1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "cpu-features.h" 15 #include "exec/helper-proto.h" 16 #include "qemu/main-loop.h" 17 #include "qemu/timer.h" 18 #include "qemu/bitops.h" 19 #include "qemu/crc32c.h" 20 #include "qemu/qemu-print.h" 21 #include "exec/exec-all.h" 22 #include <zlib.h> /* for crc32 */ 23 #include "hw/irq.h" 24 #include "sysemu/cpu-timers.h" 25 #include "sysemu/kvm.h" 26 #include "sysemu/tcg.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 #include "target/arm/gtimer.h" 34 35 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 36 37 static void switch_mode(CPUARMState *env, int mode); 38 39 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 40 { 41 assert(ri->fieldoffset); 42 if (cpreg_field_is_64bit(ri)) { 43 return CPREG_FIELD64(env, ri); 44 } else { 45 return CPREG_FIELD32(env, ri); 46 } 47 } 48 49 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 50 { 51 assert(ri->fieldoffset); 52 if (cpreg_field_is_64bit(ri)) { 53 CPREG_FIELD64(env, ri) = value; 54 } else { 55 CPREG_FIELD32(env, ri) = value; 56 } 57 } 58 59 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 60 { 61 return (char *)env + ri->fieldoffset; 62 } 63 64 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 65 { 66 /* Raw read of a coprocessor register (as needed for migration, etc). */ 67 if (ri->type & ARM_CP_CONST) { 68 return ri->resetvalue; 69 } else if (ri->raw_readfn) { 70 return ri->raw_readfn(env, ri); 71 } else if (ri->readfn) { 72 return ri->readfn(env, ri); 73 } else { 74 return raw_read(env, ri); 75 } 76 } 77 78 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 79 uint64_t v) 80 { 81 /* 82 * Raw write of a coprocessor register (as needed for migration, etc). 83 * Note that constant registers are treated as write-ignored; the 84 * caller should check for success by whether a readback gives the 85 * value written. 86 */ 87 if (ri->type & ARM_CP_CONST) { 88 return; 89 } else if (ri->raw_writefn) { 90 ri->raw_writefn(env, ri, v); 91 } else if (ri->writefn) { 92 ri->writefn(env, ri, v); 93 } else { 94 raw_write(env, ri, v); 95 } 96 } 97 98 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 99 { 100 /* 101 * Return true if the regdef would cause an assertion if you called 102 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 103 * program bug for it not to have the NO_RAW flag). 104 * NB that returning false here doesn't necessarily mean that calling 105 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 106 * read/write access functions which are safe for raw use" from "has 107 * read/write access functions which have side effects but has forgotten 108 * to provide raw access functions". 109 * The tests here line up with the conditions in read/write_raw_cp_reg() 110 * and assertions in raw_read()/raw_write(). 111 */ 112 if ((ri->type & ARM_CP_CONST) || 113 ri->fieldoffset || 114 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 115 return false; 116 } 117 return true; 118 } 119 120 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 121 { 122 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 123 int i; 124 bool ok = true; 125 126 for (i = 0; i < cpu->cpreg_array_len; i++) { 127 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 128 const ARMCPRegInfo *ri; 129 uint64_t newval; 130 131 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 132 if (!ri) { 133 ok = false; 134 continue; 135 } 136 if (ri->type & ARM_CP_NO_RAW) { 137 continue; 138 } 139 140 newval = read_raw_cp_reg(&cpu->env, ri); 141 if (kvm_sync) { 142 /* 143 * Only sync if the previous list->cpustate sync succeeded. 144 * Rather than tracking the success/failure state for every 145 * item in the list, we just recheck "does the raw write we must 146 * have made in write_list_to_cpustate() read back OK" here. 147 */ 148 uint64_t oldval = cpu->cpreg_values[i]; 149 150 if (oldval == newval) { 151 continue; 152 } 153 154 write_raw_cp_reg(&cpu->env, ri, oldval); 155 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 156 continue; 157 } 158 159 write_raw_cp_reg(&cpu->env, ri, newval); 160 } 161 cpu->cpreg_values[i] = newval; 162 } 163 return ok; 164 } 165 166 bool write_list_to_cpustate(ARMCPU *cpu) 167 { 168 int i; 169 bool ok = true; 170 171 for (i = 0; i < cpu->cpreg_array_len; i++) { 172 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 173 uint64_t v = cpu->cpreg_values[i]; 174 const ARMCPRegInfo *ri; 175 176 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 177 if (!ri) { 178 ok = false; 179 continue; 180 } 181 if (ri->type & ARM_CP_NO_RAW) { 182 continue; 183 } 184 /* 185 * Write value and confirm it reads back as written 186 * (to catch read-only registers and partially read-only 187 * registers where the incoming migration value doesn't match) 188 */ 189 write_raw_cp_reg(&cpu->env, ri, v); 190 if (read_raw_cp_reg(&cpu->env, ri) != v) { 191 ok = false; 192 } 193 } 194 return ok; 195 } 196 197 static void add_cpreg_to_list(gpointer key, gpointer opaque) 198 { 199 ARMCPU *cpu = opaque; 200 uint32_t regidx = (uintptr_t)key; 201 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 202 203 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 204 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 205 /* The value array need not be initialized at this point */ 206 cpu->cpreg_array_len++; 207 } 208 } 209 210 static void count_cpreg(gpointer key, gpointer opaque) 211 { 212 ARMCPU *cpu = opaque; 213 const ARMCPRegInfo *ri; 214 215 ri = g_hash_table_lookup(cpu->cp_regs, key); 216 217 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 218 cpu->cpreg_array_len++; 219 } 220 } 221 222 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 223 { 224 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 225 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 226 227 if (aidx > bidx) { 228 return 1; 229 } 230 if (aidx < bidx) { 231 return -1; 232 } 233 return 0; 234 } 235 236 void init_cpreg_list(ARMCPU *cpu) 237 { 238 /* 239 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 240 * Note that we require cpreg_tuples[] to be sorted by key ID. 241 */ 242 GList *keys; 243 int arraylen; 244 245 keys = g_hash_table_get_keys(cpu->cp_regs); 246 keys = g_list_sort(keys, cpreg_key_compare); 247 248 cpu->cpreg_array_len = 0; 249 250 g_list_foreach(keys, count_cpreg, cpu); 251 252 arraylen = cpu->cpreg_array_len; 253 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 254 cpu->cpreg_values = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 257 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 258 cpu->cpreg_array_len = 0; 259 260 g_list_foreach(keys, add_cpreg_to_list, cpu); 261 262 assert(cpu->cpreg_array_len == arraylen); 263 264 g_list_free(keys); 265 } 266 267 static bool arm_pan_enabled(CPUARMState *env) 268 { 269 if (is_a64(env)) { 270 if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) { 271 return false; 272 } 273 return env->pstate & PSTATE_PAN; 274 } else { 275 return env->uncached_cpsr & CPSR_PAN; 276 } 277 } 278 279 /* 280 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 281 */ 282 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 283 const ARMCPRegInfo *ri, 284 bool isread) 285 { 286 if (!is_a64(env) && arm_current_el(env) == 3 && 287 arm_is_secure_below_el3(env)) { 288 return CP_ACCESS_TRAP_UNCATEGORIZED; 289 } 290 return CP_ACCESS_OK; 291 } 292 293 /* 294 * Some secure-only AArch32 registers trap to EL3 if used from 295 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 296 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 297 * We assume that the .access field is set to PL1_RW. 298 */ 299 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 300 const ARMCPRegInfo *ri, 301 bool isread) 302 { 303 if (arm_current_el(env) == 3) { 304 return CP_ACCESS_OK; 305 } 306 if (arm_is_secure_below_el3(env)) { 307 if (env->cp15.scr_el3 & SCR_EEL2) { 308 return CP_ACCESS_TRAP_EL2; 309 } 310 return CP_ACCESS_TRAP_EL3; 311 } 312 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 313 return CP_ACCESS_TRAP_UNCATEGORIZED; 314 } 315 316 /* 317 * Check for traps to performance monitor registers, which are controlled 318 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 319 */ 320 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 321 bool isread) 322 { 323 int el = arm_current_el(env); 324 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 325 326 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 327 return CP_ACCESS_TRAP_EL2; 328 } 329 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 330 return CP_ACCESS_TRAP_EL3; 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 336 CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1) { 340 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 341 if (arm_hcr_el2_eff(env) & trap) { 342 return CP_ACCESS_TRAP_EL2; 343 } 344 } 345 return CP_ACCESS_OK; 346 } 347 348 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 349 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 350 bool isread) 351 { 352 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 353 return CP_ACCESS_TRAP_EL2; 354 } 355 return CP_ACCESS_OK; 356 } 357 358 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 359 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 360 bool isread) 361 { 362 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 363 return CP_ACCESS_TRAP_EL2; 364 } 365 return CP_ACCESS_OK; 366 } 367 368 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 369 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 370 bool isread) 371 { 372 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 373 return CP_ACCESS_TRAP_EL2; 374 } 375 return CP_ACCESS_OK; 376 } 377 378 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 379 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 380 bool isread) 381 { 382 if (arm_current_el(env) == 1 && 383 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 384 return CP_ACCESS_TRAP_EL2; 385 } 386 return CP_ACCESS_OK; 387 } 388 389 #ifdef TARGET_AARCH64 390 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 391 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 392 bool isread) 393 { 394 if (arm_current_el(env) == 1 && 395 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 396 return CP_ACCESS_TRAP_EL2; 397 } 398 return CP_ACCESS_OK; 399 } 400 #endif 401 402 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 403 { 404 ARMCPU *cpu = env_archcpu(env); 405 406 raw_write(env, ri, value); 407 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 408 } 409 410 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 411 { 412 ARMCPU *cpu = env_archcpu(env); 413 414 if (raw_read(env, ri) != value) { 415 /* 416 * Unlike real hardware the qemu TLB uses virtual addresses, 417 * not modified virtual addresses, so this causes a TLB flush. 418 */ 419 tlb_flush(CPU(cpu)); 420 raw_write(env, ri, value); 421 } 422 } 423 424 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 ARMCPU *cpu = env_archcpu(env); 428 429 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 430 && !extended_addresses_enabled(env)) { 431 /* 432 * For VMSA (when not using the LPAE long descriptor page table 433 * format) this register includes the ASID, so do a TLB flush. 434 * For PMSA it is purely a process ID and no action is needed. 435 */ 436 tlb_flush(CPU(cpu)); 437 } 438 raw_write(env, ri, value); 439 } 440 441 static int alle1_tlbmask(CPUARMState *env) 442 { 443 /* 444 * Note that the 'ALL' scope must invalidate both stage 1 and 445 * stage 2 translations, whereas most other scopes only invalidate 446 * stage 1 translations. 447 */ 448 return (ARMMMUIdxBit_E10_1 | 449 ARMMMUIdxBit_E10_1_PAN | 450 ARMMMUIdxBit_E10_0 | 451 ARMMMUIdxBit_Stage2 | 452 ARMMMUIdxBit_Stage2_S); 453 } 454 455 456 /* IS variants of TLB operations must affect all cores */ 457 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 458 uint64_t value) 459 { 460 CPUState *cs = env_cpu(env); 461 462 tlb_flush_all_cpus_synced(cs); 463 } 464 465 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 466 uint64_t value) 467 { 468 CPUState *cs = env_cpu(env); 469 470 tlb_flush_all_cpus_synced(cs); 471 } 472 473 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 474 uint64_t value) 475 { 476 CPUState *cs = env_cpu(env); 477 478 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 479 } 480 481 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 CPUState *cs = env_cpu(env); 485 486 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 487 } 488 489 /* 490 * Non-IS variants of TLB operations are upgraded to 491 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 492 * force broadcast of these operations. 493 */ 494 static bool tlb_force_broadcast(CPUARMState *env) 495 { 496 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 497 } 498 499 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate all (TLBIALL) */ 503 CPUState *cs = env_cpu(env); 504 505 if (tlb_force_broadcast(env)) { 506 tlb_flush_all_cpus_synced(cs); 507 } else { 508 tlb_flush(cs); 509 } 510 } 511 512 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 516 CPUState *cs = env_cpu(env); 517 518 value &= TARGET_PAGE_MASK; 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_page_all_cpus_synced(cs, value); 521 } else { 522 tlb_flush_page(cs, value); 523 } 524 } 525 526 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate by ASID (TLBIASID) */ 530 CPUState *cs = env_cpu(env); 531 532 if (tlb_force_broadcast(env)) { 533 tlb_flush_all_cpus_synced(cs); 534 } else { 535 tlb_flush(cs); 536 } 537 } 538 539 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 540 uint64_t value) 541 { 542 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 543 CPUState *cs = env_cpu(env); 544 545 value &= TARGET_PAGE_MASK; 546 if (tlb_force_broadcast(env)) { 547 tlb_flush_page_all_cpus_synced(cs, value); 548 } else { 549 tlb_flush_page(cs, value); 550 } 551 } 552 553 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 CPUState *cs = env_cpu(env); 557 558 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 559 } 560 561 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = env_cpu(env); 565 566 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 567 } 568 569 570 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 571 uint64_t value) 572 { 573 CPUState *cs = env_cpu(env); 574 575 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 576 } 577 578 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 CPUState *cs = env_cpu(env); 582 583 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 584 } 585 586 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 587 uint64_t value) 588 { 589 CPUState *cs = env_cpu(env); 590 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 591 592 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 593 } 594 595 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 596 uint64_t value) 597 { 598 CPUState *cs = env_cpu(env); 599 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 600 601 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 602 ARMMMUIdxBit_E2); 603 } 604 605 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 606 uint64_t value) 607 { 608 CPUState *cs = env_cpu(env); 609 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 610 611 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 612 } 613 614 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 615 uint64_t value) 616 { 617 CPUState *cs = env_cpu(env); 618 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 619 620 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 621 } 622 623 static const ARMCPRegInfo cp_reginfo[] = { 624 /* 625 * Define the secure and non-secure FCSE identifier CP registers 626 * separately because there is no secure bank in V8 (no _EL3). This allows 627 * the secure register to be properly reset and migrated. There is also no 628 * v8 EL1 version of the register so the non-secure instance stands alone. 629 */ 630 { .name = "FCSEIDR", 631 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 632 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 633 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 634 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 635 { .name = "FCSEIDR_S", 636 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 637 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 638 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 639 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 640 /* 641 * Define the secure and non-secure context identifier CP registers 642 * separately because there is no secure bank in V8 (no _EL3). This allows 643 * the secure register to be properly reset and migrated. In the 644 * non-secure case, the 32-bit register will have reset and migration 645 * disabled during registration as it is handled by the 64-bit instance. 646 */ 647 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 648 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 649 .access = PL1_RW, .accessfn = access_tvm_trvm, 650 .fgt = FGT_CONTEXTIDR_EL1, 651 .nv2_redirect_offset = 0x108 | NV2_REDIR_NV1, 652 .secure = ARM_CP_SECSTATE_NS, 653 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 654 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 655 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 656 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, 658 .secure = ARM_CP_SECSTATE_S, 659 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 660 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 661 }; 662 663 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 664 /* 665 * NB: Some of these registers exist in v8 but with more precise 666 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 667 */ 668 /* MMU Domain access control / MPU write buffer control */ 669 { .name = "DACR", 670 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 671 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 672 .writefn = dacr_write, .raw_writefn = raw_write, 673 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 674 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 675 /* 676 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 677 * For v6 and v5, these mappings are overly broad. 678 */ 679 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 680 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 681 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 682 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 683 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 684 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 685 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 686 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 687 /* Cache maintenance ops; some of this space may be overridden later. */ 688 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 689 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 690 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 691 }; 692 693 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 694 /* 695 * Not all pre-v6 cores implemented this WFI, so this is slightly 696 * over-broad. 697 */ 698 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 699 .access = PL1_W, .type = ARM_CP_WFI }, 700 }; 701 702 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 703 /* 704 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 705 * is UNPREDICTABLE; we choose to NOP as most implementations do). 706 */ 707 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 708 .access = PL1_W, .type = ARM_CP_WFI }, 709 /* 710 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 711 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 712 * OMAPCP will override this space. 713 */ 714 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 715 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 716 .resetvalue = 0 }, 717 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 718 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 719 .resetvalue = 0 }, 720 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 721 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 722 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 723 .resetvalue = 0 }, 724 /* 725 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 726 * implementing it as RAZ means the "debug architecture version" bits 727 * will read as a reserved value, which should cause Linux to not try 728 * to use the debug hardware. 729 */ 730 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 731 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 732 /* 733 * MMU TLB control. Note that the wildcarding means we cover not just 734 * the unified TLB ops but also the dside/iside/inner-shareable variants. 735 */ 736 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 737 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 738 .type = ARM_CP_NO_RAW }, 739 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 740 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 741 .type = ARM_CP_NO_RAW }, 742 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 743 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 744 .type = ARM_CP_NO_RAW }, 745 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 746 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 747 .type = ARM_CP_NO_RAW }, 748 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 749 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 750 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 751 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 752 }; 753 754 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 755 uint64_t value) 756 { 757 uint32_t mask = 0; 758 759 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 760 if (!arm_feature(env, ARM_FEATURE_V8)) { 761 /* 762 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 763 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 764 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 765 */ 766 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 767 /* VFP coprocessor: cp10 & cp11 [23:20] */ 768 mask |= R_CPACR_ASEDIS_MASK | 769 R_CPACR_D32DIS_MASK | 770 R_CPACR_CP11_MASK | 771 R_CPACR_CP10_MASK; 772 773 if (!arm_feature(env, ARM_FEATURE_NEON)) { 774 /* ASEDIS [31] bit is RAO/WI */ 775 value |= R_CPACR_ASEDIS_MASK; 776 } 777 778 /* 779 * VFPv3 and upwards with NEON implement 32 double precision 780 * registers (D0-D31). 781 */ 782 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 783 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 784 value |= R_CPACR_D32DIS_MASK; 785 } 786 } 787 value &= mask; 788 } 789 790 /* 791 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 792 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 793 */ 794 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 795 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 796 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 797 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 798 } 799 800 env->cp15.cpacr_el1 = value; 801 } 802 803 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 804 { 805 /* 806 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 807 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 808 */ 809 uint64_t value = env->cp15.cpacr_el1; 810 811 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 812 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 813 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 814 } 815 return value; 816 } 817 818 819 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 820 { 821 /* 822 * Call cpacr_write() so that we reset with the correct RAO bits set 823 * for our CPU features. 824 */ 825 cpacr_write(env, ri, 0); 826 } 827 828 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 829 bool isread) 830 { 831 if (arm_feature(env, ARM_FEATURE_V8)) { 832 /* Check if CPACR accesses are to be trapped to EL2 */ 833 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 834 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 835 return CP_ACCESS_TRAP_EL2; 836 /* Check if CPACR accesses are to be trapped to EL3 */ 837 } else if (arm_current_el(env) < 3 && 838 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 839 return CP_ACCESS_TRAP_EL3; 840 } 841 } 842 843 return CP_ACCESS_OK; 844 } 845 846 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 847 bool isread) 848 { 849 /* Check if CPTR accesses are set to trap to EL3 */ 850 if (arm_current_el(env) == 2 && 851 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 852 return CP_ACCESS_TRAP_EL3; 853 } 854 855 return CP_ACCESS_OK; 856 } 857 858 static const ARMCPRegInfo v6_cp_reginfo[] = { 859 /* prefetch by MVA in v6, NOP in v7 */ 860 { .name = "MVA_prefetch", 861 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 862 .access = PL1_W, .type = ARM_CP_NOP }, 863 /* 864 * We need to break the TB after ISB to execute self-modifying code 865 * correctly and also to take any pending interrupts immediately. 866 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 867 */ 868 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 869 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 870 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 871 .access = PL0_W, .type = ARM_CP_NOP }, 872 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 873 .access = PL0_W, .type = ARM_CP_NOP }, 874 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 875 .access = PL1_RW, .accessfn = access_tvm_trvm, 876 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 877 offsetof(CPUARMState, cp15.ifar_ns) }, 878 .resetvalue = 0, }, 879 /* 880 * Watchpoint Fault Address Register : should actually only be present 881 * for 1136, 1176, 11MPCore. 882 */ 883 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 884 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 885 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 886 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 887 .fgt = FGT_CPACR_EL1, 888 .nv2_redirect_offset = 0x100 | NV2_REDIR_NV1, 889 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 890 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 891 }; 892 893 typedef struct pm_event { 894 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 895 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 896 bool (*supported)(CPUARMState *); 897 /* 898 * Retrieve the current count of the underlying event. The programmed 899 * counters hold a difference from the return value from this function 900 */ 901 uint64_t (*get_count)(CPUARMState *); 902 /* 903 * Return how many nanoseconds it will take (at a minimum) for count events 904 * to occur. A negative value indicates the counter will never overflow, or 905 * that the counter has otherwise arranged for the overflow bit to be set 906 * and the PMU interrupt to be raised on overflow. 907 */ 908 int64_t (*ns_per_count)(uint64_t); 909 } pm_event; 910 911 static bool event_always_supported(CPUARMState *env) 912 { 913 return true; 914 } 915 916 static uint64_t swinc_get_count(CPUARMState *env) 917 { 918 /* 919 * SW_INCR events are written directly to the pmevcntr's by writes to 920 * PMSWINC, so there is no underlying count maintained by the PMU itself 921 */ 922 return 0; 923 } 924 925 static int64_t swinc_ns_per(uint64_t ignored) 926 { 927 return -1; 928 } 929 930 /* 931 * Return the underlying cycle count for the PMU cycle counters. If we're in 932 * usermode, simply return 0. 933 */ 934 static uint64_t cycles_get_count(CPUARMState *env) 935 { 936 #ifndef CONFIG_USER_ONLY 937 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 938 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 939 #else 940 return cpu_get_host_ticks(); 941 #endif 942 } 943 944 #ifndef CONFIG_USER_ONLY 945 static int64_t cycles_ns_per(uint64_t cycles) 946 { 947 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 948 } 949 950 static bool instructions_supported(CPUARMState *env) 951 { 952 /* Precise instruction counting */ 953 return icount_enabled() == ICOUNT_PRECISE; 954 } 955 956 static uint64_t instructions_get_count(CPUARMState *env) 957 { 958 assert(icount_enabled() == ICOUNT_PRECISE); 959 return (uint64_t)icount_get_raw(); 960 } 961 962 static int64_t instructions_ns_per(uint64_t icount) 963 { 964 assert(icount_enabled() == ICOUNT_PRECISE); 965 return icount_to_ns((int64_t)icount); 966 } 967 #endif 968 969 static bool pmuv3p1_events_supported(CPUARMState *env) 970 { 971 /* For events which are supported in any v8.1 PMU */ 972 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 973 } 974 975 static bool pmuv3p4_events_supported(CPUARMState *env) 976 { 977 /* For events which are supported in any v8.1 PMU */ 978 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 979 } 980 981 static uint64_t zero_event_get_count(CPUARMState *env) 982 { 983 /* For events which on QEMU never fire, so their count is always zero */ 984 return 0; 985 } 986 987 static int64_t zero_event_ns_per(uint64_t cycles) 988 { 989 /* An event which never fires can never overflow */ 990 return -1; 991 } 992 993 static const pm_event pm_events[] = { 994 { .number = 0x000, /* SW_INCR */ 995 .supported = event_always_supported, 996 .get_count = swinc_get_count, 997 .ns_per_count = swinc_ns_per, 998 }, 999 #ifndef CONFIG_USER_ONLY 1000 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 1001 .supported = instructions_supported, 1002 .get_count = instructions_get_count, 1003 .ns_per_count = instructions_ns_per, 1004 }, 1005 { .number = 0x011, /* CPU_CYCLES, Cycle */ 1006 .supported = event_always_supported, 1007 .get_count = cycles_get_count, 1008 .ns_per_count = cycles_ns_per, 1009 }, 1010 #endif 1011 { .number = 0x023, /* STALL_FRONTEND */ 1012 .supported = pmuv3p1_events_supported, 1013 .get_count = zero_event_get_count, 1014 .ns_per_count = zero_event_ns_per, 1015 }, 1016 { .number = 0x024, /* STALL_BACKEND */ 1017 .supported = pmuv3p1_events_supported, 1018 .get_count = zero_event_get_count, 1019 .ns_per_count = zero_event_ns_per, 1020 }, 1021 { .number = 0x03c, /* STALL */ 1022 .supported = pmuv3p4_events_supported, 1023 .get_count = zero_event_get_count, 1024 .ns_per_count = zero_event_ns_per, 1025 }, 1026 }; 1027 1028 /* 1029 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1030 * events (i.e. the statistical profiling extension), this implementation 1031 * should first be updated to something sparse instead of the current 1032 * supported_event_map[] array. 1033 */ 1034 #define MAX_EVENT_ID 0x3c 1035 #define UNSUPPORTED_EVENT UINT16_MAX 1036 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1037 1038 /* 1039 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1040 * of ARM event numbers to indices in our pm_events array. 1041 * 1042 * Note: Events in the 0x40XX range are not currently supported. 1043 */ 1044 void pmu_init(ARMCPU *cpu) 1045 { 1046 unsigned int i; 1047 1048 /* 1049 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1050 * events to them 1051 */ 1052 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1053 supported_event_map[i] = UNSUPPORTED_EVENT; 1054 } 1055 cpu->pmceid0 = 0; 1056 cpu->pmceid1 = 0; 1057 1058 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1059 const pm_event *cnt = &pm_events[i]; 1060 assert(cnt->number <= MAX_EVENT_ID); 1061 /* We do not currently support events in the 0x40xx range */ 1062 assert(cnt->number <= 0x3f); 1063 1064 if (cnt->supported(&cpu->env)) { 1065 supported_event_map[cnt->number] = i; 1066 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1067 if (cnt->number & 0x20) { 1068 cpu->pmceid1 |= event_mask; 1069 } else { 1070 cpu->pmceid0 |= event_mask; 1071 } 1072 } 1073 } 1074 } 1075 1076 /* 1077 * Check at runtime whether a PMU event is supported for the current machine 1078 */ 1079 static bool event_supported(uint16_t number) 1080 { 1081 if (number > MAX_EVENT_ID) { 1082 return false; 1083 } 1084 return supported_event_map[number] != UNSUPPORTED_EVENT; 1085 } 1086 1087 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1088 bool isread) 1089 { 1090 /* 1091 * Performance monitor registers user accessibility is controlled 1092 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1093 * trapping to EL2 or EL3 for other accesses. 1094 */ 1095 int el = arm_current_el(env); 1096 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1097 1098 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1099 return CP_ACCESS_TRAP; 1100 } 1101 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1102 return CP_ACCESS_TRAP_EL2; 1103 } 1104 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1105 return CP_ACCESS_TRAP_EL3; 1106 } 1107 1108 return CP_ACCESS_OK; 1109 } 1110 1111 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1112 const ARMCPRegInfo *ri, 1113 bool isread) 1114 { 1115 /* ER: event counter read trap control */ 1116 if (arm_feature(env, ARM_FEATURE_V8) 1117 && arm_current_el(env) == 0 1118 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1119 && isread) { 1120 return CP_ACCESS_OK; 1121 } 1122 1123 return pmreg_access(env, ri, isread); 1124 } 1125 1126 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1127 const ARMCPRegInfo *ri, 1128 bool isread) 1129 { 1130 /* SW: software increment write trap control */ 1131 if (arm_feature(env, ARM_FEATURE_V8) 1132 && arm_current_el(env) == 0 1133 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1134 && !isread) { 1135 return CP_ACCESS_OK; 1136 } 1137 1138 return pmreg_access(env, ri, isread); 1139 } 1140 1141 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1142 const ARMCPRegInfo *ri, 1143 bool isread) 1144 { 1145 /* ER: event counter read trap control */ 1146 if (arm_feature(env, ARM_FEATURE_V8) 1147 && arm_current_el(env) == 0 1148 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1149 return CP_ACCESS_OK; 1150 } 1151 1152 return pmreg_access(env, ri, isread); 1153 } 1154 1155 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1156 const ARMCPRegInfo *ri, 1157 bool isread) 1158 { 1159 /* CR: cycle counter read trap control */ 1160 if (arm_feature(env, ARM_FEATURE_V8) 1161 && arm_current_el(env) == 0 1162 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1163 && isread) { 1164 return CP_ACCESS_OK; 1165 } 1166 1167 return pmreg_access(env, ri, isread); 1168 } 1169 1170 /* 1171 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1172 * We use these to decide whether we need to wrap a write to MDCR_EL2 1173 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1174 */ 1175 #define MDCR_EL2_PMU_ENABLE_BITS \ 1176 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1177 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1178 1179 /* 1180 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1181 * the current EL, security state, and register configuration. 1182 */ 1183 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1184 { 1185 uint64_t filter; 1186 bool e, p, u, nsk, nsu, nsh, m; 1187 bool enabled, prohibited = false, filtered; 1188 bool secure = arm_is_secure(env); 1189 int el = arm_current_el(env); 1190 uint64_t mdcr_el2; 1191 uint8_t hpmn; 1192 1193 /* 1194 * We might be called for M-profile cores where MDCR_EL2 doesn't 1195 * exist and arm_mdcr_el2_eff() will assert, so this early-exit check 1196 * must be before we read that value. 1197 */ 1198 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1199 return false; 1200 } 1201 1202 mdcr_el2 = arm_mdcr_el2_eff(env); 1203 hpmn = mdcr_el2 & MDCR_HPMN; 1204 1205 if (!arm_feature(env, ARM_FEATURE_EL2) || 1206 (counter < hpmn || counter == 31)) { 1207 e = env->cp15.c9_pmcr & PMCRE; 1208 } else { 1209 e = mdcr_el2 & MDCR_HPME; 1210 } 1211 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1212 1213 /* Is event counting prohibited? */ 1214 if (el == 2 && (counter < hpmn || counter == 31)) { 1215 prohibited = mdcr_el2 & MDCR_HPMD; 1216 } 1217 if (secure) { 1218 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1219 } 1220 1221 if (counter == 31) { 1222 /* 1223 * The cycle counter defaults to running. PMCR.DP says "disable 1224 * the cycle counter when event counting is prohibited". 1225 * Some MDCR bits disable the cycle counter specifically. 