower part of each SVE register aliases to the FPU
8211          * registers so we don't need to include both.
8212          */
8213 #ifdef TARGET_AARCH64
8214         if (isar_feature_aa64_sve(&cpu->isar)) {
8215             gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
8216                                      arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
8217                                      "sve-registers.xml", 0);
8218         } else
8219 #endif
8220         {
8221             gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
8222                                      aarch64_fpu_gdb_set_reg,
8223                                      34, "aarch64-fpu.xml", 0);
8224         }
8225     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
8226         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8227                                  51, "arm-neon.xml", 0);
8228     } else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
8229         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8230                                  35, "arm-vfp3.xml", 0);
8231     } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
8232         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
8233                                  19, "arm-vfp.xml", 0);
8234     }
8235     gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
8236                              arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
8237                              "system-registers.xml", 0);
8238 
8239 }
8240 
8241 /* Sort alphabetically by type name, except for "any". */
8242 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
8243 {
8244     ObjectClass *class_a = (ObjectClass *)a;
8245     ObjectClass *class_b = (ObjectClass *)b;
8246     const char *name_a, *name_b;
8247 
8248     name_a = object_class_get_name(class_a);
8249     name_b = object_class_get_name(class_b);
8250     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
8251         return 1;
8252     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
8253         return -1;
8254     } else {
8255         return strcmp(name_a, name_b);
8256     }
8257 }
8258 
8259 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
8260 {
8261     ObjectClass *oc = data;
8262     const char *typename;
8263     char *name;
8264 
8265     typename = object_class_get_name(oc);
8266     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
8267     qemu_printf("  %s\n", name);
8268     g_free(name);
8269 }
8270 
8271 void arm_cpu_list(void)
8272 {
8273     GSList *list;
8274 
8275     list = object_class_get_list(TYPE_ARM_CPU, false);
8276     list = g_slist_sort(list, arm_cpu_list_compare);
8277     qemu_printf("Available CPUs:\n");
8278     g_slist_foreach(list, arm_cpu_list_entry, NULL);
8279     g_slist_free(list);
8280 }
8281 
8282 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
8283 {
8284     ObjectClass *oc = data;
8285     CpuDefinitionInfoList **cpu_list = user_data;
8286     CpuDefinitionInfoList *entry;
8287     CpuDefinitionInfo *info;
8288     const char *typename;
8289 
8290     typename = object_class_get_name(oc);
8291     info = g_malloc0(sizeof(*info));
8292     info->name = g_strndup(typename,
8293                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
8294     info->q_typename = g_strdup(typename);
8295 
8296     entry = g_malloc0(sizeof(*entry));
8297     entry->value = info;
8298     entry->next = *cpu_list;
8299     *cpu_list = entry;
8300 }
8301 
8302 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
8303 {
8304     CpuDefinitionInfoList *cpu_list = NULL;
8305     GSList *list;
8306 
8307     list = object_class_get_list(TYPE_ARM_CPU, false);
8308     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
8309     g_slist_free(list);
8310 
8311     return cpu_list;
8312 }
8313 
8314 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
8315                                    void *opaque, int state, int secstate,
8316                                    int crm, int opc1, int opc2,
8317                                    const char *name)
8318 {
8319     /* Private utility function for define_one_arm_cp_reg_with_opaque():
8320      * add a single reginfo struct to the hash table.
8321      */
8322     uint32_t *key = g_new(uint32_t, 1);
8323     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
8324     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
8325     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
8326 
8327     r2->name = g_strdup(name);
8328     /* Reset the secure state to the specific incoming state.  This is
8329      * necessary as the register may have been defined with both states.
8330      */
8331     r2->secure = secstate;
8332 
8333     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8334         /* Register is banked (using both entries in array).
8335          * Overwriting fieldoffset as the array is only used to define
8336          * banked registers but later only fieldoffset is used.
8337          */
8338         r2->fieldoffset = r->bank_fieldoffsets[ns];
8339     }
8340 
8341     if (state == ARM_CP_STATE_AA32) {
8342         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
8343             /* If the register is banked then we don't need to migrate or
8344              * reset the 32-bit instance in certain cases:
8345              *
8346              * 1) If the register has both 32-bit and 64-bit instances then we
8347              *    can count on the 64-bit instance taking care of the
8348              *    non-secure bank.
8349              * 2) If ARMv8 is enabled then we can count on a 64-bit version
8350              *    taking care of the secure bank.  This requires that separate
8351              *    32 and 64-bit definitions are provided.
8352              */
8353             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
8354                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
8355                 r2->type |= ARM_CP_ALIAS;
8356             }
8357         } else if ((secstate != r->secure) && !ns) {
8358             /* The register is not banked so we only want to allow migration of
8359              * the non-secure instance.
8360              */
8361             r2->type |= ARM_CP_ALIAS;
8362         }
8363 
8364         if (r->state == ARM_CP_STATE_BOTH) {
8365             /* We assume it is a cp15 register if the .cp field is left unset.
8366              */
8367             if (r2->cp == 0) {
8368                 r2->cp = 15;
8369             }
8370 
8371 #ifdef HOST_WORDS_BIGENDIAN
8372             if (r2->fieldoffset) {
8373                 r2->fieldoffset += sizeof(uint32_t);
8374             }
8375 #endif
8376         }
8377     }
8378     if (state == ARM_CP_STATE_AA64) {
8379         /* To allow abbreviation of ARMCPRegInfo
8380          * definitions, we treat cp == 0 as equivalent to
8381          * the value for "standard guest-visible sysreg".
8382          * STATE_BOTH definitions are also always "standard
8383          * sysreg" in their AArch64 view (the .cp value may
8384          * be non-zero for the benefit of the AArch32 view).
8385          */
8386         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
8387             r2->cp = CP_REG_ARM64_SYSREG_CP;
8388         }
8389         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
8390                                   r2->opc0, opc1, opc2);
8391     } else {
8392         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
8393     }
8394     if (opaque) {
8395         r2->opaque = opaque;
8396     }
8397     /* reginfo passed to helpers is correct for the actual access,
8398      * and is never ARM_CP_STATE_BOTH:
8399      */
8400     r2->state = state;
8401     /* Make sure reginfo passed to helpers for wildcarded regs
8402      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
8403      */
8404     r2->crm = crm;
8405     r2->opc1 = opc1;
8406     r2->opc2 = opc2;
8407     /* By convention, for wildcarded registers only the first
8408      * entry is used for migration; the others are marked as
8409      * ALIAS so we don't try to transfer the register
8410      * multiple times. Special registers (ie NOP/WFI) are
8411      * never migratable and not even raw-accessible.
8412      */
8413     if ((r->type & ARM_CP_SPECIAL)) {
8414         r2->type |= ARM_CP_NO_RAW;
8415     }
8416     if (((r->crm == CP_ANY) && crm != 0) ||
8417         ((r->opc1 == CP_ANY) && opc1 != 0) ||
8418         ((r->opc2 == CP_ANY) && opc2 != 0)) {
8419         r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
8420     }
8421 
8422     /* Check that raw accesses are either forbidden or handled. Note that
8423      * we can't assert this earlier because the setup of fieldoffset for
8424      * banked registers has to be done first.
8425      */
8426     if (!(r2->type & ARM_CP_NO_RAW)) {
8427         assert(!raw_accessors_invalid(r2));
8428     }
8429 
8430     /* Overriding of an existing definition must be explicitly
8431      * requested.
8432      */
8433     if (!(r->type & ARM_CP_OVERRIDE)) {
8434         ARMCPRegInfo *oldreg;
8435         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
8436         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
8437             fprintf(stderr, "Register redefined: cp=%d %d bit "
8438                     "crn=%d crm=%d opc1=%d opc2=%d, "
8439                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
8440                     r2->crn, r2->crm, r2->opc1, r2->opc2,
8441                     oldreg->name, r2->name);
8442             g_assert_not_reached();
8443         }
8444     }
8445     g_hash_table_insert(cpu->cp_regs, key, r2);
8446 }
8447 
8448 
8449 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
8450                                        const ARMCPRegInfo *r, void *opaque)
8451 {
8452     /* Define implementations of coprocessor registers.
8453      * We store these in a hashtable because typically
8454      * there are less than 150 registers in a space which
8455      * is 16*16*16*8*8 = 262144 in size.
8456      * Wildcarding is supported for the crm, opc1 and opc2 fields.
8457      * If a register is defined twice then the second definition is
8458      * used, so this can be used to define some generic registers and
8459      * then override them with implementation specific variations.
8460      * At least one of the original and the second definition should
8461      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
8462      * against accidental use.
8463      *
8464      * The state field defines whether the register is to be
8465      * visible in the AArch32 or AArch64 execution state. If the
8466      * state is set to ARM_CP_STATE_BOTH then we synthesise a
8467      * reginfo structure for the AArch32 view, which sees the lower
8468      * 32 bits of the 64 bit register.
8469      *
8470      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
8471      * be wildcarded. AArch64 registers are always considered to be 64
8472      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
8473      * the register, if any.
8474      */
8475     int crm, opc1, opc2, state;
8476     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
8477     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
8478     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
8479     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
8480     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
8481     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
8482     /* 64 bit registers have only CRm and Opc1 fields */
8483     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
8484     /* op0 only exists in the AArch64 encodings */
8485     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
8486     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
8487     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
8488     /*
8489      * This API is only for Arm's system coprocessors (14 and 15) or
8490      * (M-profile or v7A-and-earlier only) for implementation defined
8491      * coprocessors in the range 0..7.  Our decode assumes this, since
8492      * 8..13 can be used for other insns including VFP and Neon. See
8493      * valid_cp() in translate.c.  Assert here that we haven't tried
8494      * to use an invalid coprocessor number.
8495      */
8496     switch (r->state) {
8497     case ARM_CP_STATE_BOTH:
8498         /* 0 has a special meaning, but otherwise the same rules as AA32. */
8499         if (r->cp == 0) {
8500             break;
8501         }
8502         /* fall through */
8503     case ARM_CP_STATE_AA32:
8504         if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
8505             !arm_feature(&cpu->env, ARM_FEATURE_M)) {
8506             assert(r->cp >= 14 && r->cp <= 15);
8507         } else {
8508             assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
8509         }
8510         break;
8511     case ARM_CP_STATE_AA64:
8512         assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
8513         break;
8514     default:
8515         g_assert_not_reached();
8516     }
8517     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
8518      * encodes a minimum access level for the register. We roll this
8519      * runtime check into our general permission check code, so check
8520      * here that the reginfo's specified permissions are strict enough
8521      * to encompass the generic architectural permission check.
8522      */
8523     if (r->state != ARM_CP_STATE_AA32) {
8524         int mask = 0;
8525         switch (r->opc1) {
8526         case 0:
8527             /* min_EL EL1, but some accessible to EL0 via kernel ABI */
8528             mask = PL0U_R | PL1_RW;
8529             break;
8530         case 1: case 2:
8531             /* min_EL EL1 */
8532             mask = PL1_RW;
8533             break;
8534         case 3:
8535             /* min_EL EL0 */
8536             mask = PL0_RW;
8537             break;
8538         case 4:
8539         case 5:
8540             /* min_EL EL2 */
8541             mask = PL2_RW;
8542             break;
8543         case 6:
8544             /* min_EL EL3 */
8545             mask = PL3_RW;
8546             break;
8547         case 7:
8548             /* min_EL EL1, secure mode only (we don't check the latter) */
8549             mask = PL1_RW;
8550             break;
8551         default:
8552             /* broken reginfo with out-of-range opc1 */
8553             assert(false);
8554             break;
8555         }
8556         /* assert our permissions are not too lax (stricter is fine) */
8557         assert((r->access & ~mask) == 0);
8558     }
8559 
8560     /* Check that the register definition has enough info to handle
8561      * reads and writes if they are permitted.
8562      */
8563     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
8564         if (r->access & PL3_R) {
8565             assert((r->fieldoffset ||
8566                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8567                    r->readfn);
8568         }
8569         if (r->access & PL3_W) {
8570             assert((r->fieldoffset ||
8571                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
8572                    r->writefn);
8573         }
8574     }
8575     /* Bad type field probably means missing sentinel at end of reg list */
8576     assert(cptype_valid(r->type));
8577     for (crm = crmmin; crm <= crmmax; crm++) {
8578         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
8579             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
8580                 for (state = ARM_CP_STATE_AA32;
8581                      state <= ARM_CP_STATE_AA64; state++) {
8582                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
8583                         continue;
8584                     }
8585                     if (state == ARM_CP_STATE_AA32) {
8586                         /* Under AArch32 CP registers can be common
8587                          * (same for secure and non-secure world) or banked.
8588                          */
8589                         char *name;
8590 
8591                         switch (r->secure) {
8592                         case ARM_CP_SECSTATE_S:
8593                         case ARM_CP_SECSTATE_NS:
8594                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8595                                                    r->secure, crm, opc1, opc2,
8596                                                    r->name);
8597                             break;
8598                         default:
8599                             name = g_strdup_printf("%s_S", r->name);
8600                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8601                                                    ARM_CP_SECSTATE_S,
8602                                                    crm, opc1, opc2, name);
8603                             g_free(name);
8604                             add_cpreg_to_hashtable(cpu, r, opaque, state,
8605                                                    ARM_CP_SECSTATE_NS,
8606                                                    crm, opc1, opc2, r->name);
8607                             break;
8608                         }
8609                     } else {
8610                         /* AArch64 registers get mapped to non-secure instance
8611                          * of AArch32 */
8612                         add_cpreg_to_hashtable(cpu, r, opaque, state,
8613                                                ARM_CP_SECSTATE_NS,
8614                                                crm, opc1, opc2, r->name);
8615                     }
8616                 }
8617             }
8618         }
8619     }
8620 }
8621 
8622 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
8623                                     const ARMCPRegInfo *regs, void *opaque)
8624 {
8625     /* Define a whole list of registers */
8626     const ARMCPRegInfo *r;
8627     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8628         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
8629     }
8630 }
8631 
8632 /*
8633  * Modify ARMCPRegInfo for access from userspace.
8634  *
8635  * This is a data driven modification directed by
8636  * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
8637  * user-space cannot alter any values and dynamic values pertaining to
8638  * execution state are hidden from user space view anyway.
8639  */
8640 void modify_arm_cp_regs(ARMCPRegInfo *regs, const ARMCPRegUserSpaceInfo *mods)
8641 {
8642     const ARMCPRegUserSpaceInfo *m;
8643     ARMCPRegInfo *r;
8644 
8645     for (m = mods; m->name; m++) {
8646         GPatternSpec *pat = NULL;
8647         if (m->is_glob) {
8648             pat = g_pattern_spec_new(m->name);
8649         }
8650         for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
8651             if (pat && g_pattern_match_string(pat, r->name)) {
8652                 r->type = ARM_CP_CONST;
8653                 r->access = PL0U_R;
8654                 r->resetvalue = 0;
8655                 /* continue */
8656             } else if (strcmp(r->name, m->name) == 0) {
8657                 r->type = ARM_CP_CONST;
8658                 r->access = PL0U_R;
8659                 r->resetvalue &= m->exported_bits;
8660                 r->resetvalue |= m->fixed_bits;
8661                 break;
8662             }
8663         }
8664         if (pat) {
8665             g_pattern_spec_free(pat);
8666         }
8667     }
8668 }
8669 
8670 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
8671 {
8672     return g_hash_table_lookup(cpregs, &encoded_cp);
8673 }
8674 
8675 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
8676                          uint64_t value)
8677 {
8678     /* Helper coprocessor write function for write-ignore registers */
8679 }
8680 
8681 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
8682 {
8683     /* Helper coprocessor write function for read-as-zero registers */
8684     return 0;
8685 }
8686 
8687 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
8688 {
8689     /* Helper coprocessor reset function for do-nothing-on-reset registers */
8690 }
8691 
8692 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
8693 {
8694     /* Return true if it is not valid for us to switch to
8695      * this CPU mode (ie all the UNPREDICTABLE cases in
8696      * the ARM ARM CPSRWriteByInstr pseudocode).
8697      */
8698 
8699     /* Changes to or from Hyp via MSR and CPS are illegal. */
8700     if (write_type == CPSRWriteByInstr &&
8701         ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
8702          mode == ARM_CPU_MODE_HYP)) {
8703         return 1;
8704     }
8705 
8706     switch (mode) {
8707     case ARM_CPU_MODE_USR:
8708         return 0;
8709     case ARM_CPU_MODE_SYS:
8710     case ARM_CPU_MODE_SVC:
8711     case ARM_CPU_MODE_ABT:
8712     case ARM_CPU_MODE_UND:
8713     case ARM_CPU_MODE_IRQ:
8714     case ARM_CPU_MODE_FIQ:
8715         /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
8716          * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
8717          */
8718         /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
8719          * and CPS are treated as illegal mode changes.
8720          */
8721         if (write_type == CPSRWriteByInstr &&
8722             (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
8723             (arm_hcr_el2_eff(env) & HCR_TGE)) {
8724             return 1;
8725         }
8726         return 0;
8727     case ARM_CPU_MODE_HYP:
8728         return !arm_feature(env, ARM_FEATURE_EL2)
8729             || arm_current_el(env) < 2 || arm_is_secure_below_el3(env);
8730     case ARM_CPU_MODE_MON:
8731         return arm_current_el(env) < 3;
8732     default:
8733         return 1;
8734     }
8735 }
8736 
8737 uint32_t cpsr_read(CPUARMState *env)
8738 {
8739     int ZF;
8740     ZF = (env->ZF == 0);
8741     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
8742         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
8743         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
8744         | ((env->condexec_bits & 0xfc) << 8)
8745         | (env->GE << 16) | (env->daif & CPSR_AIF);
8746 }
8747 
8748 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
8749                 CPSRWriteType write_type)
8750 {
8751     uint32_t changed_daif;
8752 
8753     if (mask & CPSR_NZCV) {
8754         env->ZF = (~val) & CPSR_Z;
8755         env->NF = val;
8756         env->CF = (val >> 29) & 1;
8757         env->VF = (val << 3) & 0x80000000;
8758     }
8759     if (mask & CPSR_Q)
8760         env->QF = ((val & CPSR_Q) != 0);
8761     if (mask & CPSR_T)
8762         env->thumb = ((val & CPSR_T) != 0);
8763     if (mask & CPSR_IT_0_1) {
8764         env->condexec_bits &= ~3;
8765         env->condexec_bits |= (val >> 25) & 3;
8766     }
8767     if (mask & CPSR_IT_2_7) {
8768         env->condexec_bits &= 3;
8769         env->condexec_bits |= (val >> 8) & 0xfc;
8770     }
8771     if (mask & CPSR_GE) {
8772         env->GE = (val >> 16) & 0xf;
8773     }
8774 
8775     /* In a V7 implementation that includes the security extensions but does
8776      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
8777      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
8778      * bits respectively.
8779      *
8780      * In a V8 implementation, it is permitted for privileged software to
8781      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
8782      */
8783     if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
8784         arm_feature(env, ARM_FEATURE_EL3) &&
8785         !arm_feature(env, ARM_FEATURE_EL2) &&
8786         !arm_is_secure(env)) {
8787 
8788         changed_daif = (env->daif ^ val) & mask;
8789 
8790         if (changed_daif & CPSR_A) {
8791             /* Check to see if we are allowed to change the masking of async
8792              * abort exceptions from a non-secure state.
8793              */
8794             if (!(env->cp15.scr_el3 & SCR_AW)) {
8795                 qemu_log_mask(LOG_GUEST_ERROR,
8796                               "Ignoring attempt to switch CPSR_A flag from "
8797                               "non-secure world with SCR.AW bit clear\n");
8798                 mask &= ~CPSR_A;
8799             }
8800         }
8801 
8802         if (changed_daif & CPSR_F) {
8803             /* Check to see if we are allowed to change the masking of FIQ
8804              * exceptions from a non-secure state.
8805              */
8806             if (!(env->cp15.scr_el3 & SCR_FW)) {
8807                 qemu_log_mask(LOG_GUEST_ERROR,
8808                               "Ignoring attempt to switch CPSR_F flag from "
8809                               "non-secure world with SCR.FW bit clear\n");
8810                 mask &= ~CPSR_F;
8811             }
8812 
8813             /* Check whether non-maskable FIQ (NMFI) support is enabled.
8814              * If this bit is set software is not allowed to mask
8815              * FIQs, but is allowed to set CPSR_F to 0.