1226 */ 1227 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1228 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1229 if (secure) { 1230 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1231 } 1232 if (el == 2) { 1233 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1234 } 1235 } 1236 } 1237 1238 if (counter == 31) { 1239 filter = env->cp15.pmccfiltr_el0; 1240 } else { 1241 filter = env->cp15.c14_pmevtyper[counter]; 1242 } 1243 1244 p = filter & PMXEVTYPER_P; 1245 u = filter & PMXEVTYPER_U; 1246 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1247 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1248 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1249 m = arm_el_is_aa64(env, 1) && 1250 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1251 1252 if (el == 0) { 1253 filtered = secure ? u : u != nsu; 1254 } else if (el == 1) { 1255 filtered = secure ? p : p != nsk; 1256 } else if (el == 2) { 1257 filtered = !nsh; 1258 } else { /* EL3 */ 1259 filtered = m != p; 1260 } 1261 1262 if (counter != 31) { 1263 /* 1264 * If not checking PMCCNTR, ensure the counter is setup to an event we 1265 * support 1266 */ 1267 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1268 if (!event_supported(event)) { 1269 return false; 1270 } 1271 } 1272 1273 return enabled && !prohibited && !filtered; 1274 } 1275 1276 static void pmu_update_irq(CPUARMState *env) 1277 { 1278 ARMCPU *cpu = env_archcpu(env); 1279 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1280 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1281 } 1282 1283 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1284 { 1285 /* 1286 * Return true if the clock divider is enabled and the cycle counter 1287 * is supposed to tick only once every 64 clock cycles. This is 1288 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1289 * (64-bit) cycle counter PMCR.D has no effect. 1290 */ 1291 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1292 } 1293 1294 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1295 { 1296 /* Return true if the specified event counter is configured to be 64 bit */ 1297 1298 /* This isn't intended to be used with the cycle counter */ 1299 assert(counter < 31); 1300 1301 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1302 return false; 1303 } 1304 1305 if (arm_feature(env, ARM_FEATURE_EL2)) { 1306 /* 1307 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1308 * current security state, so we don't use arm_mdcr_el2_eff() here. 1309 */ 1310 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1311 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1312 1313 if (counter >= hpmn) { 1314 return hlp; 1315 } 1316 } 1317 return env->cp15.c9_pmcr & PMCRLP; 1318 } 1319 1320 /* 1321 * Ensure c15_ccnt is the guest-visible count so that operations such as 1322 * enabling/disabling the counter or filtering, modifying the count itself, 1323 * etc. can be done logically. This is essentially a no-op if the counter is 1324 * not enabled at the time of the call. 1325 */ 1326 static void pmccntr_op_start(CPUARMState *env) 1327 { 1328 uint64_t cycles = cycles_get_count(env); 1329 1330 if (pmu_counter_enabled(env, 31)) { 1331 uint64_t eff_cycles = cycles; 1332 if (pmccntr_clockdiv_enabled(env)) { 1333 eff_cycles /= 64; 1334 } 1335 1336 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1337 1338 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1339 1ull << 63 : 1ull << 31; 1340 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1341 env->cp15.c9_pmovsr |= (1ULL << 31); 1342 pmu_update_irq(env); 1343 } 1344 1345 env->cp15.c15_ccnt = new_pmccntr; 1346 } 1347 env->cp15.c15_ccnt_delta = cycles; 1348 } 1349 1350 /* 1351 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1352 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1353 * pmccntr_op_start. 1354 */ 1355 static void pmccntr_op_finish(CPUARMState *env) 1356 { 1357 if (pmu_counter_enabled(env, 31)) { 1358 #ifndef CONFIG_USER_ONLY 1359 /* Calculate when the counter will next overflow */ 1360 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1361 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1362 remaining_cycles = (uint32_t)remaining_cycles; 1363 } 1364 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1365 1366 if (overflow_in > 0) { 1367 int64_t overflow_at; 1368 1369 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1370 overflow_in, &overflow_at)) { 1371 ARMCPU *cpu = env_archcpu(env); 1372 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1373 } 1374 } 1375 #endif 1376 1377 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1378 if (pmccntr_clockdiv_enabled(env)) { 1379 prev_cycles /= 64; 1380 } 1381 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1382 } 1383 } 1384 1385 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1386 { 1387 1388 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1389 uint64_t count = 0; 1390 if (event_supported(event)) { 1391 uint16_t event_idx = supported_event_map[event]; 1392 count = pm_events[event_idx].get_count(env); 1393 } 1394 1395 if (pmu_counter_enabled(env, counter)) { 1396 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1397 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1398 1ULL << 63 : 1ULL << 31; 1399 1400 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1401 env->cp15.c9_pmovsr |= (1 << counter); 1402 pmu_update_irq(env); 1403 } 1404 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1405 } 1406 env->cp15.c14_pmevcntr_delta[counter] = count; 1407 } 1408 1409 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1410 { 1411 if (pmu_counter_enabled(env, counter)) { 1412 #ifndef CONFIG_USER_ONLY 1413 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1414 uint16_t event_idx = supported_event_map[event]; 1415 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1416 int64_t overflow_in; 1417 1418 if (!pmevcntr_is_64_bit(env, counter)) { 1419 delta = (uint32_t)delta; 1420 } 1421 overflow_in = pm_events[event_idx].ns_per_count(delta); 1422 1423 if (overflow_in > 0) { 1424 int64_t overflow_at; 1425 1426 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1427 overflow_in, &overflow_at)) { 1428 ARMCPU *cpu = env_archcpu(env); 1429 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1430 } 1431 } 1432 #endif 1433 1434 env->cp15.c14_pmevcntr_delta[counter] -= 1435 env->cp15.c14_pmevcntr[counter]; 1436 } 1437 } 1438 1439 void pmu_op_start(CPUARMState *env) 1440 { 1441 unsigned int i; 1442 pmccntr_op_start(env); 1443 for (i = 0; i < pmu_num_counters(env); i++) { 1444 pmevcntr_op_start(env, i); 1445 } 1446 } 1447 1448 void pmu_op_finish(CPUARMState *env) 1449 { 1450 unsigned int i; 1451 pmccntr_op_finish(env); 1452 for (i = 0; i < pmu_num_counters(env); i++) { 1453 pmevcntr_op_finish(env, i); 1454 } 1455 } 1456 1457 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1458 { 1459 pmu_op_start(&cpu->env); 1460 } 1461 1462 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1463 { 1464 pmu_op_finish(&cpu->env); 1465 } 1466 1467 void arm_pmu_timer_cb(void *opaque) 1468 { 1469 ARMCPU *cpu = opaque; 1470 1471 /* 1472 * Update all the counter values based on the current underlying counts, 1473 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1474 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1475 * counter may expire. 1476 */ 1477 pmu_op_start(&cpu->env); 1478 pmu_op_finish(&cpu->env); 1479 } 1480 1481 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1482 uint64_t value) 1483 { 1484 pmu_op_start(env); 1485 1486 if (value & PMCRC) { 1487 /* The counter has been reset */ 1488 env->cp15.c15_ccnt = 0; 1489 } 1490 1491 if (value & PMCRP) { 1492 unsigned int i; 1493 for (i = 0; i < pmu_num_counters(env); i++) { 1494 env->cp15.c14_pmevcntr[i] = 0; 1495 } 1496 } 1497 1498 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1499 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1500 1501 pmu_op_finish(env); 1502 } 1503 1504 static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1505 { 1506 uint64_t pmcr = env->cp15.c9_pmcr; 1507 1508 /* 1509 * If EL2 is implemented and enabled for the current security state, reads 1510 * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN. 1511 */ 1512 if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) { 1513 pmcr &= ~PMCRN_MASK; 1514 pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT; 1515 } 1516 1517 return pmcr; 1518 } 1519 1520 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 unsigned int i; 1524 uint64_t overflow_mask, new_pmswinc; 1525 1526 for (i = 0; i < pmu_num_counters(env); i++) { 1527 /* Increment a counter's count iff: */ 1528 if ((value & (1 << i)) && /* counter's bit is set */ 1529 /* counter is enabled and not filtered */ 1530 pmu_counter_enabled(env, i) && 1531 /* counter is SW_INCR */ 1532 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1533 pmevcntr_op_start(env, i); 1534 1535 /* 1536 * Detect if this write causes an overflow since we can't predict 1537 * PMSWINC overflows like we can for other events 1538 */ 1539 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1540 1541 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1542 1ULL << 63 : 1ULL << 31; 1543 1544 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1545 env->cp15.c9_pmovsr |= (1 << i); 1546 pmu_update_irq(env); 1547 } 1548 1549 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1550 1551 pmevcntr_op_finish(env, i); 1552 } 1553 } 1554 } 1555 1556 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1557 { 1558 uint64_t ret; 1559 pmccntr_op_start(env); 1560 ret = env->cp15.c15_ccnt; 1561 pmccntr_op_finish(env); 1562 return ret; 1563 } 1564 1565 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1566 uint64_t value) 1567 { 1568 /* 1569 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1570 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1571 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1572 * accessed. 1573 */ 1574 env->cp15.c9_pmselr = value & 0x1f; 1575 } 1576 1577 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1578 uint64_t value) 1579 { 1580 pmccntr_op_start(env); 1581 env->cp15.c15_ccnt = value; 1582 pmccntr_op_finish(env); 1583 } 1584 1585 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1586 uint64_t value) 1587 { 1588 uint64_t cur_val = pmccntr_read(env, NULL); 1589 1590 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1591 } 1592 1593 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 pmccntr_op_start(env); 1597 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1598 pmccntr_op_finish(env); 1599 } 1600 1601 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 pmccntr_op_start(env); 1605 /* M is not accessible from AArch32 */ 1606 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1607 (value & PMCCFILTR); 1608 pmccntr_op_finish(env); 1609 } 1610 1611 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1612 { 1613 /* M is not visible in AArch32 */ 1614 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1615 } 1616 1617 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1618 uint64_t value) 1619 { 1620 pmu_op_start(env); 1621 value &= pmu_counter_mask(env); 1622 env->cp15.c9_pmcnten |= value; 1623 pmu_op_finish(env); 1624 } 1625 1626 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1627 uint64_t value) 1628 { 1629 pmu_op_start(env); 1630 value &= pmu_counter_mask(env); 1631 env->cp15.c9_pmcnten &= ~value; 1632 pmu_op_finish(env); 1633 } 1634 1635 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 value &= pmu_counter_mask(env); 1639 env->cp15.c9_pmovsr &= ~value; 1640 pmu_update_irq(env); 1641 } 1642 1643 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1644 uint64_t value) 1645 { 1646 value &= pmu_counter_mask(env); 1647 env->cp15.c9_pmovsr |= value; 1648 pmu_update_irq(env); 1649 } 1650 1651 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1652 uint64_t value, const uint8_t counter) 1653 { 1654 if (counter == 31) { 1655 pmccfiltr_write(env, ri, value); 1656 } else if (counter < pmu_num_counters(env)) { 1657 pmevcntr_op_start(env, counter); 1658 1659 /* 1660 * If this counter's event type is changing, store the current 1661 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1662 * pmevcntr_op_finish has the correct baseline when it converts back to 1663 * a delta. 1664 */ 1665 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1666 PMXEVTYPER_EVTCOUNT; 1667 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1668 if (old_event != new_event) { 1669 uint64_t count = 0; 1670 if (event_supported(new_event)) { 1671 uint16_t event_idx = supported_event_map[new_event]; 1672 count = pm_events[event_idx].get_count(env); 1673 } 1674 env->cp15.c14_pmevcntr_delta[counter] = count; 1675 } 1676 1677 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1678 pmevcntr_op_finish(env, counter); 1679 } 1680 /* 1681 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1682 * PMSELR value is equal to or greater than the number of implemented 1683 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1684 */ 1685 } 1686 1687 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1688 const uint8_t counter) 1689 { 1690 if (counter == 31) { 1691 return env->cp15.pmccfiltr_el0; 1692 } else if (counter < pmu_num_counters(env)) { 1693 return env->cp15.c14_pmevtyper[counter]; 1694 } else { 1695 /* 1696 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1697 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1698 */ 1699 return 0; 1700 } 1701 } 1702 1703 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1704 uint64_t value) 1705 { 1706 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1707 pmevtyper_write(env, ri, value, counter); 1708 } 1709 1710 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1711 uint64_t value) 1712 { 1713 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1714 env->cp15.c14_pmevtyper[counter] = value; 1715 1716 /* 1717 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1718 * pmu_op_finish calls when loading saved state for a migration. Because 1719 * we're potentially updating the type of event here, the value written to 1720 * c14_pmevcntr_delta by the preceding pmu_op_start call may be for a 1721 * different counter type. Therefore, we need to set this value to the 1722 * current count for the counter type we're writing so that pmu_op_finish 1723 * has the correct count for its calculation. 1724 */ 1725 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1726 if (event_supported(event)) { 1727 uint16_t event_idx = supported_event_map[event]; 1728 env->cp15.c14_pmevcntr_delta[counter] = 1729 pm_events[event_idx].get_count(env); 1730 } 1731 } 1732 1733 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1734 { 1735 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1736 return pmevtyper_read(env, ri, counter); 1737 } 1738 1739 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1743 } 1744 1745 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1746 { 1747 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1748 } 1749 1750 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1751 uint64_t value, uint8_t counter) 1752 { 1753 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1754 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1755 value &= MAKE_64BIT_MASK(0, 32); 1756 } 1757 if (counter < pmu_num_counters(env)) { 1758 pmevcntr_op_start(env, counter); 1759 env->cp15.c14_pmevcntr[counter] = value; 1760 pmevcntr_op_finish(env, counter); 1761 } 1762 /* 1763 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1764 * are CONSTRAINED UNPREDICTABLE. 1765 */ 1766 } 1767 1768 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1769 uint8_t counter) 1770 { 1771 if (counter < pmu_num_counters(env)) { 1772 uint64_t ret; 1773 pmevcntr_op_start(env, counter); 1774 ret = env->cp15.c14_pmevcntr[counter]; 1775 pmevcntr_op_finish(env, counter); 1776 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1777 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1778 ret &= MAKE_64BIT_MASK(0, 32); 1779 } 1780 return ret; 1781 } else { 1782 /* 1783 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1784 * are CONSTRAINED UNPREDICTABLE. 1785 */ 1786 return 0; 1787 } 1788 } 1789 1790 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1791 uint64_t value) 1792 { 1793 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1794 pmevcntr_write(env, ri, value, counter); 1795 } 1796 1797 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1798 { 1799 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1800 return pmevcntr_read(env, ri, counter); 1801 } 1802 1803 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1804 uint64_t value) 1805 { 1806 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1807 assert(counter < pmu_num_counters(env)); 1808 env->cp15.c14_pmevcntr[counter] = value; 1809 pmevcntr_write(env, ri, value, counter); 1810 } 1811 1812 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1813 { 1814 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1815 assert(counter < pmu_num_counters(env)); 1816 return env->cp15.c14_pmevcntr[counter]; 1817 } 1818 1819 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1823 } 1824 1825 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1826 { 1827 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1828 } 1829 1830 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1831 uint64_t value) 1832 { 1833 if (arm_feature(env, ARM_FEATURE_V8)) { 1834 env->cp15.c9_pmuserenr = value & 0xf; 1835 } else { 1836 env->cp15.c9_pmuserenr = value & 1; 1837 } 1838 } 1839 1840 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1841 uint64_t value) 1842 { 1843 /* We have no event counters so only the C bit can be changed */ 1844 value &= pmu_counter_mask(env); 1845 env->cp15.c9_pminten |= value; 1846 pmu_update_irq(env); 1847 } 1848 1849 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 value &= pmu_counter_mask(env); 1853 env->cp15.c9_pminten &= ~value; 1854 pmu_update_irq(env); 1855 } 1856 1857 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1858 uint64_t value) 1859 { 1860 /* 1861 * Note that even though the AArch64 view of this register has bits 1862 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1863 * architectural requirements for bits which are RES0 only in some 1864 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1865 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1866 */ 1867 raw_write(env, ri, value & ~0x1FULL); 1868 } 1869 1870 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1871 { 1872 /* Begin with base v8.0 state. */ 1873 uint64_t valid_mask = 0x3fff; 1874 ARMCPU *cpu = env_archcpu(env); 1875 uint64_t changed; 1876 1877 /* 1878 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1879 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1880 * Instead, choose the format based on the mode of EL3. 1881 */ 1882 if (arm_el_is_aa64(env, 3)) { 1883 value |= SCR_FW | SCR_AW; /* RES1 */ 1884 valid_mask &= ~SCR_NET; /* RES0 */ 1885 1886 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1887 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1888 value |= SCR_RW; /* RAO/WI */ 1889 } 1890 if (cpu_isar_feature(aa64_ras, cpu)) { 1891 valid_mask |= SCR_TERR; 1892 } 1893 if (cpu_isar_feature(aa64_lor, cpu)) { 1894 valid_mask |= SCR_TLOR; 1895 } 1896 if (cpu_isar_feature(aa64_pauth, cpu)) { 1897 valid_mask |= SCR_API | SCR_APK; 1898 } 1899 if (cpu_isar_feature(aa64_sel2, cpu)) { 1900 valid_mask |= SCR_EEL2; 1901 } else if (cpu_isar_feature(aa64_rme, cpu)) { 1902 /* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */ 1903 value |= SCR_NS; 1904 } 1905 if (cpu_isar_feature(aa64_mte, cpu)) { 1906 valid_mask |= SCR_ATA; 1907 } 1908 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1909 valid_mask |= SCR_ENSCXT; 1910 } 1911 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1912 valid_mask |= SCR_EASE | SCR_NMEA; 1913 } 1914 if (cpu_isar_feature(aa64_sme, cpu)) { 1915 valid_mask |= SCR_ENTP2; 1916 } 1917 if (cpu_isar_feature(aa64_hcx, cpu)) { 1918 valid_mask |= SCR_HXEN; 1919 } 1920 if (cpu_isar_feature(aa64_fgt, cpu)) { 1921 valid_mask |= SCR_FGTEN; 1922 } 1923 if (cpu_isar_feature(aa64_rme, cpu)) { 1924 valid_mask |= SCR_NSE | SCR_GPF; 1925 } 1926 if (cpu_isar_feature(aa64_ecv, cpu)) { 1927 valid_mask |= SCR_ECVEN; 1928 } 1929 } else { 1930 valid_mask &= ~(SCR_RW | SCR_ST); 1931 if (cpu_isar_feature(aa32_ras, cpu)) { 1932 valid_mask |= SCR_TERR; 1933 } 1934 } 1935 1936 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1937 valid_mask &= ~SCR_HCE; 1938 1939 /* 1940 * On ARMv7, SMD (or SCD as it is called in v7) is only 1941 * supported if EL2 exists. The bit is UNK/SBZP when 1942 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1943 * when EL2 is unavailable. 1944 * On ARMv8, this bit is always available. 1945 */ 1946 if (arm_feature(env, ARM_FEATURE_V7) && 1947 !arm_feature(env, ARM_FEATURE_V8)) { 1948 valid_mask &= ~SCR_SMD; 1949 } 1950 } 1951 1952 /* Clear all-context RES0 bits. */ 1953 value &= valid_mask; 1954 changed = env->cp15.scr_el3 ^ value; 1955 env->cp15.scr_el3 = value; 1956 1957 /* 1958 * If SCR_EL3.{NS,NSE} changes, i.e. change of security state, 1959 * we must invalidate all TLBs below EL3. 1960 */ 1961 if (changed & (SCR_NS | SCR_NSE)) { 1962 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1963 ARMMMUIdxBit_E20_0 | 1964 ARMMMUIdxBit_E10_1 | 1965 ARMMMUIdxBit_E20_2 | 1966 ARMMMUIdxBit_E10_1_PAN | 1967 ARMMMUIdxBit_E20_2_PAN | 1968 ARMMMUIdxBit_E2)); 1969 } 1970 } 1971 1972 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1973 { 1974 /* 1975 * scr_write will set the RES1 bits on an AArch64-only CPU. 1976 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1977 */ 1978 scr_write(env, ri, 0); 1979 } 1980 1981 static CPAccessResult access_tid4(CPUARMState *env, 1982 const ARMCPRegInfo *ri, 1983 bool isread) 1984 { 1985 if (arm_current_el(env) == 1 && 1986 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1987 return CP_ACCESS_TRAP_EL2; 1988 } 1989 1990 return CP_ACCESS_OK; 1991 } 1992 1993 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1994 { 1995 ARMCPU *cpu = env_archcpu(env); 1996 1997 /* 1998 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1999 * bank 2000 */ 2001 uint32_t index = A32_BANKED_REG_GET(env, csselr, 2002 ri->secure & ARM_CP_SECSTATE_S); 2003 2004 return cpu->ccsidr[index]; 2005 } 2006 2007 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2008 uint64_t value) 2009 { 2010 raw_write(env, ri, value & 0xf); 2011 } 2012 2013 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2014 { 2015 CPUState *cs = env_cpu(env); 2016 bool el1 = arm_current_el(env) == 1; 2017 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 2018 uint64_t ret = 0; 2019 2020 if (hcr_el2 & HCR_IMO) { 2021 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 2022 ret |= CPSR_I; 2023 } 2024 if (cs->interrupt_request & CPU_INTERRUPT_VINMI) { 2025 ret |= ISR_IS; 2026 ret |= CPSR_I; 2027 } 2028 } else { 2029 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 2030 ret |= CPSR_I; 2031 } 2032 2033 if (cs->interrupt_request & CPU_INTERRUPT_NMI) { 2034 ret |= ISR_IS; 2035 ret |= CPSR_I; 2036 } 2037 } 2038 2039 if (hcr_el2 & HCR_FMO) { 2040 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 2041 ret |= CPSR_F; 2042 } 2043 if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) { 2044 ret |= ISR_FS; 2045 ret |= CPSR_F; 2046 } 2047 } else { 2048 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 2049 ret |= CPSR_F; 2050 } 2051 } 2052 2053 if (hcr_el2 & HCR_AMO) { 2054 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 2055 ret |= CPSR_A; 2056 } 2057 } 2058 2059 return ret; 2060 } 2061 2062 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2063 bool isread) 2064 { 2065 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2066 return CP_ACCESS_TRAP_EL2; 2067 } 2068 2069 return CP_ACCESS_OK; 2070 } 2071 2072 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2073 bool isread) 2074 { 2075 if (arm_feature(env, ARM_FEATURE_V8)) { 2076 return access_aa64_tid1(env, ri, isread); 2077 } 2078 2079 return CP_ACCESS_OK; 2080 } 2081 2082 static const ARMCPRegInfo v7_cp_reginfo[] = { 2083 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2084 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2085 .access = PL1_W, .type = ARM_CP_NOP }, 2086 /* 2087 * Performance monitors are implementation defined in v7, 2088 * but with an ARM recommended set of registers, which we 2089 * follow. 2090 * 2091 * Performance registers fall into three categories: 2092 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2093 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2094 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2095 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2096 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2097 */ 2098 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2099 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2100 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2101 .writefn = pmcntenset_write, 2102 .accessfn = pmreg_access, 2103 .fgt = FGT_PMCNTEN, 2104 .raw_writefn = raw_write }, 2105 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2106 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2107 .access = PL0_RW, .accessfn = pmreg_access, 2108 .fgt = FGT_PMCNTEN, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2110 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2111 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2112 .access = PL0_RW, 2113 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2114 .accessfn = pmreg_access, 2115 .fgt = FGT_PMCNTEN, 2116 .writefn = pmcntenclr_write, 2117 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2118 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2120 .access = PL0_RW, .accessfn = pmreg_access, 2121 .fgt = FGT_PMCNTEN, 2122 .type = ARM_CP_ALIAS | ARM_CP_IO, 2123 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2124 .writefn = pmcntenclr_write }, 2125 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2126 .access = PL0_RW, .type = ARM_CP_IO, 2127 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2128 .accessfn = pmreg_access, 2129 .fgt = FGT_PMOVS, 2130 .writefn = pmovsr_write, 2131 .raw_writefn = raw_write }, 2132 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2133 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2134 .access = PL0_RW, .accessfn = pmreg_access, 2135 .fgt = FGT_PMOVS, 2136 .type = ARM_CP_ALIAS | ARM_CP_IO, 2137 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2138 .writefn = pmovsr_write, 2139 .raw_writefn = raw_write }, 2140 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2141 .access = PL0_W, .accessfn = pmreg_access_swinc, 2142 .fgt = FGT_PMSWINC_EL0, 2143 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2144 .writefn = pmswinc_write }, 2145 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2146 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2147 .access = PL0_W, .accessfn = pmreg_access_swinc, 2148 .fgt = FGT_PMSWINC_EL0, 2149 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2150 .writefn = pmswinc_write }, 2151 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2152 .access = PL0_RW, .type = ARM_CP_ALIAS, 2153 .fgt = FGT_PMSELR_EL0, 2154 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2155 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2156 .raw_writefn = raw_write}, 2157 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2158 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2159 .access = PL0_RW, .accessfn = pmreg_access_selr, 2160 .fgt = FGT_PMSELR_EL0, 2161 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2162 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2163 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2164 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2165 .fgt = FGT_PMCCNTR_EL0, 2166 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2167 .accessfn = pmreg_access_ccntr }, 2168 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2169 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2170 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2171 .fgt = FGT_PMCCNTR_EL0, 2172 .type = ARM_CP_IO, 2173 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2174 .readfn = pmccntr_read, .writefn = pmccntr_write, 2175 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2176 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2177 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2178 .access = PL0_RW, .accessfn = pmreg_access, 2179 .fgt = FGT_PMCCFILTR_EL0, 2180 .type = ARM_CP_ALIAS | ARM_CP_IO, 2181 .resetvalue = 0, }, 2182 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2184 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2185 .access = PL0_RW, .accessfn = pmreg_access, 2186 .fgt = FGT_PMCCFILTR_EL0, 2187 .type = ARM_CP_IO, 2188 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2189 .resetvalue = 0, }, 2190 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2191 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2192 .accessfn = pmreg_access, 2193 .fgt = FGT_PMEVTYPERN_EL0, 2194 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2195 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2196 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2197 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2198 .accessfn = pmreg_access, 2199 .fgt = FGT_PMEVTYPERN_EL0, 2200 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2201 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2202 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2203 .accessfn = pmreg_access_xevcntr, 2204 .fgt = FGT_PMEVCNTRN_EL0, 2205 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2206 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2207 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2208 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2209 .accessfn = pmreg_access_xevcntr, 2210 .fgt = FGT_PMEVCNTRN_EL0, 2211 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2212 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2213 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2214 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2215 .resetvalue = 0, 2216 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2217 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2218 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2219 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2220 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2221 .resetvalue = 0, 2222 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2223 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2224 .access = PL1_RW, .accessfn = access_tpm, 2225 .fgt = FGT_PMINTEN, 2226 .type = ARM_CP_ALIAS | ARM_CP_IO, 2227 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2228 .resetvalue = 0, 2229 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2230 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2231 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2232 .access = PL1_RW, .accessfn = access_tpm, 2233 .fgt = FGT_PMINTEN, 2234 .type = ARM_CP_IO, 2235 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2236 .writefn = pmintenset_write, .raw_writefn = raw_write, 2237 .resetvalue = 0x0 }, 2238 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2239 .access = PL1_RW, .accessfn = access_tpm, 2240 .fgt = FGT_PMINTEN, 2241 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2242 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2243 .writefn = pmintenclr_write, }, 2244 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2245 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2246 .access = PL1_RW, .accessfn = access_tpm, 2247 .fgt = FGT_PMINTEN, 2248 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2249 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2250 .writefn = pmintenclr_write }, 2251 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2252 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2253 .access = PL1_R, 2254 .accessfn = access_tid4, 2255 .fgt = FGT_CCSIDR_EL1, 2256 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2257 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2258 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2259 .access = PL1_RW, 2260 .accessfn = access_tid4, 2261 .fgt = FGT_CSSELR_EL1, 2262 .writefn = csselr_write, .resetvalue = 0, 2263 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2264 offsetof(CPUARMState, cp15.csselr_ns) } }, 2265 /* 2266 * Auxiliary ID register: this actually has an IMPDEF value but for now 2267 * just RAZ for all cores: 2268 */ 2269 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2270 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2271 .access = PL1_R, .type = ARM_CP_CONST, 2272 .accessfn = access_aa64_tid1, 2273 .fgt = FGT_AIDR_EL1, 2274 .resetvalue = 0 }, 2275 /* 2276 * Auxiliary fault status registers: these also are IMPDEF, and we 2277 * choose to RAZ/WI for all cores. 2278 */ 2279 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2280 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2281 .access = PL1_RW, .accessfn = access_tvm_trvm, 2282 .fgt = FGT_AFSR0_EL1, 2283 .nv2_redirect_offset = 0x128 | NV2_REDIR_NV1, 2284 .type = ARM_CP_CONST, .resetvalue = 0 }, 2285 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2286 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2287 .access = PL1_RW, .accessfn = access_tvm_trvm, 2288 .fgt = FGT_AFSR1_EL1, 2289 .nv2_redirect_offset = 0x130 | NV2_REDIR_NV1, 2290 .type = ARM_CP_CONST, .resetvalue = 0 }, 2291 /* 2292 * MAIR can just read-as-written because we don't implement caches 2293 * and so don't need to care about memory attributes. 2294 */ 2295 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2296 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2297 .access = PL1_RW, .accessfn = access_tvm_trvm, 2298 .fgt = FGT_MAIR_EL1, 2299 .nv2_redirect_offset = 0x140 | NV2_REDIR_NV1, 2300 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2301 .resetvalue = 0 }, 2302 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2303 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2304 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2305 .resetvalue = 0 }, 2306 /* 2307 * For non-long-descriptor page tables these are PRRR and NMRR; 2308 * regardless they still act as reads-as-written for QEMU. 2309 */ 2310 /* 2311 * MAIR0/1 are defined separately from their 64-bit counterpart which 2312 * allows them to assign the correct fieldoffset based on the endianness 2313 * handled in the field definitions. 2314 */ 2315 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2316 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2317 .access = PL1_RW, .accessfn = access_tvm_trvm, 2318 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2319 offsetof(CPUARMState, cp15.mair0_ns) }, 2320 .resetfn = arm_cp_reset_ignore }, 2321 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2322 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2323 .access = PL1_RW, .accessfn = access_tvm_trvm, 2324 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2325 offsetof(CPUARMState, cp15.mair1_ns) }, 2326 .resetfn = arm_cp_reset_ignore }, 2327 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2328 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2329 .fgt = FGT_ISR_EL1, 2330 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2331 /* 32 bit ITLB invalidates */ 2332 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2333 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2334 .writefn = tlbiall_write }, 2335 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2336 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2337 .writefn = tlbimva_write }, 2338 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2339 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2340 .writefn = tlbiasid_write }, 2341 /* 32 bit DTLB invalidates */ 2342 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2343 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2344 .writefn = tlbiall_write }, 2345 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2346 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2347 .writefn = tlbimva_write }, 2348 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2349 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2350 .writefn = tlbiasid_write }, 2351 /* 32 bit TLB invalidates */ 2352 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2353 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2354 .writefn = tlbiall_write }, 2355 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2356 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2357 .writefn = tlbimva_write }, 2358 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2359 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2360 .writefn = tlbiasid_write }, 2361 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2362 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2363 .writefn = tlbimvaa_write }, 2364 }; 2365 2366 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2367 /* 32 bit TLB invalidates, Inner Shareable */ 2368 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2369 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2370 .writefn = tlbiall_is_write }, 2371 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2372 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2373 .writefn = tlbimva_is_write }, 2374 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2375 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2376 .writefn = tlbiasid_is_write }, 2377 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2378 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2379 .writefn = tlbimvaa_is_write }, 2380 }; 2381 2382 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2383 /* PMOVSSET is not implemented in v7 before v7ve */ 2384 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2385 .access = PL0_RW, .accessfn = pmreg_access, 2386 .fgt = FGT_PMOVS, 2387 .type = ARM_CP_ALIAS | ARM_CP_IO, 2388 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2389 .writefn = pmovsset_write, 2390 .raw_writefn = raw_write }, 2391 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2392 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2393 .access = PL0_RW, .accessfn = pmreg_access, 2394 .fgt = FGT_PMOVS, 2395 .type = ARM_CP_ALIAS | ARM_CP_IO, 2396 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2397 .writefn = pmovsset_write, 2398 .raw_writefn = raw_write }, 2399 }; 2400 2401 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2402 uint64_t value) 2403 { 2404 value &= 1; 2405 env->teecr = value; 2406 } 2407 2408 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2409 bool isread) 2410 { 2411 /* 2412 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2413 * at all, so we don't need to check whether we're v8A. 2414 */ 2415 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2416 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2417 return CP_ACCESS_TRAP_EL2; 2418 } 2419 return CP_ACCESS_OK; 2420 } 2421 2422 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2423 bool isread) 2424 { 2425 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2426 return CP_ACCESS_TRAP; 2427 } 2428 return teecr_access(env, ri, isread); 2429 } 2430 2431 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2432 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2433 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2434 .resetvalue = 0, 2435 .writefn = teecr_write, .accessfn = teecr_access }, 2436 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2437 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2438 .accessfn = teehbr_access, .resetvalue = 0 }, 2439 }; 2440 2441 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2442 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2443 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2444 .access = PL0_RW, 2445 .fgt = FGT_TPIDR_EL0, 2446 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2447 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2448 .access = PL0_RW, 2449 .fgt = FGT_TPIDR_EL0, 2450 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2451 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2452 .resetfn = arm_cp_reset_ignore }, 2453 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2454 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2455 .access = PL0_R | PL1_W, 2456 .fgt = FGT_TPIDRRO_EL0, 2457 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2458 .resetvalue = 0}, 2459 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2460 .access = PL0_R | PL1_W, 2461 .fgt = FGT_TPIDRRO_EL0, 2462 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2463 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2464 .resetfn = arm_cp_reset_ignore }, 2465 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2466 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2467 .access = PL1_RW, 2468 .fgt = FGT_TPIDR_EL1, 2469 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2470 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2471 .access = PL1_RW, 2472 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2473 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2474 .resetvalue = 0 }, 2475 }; 2476 2477 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 2478 { 2479 ARMCPU *cpu = env_archcpu(env); 2480 2481 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 2482 } 2483 2484 #ifndef CONFIG_USER_ONLY 2485 2486 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2487 bool isread) 2488 { 2489 /* 2490 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2491 * Writable only at the highest implemented exception level. 2492 */ 2493 int el = arm_current_el(env); 2494 uint64_t hcr; 2495 uint32_t cntkctl; 2496 2497 switch (el) { 2498 case 0: 2499 hcr = arm_hcr_el2_eff(env); 2500 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2501 cntkctl = env->cp15.cnthctl_el2; 2502 } else { 2503 cntkctl = env->cp15.c14_cntkctl; 2504 } 2505 if (!extract32(cntkctl, 0, 2)) { 2506 return CP_ACCESS_TRAP; 2507 } 2508 break; 2509 case 1: 2510 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2511 arm_is_secure_below_el3(env)) { 2512 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2513 return CP_ACCESS_TRAP_UNCATEGORIZED; 2514 } 2515 break; 2516 case 2: 2517 case 3: 2518 break; 2519 } 2520 2521 if (!isread && el < arm_highest_el(env)) { 2522 return CP_ACCESS_TRAP_UNCATEGORIZED; 2523 } 2524 2525 return CP_ACCESS_OK; 2526 } 2527 2528 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2529 bool isread) 2530 { 2531 unsigned int cur_el = arm_current_el(env); 2532 bool has_el2 = arm_is_el2_enabled(env); 2533 uint64_t hcr = arm_hcr_el2_eff(env); 2534 2535 switch (cur_el) { 2536 case 0: 2537 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2538 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2539 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2540 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2541 } 2542 2543 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2544 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2545 return CP_ACCESS_TRAP; 2546 } 2547 /* fall through */ 2548 case 1: 2549 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2550 if (has_el2 && timeridx == GTIMER_PHYS && 2551 (hcr & HCR_E2H 2552 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2553 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2554 return CP_ACCESS_TRAP_EL2; 2555 } 2556 if (has_el2 && timeridx == GTIMER_VIRT) { 2557 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) { 2558 return CP_ACCESS_TRAP_EL2; 2559 } 2560 } 2561 break; 2562 } 2563 return CP_ACCESS_OK; 2564 } 2565 2566 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2567 bool isread) 2568 { 2569 unsigned int cur_el = arm_current_el(env); 2570 bool has_el2 = arm_is_el2_enabled(env); 2571 uint64_t hcr = arm_hcr_el2_eff(env); 2572 2573 switch (cur_el) { 2574 case 0: 2575 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2576 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2577 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2578 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2579 } 2580 2581 /* 2582 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2583 * EL0 if EL0[PV]TEN is zero. 2584 */ 2585 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2586 return CP_ACCESS_TRAP; 2587 } 2588 /* fall through */ 2589 2590 case 1: 2591 if (has_el2 && timeridx == GTIMER_PHYS) { 2592 if (hcr & HCR_E2H) { 2593 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2594 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2595 return CP_ACCESS_TRAP_EL2; 2596 } 2597 } else { 2598 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2599 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2600 return CP_ACCESS_TRAP_EL2; 2601 } 2602 } 2603 } 2604 if (has_el2 && timeridx == GTIMER_VIRT) { 2605 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) { 2606 return CP_ACCESS_TRAP_EL2; 2607 } 2608 } 2609 break; 2610 } 2611 return CP_ACCESS_OK; 2612 } 2613 2614 static CPAccessResult gt_pct_access(CPUARMState *env, 2615 const ARMCPRegInfo *ri, 2616 bool isread) 2617 { 2618 return gt_counter_access(env, GTIMER_PHYS, isread); 2619 } 2620 2621 static CPAccessResult gt_vct_access(CPUARMState *env, 2622 const ARMCPRegInfo *ri, 2623 bool isread) 2624 { 2625 return gt_counter_access(env, GTIMER_VIRT, isread); 2626 } 2627 2628 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2629 bool isread) 2630 { 2631 return gt_timer_access(env, GTIMER_PHYS, isread); 2632 } 2633 2634 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2635 bool isread) 2636 { 2637 return gt_timer_access(env, GTIMER_VIRT, isread); 2638 } 2639 2640 static CPAccessResult gt_stimer_access(CPUARMState *env, 2641 const ARMCPRegInfo *ri, 2642 bool isread) 2643 { 2644 /* 2645 * The AArch64 register view of the secure physical timer is 2646 * always accessible from EL3, and configurably accessible from 2647 * Secure EL1. 2648 */ 2649 switch (arm_current_el(env)) { 2650 case 1: 2651 if (!arm_is_secure(env)) { 2652 return CP_ACCESS_TRAP; 2653 } 2654 if (!(env->cp15.scr_el3 & SCR_ST)) { 2655 return CP_ACCESS_TRAP_EL3; 2656 } 2657 return CP_ACCESS_OK; 2658 case 0: 2659 case 2: 2660 return CP_ACCESS_TRAP; 2661 case 3: 2662 return CP_ACCESS_OK; 2663 default: 2664 g_assert_not_reached(); 2665 } 2666 } 2667 2668 uint64_t gt_get_countervalue(CPUARMState *env) 2669 { 2670 ARMCPU *cpu = env_archcpu(env); 2671 2672 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2673 } 2674 2675 static void gt_update_irq(ARMCPU *cpu, int timeridx) 2676 { 2677 CPUARMState *env = &cpu->env; 2678 uint64_t cnthctl = env->cp15.cnthctl_el2; 2679 ARMSecuritySpace ss = arm_security_space(env); 2680 /* ISTATUS && !IMASK */ 2681 int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4; 2682 2683 /* 2684 * If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK. 2685 * It is RES0 in Secure and NonSecure state. 2686 */ 2687 if ((ss == ARMSS_Root || ss == ARMSS_Realm) && 2688 ((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) || 2689 (timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) { 2690 irqstate = 0; 2691 } 2692 2693 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2694 trace_arm_gt_update_irq(timeridx, irqstate); 2695 } 2696 2697 void gt_rme_post_el_change(ARMCPU *cpu, void *ignored) 2698 { 2699 /* 2700 * Changing security state between Root and Secure/NonSecure, which may 2701 * happen when switching EL, can change the effective value of CNTHCTL_EL2 2702 * mask bits. Update the IRQ state accordingly. 2703 */ 2704 gt_update_irq(cpu, GTIMER_VIRT); 2705 gt_update_irq(cpu, GTIMER_PHYS); 2706 } 2707 2708 static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env) 2709 { 2710 if ((env->cp15.scr_el3 & SCR_ECVEN) && 2711 FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) && 2712 arm_is_el2_enabled(env) && 2713 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 2714 return env->cp15.cntpoff_el2; 2715 } 2716 return 0; 2717 } 2718 2719 static uint64_t gt_phys_cnt_offset(CPUARMState *env) 2720 { 2721 if (arm_current_el(env) >= 2) { 2722 return 0; 2723 } 2724 return gt_phys_raw_cnt_offset(env); 2725 } 2726 2727 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2728 { 2729 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2730 2731 if (gt->ctl & 1) { 2732 /* 2733 * Timer enabled: calculate and set current ISTATUS, irq, and 2734 * reset timer to when ISTATUS next has to change 2735 */ 2736 uint64_t offset = timeridx == GTIMER_VIRT ? 2737 cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env); 2738 uint64_t count = gt_get_countervalue(&cpu->env); 2739 /* Note that this must be unsigned 64 bit arithmetic: */ 2740 int istatus = count - offset >= gt->cval; 2741 uint64_t nexttick; 2742 2743 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2744 2745 if (istatus) { 2746 /* 2747 * Next transition is when (count - offset) rolls back over to 0. 2748 * If offset > count then this is when count == offset; 2749 * if offset <= count then this is when count == offset + 2^64 2750 * For the latter case we set nexttick to an "as far in future 2751 * as possible" value and let the code below handle it. 2752 */ 2753 if (offset > count) { 2754 nexttick = offset; 2755 } else { 2756 nexttick = UINT64_MAX; 2757 } 2758 } else { 2759 /* 2760 * Next transition is when (count - offset) == cval, i.e. 2761 * when count == (cval + offset). 2762 * If that would overflow, then again we set up the next interrupt 2763 * for "as far in the future as possible" for the code below. 2764 */ 2765 if (uadd64_overflow(gt->cval, offset, &nexttick)) { 2766 nexttick = UINT64_MAX; 2767 } 2768 } 2769 /* 2770 * Note that the desired next expiry time might be beyond the 2771 * signed-64-bit range of a QEMUTimer -- in this case we just 2772 * set the timer for as far in the future as possible. When the 2773 * timer expires we will reset the timer for any remaining period. 2774 */ 2775 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2776 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2777 } else { 2778 timer_mod(cpu->gt_timer[timeridx], nexttick); 2779 } 2780 trace_arm_gt_recalc(timeridx, nexttick); 2781 } else { 2782 /* Timer disabled: ISTATUS and timer output always clear */ 2783 gt->ctl &= ~4; 2784 timer_del(cpu->gt_timer[timeridx]); 2785 trace_arm_gt_recalc_disabled(timeridx); 2786 } 2787 gt_update_irq(cpu, timeridx); 2788 } 2789 2790 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2791 int timeridx) 2792 { 2793 ARMCPU *cpu = env_archcpu(env); 2794 2795 timer_del(cpu->gt_timer[timeridx]); 2796 } 2797 2798 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2799 { 2800 return gt_get_countervalue(env) - gt_phys_cnt_offset(env); 2801 } 2802 2803 uint64_t gt_virt_cnt_offset(CPUARMState *env) 2804 { 2805 uint64_t hcr; 2806 2807 switch (arm_current_el(env)) { 2808 case 2: 2809 hcr = arm_hcr_el2_eff(env); 2810 if (hcr & HCR_E2H) { 2811 return 0; 2812 } 2813 break; 2814 case 0: 2815 hcr = arm_hcr_el2_eff(env); 2816 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2817 return 0; 2818 } 2819 break; 2820 } 2821 2822 return env->cp15.cntvoff_el2; 2823 } 2824 2825 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2826 { 2827 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2828 } 2829 2830 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2831 int timeridx, 2832 uint64_t value) 2833 { 2834 trace_arm_gt_cval_write(timeridx, value); 2835 env->cp15.c14_timer[timeridx].cval = value; 2836 gt_recalc_timer(env_archcpu(env), timeridx); 2837 } 2838 2839 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2840 int timeridx) 2841 { 2842 uint64_t offset = 0; 2843 2844 switch (timeridx) { 2845 case GTIMER_VIRT: 2846 case GTIMER_HYPVIRT: 2847 offset = gt_virt_cnt_offset(env); 2848 break; 2849 case GTIMER_PHYS: 2850 offset = gt_phys_cnt_offset(env); 2851 break; 2852 } 2853 2854 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2855 (gt_get_countervalue(env) - offset)); 2856 } 2857 2858 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2859 int timeridx, 2860 uint64_t value) 2861 { 2862 uint64_t offset = 0; 2863 2864 switch (timeridx) { 2865 case GTIMER_VIRT: 2866 case GTIMER_HYPVIRT: 2867 offset = gt_virt_cnt_offset(env); 2868 break; 2869 case GTIMER_PHYS: 2870 offset = gt_phys_cnt_offset(env); 2871 break; 2872 } 2873 2874 trace_arm_gt_tval_write(timeridx, value); 2875 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2876 sextract64(value, 0, 32); 2877 gt_recalc_timer(env_archcpu(env), timeridx); 2878 } 2879 2880 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 int timeridx, 2882 uint64_t value) 2883 { 2884 ARMCPU *cpu = env_archcpu(env); 2885 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2886 2887 trace_arm_gt_ctl_write(timeridx, value); 2888 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2889 if ((oldval ^ value) & 1) { 2890 /* Enable toggled */ 2891 gt_recalc_timer(cpu, timeridx); 2892 } else if ((oldval ^ value) & 2) { 2893 /* 2894 * IMASK toggled: don't need to recalculate, 2895 * just set the interrupt line based on ISTATUS 2896 */ 2897 trace_arm_gt_imask_toggle(timeridx); 2898 gt_update_irq(cpu, timeridx); 2899 } 2900 } 2901 2902 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2903 { 2904 gt_timer_reset(env, ri, GTIMER_PHYS); 2905 } 2906 2907 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2908 uint64_t value) 2909 { 2910 gt_cval_write(env, ri, GTIMER_PHYS, value); 2911 } 2912 2913 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2914 { 2915 return gt_tval_read(env, ri, GTIMER_PHYS); 2916 } 2917 2918 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2919 uint64_t value) 2920 { 2921 gt_tval_write(env, ri, GTIMER_PHYS, value); 2922 } 2923 2924 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2925 uint64_t value) 2926 { 2927 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2928 } 2929 2930 static int gt_phys_redir_timeridx(CPUARMState *env) 2931 { 2932 switch (arm_mmu_idx(env)) { 2933 case ARMMMUIdx_E20_0: 2934 case ARMMMUIdx_E20_2: 2935 case ARMMMUIdx_E20_2_PAN: 2936 return GTIMER_HYP; 2937 default: 2938 return GTIMER_PHYS; 2939 } 2940 } 2941 2942 static int gt_virt_redir_timeridx(CPUARMState *env) 2943 { 2944 switch (arm_mmu_idx(env)) { 2945 case ARMMMUIdx_E20_0: 2946 case ARMMMUIdx_E20_2: 2947 case ARMMMUIdx_E20_2_PAN: 2948 return GTIMER_HYPVIRT; 2949 default: 2950 return GTIMER_VIRT; 2951 } 2952 } 2953 2954 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2955 const ARMCPRegInfo *ri) 2956 { 2957 int timeridx = gt_phys_redir_timeridx(env); 2958 return env->cp15.c14_timer[timeridx].cval; 2959 } 2960 2961 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2962 uint64_t value) 2963 { 2964 int timeridx = gt_phys_redir_timeridx(env); 2965 gt_cval_write(env, ri, timeridx, value); 2966 } 2967 2968 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2969 const ARMCPRegInfo *ri) 2970 { 2971 int timeridx = gt_phys_redir_timeridx(env); 2972 return gt_tval_read(env, ri, timeridx); 2973 } 2974 2975 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2976 uint64_t value) 2977 { 2978 int timeridx = gt_phys_redir_timeridx(env); 2979 gt_tval_write(env, ri, timeridx, value); 2980 } 2981 2982 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2983 const ARMCPRegInfo *ri) 2984 { 2985 int timeridx = gt_phys_redir_timeridx(env); 2986 return env->cp15.c14_timer[timeridx].ctl; 2987 } 2988 2989 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2990 uint64_t value) 2991 { 2992 int timeridx = gt_phys_redir_timeridx(env); 2993 gt_ctl_write(env, ri, timeridx, value); 2994 } 2995 2996 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2997 { 2998 gt_timer_reset(env, ri, GTIMER_VIRT); 2999 } 3000 3001 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3002 uint64_t value) 3003 { 3004 gt_cval_write(env, ri, GTIMER_VIRT, value); 3005 } 3006 3007 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3008 { 3009 return gt_tval_read(env, ri, GTIMER_VIRT); 3010 } 3011 3012 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3013 uint64_t value) 3014 { 3015 gt_tval_write(env, ri, GTIMER_VIRT, value); 3016 } 3017 3018 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3019 uint64_t value) 3020 { 3021 gt_ctl_write(env, ri, GTIMER_VIRT, value); 3022 } 3023 3024 static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3025 uint64_t value) 3026 { 3027 ARMCPU *cpu = env_archcpu(env); 3028 uint32_t oldval = env->cp15.cnthctl_el2; 3029 uint32_t valid_mask = 3030 R_CNTHCTL_EL0PCTEN_E2H1_MASK | 3031 R_CNTHCTL_EL0VCTEN_E2H1_MASK | 3032 R_CNTHCTL_EVNTEN_MASK | 3033 R_CNTHCTL_EVNTDIR_MASK | 3034 R_CNTHCTL_EVNTI_MASK | 3035 R_CNTHCTL_EL0VTEN_MASK | 3036 R_CNTHCTL_EL0PTEN_MASK | 3037 R_CNTHCTL_EL1PCTEN_E2H1_MASK | 3038 R_CNTHCTL_EL1PTEN_MASK; 3039 3040 if (cpu_isar_feature(aa64_rme, cpu)) { 3041 valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK; 3042 } 3043 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 3044 valid_mask |= 3045 R_CNTHCTL_EL1TVT_MASK | 3046 R_CNTHCTL_EL1TVCT_MASK | 3047 R_CNTHCTL_EL1NVPCT_MASK | 3048 R_CNTHCTL_EL1NVVCT_MASK | 3049 R_CNTHCTL_EVNTIS_MASK; 3050 } 3051 if (cpu_isar_feature(aa64_ecv, cpu)) { 3052 valid_mask |= R_CNTHCTL_ECV_MASK; 3053 } 3054 3055 /* Clear RES0 bits */ 3056 value &= valid_mask; 3057 3058 raw_write(env, ri, value); 3059 3060 if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) { 3061 gt_update_irq(cpu, GTIMER_VIRT); 3062 } else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) { 3063 gt_update_irq(cpu, GTIMER_PHYS); 3064 } 3065 } 3066 3067 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3068 uint64_t value) 3069 { 3070 ARMCPU *cpu = env_archcpu(env); 3071 3072 trace_arm_gt_cntvoff_write(value); 3073 raw_write(env, ri, value); 3074 gt_recalc_timer(cpu, GTIMER_VIRT); 3075 } 3076 3077 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 3078 const ARMCPRegInfo *ri) 3079 { 3080 int timeridx = gt_virt_redir_timeridx(env); 3081 return env->cp15.c14_timer[timeridx].cval; 3082 } 3083 3084 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3085 uint64_t value) 3086 { 3087 int timeridx = gt_virt_redir_timeridx(env); 3088 gt_cval_write(env, ri, timeridx, value); 3089 } 3090 3091 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 3092 const ARMCPRegInfo *ri) 3093 { 3094 int timeridx = gt_virt_redir_timeridx(env); 3095 return gt_tval_read(env, ri, timeridx); 3096 } 3097 3098 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3099 uint64_t value) 3100 { 3101 int timeridx = gt_virt_redir_timeridx(env); 3102 gt_tval_write(env, ri, timeridx, value); 3103 } 3104 3105 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 3106 const ARMCPRegInfo *ri) 3107 { 3108 int timeridx = gt_virt_redir_timeridx(env); 3109 return env->cp15.c14_timer[timeridx].ctl; 3110 } 3111 3112 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3113 uint64_t value) 3114 { 3115 int timeridx = gt_virt_redir_timeridx(env); 3116 gt_ctl_write(env, ri, timeridx, value); 3117 } 3118 3119 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3120 { 3121 gt_timer_reset(env, ri, GTIMER_HYP); 3122 } 3123 3124 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3125 uint64_t value) 3126 { 3127 gt_cval_write(env, ri, GTIMER_HYP, value); 3128 } 3129 3130 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3131 { 3132 return gt_tval_read(env, ri, GTIMER_HYP); 3133 } 3134 3135 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3136 uint64_t value) 3137 { 3138 gt_tval_write(env, ri, GTIMER_HYP, value); 3139 } 3140 3141 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3142 uint64_t value) 3143 { 3144 gt_ctl_write(env, ri, GTIMER_HYP, value); 3145 } 3146 3147 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3148 { 3149 gt_timer_reset(env, ri, GTIMER_SEC); 3150 } 3151 3152 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3153 uint64_t value) 3154 { 3155 gt_cval_write(env, ri, GTIMER_SEC, value); 3156 } 3157 3158 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3159 { 3160 return gt_tval_read(env, ri, GTIMER_SEC); 3161 } 3162 3163 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3164 uint64_t value) 3165 { 3166 gt_tval_write(env, ri, GTIMER_SEC, value); 3167 } 3168 3169 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3170 uint64_t value) 3171 { 3172 gt_ctl_write(env, ri, GTIMER_SEC, value); 3173 } 3174 3175 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 3176 { 3177 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 3178 } 3179 3180 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3181 uint64_t value) 3182 { 3183 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3184 } 3185 3186 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3187 { 3188 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3189 } 3190 3191 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3192 uint64_t value) 3193 { 3194 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3195 } 3196 3197 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3198 uint64_t value) 3199 { 3200 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3201 } 3202 3203 void arm_gt_ptimer_cb(void *opaque) 3204 { 3205 ARMCPU *cpu = opaque; 3206 3207 gt_recalc_timer(cpu, GTIMER_PHYS); 3208 } 3209 3210 void arm_gt_vtimer_cb(void *opaque) 3211 { 3212 ARMCPU *cpu = opaque; 3213 3214 gt_recalc_timer(cpu, GTIMER_VIRT); 3215 } 3216 3217 void arm_gt_htimer_cb(void *opaque) 3218 { 3219 ARMCPU *cpu = opaque; 3220 3221 gt_recalc_timer(cpu, GTIMER_HYP); 3222 } 3223 3224 void arm_gt_stimer_cb(void *opaque) 3225 { 3226 ARMCPU *cpu = opaque; 3227 3228 gt_recalc_timer(cpu, GTIMER_SEC); 3229 } 3230 3231 void arm_gt_hvtimer_cb(void *opaque) 3232 { 3233 ARMCPU *cpu = opaque; 3234 3235 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3236 } 3237 3238 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3239 /* 3240 * Note that CNTFRQ is purely reads-as-written for the benefit 3241 * of software; writing it doesn't actually change the timer frequency. 3242 * Our reset value matches the fixed frequency we implement the timer at. 3243 */ 3244 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3245 .type = ARM_CP_ALIAS, 3246 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3247 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3248 }, 3249 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3251 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3252 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3253 .resetfn = arm_gt_cntfrq_reset, 3254 }, 3255 /* overall control: mostly access permissions */ 3256 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3257 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3258 .access = PL1_RW, 3259 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3260 .resetvalue = 0, 3261 }, 3262 /* per-timer control */ 3263 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3264 .secure = ARM_CP_SECSTATE_NS, 3265 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3266 .accessfn = gt_ptimer_access, 3267 .fieldoffset = offsetoflow32(CPUARMState, 3268 cp15.c14_timer[GTIMER_PHYS].ctl), 3269 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3270 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3271 }, 3272 { .name = "CNTP_CTL_S", 3273 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3274 .secure = ARM_CP_SECSTATE_S, 3275 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3276 .accessfn = gt_ptimer_access, 3277 .fieldoffset = offsetoflow32(CPUARMState, 3278 cp15.c14_timer[GTIMER_SEC].ctl), 3279 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3280 }, 3281 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3282 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3283 .type = ARM_CP_IO, .access = PL0_RW, 3284 .accessfn = gt_ptimer_access, 3285 .nv2_redirect_offset = 0x180 | NV2_REDIR_NV1, 3286 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3287 .resetvalue = 0, 3288 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3289 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3290 }, 3291 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3292 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3293 .accessfn = gt_vtimer_access, 3294 .fieldoffset = offsetoflow32(CPUARMState, 3295 cp15.c14_timer[GTIMER_VIRT].ctl), 3296 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3297 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3298 }, 3299 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3300 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3301 .type = ARM_CP_IO, .access = PL0_RW, 3302 .accessfn = gt_vtimer_access, 3303 .nv2_redirect_offset = 0x170 | NV2_REDIR_NV1, 3304 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3305 .resetvalue = 0, 3306 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3307 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3308 }, 3309 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3310 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3311 .secure = ARM_CP_SECSTATE_NS, 3312 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3313 .accessfn = gt_ptimer_access, 3314 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3315 }, 3316 { .name = "CNTP_TVAL_S", 3317 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3318 .secure = ARM_CP_SECSTATE_S, 3319 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3320 .accessfn = gt_ptimer_access, 3321 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3322 }, 3323 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3324 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3325 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3326 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3327 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3328 }, 3329 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3330 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3331 .accessfn = gt_vtimer_access, 3332 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3333 }, 3334 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3335 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3336 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3337 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3338 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3339 }, 3340 /* The counter itself */ 3341 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3342 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3343 .accessfn = gt_pct_access, 3344 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3345 }, 3346 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3347 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3348 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3349 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3350 }, 3351 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3352 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3353 .accessfn = gt_vct_access, 3354 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3355 }, 3356 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3357 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3358 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3359 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3360 }, 3361 /* Comparison value, indicating when the timer goes off */ 3362 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3363 .secure = ARM_CP_SECSTATE_NS, 3364 .access = PL0_RW, 3365 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3366 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3367 .accessfn = gt_ptimer_access, 3368 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3369 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3370 }, 3371 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3372 .secure = ARM_CP_SECSTATE_S, 3373 .access = PL0_RW, 3374 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3375 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3376 .accessfn = gt_ptimer_access, 3377 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3378 }, 3379 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3380 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3381 .access = PL0_RW, 3382 .type = ARM_CP_IO, 3383 .nv2_redirect_offset = 0x178 | NV2_REDIR_NV1, 3384 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3385 .resetvalue = 0, .accessfn = gt_ptimer_access, 3386 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3387 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3388 }, 3389 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3390 .access = PL0_RW, 3391 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3392 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3393 .accessfn = gt_vtimer_access, 3394 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3395 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3396 }, 3397 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3398 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3399 .access = PL0_RW, 3400 .type = ARM_CP_IO, 3401 .nv2_redirect_offset = 0x168 | NV2_REDIR_NV1, 3402 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3403 .resetvalue = 0, .accessfn = gt_vtimer_access, 3404 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3405 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3406 }, 3407 /* 3408 * Secure timer -- this is actually restricted to only EL3 3409 * and configurably Secure-EL1 via the accessfn. 3410 */ 3411 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3412 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3413 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3414 .accessfn = gt_stimer_access, 3415 .readfn = gt_sec_tval_read, 3416 .writefn = gt_sec_tval_write, 3417 .resetfn = gt_sec_timer_reset, 3418 }, 3419 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3420 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3421 .type = ARM_CP_IO, .access = PL1_RW, 3422 .accessfn = gt_stimer_access, 3423 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3424 .resetvalue = 0, 3425 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3426 }, 3427 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3428 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3429 .type = ARM_CP_IO, .access = PL1_RW, 3430 .accessfn = gt_stimer_access, 3431 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3432 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3433 }, 3434 }; 3435 3436 /* 3437 * FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which 3438 * are "self-synchronizing". For QEMU all sysregs are self-synchronizing, 3439 * so our implementations here are identical to the normal registers. 3440 */ 3441 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3442 { .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9, 3443 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3444 .accessfn = gt_vct_access, 3445 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3446 }, 3447 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3448 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3449 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3450 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3451 }, 3452 { .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8, 3453 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3454 .accessfn = gt_pct_access, 3455 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3456 }, 3457 { .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64, 3458 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5, 3459 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3460 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3461 }, 3462 }; 3463 3464 static CPAccessResult gt_cntpoff_access(CPUARMState *env, 3465 const ARMCPRegInfo *ri, 3466 bool isread) 3467 { 3468 if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) && 3469 !(env->cp15.scr_el3 & SCR_ECVEN)) { 3470 return CP_ACCESS_TRAP_EL3; 3471 } 3472 return CP_ACCESS_OK; 3473 } 3474 3475 static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 3476 uint64_t value) 3477 { 3478 ARMCPU *cpu = env_archcpu(env); 3479 3480 trace_arm_gt_cntpoff_write(value); 3481 raw_write(env, ri, value); 3482 gt_recalc_timer(cpu, GTIMER_PHYS); 3483 } 3484 3485 static const ARMCPRegInfo gen_timer_cntpoff_reginfo = { 3486 .name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64, 3487 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6, 3488 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 3489 .accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write, 3490 .nv2_redirect_offset = 0x1a8, 3491 .fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2), 3492 }; 3493 #else 3494 3495 /* 3496 * In user-mode most of the generic timer registers are inaccessible 3497 * however modern kernels (4.12+) allow access to cntvct_el0 3498 */ 3499 3500 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3501 { 3502 ARMCPU *cpu = env_archcpu(env); 3503 3504 /* 3505 * Currently we have no support for QEMUTimer in linux-user so we 3506 * can't call gt_get_countervalue(env), instead we directly 3507 * call the lower level functions. 3508 */ 3509 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3510 } 3511 3512 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3513 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3514 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3515 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3516 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3517 .resetfn = arm_gt_cntfrq_reset, 3518 }, 3519 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3520 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3521 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3522 .readfn = gt_virt_cnt_read, 3523 }, 3524 }; 3525 3526 /* 3527 * CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also 3528 * is exposed to userspace by Linux. 