8816              */
8817             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
8818                 (val & CPSR_F)) {
8819                 qemu_log_mask(LOG_GUEST_ERROR,
8820                               "Ignoring attempt to enable CPSR_F flag "
8821                               "(non-maskable FIQ [NMFI] support enabled)\n");
8822                 mask &= ~CPSR_F;
8823             }
8824         }
8825     }
8826 
8827     env->daif &= ~(CPSR_AIF & mask);
8828     env->daif |= val & CPSR_AIF & mask;
8829 
8830     if (write_type != CPSRWriteRaw &&
8831         ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
8832         if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
8833             /* Note that we can only get here in USR mode if this is a
8834              * gdb stub write; for this case we follow the architectural
8835              * behaviour for guest writes in USR mode of ignoring an attempt
8836              * to switch mode. (Those are caught by translate.c for writes
8837              * triggered by guest instructions.)
8838              */
8839             mask &= ~CPSR_M;
8840         } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
8841             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
8842              * v7, and has defined behaviour in v8:
8843              *  + leave CPSR.M untouched
8844              *  + allow changes to the other CPSR fields
8845              *  + set PSTATE.IL
8846              * For user changes via the GDB stub, we don't set PSTATE.IL,
8847              * as this would be unnecessarily harsh for a user error.
8848              */
8849             mask &= ~CPSR_M;
8850             if (write_type != CPSRWriteByGDBStub &&
8851                 arm_feature(env, ARM_FEATURE_V8)) {
8852                 mask |= CPSR_IL;
8853                 val |= CPSR_IL;
8854             }
8855             qemu_log_mask(LOG_GUEST_ERROR,
8856                           "Illegal AArch32 mode switch attempt from %s to %s\n",
8857                           aarch32_mode_name(env->uncached_cpsr),
8858                           aarch32_mode_name(val));
8859         } else {
8860             qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
8861                           write_type == CPSRWriteExceptionReturn ?
8862                           "Exception return from AArch32" :
8863                           "AArch32 mode switch from",
8864                           aarch32_mode_name(env->uncached_cpsr),
8865                           aarch32_mode_name(val), env->regs[15]);
8866             switch_mode(env, val & CPSR_M);
8867         }
8868     }
8869     mask &= ~CACHED_CPSR_BITS;
8870     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
8871 }
8872 
8873 /* Sign/zero extend */
8874 uint32_t HELPER(sxtb16)(uint32_t x)
8875 {
8876     uint32_t res;
8877     res = (uint16_t)(int8_t)x;
8878     res |= (uint32_t)(int8_t)(x >> 16) << 16;
8879     return res;
8880 }
8881 
8882 uint32_t HELPER(uxtb16)(uint32_t x)
8883 {
8884     uint32_t res;
8885     res = (uint16_t)(uint8_t)x;
8886     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
8887     return res;
8888 }
8889 
8890 int32_t HELPER(sdiv)(int32_t num, int32_t den)
8891 {
8892     if (den == 0)
8893       return 0;
8894     if (num == INT_MIN && den == -1)
8895       return INT_MIN;
8896     return num / den;
8897 }
8898 
8899 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
8900 {
8901     if (den == 0)
8902       return 0;
8903     return num / den;
8904 }
8905 
8906 uint32_t HELPER(rbit)(uint32_t x)
8907 {
8908     return revbit32(x);
8909 }
8910 
8911 #ifdef CONFIG_USER_ONLY
8912 
8913 static void switch_mode(CPUARMState *env, int mode)
8914 {
8915     ARMCPU *cpu = env_archcpu(env);
8916 
8917     if (mode != ARM_CPU_MODE_USR) {
8918         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
8919     }
8920 }
8921 
8922 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
8923                                  uint32_t cur_el, bool secure)
8924 {
8925     return 1;
8926 }
8927 
8928 void aarch64_sync_64_to_32(CPUARMState *env)
8929 {
8930     g_assert_not_reached();
8931 }
8932 
8933 #else
8934 
8935 static void switch_mode(CPUARMState *env, int mode)
8936 {
8937     int old_mode;
8938     int i;
8939 
8940     old_mode = env->uncached_cpsr & CPSR_M;
8941     if (mode == old_mode)
8942         return;
8943 
8944     if (old_mode == ARM_CPU_MODE_FIQ) {
8945         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
8946         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
8947     } else if (mode == ARM_CPU_MODE_FIQ) {
8948         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
8949         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
8950     }
8951 
8952     i = bank_number(old_mode);
8953     env->banked_r13[i] = env->regs[13];
8954     env->banked_spsr[i] = env->spsr;
8955 
8956     i = bank_number(mode);
8957     env->regs[13] = env->banked_r13[i];
8958     env->spsr = env->banked_spsr[i];
8959 
8960     env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
8961     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
8962 }
8963 
8964 /* Physical Interrupt Target EL Lookup Table
8965  *
8966  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
8967  *
8968  * The below multi-dimensional table is used for looking up the target
8969  * exception level given numerous condition criteria.  Specifically, the
8970  * target EL is based on SCR and HCR routing controls as well as the
8971  * currently executing EL and secure state.
8972  *
8973  *    Dimensions:
8974  *    target_el_table[2][2][2][2][2][4]
8975  *                    |  |  |  |  |  +--- Current EL
8976  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
8977  *                    |  |  |  +--------- HCR mask override
8978  *                    |  |  +------------ SCR exec state control
8979  *                    |  +--------------- SCR mask override
8980  *                    +------------------ 32-bit(0)/64-bit(1) EL3
8981  *
8982  *    The table values are as such:
8983  *    0-3 = EL0-EL3
8984  *     -1 = Cannot occur
8985  *
8986  * The ARM ARM target EL table includes entries indicating that an "exception
8987  * is not taken".  The two cases where this is applicable are:
8988  *    1) An exception is taken from EL3 but the SCR does not have the exception
8989  *    routed to EL3.
8990  *    2) An exception is taken from EL2 but the HCR does not have the exception
8991  *    routed to EL2.
8992  * In these two cases, the below table contain a target of EL1.  This value is
8993  * returned as it is expected that the consumer of the table data will check
8994  * for "target EL >= current EL" to ensure the exception is not taken.
8995  *
8996  *            SCR     HCR
8997  *         64  EA     AMO                 From
8998  *        BIT IRQ     IMO      Non-secure         Secure
8999  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
9000  */
9001 static const int8_t target_el_table[2][2][2][2][2][4] = {
9002     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9003        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
9004       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
9005        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
9006      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9007        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
9008       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
9009        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
9010     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
9011        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
9012       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
9013        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
9014      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9015        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
9016       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
9017        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
9018 };
9019 
9020 /*
9021  * Determine the target EL for physical exceptions
9022  */
9023 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
9024                                  uint32_t cur_el, bool secure)
9025 {
9026     CPUARMState *env = cs->env_ptr;
9027     bool rw;
9028     bool scr;
9029     bool hcr;
9030     int target_el;
9031     /* Is the highest EL AArch64? */
9032     bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
9033     uint64_t hcr_el2;
9034 
9035     if (arm_feature(env, ARM_FEATURE_EL3)) {
9036         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
9037     } else {
9038         /* Either EL2 is the highest EL (and so the EL2 register width
9039          * is given by is64); or there is no EL2 or EL3, in which case
9040          * the value of 'rw' does not affect the table lookup anyway.
9041          */
9042         rw = is64;
9043     }
9044 
9045     hcr_el2 = arm_hcr_el2_eff(env);
9046     switch (excp_idx) {
9047     case EXCP_IRQ:
9048         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
9049         hcr = hcr_el2 & HCR_IMO;
9050         break;
9051     case EXCP_FIQ:
9052         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
9053         hcr = hcr_el2 & HCR_FMO;
9054         break;
9055     default:
9056         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
9057         hcr = hcr_el2 & HCR_AMO;
9058         break;
9059     };
9060 
9061     /*
9062      * For these purposes, TGE and AMO/IMO/FMO both force the
9063      * interrupt to EL2.  Fold TGE into the bit extracted above.
9064      */
9065     hcr |= (hcr_el2 & HCR_TGE) != 0;
9066 
9067     /* Perform a table-lookup for the target EL given the current state */
9068     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
9069 
9070     assert(target_el > 0);
9071 
9072     return target_el;
9073 }
9074 
9075 void arm_log_exception(int idx)
9076 {
9077     if (qemu_loglevel_mask(CPU_LOG_INT)) {
9078         const char *exc = NULL;
9079         static const char * const excnames[] = {
9080             [EXCP_UDEF] = "Undefined Instruction",
9081             [EXCP_SWI] = "SVC",
9082             [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
9083             [EXCP_DATA_ABORT] = "Data Abort",
9084             [EXCP_IRQ] = "IRQ",
9085             [EXCP_FIQ] = "FIQ",
9086             [EXCP_BKPT] = "Breakpoint",
9087             [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
9088             [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
9089             [EXCP_HVC] = "Hypervisor Call",
9090             [EXCP_HYP_TRAP] = "Hypervisor Trap",
9091             [EXCP_SMC] = "Secure Monitor Call",
9092             [EXCP_VIRQ] = "Virtual IRQ",
9093             [EXCP_VFIQ] = "Virtual FIQ",
9094             [EXCP_SEMIHOST] = "Semihosting call",
9095             [EXCP_NOCP] = "v7M NOCP UsageFault",
9096             [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
9097             [EXCP_STKOF] = "v8M STKOF UsageFault",
9098             [EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
9099             [EXCP_LSERR] = "v8M LSERR UsageFault",
9100             [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
9101         };
9102 
9103         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
9104             exc = excnames[idx];
9105         }
9106         if (!exc) {
9107             exc = "unknown";
9108         }
9109         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
9110     }
9111 }
9112 
9113 /*
9114  * Function used to synchronize QEMU's AArch64 register set with AArch32
9115  * register set.  This is necessary when switching between AArch32 and AArch64
9116  * execution state.
9117  */
9118 void aarch64_sync_32_to_64(CPUARMState *env)
9119 {
9120     int i;
9121     uint32_t mode = env->uncached_cpsr & CPSR_M;
9122 
9123     /* We can blanket copy R[0:7] to X[0:7] */
9124     for (i = 0; i < 8; i++) {
9125         env->xregs[i] = env->regs[i];
9126     }
9127 
9128     /*
9129      * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
9130      * Otherwise, they come from the banked user regs.
9131      */
9132     if (mode == ARM_CPU_MODE_FIQ) {
9133         for (i = 8; i < 13; i++) {
9134             env->xregs[i] = env->usr_regs[i - 8];
9135         }
9136     } else {
9137         for (i = 8; i < 13; i++) {
9138             env->xregs[i] = env->regs[i];
9139         }
9140     }
9141 
9142     /*
9143      * Registers x13-x23 are the various mode SP and FP registers. Registers
9144      * r13 and r14 are only copied if we are in that mode, otherwise we copy
9145      * from the mode banked register.
9146      */
9147     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9148         env->xregs[13] = env->regs[13];
9149         env->xregs[14] = env->regs[14];
9150     } else {
9151         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
9152         /* HYP is an exception in that it is copied from r14 */
9153         if (mode == ARM_CPU_MODE_HYP) {
9154             env->xregs[14] = env->regs[14];
9155         } else {
9156             env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
9157         }
9158     }
9159 
9160     if (mode == ARM_CPU_MODE_HYP) {
9161         env->xregs[15] = env->regs[13];
9162     } else {
9163         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
9164     }
9165 
9166     if (mode == ARM_CPU_MODE_IRQ) {
9167         env->xregs[16] = env->regs[14];
9168         env->xregs[17] = env->regs[13];
9169     } else {
9170         env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
9171         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
9172     }
9173 
9174     if (mode == ARM_CPU_MODE_SVC) {
9175         env->xregs[18] = env->regs[14];
9176         env->xregs[19] = env->regs[13];
9177     } else {
9178         env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
9179         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
9180     }
9181 
9182     if (mode == ARM_CPU_MODE_ABT) {
9183         env->xregs[20] = env->regs[14];
9184         env->xregs[21] = env->regs[13];
9185     } else {
9186         env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
9187         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
9188     }
9189 
9190     if (mode == ARM_CPU_MODE_UND) {
9191         env->xregs[22] = env->regs[14];
9192         env->xregs[23] = env->regs[13];
9193     } else {
9194         env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
9195         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
9196     }
9197 
9198     /*
9199      * Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9200      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
9201      * FIQ bank for r8-r14.
9202      */
9203     if (mode == ARM_CPU_MODE_FIQ) {
9204         for (i = 24; i < 31; i++) {
9205             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
9206         }
9207     } else {
9208         for (i = 24; i < 29; i++) {
9209             env->xregs[i] = env->fiq_regs[i - 24];
9210         }
9211         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
9212         env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
9213     }
9214 
9215     env->pc = env->regs[15];
9216 }
9217 
9218 /*
9219  * Function used to synchronize QEMU's AArch32 register set with AArch64
9220  * register set.  This is necessary when switching between AArch32 and AArch64
9221  * execution state.
9222  */
9223 void aarch64_sync_64_to_32(CPUARMState *env)
9224 {
9225     int i;
9226     uint32_t mode = env->uncached_cpsr & CPSR_M;
9227 
9228     /* We can blanket copy X[0:7] to R[0:7] */
9229     for (i = 0; i < 8; i++) {
9230         env->regs[i] = env->xregs[i];
9231     }
9232 
9233     /*
9234      * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9235      * Otherwise, we copy x8-x12 into the banked user regs.
9236      */
9237     if (mode == ARM_CPU_MODE_FIQ) {
9238         for (i = 8; i < 13; i++) {
9239             env->usr_regs[i - 8] = env->xregs[i];
9240         }
9241     } else {
9242         for (i = 8; i < 13; i++) {
9243             env->regs[i] = env->xregs[i];
9244         }
9245     }
9246 
9247     /*
9248      * Registers r13 & r14 depend on the current mode.
9249      * If we are in a given mode, we copy the corresponding x registers to r13
9250      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
9251      * for the mode.
9252      */
9253     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
9254         env->regs[13] = env->xregs[13];
9255         env->regs[14] = env->xregs[14];
9256     } else {
9257         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
9258 
9259         /*
9260          * HYP is an exception in that it does not have its own banked r14 but
9261          * shares the USR r14
9262          */
9263         if (mode == ARM_CPU_MODE_HYP) {
9264             env->regs[14] = env->xregs[14];
9265         } else {
9266             env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
9267         }
9268     }
9269 
9270     if (mode == ARM_CPU_MODE_HYP) {
9271         env->regs[13] = env->xregs[15];
9272     } else {
9273         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
9274     }
9275 
9276     if (mode == ARM_CPU_MODE_IRQ) {
9277         env->regs[14] = env->xregs[16];
9278         env->regs[13] = env->xregs[17];
9279     } else {
9280         env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
9281         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
9282     }
9283 
9284     if (mode == ARM_CPU_MODE_SVC) {
9285         env->regs[14] = env->xregs[18];
9286         env->regs[13] = env->xregs[19];
9287     } else {
9288         env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
9289         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
9290     }
9291 
9292     if (mode == ARM_CPU_MODE_ABT) {
9293         env->regs[14] = env->xregs[20];
9294         env->regs[13] = env->xregs[21];
9295     } else {
9296         env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
9297         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
9298     }
9299 
9300     if (mode == ARM_CPU_MODE_UND) {
9301         env->regs[14] = env->xregs[22];
9302         env->regs[13] = env->xregs[23];
9303     } else {
9304         env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
9305         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
9306     }
9307 
9308     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
9309      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
9310      * FIQ bank for r8-r14.
9311      */
9312     if (mode == ARM_CPU_MODE_FIQ) {
9313         for (i = 24; i < 31; i++) {
9314             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
9315         }
9316     } else {
9317         for (i = 24; i < 29; i++) {
9318             env->fiq_regs[i - 24] = env->xregs[i];
9319         }
9320         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
9321         env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
9322     }
9323 
9324     env->regs[15] = env->pc;
9325 }
9326 
9327 static void take_aarch32_exception(CPUARMState *env, int new_mode,
9328                                    uint32_t mask, uint32_t offset,
9329                                    uint32_t newpc)
9330 {
9331     int new_el;
9332 
9333     /* Change the CPU state so as to actually take the exception. */
9334     switch_mode(env, new_mode);
9335 
9336     /*
9337      * For exceptions taken to AArch32 we must clear the SS bit in both
9338      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9339      */
9340     env->uncached_cpsr &= ~PSTATE_SS;
9341     env->spsr = cpsr_read(env);
9342     /* Clear IT bits.  */
9343     env->condexec_bits = 0;
9344     /* Switch to the new mode, and to the correct instruction set.  */
9345     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
9346 
9347     /* This must be after mode switching. */
9348     new_el = arm_current_el(env);
9349 
9350     /* Set new mode endianness */
9351     env->uncached_cpsr &= ~CPSR_E;
9352     if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
9353         env->uncached_cpsr |= CPSR_E;
9354     }
9355     /* J and IL must always be cleared for exception entry */
9356     env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
9357     env->daif |= mask;
9358 
9359     if (new_mode == ARM_CPU_MODE_HYP) {
9360         env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
9361         env->elr_el[2] = env->regs[15];
9362     } else {
9363         /* CPSR.PAN is normally preserved preserved unless...  */
9364         if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
9365             switch (new_el) {
9366             case 3:
9367                 if (!arm_is_secure_below_el3(env)) {
9368                     /* ... the target is EL3, from non-secure state.  */
9369                     env->uncached_cpsr &= ~CPSR_PAN;
9370                     break;
9371                 }
9372                 /* ... the target is EL3, from secure state ... */
9373                 /* fall through */
9374             case 1:
9375                 /* ... the target is EL1 and SCTLR.SPAN is 0.  */
9376                 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
9377                     env->uncached_cpsr |= CPSR_PAN;
9378                 }
9379                 break;
9380             }
9381         }
9382         /*
9383          * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9384          * and we should just guard the thumb mode on V4
9385          */
9386         if (arm_feature(env, ARM_FEATURE_V4T)) {
9387             env->thumb =
9388                 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
9389         }
9390         env->regs[14] = env->regs[15] + offset;
9391     }
9392     env->regs[15] = newpc;
9393     arm_rebuild_hflags(env);
9394 }
9395 
9396 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
9397 {
9398     /*
9399      * Handle exception entry to Hyp mode; this is sufficiently
9400      * different to entry to other AArch32 modes that we handle it
9401      * separately here.
9402      *
9403      * The vector table entry used is always the 0x14 Hyp mode entry point,
9404      * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9405      * The offset applied to the preferred return address is always zero
9406      * (see DDI0487C.a section G1.12.3).
9407      * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9408      */
9409     uint32_t addr, mask;
9410     ARMCPU *cpu = ARM_CPU(cs);
9411     CPUARMState *env = &cpu->env;
9412 
9413     switch (cs->exception_index) {
9414     case EXCP_UDEF:
9415         addr = 0x04;
9416         break;
9417     case EXCP_SWI:
9418         addr = 0x14;
9419         break;
9420     case EXCP_BKPT:
9421         /* Fall through to prefetch abort.  */
9422     case EXCP_PREFETCH_ABORT:
9423         env->cp15.ifar_s = env->exception.vaddress;
9424         qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
9425                       (uint32_t)env->exception.vaddress);
9426         addr = 0x0c;
9427         break;
9428     case EXCP_DATA_ABORT:
9429         env->cp15.dfar_s = env->exception.vaddress;
9430         qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
9431                       (uint32_t)env->exception.vaddress);
9432         addr = 0x10;
9433         break;
9434     case EXCP_IRQ:
9435         addr = 0x18;
9436         break;
9437     case EXCP_FIQ:
9438         addr = 0x1c;
9439         break;
9440     case EXCP_HVC:
9441         addr = 0x08;
9442         break;
9443     case EXCP_HYP_TRAP:
9444         addr = 0x14;
9445         break;
9446     default:
9447         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9448     }
9449 
9450     if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
9451         if (!arm_feature(env, ARM_FEATURE_V8)) {
9452             /*
9453              * QEMU syndrome values are v8-style. v7 has the IL bit
9454              * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9455              * If this is a v7 CPU, squash the IL bit in those cases.