3529 */ 3530 static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = { 3531 { .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64, 3532 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6, 3533 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3534 .readfn = gt_virt_cnt_read, 3535 }, 3536 }; 3537 3538 #endif 3539 3540 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3541 { 3542 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3543 raw_write(env, ri, value); 3544 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3545 raw_write(env, ri, value & 0xfffff6ff); 3546 } else { 3547 raw_write(env, ri, value & 0xfffff1ff); 3548 } 3549 } 3550 3551 #ifndef CONFIG_USER_ONLY 3552 /* get_phys_addr() isn't present for user-mode-only targets */ 3553 3554 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3555 bool isread) 3556 { 3557 if (ri->opc2 & 4) { 3558 /* 3559 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3560 * Secure EL1 (which can only happen if EL3 is AArch64). 3561 * They are simply UNDEF if executed from NS EL1. 3562 * They function normally from EL2 or EL3. 3563 */ 3564 if (arm_current_el(env) == 1) { 3565 if (arm_is_secure_below_el3(env)) { 3566 if (env->cp15.scr_el3 & SCR_EEL2) { 3567 return CP_ACCESS_TRAP_EL2; 3568 } 3569 return CP_ACCESS_TRAP_EL3; 3570 } 3571 return CP_ACCESS_TRAP_UNCATEGORIZED; 3572 } 3573 } 3574 return CP_ACCESS_OK; 3575 } 3576 3577 #ifdef CONFIG_TCG 3578 static int par_el1_shareability(GetPhysAddrResult *res) 3579 { 3580 /* 3581 * The PAR_EL1.SH field must be 0b10 for Device or Normal-NC 3582 * memory -- see pseudocode PAREncodeShareability(). 3583 */ 3584 if (((res->cacheattrs.attrs & 0xf0) == 0) || 3585 res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) { 3586 return 2; 3587 } 3588 return res->cacheattrs.shareability; 3589 } 3590 3591 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3592 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3593 ARMSecuritySpace ss) 3594 { 3595 bool ret; 3596 uint64_t par64; 3597 bool format64 = false; 3598 ARMMMUFaultInfo fi = {}; 3599 GetPhysAddrResult res = {}; 3600 3601 /* 3602 * I_MXTJT: Granule protection checks are not performed on the final 3603 * address of a successful translation. This is a translation not a 3604 * memory reference, so "memop = none = 0". 3605 */ 3606 ret = get_phys_addr_with_space_nogpc(env, value, access_type, 0, 3607 mmu_idx, ss, &res, &fi); 3608 3609 /* 3610 * ATS operations only do S1 or S1+S2 translations, so we never 3611 * have to deal with the ARMCacheAttrs format for S2 only. 3612 */ 3613 assert(!res.cacheattrs.is_s2_format); 3614 3615 if (ret) { 3616 /* 3617 * Some kinds of translation fault must cause exceptions rather 3618 * than being reported in the PAR. 3619 */ 3620 int current_el = arm_current_el(env); 3621 int target_el; 3622 uint32_t syn, fsr, fsc; 3623 bool take_exc = false; 3624 3625 if (fi.s1ptw && current_el == 1 3626 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3627 /* 3628 * Synchronous stage 2 fault on an access made as part of the 3629 * translation table walk for AT S1E0* or AT S1E1* insn 3630 * executed from NS EL1. If this is a synchronous external abort 3631 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3632 * to EL3. Otherwise the fault is taken as an exception to EL2, 3633 * and HPFAR_EL2 holds the faulting IPA. 3634 */ 3635 if (fi.type == ARMFault_SyncExternalOnWalk && 3636 (env->cp15.scr_el3 & SCR_EA)) { 3637 target_el = 3; 3638 } else { 3639 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3640 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3641 env->cp15.hpfar_el2 |= HPFAR_NS; 3642 } 3643 target_el = 2; 3644 } 3645 take_exc = true; 3646 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3647 /* 3648 * Synchronous external aborts during a translation table walk 3649 * are taken as Data Abort exceptions. 3650 */ 3651 if (fi.stage2) { 3652 if (current_el == 3) { 3653 target_el = 3; 3654 } else { 3655 target_el = 2; 3656 } 3657 } else { 3658 target_el = exception_target_el(env); 3659 } 3660 take_exc = true; 3661 } 3662 3663 if (take_exc) { 3664 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3665 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3666 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3667 fsr = arm_fi_to_lfsc(&fi); 3668 fsc = extract32(fsr, 0, 6); 3669 } else { 3670 fsr = arm_fi_to_sfsc(&fi); 3671 fsc = 0x3f; 3672 } 3673 /* 3674 * Report exception with ESR indicating a fault due to a 3675 * translation table walk for a cache maintenance instruction. 3676 */ 3677 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3678 fi.ea, 1, fi.s1ptw, 1, fsc); 3679 env->exception.vaddress = value; 3680 env->exception.fsr = fsr; 3681 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3682 } 3683 } 3684 3685 if (is_a64(env)) { 3686 format64 = true; 3687 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3688 /* 3689 * ATS1Cxx: 3690 * * TTBCR.EAE determines whether the result is returned using the 3691 * 32-bit or the 64-bit PAR format 3692 * * Instructions executed in Hyp mode always use the 64bit format 3693 * 3694 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3695 * * The Non-secure TTBCR.EAE bit is set to 1 3696 * * The implementation includes EL2, and the value of HCR.VM is 1 3697 * 3698 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3699 * 3700 * ATS1Hx always uses the 64bit format. 3701 */ 3702 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3703 3704 if (arm_feature(env, ARM_FEATURE_EL2) && !arm_aa32_secure_pl1_0(env)) { 3705 if (mmu_idx == ARMMMUIdx_E10_0 || 3706 mmu_idx == ARMMMUIdx_E10_1 || 3707 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3708 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3709 } else { 3710 format64 |= arm_current_el(env) == 2; 3711 } 3712 } 3713 } 3714 3715 if (format64) { 3716 /* Create a 64-bit PAR */ 3717 par64 = (1 << 11); /* LPAE bit always set */ 3718 if (!ret) { 3719 par64 |= res.f.phys_addr & ~0xfffULL; 3720 if (!res.f.attrs.secure) { 3721 par64 |= (1 << 9); /* NS */ 3722 } 3723 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3724 par64 |= par_el1_shareability(&res) << 7; /* SH */ 3725 } else { 3726 uint32_t fsr = arm_fi_to_lfsc(&fi); 3727 3728 par64 |= 1; /* F */ 3729 par64 |= (fsr & 0x3f) << 1; /* FS */ 3730 if (fi.stage2) { 3731 par64 |= (1 << 9); /* S */ 3732 } 3733 if (fi.s1ptw) { 3734 par64 |= (1 << 8); /* PTW */ 3735 } 3736 } 3737 } else { 3738 /* 3739 * fsr is a DFSR/IFSR value for the short descriptor 3740 * translation table format (with WnR always clear). 3741 * Convert it to a 32-bit PAR. 3742 */ 3743 if (!ret) { 3744 /* We do not set any attribute bits in the PAR */ 3745 if (res.f.lg_page_size == 24 3746 && arm_feature(env, ARM_FEATURE_V7)) { 3747 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3748 } else { 3749 par64 = res.f.phys_addr & 0xfffff000; 3750 } 3751 if (!res.f.attrs.secure) { 3752 par64 |= (1 << 9); /* NS */ 3753 } 3754 } else { 3755 uint32_t fsr = arm_fi_to_sfsc(&fi); 3756 3757 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3758 ((fsr & 0xf) << 1) | 1; 3759 } 3760 } 3761 return par64; 3762 } 3763 #endif /* CONFIG_TCG */ 3764 3765 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3766 { 3767 #ifdef CONFIG_TCG 3768 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3769 uint64_t par64; 3770 ARMMMUIdx mmu_idx; 3771 int el = arm_current_el(env); 3772 ARMSecuritySpace ss = arm_security_space(env); 3773 3774 switch (ri->opc2 & 6) { 3775 case 0: 3776 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3777 switch (el) { 3778 case 2: 3779 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3780 /* fall through */ 3781 case 1: 3782 case 3: 3783 if (ri->crm == 9 && arm_pan_enabled(env)) { 3784 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3785 } else { 3786 mmu_idx = ARMMMUIdx_Stage1_E1; 3787 } 3788 break; 3789 default: 3790 g_assert_not_reached(); 3791 } 3792 break; 3793 case 2: 3794 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3795 switch (el) { 3796 case 3: 3797 mmu_idx = ARMMMUIdx_E10_0; 3798 break; 3799 case 2: 3800 g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3801 mmu_idx = ARMMMUIdx_Stage1_E0; 3802 break; 3803 case 1: 3804 mmu_idx = ARMMMUIdx_Stage1_E0; 3805 break; 3806 default: 3807 g_assert_not_reached(); 3808 } 3809 break; 3810 case 4: 3811 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3812 mmu_idx = ARMMMUIdx_E10_1; 3813 ss = ARMSS_NonSecure; 3814 break; 3815 case 6: 3816 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3817 mmu_idx = ARMMMUIdx_E10_0; 3818 ss = ARMSS_NonSecure; 3819 break; 3820 default: 3821 g_assert_not_reached(); 3822 } 3823 3824 par64 = do_ats_write(env, value, access_type, mmu_idx, ss); 3825 3826 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3827 #else 3828 /* Handled by hardware accelerator. */ 3829 g_assert_not_reached(); 3830 #endif /* CONFIG_TCG */ 3831 } 3832 3833 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3834 uint64_t value) 3835 { 3836 #ifdef CONFIG_TCG 3837 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3838 uint64_t par64; 3839 3840 /* There is no SecureEL2 for AArch32. */ 3841 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, 3842 ARMSS_NonSecure); 3843 3844 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3845 #else 3846 /* Handled by hardware accelerator. */ 3847 g_assert_not_reached(); 3848 #endif /* CONFIG_TCG */ 3849 } 3850 3851 static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri, 3852 bool isread) 3853 { 3854 /* 3855 * R_NYXTL: instruction is UNDEFINED if it applies to an Exception level 3856 * lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can 3857 * only happen when executing at EL3 because that combination also causes an 3858 * illegal exception return. We don't need to check FEAT_RME either, because 3859 * scr_write() ensures that the NSE bit is not set otherwise. 3860 */ 3861 if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) { 3862 return CP_ACCESS_TRAP; 3863 } 3864 return CP_ACCESS_OK; 3865 } 3866 3867 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3868 bool isread) 3869 { 3870 if (arm_current_el(env) == 3 && 3871 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3872 return CP_ACCESS_TRAP; 3873 } 3874 return at_e012_access(env, ri, isread); 3875 } 3876 3877 static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri, 3878 bool isread) 3879 { 3880 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) { 3881 return CP_ACCESS_TRAP_EL2; 3882 } 3883 return at_e012_access(env, ri, isread); 3884 } 3885 3886 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3887 uint64_t value) 3888 { 3889 #ifdef CONFIG_TCG 3890 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3891 ARMMMUIdx mmu_idx; 3892 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3893 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3894 bool for_el3 = false; 3895 ARMSecuritySpace ss; 3896 3897 switch (ri->opc2 & 6) { 3898 case 0: 3899 switch (ri->opc1) { 3900 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3901 if (ri->crm == 9 && arm_pan_enabled(env)) { 3902 mmu_idx = regime_e20 ? 3903 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3904 } else { 3905 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3906 } 3907 break; 3908 case 4: /* AT S1E2R, AT S1E2W */ 3909 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3910 break; 3911 case 6: /* AT S1E3R, AT S1E3W */ 3912 mmu_idx = ARMMMUIdx_E3; 3913 for_el3 = true; 3914 break; 3915 default: 3916 g_assert_not_reached(); 3917 } 3918 break; 3919 case 2: /* AT S1E0R, AT S1E0W */ 3920 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3921 break; 3922 case 4: /* AT S12E1R, AT S12E1W */ 3923 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3924 break; 3925 case 6: /* AT S12E0R, AT S12E0W */ 3926 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3927 break; 3928 default: 3929 g_assert_not_reached(); 3930 } 3931 3932 ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env); 3933 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss); 3934 #else 3935 /* Handled by hardware accelerator. */ 3936 g_assert_not_reached(); 3937 #endif /* CONFIG_TCG */ 3938 } 3939 #endif 3940 3941 /* Return basic MPU access permission bits. */ 3942 static uint32_t simple_mpu_ap_bits(uint32_t val) 3943 { 3944 uint32_t ret; 3945 uint32_t mask; 3946 int i; 3947 ret = 0; 3948 mask = 3; 3949 for (i = 0; i < 16; i += 2) { 3950 ret |= (val >> i) & mask; 3951 mask <<= 2; 3952 } 3953 return ret; 3954 } 3955 3956 /* Pad basic MPU access permission bits to extended format. */ 3957 static uint32_t extended_mpu_ap_bits(uint32_t val) 3958 { 3959 uint32_t ret; 3960 uint32_t mask; 3961 int i; 3962 ret = 0; 3963 mask = 3; 3964 for (i = 0; i < 16; i += 2) { 3965 ret |= (val & mask) << i; 3966 mask <<= 2; 3967 } 3968 return ret; 3969 } 3970 3971 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3972 uint64_t value) 3973 { 3974 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3975 } 3976 3977 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3978 { 3979 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3980 } 3981 3982 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3983 uint64_t value) 3984 { 3985 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3986 } 3987 3988 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3989 { 3990 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3991 } 3992 3993 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3994 { 3995 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3996 3997 if (!u32p) { 3998 return 0; 3999 } 4000 4001 u32p += env->pmsav7.rnr[M_REG_NS]; 4002 return *u32p; 4003 } 4004 4005 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 4006 uint64_t value) 4007 { 4008 ARMCPU *cpu = env_archcpu(env); 4009 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 4010 4011 if (!u32p) { 4012 return; 4013 } 4014 4015 u32p += env->pmsav7.rnr[M_REG_NS]; 4016 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4017 *u32p = value; 4018 } 4019 4020 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4021 uint64_t value) 4022 { 4023 ARMCPU *cpu = env_archcpu(env); 4024 uint32_t nrgs = cpu->pmsav7_dregion; 4025 4026 if (value >= nrgs) { 4027 qemu_log_mask(LOG_GUEST_ERROR, 4028 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 4029 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 4030 return; 4031 } 4032 4033 raw_write(env, ri, value); 4034 } 4035 4036 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4037 uint64_t value) 4038 { 4039 ARMCPU *cpu = env_archcpu(env); 4040 4041 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4042 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4043 } 4044 4045 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4046 { 4047 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4048 } 4049 4050 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4051 uint64_t value) 4052 { 4053 ARMCPU *cpu = env_archcpu(env); 4054 4055 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4056 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 4057 } 4058 4059 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4060 { 4061 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 4062 } 4063 4064 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4065 uint64_t value) 4066 { 4067 ARMCPU *cpu = env_archcpu(env); 4068 4069 /* 4070 * Ignore writes that would select not implemented region. 4071 * This is architecturally UNPREDICTABLE. 4072 */ 4073 if (value >= cpu->pmsav7_dregion) { 4074 return; 4075 } 4076 4077 env->pmsav7.rnr[M_REG_NS] = value; 4078 } 4079 4080 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4081 uint64_t value) 4082 { 4083 ARMCPU *cpu = env_archcpu(env); 4084 4085 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4086 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 4087 } 4088 4089 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4090 { 4091 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 4092 } 4093 4094 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4095 uint64_t value) 4096 { 4097 ARMCPU *cpu = env_archcpu(env); 4098 4099 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4100 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 4101 } 4102 4103 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 4104 { 4105 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 4106 } 4107 4108 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4109 uint64_t value) 4110 { 4111 uint32_t n; 4112 uint32_t bit; 4113 ARMCPU *cpu = env_archcpu(env); 4114 4115 /* Ignore writes to unimplemented regions */ 4116 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 4117 value &= MAKE_64BIT_MASK(0, rmax); 4118 4119 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4120 4121 /* Register alias is only valid for first 32 indexes */ 4122 for (n = 0; n < rmax; ++n) { 4123 bit = extract32(value, n, 1); 4124 env->pmsav8.hprlar[n] = deposit32( 4125 env->pmsav8.hprlar[n], 0, 1, bit); 4126 } 4127 } 4128 4129 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4130 { 4131 uint32_t n; 4132 uint32_t result = 0x0; 4133 ARMCPU *cpu = env_archcpu(env); 4134 4135 /* Register alias is only valid for first 32 indexes */ 4136 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 4137 if (env->pmsav8.hprlar[n] & 0x1) { 4138 result |= (0x1 << n); 4139 } 4140 } 4141 return result; 4142 } 4143 4144 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4145 uint64_t value) 4146 { 4147 ARMCPU *cpu = env_archcpu(env); 4148 4149 /* 4150 * Ignore writes that would select not implemented region. 4151 * This is architecturally UNPREDICTABLE. 4152 */ 4153 if (value >= cpu->pmsav8r_hdregion) { 4154 return; 4155 } 4156 4157 env->pmsav8.hprselr = value; 4158 } 4159 4160 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 4161 uint64_t value) 4162 { 4163 ARMCPU *cpu = env_archcpu(env); 4164 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4165 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4166 4167 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 4168 4169 if (ri->opc1 & 4) { 4170 if (index >= cpu->pmsav8r_hdregion) { 4171 return; 4172 } 4173 if (ri->opc2 & 0x1) { 4174 env->pmsav8.hprlar[index] = value; 4175 } else { 4176 env->pmsav8.hprbar[index] = value; 4177 } 4178 } else { 4179 if (index >= cpu->pmsav7_dregion) { 4180 return; 4181 } 4182 if (ri->opc2 & 0x1) { 4183 env->pmsav8.rlar[M_REG_NS][index] = value; 4184 } else { 4185 env->pmsav8.rbar[M_REG_NS][index] = value; 4186 } 4187 } 4188 } 4189 4190 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 4191 { 4192 ARMCPU *cpu = env_archcpu(env); 4193 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 4194 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 4195 4196 if (ri->opc1 & 4) { 4197 if (index >= cpu->pmsav8r_hdregion) { 4198 return 0x0; 4199 } 4200 if (ri->opc2 & 0x1) { 4201 return env->pmsav8.hprlar[index]; 4202 } else { 4203 return env->pmsav8.hprbar[index]; 4204 } 4205 } else { 4206 if (index >= cpu->pmsav7_dregion) { 4207 return 0x0; 4208 } 4209 if (ri->opc2 & 0x1) { 4210 return env->pmsav8.rlar[M_REG_NS][index]; 4211 } else { 4212 return env->pmsav8.rbar[M_REG_NS][index]; 4213 } 4214 } 4215 } 4216 4217 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 4218 { .name = "PRBAR", 4219 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 4220 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4221 .accessfn = access_tvm_trvm, 4222 .readfn = prbar_read, .writefn = prbar_write }, 4223 { .name = "PRLAR", 4224 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 4225 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4226 .accessfn = access_tvm_trvm, 4227 .readfn = prlar_read, .writefn = prlar_write }, 4228 { .name = "PRSELR", .resetvalue = 0, 4229 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 4230 .access = PL1_RW, .accessfn = access_tvm_trvm, 4231 .writefn = prselr_write, 4232 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 4233 { .name = "HPRBAR", .resetvalue = 0, 4234 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 4235 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4236 .readfn = hprbar_read, .writefn = hprbar_write }, 4237 { .name = "HPRLAR", 4238 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 4239 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4240 .readfn = hprlar_read, .writefn = hprlar_write }, 4241 { .name = "HPRSELR", .resetvalue = 0, 4242 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 4243 .access = PL2_RW, 4244 .writefn = hprselr_write, 4245 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 4246 { .name = "HPRENR", 4247 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 4248 .access = PL2_RW, .type = ARM_CP_NO_RAW, 4249 .readfn = hprenr_read, .writefn = hprenr_write }, 4250 }; 4251 4252 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 4253 /* 4254 * Reset for all these registers is handled in arm_cpu_reset(), 4255 * because the PMSAv7 is also used by M-profile CPUs, which do 4256 * not register cpregs but still need the state to be reset. 4257 */ 4258 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 4259 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4260 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 4261 .readfn = pmsav7_read, .writefn = pmsav7_write, 4262 .resetfn = arm_cp_reset_ignore }, 4263 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 4264 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4265 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4266 .readfn = pmsav7_read, .writefn = pmsav7_write, 4267 .resetfn = arm_cp_reset_ignore }, 4268 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4269 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4270 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4271 .readfn = pmsav7_read, .writefn = pmsav7_write, 4272 .resetfn = arm_cp_reset_ignore }, 4273 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4274 .access = PL1_RW, 4275 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4276 .writefn = pmsav7_rgnr_write, 4277 .resetfn = arm_cp_reset_ignore }, 4278 }; 4279 4280 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4281 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4282 .access = PL1_RW, .type = ARM_CP_ALIAS, 4283 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4284 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4285 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4286 .access = PL1_RW, .type = ARM_CP_ALIAS, 4287 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4288 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4289 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4290 .access = PL1_RW, 4291 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4292 .resetvalue = 0, }, 4293 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4294 .access = PL1_RW, 4295 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4296 .resetvalue = 0, }, 4297 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4298 .access = PL1_RW, 4299 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4300 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4301 .access = PL1_RW, 4302 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4303 /* Protection region base and size registers */ 4304 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4305 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4306 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4307 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4308 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4309 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4310 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4311 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4312 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4313 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4314 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4315 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4316 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4317 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4318 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4319 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4320 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4321 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4322 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4323 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4324 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4325 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4326 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4327 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4328 }; 4329 4330 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4331 uint64_t value) 4332 { 4333 ARMCPU *cpu = env_archcpu(env); 4334 4335 if (!arm_feature(env, ARM_FEATURE_V8)) { 4336 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4337 /* 4338 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4339 * using Long-descriptor translation table format 4340 */ 4341 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4342 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4343 /* 4344 * In an implementation that includes the Security Extensions 4345 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4346 * Short-descriptor translation table format. 4347 */ 4348 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4349 } else { 4350 value &= TTBCR_N; 4351 } 4352 } 4353 4354 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4355 /* 4356 * With LPAE the TTBCR could result in a change of ASID 4357 * via the TTBCR.A1 bit, so do a TLB flush. 4358 */ 4359 tlb_flush(CPU(cpu)); 4360 } 4361 raw_write(env, ri, value); 4362 } 4363 4364 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4365 uint64_t value) 4366 { 4367 ARMCPU *cpu = env_archcpu(env); 4368 4369 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4370 tlb_flush(CPU(cpu)); 4371 raw_write(env, ri, value); 4372 } 4373 4374 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4375 uint64_t value) 4376 { 4377 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4378 if (cpreg_field_is_64bit(ri) && 4379 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4380 ARMCPU *cpu = env_archcpu(env); 4381 tlb_flush(CPU(cpu)); 4382 } 4383 raw_write(env, ri, value); 4384 } 4385 4386 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4387 uint64_t value) 4388 { 4389 /* 4390 * If we are running with E2&0 regime, then an ASID is active. 4391 * Flush if that might be changing. Note we're not checking 4392 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4393 * holds the active ASID, only checking the field that might. 4394 */ 4395 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4396 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4397 uint16_t mask = ARMMMUIdxBit_E20_2 | 4398 ARMMMUIdxBit_E20_2_PAN | 4399 ARMMMUIdxBit_E20_0; 4400 tlb_flush_by_mmuidx(env_cpu(env), mask); 4401 } 4402 raw_write(env, ri, value); 4403 } 4404 4405 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4406 uint64_t value) 4407 { 4408 ARMCPU *cpu = env_archcpu(env); 4409 CPUState *cs = CPU(cpu); 4410 4411 /* 4412 * A change in VMID to the stage2 page table (Stage2) invalidates 4413 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4414 */ 4415 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4416 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4417 } 4418 raw_write(env, ri, value); 4419 } 4420 4421 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4422 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4423 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4424 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4425 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4426 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4427 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4428 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4429 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4430 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4431 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4432 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4433 offsetof(CPUARMState, cp15.dfar_ns) } }, 4434 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4435 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4436 .access = PL1_RW, .accessfn = access_tvm_trvm, 4437 .fgt = FGT_FAR_EL1, 4438 .nv2_redirect_offset = 0x220 | NV2_REDIR_NV1, 4439 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4440 .resetvalue = 0, }, 4441 }; 4442 4443 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4444 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4445 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4446 .access = PL1_RW, .accessfn = access_tvm_trvm, 4447 .fgt = FGT_ESR_EL1, 4448 .nv2_redirect_offset = 0x138 | NV2_REDIR_NV1, 4449 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4450 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4451 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4452 .access = PL1_RW, .accessfn = access_tvm_trvm, 4453 .fgt = FGT_TTBR0_EL1, 4454 .nv2_redirect_offset = 0x200 | NV2_REDIR_NV1, 4455 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4456 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4457 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4458 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4459 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4460 .access = PL1_RW, .accessfn = access_tvm_trvm, 4461 .fgt = FGT_TTBR1_EL1, 4462 .nv2_redirect_offset = 0x210 | NV2_REDIR_NV1, 4463 .writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write, 4464 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4465 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4466 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4467 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4468 .access = PL1_RW, .accessfn = access_tvm_trvm, 4469 .fgt = FGT_TCR_EL1, 4470 .nv2_redirect_offset = 0x120 | NV2_REDIR_NV1, 4471 .writefn = vmsa_tcr_el12_write, 4472 .raw_writefn = raw_write, 4473 .resetvalue = 0, 4474 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4475 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4476 .access = PL1_RW, .accessfn = access_tvm_trvm, 4477 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4478 .raw_writefn = raw_write, 4479 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4480 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4481 }; 4482 4483 /* 4484 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4485 * qemu tlbs nor adjusting cached masks. 4486 */ 4487 static const ARMCPRegInfo ttbcr2_reginfo = { 4488 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4489 .access = PL1_RW, .accessfn = access_tvm_trvm, 4490 .type = ARM_CP_ALIAS, 4491 .bank_fieldoffsets = { 4492 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4493 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4494 }, 4495 }; 4496 4497 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4498 uint64_t value) 4499 { 4500 env->cp15.c15_ticonfig = value & 0xe7; 4501 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4502 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4503 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4504 } 4505 4506 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4507 uint64_t value) 4508 { 4509 env->cp15.c15_threadid = value & 0xffff; 4510 } 4511 4512 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4513 uint64_t value) 4514 { 4515 /* Wait-for-interrupt (deprecated) */ 4516 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4517 } 4518 4519 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4520 uint64_t value) 4521 { 4522 /* 4523 * On OMAP there are registers indicating the max/min index of dcache lines 4524 * containing a dirty line; cache flush operations have to reset these. 4525 */ 4526 env->cp15.c15_i_max = 0x000; 4527 env->cp15.c15_i_min = 0xff0; 4528 } 4529 4530 static const ARMCPRegInfo omap_cp_reginfo[] = { 4531 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4532 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4533 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4534 .resetvalue = 0, }, 4535 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4536 .access = PL1_RW, .type = ARM_CP_NOP }, 4537 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4538 .access = PL1_RW, 4539 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4540 .writefn = omap_ticonfig_write }, 4541 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4542 .access = PL1_RW, 4543 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4544 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4545 .access = PL1_RW, .resetvalue = 0xff0, 4546 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4547 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4548 .access = PL1_RW, 4549 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4550 .writefn = omap_threadid_write }, 4551 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4552 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4553 .type = ARM_CP_NO_RAW, 4554 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4555 /* 4556 * TODO: Peripheral port remap register: 4557 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4558 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4559 * when MMU is off. 4560 */ 4561 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4562 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4563 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4564 .writefn = omap_cachemaint_write }, 4565 { .name = "C9", .cp = 15, .crn = 9, 4566 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4567 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4568 }; 4569 4570 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4571 uint64_t value) 4572 { 4573 env->cp15.c15_cpar = value & 0x3fff; 4574 } 4575 4576 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4577 { .name = "XSCALE_CPAR", 4578 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4579 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4580 .writefn = xscale_cpar_write, }, 4581 { .name = "XSCALE_AUXCR", 4582 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4583 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4584 .resetvalue = 0, }, 4585 /* 4586 * XScale specific cache-lockdown: since we have no cache we NOP these 4587 * and hope the guest does not really rely on cache behaviour. 4588 */ 4589 { .name = "XSCALE_LOCK_ICACHE_LINE", 4590 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4591 .access = PL1_W, .type = ARM_CP_NOP }, 4592 { .name = "XSCALE_UNLOCK_ICACHE", 4593 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4594 .access = PL1_W, .type = ARM_CP_NOP }, 4595 { .name = "XSCALE_DCACHE_LOCK", 4596 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4597 .access = PL1_RW, .type = ARM_CP_NOP }, 4598 { .name = "XSCALE_UNLOCK_DCACHE", 4599 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4600 .access = PL1_W, .type = ARM_CP_NOP }, 4601 }; 4602 4603 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4604 /* 4605 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4606 * implementation of this implementation-defined space. 4607 * Ideally this should eventually disappear in favour of actually 4608 * implementing the correct behaviour for all cores. 4609 */ 4610 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4611 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4612 .access = PL1_RW, 4613 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4614 .resetvalue = 0 }, 4615 }; 4616 4617 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4618 /* Cache status: RAZ because we have no cache so it's always clean */ 4619 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4620 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4621 .resetvalue = 0 }, 4622 }; 4623 4624 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4625 /* We never have a block transfer operation in progress */ 4626 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4627 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4628 .resetvalue = 0 }, 4629 /* The cache ops themselves: these all NOP for QEMU */ 4630 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4631 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4632 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4633 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4634 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4635 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4636 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4637 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4638 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4639 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4640 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4641 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4642 }; 4643 4644 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4645 /* 4646 * The cache test-and-clean instructions always return (1 << 30) 4647 * to indicate that there are no dirty cache lines. 4648 */ 4649 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4650 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4651 .resetvalue = (1 << 30) }, 4652 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4653 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4654 .resetvalue = (1 << 30) }, 4655 }; 4656 4657 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4658 /* Ignore ReadBuffer accesses */ 4659 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4660 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4661 .access = PL1_RW, .resetvalue = 0, 4662 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4663 }; 4664 4665 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4666 { 4667 unsigned int cur_el = arm_current_el(env); 4668 4669 if (arm_is_el2_enabled(env) && cur_el == 1) { 4670 return env->cp15.vpidr_el2; 4671 } 4672 return raw_read(env, ri); 4673 } 4674 4675 static uint64_t mpidr_read_val(CPUARMState *env) 4676 { 4677 ARMCPU *cpu = env_archcpu(env); 4678 uint64_t mpidr = cpu->mp_affinity; 4679 4680 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4681 mpidr |= (1U << 31); 4682 /* 4683 * Cores which are uniprocessor (non-coherent) 4684 * but still implement the MP extensions set 4685 * bit 30. (For instance, Cortex-R5). 4686 */ 4687 if (cpu->mp_is_up) { 4688 mpidr |= (1u << 30); 4689 } 4690 } 4691 return mpidr; 4692 } 4693 4694 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4695 { 4696 unsigned int cur_el = arm_current_el(env); 4697 4698 if (arm_is_el2_enabled(env) && cur_el == 1) { 4699 return env->cp15.vmpidr_el2; 4700 } 4701 return mpidr_read_val(env); 4702 } 4703 4704 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4705 /* NOP AMAIR0/1 */ 4706 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4707 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4708 .access = PL1_RW, .accessfn = access_tvm_trvm, 4709 .fgt = FGT_AMAIR_EL1, 4710 .nv2_redirect_offset = 0x148 | NV2_REDIR_NV1, 4711 .type = ARM_CP_CONST, .resetvalue = 0 }, 4712 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4713 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4714 .access = PL1_RW, .accessfn = access_tvm_trvm, 4715 .type = ARM_CP_CONST, .resetvalue = 0 }, 4716 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4717 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4718 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4719 offsetof(CPUARMState, cp15.par_ns)} }, 4720 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4721 .access = PL1_RW, .accessfn = access_tvm_trvm, 4722 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4723 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4724 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4725 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4726 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4727 .access = PL1_RW, .accessfn = access_tvm_trvm, 4728 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4729 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4730 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4731 .writefn = vmsa_ttbr_write, .raw_writefn = raw_write }, 4732 }; 4733 4734 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4735 { 4736 return vfp_get_fpcr(env); 4737 } 4738 4739 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4740 uint64_t value) 4741 { 4742 vfp_set_fpcr(env, value); 4743 } 4744 4745 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4746 { 4747 return vfp_get_fpsr(env); 4748 } 4749 4750 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4751 uint64_t value) 4752 { 4753 vfp_set_fpsr(env, value); 4754 } 4755 4756 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4757 bool isread) 4758 { 4759 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4760 return CP_ACCESS_TRAP; 4761 } 4762 return CP_ACCESS_OK; 4763 } 4764 4765 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4766 uint64_t value) 4767 { 4768 env->daif = value & PSTATE_DAIF; 4769 } 4770 4771 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4772 { 4773 return env->pstate & PSTATE_PAN; 4774 } 4775 4776 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4777 uint64_t value) 4778 { 4779 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4780 } 4781 4782 static const ARMCPRegInfo pan_reginfo = { 4783 .name = "PAN", .state = ARM_CP_STATE_AA64, 4784 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4785 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4786 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4787 }; 4788 4789 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4790 { 4791 return env->pstate & PSTATE_UAO; 4792 } 4793 4794 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4795 uint64_t value) 4796 { 4797 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4798 } 4799 4800 static const ARMCPRegInfo uao_reginfo = { 4801 .name = "UAO", .state = ARM_CP_STATE_AA64, 4802 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4803 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4804 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4805 }; 4806 4807 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4808 { 4809 return env->pstate & PSTATE_DIT; 4810 } 4811 4812 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4813 uint64_t value) 4814 { 4815 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4816 } 4817 4818 static const ARMCPRegInfo dit_reginfo = { 4819 .name = "DIT", .state = ARM_CP_STATE_AA64, 4820 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4821 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4822 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4823 }; 4824 4825 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4826 { 4827 return env->pstate & PSTATE_SSBS; 4828 } 4829 4830 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4831 uint64_t value) 4832 { 4833 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4834 } 4835 4836 static const ARMCPRegInfo ssbs_reginfo = { 4837 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4838 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4839 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4840 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4841 }; 4842 4843 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4844 const ARMCPRegInfo *ri, 4845 bool isread) 4846 { 4847 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4848 switch (arm_current_el(env)) { 4849 case 0: 4850 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4851 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4852 return CP_ACCESS_TRAP; 4853 } 4854 /* fall through */ 4855 case 1: 4856 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4857 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4858 return CP_ACCESS_TRAP_EL2; 4859 } 4860 break; 4861 } 4862 return CP_ACCESS_OK; 4863 } 4864 4865 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4866 { 4867 /* Cache invalidate/clean to Point of Unification... */ 4868 switch (arm_current_el(env)) { 4869 case 0: 4870 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4871 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4872 return CP_ACCESS_TRAP; 4873 } 4874 /* fall through */ 4875 case 1: 4876 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4877 if (arm_hcr_el2_eff(env) & hcrflags) { 4878 return CP_ACCESS_TRAP_EL2; 4879 } 4880 break; 4881 } 4882 return CP_ACCESS_OK; 4883 } 4884 4885 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4886 bool isread) 4887 { 4888 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4889 } 4890 4891 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4892 bool isread) 4893 { 4894 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4895 } 4896 4897 /* 4898 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4899 * Page D4-1736 (DDI0487A.b) 4900 */ 4901 4902 static int vae1_tlbmask(CPUARMState *env) 4903 { 4904 uint64_t hcr = arm_hcr_el2_eff(env); 4905 uint16_t mask; 4906 4907 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4908 mask = ARMMMUIdxBit_E20_2 | 4909 ARMMMUIdxBit_E20_2_PAN | 4910 ARMMMUIdxBit_E20_0; 4911 } else { 4912 mask = ARMMMUIdxBit_E10_1 | 4913 ARMMMUIdxBit_E10_1_PAN | 4914 ARMMMUIdxBit_E10_0; 4915 } 4916 return mask; 4917 } 4918 4919 static int vae2_tlbmask(CPUARMState *env) 4920 { 4921 uint64_t hcr = arm_hcr_el2_eff(env); 4922 uint16_t mask; 4923 4924 if (hcr & HCR_E2H) { 4925 mask = ARMMMUIdxBit_E20_2 | 4926 ARMMMUIdxBit_E20_2_PAN | 4927 ARMMMUIdxBit_E20_0; 4928 } else { 4929 mask = ARMMMUIdxBit_E2; 4930 } 4931 return mask; 4932 } 4933 4934 /* Return 56 if TBI is enabled, 64 otherwise. */ 4935 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4936 uint64_t addr) 4937 { 4938 uint64_t tcr = regime_tcr(env, mmu_idx); 4939 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4940 int select = extract64(addr, 55, 1); 4941 4942 return (tbi >> select) & 1 ? 56 : 64; 4943 } 4944 4945 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4946 { 4947 uint64_t hcr = arm_hcr_el2_eff(env); 4948 ARMMMUIdx mmu_idx; 4949 4950 /* Only the regime of the mmu_idx below is significant. */ 4951 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4952 mmu_idx = ARMMMUIdx_E20_0; 4953 } else { 4954 mmu_idx = ARMMMUIdx_E10_0; 4955 } 4956 4957 return tlbbits_for_regime(env, mmu_idx, addr); 4958 } 4959 4960 static int vae2_tlbbits(CPUARMState *env, uint64_t addr) 4961 { 4962 uint64_t hcr = arm_hcr_el2_eff(env); 4963 ARMMMUIdx mmu_idx; 4964 4965 /* 4966 * Only the regime of the mmu_idx below is significant. 4967 * Regime EL2&0 has two ranges with separate TBI configuration, while EL2 4968 * only has one. 4969 */ 4970 if (hcr & HCR_E2H) { 4971 mmu_idx = ARMMMUIdx_E20_2; 4972 } else { 4973 mmu_idx = ARMMMUIdx_E2; 4974 } 4975 4976 return tlbbits_for_regime(env, mmu_idx, addr); 4977 } 4978 4979 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4980 uint64_t value) 4981 { 4982 CPUState *cs = env_cpu(env); 4983 int mask = vae1_tlbmask(env); 4984 4985 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4986 } 4987 4988 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4989 uint64_t value) 4990 { 4991 CPUState *cs = env_cpu(env); 4992 int mask = vae1_tlbmask(env); 4993 4994 if (tlb_force_broadcast(env)) { 4995 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4996 } else { 4997 tlb_flush_by_mmuidx(cs, mask); 4998 } 4999 } 5000 5001 static int e2_tlbmask(CPUARMState *env) 5002 { 5003 return (ARMMMUIdxBit_E20_0 | 5004 ARMMMUIdxBit_E20_2 | 5005 ARMMMUIdxBit_E20_2_PAN | 5006 ARMMMUIdxBit_E2); 5007 } 5008 5009 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5010 uint64_t value) 5011 { 5012 CPUState *cs = env_cpu(env); 5013 int mask = alle1_tlbmask(env); 5014 5015 tlb_flush_by_mmuidx(cs, mask); 5016 } 5017 5018 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5019 uint64_t value) 5020 { 5021 CPUState *cs = env_cpu(env); 5022 int mask = e2_tlbmask(env); 5023 5024 tlb_flush_by_mmuidx(cs, mask); 5025 } 5026 5027 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5028 uint64_t value) 5029 { 5030 ARMCPU *cpu = env_archcpu(env); 5031 CPUState *cs = CPU(cpu); 5032 5033 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 5034 } 5035 5036 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5037 uint64_t value) 5038 { 5039 CPUState *cs = env_cpu(env); 5040 int mask = alle1_tlbmask(env); 5041 5042 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5043 } 5044 5045 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5046 uint64_t value) 5047 { 5048 CPUState *cs = env_cpu(env); 5049 int mask = e2_tlbmask(env); 5050 5051 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 5052 } 5053 5054 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5055 uint64_t value) 5056 { 5057 CPUState *cs = env_cpu(env); 5058 5059 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 5060 } 5061 5062 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5063 uint64_t value) 5064 { 5065 /* 5066 * Invalidate by VA, EL2 5067 * Currently handles both VAE2 and VALE2, since we don't support 5068 * flush-last-level-only. 5069 */ 5070 CPUState *cs = env_cpu(env); 5071 int mask = vae2_tlbmask(env); 5072 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5073 int bits = vae2_tlbbits(env, pageaddr); 5074 5075 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5076 } 5077 5078 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5079 uint64_t value) 5080 { 5081 /* 5082 * Invalidate by VA, EL3 5083 * Currently handles both VAE3 and VALE3, since we don't support 5084 * flush-last-level-only. 5085 */ 5086 ARMCPU *cpu = env_archcpu(env); 5087 CPUState *cs = CPU(cpu); 5088 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5089 5090 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 5091 } 5092 5093 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5094 uint64_t value) 5095 { 5096 CPUState *cs = env_cpu(env); 5097 int mask = vae1_tlbmask(env); 5098 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5099 int bits = vae1_tlbbits(env, pageaddr); 5100 5101 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5102 } 5103 5104 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5105 uint64_t value) 5106 { 5107 /* 5108 * Invalidate by VA, EL1&0 (AArch64 version). 5109 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 5110 * since we don't support flush-for-specific-ASID-only or 5111 * flush-last-level-only. 5112 */ 5113 CPUState *cs = env_cpu(env); 5114 int mask = vae1_tlbmask(env); 5115 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5116 int bits = vae1_tlbbits(env, pageaddr); 5117 5118 if (tlb_force_broadcast(env)) { 5119 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5120 } else { 5121 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 5122 } 5123 } 5124 5125 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5126 uint64_t value) 5127 { 5128 CPUState *cs = env_cpu(env); 5129 int mask = vae2_tlbmask(env); 5130 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5131 int bits = vae2_tlbbits(env, pageaddr); 5132 5133 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 5134 } 5135 5136 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5137 uint64_t value) 5138 { 5139 CPUState *cs = env_cpu(env); 5140 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5141 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 5142 5143 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 5144 ARMMMUIdxBit_E3, bits); 5145 } 5146 5147 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 5148 { 5149 /* 5150 * The MSB of value is the NS field, which only applies if SEL2 5151 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 5152 */ 5153 return (value >= 0 5154 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 5155 && arm_is_secure_below_el3(env) 5156 ? ARMMMUIdxBit_Stage2_S 5157 : ARMMMUIdxBit_Stage2); 5158 } 5159 5160 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5161 uint64_t value) 5162 { 5163 CPUState *cs = env_cpu(env); 5164 int mask = ipas2e1_tlbmask(env, value); 5165 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5166 5167 if (tlb_force_broadcast(env)) { 5168 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5169 } else { 5170 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 5171 } 5172 } 5173 5174 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 5175 uint64_t value) 5176 { 5177 CPUState *cs = env_cpu(env); 5178 int mask = ipas2e1_tlbmask(env, value); 5179 uint64_t pageaddr = sextract64(value << 12, 0, 56); 5180 5181 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 5182 } 5183 5184 #ifdef TARGET_AARCH64 5185 typedef struct { 5186 uint64_t base; 5187 uint64_t length; 5188 } TLBIRange; 5189 5190 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 5191 { 5192 /* 5193 * Note that the TLBI range TG field encoding differs from both 5194 * TG0 and TG1 encodings. 5195 */ 5196 switch (tg) { 5197 case 1: 5198 return Gran4K; 5199 case 2: 5200 return Gran16K; 5201 case 3: 5202 return Gran64K; 5203 default: 5204 return GranInvalid; 5205 } 5206 } 5207 5208 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 5209 uint64_t value) 5210 { 5211 unsigned int page_size_granule, page_shift, num, scale, exponent; 5212 /* Extract one bit to represent the va selector in use. */ 5213 uint64_t select = sextract64(value, 36, 1); 5214 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false); 5215 TLBIRange ret = { }; 5216 ARMGranuleSize gran; 5217 5218 page_size_granule = extract64(value, 46, 2); 5219 gran = tlbi_range_tg_to_gran_size(page_size_granule); 5220 5221 /* The granule encoded in value must match the granule in use. */ 5222 if (gran != param.gran) { 5223 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 5224 page_size_granule); 5225 return ret; 5226 } 5227 5228 page_shift = arm_granule_bits(gran); 5229 num = extract64(value, 39, 5); 5230 scale = extract64(value, 44, 2); 5231 exponent = (5 * scale) + 1; 5232 5233 ret.length = (num + 1) << (exponent + page_shift); 5234 5235 if (param.select) { 5236 ret.base = sextract64(value, 0, 37); 5237 } else { 5238 ret.base = extract64(value, 0, 37); 5239 } 5240 if (param.ds) { 5241 /* 5242 * With DS=1, BaseADDR is always shifted 16 so that it is able 5243 * to address all 52 va bits. The input address is perforce 5244 * aligned on a 64k boundary regardless of translation granule. 5245 */ 5246 page_shift = 16; 5247 } 5248 ret.base <<= page_shift; 5249 5250 return ret; 5251 } 5252 5253 static void do_rvae_write(CPUARMState *env, uint64_t value, 5254 int idxmap, bool synced) 5255 { 5256 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 5257 TLBIRange range; 5258 int bits; 5259 5260 range = tlbi_aa64_get_range(env, one_idx, value); 5261 bits = tlbbits_for_regime(env, one_idx, range.base); 5262 5263 if (synced) { 5264 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 5265 range.base, 5266 range.length, 5267 idxmap, 5268 bits); 5269 } else { 5270 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 5271 range.length, idxmap, bits); 5272 } 5273 } 5274 5275 static void tlbi_aa64_rvae1_write(CPUARMState *env, 5276 const ARMCPRegInfo *ri, 5277 uint64_t value) 5278 { 5279 /* 5280 * Invalidate by VA range, EL1&0. 5281 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 5282 * since we don't support flush-for-specific-ASID-only or 5283 * flush-last-level-only. 5284 */ 5285 5286 do_rvae_write(env, value, vae1_tlbmask(env), 5287 tlb_force_broadcast(env)); 5288 } 5289 5290 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 5291 const ARMCPRegInfo *ri, 5292 uint64_t value) 5293 { 5294 /* 5295 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 5296 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 5297 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 5298 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 5299 * shareable specific flushes. 5300 */ 5301 5302 do_rvae_write(env, value, vae1_tlbmask(env), true); 5303 } 5304 5305 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5306 const ARMCPRegInfo *ri, 5307 uint64_t value) 5308 { 5309 /* 5310 * Invalidate by VA range, EL2. 5311 * Currently handles all of RVAE2 and RVALE2, 5312 * since we don't support flush-for-specific-ASID-only or 5313 * flush-last-level-only. 5314 */ 5315 5316 do_rvae_write(env, value, vae2_tlbmask(env), 5317 tlb_force_broadcast(env)); 5318 5319 5320 } 5321 5322 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5323 const ARMCPRegInfo *ri, 5324 uint64_t value) 5325 { 5326 /* 5327 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5328 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5329 * since we don't support flush-for-specific-ASID-only, 5330 * flush-last-level-only or inner/outer shareable specific flushes. 5331 */ 5332 5333 do_rvae_write(env, value, vae2_tlbmask(env), true); 5334 5335 } 5336 5337 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5338 const ARMCPRegInfo *ri, 5339 uint64_t value) 5340 { 5341 /* 5342 * Invalidate by VA range, EL3. 5343 * Currently handles all of RVAE3 and RVALE3, 5344 * since we don't support flush-for-specific-ASID-only or 5345 * flush-last-level-only. 5346 */ 5347 5348 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5349 } 5350 5351 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5352 const ARMCPRegInfo *ri, 5353 uint64_t value) 5354 { 5355 /* 5356 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5357 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5358 * since we don't support flush-for-specific-ASID-only, 5359 * flush-last-level-only or inner/outer specific flushes. 5360 */ 5361 5362 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5363 } 5364 5365 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5366 uint64_t value) 5367 { 5368 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5369 tlb_force_broadcast(env)); 5370 } 5371 5372 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5373 const ARMCPRegInfo *ri, 5374 uint64_t value) 5375 { 5376 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5377 } 5378 #endif 5379 5380 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5381 bool isread) 5382 { 5383 int cur_el = arm_current_el(env); 5384 5385 if (cur_el < 2) { 5386 uint64_t hcr = arm_hcr_el2_eff(env); 5387 5388 if (cur_el == 0) { 5389 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5390 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5391 return CP_ACCESS_TRAP_EL2; 5392 } 5393 } else { 5394 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5395 return CP_ACCESS_TRAP; 5396 } 5397 if (hcr & HCR_TDZ) { 5398 return CP_ACCESS_TRAP_EL2; 5399 } 5400 } 5401 } else if (hcr & HCR_TDZ) { 5402 return CP_ACCESS_TRAP_EL2; 5403 } 5404 } 5405 return CP_ACCESS_OK; 5406 } 5407 5408 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5409 { 5410 ARMCPU *cpu = env_archcpu(env); 5411 int dzp_bit = 1 << 4; 5412 5413 /* DZP indicates whether DC ZVA access is allowed */ 5414 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5415 dzp_bit = 0; 5416 } 5417 return cpu->dcz_blocksize | dzp_bit; 5418 } 5419 5420 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5421 bool isread) 5422 { 5423 if (!(env->pstate & PSTATE_SP)) { 5424 /* 5425 * Access to SP_EL0 is undefined if it's being used as 5426 * the stack pointer. 5427 */ 5428 return CP_ACCESS_TRAP_UNCATEGORIZED; 5429 } 5430 return CP_ACCESS_OK; 5431 } 5432 5433 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5434 { 5435 return env->pstate & PSTATE_SP; 5436 } 5437 5438 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5439 { 5440 update_spsel(env, val); 5441 } 5442 5443 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5444 uint64_t value) 5445 { 5446 ARMCPU *cpu = env_archcpu(env); 5447 5448 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5449 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5450 value &= ~SCTLR_M; 5451 } 5452 5453 /* ??? Lots of these bits are not implemented. */ 5454 5455 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5456 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5457 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5458 } else { 5459 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5460 SCTLR_ATA0 | SCTLR_ATA); 5461 } 5462 } 5463 5464 if (raw_read(env, ri) == value) { 5465 /* 5466 * Skip the TLB flush if nothing actually changed; Linux likes 5467 * to do a lot of pointless SCTLR writes. 5468 */ 5469 return; 5470 } 5471 5472 raw_write(env, ri, value); 5473 5474 /* This may enable/disable the MMU, so do a TLB flush. */ 5475 tlb_flush(CPU(cpu)); 5476 5477 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5478 /* 5479 * Normally we would always end the TB on an SCTLR write; see the 5480 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5481 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5482 * of hflags from the translator, so do it here. 5483 */ 5484 arm_rebuild_hflags(env); 5485 } 5486 } 5487 5488 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5489 uint64_t value) 5490 { 5491 /* 5492 * Some MDCR_EL3 bits affect whether PMU counters are running: 5493 * if we are trying to change any of those then we must 5494 * bracket this update with PMU start/finish calls. 5495 */ 5496 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5497 5498 if (pmu_op) { 5499 pmu_op_start(env); 5500 } 5501 env->cp15.mdcr_el3 = value; 5502 if (pmu_op) { 5503 pmu_op_finish(env); 5504 } 5505 } 5506 5507 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5508 uint64_t value) 5509 { 5510 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5511 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5512 } 5513 5514 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5515 uint64_t value) 5516 { 5517 /* 5518 * Some MDCR_EL2 bits affect whether PMU counters are running: 5519 * if we are trying to change any of those then we must 5520 * bracket this update with PMU start/finish calls. 5521 */ 5522 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5523 5524 if (pmu_op) { 5525 pmu_op_start(env); 5526 } 5527 env->cp15.mdcr_el2 = value; 5528 if (pmu_op) { 5529 pmu_op_finish(env); 5530 } 5531 } 5532 5533 static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri, 5534 bool isread) 5535 { 5536 if (arm_current_el(env) == 1) { 5537 uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2); 5538 5539 if (hcr_nv == (HCR_NV | HCR_NV1)) { 5540 return CP_ACCESS_TRAP_EL2; 5541 } 5542 } 5543 return CP_ACCESS_OK; 5544 } 5545 5546 #ifdef CONFIG_USER_ONLY 5547 /* 5548 * `IC IVAU` is handled to improve compatibility with JITs that dual-map their 5549 * code to get around W^X restrictions, where one region is writable and the 5550 * other is executable. 5551 * 5552 * Since the executable region is never written to we cannot detect code 5553 * changes when running in user mode, and rely on the emulated JIT telling us 5554 * that the code has changed by executing this instruction. 5555 */ 5556 static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri, 5557 uint64_t value) 5558 { 5559 uint64_t icache_line_mask, start_address, end_address; 5560 const ARMCPU *cpu; 5561 5562 cpu = env_archcpu(env); 5563 5564 icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1; 5565 start_address = value & ~icache_line_mask; 5566 end_address = value | icache_line_mask; 5567 5568 mmap_lock(); 5569 5570 tb_invalidate_phys_range(start_address, end_address); 5571 5572 mmap_unlock(); 5573 } 5574 #endif 5575 5576 static const ARMCPRegInfo v8_cp_reginfo[] = { 5577 /* 5578 * Minimal set of EL0-visible registers. This will need to be expanded 5579 * significantly for system emulation of AArch64 CPUs. 5580 */ 5581 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5582 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5583 .access = PL0_RW, .type = ARM_CP_NZCV }, 5584 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5585 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5586 .type = ARM_CP_NO_RAW, 5587 .access = PL0_RW, .accessfn = aa64_daif_access, 5588 .fieldoffset = offsetof(CPUARMState, daif), 5589 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5590 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5591 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5592 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5593 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5594 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5595 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5596 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5597 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5598 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5599 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5600 .access = PL0_R, .type = ARM_CP_NO_RAW, 5601 .fgt = FGT_DCZID_EL0, 5602 .readfn = aa64_dczid_read }, 5603 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5604 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5605 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5606 #ifndef CONFIG_USER_ONLY 5607 /* Avoid overhead of an access check that always passes in user-mode */ 5608 .accessfn = aa64_zva_access, 5609 .fgt = FGT_DCZVA, 5610 #endif 5611 }, 5612 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5613 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5614 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5615 /* 5616 * Instruction cache ops. All of these except `IC IVAU` NOP because we 5617 * don't emulate caches. 5618 */ 5619 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5620 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5621 .access = PL1_W, .type = ARM_CP_NOP, 5622 .fgt = FGT_ICIALLUIS, 5623 .accessfn = access_ticab }, 5624 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5625 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5626 .access = PL1_W, .type = ARM_CP_NOP, 5627 .fgt = FGT_ICIALLU, 5628 .accessfn = access_tocu }, 5629 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5630 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5631 .access = PL0_W, 5632 .fgt = FGT_ICIVAU, 5633 .accessfn = access_tocu, 5634 #ifdef CONFIG_USER_ONLY 5635 .type = ARM_CP_NO_RAW, 5636 .writefn = ic_ivau_write 5637 #else 5638 .type = ARM_CP_NOP 5639 #endif 5640 }, 5641 /* Cache ops: all NOPs since we don't emulate caches */ 5642 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5643 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5644 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5645 .fgt = FGT_DCIVAC, 5646 .type = ARM_CP_NOP }, 5647 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5648 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5649 .fgt = FGT_DCISW, 5650 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5651 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5652 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5653 .access = PL0_W, .type = ARM_CP_NOP, 5654 .fgt = FGT_DCCVAC, 5655 .accessfn = aa64_cacheop_poc_access }, 5656 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5657 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5658 .fgt = FGT_DCCSW, 5659 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5660 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5661 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5662 .access = PL0_W, .type = ARM_CP_NOP, 5663 .fgt = FGT_DCCVAU, 5664 .accessfn = access_tocu }, 5665 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5666 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5667 .access = PL0_W, .type = ARM_CP_NOP, 5668 .fgt = FGT_DCCIVAC, 5669 .accessfn = aa64_cacheop_poc_access }, 5670 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5671 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5672 .fgt = FGT_DCCISW, 5673 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5674 /* TLBI operations */ 5675 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5676 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5677 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5678 .fgt = FGT_TLBIVMALLE1IS, 5679 .writefn = tlbi_aa64_vmalle1is_write }, 5680 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5681 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5682 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5683 .fgt = FGT_TLBIVAE1IS, 5684 .writefn = tlbi_aa64_vae1is_write }, 5685 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5686 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5687 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5688 .fgt = FGT_TLBIASIDE1IS, 5689 .writefn = tlbi_aa64_vmalle1is_write }, 5690 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5691 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5692 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5693 .fgt = FGT_TLBIVAAE1IS, 5694 .writefn = tlbi_aa64_vae1is_write }, 5695 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5696 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5697 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5698 .fgt = FGT_TLBIVALE1IS, 5699 .writefn = tlbi_aa64_vae1is_write }, 5700 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5701 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5702 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5703 .fgt = FGT_TLBIVAALE1IS, 5704 .writefn = tlbi_aa64_vae1is_write }, 5705 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5706 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5707 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5708 .fgt = FGT_TLBIVMALLE1, 5709 .writefn = tlbi_aa64_vmalle1_write }, 5710 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5711 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5712 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5713 .fgt = FGT_TLBIVAE1, 5714 .writefn = tlbi_aa64_vae1_write }, 5715 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5716 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5717 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5718 .fgt = FGT_TLBIASIDE1, 5719 .writefn = tlbi_aa64_vmalle1_write }, 5720 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5721 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5722 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5723 .fgt = FGT_TLBIVAAE1, 5724 .writefn = tlbi_aa64_vae1_write }, 5725 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5726 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5727 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5728 .fgt = FGT_TLBIVALE1, 5729 .writefn = tlbi_aa64_vae1_write }, 5730 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5731 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5732 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5733 .fgt = FGT_TLBIVAALE1, 5734 .writefn = tlbi_aa64_vae1_write }, 5735 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5736 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5737 .access = PL2_W, .type = ARM_CP_NO_RAW, 5738 .writefn = tlbi_aa64_ipas2e1is_write }, 5739 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5740 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5741 .access = PL2_W, .type = ARM_CP_NO_RAW, 5742 .writefn = tlbi_aa64_ipas2e1is_write }, 5743 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5744 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5745 .access = PL2_W, .type = ARM_CP_NO_RAW, 5746 .writefn = tlbi_aa64_alle1is_write }, 5747 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5749 .access = PL2_W, .type = ARM_CP_NO_RAW, 5750 .writefn = tlbi_aa64_alle1is_write }, 5751 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5752 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5753 .access = PL2_W, .type = ARM_CP_NO_RAW, 5754 .writefn = tlbi_aa64_ipas2e1_write }, 5755 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5756 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5757 .access = PL2_W, .type = ARM_CP_NO_RAW, 5758 .writefn = tlbi_aa64_ipas2e1_write }, 5759 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5761 .access = PL2_W, .type = ARM_CP_NO_RAW, 5762 .writefn = tlbi_aa64_alle1_write }, 5763 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5765 .access = PL2_W, .type = ARM_CP_NO_RAW, 5766 .writefn = tlbi_aa64_alle1is_write }, 5767 #ifndef CONFIG_USER_ONLY 5768 /* 64 bit address translation operations */ 5769 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5770 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5771 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5772 .fgt = FGT_ATS1E1R, 5773 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5774 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5775 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5776 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5777 .fgt = FGT_ATS1E1W, 5778 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5779 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5780 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5781 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5782 .fgt = FGT_ATS1E0R, 5783 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5784 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5785 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5786 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5787 .fgt = FGT_ATS1E0W, 5788 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 