9456              */
9457             if (cs->exception_index == EXCP_PREFETCH_ABORT ||
9458                 (cs->exception_index == EXCP_DATA_ABORT &&
9459                  !(env->exception.syndrome & ARM_EL_ISV)) ||
9460                 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
9461                 env->exception.syndrome &= ~ARM_EL_IL;
9462             }
9463         }
9464         env->cp15.esr_el[2] = env->exception.syndrome;
9465     }
9466 
9467     if (arm_current_el(env) != 2 && addr < 0x14) {
9468         addr = 0x14;
9469     }
9470 
9471     mask = 0;
9472     if (!(env->cp15.scr_el3 & SCR_EA)) {
9473         mask |= CPSR_A;
9474     }
9475     if (!(env->cp15.scr_el3 & SCR_IRQ)) {
9476         mask |= CPSR_I;
9477     }
9478     if (!(env->cp15.scr_el3 & SCR_FIQ)) {
9479         mask |= CPSR_F;
9480     }
9481 
9482     addr += env->cp15.hvbar;
9483 
9484     take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
9485 }
9486 
9487 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
9488 {
9489     ARMCPU *cpu = ARM_CPU(cs);
9490     CPUARMState *env = &cpu->env;
9491     uint32_t addr;
9492     uint32_t mask;
9493     int new_mode;
9494     uint32_t offset;
9495     uint32_t moe;
9496 
9497     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9498     switch (syn_get_ec(env->exception.syndrome)) {
9499     case EC_BREAKPOINT:
9500     case EC_BREAKPOINT_SAME_EL:
9501         moe = 1;
9502         break;
9503     case EC_WATCHPOINT:
9504     case EC_WATCHPOINT_SAME_EL:
9505         moe = 10;
9506         break;
9507     case EC_AA32_BKPT:
9508         moe = 3;
9509         break;
9510     case EC_VECTORCATCH:
9511         moe = 5;
9512         break;
9513     default:
9514         moe = 0;
9515         break;
9516     }
9517 
9518     if (moe) {
9519         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
9520     }
9521 
9522     if (env->exception.target_el == 2) {
9523         arm_cpu_do_interrupt_aarch32_hyp(cs);
9524         return;
9525     }
9526 
9527     switch (cs->exception_index) {
9528     case EXCP_UDEF:
9529         new_mode = ARM_CPU_MODE_UND;
9530         addr = 0x04;
9531         mask = CPSR_I;
9532         if (env->thumb)
9533             offset = 2;
9534         else
9535             offset = 4;
9536         break;
9537     case EXCP_SWI:
9538         new_mode = ARM_CPU_MODE_SVC;
9539         addr = 0x08;
9540         mask = CPSR_I;
9541         /* The PC already points to the next instruction.  */
9542         offset = 0;
9543         break;
9544     case EXCP_BKPT:
9545         /* Fall through to prefetch abort.  */
9546     case EXCP_PREFETCH_ABORT:
9547         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
9548         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
9549         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
9550                       env->exception.fsr, (uint32_t)env->exception.vaddress);
9551         new_mode = ARM_CPU_MODE_ABT;
9552         addr = 0x0c;
9553         mask = CPSR_A | CPSR_I;
9554         offset = 4;
9555         break;
9556     case EXCP_DATA_ABORT:
9557         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
9558         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
9559         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
9560                       env->exception.fsr,
9561                       (uint32_t)env->exception.vaddress);
9562         new_mode = ARM_CPU_MODE_ABT;
9563         addr = 0x10;
9564         mask = CPSR_A | CPSR_I;
9565         offset = 8;
9566         break;
9567     case EXCP_IRQ:
9568         new_mode = ARM_CPU_MODE_IRQ;
9569         addr = 0x18;
9570         /* Disable IRQ and imprecise data aborts.  */
9571         mask = CPSR_A | CPSR_I;
9572         offset = 4;
9573         if (env->cp15.scr_el3 & SCR_IRQ) {
9574             /* IRQ routed to monitor mode */
9575             new_mode = ARM_CPU_MODE_MON;
9576             mask |= CPSR_F;
9577         }
9578         break;
9579     case EXCP_FIQ:
9580         new_mode = ARM_CPU_MODE_FIQ;
9581         addr = 0x1c;
9582         /* Disable FIQ, IRQ and imprecise data aborts.  */
9583         mask = CPSR_A | CPSR_I | CPSR_F;
9584         if (env->cp15.scr_el3 & SCR_FIQ) {
9585             /* FIQ routed to monitor mode */
9586             new_mode = ARM_CPU_MODE_MON;
9587         }
9588         offset = 4;
9589         break;
9590     case EXCP_VIRQ:
9591         new_mode = ARM_CPU_MODE_IRQ;
9592         addr = 0x18;
9593         /* Disable IRQ and imprecise data aborts.  */
9594         mask = CPSR_A | CPSR_I;
9595         offset = 4;
9596         break;
9597     case EXCP_VFIQ:
9598         new_mode = ARM_CPU_MODE_FIQ;
9599         addr = 0x1c;
9600         /* Disable FIQ, IRQ and imprecise data aborts.  */
9601         mask = CPSR_A | CPSR_I | CPSR_F;
9602         offset = 4;
9603         break;
9604     case EXCP_SMC:
9605         new_mode = ARM_CPU_MODE_MON;
9606         addr = 0x08;
9607         mask = CPSR_A | CPSR_I | CPSR_F;
9608         offset = 0;
9609         break;
9610     default:
9611         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9612         return; /* Never happens.  Keep compiler happy.  */
9613     }
9614 
9615     if (new_mode == ARM_CPU_MODE_MON) {
9616         addr += env->cp15.mvbar;
9617     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
9618         /* High vectors. When enabled, base address cannot be remapped. */
9619         addr += 0xffff0000;
9620     } else {
9621         /* ARM v7 architectures provide a vector base address register to remap
9622          * the interrupt vector table.
9623          * This register is only followed in non-monitor mode, and is banked.
9624          * Note: only bits 31:5 are valid.
9625          */
9626         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
9627     }
9628 
9629     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
9630         env->cp15.scr_el3 &= ~SCR_NS;
9631     }
9632 
9633     take_aarch32_exception(env, new_mode, mask, offset, addr);
9634 }
9635 
9636 static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
9637 {
9638     /*
9639      * Return the register number of the AArch64 view of the AArch32
9640      * register @aarch32_reg. The CPUARMState CPSR is assumed to still
9641      * be that of the AArch32 mode the exception came from.
9642      */
9643     int mode = env->uncached_cpsr & CPSR_M;
9644 
9645     switch (aarch32_reg) {
9646     case 0 ... 7:
9647         return aarch32_reg;
9648     case 8 ... 12:
9649         return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
9650     case 13:
9651         switch (mode) {
9652         case ARM_CPU_MODE_USR:
9653         case ARM_CPU_MODE_SYS:
9654             return 13;
9655         case ARM_CPU_MODE_HYP:
9656             return 15;
9657         case ARM_CPU_MODE_IRQ:
9658             return 17;
9659         case ARM_CPU_MODE_SVC:
9660             return 19;
9661         case ARM_CPU_MODE_ABT:
9662             return 21;
9663         case ARM_CPU_MODE_UND:
9664             return 23;
9665         case ARM_CPU_MODE_FIQ:
9666             return 29;
9667         default:
9668             g_assert_not_reached();
9669         }
9670     case 14:
9671         switch (mode) {
9672         case ARM_CPU_MODE_USR:
9673         case ARM_CPU_MODE_SYS:
9674         case ARM_CPU_MODE_HYP:
9675             return 14;
9676         case ARM_CPU_MODE_IRQ:
9677             return 16;
9678         case ARM_CPU_MODE_SVC:
9679             return 18;
9680         case ARM_CPU_MODE_ABT:
9681             return 20;
9682         case ARM_CPU_MODE_UND:
9683             return 22;
9684         case ARM_CPU_MODE_FIQ:
9685             return 30;
9686         default:
9687             g_assert_not_reached();
9688         }
9689     case 15:
9690         return 31;
9691     default:
9692         g_assert_not_reached();
9693     }
9694 }
9695 
9696 /* Handle exception entry to a target EL which is using AArch64 */
9697 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
9698 {
9699     ARMCPU *cpu = ARM_CPU(cs);
9700     CPUARMState *env = &cpu->env;
9701     unsigned int new_el = env->exception.target_el;
9702     target_ulong addr = env->cp15.vbar_el[new_el];
9703     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
9704     unsigned int old_mode;
9705     unsigned int cur_el = arm_current_el(env);
9706     int rt;
9707 
9708     /*
9709      * Note that new_el can never be 0.  If cur_el is 0, then
9710      * el0_a64 is is_a64(), else el0_a64 is ignored.
9711      */
9712     aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
9713 
9714     if (cur_el < new_el) {
9715         /* Entry vector offset depends on whether the implemented EL
9716          * immediately lower than the target level is using AArch32 or AArch64
9717          */
9718         bool is_aa64;
9719         uint64_t hcr;
9720 
9721         switch (new_el) {
9722         case 3:
9723             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
9724             break;
9725         case 2:
9726             hcr = arm_hcr_el2_eff(env);
9727             if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
9728                 is_aa64 = (hcr & HCR_RW) != 0;
9729                 break;
9730             }
9731             /* fall through */
9732         case 1:
9733             is_aa64 = is_a64(env);
9734             break;
9735         default:
9736             g_assert_not_reached();
9737         }
9738 
9739         if (is_aa64) {
9740             addr += 0x400;
9741         } else {
9742             addr += 0x600;
9743         }
9744     } else if (pstate_read(env) & PSTATE_SP) {
9745         addr += 0x200;
9746     }
9747 
9748     switch (cs->exception_index) {
9749     case EXCP_PREFETCH_ABORT:
9750     case EXCP_DATA_ABORT:
9751         env->cp15.far_el[new_el] = env->exception.vaddress;
9752         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
9753                       env->cp15.far_el[new_el]);
9754         /* fall through */
9755     case EXCP_BKPT:
9756     case EXCP_UDEF:
9757     case EXCP_SWI:
9758     case EXCP_HVC:
9759     case EXCP_HYP_TRAP:
9760     case EXCP_SMC:
9761         switch (syn_get_ec(env->exception.syndrome)) {
9762         case EC_ADVSIMDFPACCESSTRAP:
9763             /*
9764              * QEMU internal FP/SIMD syndromes from AArch32 include the
9765              * TA and coproc fields which are only exposed if the exception
9766              * is taken to AArch32 Hyp mode. Mask them out to get a valid
9767              * AArch64 format syndrome.
9768              */
9769             env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
9770             break;
9771         case EC_CP14RTTRAP:
9772         case EC_CP15RTTRAP:
9773         case EC_CP14DTTRAP:
9774             /*
9775              * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
9776              * the raw register field from the insn; when taking this to
9777              * AArch64 we must convert it to the AArch64 view of the register
9778              * number. Notice that we read a 4-bit AArch32 register number and
9779              * write back a 5-bit AArch64 one.
9780              */
9781             rt = extract32(env->exception.syndrome, 5, 4);
9782             rt = aarch64_regnum(env, rt);
9783             env->exception.syndrome = deposit32(env->exception.syndrome,
9784                                                 5, 5, rt);
9785             break;
9786         case EC_CP15RRTTRAP:
9787         case EC_CP14RRTTRAP:
9788             /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
9789             rt = extract32(env->exception.syndrome, 5, 4);
9790             rt = aarch64_regnum(env, rt);
9791             env->exception.syndrome = deposit32(env->exception.syndrome,
9792                                                 5, 5, rt);
9793             rt = extract32(env->exception.syndrome, 10, 4);
9794             rt = aarch64_regnum(env, rt);
9795             env->exception.syndrome = deposit32(env->exception.syndrome,
9796                                                 10, 5, rt);
9797             break;
9798         }
9799         env->cp15.esr_el[new_el] = env->exception.syndrome;
9800         break;
9801     case EXCP_IRQ:
9802     case EXCP_VIRQ:
9803         addr += 0x80;
9804         break;
9805     case EXCP_FIQ:
9806     case EXCP_VFIQ:
9807         addr += 0x100;
9808         break;
9809     default:
9810         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
9811     }
9812 
9813     if (is_a64(env)) {
9814         old_mode = pstate_read(env);
9815         aarch64_save_sp(env, arm_current_el(env));
9816         env->elr_el[new_el] = env->pc;
9817     } else {
9818         old_mode = cpsr_read(env);
9819         env->elr_el[new_el] = env->regs[15];
9820 
9821         aarch64_sync_32_to_64(env);
9822 
9823         env->condexec_bits = 0;
9824     }
9825     env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
9826 
9827     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
9828                   env->elr_el[new_el]);
9829 
9830     if (cpu_isar_feature(aa64_pan, cpu)) {
9831         /* The value of PSTATE.PAN is normally preserved, except when ... */
9832         new_mode |= old_mode & PSTATE_PAN;
9833         switch (new_el) {
9834         case 2:
9835             /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ...  */
9836             if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
9837                 != (HCR_E2H | HCR_TGE)) {
9838                 break;
9839             }
9840             /* fall through */
9841         case 1:
9842             /* ... the target is EL1 ... */
9843             /* ... and SCTLR_ELx.SPAN == 0, then set to 1.  */
9844             if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
9845                 new_mode |= PSTATE_PAN;
9846             }
9847             break;
9848         }
9849     }
9850     if (cpu_isar_feature(aa64_mte, cpu)) {
9851         new_mode |= PSTATE_TCO;
9852     }
9853 
9854     pstate_write(env, PSTATE_DAIF | new_mode);
9855     env->aarch64 = 1;
9856     aarch64_restore_sp(env, new_el);
9857     helper_rebuild_hflags_a64(env, new_el);
9858 
9859     env->pc = addr;
9860 
9861     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
9862                   new_el, env->pc, pstate_read(env));
9863 }
9864 
9865 /*
9866  * Do semihosting call and set the appropriate return value. All the
9867  * permission and validity checks have been done at translate time.
9868  *
9869  * We only see semihosting exceptions in TCG only as they are not
9870  * trapped to the hypervisor in KVM.
9871  */
9872 #ifdef CONFIG_TCG
9873 static void handle_semihosting(CPUState *cs)
9874 {
9875     ARMCPU *cpu = ARM_CPU(cs);
9876     CPUARMState *env = &cpu->env;
9877 
9878     if (is_a64(env)) {
9879         qemu_log_mask(CPU_LOG_INT,
9880                       "...handling as semihosting call 0x%" PRIx64 "\n",
9881                       env->xregs[0]);
9882         env->xregs[0] = do_arm_semihosting(env);
9883         env->pc += 4;
9884     } else {
9885         qemu_log_mask(CPU_LOG_INT,
9886                       "...handling as semihosting call 0x%x\n",
9887                       env->regs[0]);
9888         env->regs[0] = do_arm_semihosting(env);
9889         env->regs[15] += env->thumb ? 2 : 4;
9890     }
9891 }
9892 #endif
9893 
9894 /* Handle a CPU exception for A and R profile CPUs.
9895  * Do any appropriate logging, handle PSCI calls, and then hand off
9896  * to the AArch64-entry or AArch32-entry function depending on the
9897  * target exception level's register width.
9898  */
9899 void arm_cpu_do_interrupt(CPUState *cs)
9900 {
9901     ARMCPU *cpu = ARM_CPU(cs);
9902     CPUARMState *env = &cpu->env;
9903     unsigned int new_el = env->exception.target_el;
9904 
9905     assert(!arm_feature(env, ARM_FEATURE_M));
9906 
9907     arm_log_exception(cs->exception_index);
9908     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
9909                   new_el);
9910     if (qemu_loglevel_mask(CPU_LOG_INT)
9911         && !excp_is_internal(cs->exception_index)) {
9912         qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
9913                       syn_get_ec(env->exception.syndrome),
9914                       env->exception.syndrome);
9915     }
9916 
9917     if (arm_is_psci_call(cpu, cs->exception_index)) {
9918         arm_handle_psci_call(cpu);
9919         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
9920         return;
9921     }
9922 
9923     /*
9924      * Semihosting semantics depend on the register width of the code
9925      * that caused the exception, not the target exception level, so
9926      * must be handled here.
9927      */
9928 #ifdef CONFIG_TCG
9929     if (cs->exception_index == EXCP_SEMIHOST) {
9930         handle_semihosting(cs);
9931         return;
9932     }
9933 #endif
9934 
9935     /* Hooks may change global state so BQL should be held, also the
9936      * BQL needs to be held for any modification of
9937      * cs->interrupt_request.
9938      */
9939     g_assert(qemu_mutex_iothread_locked());
9940 
9941     arm_call_pre_el_change_hook(cpu);
9942 
9943     assert(!excp_is_internal(cs->exception_index));
9944     if (arm_el_is_aa64(env, new_el)) {
9945         arm_cpu_do_interrupt_aarch64(cs);
9946     } else {
9947         arm_cpu_do_interrupt_aarch32(cs);
9948     }
9949 
9950     arm_call_el_change_hook(cpu);
9951 
9952     if (!kvm_enabled()) {
9953         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
9954     }
9955 }
9956 #endif /* !CONFIG_USER_ONLY */
9957 
9958 uint64_t arm_sctlr(CPUARMState *env, int el)
9959 {
9960     /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
9961     if (el == 0) {
9962         ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
9963         el = (mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1);
9964     }
9965     return env->cp15.sctlr_el[el];
9966 }
9967 
9968 /* Return the SCTLR value which controls this address translation regime */
9969 static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
9970 {
9971     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
9972 }
9973 
9974 #ifndef CONFIG_USER_ONLY
9975 
9976 /* Return true if the specified stage of address translation is disabled */
9977 static inline bool regime_translation_disabled(CPUARMState *env,
9978                                                ARMMMUIdx mmu_idx)
9979 {
9980     if (arm_feature(env, ARM_FEATURE_M)) {
9981         switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
9982                 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
9983         case R_V7M_MPU_CTRL_ENABLE_MASK:
9984             /* Enabled, but not for HardFault and NMI */
9985             return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
9986         case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
9987             /* Enabled for all cases */
9988             return false;
9989         case 0:
9990         default:
9991             /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9992              * we warned about that in armv7m_nvic.c when the guest set it.
9993              */
9994             return true;
9995         }
9996     }
9997 
9998     if (mmu_idx == ARMMMUIdx_Stage2) {
9999         /* HCR.DC means HCR.VM behaves as 1 */
10000         return (env->cp15.hcr_el2 & (HCR_DC | HCR_VM)) == 0;
10001     }
10002 
10003     if (env->cp15.hcr_el2 & HCR_TGE) {
10004         /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
10005         if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
10006             return true;
10007         }
10008     }
10009 
10010     if ((env->cp15.hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
10011         /* HCR.DC means SCTLR_EL1.M behaves as 0 */
10012         return true;
10013     }
10014 
10015     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
10016 }
10017 
10018 static inline bool regime_translation_big_endian(CPUARMState *env,
10019                                                  ARMMMUIdx mmu_idx)
10020 {
10021     return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
10022 }
10023 
10024 /* Return the TTBR associated with this translation regime */
10025 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
10026                                    int ttbrn)
10027 {
10028     if (mmu_idx == ARMMMUIdx_Stage2) {
10029         return env->cp15.vttbr_el2;
10030     }
10031     if (ttbrn == 0) {
10032         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
10033     } else {
10034         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
10035     }
10036 }
10037 
10038 #endif /* !CONFIG_USER_ONLY */
10039 
10040 /* Convert a possible stage1+2 MMU index into the appropriate
10041  * stage 1 MMU index
10042  */
10043 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
10044 {
10045     switch (mmu_idx) {
10046     case ARMMMUIdx_E10_0:
10047         return ARMMMUIdx_Stage1_E0;
10048     case ARMMMUIdx_E10_1:
10049         return ARMMMUIdx_Stage1_E1;
10050     case ARMMMUIdx_E10_1_PAN:
10051         return ARMMMUIdx_Stage1_E1_PAN;
10052     default:
10053         return mmu_idx;
10054     }
10055 }
10056 
10057 /* Return true if the translation regime is using LPAE format page tables */
10058 static inline bool regime_using_lpae_format(CPUARMState *env,
10059                                             ARMMMUIdx mmu_idx)
10060 {
10061     int el = regime_el(env, mmu_idx);
10062     if (el == 2 || arm_el_is_aa64(env, el)) {
10063         return true;
10064     }
10065     if (arm_feature(env, ARM_FEATURE_LPAE)
10066         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
10067         return true;
10068     }
10069     return false;
10070 }
10071 
10072 /* Returns true if the stage 1 translation regime is using LPAE format page
10073  * tables. Used when raising alignment exceptions, whose FSR changes depending
10074  * on whether the long or short descriptor format is in use. */
10075 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
10076 {
10077     mmu_idx = stage_1_mmu_idx(mmu_idx);
10078 
10079     return regime_using_lpae_format(env, mmu_idx);
10080 }
10081 
10082 #ifndef CONFIG_USER_ONLY
10083 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
10084 {
10085     switch (mmu_idx) {
10086     case ARMMMUIdx_SE10_0:
10087     case ARMMMUIdx_E20_0:
10088     case ARMMMUIdx_Stage1_E0:
10089     case ARMMMUIdx_MUser:
10090     case ARMMMUIdx_MSUser:
10091     case ARMMMUIdx_MUserNegPri:
10092     case ARMMMUIdx_MSUserNegPri:
10093         return true;
10094     default:
10095         return false;
10096     case ARMMMUIdx_E10_0:
10097     case ARMMMUIdx_E10_1:
10098     case ARMMMUIdx_E10_1_PAN:
10099         g_assert_not_reached();
10100     }
10101 }
10102 
10103 /* Translate section/page access permissions to page
10104  * R/W protection flags
10105  *
10106  * @env:         CPUARMState
10107  * @mmu_idx:     MMU index indicating required translation regime
10108  * @ap:          The 3-bit access permissions (AP[2:0])
10109  * @domain_prot: The 2-bit domain access permissions
10110  */
10111 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
10112                                 int ap, int domain_prot)
10113 {
10114     bool is_user = regime_is_user(env, mmu_idx);
10115 
10116     if (domain_prot == 3) {
10117         return PAGE_READ | PAGE_WRITE;
10118     }
10119 
10120     switch (ap) {
10121     case 0:
10122         if (arm_feature(env, ARM_FEATURE_V7)) {
10123             return 0;
10124         }
10125         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
10126         case SCTLR_S:
10127             return is_user ? 0 : PAGE_READ;
10128         case SCTLR_R:
10129             return PAGE_READ;
10130         default:
10131             return 0;
10132         }
10133     case 1:
10134         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10135     case 2:
10136         if (is_user) {
10137             return PAGE_READ;
10138         } else {
10139             return PAGE_READ | PAGE_WRITE;
10140         }
10141     case 3:
10142         return PAGE_READ | PAGE_WRITE;
10143     case 4: /* Reserved.  */
10144         return 0;
10145     case 5:
10146         return is_user ? 0 : PAGE_READ;
10147     case 6:
10148         return PAGE_READ;
10149     case 7:
10150         if (!arm_feature(env, ARM_FEATURE_V6K)) {
10151             return 0;
10152         }
10153         return PAGE_READ;
10154     default:
10155         g_assert_not_reached();
10156     }
10157 }
10158 
10159 /* Translate section/page access permissions to page
10160  * R/W protection flags.