5789 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5790 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5791 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5792 .accessfn = at_e012_access, .writefn = ats_write64 }, 5793 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5794 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5795 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5796 .accessfn = at_e012_access, .writefn = ats_write64 }, 5797 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5798 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5799 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5800 .accessfn = at_e012_access, .writefn = ats_write64 }, 5801 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5802 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5803 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5804 .accessfn = at_e012_access, .writefn = ats_write64 }, 5805 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5806 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5807 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5808 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5809 .writefn = ats_write64 }, 5810 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5811 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5812 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5813 .writefn = ats_write64 }, 5814 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5815 .type = ARM_CP_ALIAS, 5816 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5817 .access = PL1_RW, .resetvalue = 0, 5818 .fgt = FGT_PAR_EL1, 5819 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5820 .writefn = par_write }, 5821 #endif 5822 /* TLB invalidate last level of translation table walk */ 5823 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5824 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5825 .writefn = tlbimva_is_write }, 5826 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5827 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5828 .writefn = tlbimvaa_is_write }, 5829 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5830 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5831 .writefn = tlbimva_write }, 5832 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5833 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5834 .writefn = tlbimvaa_write }, 5835 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5836 .type = ARM_CP_NO_RAW, .access = PL2_W, 5837 .writefn = tlbimva_hyp_write }, 5838 { .name = "TLBIMVALHIS", 5839 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5840 .type = ARM_CP_NO_RAW, .access = PL2_W, 5841 .writefn = tlbimva_hyp_is_write }, 5842 { .name = "TLBIIPAS2", 5843 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5844 .type = ARM_CP_NO_RAW, .access = PL2_W, 5845 .writefn = tlbiipas2_hyp_write }, 5846 { .name = "TLBIIPAS2IS", 5847 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5848 .type = ARM_CP_NO_RAW, .access = PL2_W, 5849 .writefn = tlbiipas2is_hyp_write }, 5850 { .name = "TLBIIPAS2L", 5851 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5852 .type = ARM_CP_NO_RAW, .access = PL2_W, 5853 .writefn = tlbiipas2_hyp_write }, 5854 { .name = "TLBIIPAS2LIS", 5855 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5856 .type = ARM_CP_NO_RAW, .access = PL2_W, 5857 .writefn = tlbiipas2is_hyp_write }, 5858 /* 32 bit cache operations */ 5859 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5860 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5861 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5862 .type = ARM_CP_NOP, .access = PL1_W }, 5863 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5864 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5865 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5866 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5867 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5868 .type = ARM_CP_NOP, .access = PL1_W }, 5869 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5870 .type = ARM_CP_NOP, .access = PL1_W }, 5871 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5872 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5873 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5874 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5875 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5876 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5877 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5878 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5879 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5880 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5881 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5882 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5883 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5884 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5885 /* MMU Domain access control / MPU write buffer control */ 5886 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5887 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5888 .writefn = dacr_write, .raw_writefn = raw_write, 5889 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5890 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5891 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5892 .type = ARM_CP_ALIAS, 5893 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5894 .access = PL1_RW, .accessfn = access_nv1, 5895 .nv2_redirect_offset = 0x230 | NV2_REDIR_NV1, 5896 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5897 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5898 .type = ARM_CP_ALIAS, 5899 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5900 .access = PL1_RW, .accessfn = access_nv1, 5901 .nv2_redirect_offset = 0x160 | NV2_REDIR_NV1, 5902 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5903 /* 5904 * We rely on the access checks not allowing the guest to write to the 5905 * state field when SPSel indicates that it's being used as the stack 5906 * pointer. 5907 */ 5908 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5909 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5910 .access = PL1_RW, .accessfn = sp_el0_access, 5911 .type = ARM_CP_ALIAS, 5912 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5913 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5914 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5915 .nv2_redirect_offset = 0x240, 5916 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5917 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5918 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5919 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5920 .type = ARM_CP_NO_RAW, 5921 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5922 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5923 .type = ARM_CP_ALIAS, 5924 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5925 .access = PL2_RW, 5926 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5927 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5928 .type = ARM_CP_ALIAS, 5929 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5930 .access = PL2_RW, 5931 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5932 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5933 .type = ARM_CP_ALIAS, 5934 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5935 .access = PL2_RW, 5936 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5937 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5938 .type = ARM_CP_ALIAS, 5939 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5940 .access = PL2_RW, 5941 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5942 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5943 .type = ARM_CP_IO, 5944 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5945 .resetvalue = 0, 5946 .access = PL3_RW, 5947 .writefn = mdcr_el3_write, 5948 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5949 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5950 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5951 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5952 .writefn = sdcr_write, 5953 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5954 }; 5955 5956 /* These are present only when EL1 supports AArch32 */ 5957 static const ARMCPRegInfo v8_aa32_el1_reginfo[] = { 5958 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5959 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5960 .access = PL2_RW, 5961 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5962 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5963 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5964 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5965 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5966 .writefn = dacr_write, .raw_writefn = raw_write, 5967 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5968 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5969 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5970 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5971 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5972 }; 5973 5974 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5975 { 5976 ARMCPU *cpu = env_archcpu(env); 5977 5978 if (arm_feature(env, ARM_FEATURE_V8)) { 5979 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5980 } else { 5981 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5982 } 5983 5984 if (arm_feature(env, ARM_FEATURE_EL3)) { 5985 valid_mask &= ~HCR_HCD; 5986 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5987 /* 5988 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5989 * However, if we're using the SMC PSCI conduit then QEMU is 5990 * effectively acting like EL3 firmware and so the guest at 5991 * EL2 should retain the ability to prevent EL1 from being 5992 * able to make SMC calls into the ersatz firmware, so in 5993 * that case HCR.TSC should be read/write. 5994 */ 5995 valid_mask &= ~HCR_TSC; 5996 } 5997 5998 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5999 if (cpu_isar_feature(aa64_vh, cpu)) { 6000 valid_mask |= HCR_E2H; 6001 } 6002 if (cpu_isar_feature(aa64_ras, cpu)) { 6003 valid_mask |= HCR_TERR | HCR_TEA; 6004 } 6005 if (cpu_isar_feature(aa64_lor, cpu)) { 6006 valid_mask |= HCR_TLOR; 6007 } 6008 if (cpu_isar_feature(aa64_pauth, cpu)) { 6009 valid_mask |= HCR_API | HCR_APK; 6010 } 6011 if (cpu_isar_feature(aa64_mte, cpu)) { 6012 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 6013 } 6014 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 6015 valid_mask |= HCR_ENSCXT; 6016 } 6017 if (cpu_isar_feature(aa64_fwb, cpu)) { 6018 valid_mask |= HCR_FWB; 6019 } 6020 if (cpu_isar_feature(aa64_rme, cpu)) { 6021 valid_mask |= HCR_GPF; 6022 } 6023 if (cpu_isar_feature(aa64_nv, cpu)) { 6024 valid_mask |= HCR_NV | HCR_NV1 | HCR_AT; 6025 } 6026 if (cpu_isar_feature(aa64_nv2, cpu)) { 6027 valid_mask |= HCR_NV2; 6028 } 6029 } 6030 6031 if (cpu_isar_feature(any_evt, cpu)) { 6032 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 6033 } else if (cpu_isar_feature(any_half_evt, cpu)) { 6034 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 6035 } 6036 6037 /* Clear RES0 bits. */ 6038 value &= valid_mask; 6039 6040 /* 6041 * These bits change the MMU setup: 6042 * HCR_VM enables stage 2 translation 6043 * HCR_PTW forbids certain page-table setups 6044 * HCR_DC disables stage1 and enables stage2 translation 6045 * HCR_DCT enables tagging on (disabled) stage1 translation 6046 * HCR_FWB changes the interpretation of stage2 descriptor bits 6047 * HCR_NV and HCR_NV1 affect interpretation of descriptor bits 6048 */ 6049 if ((env->cp15.hcr_el2 ^ value) & 6050 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) { 6051 tlb_flush(CPU(cpu)); 6052 } 6053 env->cp15.hcr_el2 = value; 6054 6055 /* 6056 * Updates to VI and VF require us to update the status of 6057 * virtual interrupts, which are the logical OR of these bits 6058 * and the state of the input lines from the GIC. (This requires 6059 * that we have the BQL, which is done by marking the 6060 * reginfo structs as ARM_CP_IO.) 6061 * Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or 6062 * VFNMI, it is never possible for it to be taken immediately 6063 * because VIRQ, VFIQ, VINMI and VFNMI are masked unless running 6064 * at EL0 or EL1, and HCR can only be written at EL2. 6065 */ 6066 g_assert(bql_locked()); 6067 arm_cpu_update_virq(cpu); 6068 arm_cpu_update_vfiq(cpu); 6069 arm_cpu_update_vserr(cpu); 6070 if (cpu_isar_feature(aa64_nmi, cpu)) { 6071 arm_cpu_update_vinmi(cpu); 6072 arm_cpu_update_vfnmi(cpu); 6073 } 6074 } 6075 6076 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 6077 { 6078 do_hcr_write(env, value, 0); 6079 } 6080 6081 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 6082 uint64_t value) 6083 { 6084 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 6085 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 6086 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 6087 } 6088 6089 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 6090 uint64_t value) 6091 { 6092 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 6093 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 6094 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 6095 } 6096 6097 /* 6098 * Return the effective value of HCR_EL2, at the given security state. 6099 * Bits that are not included here: 6100 * RW (read from SCR_EL3.RW as needed) 6101 */ 6102 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space) 6103 { 6104 uint64_t ret = env->cp15.hcr_el2; 6105 6106 assert(space != ARMSS_Root); 6107 6108 if (!arm_is_el2_enabled_secstate(env, space)) { 6109 /* 6110 * "This register has no effect if EL2 is not enabled in the 6111 * current Security state". This is ARMv8.4-SecEL2 speak for 6112 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 6113 * 6114 * Prior to that, the language was "In an implementation that 6115 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 6116 * as if this field is 0 for all purposes other than a direct 6117 * read or write access of HCR_EL2". With lots of enumeration 6118 * on a per-field basis. In current QEMU, this is condition 6119 * is arm_is_secure_below_el3. 6120 * 6121 * Since the v8.4 language applies to the entire register, and 6122 * appears to be backward compatible, use that. 6123 */ 6124 return 0; 6125 } 6126 6127 /* 6128 * For a cpu that supports both aarch64 and aarch32, we can set bits 6129 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 6130 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 6131 */ 6132 if (!arm_el_is_aa64(env, 2)) { 6133 uint64_t aa32_valid; 6134 6135 /* 6136 * These bits are up-to-date as of ARMv8.6. 6137 * For HCR, it's easiest to list just the 2 bits that are invalid. 6138 * For HCR2, list those that are valid. 6139 */ 6140 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 6141 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 6142 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 6143 ret &= aa32_valid; 6144 } 6145 6146 if (ret & HCR_TGE) { 6147 /* These bits are up-to-date as of ARMv8.6. */ 6148 if (ret & HCR_E2H) { 6149 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 6150 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 6151 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 6152 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 6153 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 6154 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 6155 } else { 6156 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 6157 } 6158 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 6159 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 6160 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 6161 HCR_TLOR); 6162 } 6163 6164 return ret; 6165 } 6166 6167 uint64_t arm_hcr_el2_eff(CPUARMState *env) 6168 { 6169 if (arm_feature(env, ARM_FEATURE_M)) { 6170 return 0; 6171 } 6172 return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env)); 6173 } 6174 6175 /* 6176 * Corresponds to ARM pseudocode function ELIsInHost(). 6177 */ 6178 bool el_is_in_host(CPUARMState *env, int el) 6179 { 6180 uint64_t mask; 6181 6182 /* 6183 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 6184 * Perform the simplest bit tests first, and validate EL2 afterward. 6185 */ 6186 if (el & 1) { 6187 return false; /* EL1 or EL3 */ 6188 } 6189 6190 /* 6191 * Note that hcr_write() checks isar_feature_aa64_vh(), 6192 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 6193 */ 6194 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 6195 if ((env->cp15.hcr_el2 & mask) != mask) { 6196 return false; 6197 } 6198 6199 /* TGE and/or E2H set: double check those bits are currently legal. */ 6200 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 6201 } 6202 6203 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 6204 uint64_t value) 6205 { 6206 ARMCPU *cpu = env_archcpu(env); 6207 uint64_t valid_mask = 0; 6208 6209 /* FEAT_MOPS adds MSCEn and MCE2 */ 6210 if (cpu_isar_feature(aa64_mops, cpu)) { 6211 valid_mask |= HCRX_MSCEN | HCRX_MCE2; 6212 } 6213 6214 /* FEAT_NMI adds TALLINT, VINMI and VFNMI */ 6215 if (cpu_isar_feature(aa64_nmi, cpu)) { 6216 valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI; 6217 } 6218 6219 /* Clear RES0 bits. */ 6220 env->cp15.hcrx_el2 = value & valid_mask; 6221 6222 /* 6223 * Updates to VINMI and VFNMI require us to update the status of 6224 * virtual NMI, which are the logical OR of these bits 6225 * and the state of the input lines from the GIC. (This requires 6226 * that we have the BQL, which is done by marking the 6227 * reginfo structs as ARM_CP_IO.) 6228 * Note that if a write to HCRX pends a VINMI or VFNMI it is never 6229 * possible for it to be taken immediately, because VINMI and 6230 * VFNMI are masked unless running at EL0 or EL1, and HCRX 6231 * can only be written at EL2. 6232 */ 6233 if (cpu_isar_feature(aa64_nmi, cpu)) { 6234 g_assert(bql_locked()); 6235 arm_cpu_update_vinmi(cpu); 6236 arm_cpu_update_vfnmi(cpu); 6237 } 6238 } 6239 6240 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 6241 bool isread) 6242 { 6243 if (arm_current_el(env) == 2 6244 && arm_feature(env, ARM_FEATURE_EL3) 6245 && !(env->cp15.scr_el3 & SCR_HXEN)) { 6246 return CP_ACCESS_TRAP_EL3; 6247 } 6248 return CP_ACCESS_OK; 6249 } 6250 6251 static const ARMCPRegInfo hcrx_el2_reginfo = { 6252 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 6253 .type = ARM_CP_IO, 6254 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 6255 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 6256 .nv2_redirect_offset = 0xa0, 6257 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 6258 }; 6259 6260 /* Return the effective value of HCRX_EL2. */ 6261 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 6262 { 6263 /* 6264 * The bits in this register behave as 0 for all purposes other than 6265 * direct reads of the register if SCR_EL3.HXEn is 0. 6266 * If EL2 is not enabled in the current security state, then the 6267 * bit may behave as if 0, or as if 1, depending on the bit. 6268 * For the moment, we treat the EL2-disabled case as taking 6269 * priority over the HXEn-disabled case. This is true for the only 6270 * bit for a feature which we implement where the answer is different 6271 * for the two cases (MSCEn for FEAT_MOPS). 6272 * This may need to be revisited for future bits. 6273 */ 6274 if (!arm_is_el2_enabled(env)) { 6275 uint64_t hcrx = 0; 6276 if (cpu_isar_feature(aa64_mops, env_archcpu(env))) { 6277 /* MSCEn behaves as 1 if EL2 is not enabled */ 6278 hcrx |= HCRX_MSCEN; 6279 } 6280 return hcrx; 6281 } 6282 if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) { 6283 return 0; 6284 } 6285 return env->cp15.hcrx_el2; 6286 } 6287 6288 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 6289 uint64_t value) 6290 { 6291 /* 6292 * For A-profile AArch32 EL3, if NSACR.CP10 6293 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6294 */ 6295 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6296 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6297 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6298 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 6299 } 6300 env->cp15.cptr_el[2] = value; 6301 } 6302 6303 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 6304 { 6305 /* 6306 * For A-profile AArch32 EL3, if NSACR.CP10 6307 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 6308 */ 6309 uint64_t value = env->cp15.cptr_el[2]; 6310 6311 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 6312 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 6313 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 6314 } 6315 return value; 6316 } 6317 6318 static const ARMCPRegInfo el2_cp_reginfo[] = { 6319 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 6320 .type = ARM_CP_IO, 6321 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6322 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6323 .nv2_redirect_offset = 0x78, 6324 .writefn = hcr_write, .raw_writefn = raw_write }, 6325 { .name = "HCR", .state = ARM_CP_STATE_AA32, 6326 .type = ARM_CP_ALIAS | ARM_CP_IO, 6327 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 6328 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 6329 .writefn = hcr_writelow }, 6330 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 6331 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 6332 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 6333 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 6334 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6335 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 6336 .access = PL2_RW, 6337 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 6338 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 6339 .type = ARM_CP_NV2_REDIRECT, 6340 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 6341 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 6342 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 6343 .type = ARM_CP_NV2_REDIRECT, 6344 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 6345 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 6346 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 6347 .type = ARM_CP_ALIAS, 6348 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 6349 .access = PL2_RW, 6350 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 6351 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 6352 .type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT, 6353 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 6354 .access = PL2_RW, 6355 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 6356 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 6357 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 6358 .access = PL2_RW, .writefn = vbar_write, 6359 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 6360 .resetvalue = 0 }, 6361 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 6362 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 6363 .access = PL3_RW, .type = ARM_CP_ALIAS, 6364 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 6365 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 6366 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 6367 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 6368 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 6369 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 6370 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 6371 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 6372 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 6373 .resetvalue = 0 }, 6374 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 6375 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 6376 .access = PL2_RW, .type = ARM_CP_ALIAS, 6377 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 6378 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 6379 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 6380 .access = PL2_RW, .type = ARM_CP_CONST, 6381 .resetvalue = 0 }, 6382 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 6383 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 6384 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 6385 .access = PL2_RW, .type = ARM_CP_CONST, 6386 .resetvalue = 0 }, 6387 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 6388 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 6389 .access = PL2_RW, .type = ARM_CP_CONST, 6390 .resetvalue = 0 }, 6391 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 6392 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 6393 .access = PL2_RW, .type = ARM_CP_CONST, 6394 .resetvalue = 0 }, 6395 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 6396 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 6397 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 6398 .raw_writefn = raw_write, 6399 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 6400 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 6401 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6402 .type = ARM_CP_ALIAS, 6403 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6404 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 6405 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 6406 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 6407 .access = PL2_RW, 6408 .nv2_redirect_offset = 0x40, 6409 /* no .writefn needed as this can't cause an ASID change */ 6410 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 6411 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 6412 .cp = 15, .opc1 = 6, .crm = 2, 6413 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6414 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6415 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 6416 .writefn = vttbr_write, .raw_writefn = raw_write }, 6417 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 6418 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 6419 .access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write, 6420 .nv2_redirect_offset = 0x20, 6421 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 6422 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 6423 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 6424 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 6425 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6426 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6427 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6428 .access = PL2_RW, .resetvalue = 0, 6429 .nv2_redirect_offset = 0x90, 6430 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6431 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6432 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6433 .access = PL2_RW, .resetvalue = 0, 6434 .writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write, 6435 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6436 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6437 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6438 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6439 { .name = "TLBIALLNSNH", 6440 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6441 .type = ARM_CP_NO_RAW, .access = PL2_W, 6442 .writefn = tlbiall_nsnh_write }, 6443 { .name = "TLBIALLNSNHIS", 6444 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6445 .type = ARM_CP_NO_RAW, .access = PL2_W, 6446 .writefn = tlbiall_nsnh_is_write }, 6447 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6448 .type = ARM_CP_NO_RAW, .access = PL2_W, 6449 .writefn = tlbiall_hyp_write }, 6450 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6451 .type = ARM_CP_NO_RAW, .access = PL2_W, 6452 .writefn = tlbiall_hyp_is_write }, 6453 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6454 .type = ARM_CP_NO_RAW, .access = PL2_W, 6455 .writefn = tlbimva_hyp_write }, 6456 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6457 .type = ARM_CP_NO_RAW, .access = PL2_W, 6458 .writefn = tlbimva_hyp_is_write }, 6459 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6460 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6461 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6462 .writefn = tlbi_aa64_alle2_write }, 6463 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6464 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6465 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6466 .writefn = tlbi_aa64_vae2_write }, 6467 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6468 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6469 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6470 .writefn = tlbi_aa64_vae2_write }, 6471 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6472 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6473 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6474 .writefn = tlbi_aa64_alle2is_write }, 6475 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6476 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6477 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6478 .writefn = tlbi_aa64_vae2is_write }, 6479 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6480 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6481 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6482 .writefn = tlbi_aa64_vae2is_write }, 6483 #ifndef CONFIG_USER_ONLY 6484 /* 6485 * Unlike the other EL2-related AT operations, these must 6486 * UNDEF from EL3 if EL2 is not implemented, which is why we 6487 * define them here rather than with the rest of the AT ops. 6488 */ 6489 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6490 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6491 .access = PL2_W, .accessfn = at_s1e2_access, 6492 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6493 .writefn = ats_write64 }, 6494 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6495 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6496 .access = PL2_W, .accessfn = at_s1e2_access, 6497 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6498 .writefn = ats_write64 }, 6499 /* 6500 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6501 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6502 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6503 * to behave as if SCR.NS was 1. 6504 */ 6505 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6506 .access = PL2_W, 6507 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6508 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6509 .access = PL2_W, 6510 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6511 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6512 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6513 /* 6514 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6515 * reset values as IMPDEF. We choose to reset to 3 to comply with 6516 * both ARMv7 and ARMv8. 6517 */ 6518 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3, 6519 .writefn = gt_cnthctl_write, .raw_writefn = raw_write, 6520 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6521 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6522 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6523 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6524 .writefn = gt_cntvoff_write, 6525 .nv2_redirect_offset = 0x60, 6526 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6527 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6528 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6529 .writefn = gt_cntvoff_write, 6530 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6531 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6532 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6533 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6534 .type = ARM_CP_IO, .access = PL2_RW, 6535 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6536 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6537 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6538 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6539 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6540 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6541 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6542 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6543 .resetfn = gt_hyp_timer_reset, 6544 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6545 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6546 .type = ARM_CP_IO, 6547 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6548 .access = PL2_RW, 6549 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6550 .resetvalue = 0, 6551 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6552 #endif 6553 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6554 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6555 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6556 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6557 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6558 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6559 .access = PL2_RW, 6560 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6561 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6562 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6563 .access = PL2_RW, 6564 .nv2_redirect_offset = 0x80, 6565 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6566 }; 6567 6568 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6569 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6570 .type = ARM_CP_ALIAS | ARM_CP_IO, 6571 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6572 .access = PL2_RW, 6573 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6574 .writefn = hcr_writehigh }, 6575 }; 6576 6577 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6578 bool isread) 6579 { 6580 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6581 return CP_ACCESS_OK; 6582 } 6583 return CP_ACCESS_TRAP_UNCATEGORIZED; 6584 } 6585 6586 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6587 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6588 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6589 .access = PL2_RW, .accessfn = sel2_access, 6590 .nv2_redirect_offset = 0x30, 6591 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6592 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6593 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6594 .access = PL2_RW, .accessfn = sel2_access, 6595 .nv2_redirect_offset = 0x48, 6596 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6597 }; 6598 6599 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6600 bool isread) 6601 { 6602 /* 6603 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6604 * At Secure EL1 it traps to EL3 or EL2. 