10161  *
10162  * @ap:      The 2-bit simple AP (AP[2:1])
10163  * @is_user: TRUE if accessing from PL0
10164  */
10165 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
10166 {
10167     switch (ap) {
10168     case 0:
10169         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
10170     case 1:
10171         return PAGE_READ | PAGE_WRITE;
10172     case 2:
10173         return is_user ? 0 : PAGE_READ;
10174     case 3:
10175         return PAGE_READ;
10176     default:
10177         g_assert_not_reached();
10178     }
10179 }
10180 
10181 static inline int
10182 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
10183 {
10184     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
10185 }
10186 
10187 /* Translate S2 section/page access permissions to protection flags
10188  *
10189  * @env:     CPUARMState
10190  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
10191  * @xn:      XN (execute-never) bits
10192  * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
10193  */
10194 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
10195 {
10196     int prot = 0;
10197 
10198     if (s2ap & 1) {
10199         prot |= PAGE_READ;
10200     }
10201     if (s2ap & 2) {
10202         prot |= PAGE_WRITE;
10203     }
10204 
10205     if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
10206         switch (xn) {
10207         case 0:
10208             prot |= PAGE_EXEC;
10209             break;
10210         case 1:
10211             if (s1_is_el0) {
10212                 prot |= PAGE_EXEC;
10213             }
10214             break;
10215         case 2:
10216             break;
10217         case 3:
10218             if (!s1_is_el0) {
10219                 prot |= PAGE_EXEC;
10220             }
10221             break;
10222         default:
10223             g_assert_not_reached();
10224         }
10225     } else {
10226         if (!extract32(xn, 1, 1)) {
10227             if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
10228                 prot |= PAGE_EXEC;
10229             }
10230         }
10231     }
10232     return prot;
10233 }
10234 
10235 /* Translate section/page access permissions to protection flags
10236  *
10237  * @env:     CPUARMState
10238  * @mmu_idx: MMU index indicating required translation regime
10239  * @is_aa64: TRUE if AArch64
10240  * @ap:      The 2-bit simple AP (AP[2:1])
10241  * @ns:      NS (non-secure) bit
10242  * @xn:      XN (execute-never) bit
10243  * @pxn:     PXN (privileged execute-never) bit
10244  */
10245 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
10246                       int ap, int ns, int xn, int pxn)
10247 {
10248     bool is_user = regime_is_user(env, mmu_idx);
10249     int prot_rw, user_rw;
10250     bool have_wxn;
10251     int wxn = 0;
10252 
10253     assert(mmu_idx != ARMMMUIdx_Stage2);
10254 
10255     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
10256     if (is_user) {
10257         prot_rw = user_rw;
10258     } else {
10259         if (user_rw && regime_is_pan(env, mmu_idx)) {
10260             /* PAN forbids data accesses but doesn't affect insn fetch */
10261             prot_rw = 0;
10262         } else {
10263             prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
10264         }
10265     }
10266 
10267     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
10268         return prot_rw;
10269     }
10270 
10271     /* TODO have_wxn should be replaced with
10272      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
10273      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
10274      * compatible processors have EL2, which is required for [U]WXN.
10275      */
10276     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
10277 
10278     if (have_wxn) {
10279         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
10280     }
10281 
10282     if (is_aa64) {
10283         if (regime_has_2_ranges(mmu_idx) && !is_user) {
10284             xn = pxn || (user_rw & PAGE_WRITE);
10285         }
10286     } else if (arm_feature(env, ARM_FEATURE_V7)) {
10287         switch (regime_el(env, mmu_idx)) {
10288         case 1:
10289         case 3:
10290             if (is_user) {
10291                 xn = xn || !(user_rw & PAGE_READ);
10292             } else {
10293                 int uwxn = 0;
10294                 if (have_wxn) {
10295                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
10296                 }
10297                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
10298                      (uwxn && (user_rw & PAGE_WRITE));
10299             }
10300             break;
10301         case 2:
10302             break;
10303         }
10304     } else {
10305         xn = wxn = 0;
10306     }
10307 
10308     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
10309         return prot_rw;
10310     }
10311     return prot_rw | PAGE_EXEC;
10312 }
10313 
10314 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
10315                                      uint32_t *table, uint32_t address)
10316 {
10317     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10318     TCR *tcr = regime_tcr(env, mmu_idx);
10319 
10320     if (address & tcr->mask) {
10321         if (tcr->raw_tcr & TTBCR_PD1) {
10322             /* Translation table walk disabled for TTBR1 */
10323             return false;
10324         }
10325         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
10326     } else {
10327         if (tcr->raw_tcr & TTBCR_PD0) {
10328             /* Translation table walk disabled for TTBR0 */
10329             return false;
10330         }
10331         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
10332     }
10333     *table |= (address >> 18) & 0x3ffc;
10334     return true;
10335 }
10336 
10337 /* Translate a S1 pagetable walk through S2 if needed.  */
10338 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
10339                                hwaddr addr, MemTxAttrs txattrs,
10340                                ARMMMUFaultInfo *fi)
10341 {
10342     if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
10343         !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
10344         target_ulong s2size;
10345         hwaddr s2pa;
10346         int s2prot;
10347         int ret;
10348         ARMCacheAttrs cacheattrs = {};
10349 
10350         ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, ARMMMUIdx_Stage2,
10351                                  false,
10352                                  &s2pa, &txattrs, &s2prot, &s2size, fi,
10353                                  &cacheattrs);
10354         if (ret) {
10355             assert(fi->type != ARMFault_None);
10356             fi->s2addr = addr;
10357             fi->stage2 = true;
10358             fi->s1ptw = true;
10359             return ~0;
10360         }
10361         if ((env->cp15.hcr_el2 & HCR_PTW) && (cacheattrs.attrs & 0xf0) == 0) {
10362             /*
10363              * PTW set and S1 walk touched S2 Device memory:
10364              * generate Permission fault.
10365              */
10366             fi->type = ARMFault_Permission;
10367             fi->s2addr = addr;
10368             fi->stage2 = true;
10369             fi->s1ptw = true;
10370             return ~0;
10371         }
10372         addr = s2pa;
10373     }
10374     return addr;
10375 }
10376 
10377 /* All loads done in the course of a page table walk go through here. */
10378 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10379                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10380 {
10381     ARMCPU *cpu = ARM_CPU(cs);
10382     CPUARMState *env = &cpu->env;
10383     MemTxAttrs attrs = {};
10384     MemTxResult result = MEMTX_OK;
10385     AddressSpace *as;
10386     uint32_t data;
10387 
10388     attrs.secure = is_secure;
10389     as = arm_addressspace(cs, attrs);
10390     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10391     if (fi->s1ptw) {
10392         return 0;
10393     }
10394     if (regime_translation_big_endian(env, mmu_idx)) {
10395         data = address_space_ldl_be(as, addr, attrs, &result);
10396     } else {
10397         data = address_space_ldl_le(as, addr, attrs, &result);
10398     }
10399     if (result == MEMTX_OK) {
10400         return data;
10401     }
10402     fi->type = ARMFault_SyncExternalOnWalk;
10403     fi->ea = arm_extabort_type(result);
10404     return 0;
10405 }
10406 
10407 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
10408                             ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
10409 {
10410     ARMCPU *cpu = ARM_CPU(cs);
10411     CPUARMState *env = &cpu->env;
10412     MemTxAttrs attrs = {};
10413     MemTxResult result = MEMTX_OK;
10414     AddressSpace *as;
10415     uint64_t data;
10416 
10417     attrs.secure = is_secure;
10418     as = arm_addressspace(cs, attrs);
10419     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
10420     if (fi->s1ptw) {
10421         return 0;
10422     }
10423     if (regime_translation_big_endian(env, mmu_idx)) {
10424         data = address_space_ldq_be(as, addr, attrs, &result);
10425     } else {
10426         data = address_space_ldq_le(as, addr, attrs, &result);
10427     }
10428     if (result == MEMTX_OK) {
10429         return data;
10430     }
10431     fi->type = ARMFault_SyncExternalOnWalk;
10432     fi->ea = arm_extabort_type(result);
10433     return 0;
10434 }
10435 
10436 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
10437                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10438                              hwaddr *phys_ptr, int *prot,
10439                              target_ulong *page_size,
10440                              ARMMMUFaultInfo *fi)
10441 {
10442     CPUState *cs = env_cpu(env);
10443     int level = 1;
10444     uint32_t table;
10445     uint32_t desc;
10446     int type;
10447     int ap;
10448     int domain = 0;
10449     int domain_prot;
10450     hwaddr phys_addr;
10451     uint32_t dacr;
10452 
10453     /* Pagetable walk.  */
10454     /* Lookup l1 descriptor.  */
10455     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10456         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10457         fi->type = ARMFault_Translation;
10458         goto do_fault;
10459     }
10460     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10461                        mmu_idx, fi);
10462     if (fi->type != ARMFault_None) {
10463         goto do_fault;
10464     }
10465     type = (desc & 3);
10466     domain = (desc >> 5) & 0x0f;
10467     if (regime_el(env, mmu_idx) == 1) {
10468         dacr = env->cp15.dacr_ns;
10469     } else {
10470         dacr = env->cp15.dacr_s;
10471     }
10472     domain_prot = (dacr >> (domain * 2)) & 3;
10473     if (type == 0) {
10474         /* Section translation fault.  */
10475         fi->type = ARMFault_Translation;
10476         goto do_fault;
10477     }
10478     if (type != 2) {
10479         level = 2;
10480     }
10481     if (domain_prot == 0 || domain_prot == 2) {
10482         fi->type = ARMFault_Domain;
10483         goto do_fault;
10484     }
10485     if (type == 2) {
10486         /* 1Mb section.  */
10487         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10488         ap = (desc >> 10) & 3;
10489         *page_size = 1024 * 1024;
10490     } else {
10491         /* Lookup l2 entry.  */
10492         if (type == 1) {
10493             /* Coarse pagetable.  */
10494             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10495         } else {
10496             /* Fine pagetable.  */
10497             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
10498         }
10499         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10500                            mmu_idx, fi);
10501         if (fi->type != ARMFault_None) {
10502             goto do_fault;
10503         }
10504         switch (desc & 3) {
10505         case 0: /* Page translation fault.  */
10506             fi->type = ARMFault_Translation;
10507             goto do_fault;
10508         case 1: /* 64k page.  */
10509             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10510             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
10511             *page_size = 0x10000;
10512             break;
10513         case 2: /* 4k page.  */
10514             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10515             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
10516             *page_size = 0x1000;
10517             break;
10518         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10519             if (type == 1) {
10520                 /* ARMv6/XScale extended small page format */
10521                 if (arm_feature(env, ARM_FEATURE_XSCALE)
10522                     || arm_feature(env, ARM_FEATURE_V6)) {
10523                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10524                     *page_size = 0x1000;
10525                 } else {
10526                     /* UNPREDICTABLE in ARMv5; we choose to take a
10527                      * page translation fault.
10528                      */
10529                     fi->type = ARMFault_Translation;
10530                     goto do_fault;
10531                 }
10532             } else {
10533                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
10534                 *page_size = 0x400;
10535             }
10536             ap = (desc >> 4) & 3;
10537             break;
10538         default:
10539             /* Never happens, but compiler isn't smart enough to tell.  */
10540             abort();
10541         }
10542     }
10543     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10544     *prot |= *prot ? PAGE_EXEC : 0;
10545     if (!(*prot & (1 << access_type))) {
10546         /* Access permission fault.  */
10547         fi->type = ARMFault_Permission;
10548         goto do_fault;
10549     }
10550     *phys_ptr = phys_addr;
10551     return false;
10552 do_fault:
10553     fi->domain = domain;
10554     fi->level = level;
10555     return true;
10556 }
10557 
10558 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
10559                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
10560                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10561                              target_ulong *page_size, ARMMMUFaultInfo *fi)
10562 {
10563     CPUState *cs = env_cpu(env);
10564     ARMCPU *cpu = env_archcpu(env);
10565     int level = 1;
10566     uint32_t table;
10567     uint32_t desc;
10568     uint32_t xn;
10569     uint32_t pxn = 0;
10570     int type;
10571     int ap;
10572     int domain = 0;
10573     int domain_prot;
10574     hwaddr phys_addr;
10575     uint32_t dacr;
10576     bool ns;
10577 
10578     /* Pagetable walk.  */
10579     /* Lookup l1 descriptor.  */
10580     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
10581         /* Section translation fault if page walk is disabled by PD0 or PD1 */
10582         fi->type = ARMFault_Translation;
10583         goto do_fault;
10584     }
10585     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10586                        mmu_idx, fi);
10587     if (fi->type != ARMFault_None) {
10588         goto do_fault;
10589     }
10590     type = (desc & 3);
10591     if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
10592         /* Section translation fault, or attempt to use the encoding
10593          * which is Reserved on implementations without PXN.
10594          */
10595         fi->type = ARMFault_Translation;
10596         goto do_fault;
10597     }
10598     if ((type == 1) || !(desc & (1 << 18))) {
10599         /* Page or Section.  */
10600         domain = (desc >> 5) & 0x0f;
10601     }
10602     if (regime_el(env, mmu_idx) == 1) {
10603         dacr = env->cp15.dacr_ns;
10604     } else {
10605         dacr = env->cp15.dacr_s;
10606     }
10607     if (type == 1) {
10608         level = 2;
10609     }
10610     domain_prot = (dacr >> (domain * 2)) & 3;
10611     if (domain_prot == 0 || domain_prot == 2) {
10612         /* Section or Page domain fault */
10613         fi->type = ARMFault_Domain;
10614         goto do_fault;
10615     }
10616     if (type != 1) {
10617         if (desc & (1 << 18)) {
10618             /* Supersection.  */
10619             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
10620             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
10621             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
10622             *page_size = 0x1000000;
10623         } else {
10624             /* Section.  */
10625             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
10626             *page_size = 0x100000;
10627         }
10628         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
10629         xn = desc & (1 << 4);
10630         pxn = desc & 1;
10631         ns = extract32(desc, 19, 1);
10632     } else {
10633         if (cpu_isar_feature(aa32_pxn, cpu)) {
10634             pxn = (desc >> 2) & 1;
10635         }
10636         ns = extract32(desc, 3, 1);
10637         /* Lookup l2 entry.  */
10638         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
10639         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
10640                            mmu_idx, fi);
10641         if (fi->type != ARMFault_None) {
10642             goto do_fault;
10643         }
10644         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
10645         switch (desc & 3) {
10646         case 0: /* Page translation fault.  */
10647             fi->type = ARMFault_Translation;
10648             goto do_fault;
10649         case 1: /* 64k page.  */
10650             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
10651             xn = desc & (1 << 15);
10652             *page_size = 0x10000;
10653             break;
10654         case 2: case 3: /* 4k page.  */
10655             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
10656             xn = desc & 1;
10657             *page_size = 0x1000;
10658             break;
10659         default:
10660             /* Never happens, but compiler isn't smart enough to tell.  */
10661             abort();
10662         }
10663     }
10664     if (domain_prot == 3) {
10665         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
10666     } else {
10667         if (pxn && !regime_is_user(env, mmu_idx)) {
10668             xn = 1;
10669         }
10670         if (xn && access_type == MMU_INST_FETCH) {
10671             fi->type = ARMFault_Permission;
10672             goto do_fault;
10673         }
10674 
10675         if (arm_feature(env, ARM_FEATURE_V6K) &&
10676                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
10677             /* The simplified model uses AP[0] as an access control bit.  */
10678             if ((ap & 1) == 0) {
10679                 /* Access flag fault.  */
10680                 fi->type = ARMFault_AccessFlag;
10681                 goto do_fault;
10682             }
10683             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
10684         } else {
10685             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
10686         }
10687         if (*prot && !xn) {
10688             *prot |= PAGE_EXEC;
10689         }
10690         if (!(*prot & (1 << access_type))) {
10691             /* Access permission fault.  */
10692             fi->type = ARMFault_Permission;
10693             goto do_fault;
10694         }
10695     }
10696     if (ns) {
10697         /* The NS bit will (as required by the architecture) have no effect if
10698          * the CPU doesn't support TZ or this is a non-secure translation
10699          * regime, because the attribute will already be non-secure.
10700          */
10701         attrs->secure = false;
10702     }
10703     *phys_ptr = phys_addr;
10704     return false;
10705 do_fault:
10706     fi->domain = domain;
10707     fi->level = level;
10708     return true;
10709 }
10710 
10711 /*
10712  * check_s2_mmu_setup
10713  * @cpu:        ARMCPU
10714  * @is_aa64:    True if the translation regime is in AArch64 state
10715  * @startlevel: Suggested starting level
10716  * @inputsize:  Bitsize of IPAs
10717  * @stride:     Page-table stride (See the ARM ARM)
10718  *
10719  * Returns true if the suggested S2 translation parameters are OK and
10720  * false otherwise.
10721  */
10722 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
10723                                int inputsize, int stride)
10724 {
10725     const int grainsize = stride + 3;
10726     int startsizecheck;
10727 
10728     /* Negative levels are never allowed.  */
10729     if (level < 0) {
10730         return false;
10731     }
10732 
10733     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
10734     if (startsizecheck < 1 || startsizecheck > stride + 4) {
10735         return false;
10736     }
10737 
10738     if (is_aa64) {
10739         CPUARMState *env = &cpu->env;
10740         unsigned int pamax = arm_pamax(cpu);
10741 
10742         switch (stride) {
10743         case 13: /* 64KB Pages.  */
10744             if (level == 0 || (level == 1 && pamax <= 42)) {
10745                 return false;
10746             }
10747             break;
10748         case 11: /* 16KB Pages.  */
10749             if (level == 0 || (level == 1 && pamax <= 40)) {
10750                 return false;
10751             }
10752             break;
10753         case 9: /* 4KB Pages.  */
10754             if (level == 0 && pamax <= 42) {
10755                 return false;
10756             }
10757             break;
10758         default:
10759             g_assert_not_reached();
10760         }
10761 
10762         /* Inputsize checks.  */
10763         if (inputsize > pamax &&
10764             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
10765             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
10766             return false;
10767         }
10768     } else {
10769         /* AArch32 only supports 4KB pages. Assert on that.  */
10770         assert(stride == 9);
10771 
10772         if (level == 0) {
10773             return false;
10774         }
10775     }
10776     return true;
10777 }
10778 
10779 /* Translate from the 4-bit stage 2 representation of
10780  * memory attributes (without cache-allocation hints) to
10781  * the 8-bit representation of the stage 1 MAIR registers
10782  * (which includes allocation hints).
10783  *
10784  * ref: shared/translation/attrs/S2AttrDecode()
10785  *      .../S2ConvertAttrsHints()
10786  */
10787 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
10788 {
10789     uint8_t hiattr = extract32(s2attrs, 2, 2);
10790     uint8_t loattr = extract32(s2attrs, 0, 2);
10791     uint8_t hihint = 0, lohint = 0;
10792 
10793     if (hiattr != 0) { /* normal memory */
10794         if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
10795             hiattr = loattr = 1; /* non-cacheable */
10796         } else {
10797             if (hiattr != 1) { /* Write-through or write-back */
10798                 hihint = 3; /* RW allocate */
10799             }
10800             if (loattr != 1) { /* Write-through or write-back */
10801                 lohint = 3; /* RW allocate */
10802             }
10803         }
10804     }
10805 
10806     return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
10807 }
10808 #endif /* !CONFIG_USER_ONLY */
10809 
10810 static int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
10811 {
10812     if (regime_has_2_ranges(mmu_idx)) {
10813         return extract64(tcr, 37, 2);
10814     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10815         return 0; /* VTCR_EL2 */
10816     } else {
10817         /* Replicate the single TBI bit so we always have 2 bits.  */
10818         return extract32(tcr, 20, 1) * 3;
10819     }
10820 }
10821 
10822 static int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
10823 {
10824     if (regime_has_2_ranges(mmu_idx)) {
10825         return extract64(tcr, 51, 2);
10826     } else if (mmu_idx == ARMMMUIdx_Stage2) {
10827         return 0; /* VTCR_EL2 */
10828     } else {
10829         /* Replicate the single TBID bit so we always have 2 bits.  */
10830         return extract32(tcr, 29, 1) * 3;
10831     }
10832 }
10833 
10834 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
10835 {
10836     if (regime_has_2_ranges(mmu_idx)) {
10837         return extract64(tcr, 57, 2);
10838     } else {
10839         /* Replicate the single TCMA bit so we always have 2 bits.  */
10840         return extract32(tcr, 30, 1) * 3;
10841     }
10842 }
10843 
10844 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
10845                                    ARMMMUIdx mmu_idx, bool data)
10846 {
10847     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10848     bool epd, hpd, using16k, using64k;
10849     int select, tsz, tbi;
10850 
10851     if (!regime_has_2_ranges(mmu_idx)) {
10852         select = 0;
10853         tsz = extract32(tcr, 0, 6);
10854         using64k = extract32(tcr, 14, 1);
10855         using16k = extract32(tcr, 15, 1);
10856         if (mmu_idx == ARMMMUIdx_Stage2) {
10857             /* VTCR_EL2 */
10858             hpd = false;
10859         } else {
10860             hpd = extract32(tcr, 24, 1);
10861         }
10862         epd = false;
10863     } else {
10864         /*
10865          * Bit 55 is always between the two regions, and is canonical for
10866          * determining if address tagging is enabled.
10867          */
10868         select = extract64(va, 55, 1);
10869         if (!select) {
10870             tsz = extract32(tcr, 0, 6);
10871             epd = extract32(tcr, 7, 1);
10872             using64k = extract32(tcr, 14, 1);
10873             using16k = extract32(tcr, 15, 1);
10874             hpd = extract64(tcr, 41, 1);
10875         } else {
10876             int tg = extract32(tcr, 30, 2);
10877             using16k = tg == 1;
10878             using64k = tg == 3;
10879             tsz = extract32(tcr, 16, 6);
10880             epd = extract32(tcr, 23, 1);
10881             hpd = extract64(tcr, 42, 1);
10882         }
10883     }
10884     tsz = MIN(tsz, 39);  /* TODO: ARMv8.4-TTST */
10885     tsz = MAX(tsz, 16);  /* TODO: ARMv8.2-LVA  */
10886 
10887     /* Present TBI as a composite with TBID.  */
10888     tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
10889     if (!data) {
10890         tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
10891     }
10892     tbi = (tbi >> select) & 1;
10893 
10894     return (ARMVAParameters) {
10895         .tsz = tsz,
10896         .select = select,
10897         .tbi = tbi,
10898         .epd = epd,
10899         .hpd = hpd,
10900         .using16k = using16k,
10901         .using64k = using64k,
10902     };
10903 }
10904 
10905 #ifndef CONFIG_USER_ONLY
10906 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
10907                                           ARMMMUIdx mmu_idx)
10908 {
10909     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
10910     uint32_t el = regime_el(env, mmu_idx);
10911     int select, tsz;
10912     bool epd, hpd;
10913 
10914     if (mmu_idx == ARMMMUIdx_Stage2) {
10915         /* VTCR */
10916         bool sext = extract32(tcr, 4, 1);
10917         bool sign = extract32(tcr, 3, 1);
10918 
10919         /*
10920          * If the sign-extend bit is not the same as t0sz[3], the result
10921          * is unpredictable. Flag this as a guest error.
10922          */
10923         if (sign != sext) {
10924             qemu_log_mask(LOG_GUEST_ERROR,
10925                           "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10926         }
10927         tsz = sextract32(tcr, 0, 4) + 8;
10928         select = 0;
10929         hpd = false;
10930         epd = false;
10931     } else if (el == 2) {
10932         /* HTCR */
10933         tsz = extract32(tcr, 0, 3);
10934         select = 0;
10935         hpd = extract64(tcr, 24, 1);
10936         epd = false;
10937     } else {
10938         int t0sz = extract32(tcr, 0, 3);
10939         int t1sz = extract32(tcr, 16, 3);
10940 
10941         if (t1sz == 0) {
10942             select = va > (0xffffffffu >> t0sz);
10943         } else {
10944             /* Note that we will detect errors later.  */
10945             select = va >= ~(0xffffffffu >> t1sz);
10946         }
10947         if (!select) {
10948             tsz = t0sz;
10949             epd = extract32(tcr, 7, 1);
10950             hpd = extract64(tcr, 41, 1);
10951         } else {
10952             tsz = t1sz;
10953             epd = extract32(tcr, 23, 1);
10954             hpd = extract64(tcr, 42, 1);
10955         }
10956         /* For aarch32, hpd0 is not enabled without t2e as well.  */
10957         hpd &= extract32(tcr, 6, 1);
10958     }
10959 
10960     return (ARMVAParameters) {
10961         .tsz = tsz,
10962         .select = select,
10963         .epd = epd,
10964         .hpd = hpd,
10965     };
10966 }
10967 
10968 /**
10969  * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
10970  *
10971  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10972  * prot and page_size may not be filled in, and the populated fsr value provides
10973  * information on why the translation aborted, in the format of a long-format
10974  * DFSR/IFSR fault register, with the following caveats:
10975  *  * the WnR bit is never set (the caller must do this).
10976  *
10977  * @env: CPUARMState
10978  * @address: virtual address to get physical address for
10979  * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
10980  * @mmu_idx: MMU index indicating required translation regime
10981  * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page table
10982  *             walk), must be true if this is stage 2 of a stage 1+2 walk for an
10983  *             EL0 access). If @mmu_idx is anything else, @s1_is_el0 is ignored.
10984  * @phys_ptr: set to the physical address corresponding to the virtual address
10985  * @attrs: set to the memory transaction attributes to use
10986  * @prot: set to the permissions for the page containing phys_ptr
10987  * @page_size_ptr: set to the size of the page containing phys_ptr
10988  * @fi: set to fault info if the translation fails
10989  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10990  */
10991 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
10992                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
10993                                bool s1_is_el0,
10994                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
10995                                target_ulong *page_size_ptr,
10996                                ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
10997 {
10998     ARMCPU *cpu = env_archcpu(env);
10999     CPUState *cs = CPU(cpu);
11000     /* Read an LPAE long-descriptor translation table. */
11001     ARMFaultType fault_type = ARMFault_Translation;
11002     uint32_t level;
11003     ARMVAParameters param;
11004     uint64_t ttbr;
11005     hwaddr descaddr, indexmask, indexmask_grainsize;
11006     uint32_t tableattrs;
11007     target_ulong page_size;
11008     uint32_t attrs;
11009     int32_t stride;
11010     int addrsize, inputsize;
11011     TCR *tcr = regime_tcr(env, mmu_idx);
11012     int ap, ns, xn, pxn;
11013     uint32_t el = regime_el(env, mmu_idx);
11014     uint64_t descaddrmask;
11015     bool aarch64 = arm_el_is_aa64(env, el);
11016     bool guarded = false;
11017 
11018     /* TODO: This code does not support shareability levels. */
11019     if (aarch64) {
11020         param = aa64_va_parameters(env, address, mmu_idx,
11021                                    access_type != MMU_INST_FETCH);
11022         level = 0;
11023         addrsize = 64 - 8 * param.tbi;
11024         inputsize = 64 - param.tsz;
11025     } else {
11026         param = aa32_va_parameters(env, address, mmu_idx);
11027         level = 1;
11028         addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
11029         inputsize = addrsize - param.tsz;
11030     }
11031 
11032     /*
11033      * We determined the region when collecting the parameters, but we
11034      * have not yet validated that the address is valid for the region.
11035      * Extract the top bits and verify that they all match select.
11036      *
11037      * For aa32, if inputsize == addrsize, then we have selected the
11038      * region by exclusion in aa32_va_parameters and there is no more
11039      * validation to do here.
11040      */
11041     if (inputsize < addrsize) {
11042         target_ulong top_bits = sextract64(address, inputsize,
11043                                            addrsize - inputsize);
11044         if (-top_bits != param.select) {
11045             /* The gap between the two regions is a Translation fault */
11046             fault_type = ARMFault_Translation;
11047             goto do_fault;
11048         }
11049     }
11050 
11051     if (param.using64k) {
11052         stride = 13;
11053     } else if (param.using16k) {
11054         stride = 11;
11055     } else {
11056         stride = 9;
11057     }
11058 
11059     /* Note that QEMU ignores shareability and cacheability attributes,
11060      * so we don't need to do anything with the SH, ORGN, IRGN fields
11061      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
11062      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
11063      * implement any ASID-like capability so we can ignore it (instead
11064      * we will always flush the TLB any time the ASID is changed).
11065      */
11066     ttbr = regime_ttbr(env, mmu_idx, param.select);
11067 
11068     /* Here we should have set up all the parameters for the translation:
11069      * inputsize, ttbr, epd, stride, tbi
11070      */
11071 
11072     if (param.epd) {
11073         /* Translation table walk disabled => Translation fault on TLB miss
11074          * Note: This is always 0 on 64-bit EL2 and EL3.
11075          */
11076         goto do_fault;
11077     }
11078 
11079     if (mmu_idx != ARMMMUIdx_Stage2) {
11080         /* The starting level depends on the virtual address size (which can
11081          * be up to 48 bits) and the translation granule size. It indicates
11082          * the number of strides (stride bits at a time) needed to
11083          * consume the bits of the input address. In the pseudocode this is:
11084          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
11085          * where their 'inputsize' is our 'inputsize', 'grainsize' is
11086          * our 'stride + 3' and 'stride' is our 'stride'.
11087          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
11088          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
11089          * = 4 - (inputsize - 4) / stride;
11090          */
11091         level = 4 - (inputsize - 4) / stride;
11092     } else {
11093         /* For stage 2 translations the starting level is specified by the
11094          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
11095          */
11096         uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
11097         uint32_t startlevel;
11098         bool ok;
11099 
11100         if (!aarch64 || stride == 9) {
11101             /* AArch32 or 4KB pages */
11102             startlevel = 2 - sl0;
11103         } else {
11104             /* 16KB or 64KB pages */
11105             startlevel = 3 - sl0;
11106         }
11107 
11108         /* Check that the starting level is valid. */
11109         ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
11110                                 inputsize, stride);
11111         if (!ok) {
11112             fault_type = ARMFault_Translation;
11113             goto do_fault;
11114         }
11115         level = startlevel;
11116     }
11117 
11118     indexmask_grainsize = (1ULL << (stride + 3)) - 1;
11119     indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
11120 
11121     /* Now we can extract the actual base address from the TTBR */
11122     descaddr = extract64(ttbr, 0, 48);
11123     /*
11124      * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
11125      * and also to mask out CnP (bit 0) which could validly be non-zero.
11126      */
11127     descaddr &= ~indexmask;
11128 
11129     /* The address field in the descriptor goes up to bit 39 for ARMv7
11130      * but up to bit 47 for ARMv8, but we use the descaddrmask
11131      * up to bit 39 for AArch32, because we don't need other bits in that case
11132      * to construct next descriptor address (anyway they should be all zeroes).
11133      */
11134     descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
11135                    ~indexmask_grainsize;
11136 
11137     /* Secure accesses start with the page table in secure memory and
11138      * can be downgraded to non-secure at any step. Non-secure accesses
11139      * remain non-secure. We implement this by just ORing in the NSTable/NS
11140      * bits at each step.
11141      */
11142     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
11143     for (;;) {
11144         uint64_t descriptor;
11145         bool nstable;
11146 
11147         descaddr |= (address >> (stride * (4 - level))) & indexmask;
11148         descaddr &= ~7ULL;
11149         nstable = extract32(tableattrs, 4, 1);
11150         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
11151         if (fi->type != ARMFault_None) {
11152             goto do_fault;
11153         }
11154 
11155         if (!(descriptor & 1) ||
11156             (!(descriptor & 2) && (level == 3))) {
11157             /* Invalid, or the Reserved level 3 encoding */
11158             goto do_fault;
11159         }
11160         descaddr = descriptor & descaddrmask;
11161 
11162         if ((descriptor & 2) && (level < 3)) {
11163             /* Table entry. The top five bits are attributes which may
11164              * propagate down through lower levels of the table (and
11165              * which are all arranged so that 0 means "no effect", so
11166              * we can gather them up by ORing in the bits at each level).
11167              */
11168             tableattrs |= extract64(descriptor, 59, 5);
11169             level++;
11170             indexmask = indexmask_grainsize;
11171             continue;
11172         }
11173         /* Block entry at level 1 or 2, or page entry at level 3.
11174          * These are basically the same thing, although the number
11175          * of bits we pull in from the vaddr varies.
11176          */
11177         page_size = (1ULL << ((stride * (4 - level)) + 3));
11178         descaddr |= (address & (page_size - 1));
11179         /* Extract attributes from the descriptor */
11180         attrs = extract64(descriptor, 2, 10)
11181             | (extract64(descriptor, 52, 12) << 10);
11182 
11183         if (mmu_idx == ARMMMUIdx_Stage2) {
11184             /* Stage 2 table descriptors do not include any attribute fields */
11185             break;
11186         }
11187         /* Merge in attributes from table descriptors */
11188         attrs |= nstable << 3; /* NS */
11189         guarded = extract64(descriptor, 50, 1);  /* GP */
11190         if (param.hpd) {
11191             /* HPD disables all the table attributes except NSTable.  */
11192             break;
11193         }
11194         attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
11195         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
11196          * means "force PL1 access only", which means forcing AP[1] to 0.
11197          */
11198         attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
11199         attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
11200         break;
11201     }
11202     /* Here descaddr is the final physical address, and attributes
11203      * are all in attrs.
11204      */
11205     fault_type = ARMFault_AccessFlag;
11206     if ((attrs & (1 << 8)) == 0) {
11207         /* Access flag */
11208         goto do_fault;
11209     }
11210 
11211     ap = extract32(attrs, 4, 2);
11212 
11213     if (mmu_idx == ARMMMUIdx_Stage2) {
11214         ns = true;
11215         xn = extract32(attrs, 11, 2);
11216         *prot = get_S2prot(env, ap, xn, s1_is_el0);
11217     } else {
11218         ns = extract32(attrs, 3, 1);
11219         xn = extract32(attrs, 12, 1);
11220         pxn = extract32(attrs, 11, 1);
11221         *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
11222     }
11223 
11224     fault_type = ARMFault_Permission;
11225     if (!(*prot & (1 << access_type))) {
11226         goto do_fault;
11227     }
11228 
11229     if (ns) {
11230         /* The NS bit will (as required by the architecture) have no effect if
11231          * the CPU doesn't support TZ or this is a non-secure translation
11232          * regime, because the attribute will already be non-secure.
11233          */
11234         txattrs->secure = false;
11235     }
11236     /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
11237     if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
11238         arm_tlb_bti_gp(txattrs) = true;
11239     }
11240 
11241     if (mmu_idx == ARMMMUIdx_Stage2) {
11242         cacheattrs->attrs = convert_stage2_attrs(env, extract32(attrs, 0, 4));
11243     } else {
11244         /* Index into MAIR registers for cache attributes */
11245         uint8_t attrindx = extract32(attrs, 0, 3);
11246         uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
11247         assert(attrindx <= 7);
11248         cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
11249     }
11250     cacheattrs->shareability = extract32(attrs, 6, 2);
11251 
11252     *phys_ptr = descaddr;
11253     *page_size_ptr = page_size;
11254     return false;
11255 
11256 do_fault:
11257     fi->type = fault_type;
11258     fi->level = level;
11259     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
11260     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2);
11261     return true;
11262 }
11263 
11264 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
11265                                                 ARMMMUIdx mmu_idx,
11266                                                 int32_t address, int *prot)
11267 {
11268     if (!arm_feature(env, ARM_FEATURE_M)) {
11269         *prot = PAGE_READ | PAGE_WRITE;
11270         switch (address) {
11271         case 0xF0000000 ... 0xFFFFFFFF:
11272             if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
11273                 /* hivecs execing is ok */
11274                 *prot |= PAGE_EXEC;
11275             }
11276             break;
11277         case 0x00000000 ... 0x7FFFFFFF:
11278             *prot |= PAGE_EXEC;
11279             break;
11280         }
11281     } else {
11282         /* Default system address map for M profile cores.
11283          * The architecture specifies which regions are execute-never;
11284          * at the MPU level no other checks are defined.
11285          */
11286         switch (address) {
11287         case 0x00000000 ... 0x1fffffff: /* ROM */
11288         case 0x20000000 ... 0x3fffffff: /* SRAM */
11289         case 0x60000000 ... 0x7fffffff: /* RAM */
11290         case 0x80000000 ... 0x9fffffff: /* RAM */
11291             *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11292             break;
11293         case 0x40000000 ... 0x5fffffff: /* Peripheral */
11294         case 0xa0000000 ... 0xbfffffff: /* Device */
11295         case 0xc0000000 ... 0xdfffffff: /* Device */
11296         case 0xe0000000 ... 0xffffffff: /* System */
11297             *prot = PAGE_READ | PAGE_WRITE;
11298             break;
11299         default:
11300             g_assert_not_reached();
11301         }
11302     }
11303 }
11304 
11305 static bool pmsav7_use_background_region(ARMCPU *cpu,
11306                                          ARMMMUIdx mmu_idx, bool is_user)
11307 {
11308     /* Return true if we should use the default memory map as a
11309      * "background" region if there are no hits against any MPU regions.
11310      */
11311     CPUARMState *env = &cpu->env;
11312 
11313     if (is_user) {
11314         return false;
11315     }
11316 
11317     if (arm_feature(env, ARM_FEATURE_M)) {
11318         return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
11319             & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
11320     } else {
11321         return regime_sctlr(env, mmu_idx) & SCTLR_BR;
11322     }
11323 }
11324 
11325 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
11326 {
11327     /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
11328     return arm_feature(env, ARM_FEATURE_M) &&
11329         extract32(address, 20, 12) == 0xe00;
11330 }
11331 
11332 static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
11333 {
11334     /* True if address is in the M profile system region
11335      * 0xe0000000 - 0xffffffff
11336      */
11337     return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
11338 }
11339 
11340 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
11341                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11342                                  hwaddr *phys_ptr, int *prot,
11343                                  target_ulong *page_size,
11344                                  ARMMMUFaultInfo *fi)
11345 {
11346     ARMCPU *cpu = env_archcpu(env);
11347     int n;
11348     bool is_user = regime_is_user(env, mmu_idx);
11349 
11350     *phys_ptr = address;
11351     *page_size = TARGET_PAGE_SIZE;
11352     *prot = 0;
11353 
11354     if (regime_translation_disabled(env, mmu_idx) ||
11355         m_is_ppb_region(env, address)) {
11356         /* MPU disabled or M profile PPB access: use default memory map.