6605 */ 6606 if (arm_current_el(env) == 3) { 6607 return CP_ACCESS_OK; 6608 } 6609 if (arm_is_secure_below_el3(env)) { 6610 if (env->cp15.scr_el3 & SCR_EEL2) { 6611 return CP_ACCESS_TRAP_EL2; 6612 } 6613 return CP_ACCESS_TRAP_EL3; 6614 } 6615 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6616 if (isread) { 6617 return CP_ACCESS_OK; 6618 } 6619 return CP_ACCESS_TRAP_UNCATEGORIZED; 6620 } 6621 6622 static const ARMCPRegInfo el3_cp_reginfo[] = { 6623 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6624 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6625 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6626 .resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write }, 6627 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6628 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6629 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6630 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6631 .writefn = scr_write, .raw_writefn = raw_write }, 6632 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6633 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6634 .access = PL3_RW, .resetvalue = 0, 6635 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6636 { .name = "SDER", 6637 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6638 .access = PL3_RW, .resetvalue = 0, 6639 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6640 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6641 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6642 .writefn = vbar_write, .resetvalue = 0, 6643 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6644 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6645 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6646 .access = PL3_RW, .resetvalue = 0, 6647 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6648 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6649 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6650 .access = PL3_RW, 6651 /* no .writefn needed as this can't cause an ASID change */ 6652 .resetvalue = 0, 6653 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6654 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6655 .type = ARM_CP_ALIAS, 6656 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6657 .access = PL3_RW, 6658 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6659 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6660 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6661 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6662 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6663 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6664 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6665 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6666 .type = ARM_CP_ALIAS, 6667 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6668 .access = PL3_RW, 6669 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6670 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6671 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6672 .access = PL3_RW, .writefn = vbar_write, 6673 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6674 .resetvalue = 0 }, 6675 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6676 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6677 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6678 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6679 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6680 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6681 .access = PL3_RW, .resetvalue = 0, 6682 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6683 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6684 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6685 .access = PL3_RW, .type = ARM_CP_CONST, 6686 .resetvalue = 0 }, 6687 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6688 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6689 .access = PL3_RW, .type = ARM_CP_CONST, 6690 .resetvalue = 0 }, 6691 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6692 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6693 .access = PL3_RW, .type = ARM_CP_CONST, 6694 .resetvalue = 0 }, 6695 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6696 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6697 .access = PL3_W, .type = ARM_CP_NO_RAW, 6698 .writefn = tlbi_aa64_alle3is_write }, 6699 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6700 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6701 .access = PL3_W, .type = ARM_CP_NO_RAW, 6702 .writefn = tlbi_aa64_vae3is_write }, 6703 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6704 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6705 .access = PL3_W, .type = ARM_CP_NO_RAW, 6706 .writefn = tlbi_aa64_vae3is_write }, 6707 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6708 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6709 .access = PL3_W, .type = ARM_CP_NO_RAW, 6710 .writefn = tlbi_aa64_alle3_write }, 6711 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6712 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6713 .access = PL3_W, .type = ARM_CP_NO_RAW, 6714 .writefn = tlbi_aa64_vae3_write }, 6715 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6716 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6717 .access = PL3_W, .type = ARM_CP_NO_RAW, 6718 .writefn = tlbi_aa64_vae3_write }, 6719 }; 6720 6721 #ifndef CONFIG_USER_ONLY 6722 6723 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 6724 bool isread) 6725 { 6726 if (arm_current_el(env) == 1) { 6727 /* This must be a FEAT_NV access */ 6728 return CP_ACCESS_OK; 6729 } 6730 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6731 return CP_ACCESS_TRAP_UNCATEGORIZED; 6732 } 6733 return CP_ACCESS_OK; 6734 } 6735 6736 static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri, 6737 bool isread) 6738 { 6739 if (arm_current_el(env) == 1) { 6740 /* This must be a FEAT_NV access with NVx == 101 */ 6741 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) { 6742 return CP_ACCESS_TRAP_EL2; 6743 } 6744 } 6745 return e2h_access(env, ri, isread); 6746 } 6747 6748 static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri, 6749 bool isread) 6750 { 6751 if (arm_current_el(env) == 1) { 6752 /* This must be a FEAT_NV access with NVx == 101 */ 6753 if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) { 6754 return CP_ACCESS_TRAP_EL2; 6755 } 6756 } 6757 return e2h_access(env, ri, isread); 6758 } 6759 6760 /* Test if system register redirection is to occur in the current state. */ 6761 static bool redirect_for_e2h(CPUARMState *env) 6762 { 6763 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6764 } 6765 6766 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6767 { 6768 CPReadFn *readfn; 6769 6770 if (redirect_for_e2h(env)) { 6771 /* Switch to the saved EL2 version of the register. */ 6772 ri = ri->opaque; 6773 readfn = ri->readfn; 6774 } else { 6775 readfn = ri->orig_readfn; 6776 } 6777 if (readfn == NULL) { 6778 readfn = raw_read; 6779 } 6780 return readfn(env, ri); 6781 } 6782 6783 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6784 uint64_t value) 6785 { 6786 CPWriteFn *writefn; 6787 6788 if (redirect_for_e2h(env)) { 6789 /* Switch to the saved EL2 version of the register. */ 6790 ri = ri->opaque; 6791 writefn = ri->writefn; 6792 } else { 6793 writefn = ri->orig_writefn; 6794 } 6795 if (writefn == NULL) { 6796 writefn = raw_write; 6797 } 6798 writefn(env, ri, value); 6799 } 6800 6801 static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri) 6802 { 6803 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6804 return ri->orig_readfn(env, ri->opaque); 6805 } 6806 6807 static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri, 6808 uint64_t value) 6809 { 6810 /* Pass the EL1 register accessor its ri, not the EL12 alias ri */ 6811 return ri->orig_writefn(env, ri->opaque, value); 6812 } 6813 6814 static CPAccessResult el2_e2h_e12_access(CPUARMState *env, 6815 const ARMCPRegInfo *ri, 6816 bool isread) 6817 { 6818 if (arm_current_el(env) == 1) { 6819 /* 6820 * This must be a FEAT_NV access (will either trap or redirect 6821 * to memory). None of the registers with _EL12 aliases want to 6822 * apply their trap controls for this kind of access, so don't 6823 * call the orig_accessfn or do the "UNDEF when E2H is 0" check. 6824 */ 6825 return CP_ACCESS_OK; 6826 } 6827 /* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */ 6828 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 6829 return CP_ACCESS_TRAP_UNCATEGORIZED; 6830 } 6831 if (ri->orig_accessfn) { 6832 return ri->orig_accessfn(env, ri->opaque, isread); 6833 } 6834 return CP_ACCESS_OK; 6835 } 6836 6837 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6838 { 6839 struct E2HAlias { 6840 uint32_t src_key, dst_key, new_key; 6841 const char *src_name, *dst_name, *new_name; 6842 bool (*feature)(const ARMISARegisters *id); 6843 }; 6844 6845 #define K(op0, op1, crn, crm, op2) \ 6846 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6847 6848 static const struct E2HAlias aliases[] = { 6849 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6850 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6851 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6852 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6853 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6854 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6855 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6856 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6857 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6858 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6859 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6860 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6861 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6862 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6863 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6864 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6865 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6866 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6867 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6868 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6869 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6870 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6871 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6872 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6873 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6874 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6875 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6876 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6877 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6878 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6879 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6880 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6881 6882 /* 6883 * Note that redirection of ZCR is mentioned in the description 6884 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6885 * not in the summary table. 6886 */ 6887 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6888 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6889 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6890 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6891 6892 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6893 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6894 6895 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6896 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6897 isar_feature_aa64_scxtnum }, 6898 6899 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6900 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6901 }; 6902 #undef K 6903 6904 size_t i; 6905 6906 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6907 const struct E2HAlias *a = &aliases[i]; 6908 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6909 bool ok; 6910 6911 if (a->feature && !a->feature(&cpu->isar)) { 6912 continue; 6913 } 6914 6915 src_reg = g_hash_table_lookup(cpu->cp_regs, 6916 (gpointer)(uintptr_t)a->src_key); 6917 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6918 (gpointer)(uintptr_t)a->dst_key); 6919 g_assert(src_reg != NULL); 6920 g_assert(dst_reg != NULL); 6921 6922 /* Cross-compare names to detect typos in the keys. */ 6923 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6924 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6925 6926 /* None of the core system registers use opaque; we will. */ 6927 g_assert(src_reg->opaque == NULL); 6928 6929 /* Create alias before redirection so we dup the right data. */ 6930 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6931 6932 new_reg->name = a->new_name; 6933 new_reg->type |= ARM_CP_ALIAS; 6934 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6935 new_reg->access &= PL2_RW | PL3_RW; 6936 /* The new_reg op fields are as per new_key, not the target reg */ 6937 new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK) 6938 >> CP_REG_ARM64_SYSREG_CRN_SHIFT; 6939 new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK) 6940 >> CP_REG_ARM64_SYSREG_CRM_SHIFT; 6941 new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK) 6942 >> CP_REG_ARM64_SYSREG_OP0_SHIFT; 6943 new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK) 6944 >> CP_REG_ARM64_SYSREG_OP1_SHIFT; 6945 new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK) 6946 >> CP_REG_ARM64_SYSREG_OP2_SHIFT; 6947 new_reg->opaque = src_reg; 6948 new_reg->orig_readfn = src_reg->readfn ?: raw_read; 6949 new_reg->orig_writefn = src_reg->writefn ?: raw_write; 6950 new_reg->orig_accessfn = src_reg->accessfn; 6951 if (!new_reg->raw_readfn) { 6952 new_reg->raw_readfn = raw_read; 6953 } 6954 if (!new_reg->raw_writefn) { 6955 new_reg->raw_writefn = raw_write; 6956 } 6957 new_reg->readfn = el2_e2h_e12_read; 6958 new_reg->writefn = el2_e2h_e12_write; 6959 new_reg->accessfn = el2_e2h_e12_access; 6960 6961 /* 6962 * If the _EL1 register is redirected to memory by FEAT_NV2, 6963 * then it shares the offset with the _EL12 register, 6964 * and which one is redirected depends on HCR_EL2.NV1. 6965 */ 6966 if (new_reg->nv2_redirect_offset) { 6967 assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1); 6968 new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1; 6969 new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1; 6970 } 6971 6972 ok = g_hash_table_insert(cpu->cp_regs, 6973 (gpointer)(uintptr_t)a->new_key, new_reg); 6974 g_assert(ok); 6975 6976 src_reg->opaque = dst_reg; 6977 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6978 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6979 if (!src_reg->raw_readfn) { 6980 src_reg->raw_readfn = raw_read; 6981 } 6982 if (!src_reg->raw_writefn) { 6983 src_reg->raw_writefn = raw_write; 6984 } 6985 src_reg->readfn = el2_e2h_read; 6986 src_reg->writefn = el2_e2h_write; 6987 } 6988 } 6989 #endif 6990 6991 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6992 bool isread) 6993 { 6994 int cur_el = arm_current_el(env); 6995 6996 if (cur_el < 2) { 6997 uint64_t hcr = arm_hcr_el2_eff(env); 6998 6999 if (cur_el == 0) { 7000 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 7001 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 7002 return CP_ACCESS_TRAP_EL2; 7003 } 7004 } else { 7005 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 7006 return CP_ACCESS_TRAP; 7007 } 7008 if (hcr & HCR_TID2) { 7009 return CP_ACCESS_TRAP_EL2; 7010 } 7011 } 7012 } else if (hcr & HCR_TID2) { 7013 return CP_ACCESS_TRAP_EL2; 7014 } 7015 } 7016 7017 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 7018 return CP_ACCESS_TRAP_EL2; 7019 } 7020 7021 return CP_ACCESS_OK; 7022 } 7023 7024 /* 7025 * Check for traps to RAS registers, which are controlled 7026 * by HCR_EL2.TERR and SCR_EL3.TERR. 7027 */ 7028 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 7029 bool isread) 7030 { 7031 int el = arm_current_el(env); 7032 7033 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 7034 return CP_ACCESS_TRAP_EL2; 7035 } 7036 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 7037 return CP_ACCESS_TRAP_EL3; 7038 } 7039 return CP_ACCESS_OK; 7040 } 7041 7042 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 7043 { 7044 int el = arm_current_el(env); 7045 7046 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7047 return env->cp15.vdisr_el2; 7048 } 7049 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7050 return 0; /* RAZ/WI */ 7051 } 7052 return env->cp15.disr_el1; 7053 } 7054 7055 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7056 { 7057 int el = arm_current_el(env); 7058 7059 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 7060 env->cp15.vdisr_el2 = val; 7061 return; 7062 } 7063 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 7064 return; /* RAZ/WI */ 7065 } 7066 env->cp15.disr_el1 = val; 7067 } 7068 7069 /* 7070 * Minimal RAS implementation with no Error Records. 7071 * Which means that all of the Error Record registers: 7072 * ERXADDR_EL1 7073 * ERXCTLR_EL1 7074 * ERXFR_EL1 7075 * ERXMISC0_EL1 7076 * ERXMISC1_EL1 7077 * ERXMISC2_EL1 7078 * ERXMISC3_EL1 7079 * ERXPFGCDN_EL1 (RASv1p1) 7080 * ERXPFGCTL_EL1 (RASv1p1) 7081 * ERXPFGF_EL1 (RASv1p1) 7082 * ERXSTATUS_EL1 7083 * and 7084 * ERRSELR_EL1 7085 * may generate UNDEFINED, which is the effect we get by not 7086 * listing them at all. 7087 * 7088 * These registers have fine-grained trap bits, but UNDEF-to-EL1 7089 * is higher priority than FGT-to-EL2 so we do not need to list them 7090 * in order to check for an FGT. 7091 */ 7092 static const ARMCPRegInfo minimal_ras_reginfo[] = { 7093 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 7094 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 7095 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 7096 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 7097 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 7098 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 7099 .access = PL1_R, .accessfn = access_terr, 7100 .fgt = FGT_ERRIDR_EL1, 7101 .type = ARM_CP_CONST, .resetvalue = 0 }, 7102 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 7103 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 7104 .nv2_redirect_offset = 0x500, 7105 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 7106 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 7107 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 7108 .nv2_redirect_offset = 0x508, 7109 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 7110 }; 7111 7112 /* 7113 * Return the exception level to which exceptions should be taken 7114 * via SVEAccessTrap. This excludes the check for whether the exception 7115 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 7116 * be found by testing 0 < fp_exception_el < sve_exception_el. 7117 * 7118 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 7119 * pseudocode does *not* separate out the FP trap checks, but has them 7120 * all in one function. 7121 */ 7122 int sve_exception_el(CPUARMState *env, int el) 7123 { 7124 #ifndef CONFIG_USER_ONLY 7125 if (el <= 1 && !el_is_in_host(env, el)) { 7126 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 7127 case 1: 7128 if (el != 0) { 7129 break; 7130 } 7131 /* fall through */ 7132 case 0: 7133 case 2: 7134 return 1; 7135 } 7136 } 7137 7138 if (el <= 2 && arm_is_el2_enabled(env)) { 7139 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7140 if (env->cp15.hcr_el2 & HCR_E2H) { 7141 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 7142 case 1: 7143 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7144 break; 7145 } 7146 /* fall through */ 7147 case 0: 7148 case 2: 7149 return 2; 7150 } 7151 } else { 7152 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 7153 return 2; 7154 } 7155 } 7156 } 7157 7158 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 7159 if (arm_feature(env, ARM_FEATURE_EL3) 7160 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 7161 return 3; 7162 } 7163 #endif 7164 return 0; 7165 } 7166 7167 /* 7168 * Return the exception level to which exceptions should be taken for SME. 7169 * C.f. the ARM pseudocode function CheckSMEAccess. 7170 */ 7171 int sme_exception_el(CPUARMState *env, int el) 7172 { 7173 #ifndef CONFIG_USER_ONLY 7174 if (el <= 1 && !el_is_in_host(env, el)) { 7175 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 7176 case 1: 7177 if (el != 0) { 7178 break; 7179 } 7180 /* fall through */ 7181 case 0: 7182 case 2: 7183 return 1; 7184 } 7185 } 7186 7187 if (el <= 2 && arm_is_el2_enabled(env)) { 7188 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 7189 if (env->cp15.hcr_el2 & HCR_E2H) { 7190 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 7191 case 1: 7192 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 7193 break; 7194 } 7195 /* fall through */ 7196 case 0: 7197 case 2: 7198 return 2; 7199 } 7200 } else { 7201 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 7202 return 2; 7203 } 7204 } 7205 } 7206 7207 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 7208 if (arm_feature(env, ARM_FEATURE_EL3) 7209 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7210 return 3; 7211 } 7212 #endif 7213 return 0; 7214 } 7215 7216 /* 7217 * Given that SVE is enabled, return the vector length for EL. 7218 */ 7219 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 7220 { 7221 ARMCPU *cpu = env_archcpu(env); 7222 uint64_t *cr = env->vfp.zcr_el; 7223 uint32_t map = cpu->sve_vq.map; 7224 uint32_t len = ARM_MAX_VQ - 1; 7225 7226 if (sm) { 7227 cr = env->vfp.smcr_el; 7228 map = cpu->sme_vq.map; 7229 } 7230 7231 if (el <= 1 && !el_is_in_host(env, el)) { 7232 len = MIN(len, 0xf & (uint32_t)cr[1]); 7233 } 7234 if (el <= 2 && arm_is_el2_enabled(env)) { 7235 len = MIN(len, 0xf & (uint32_t)cr[2]); 7236 } 7237 if (arm_feature(env, ARM_FEATURE_EL3)) { 7238 len = MIN(len, 0xf & (uint32_t)cr[3]); 7239 } 7240 7241 map &= MAKE_64BIT_MASK(0, len + 1); 7242 if (map != 0) { 7243 return 31 - clz32(map); 7244 } 7245 7246 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 7247 assert(sm); 7248 return ctz32(cpu->sme_vq.map); 7249 } 7250 7251 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 7252 { 7253 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 7254 } 7255 7256 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7257 uint64_t value) 7258 { 7259 int cur_el = arm_current_el(env); 7260 int old_len = sve_vqm1_for_el(env, cur_el); 7261 int new_len; 7262 7263 /* Bits other than [3:0] are RAZ/WI. */ 7264 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 7265 raw_write(env, ri, value & 0xf); 7266 7267 /* 7268 * Because we arrived here, we know both FP and SVE are enabled; 7269 * otherwise we would have trapped access to the ZCR_ELn register. 7270 */ 7271 new_len = sve_vqm1_for_el(env, cur_el); 7272 if (new_len < old_len) { 7273 aarch64_sve_narrow_vq(env, new_len + 1); 7274 } 7275 } 7276 7277 static const ARMCPRegInfo zcr_reginfo[] = { 7278 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 7279 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 7280 .nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1, 7281 .access = PL1_RW, .type = ARM_CP_SVE, 7282 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 7283 .writefn = zcr_write, .raw_writefn = raw_write }, 7284 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 7285 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 7286 .access = PL2_RW, .type = ARM_CP_SVE, 7287 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 7288 .writefn = zcr_write, .raw_writefn = raw_write }, 7289 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 7290 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 7291 .access = PL3_RW, .type = ARM_CP_SVE, 7292 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 7293 .writefn = zcr_write, .raw_writefn = raw_write }, 7294 }; 7295 7296 #ifdef TARGET_AARCH64 7297 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 7298 bool isread) 7299 { 7300 int el = arm_current_el(env); 7301 7302 if (el == 0) { 7303 uint64_t sctlr = arm_sctlr(env, el); 7304 if (!(sctlr & SCTLR_EnTP2)) { 7305 return CP_ACCESS_TRAP; 7306 } 7307 } 7308 /* TODO: FEAT_FGT */ 7309 if (el < 3 7310 && arm_feature(env, ARM_FEATURE_EL3) 7311 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 7312 return CP_ACCESS_TRAP_EL3; 7313 } 7314 return CP_ACCESS_OK; 7315 } 7316 7317 static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri, 7318 bool isread) 7319 { 7320 /* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */ 7321 if (arm_current_el(env) == 2 7322 && arm_feature(env, ARM_FEATURE_EL3) 7323 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7324 return CP_ACCESS_TRAP_EL3; 7325 } 7326 return CP_ACCESS_OK; 7327 } 7328 7329 static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri, 7330 bool isread) 7331 { 7332 if (arm_current_el(env) < 3 7333 && arm_feature(env, ARM_FEATURE_EL3) 7334 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 7335 return CP_ACCESS_TRAP_EL3; 7336 } 7337 return CP_ACCESS_OK; 7338 } 7339 7340 /* ResetSVEState */ 7341 static void arm_reset_sve_state(CPUARMState *env) 7342 { 7343 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 7344 /* Recall that FFR is stored as pregs[16]. */ 7345 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 7346 vfp_set_fpcr(env, 0x0800009f); 7347 } 7348 7349 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 7350 { 7351 uint64_t change = (env->svcr ^ new) & mask; 7352 7353 if (change == 0) { 7354 return; 7355 } 7356 env->svcr ^= change; 7357 7358 if (change & R_SVCR_SM_MASK) { 7359 arm_reset_sve_state(env); 7360 } 7361 7362 /* 7363 * ResetSMEState. 7364 * 7365 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 7366 * on enable: while disabled, the storage is inaccessible and the 7367 * value does not matter. We're not saving the storage in vmstate 7368 * when disabled either. 7369 */ 7370 if (change & new & R_SVCR_ZA_MASK) { 7371 memset(env->zarray, 0, sizeof(env->zarray)); 7372 } 7373 7374 if (tcg_enabled()) { 7375 arm_rebuild_hflags(env); 7376 } 7377 } 7378 7379 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7380 uint64_t value) 7381 { 7382 aarch64_set_svcr(env, value, -1); 7383 } 7384 7385 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7386 uint64_t value) 7387 { 7388 int cur_el = arm_current_el(env); 7389 int old_len = sve_vqm1_for_el(env, cur_el); 7390 int new_len; 7391 7392 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 7393 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 7394 raw_write(env, ri, value); 7395 7396 /* 7397 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 7398 * when SVL is widened (old values kept, or zeros). Choose to keep the 7399 * current values for simplicity. But for QEMU internals, we must still 7400 * apply the narrower SVL to the Zregs and Pregs -- see the comment 7401 * above aarch64_sve_narrow_vq. 7402 */ 7403 new_len = sve_vqm1_for_el(env, cur_el); 7404 if (new_len < old_len) { 7405 aarch64_sve_narrow_vq(env, new_len + 1); 7406 } 7407 } 7408 7409 static const ARMCPRegInfo sme_reginfo[] = { 7410 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 7411 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 7412 .access = PL0_RW, .accessfn = access_tpidr2, 7413 .fgt = FGT_NTPIDR2_EL0, 7414 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 7415 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 7416 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 7417 .access = PL0_RW, .type = ARM_CP_SME, 7418 .fieldoffset = offsetof(CPUARMState, svcr), 7419 .writefn = svcr_write, .raw_writefn = raw_write }, 7420 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 7421 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 7422 .nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1, 7423 .access = PL1_RW, .type = ARM_CP_SME, 7424 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 7425 .writefn = smcr_write, .raw_writefn = raw_write }, 7426 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 7427 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 7428 .access = PL2_RW, .type = ARM_CP_SME, 7429 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 7430 .writefn = smcr_write, .raw_writefn = raw_write }, 7431 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 7432 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 7433 .access = PL3_RW, .type = ARM_CP_SME, 7434 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 7435 .writefn = smcr_write, .raw_writefn = raw_write }, 7436 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 7437 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 7438 .access = PL1_R, .accessfn = access_aa64_tid1, 7439 /* 7440 * IMPLEMENTOR = 0 (software) 7441 * REVISION = 0 (implementation defined) 7442 * SMPS = 0 (no streaming execution priority in QEMU) 7443 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 7444 */ 7445 .type = ARM_CP_CONST, .resetvalue = 0, }, 7446 /* 7447 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 7448 */ 7449 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 7450 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 7451 .access = PL1_RW, .accessfn = access_smpri, 7452 .fgt = FGT_NSMPRI_EL1, 7453 .type = ARM_CP_CONST, .resetvalue = 0 }, 7454 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 7455 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 7456 .nv2_redirect_offset = 0x1f8, 7457 .access = PL2_RW, .accessfn = access_smprimap, 7458 .type = ARM_CP_CONST, .resetvalue = 0 }, 7459 }; 7460 7461 static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri, 7462 uint64_t value) 7463 { 7464 CPUState *cs = env_cpu(env); 7465 7466 tlb_flush(cs); 7467 } 7468 7469 static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri, 7470 uint64_t value) 7471 { 7472 /* L0GPTSZ is RO; other bits not mentioned are RES0. */ 7473 uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK | 7474 R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK | 7475 R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK; 7476 7477 env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask); 7478 } 7479 7480 static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 7481 { 7482 env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ, 7483 env_archcpu(env)->reset_l0gptsz); 7484 } 7485 7486 static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri, 7487 uint64_t value) 7488 { 7489 CPUState *cs = env_cpu(env); 7490 7491 tlb_flush_all_cpus_synced(cs); 7492 } 7493 7494 static const ARMCPRegInfo rme_reginfo[] = { 7495 { .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64, 7496 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6, 7497 .access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset, 7498 .fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) }, 7499 { .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64, 7500 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4, 7501 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) }, 7502 { .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64, 7503 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5, 7504 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) }, 7505 { .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64, 7506 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4, 7507 .access = PL3_W, .type = ARM_CP_NO_RAW, 7508 .writefn = tlbi_aa64_paall_write }, 7509 { .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64, 7510 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4, 7511 .access = PL3_W, .type = ARM_CP_NO_RAW, 7512 .writefn = tlbi_aa64_paallos_write }, 7513 /* 7514 * QEMU does not have a way to invalidate by physical address, thus 7515 * invalidating a range of physical addresses is accomplished by 7516 * flushing all tlb entries in the outer shareable domain, 7517 * just like PAALLOS. 7518 */ 7519 { .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64, 7520 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7, 7521 .access = PL3_W, .type = ARM_CP_NO_RAW, 7522 .writefn = tlbi_aa64_paallos_write }, 7523 { .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64, 7524 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3, 7525 .access = PL3_W, .type = ARM_CP_NO_RAW, 7526 .writefn = tlbi_aa64_paallos_write }, 7527 { .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64, 7528 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1, 7529 .access = PL3_W, .type = ARM_CP_NOP }, 7530 }; 7531 7532 static const ARMCPRegInfo rme_mte_reginfo[] = { 7533 { .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5, 7535 .access = PL3_W, .type = ARM_CP_NOP }, 7536 }; 7537 7538 static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri, 7539 uint64_t value) 7540 { 7541 env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT); 7542 } 7543 7544 static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri) 7545 { 7546 return env->pstate & PSTATE_ALLINT; 7547 } 7548 7549 static CPAccessResult aa64_allint_access(CPUARMState *env, 7550 const ARMCPRegInfo *ri, bool isread) 7551 { 7552 if (!isread && arm_current_el(env) == 1 && 7553 (arm_hcrx_el2_eff(env) & HCRX_TALLINT)) { 7554 return CP_ACCESS_TRAP_EL2; 7555 } 7556 return CP_ACCESS_OK; 7557 } 7558 7559 static const ARMCPRegInfo nmi_reginfo[] = { 7560 { .name = "ALLINT", .state = ARM_CP_STATE_AA64, 7561 .opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3, 7562 .type = ARM_CP_NO_RAW, 7563 .access = PL1_RW, .accessfn = aa64_allint_access, 7564 .fieldoffset = offsetof(CPUARMState, pstate), 7565 .writefn = aa64_allint_write, .readfn = aa64_allint_read, 7566 .resetfn = arm_cp_reset_ignore }, 7567 }; 7568 #endif /* TARGET_AARCH64 */ 7569 7570 static void define_pmu_regs(ARMCPU *cpu) 7571 { 7572 /* 7573 * v7 performance monitor control register: same implementor 7574 * field as main ID register, and we implement four counters in 7575 * addition to the cycle count register. 7576 */ 7577 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 7578 ARMCPRegInfo pmcr = { 7579 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 7580 .access = PL0_RW, 7581 .fgt = FGT_PMCR_EL0, 7582 .type = ARM_CP_IO | ARM_CP_ALIAS, 7583 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 7584 .accessfn = pmreg_access, 7585 .readfn = pmcr_read, .raw_readfn = raw_read, 7586 .writefn = pmcr_write, .raw_writefn = raw_write, 7587 }; 7588 ARMCPRegInfo pmcr64 = { 7589 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 7590 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 7591 .access = PL0_RW, .accessfn = pmreg_access, 7592 .fgt = FGT_PMCR_EL0, 7593 .type = ARM_CP_IO, 7594 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 7595 .resetvalue = cpu->isar.reset_pmcr_el0, 7596 .readfn = pmcr_read, .raw_readfn = raw_read, 7597 .writefn = pmcr_write, .raw_writefn = raw_write, 7598 }; 7599 7600 define_one_arm_cp_reg(cpu, &pmcr); 7601 define_one_arm_cp_reg(cpu, &pmcr64); 7602 for (i = 0; i < pmcrn; i++) { 7603 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 7604 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 7605 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 7606 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 7607 ARMCPRegInfo pmev_regs[] = { 7608 { .name = pmevcntr_name, .cp = 15, .crn = 14, 7609 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7610 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7611 .fgt = FGT_PMEVCNTRN_EL0, 7612 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7613 .accessfn = pmreg_access_xevcntr }, 7614 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 7615 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 7616 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 7617 .type = ARM_CP_IO, 7618 .fgt = FGT_PMEVCNTRN_EL0, 7619 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 7620 .raw_readfn = pmevcntr_rawread, 7621 .raw_writefn = pmevcntr_rawwrite }, 7622 { .name = pmevtyper_name, .cp = 15, .crn = 14, 7623 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 7624 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 7625 .fgt = FGT_PMEVTYPERN_EL0, 7626 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7627 .accessfn = pmreg_access }, 7628 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 7629 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 7630 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 7631 .fgt = FGT_PMEVTYPERN_EL0, 7632 .type = ARM_CP_IO, 7633 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 7634 .raw_writefn = pmevtyper_rawwrite }, 7635 }; 7636 define_arm_cp_regs(cpu, pmev_regs); 7637 g_free(pmevcntr_name); 7638 g_free(pmevcntr_el0_name); 7639 g_free(pmevtyper_name); 7640 g_free(pmevtyper_el0_name); 7641 } 7642 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7643 ARMCPRegInfo v81_pmu_regs[] = { 7644 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7645 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7646 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7647 .fgt = FGT_PMCEIDN_EL0, 7648 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7649 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7650 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7651 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7652 .fgt = FGT_PMCEIDN_EL0, 7653 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7654 }; 7655 define_arm_cp_regs(cpu, v81_pmu_regs); 7656 } 7657 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7658 static const ARMCPRegInfo v84_pmmir = { 7659 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7660 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7661 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7662 .fgt = FGT_PMMIR_EL1, 7663 .resetvalue = 0 7664 }; 7665 define_one_arm_cp_reg(cpu, &v84_pmmir); 7666 } 7667 } 7668 7669 #ifndef CONFIG_USER_ONLY 7670 /* 7671 * We don't know until after realize whether there's a GICv3 7672 * attached, and that is what registers the gicv3 sysregs. 7673 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7674 * at runtime. 7675 */ 7676 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7677 { 7678 ARMCPU *cpu = env_archcpu(env); 7679 uint64_t pfr1 = cpu->isar.id_pfr1; 7680 7681 if (env->gicv3state) { 7682 pfr1 |= 1 << 28; 7683 } 7684 return pfr1; 7685 } 7686 7687 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7688 { 7689 ARMCPU *cpu = env_archcpu(env); 7690 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7691 7692 if (env->gicv3state) { 7693 pfr0 |= 1 << 24; 7694 } 7695 return pfr0; 7696 } 7697 #endif 7698 7699 /* 7700 * Shared logic between LORID and the rest of the LOR* registers. 