11357          * The other case which uses the default memory map in the
11358          * v7M ARM ARM pseudocode is exception vector reads from the vector
11359          * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11360          * which always does a direct read using address_space_ldl(), rather
11361          * than going via this function, so we don't need to check that here.
11362          */
11363         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11364     } else { /* MPU enabled */
11365         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11366             /* region search */
11367             uint32_t base = env->pmsav7.drbar[n];
11368             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
11369             uint32_t rmask;
11370             bool srdis = false;
11371 
11372             if (!(env->pmsav7.drsr[n] & 0x1)) {
11373                 continue;
11374             }
11375 
11376             if (!rsize) {
11377                 qemu_log_mask(LOG_GUEST_ERROR,
11378                               "DRSR[%d]: Rsize field cannot be 0\n", n);
11379                 continue;
11380             }
11381             rsize++;
11382             rmask = (1ull << rsize) - 1;
11383 
11384             if (base & rmask) {
11385                 qemu_log_mask(LOG_GUEST_ERROR,
11386                               "DRBAR[%d]: 0x%" PRIx32 " misaligned "
11387                               "to DRSR region size, mask = 0x%" PRIx32 "\n",
11388                               n, base, rmask);
11389                 continue;
11390             }
11391 
11392             if (address < base || address > base + rmask) {
11393                 /*
11394                  * Address not in this region. We must check whether the
11395                  * region covers addresses in the same page as our address.
11396                  * In that case we must not report a size that covers the
11397                  * whole page for a subsequent hit against a different MPU
11398                  * region or the background region, because it would result in
11399                  * incorrect TLB hits for subsequent accesses to addresses that
11400                  * are in this MPU region.
11401                  */
11402                 if (ranges_overlap(base, rmask,
11403                                    address & TARGET_PAGE_MASK,
11404                                    TARGET_PAGE_SIZE)) {
11405                     *page_size = 1;
11406                 }
11407                 continue;
11408             }
11409 
11410             /* Region matched */
11411 
11412             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
11413                 int i, snd;
11414                 uint32_t srdis_mask;
11415 
11416                 rsize -= 3; /* sub region size (power of 2) */
11417                 snd = ((address - base) >> rsize) & 0x7;
11418                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
11419 
11420                 srdis_mask = srdis ? 0x3 : 0x0;
11421                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
11422                     /* This will check in groups of 2, 4 and then 8, whether
11423                      * the subregion bits are consistent. rsize is incremented
11424                      * back up to give the region size, considering consistent
11425                      * adjacent subregions as one region. Stop testing if rsize
11426                      * is already big enough for an entire QEMU page.
11427                      */
11428                     int snd_rounded = snd & ~(i - 1);
11429                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
11430                                                      snd_rounded + 8, i);
11431                     if (srdis_mask ^ srdis_multi) {
11432                         break;
11433                     }
11434                     srdis_mask = (srdis_mask << i) | srdis_mask;
11435                     rsize++;
11436                 }
11437             }
11438             if (srdis) {
11439                 continue;
11440             }
11441             if (rsize < TARGET_PAGE_BITS) {
11442                 *page_size = 1 << rsize;
11443             }
11444             break;
11445         }
11446 
11447         if (n == -1) { /* no hits */
11448             if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11449                 /* background fault */
11450                 fi->type = ARMFault_Background;
11451                 return true;
11452             }
11453             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11454         } else { /* a MPU hit! */
11455             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
11456             uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
11457 
11458             if (m_is_system_region(env, address)) {
11459                 /* System space is always execute never */
11460                 xn = 1;
11461             }
11462 
11463             if (is_user) { /* User mode AP bit decoding */
11464                 switch (ap) {
11465                 case 0:
11466                 case 1:
11467                 case 5:
11468                     break; /* no access */
11469                 case 3:
11470                     *prot |= PAGE_WRITE;
11471                     /* fall through */
11472                 case 2:
11473                 case 6:
11474                     *prot |= PAGE_READ | PAGE_EXEC;
11475                     break;
11476                 case 7:
11477                     /* for v7M, same as 6; for R profile a reserved value */
11478                     if (arm_feature(env, ARM_FEATURE_M)) {
11479                         *prot |= PAGE_READ | PAGE_EXEC;
11480                         break;
11481                     }
11482                     /* fall through */
11483                 default:
11484                     qemu_log_mask(LOG_GUEST_ERROR,
11485                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11486                                   PRIx32 "\n", n, ap);
11487                 }
11488             } else { /* Priv. mode AP bits decoding */
11489                 switch (ap) {
11490                 case 0:
11491                     break; /* no access */
11492                 case 1:
11493                 case 2:
11494                 case 3:
11495                     *prot |= PAGE_WRITE;
11496                     /* fall through */
11497                 case 5:
11498                 case 6:
11499                     *prot |= PAGE_READ | PAGE_EXEC;
11500                     break;
11501                 case 7:
11502                     /* for v7M, same as 6; for R profile a reserved value */
11503                     if (arm_feature(env, ARM_FEATURE_M)) {
11504                         *prot |= PAGE_READ | PAGE_EXEC;
11505                         break;
11506                     }
11507                     /* fall through */
11508                 default:
11509                     qemu_log_mask(LOG_GUEST_ERROR,
11510                                   "DRACR[%d]: Bad value for AP bits: 0x%"
11511                                   PRIx32 "\n", n, ap);
11512                 }
11513             }
11514 
11515             /* execute never */
11516             if (xn) {
11517                 *prot &= ~PAGE_EXEC;
11518             }
11519         }
11520     }
11521 
11522     fi->type = ARMFault_Permission;
11523     fi->level = 1;
11524     return !(*prot & (1 << access_type));
11525 }
11526 
11527 static bool v8m_is_sau_exempt(CPUARMState *env,
11528                               uint32_t address, MMUAccessType access_type)
11529 {
11530     /* The architecture specifies that certain address ranges are
11531      * exempt from v8M SAU/IDAU checks.
11532      */
11533     return
11534         (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
11535         (address >= 0xe0000000 && address <= 0xe0002fff) ||
11536         (address >= 0xe000e000 && address <= 0xe000efff) ||
11537         (address >= 0xe002e000 && address <= 0xe002efff) ||
11538         (address >= 0xe0040000 && address <= 0xe0041fff) ||
11539         (address >= 0xe00ff000 && address <= 0xe00fffff);
11540 }
11541 
11542 void v8m_security_lookup(CPUARMState *env, uint32_t address,
11543                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
11544                                 V8M_SAttributes *sattrs)
11545 {
11546     /* Look up the security attributes for this address. Compare the
11547      * pseudocode SecurityCheck() function.
11548      * We assume the caller has zero-initialized *sattrs.
11549      */
11550     ARMCPU *cpu = env_archcpu(env);
11551     int r;
11552     bool idau_exempt = false, idau_ns = true, idau_nsc = true;
11553     int idau_region = IREGION_NOTVALID;
11554     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11555     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11556 
11557     if (cpu->idau) {
11558         IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
11559         IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
11560 
11561         iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
11562                    &idau_nsc);
11563     }
11564 
11565     if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
11566         /* 0xf0000000..0xffffffff is always S for insn fetches */
11567         return;
11568     }
11569 
11570     if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
11571         sattrs->ns = !regime_is_secure(env, mmu_idx);
11572         return;
11573     }
11574 
11575     if (idau_region != IREGION_NOTVALID) {
11576         sattrs->irvalid = true;
11577         sattrs->iregion = idau_region;
11578     }
11579 
11580     switch (env->sau.ctrl & 3) {
11581     case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11582         break;
11583     case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11584         sattrs->ns = true;
11585         break;
11586     default: /* SAU.ENABLE == 1 */
11587         for (r = 0; r < cpu->sau_sregion; r++) {
11588             if (env->sau.rlar[r] & 1) {
11589                 uint32_t base = env->sau.rbar[r] & ~0x1f;
11590                 uint32_t limit = env->sau.rlar[r] | 0x1f;
11591 
11592                 if (base <= address && limit >= address) {
11593                     if (base > addr_page_base || limit < addr_page_limit) {
11594                         sattrs->subpage = true;
11595                     }
11596                     if (sattrs->srvalid) {
11597                         /* If we hit in more than one region then we must report
11598                          * as Secure, not NS-Callable, with no valid region
11599                          * number info.
11600                          */
11601                         sattrs->ns = false;
11602                         sattrs->nsc = false;
11603                         sattrs->sregion = 0;
11604                         sattrs->srvalid = false;
11605                         break;
11606                     } else {
11607                         if (env->sau.rlar[r] & 2) {
11608                             sattrs->nsc = true;
11609                         } else {
11610                             sattrs->ns = true;
11611                         }
11612                         sattrs->srvalid = true;
11613                         sattrs->sregion = r;
11614                     }
11615                 } else {
11616                     /*
11617                      * Address not in this region. We must check whether the
11618                      * region covers addresses in the same page as our address.
11619                      * In that case we must not report a size that covers the
11620                      * whole page for a subsequent hit against a different MPU
11621                      * region or the background region, because it would result
11622                      * in incorrect TLB hits for subsequent accesses to
11623                      * addresses that are in this MPU region.
11624                      */
11625                     if (limit >= base &&
11626                         ranges_overlap(base, limit - base + 1,
11627                                        addr_page_base,
11628                                        TARGET_PAGE_SIZE)) {
11629                         sattrs->subpage = true;
11630                     }
11631                 }
11632             }
11633         }
11634         break;
11635     }
11636 
11637     /*
11638      * The IDAU will override the SAU lookup results if it specifies
11639      * higher security than the SAU does.
11640      */
11641     if (!idau_ns) {
11642         if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
11643             sattrs->ns = false;
11644             sattrs->nsc = idau_nsc;
11645         }
11646     }
11647 }
11648 
11649 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
11650                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
11651                               hwaddr *phys_ptr, MemTxAttrs *txattrs,
11652                               int *prot, bool *is_subpage,
11653                               ARMMMUFaultInfo *fi, uint32_t *mregion)
11654 {
11655     /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11656      * that a full phys-to-virt translation does).
11657      * mregion is (if not NULL) set to the region number which matched,
11658      * or -1 if no region number is returned (MPU off, address did not
11659      * hit a region, address hit in multiple regions).
11660      * We set is_subpage to true if the region hit doesn't cover the
11661      * entire TARGET_PAGE the address is within.
11662      */
11663     ARMCPU *cpu = env_archcpu(env);
11664     bool is_user = regime_is_user(env, mmu_idx);
11665     uint32_t secure = regime_is_secure(env, mmu_idx);
11666     int n;
11667     int matchregion = -1;
11668     bool hit = false;
11669     uint32_t addr_page_base = address & TARGET_PAGE_MASK;
11670     uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
11671 
11672     *is_subpage = false;
11673     *phys_ptr = address;
11674     *prot = 0;
11675     if (mregion) {
11676         *mregion = -1;
11677     }
11678 
11679     /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11680      * was an exception vector read from the vector table (which is always
11681      * done using the default system address map), because those accesses
11682      * are done in arm_v7m_load_vector(), which always does a direct
11683      * read using address_space_ldl(), rather than going via this function.
11684      */
11685     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
11686         hit = true;
11687     } else if (m_is_ppb_region(env, address)) {
11688         hit = true;
11689     } else {
11690         if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
11691             hit = true;
11692         }
11693 
11694         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
11695             /* region search */
11696             /* Note that the base address is bits [31:5] from the register
11697              * with bits [4:0] all zeroes, but the limit address is bits
11698              * [31:5] from the register with bits [4:0] all ones.
11699              */
11700             uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
11701             uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
11702 
11703             if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
11704                 /* Region disabled */
11705                 continue;
11706             }
11707 
11708             if (address < base || address > limit) {
11709                 /*
11710                  * Address not in this region. We must check whether the
11711                  * region covers addresses in the same page as our address.
11712                  * In that case we must not report a size that covers the
11713                  * whole page for a subsequent hit against a different MPU
11714                  * region or the background region, because it would result in
11715                  * incorrect TLB hits for subsequent accesses to addresses that
11716                  * are in this MPU region.
11717                  */
11718                 if (limit >= base &&
11719                     ranges_overlap(base, limit - base + 1,
11720                                    addr_page_base,
11721                                    TARGET_PAGE_SIZE)) {
11722                     *is_subpage = true;
11723                 }
11724                 continue;
11725             }
11726 
11727             if (base > addr_page_base || limit < addr_page_limit) {
11728                 *is_subpage = true;
11729             }
11730 
11731             if (matchregion != -1) {
11732                 /* Multiple regions match -- always a failure (unlike
11733                  * PMSAv7 where highest-numbered-region wins)
11734                  */
11735                 fi->type = ARMFault_Permission;
11736                 fi->level = 1;
11737                 return true;
11738             }
11739 
11740             matchregion = n;
11741             hit = true;
11742         }
11743     }
11744 
11745     if (!hit) {
11746         /* background fault */
11747         fi->type = ARMFault_Background;
11748         return true;
11749     }
11750 
11751     if (matchregion == -1) {
11752         /* hit using the background region */
11753         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
11754     } else {
11755         uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
11756         uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
11757 
11758         if (m_is_system_region(env, address)) {
11759             /* System space is always execute never */
11760             xn = 1;
11761         }
11762 
11763         *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
11764         if (*prot && !xn) {
11765             *prot |= PAGE_EXEC;
11766         }
11767         /* We don't need to look the attribute up in the MAIR0/MAIR1
11768          * registers because that only tells us about cacheability.
11769          */
11770         if (mregion) {
11771             *mregion = matchregion;
11772         }
11773     }
11774 
11775     fi->type = ARMFault_Permission;
11776     fi->level = 1;
11777     return !(*prot & (1 << access_type));
11778 }
11779 
11780 
11781 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
11782                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11783                                  hwaddr *phys_ptr, MemTxAttrs *txattrs,
11784                                  int *prot, target_ulong *page_size,
11785                                  ARMMMUFaultInfo *fi)
11786 {
11787     uint32_t secure = regime_is_secure(env, mmu_idx);
11788     V8M_SAttributes sattrs = {};
11789     bool ret;
11790     bool mpu_is_subpage;
11791 
11792     if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
11793         v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
11794         if (access_type == MMU_INST_FETCH) {
11795             /* Instruction fetches always use the MMU bank and the
11796              * transaction attribute determined by the fetch address,
11797              * regardless of CPU state. This is painful for QEMU
11798              * to handle, because it would mean we need to encode
11799              * into the mmu_idx not just the (user, negpri) information
11800              * for the current security state but also that for the
11801              * other security state, which would balloon the number
11802              * of mmu_idx values needed alarmingly.
11803              * Fortunately we can avoid this because it's not actually
11804              * possible to arbitrarily execute code from memory with
11805              * the wrong security attribute: it will always generate
11806              * an exception of some kind or another, apart from the
11807              * special case of an NS CPU executing an SG instruction
11808              * in S&NSC memory. So we always just fail the translation
11809              * here and sort things out in the exception handler
11810              * (including possibly emulating an SG instruction).
11811              */
11812             if (sattrs.ns != !secure) {
11813                 if (sattrs.nsc) {
11814                     fi->type = ARMFault_QEMU_NSCExec;
11815                 } else {
11816                     fi->type = ARMFault_QEMU_SFault;
11817                 }
11818                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11819                 *phys_ptr = address;
11820                 *prot = 0;
11821                 return true;
11822             }
11823         } else {
11824             /* For data accesses we always use the MMU bank indicated
11825              * by the current CPU state, but the security attributes
11826              * might downgrade a secure access to nonsecure.
11827              */
11828             if (sattrs.ns) {
11829                 txattrs->secure = false;
11830             } else if (!secure) {
11831                 /* NS access to S memory must fault.
11832                  * Architecturally we should first check whether the
11833                  * MPU information for this address indicates that we
11834                  * are doing an unaligned access to Device memory, which
11835                  * should generate a UsageFault instead. QEMU does not
11836                  * currently check for that kind of unaligned access though.
11837                  * If we added it we would need to do so as a special case
11838                  * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11839                  */
11840                 fi->type = ARMFault_QEMU_SFault;
11841                 *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
11842                 *phys_ptr = address;
11843                 *prot = 0;
11844                 return true;
11845             }
11846         }
11847     }
11848 
11849     ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
11850                             txattrs, prot, &mpu_is_subpage, fi, NULL);
11851     *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
11852     return ret;
11853 }
11854 
11855 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
11856                                  MMUAccessType access_type, ARMMMUIdx mmu_idx,
11857                                  hwaddr *phys_ptr, int *prot,
11858                                  ARMMMUFaultInfo *fi)
11859 {
11860     int n;
11861     uint32_t mask;
11862     uint32_t base;
11863     bool is_user = regime_is_user(env, mmu_idx);
11864 
11865     if (regime_translation_disabled(env, mmu_idx)) {
11866         /* MPU disabled.  */
11867         *phys_ptr = address;
11868         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
11869         return false;
11870     }
11871 
11872     *phys_ptr = address;
11873     for (n = 7; n >= 0; n--) {
11874         base = env->cp15.c6_region[n];
11875         if ((base & 1) == 0) {
11876             continue;
11877         }
11878         mask = 1 << ((base >> 1) & 0x1f);
11879         /* Keep this shift separate from the above to avoid an
11880            (undefined) << 32.  */
11881         mask = (mask << 1) - 1;
11882         if (((base ^ address) & ~mask) == 0) {
11883             break;
11884         }
11885     }
11886     if (n < 0) {
11887         fi->type = ARMFault_Background;
11888         return true;
11889     }
11890 
11891     if (access_type == MMU_INST_FETCH) {
11892         mask = env->cp15.pmsav5_insn_ap;
11893     } else {
11894         mask = env->cp15.pmsav5_data_ap;
11895     }
11896     mask = (mask >> (n * 4)) & 0xf;
11897     switch (mask) {
11898     case 0:
11899         fi->type = ARMFault_Permission;
11900         fi->level = 1;
11901         return true;
11902     case 1:
11903         if (is_user) {
11904             fi->type = ARMFault_Permission;
11905             fi->level = 1;
11906             return true;
11907         }
11908         *prot = PAGE_READ | PAGE_WRITE;
11909         break;
11910     case 2:
11911         *prot = PAGE_READ;
11912         if (!is_user) {
11913             *prot |= PAGE_WRITE;
11914         }
11915         break;
11916     case 3:
11917         *prot = PAGE_READ | PAGE_WRITE;
11918         break;
11919     case 5:
11920         if (is_user) {
11921             fi->type = ARMFault_Permission;
11922             fi->level = 1;
11923             return true;
11924         }
11925         *prot = PAGE_READ;
11926         break;
11927     case 6:
11928         *prot = PAGE_READ;
11929         break;
11930     default:
11931         /* Bad permission.  */
11932         fi->type = ARMFault_Permission;
11933         fi->level = 1;
11934         return true;
11935     }
11936     *prot |= PAGE_EXEC;
11937     return false;
11938 }
11939 
11940 /* Combine either inner or outer cacheability attributes for normal
11941  * memory, according to table D4-42 and pseudocode procedure
11942  * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11943  *
11944  * NB: only stage 1 includes allocation hints (RW bits), leading to
11945  * some asymmetry.
11946  */
11947 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
11948 {
11949     if (s1 == 4 || s2 == 4) {
11950         /* non-cacheable has precedence */
11951         return 4;
11952     } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
11953         /* stage 1 write-through takes precedence */
11954         return s1;
11955     } else if (extract32(s2, 2, 2) == 2) {
11956         /* stage 2 write-through takes precedence, but the allocation hint
11957          * is still taken from stage 1
11958          */
11959         return (2 << 2) | extract32(s1, 0, 2);
11960     } else { /* write-back */
11961         return s1;
11962     }
11963 }
11964 
11965 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11966  * and CombineS1S2Desc()
11967  *
11968  * @s1:      Attributes from stage 1 walk
11969  * @s2:      Attributes from stage 2 walk
11970  */
11971 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
11972 {
11973     uint8_t s1lo, s2lo, s1hi, s2hi;
11974     ARMCacheAttrs ret;
11975     bool tagged = false;
11976 
11977     if (s1.attrs == 0xf0) {
11978         tagged = true;
11979         s1.attrs = 0xff;
11980     }
11981 
11982     s1lo = extract32(s1.attrs, 0, 4);
11983     s2lo = extract32(s2.attrs, 0, 4);
11984     s1hi = extract32(s1.attrs, 4, 4);
11985     s2hi = extract32(s2.attrs, 4, 4);
11986 
11987     /* Combine shareability attributes (table D4-43) */
11988     if (s1.shareability == 2 || s2.shareability == 2) {
11989         /* if either are outer-shareable, the result is outer-shareable */
11990         ret.shareability = 2;
11991     } else if (s1.shareability == 3 || s2.shareability == 3) {
11992         /* if either are inner-shareable, the result is inner-shareable */
11993         ret.shareability = 3;
11994     } else {
11995         /* both non-shareable */
11996         ret.shareability = 0;
11997     }
11998 
11999     /* Combine memory type and cacheability attributes */
12000     if (s1hi == 0 || s2hi == 0) {
12001         /* Device has precedence over normal */
12002         if (s1lo == 0 || s2lo == 0) {
12003             /* nGnRnE has precedence over anything */
12004             ret.attrs = 0;
12005         } else if (s1lo == 4 || s2lo == 4) {
12006             /* non-Reordering has precedence over Reordering */
12007             ret.attrs = 4;  /* nGnRE */
12008         } else if (s1lo == 8 || s2lo == 8) {
12009             /* non-Gathering has precedence over Gathering */
12010             ret.attrs = 8;  /* nGRE */
12011         } else {
12012             ret.attrs = 0xc; /* GRE */
12013         }
12014 
12015         /* Any location for which the resultant memory type is any
12016          * type of Device memory is always treated as Outer Shareable.
12017          */
12018         ret.shareability = 2;
12019     } else { /* Normal memory */
12020         /* Outer/inner cacheability combine independently */
12021         ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
12022                   | combine_cacheattr_nibble(s1lo, s2lo);
12023 
12024         if (ret.attrs == 0x44) {
12025             /* Any location for which the resultant memory type is Normal
12026              * Inner Non-cacheable, Outer Non-cacheable is always treated
12027              * as Outer Shareable.
12028              */
12029             ret.shareability = 2;
12030         }
12031     }
12032 
12033     /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
12034     if (tagged && ret.attrs == 0xff) {
12035         ret.attrs = 0xf0;
12036     }
12037 
12038     return ret;
12039 }
12040 
12041 
12042 /* get_phys_addr - get the physical address for this virtual address
12043  *
12044  * Find the physical address corresponding to the given virtual address,
12045  * by doing a translation table walk on MMU based systems or using the
12046  * MPU state on MPU based systems.
12047  *
12048  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
12049  * prot and page_size may not be filled in, and the populated fsr value provides
12050  * information on why the translation aborted, in the format of a
12051  * DFSR/IFSR fault register, with the following caveats:
12052  *  * we honour the short vs long DFSR format differences.
12053  *  * the WnR bit is never set (the caller must do this).
12054  *  * for PSMAv5 based systems we don't bother to return a full FSR format
12055  *    value.
12056  *
12057  * @env: CPUARMState
12058  * @address: virtual address to get physical address for
12059  * @access_type: 0 for read, 1 for write, 2 for execute
12060  * @mmu_idx: MMU index indicating required translation regime
12061  * @phys_ptr: set to the physical address corresponding to the virtual address
12062  * @attrs: set to the memory transaction attributes to use
12063  * @prot: set to the permissions for the page containing phys_ptr
12064  * @page_size: set to the size of the page containing phys_ptr
12065  * @fi: set to fault info if the translation fails
12066  * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
12067  */
12068 bool get_phys_addr(CPUARMState *env, target_ulong address,
12069                    MMUAccessType access_type, ARMMMUIdx mmu_idx,
12070                    hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
12071                    target_ulong *page_size,
12072                    ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
12073 {
12074     if (mmu_idx == ARMMMUIdx_E10_0 ||
12075         mmu_idx == ARMMMUIdx_E10_1 ||
12076         mmu_idx == ARMMMUIdx_E10_1_PAN) {
12077         /* Call ourselves recursively to do the stage 1 and then stage 2
12078          * translations.
12079          */
12080         if (arm_feature(env, ARM_FEATURE_EL2)) {
12081             hwaddr ipa;
12082             int s2_prot;
12083             int ret;
12084             ARMCacheAttrs cacheattrs2 = {};
12085 
12086             ret = get_phys_addr(env, address, access_type,
12087                                 stage_1_mmu_idx(mmu_idx), &ipa, attrs,
12088                                 prot, page_size, fi, cacheattrs);
12089 
12090             /* If S1 fails or S2 is disabled, return early.  */
12091             if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
12092                 *phys_ptr = ipa;
12093                 return ret;
12094             }
12095 
12096             /* S1 is done. Now do S2 translation.  */
12097             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_Stage2,
12098                                      mmu_idx == ARMMMUIdx_E10_0,
12099                                      phys_ptr, attrs, &s2_prot,
12100                                      page_size, fi, &cacheattrs2);
12101             fi->s2addr = ipa;
12102             /* Combine the S1 and S2 perms.  */
12103             *prot &= s2_prot;
12104 
12105             /* If S2 fails, return early.  */
12106             if (ret) {
12107                 return ret;
12108             }
12109 
12110             /* Combine the S1 and S2 cache attributes. */
12111             if (env->cp15.hcr_el2 & HCR_DC) {
12112                 /*
12113                  * HCR.DC forces the first stage attributes to
12114                  *  Normal Non-Shareable,
12115                  *  Inner Write-Back Read-Allocate Write-Allocate,
12116                  *  Outer Write-Back Read-Allocate Write-Allocate.
12117                  * Do not overwrite Tagged within attrs.
12118                  */
12119                 if (cacheattrs->attrs != 0xf0) {
12120                     cacheattrs->attrs = 0xff;
12121                 }
12122                 cacheattrs->shareability = 0;
12123             }
12124             *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
12125             return 0;
12126         } else {
12127             /*
12128              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
12129              */
12130             mmu_idx = stage_1_mmu_idx(mmu_idx);
12131         }
12132     }
12133 
12134     /* The page table entries may downgrade secure to non-secure, but
12135      * cannot upgrade an non-secure translation regime's attributes
12136      * to secure.
12137      */
12138     attrs->secure = regime_is_secure(env, mmu_idx);
12139     attrs->user = regime_is_user(env, mmu_idx);
12140 
12141     /* Fast Context Switch Extension. This doesn't exist at all in v8.
12142      * In v7 and earlier it affects all stage 1 translations.
12143      */
12144     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
12145         && !arm_feature(env, ARM_FEATURE_V8)) {
12146         if (regime_el(env, mmu_idx) == 3) {
12147             address += env->cp15.fcseidr_s;
12148         } else {
12149             address += env->cp15.fcseidr_ns;
12150         }
12151     }
12152 
12153     if (arm_feature(env, ARM_FEATURE_PMSA)) {
12154         bool ret;
12155         *page_size = TARGET_PAGE_SIZE;
12156 
12157         if (arm_feature(env, ARM_FEATURE_V8)) {
12158             /* PMSAv8 */
12159             ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
12160                                        phys_ptr, attrs, prot, page_size, fi);
12161         } else if (arm_feature(env, ARM_FEATURE_V7)) {
12162             /* PMSAv7 */
12163             ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
12164                                        phys_ptr, prot, page_size, fi);
12165         } else {
12166             /* Pre-v7 MPU */
12167             ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
12168                                        phys_ptr, prot, fi);
12169         }
12170         qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
12171                       " mmu_idx %u -> %s (prot %c%c%c)\n",
12172                       access_type == MMU_DATA_LOAD ? "reading" :
12173                       (access_type == MMU_DATA_STORE ? "writing" : "execute"),
12174                       (uint32_t)address, mmu_idx,
12175                       ret ? "Miss" : "Hit",
12176                       *prot & PAGE_READ ? 'r' : '-',
12177                       *prot & PAGE_WRITE ? 'w' : '-',
12178                       *prot & PAGE_EXEC ? 'x' : '-');
12179 
12180         return ret;
12181     }
12182 
12183     /* Definitely a real MMU, not an MPU */
12184 
12185     if (regime_translation_disabled(env, mmu_idx)) {
12186         uint64_t hcr;
12187         uint8_t memattr;
12188 
12189         /*
12190          * MMU disabled.  S1 addresses within aa64 translation regimes are
12191          * still checked for bounds -- see AArch64.TranslateAddressS1Off.
12192          */
12193         if (mmu_idx != ARMMMUIdx_Stage2) {
12194             int r_el = regime_el(env, mmu_idx);
12195             if (arm_el_is_aa64(env, r_el)) {
12196                 int pamax = arm_pamax(env_archcpu(env));
12197                 uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
12198                 int addrtop, tbi;
12199 
12200                 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
12201                 if (access_type == MMU_INST_FETCH) {
12202                     tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
12203                 }
12204                 tbi = (tbi >> extract64(address, 55, 1)) & 1;
12205                 addrtop = (tbi ? 55 : 63);
12206 
12207                 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
12208                     fi->type = ARMFault_AddressSize;
12209                     fi->level = 0;
12210                     fi->stage2 = false;
12211                     return 1;
12212                 }
12213 
12214                 /*
12215                  * When TBI is disabled, we've just validated that all of the
12216                  * bits above PAMax are zero, so logically we only need to
12217                  * clear the top byte for TBI.  But it's clearer to follow
12218                  * the pseudocode set of addrdesc.paddress.
12219                  */
12220                 address = extract64(address, 0, 52);
12221             }
12222         }
12223         *phys_ptr = address;
12224         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
12225         *page_size = TARGET_PAGE_SIZE;
12226 
12227         /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
12228         hcr = arm_hcr_el2_eff(env);
12229         cacheattrs->shareability = 0;
12230         if (hcr & HCR_DC) {
12231             if (hcr & HCR_DCT) {
12232                 memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
12233             } else {
12234                 memattr = 0xff;  /* Normal, WB, RWA */
12235             }
12236         } else if (access_type == MMU_INST_FETCH) {
12237             if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
12238                 memattr = 0xee;  /* Normal, WT, RA, NT */
12239             } else {
12240                 memattr = 0x44;  /* Normal, NC, No */
12241             }
12242             cacheattrs->shareability = 2; /* outer sharable */
12243         } else {
12244             memattr = 0x00;      /* Device, nGnRnE */
12245         }
12246         cacheattrs->attrs = memattr;
12247         return 0;
12248     }
12249 
12250     if (regime_using_lpae_format(env, mmu_idx)) {
12251         return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
12252                                   phys_ptr, attrs, prot, page_size,
12253                                   fi, cacheattrs);
12254     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
12255         return get_phys_addr_v6(env, address, access_type, mmu_idx,
12256                                 phys_ptr, attrs, prot, page_size, fi);
12257     } else {
12258         return get_phys_addr_v5(env, address, access_type, mmu_idx,
12259                                     phys_ptr, prot, page_size, fi);
12260     }
12261 }
12262 
12263 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
12264                                          MemTxAttrs *attrs)
12265 {
12266     ARMCPU *cpu = ARM_CPU(cs);
12267     CPUARMState *env = &cpu->env;
12268     hwaddr phys_addr;
12269     target_ulong page_size;
12270     int prot;
12271     bool ret;
12272     ARMMMUFaultInfo fi = {};
12273     ARMMMUIdx mmu_idx = arm_mmu_idx(env);
12274     ARMCacheAttrs cacheattrs = {};
12275 
12276     *attrs = (MemTxAttrs) {};
12277 
12278     ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
12279                         attrs, &prot, &page_size, &fi, &cacheattrs);
12280 
12281     if (ret) {
12282         return -1;
12283     }
12284     return phys_addr;
12285 }
12286 
12287 #endif
12288 
12289 /* Note that signed overflow is undefined in C.  The following routines are
12290    careful to use unsigned types where modulo arithmetic is required.
12291    Failure to do so _will_ break on newer gcc.  */
12292 
12293 /* Signed saturating arithmetic.  */
12294 
12295 /* Perform 16-bit signed saturating addition.  */
12296 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
12297 {
12298     uint16_t res;
12299 
12300     res = a + b;
12301     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
12302         if (a & 0x8000)
12303             res = 0x8000;
12304         else
12305             res = 0x7fff;
12306     }
12307     return res;
12308 }
12309 
12310 /* Perform 8-bit signed saturating addition.  */
12311 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
12312 {
12313     uint8_t res;
12314 
12315     res = a + b;
12316     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
12317         if (a & 0x80)
12318             res = 0x80;
12319         else
12320             res = 0x7f;
12321     }
12322     return res;
12323 }
12324 
12325 /* Perform 16-bit signed saturating subtraction.  */
12326 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
12327 {
12328     uint16_t res;
12329 
12330     res = a - b;
12331     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
12332         if (a & 0x8000)
12333             res = 0x8000;
12334         else
12335             res = 0x7fff;
12336     }
12337     return res;
12338 }
12339 
12340 /* Perform 8-bit signed saturating subtraction.  */
12341 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
12342 {
12343     uint8_t res;
12344 
12345     res = a - b;
12346     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
12347         if (a & 0x80)
12348             res = 0x80;
12349         else
12350             res = 0x7f;
12351     }
12352     return res;
12353 }
12354 
12355 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12356 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12357 #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
12358 #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
12359 #define PFX q
12360 
12361 #include "op_addsub.h"
12362 
12363 /* Unsigned saturating arithmetic.  */
12364 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
12365 {
12366     uint16_t res;
12367     res = a + b;
12368     if (res < a)
12369         res = 0xffff;
12370     return res;
12371 }
12372 
12373 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
12374 {
12375     if (a > b)
12376         return a - b;
12377     else
12378         return 0;
12379 }
12380 
12381 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
12382 {
12383     uint8_t res;
12384     res = a + b;
12385     if (res < a)
12386         res = 0xff;
12387     return res;
12388 }
12389 
12390 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
12391 {
12392     if (a > b)
12393         return a - b;
12394     else
12395         return 0;
12396 }
12397 
12398 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12399 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12400 #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
12401 #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
12402 #define PFX uq
12403 
12404 #include "op_addsub.h"
12405 
12406 /* Signed modulo arithmetic.  */
12407 #define SARITH16(a, b, n, op) do { \
12408     int32_t sum; \
12409     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12410     RESULT(sum, n, 16); \
12411     if (sum >= 0) \
12412         ge |= 3 << (n * 2); \
12413     } while(0)
12414 
12415 #define SARITH8(a, b, n, op) do { \
12416     int32_t sum; \
12417     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12418     RESULT(sum, n, 8); \
12419     if (sum >= 0) \
12420         ge |= 1 << n; \
12421     } while(0)
12422 
12423 
12424 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12425 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12426 #define ADD8(a, b, n)  SARITH8(a, b, n, +)
12427 #define SUB8(a, b, n)  SARITH8(a, b, n, -)
12428 #define PFX s
12429 #define ARITH_GE
12430 
12431 #include "op_addsub.h"
12432 
12433 /* Unsigned modulo arithmetic.  */
12434 #define ADD16(a, b, n) do { \
12435     uint32_t sum; \
12436     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12437     RESULT(sum, n, 16); \
12438     if ((sum >> 16) == 1) \
12439         ge |= 3 << (n * 2); \
12440     } while(0)
12441 
12442 #define ADD8(a, b, n) do { \
12443     uint32_t sum; \
12444     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12445     RESULT(sum, n, 8); \
12446     if ((sum >> 8) == 1) \
12447         ge |= 1 << n; \
12448     } while(0)
12449 
12450 #define SUB16(a, b, n) do { \
12451     uint32_t sum; \
12452     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12453     RESULT(sum, n, 16); \
12454     if ((sum >> 16) == 0) \
12455         ge |= 3 << (n * 2); \
12456     } while(0)
12457 
12458 #define SUB8(a, b, n) do { \
12459     uint32_t sum; \
12460     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12461     RESULT(sum, n, 8); \
12462     if ((sum >> 8) == 0) \
12463         ge |= 1 << n; \
12464     } while(0)
12465 
12466 #define PFX u
12467 #define ARITH_GE
12468 
12469 #include "op_addsub.h"
12470 
12471 /* Halved signed arithmetic.  */
12472 #define ADD16(a, b, n) \
12473   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12474 #define SUB16(a, b, n) \
12475   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12476 #define ADD8(a, b, n) \
12477   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12478 #define SUB8(a, b, n) \
12479   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12480 #define PFX sh
12481 
12482 #include "op_addsub.h"
12483 
12484 /* Halved unsigned arithmetic.  */
12485 #define ADD16(a, b, n) \
12486   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12487 #define SUB16(a, b, n) \
12488   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12489 #define ADD8(a, b, n) \
12490   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12491 #define SUB8(a, b, n) \
12492   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12493 #define PFX uh
12494 
12495 #include "op_addsub.h"
12496 
12497 static inline uint8_t do_usad(uint8_t a, uint8_t b)
12498 {
12499     if (a > b)
12500         return a - b;
12501     else
12502         return b - a;
12503 }
12504 
12505 /* Unsigned sum of absolute byte differences.  */
12506 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
12507 {
12508     uint32_t sum;
12509     sum = do_usad(a, b);
12510     sum += do_usad(a >> 8, b >> 8);
12511     sum += do_usad(a >> 16, b >> 16);
12512     sum += do_usad(a >> 24, b >> 24);
12513     return sum;
12514 }
12515 
12516 /* For ARMv6 SEL instruction.  */
12517 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
12518 {
12519     uint32_t mask;
12520 
12521     mask = 0;
12522     if (flags & 1)
12523         mask |= 0xff;
12524     if (flags & 2)
12525         mask |= 0xff00;
12526     if (flags & 4)
12527         mask |= 0xff0000;
12528     if (flags & 8)
12529         mask |= 0xff000000;
12530     return (a & mask) | (b & ~mask);
12531 }
12532 
12533 /* CRC helpers.
12534  * The upper bytes of val (above the number specified by 'bytes') must have
12535  * been zeroed out by the caller.
12536  */
12537 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
12538 {
12539     uint8_t buf[4];
12540 
12541     stl_le_p(buf, val);
12542 
12543     /* zlib crc32 converts the accumulator and output to one's complement.  */
12544     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
12545 }
12546 
12547 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
12548 {
12549     uint8_t buf[4];
12550 
12551     stl_le_p(buf, val);
12552 
12553     /* Linux crc32c converts the output to one's complement.  */
12554     return crc32c(acc, buf, bytes) ^ 0xffffffff;
12555 }
12556 
12557 /* Return the exception level to which FP-disabled exceptions should
12558  * be taken, or 0 if FP is enabled.
12559  */
12560 int fp_exception_el(CPUARMState *env, int cur_el)
12561 {
12562 #ifndef CONFIG_USER_ONLY
12563     /* CPACR and the CPTR registers don't exist before v6, so FP is
12564      * always accessible
12565      */
12566     if (!arm_feature(env, ARM_FEATURE_V6)) {
12567         return 0;
12568     }
12569 
12570     if (arm_feature(env, ARM_FEATURE_M)) {
12571         /* CPACR can cause a NOCP UsageFault taken to current security state */
12572         if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
12573             return 1;
12574         }
12575 
12576         if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
12577             if (!extract32(env->v7m.nsacr, 10, 1)) {
12578                 /* FP insns cause a NOCP UsageFault taken to Secure */
12579                 return 3;
12580             }
12581         }
12582 
12583         return 0;
12584     }
12585 
12586     /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12587      * 0, 2 : trap EL0 and EL1/PL1 accesses
12588      * 1    : trap only EL0 accesses
12589      * 3    : trap no accesses
12590      * This register is ignored if E2H+TGE are both set.
12591      */
12592     if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12593         int fpen = extract32(env->cp15.cpacr_el1, 20, 2);
12594 
12595         switch (fpen) {
12596         case 0:
12597         case 2:
12598             if (cur_el == 0 || cur_el == 1) {
12599                 /* Trap to PL1, which might be EL1 or EL3 */
12600                 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
12601                     return 3;
12602                 }
12603                 return 1;
12604             }
12605             if (cur_el == 3 && !is_a64(env)) {
12606                 /* Secure PL1 running at EL3 */
12607                 return 3;
12608             }
12609             break;
12610         case 1:
12611             if (cur_el == 0) {
12612                 return 1;
12613             }
12614             break;
12615         case 3:
12616             break;
12617         }
12618     }
12619 
12620     /*
12621      * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
12622      * to control non-secure access to the FPU. It doesn't have any
12623      * effect if EL3 is AArch64 or if EL3 doesn't exist at all.
12624      */
12625     if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
12626          cur_el <= 2 && !arm_is_secure_below_el3(env))) {
12627         if (!extract32(env->cp15.nsacr, 10, 1)) {
12628             /* FP insns act as UNDEF */
12629             return cur_el == 2 ? 2 : 1;
12630         }
12631     }
12632 
12633     /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12634      * check because zero bits in the registers mean "don't trap".
12635      */
12636 
12637     /* CPTR_EL2 : present in v7VE or v8 */
12638     if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
12639         && !arm_is_secure_below_el3(env)) {
12640         /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12641         return 2;
12642     }
12643 
12644     /* CPTR_EL3 : present in v8 */
12645     if (extract32(env->cp15.cptr_el[3], 10, 1)) {
12646         /* Trap all FP ops to EL3 */
12647         return 3;
12648     }
12649 #endif
12650     return 0;
12651 }
12652 
12653 /* Return the exception level we're running at if this is our mmu_idx */
12654 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
12655 {
12656     if (mmu_idx & ARM_MMU_IDX_M) {
12657         return mmu_idx & ARM_MMU_IDX_M_PRIV;
12658     }
12659 
12660     switch (mmu_idx) {
12661     case ARMMMUIdx_E10_0:
12662     case ARMMMUIdx_E20_0:
12663     case ARMMMUIdx_SE10_0:
12664         return 0;
12665     case ARMMMUIdx_E10_1:
12666     case ARMMMUIdx_E10_1_PAN:
12667     case ARMMMUIdx_SE10_1:
12668     case ARMMMUIdx_SE10_1_PAN:
12669         return 1;
12670     case ARMMMUIdx_E2:
12671     case ARMMMUIdx_E20_2:
12672     case ARMMMUIdx_E20_2_PAN:
12673         return 2;
12674     case ARMMMUIdx_SE3:
12675         return 3;
12676     default:
12677         g_assert_not_reached();
12678     }
12679 }
12680 
12681 #ifndef CONFIG_TCG
12682 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
12683 {
12684     g_assert_not_reached();
12685 }
12686 #endif
12687 
12688 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
12689 {
12690     if (arm_feature(env, ARM_FEATURE_M)) {
12691         return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
12692     }
12693 
12694     /* See ARM pseudo-function ELIsInHost.  */
12695     switch (el) {
12696     case 0:
12697         if (arm_is_secure_below_el3(env)) {
12698             return ARMMMUIdx_SE10_0;
12699         }
12700         if ((env->cp15.hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)
12701             && arm_el_is_aa64(env, 2)) {
12702             return ARMMMUIdx_E20_0;
12703         }
12704         return ARMMMUIdx_E10_0;
12705     case 1:
12706         if (arm_is_secure_below_el3(env)) {
12707             if (env->pstate & PSTATE_PAN) {
12708                 return ARMMMUIdx_SE10_1_PAN;
12709             }
12710             return ARMMMUIdx_SE10_1;
12711         }
12712         if (env->pstate & PSTATE_PAN) {
12713             return ARMMMUIdx_E10_1_PAN;
12714         }
12715         return ARMMMUIdx_E10_1;
12716     case 2:
12717         /* TODO: ARMv8.4-SecEL2 */
12718         /* Note that TGE does not apply at EL2.  */
12719         if ((env->cp15.hcr_el2 & HCR_E2H) && arm_el_is_aa64(env, 2)) {
12720             if (env->pstate & PSTATE_PAN) {
12721                 return ARMMMUIdx_E20_2_PAN;
12722             }
12723             return ARMMMUIdx_E20_2;
12724         }
12725         return ARMMMUIdx_E2;
12726     case 3:
12727         return ARMMMUIdx_SE3;
12728     default:
12729         g_assert_not_reached();
12730     }
12731 }
12732 
12733 ARMMMUIdx arm_mmu_idx(CPUARMState *env)
12734 {
12735     return arm_mmu_idx_el(env, arm_current_el(env));
12736 }
12737 
12738 #ifndef CONFIG_USER_ONLY
12739 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
12740 {
12741     return stage_1_mmu_idx(arm_mmu_idx(env));
12742 }
12743 #endif
12744 
12745 static uint32_t rebuild_hflags_common(CPUARMState *env, int fp_el,
12746                                       ARMMMUIdx mmu_idx, uint32_t flags)
12747 {
12748     flags = FIELD_DP32(flags, TBFLAG_ANY, FPEXC_EL, fp_el);
12749     flags = FIELD_DP32(flags, TBFLAG_ANY, MMUIDX,
12750                        arm_to_core_mmu_idx(mmu_idx));
12751 
12752     if (arm_singlestep_active(env)) {
12753         flags = FIELD_DP32(flags, TBFLAG_ANY, SS_ACTIVE, 1);
12754     }
12755     return flags;
12756 }
12757 
12758 static uint32_t rebuild_hflags_common_32(CPUARMState *env, int fp_el,
12759                                          ARMMMUIdx mmu_idx, uint32_t flags)
12760 {
12761     bool sctlr_b = arm_sctlr_b(env);
12762 
12763     if (sctlr_b) {
12764         flags = FIELD_DP32(flags, TBFLAG_A32, SCTLR_B, 1);
12765     }
12766     if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
12767         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12768     }
12769     flags = FIELD_DP32(flags, TBFLAG_A32, NS, !access_secure_reg(env));
12770 
12771     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12772 }
12773 
12774 static uint32_t rebuild_hflags_m32(CPUARMState *env, int fp_el,
12775                                    ARMMMUIdx mmu_idx)
12776 {
12777     uint32_t flags = 0;
12778 
12779     if (arm_v7m_is_handler_mode(env)) {
12780         flags = FIELD_DP32(flags, TBFLAG_M32, HANDLER, 1);
12781     }
12782 
12783     /*
12784      * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
12785      * is suppressing them because the requested execution priority
12786      * is less than 0.
12787      */
12788     if (arm_feature(env, ARM_FEATURE_V8) &&
12789         !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
12790           (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
12791         flags = FIELD_DP32(flags, TBFLAG_M32, STACKCHECK, 1);
12792     }
12793 
12794     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12795 }
12796 
12797 static uint32_t rebuild_hflags_aprofile(CPUARMState *env)
12798 {
12799     int flags = 0;
12800 
12801     flags = FIELD_DP32(flags, TBFLAG_ANY, DEBUG_TARGET_EL,
12802                        arm_debug_target_el(env));
12803     return flags;
12804 }
12805 
12806 static uint32_t rebuild_hflags_a32(CPUARMState *env, int fp_el,
12807                                    ARMMMUIdx mmu_idx)
12808 {
12809     uint32_t flags = rebuild_hflags_aprofile(env);
12810 
12811     if (arm_el_is_aa64(env, 1)) {
12812         flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
12813     }
12814 
12815     if (arm_current_el(env) < 2 && env->cp15.hstr_el2 &&
12816         (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
12817         flags = FIELD_DP32(flags, TBFLAG_A32, HSTR_ACTIVE, 1);
12818     }
12819 
12820     return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
12821 }
12822 
12823 static uint32_t rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
12824                                    ARMMMUIdx mmu_idx)
12825 {
12826     uint32_t flags = rebuild_hflags_aprofile(env);
12827     ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
12828     uint64_t tcr = regime_tcr(env, mmu_idx)->raw_tcr;
12829     uint64_t sctlr;
12830     int tbii, tbid;
12831 
12832     flags = FIELD_DP32(flags, TBFLAG_ANY, AARCH64_STATE, 1);
12833 
12834     /* Get control bits for tagged addresses.  */
12835     tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
12836     tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
12837 
12838     flags = FIELD_DP32(flags, TBFLAG_A64, TBII, tbii);
12839     flags = FIELD_DP32(flags, TBFLAG_A64, TBID, tbid);
12840 
12841     if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
12842         int sve_el = sve_exception_el(env, el);
12843         uint32_t zcr_len;
12844 
12845         /*
12846          * If SVE is disabled, but FP is enabled,
12847          * then the effective len is 0.
12848          */
12849         if (sve_el != 0 && fp_el == 0) {
12850             zcr_len = 0;
12851         } else {
12852             zcr_len = sve_zcr_len_for_el(env, el);
12853         }
12854         flags = FIELD_DP32(flags, TBFLAG_A64, SVEEXC_EL, sve_el);
12855         flags = FIELD_DP32(flags, TBFLAG_A64, ZCR_LEN, zcr_len);
12856     }
12857 
12858     sctlr = regime_sctlr(env, stage1);
12859 
12860     if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
12861         flags = FIELD_DP32(flags, TBFLAG_ANY, BE_DATA, 1);
12862     }
12863 
12864     if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
12865         /*
12866          * In order to save space in flags, we record only whether
12867          * pauth is "inactive", meaning all insns are implemented as
12868          * a nop, or "active" when some action must be performed.
12869          * The decision of which action to take is left to a helper.
12870          */
12871         if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
12872             flags = FIELD_DP32(flags, TBFLAG_A64, PAUTH_ACTIVE, 1);
12873         }
12874     }
12875 
12876     if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
12877         /* Note that SCTLR_EL[23].BT == SCTLR_BT1.  */
12878         if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
12879             flags = FIELD_DP32(flags, TBFLAG_A64, BT, 1);
12880         }
12881     }
12882 
12883     /* Compute the condition for using AccType_UNPRIV for LDTR et al. */
12884     if (!(env->pstate & PSTATE_UAO)) {
12885         switch (mmu_idx) {
12886         case ARMMMUIdx_E10_1:
12887         case ARMMMUIdx_E10_1_PAN:
12888         case ARMMMUIdx_SE10_1:
12889         case ARMMMUIdx_SE10_1_PAN:
12890             /* TODO: ARMv8.3-NV */
12891             flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12892             break;
12893         case ARMMMUIdx_E20_2:
12894         case ARMMMUIdx_E20_2_PAN:
12895             /* TODO: ARMv8.4-SecEL2 */
12896             /*
12897              * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
12898              * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
12899              */
12900             if (env->cp15.hcr_el2 & HCR_TGE) {
12901                 flags = FIELD_DP32(flags, TBFLAG_A64, UNPRIV, 1);
12902             }
12903             break;
12904         default:
12905             break;
12906         }
12907     }
12908 
12909     if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
12910         /*
12911          * Set MTE_ACTIVE if any access may be Checked, and leave clear
12912          * if all accesses must be Unchecked:
12913          * 1) If no TBI, then there are no tags in the address to check,
12914          * 2) If Tag Check Override, then all accesses are Unchecked,
12915          * 3) If Tag Check Fail == 0, then Checked access have no effect,
12916          * 4) If no Allocation Tag Access, then all accesses are Unchecked.
12917          */
12918         if (allocation_tag_access_enabled(env, el, sctlr)) {
12919             flags = FIELD_DP32(flags, TBFLAG_A64, ATA, 1);
12920             if (tbid
12921                 && !(env->pstate & PSTATE_TCO)
12922                 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
12923                 flags = FIELD_DP32(flags, TBFLAG_A64, MTE_ACTIVE, 1);
12924             }
12925         }
12926         /* And again for unprivileged accesses, if required.  */
12927         if (FIELD_EX32(flags, TBFLAG_A64, UNPRIV)
12928             && tbid
12929             && !(env->pstate & PSTATE_TCO)
12930             && (sctlr & SCTLR_TCF0)
12931             && allocation_tag_access_enabled(env, 0, sctlr)) {
12932             flags = FIELD_DP32(flags, TBFLAG_A64, MTE0_ACTIVE, 1);
12933         }
12934         /* Cache TCMA as well as TBI. */
12935         flags = FIELD_DP32(flags, TBFLAG_A64, TCMA,
12936                            aa64_va_parameter_tcma(tcr, mmu_idx));
12937     }
12938 
12939     return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
12940 }
12941 
12942 static uint32_t rebuild_hflags_internal(CPUARMState *env)
12943 {
12944     int el = arm_current_el(env);
12945     int fp_el = fp_exception_el(env, el);
12946     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12947 
12948     if (is_a64(env)) {
12949         return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
12950     } else if (arm_feature(env, ARM_FEATURE_M)) {
12951         return rebuild_hflags_m32(env, fp_el, mmu_idx);
12952     } else {
12953         return rebuild_hflags_a32(env, fp_el, mmu_idx);
12954     }
12955 }
12956 
12957 void arm_rebuild_hflags(CPUARMState *env)
12958 {
12959     env->hflags = rebuild_hflags_internal(env);
12960 }
12961 
12962 /*
12963  * If we have triggered a EL state change we can't rely on the
12964  * translator having passed it to us, we need to recompute.
12965  */
12966 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
12967 {
12968     int el = arm_current_el(env);
12969     int fp_el = fp_exception_el(env, el);
12970     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12971     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12972 }
12973 
12974 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
12975 {
12976     int fp_el = fp_exception_el(env, el);
12977     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12978 
12979     env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
12980 }
12981 
12982 /*
12983  * If we have triggered a EL state change we can't rely on the
12984  * translator having passed it to us, we need to recompute.
12985  */
12986 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
12987 {
12988     int el = arm_current_el(env);
12989     int fp_el = fp_exception_el(env, el);
12990     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12991     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
12992 }
12993 
12994 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
12995 {
12996     int fp_el = fp_exception_el(env, el);
12997     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
12998 
12999     env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
13000 }
13001 
13002 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
13003 {
13004     int fp_el = fp_exception_el(env, el);
13005     ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
13006 
13007     env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
13008 }
13009 
13010 static inline void assert_hflags_rebuild_correctly(CPUARMState *env)
13011 {
13012 #ifdef CONFIG_DEBUG_TCG
13013     uint32_t env_flags_current = env->hflags;
13014     uint32_t env_flags_rebuilt = rebuild_hflags_internal(env);
13015 
13016     if (unlikely(env_flags_current != env_flags_rebuilt)) {
13017         fprintf(stderr, "TCG hflags mismatch (current:0x%08x rebuilt:0x%08x)\n",
13018                 env_flags_current, env_flags_rebuilt);
13019         abort();
13020     }
13021 #endif
13022 }
13023 
13024 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
13025                           target_ulong *cs_base, uint32_t *pflags)
13026 {
13027     uint32_t flags = env->hflags;
13028     uint32_t pstate_for_ss;
13029 
13030     *cs_base = 0;
13031     assert_hflags_rebuild_correctly(env);
13032 
13033     if (FIELD_EX32(flags, TBFLAG_ANY, AARCH64_STATE)) {
13034         *pc = env->pc;
13035         if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
13036             flags = FIELD_DP32(flags, TBFLAG_A64, BTYPE, env->btype);
13037         }
13038         pstate_for_ss = env->pstate;
13039     } else {
13040         *pc = env->regs[15];
13041 
13042         if (arm_feature(env, ARM_FEATURE_M)) {
13043             if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
13044                 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
13045                 != env->v7m.secure) {
13046                 flags = FIELD_DP32(flags, TBFLAG_M32, FPCCR_S_WRONG, 1);
13047             }
13048 
13049             if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
13050                 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
13051                  (env->v7m.secure &&
13052                   !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
13053                 /*
13054                  * ASPEN is set, but FPCA/SFPA indicate that there is no
13055                  * active FP context; we must create a new FP context before
13056                  * executing any FP insn.
13057                  */
13058                 flags = FIELD_DP32(flags, TBFLAG_M32, NEW_FP_CTXT_NEEDED, 1);
13059             }
13060 
13061             bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
13062             if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
13063                 flags = FIELD_DP32(flags, TBFLAG_M32, LSPACT, 1);
13064             }
13065         } else {
13066             /*
13067              * Note that XSCALE_CPAR shares bits with VECSTRIDE.
13068              * Note that VECLEN+VECSTRIDE are RES0 for M-profile.
13069              */
13070             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
13071                 flags = FIELD_DP32(flags, TBFLAG_A32,
13072                                    XSCALE_CPAR, env->cp15.c15_cpar);
13073             } else {
13074                 flags = FIELD_DP32(flags, TBFLAG_A32, VECLEN,
13075                                    env->vfp.vec_len);
13076                 flags = FIELD_DP32(flags, TBFLAG_A32, VECSTRIDE,
13077                                    env->vfp.vec_stride);
13078             }
13079             if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
13080                 flags = FIELD_DP32(flags, TBFLAG_A32, VFPEN, 1);
13081             }
13082         }
13083 
13084         flags = FIELD_DP32(flags, TBFLAG_AM32, THUMB, env->thumb);
13085         flags = FIELD_DP32(flags, TBFLAG_AM32, CONDEXEC, env->condexec_bits);
13086         pstate_for_ss = env->uncached_cpsr;
13087     }
13088 
13089     /*
13090      * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13091      * states defined in the ARM ARM for software singlestep:
13092      *  SS_ACTIVE   PSTATE.SS   State
13093      *     0            x       Inactive (the TB flag for SS is always 0)
13094      *     1            0       Active-pending
13095      *     1            1       Active-not-pending
13096      * SS_ACTIVE is set in hflags; PSTATE_SS is computed every TB.
13097      */
13098     if (FIELD_EX32(flags, TBFLAG_ANY, SS_ACTIVE) &&
13099         (pstate_for_ss & PSTATE_SS)) {
13100         flags = FIELD_DP32(flags, TBFLAG_ANY, PSTATE_SS, 1);
13101     }
13102 
13103     *pflags = flags;
13104 }
13105 
13106 #ifdef TARGET_AARCH64
13107 /*
13108  * The manual says that when SVE is enabled and VQ is widened the
13109  * implementation is allowed to zero the previously inaccessible
13110  * portion of the registers.  The corollary to that is that when
13111  * SVE is enabled and VQ is narrowed we are also allowed to zero
13112  * the now inaccessible portion of the registers.
13113  *
13114  * The intent of this is that no predicate bit beyond VQ is ever set.
13115  * Which means that some operations on predicate registers themselves
13116  * may operate on full uint64_t or even unrolled across the maximum
13117  * uint64_t[4].  Performing 4 bits of host arithmetic unconditionally
13118  * may well be cheaper than conditionals to restrict the operation
13119  * to the relevant portion of a uint16_t[16].
13120  */
13121 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
13122 {
13123     int i, j;
13124     uint64_t pmask;
13125 
13126     assert(vq >= 1 && vq <= ARM_MAX_VQ);
13127     assert(vq <= env_archcpu(env)->sve_max_vq);
13128 
13129     /* Zap the high bits of the zregs.  */
13130     for (i = 0; i < 32; i++) {
13131         memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
13132     }
13133 
13134     /* Zap the high bits of the pregs and ffr.  */
13135     pmask = 0;
13136     if (vq & 3) {
13137         pmask = ~(-1ULL << (16 * (vq & 3)));
13138     }
13139     for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
13140         for (i = 0; i < 17; ++i) {
13141             env->vfp.pregs[i].p[j] &= pmask;
13142         }
13143         pmask = 0;
13144     }
13145 }
13146 
13147 /*
13148  * Notice a change in SVE vector size when changing EL.
13149  */
13150 void aarch64_sve_change_el(CPUARMState *env, int old_el,
13151                            int new_el, bool el0_a64)
13152 {
13153     ARMCPU *cpu = env_archcpu(env);
13154     int old_len, new_len;
13155     bool old_a64, new_a64;
13156 
13157     /* Nothing to do if no SVE.  */
13158     if (!cpu_isar_feature(aa64_sve, cpu)) {
13159         return;
13160     }
13161 
13162     /* Nothing to do if FP is disabled in either EL.  */
13163     if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
13164         return;
13165     }
13166 
13167     /*
13168      * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13169      * at ELx, or not available because the EL is in AArch32 state, then
13170      * for all purposes other than a direct read, the ZCR_ELx.LEN field
13171      * has an effective value of 0".
13172      *
13173      * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13174      * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13175      * from EL2->EL1.  Thus we go ahead and narrow when entering aa32 so that
13176      * we already have the correct register contents when encountering the
13177      * vq0->vq0 transition between EL0->EL1.
13178      */
13179     old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
13180     old_len = (old_a64 && !sve_exception_el(env, old_el)
13181                ? sve_zcr_len_for_el(env, old_el) : 0);
13182     new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
13183     new_len = (new_a64 && !sve_exception_el(env, new_el)
13184                ? sve_zcr_len_for_el(env, new_el) : 0);
13185 
13186     /* When changing vector length, clear inaccessible state.  */
13187     if (new_len < old_len) {
13188         aarch64_sve_narrow_vq(env, new_len + 1);
13189     }
13190 }
13191 #endif
13192