7701 * Secure state exclusion has already been dealt with. 7702 */ 7703 static CPAccessResult access_lor_ns(CPUARMState *env, 7704 const ARMCPRegInfo *ri, bool isread) 7705 { 7706 int el = arm_current_el(env); 7707 7708 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7709 return CP_ACCESS_TRAP_EL2; 7710 } 7711 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7712 return CP_ACCESS_TRAP_EL3; 7713 } 7714 return CP_ACCESS_OK; 7715 } 7716 7717 static CPAccessResult access_lor_other(CPUARMState *env, 7718 const ARMCPRegInfo *ri, bool isread) 7719 { 7720 if (arm_is_secure_below_el3(env)) { 7721 /* Access denied in secure mode. */ 7722 return CP_ACCESS_TRAP; 7723 } 7724 return access_lor_ns(env, ri, isread); 7725 } 7726 7727 /* 7728 * A trivial implementation of ARMv8.1-LOR leaves all of these 7729 * registers fixed at 0, which indicates that there are zero 7730 * supported Limited Ordering regions. 7731 */ 7732 static const ARMCPRegInfo lor_reginfo[] = { 7733 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7734 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7735 .access = PL1_RW, .accessfn = access_lor_other, 7736 .fgt = FGT_LORSA_EL1, 7737 .type = ARM_CP_CONST, .resetvalue = 0 }, 7738 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7739 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7740 .access = PL1_RW, .accessfn = access_lor_other, 7741 .fgt = FGT_LOREA_EL1, 7742 .type = ARM_CP_CONST, .resetvalue = 0 }, 7743 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7744 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7745 .access = PL1_RW, .accessfn = access_lor_other, 7746 .fgt = FGT_LORN_EL1, 7747 .type = ARM_CP_CONST, .resetvalue = 0 }, 7748 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7749 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7750 .access = PL1_RW, .accessfn = access_lor_other, 7751 .fgt = FGT_LORC_EL1, 7752 .type = ARM_CP_CONST, .resetvalue = 0 }, 7753 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7754 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7755 .access = PL1_R, .accessfn = access_lor_ns, 7756 .fgt = FGT_LORID_EL1, 7757 .type = ARM_CP_CONST, .resetvalue = 0 }, 7758 }; 7759 7760 #ifdef TARGET_AARCH64 7761 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7762 bool isread) 7763 { 7764 int el = arm_current_el(env); 7765 7766 if (el < 2 && 7767 arm_is_el2_enabled(env) && 7768 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7769 return CP_ACCESS_TRAP_EL2; 7770 } 7771 if (el < 3 && 7772 arm_feature(env, ARM_FEATURE_EL3) && 7773 !(env->cp15.scr_el3 & SCR_APK)) { 7774 return CP_ACCESS_TRAP_EL3; 7775 } 7776 return CP_ACCESS_OK; 7777 } 7778 7779 static const ARMCPRegInfo pauth_reginfo[] = { 7780 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7781 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7782 .access = PL1_RW, .accessfn = access_pauth, 7783 .fgt = FGT_APDAKEY, 7784 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7785 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7786 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7787 .access = PL1_RW, .accessfn = access_pauth, 7788 .fgt = FGT_APDAKEY, 7789 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7790 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7791 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7792 .access = PL1_RW, .accessfn = access_pauth, 7793 .fgt = FGT_APDBKEY, 7794 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7795 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7796 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7797 .access = PL1_RW, .accessfn = access_pauth, 7798 .fgt = FGT_APDBKEY, 7799 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7800 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7801 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7802 .access = PL1_RW, .accessfn = access_pauth, 7803 .fgt = FGT_APGAKEY, 7804 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7805 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7806 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7807 .access = PL1_RW, .accessfn = access_pauth, 7808 .fgt = FGT_APGAKEY, 7809 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7810 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7811 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7812 .access = PL1_RW, .accessfn = access_pauth, 7813 .fgt = FGT_APIAKEY, 7814 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7815 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7816 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7817 .access = PL1_RW, .accessfn = access_pauth, 7818 .fgt = FGT_APIAKEY, 7819 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7820 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7821 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7822 .access = PL1_RW, .accessfn = access_pauth, 7823 .fgt = FGT_APIBKEY, 7824 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7825 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7826 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7827 .access = PL1_RW, .accessfn = access_pauth, 7828 .fgt = FGT_APIBKEY, 7829 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7830 }; 7831 7832 static const ARMCPRegInfo tlbirange_reginfo[] = { 7833 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7834 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7835 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7836 .fgt = FGT_TLBIRVAE1IS, 7837 .writefn = tlbi_aa64_rvae1is_write }, 7838 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7839 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7840 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7841 .fgt = FGT_TLBIRVAAE1IS, 7842 .writefn = tlbi_aa64_rvae1is_write }, 7843 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7844 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7845 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7846 .fgt = FGT_TLBIRVALE1IS, 7847 .writefn = tlbi_aa64_rvae1is_write }, 7848 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7849 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7850 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7851 .fgt = FGT_TLBIRVAALE1IS, 7852 .writefn = tlbi_aa64_rvae1is_write }, 7853 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7854 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7855 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7856 .fgt = FGT_TLBIRVAE1OS, 7857 .writefn = tlbi_aa64_rvae1is_write }, 7858 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7860 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7861 .fgt = FGT_TLBIRVAAE1OS, 7862 .writefn = tlbi_aa64_rvae1is_write }, 7863 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7864 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7865 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7866 .fgt = FGT_TLBIRVALE1OS, 7867 .writefn = tlbi_aa64_rvae1is_write }, 7868 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7869 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7870 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7871 .fgt = FGT_TLBIRVAALE1OS, 7872 .writefn = tlbi_aa64_rvae1is_write }, 7873 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7874 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7875 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7876 .fgt = FGT_TLBIRVAE1, 7877 .writefn = tlbi_aa64_rvae1_write }, 7878 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7879 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7880 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7881 .fgt = FGT_TLBIRVAAE1, 7882 .writefn = tlbi_aa64_rvae1_write }, 7883 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7884 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7885 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7886 .fgt = FGT_TLBIRVALE1, 7887 .writefn = tlbi_aa64_rvae1_write }, 7888 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7889 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7890 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7891 .fgt = FGT_TLBIRVAALE1, 7892 .writefn = tlbi_aa64_rvae1_write }, 7893 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7894 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7895 .access = PL2_W, .type = ARM_CP_NO_RAW, 7896 .writefn = tlbi_aa64_ripas2e1is_write }, 7897 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7898 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7899 .access = PL2_W, .type = ARM_CP_NO_RAW, 7900 .writefn = tlbi_aa64_ripas2e1is_write }, 7901 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7902 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7903 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7904 .writefn = tlbi_aa64_rvae2is_write }, 7905 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7906 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7907 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7908 .writefn = tlbi_aa64_rvae2is_write }, 7909 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7910 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7911 .access = PL2_W, .type = ARM_CP_NO_RAW, 7912 .writefn = tlbi_aa64_ripas2e1_write }, 7913 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7914 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7915 .access = PL2_W, .type = ARM_CP_NO_RAW, 7916 .writefn = tlbi_aa64_ripas2e1_write }, 7917 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7918 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7919 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7920 .writefn = tlbi_aa64_rvae2is_write }, 7921 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7922 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7923 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7924 .writefn = tlbi_aa64_rvae2is_write }, 7925 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7926 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7927 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7928 .writefn = tlbi_aa64_rvae2_write }, 7929 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7930 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7931 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7932 .writefn = tlbi_aa64_rvae2_write }, 7933 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7934 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7935 .access = PL3_W, .type = ARM_CP_NO_RAW, 7936 .writefn = tlbi_aa64_rvae3is_write }, 7937 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7938 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7939 .access = PL3_W, .type = ARM_CP_NO_RAW, 7940 .writefn = tlbi_aa64_rvae3is_write }, 7941 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7942 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7943 .access = PL3_W, .type = ARM_CP_NO_RAW, 7944 .writefn = tlbi_aa64_rvae3is_write }, 7945 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7946 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7947 .access = PL3_W, .type = ARM_CP_NO_RAW, 7948 .writefn = tlbi_aa64_rvae3is_write }, 7949 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7950 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7951 .access = PL3_W, .type = ARM_CP_NO_RAW, 7952 .writefn = tlbi_aa64_rvae3_write }, 7953 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7954 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7955 .access = PL3_W, .type = ARM_CP_NO_RAW, 7956 .writefn = tlbi_aa64_rvae3_write }, 7957 }; 7958 7959 static const ARMCPRegInfo tlbios_reginfo[] = { 7960 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7961 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7962 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7963 .fgt = FGT_TLBIVMALLE1OS, 7964 .writefn = tlbi_aa64_vmalle1is_write }, 7965 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7966 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7967 .fgt = FGT_TLBIVAE1OS, 7968 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7969 .writefn = tlbi_aa64_vae1is_write }, 7970 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7971 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7972 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7973 .fgt = FGT_TLBIASIDE1OS, 7974 .writefn = tlbi_aa64_vmalle1is_write }, 7975 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7976 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7977 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7978 .fgt = FGT_TLBIVAAE1OS, 7979 .writefn = tlbi_aa64_vae1is_write }, 7980 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7981 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7982 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7983 .fgt = FGT_TLBIVALE1OS, 7984 .writefn = tlbi_aa64_vae1is_write }, 7985 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7986 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7987 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7988 .fgt = FGT_TLBIVAALE1OS, 7989 .writefn = tlbi_aa64_vae1is_write }, 7990 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7991 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7992 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7993 .writefn = tlbi_aa64_alle2is_write }, 7994 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7995 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7996 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7997 .writefn = tlbi_aa64_vae2is_write }, 7998 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7999 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 8000 .access = PL2_W, .type = ARM_CP_NO_RAW, 8001 .writefn = tlbi_aa64_alle1is_write }, 8002 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 8003 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 8004 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 8005 .writefn = tlbi_aa64_vae2is_write }, 8006 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 8007 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 8008 .access = PL2_W, .type = ARM_CP_NO_RAW, 8009 .writefn = tlbi_aa64_alle1is_write }, 8010 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 8011 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 8012 .access = PL2_W, .type = ARM_CP_NOP }, 8013 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 8014 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 8015 .access = PL2_W, .type = ARM_CP_NOP }, 8016 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8017 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 8018 .access = PL2_W, .type = ARM_CP_NOP }, 8019 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 8020 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 8021 .access = PL2_W, .type = ARM_CP_NOP }, 8022 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 8023 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 8024 .access = PL3_W, .type = ARM_CP_NO_RAW, 8025 .writefn = tlbi_aa64_alle3is_write }, 8026 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 8027 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 8028 .access = PL3_W, .type = ARM_CP_NO_RAW, 8029 .writefn = tlbi_aa64_vae3is_write }, 8030 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 8031 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 8032 .access = PL3_W, .type = ARM_CP_NO_RAW, 8033 .writefn = tlbi_aa64_vae3is_write }, 8034 }; 8035 8036 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 8037 { 8038 Error *err = NULL; 8039 uint64_t ret; 8040 8041 /* Success sets NZCV = 0000. */ 8042 env->NF = env->CF = env->VF = 0, env->ZF = 1; 8043 8044 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 8045 /* 8046 * ??? Failed, for unknown reasons in the crypto subsystem. 8047 * The best we can do is log the reason and return the 8048 * timed-out indication to the guest. There is no reason 8049 * we know to expect this failure to be transitory, so the 8050 * guest may well hang retrying the operation. 8051 */ 8052 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 8053 ri->name, error_get_pretty(err)); 8054 error_free(err); 8055 8056 env->ZF = 0; /* NZCF = 0100 */ 8057 return 0; 8058 } 8059 return ret; 8060 } 8061 8062 /* We do not support re-seeding, so the two registers operate the same. */ 8063 static const ARMCPRegInfo rndr_reginfo[] = { 8064 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 8065 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8066 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 8067 .access = PL0_R, .readfn = rndr_readfn }, 8068 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 8069 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 8070 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 8071 .access = PL0_R, .readfn = rndr_readfn }, 8072 }; 8073 8074 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 8075 uint64_t value) 8076 { 8077 #ifdef CONFIG_TCG 8078 ARMCPU *cpu = env_archcpu(env); 8079 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 8080 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 8081 uint64_t vaddr_in = (uint64_t) value; 8082 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 8083 void *haddr; 8084 int mem_idx = arm_env_mmu_index(env); 8085 8086 /* This won't be crossing page boundaries */ 8087 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 8088 if (haddr) { 8089 #ifndef CONFIG_USER_ONLY 8090 8091 ram_addr_t offset; 8092 MemoryRegion *mr; 8093 8094 /* RCU lock is already being held */ 8095 mr = memory_region_from_host(haddr, &offset); 8096 8097 if (mr) { 8098 memory_region_writeback(mr, offset, dline_size); 8099 } 8100 #endif /*CONFIG_USER_ONLY*/ 8101 } 8102 #else 8103 /* Handled by hardware accelerator. */ 8104 g_assert_not_reached(); 8105 #endif /* CONFIG_TCG */ 8106 } 8107 8108 static const ARMCPRegInfo dcpop_reg[] = { 8109 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 8110 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 8111 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8112 .fgt = FGT_DCCVAP, 8113 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8114 }; 8115 8116 static const ARMCPRegInfo dcpodp_reg[] = { 8117 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 8118 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 8119 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 8120 .fgt = FGT_DCCVADP, 8121 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 8122 }; 8123 8124 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 8125 bool isread) 8126 { 8127 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 8128 return CP_ACCESS_TRAP_EL2; 8129 } 8130 8131 return CP_ACCESS_OK; 8132 } 8133 8134 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 8135 bool isread) 8136 { 8137 int el = arm_current_el(env); 8138 if (el < 2 && arm_is_el2_enabled(env)) { 8139 uint64_t hcr = arm_hcr_el2_eff(env); 8140 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8141 return CP_ACCESS_TRAP_EL2; 8142 } 8143 } 8144 if (el < 3 && 8145 arm_feature(env, ARM_FEATURE_EL3) && 8146 !(env->cp15.scr_el3 & SCR_ATA)) { 8147 return CP_ACCESS_TRAP_EL3; 8148 } 8149 return CP_ACCESS_OK; 8150 } 8151 8152 static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri, 8153 bool isread) 8154 { 8155 CPAccessResult nv1 = access_nv1(env, ri, isread); 8156 8157 if (nv1 != CP_ACCESS_OK) { 8158 return nv1; 8159 } 8160 return access_mte(env, ri, isread); 8161 } 8162 8163 static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri, 8164 bool isread) 8165 { 8166 /* 8167 * TFSR_EL2: similar to generic access_mte(), but we need to 8168 * account for FEAT_NV. At EL1 this must be a FEAT_NV access; 8169 * if NV2 is enabled then we will redirect this to TFSR_EL1 8170 * after doing the HCR and SCR ATA traps; otherwise this will 8171 * be a trap to EL2 and the HCR/SCR traps do not apply. 8172 */ 8173 int el = arm_current_el(env); 8174 8175 if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) { 8176 return CP_ACCESS_OK; 8177 } 8178 if (el < 2 && arm_is_el2_enabled(env)) { 8179 uint64_t hcr = arm_hcr_el2_eff(env); 8180 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 8181 return CP_ACCESS_TRAP_EL2; 8182 } 8183 } 8184 if (el < 3 && 8185 arm_feature(env, ARM_FEATURE_EL3) && 8186 !(env->cp15.scr_el3 & SCR_ATA)) { 8187 return CP_ACCESS_TRAP_EL3; 8188 } 8189 return CP_ACCESS_OK; 8190 } 8191 8192 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 8193 { 8194 return env->pstate & PSTATE_TCO; 8195 } 8196 8197 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 8198 { 8199 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 8200 } 8201 8202 static const ARMCPRegInfo mte_reginfo[] = { 8203 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 8204 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 8205 .access = PL1_RW, .accessfn = access_mte, 8206 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 8207 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 8208 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 8209 .access = PL1_RW, .accessfn = access_tfsr_el1, 8210 .nv2_redirect_offset = 0x190 | NV2_REDIR_NV1, 8211 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 8212 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 8213 .type = ARM_CP_NV2_REDIRECT, 8214 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 8215 .access = PL2_RW, .accessfn = access_tfsr_el2, 8216 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 8217 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 8218 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 8219 .access = PL3_RW, 8220 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 8221 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 8222 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 8223 .access = PL1_RW, .accessfn = access_mte, 8224 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 8225 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 8226 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 8227 .access = PL1_RW, .accessfn = access_mte, 8228 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 8229 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8230 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8231 .type = ARM_CP_NO_RAW, 8232 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 8233 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 8234 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 8235 .type = ARM_CP_NOP, .access = PL1_W, 8236 .fgt = FGT_DCIVAC, 8237 .accessfn = aa64_cacheop_poc_access }, 8238 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 8239 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 8240 .fgt = FGT_DCISW, 8241 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8242 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 8243 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 8244 .type = ARM_CP_NOP, .access = PL1_W, 8245 .fgt = FGT_DCIVAC, 8246 .accessfn = aa64_cacheop_poc_access }, 8247 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 8248 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 8249 .fgt = FGT_DCISW, 8250 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8251 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 8252 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 8253 .fgt = FGT_DCCSW, 8254 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8255 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 8256 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 8257 .fgt = FGT_DCCSW, 8258 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8259 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 8260 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 8261 .fgt = FGT_DCCISW, 8262 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8263 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 8264 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 8265 .fgt = FGT_DCCISW, 8266 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 8267 }; 8268 8269 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 8270 { .name = "TCO", .state = ARM_CP_STATE_AA64, 8271 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 8272 .type = ARM_CP_CONST, .access = PL0_RW, }, 8273 }; 8274 8275 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 8276 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 8277 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 8278 .type = ARM_CP_NOP, .access = PL0_W, 8279 .fgt = FGT_DCCVAC, 8280 .accessfn = aa64_cacheop_poc_access }, 8281 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 8282 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 8283 .type = ARM_CP_NOP, .access = PL0_W, 8284 .fgt = FGT_DCCVAC, 8285 .accessfn = aa64_cacheop_poc_access }, 8286 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 8287 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 8288 .type = ARM_CP_NOP, .access = PL0_W, 8289 .fgt = FGT_DCCVAP, 8290 .accessfn = aa64_cacheop_poc_access }, 8291 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 8292 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 8293 .type = ARM_CP_NOP, .access = PL0_W, 8294 .fgt = FGT_DCCVAP, 8295 .accessfn = aa64_cacheop_poc_access }, 8296 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 8297 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 8298 .type = ARM_CP_NOP, .access = PL0_W, 8299 .fgt = FGT_DCCVADP, 8300 .accessfn = aa64_cacheop_poc_access }, 8301 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 8302 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 8303 .type = ARM_CP_NOP, .access = PL0_W, 8304 .fgt = FGT_DCCVADP, 8305 .accessfn = aa64_cacheop_poc_access }, 8306 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 8307 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 8308 .type = ARM_CP_NOP, .access = PL0_W, 8309 .fgt = FGT_DCCIVAC, 8310 .accessfn = aa64_cacheop_poc_access }, 8311 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 8312 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 8313 .type = ARM_CP_NOP, .access = PL0_W, 8314 .fgt = FGT_DCCIVAC, 8315 .accessfn = aa64_cacheop_poc_access }, 8316 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 8317 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 8318 .access = PL0_W, .type = ARM_CP_DC_GVA, 8319 #ifndef CONFIG_USER_ONLY 8320 /* Avoid overhead of an access check that always passes in user-mode */ 8321 .accessfn = aa64_zva_access, 8322 .fgt = FGT_DCZVA, 8323 #endif 8324 }, 8325 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 8326 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 8327 .access = PL0_W, .type = ARM_CP_DC_GZVA, 8328 #ifndef CONFIG_USER_ONLY 8329 /* Avoid overhead of an access check that always passes in user-mode */ 8330 .accessfn = aa64_zva_access, 8331 .fgt = FGT_DCZVA, 8332 #endif 8333 }, 8334 }; 8335 8336 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 8337 bool isread) 8338 { 8339 uint64_t hcr = arm_hcr_el2_eff(env); 8340 int el = arm_current_el(env); 8341 8342 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 8343 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 8344 if (hcr & HCR_TGE) { 8345 return CP_ACCESS_TRAP_EL2; 8346 } 8347 return CP_ACCESS_TRAP; 8348 } 8349 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 8350 return CP_ACCESS_TRAP_EL2; 8351 } 8352 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 8353 return CP_ACCESS_TRAP_EL2; 8354 } 8355 if (el < 3 8356 && arm_feature(env, ARM_FEATURE_EL3) 8357 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 8358 return CP_ACCESS_TRAP_EL3; 8359 } 8360 return CP_ACCESS_OK; 8361 } 8362 8363 static CPAccessResult access_scxtnum_el1(CPUARMState *env, 8364 const ARMCPRegInfo *ri, 8365 bool isread) 8366 { 8367 CPAccessResult nv1 = access_nv1(env, ri, isread); 8368 8369 if (nv1 != CP_ACCESS_OK) { 8370 return nv1; 8371 } 8372 return access_scxtnum(env, ri, isread); 8373 } 8374 8375 static const ARMCPRegInfo scxtnum_reginfo[] = { 8376 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 8377 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 8378 .access = PL0_RW, .accessfn = access_scxtnum, 8379 .fgt = FGT_SCXTNUM_EL0, 8380 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 8381 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 8382 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 8383 .access = PL1_RW, .accessfn = access_scxtnum_el1, 8384 .fgt = FGT_SCXTNUM_EL1, 8385 .nv2_redirect_offset = 0x188 | NV2_REDIR_NV1, 8386 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 8387 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 8388 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 8389 .access = PL2_RW, .accessfn = access_scxtnum, 8390 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 8391 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 8392 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 8393 .access = PL3_RW, 8394 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 8395 }; 8396 8397 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 8398 bool isread) 8399 { 8400 if (arm_current_el(env) == 2 && 8401 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 8402 return CP_ACCESS_TRAP_EL3; 8403 } 8404 return CP_ACCESS_OK; 8405 } 8406 8407 static const ARMCPRegInfo fgt_reginfo[] = { 8408 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8409 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 8410 .nv2_redirect_offset = 0x1b8, 8411 .access = PL2_RW, .accessfn = access_fgt, 8412 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 8413 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8414 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 8415 .nv2_redirect_offset = 0x1c0, 8416 .access = PL2_RW, .accessfn = access_fgt, 8417 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 8418 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 8419 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 8420 .nv2_redirect_offset = 0x1d0, 8421 .access = PL2_RW, .accessfn = access_fgt, 8422 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 8423 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 8424 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 8425 .nv2_redirect_offset = 0x1d8, 8426 .access = PL2_RW, .accessfn = access_fgt, 8427 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 8428 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 8429 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 8430 .nv2_redirect_offset = 0x1c8, 8431 .access = PL2_RW, .accessfn = access_fgt, 8432 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 8433 }; 8434 8435 static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri, 8436 uint64_t value) 8437 { 8438 /* 8439 * Clear the RES0 bottom 12 bits; this means at runtime we can guarantee 8440 * that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything 8441 * about the RESS bits at the top -- we choose the "generate an EL2 8442 * translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let 8443 * the ptw.c code detect the resulting invalid address). 8444 */ 8445 env->cp15.vncr_el2 = value & ~0xfffULL; 8446 } 8447 8448 static const ARMCPRegInfo nv2_reginfo[] = { 8449 { .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64, 8450 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0, 8451 .access = PL2_RW, 8452 .writefn = vncr_write, 8453 .nv2_redirect_offset = 0xb0, 8454 .fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) }, 8455 }; 8456 8457 #endif /* TARGET_AARCH64 */ 8458 8459 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 8460 bool isread) 8461 { 8462 int el = arm_current_el(env); 8463 8464 if (el == 0) { 8465 uint64_t sctlr = arm_sctlr(env, el); 8466 if (!(sctlr & SCTLR_EnRCTX)) { 8467 return CP_ACCESS_TRAP; 8468 } 8469 } else if (el == 1) { 8470 uint64_t hcr = arm_hcr_el2_eff(env); 8471 if (hcr & HCR_NV) { 8472 return CP_ACCESS_TRAP_EL2; 8473 } 8474 } 8475 return CP_ACCESS_OK; 8476 } 8477 8478 static const ARMCPRegInfo predinv_reginfo[] = { 8479 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 8480 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 8481 .fgt = FGT_CFPRCTX, 8482 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8483 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 8484 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 8485 .fgt = FGT_DVPRCTX, 8486 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8487 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 8488 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 8489 .fgt = FGT_CPPRCTX, 8490 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8491 /* 8492 * Note the AArch32 opcodes have a different OPC1. 8493 */ 8494 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 8495 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 8496 .fgt = FGT_CFPRCTX, 8497 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8498 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 8499 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 8500 .fgt = FGT_DVPRCTX, 8501 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8502 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 8503 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 8504 .fgt = FGT_CPPRCTX, 8505 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 8506 }; 8507 8508 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 8509 { 8510 /* Read the high 32 bits of the current CCSIDR */ 8511 return extract64(ccsidr_read(env, ri), 32, 32); 8512 } 8513 8514 static const ARMCPRegInfo ccsidr2_reginfo[] = { 8515 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 8516 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 8517 .access = PL1_R, 8518 .accessfn = access_tid4, 8519 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 8520 }; 8521 8522 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8523 bool isread) 8524 { 8525 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 8526 return CP_ACCESS_TRAP_EL2; 8527 } 8528 8529 return CP_ACCESS_OK; 8530 } 8531 8532 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 8533 bool isread) 8534 { 8535 if (arm_feature(env, ARM_FEATURE_V8)) { 8536 return access_aa64_tid3(env, ri, isread); 8537 } 8538 8539 return CP_ACCESS_OK; 8540 } 8541 8542 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 8543 bool isread) 8544 { 8545 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 8546 return CP_ACCESS_TRAP_EL2; 8547 } 8548 8549 return CP_ACCESS_OK; 8550 } 8551 8552 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 8553 const ARMCPRegInfo *ri, bool isread) 8554 { 8555 /* 8556 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 8557 * in v7A, not in v8A. 8558 */ 8559 if (!arm_feature(env, ARM_FEATURE_V8) && 8560 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 8561 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 8562 return CP_ACCESS_TRAP_EL2; 8563 } 8564 return CP_ACCESS_OK; 8565 } 8566 8567 static const ARMCPRegInfo jazelle_regs[] = { 8568 { .name = "JIDR", 8569 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 8570 .access = PL1_R, .accessfn = access_jazelle, 8571 .type = ARM_CP_CONST, .resetvalue = 0 }, 8572 { .name = "JOSCR", 8573 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 8574 .accessfn = access_joscr_jmcr, 8575 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8576 { .name = "JMCR", 8577 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 8578 .accessfn = access_joscr_jmcr, 8579 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 8580 }; 8581 8582 static const ARMCPRegInfo contextidr_el2 = { 8583 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 8584 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 8585 .access = PL2_RW, 8586 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 8587 }; 8588 8589 static const ARMCPRegInfo vhe_reginfo[] = { 8590 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 8591 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 8592 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 8593 .raw_writefn = raw_write, 8594 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 8595 #ifndef CONFIG_USER_ONLY 8596 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 8597 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 8598 .fieldoffset = 8599 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 8600 .type = ARM_CP_IO, .access = PL2_RW, 8601 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 8602 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 8603 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 8604 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 8605 .resetfn = gt_hv_timer_reset, 8606 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 8607 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 8608 .type = ARM_CP_IO, 8609 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 8610 .access = PL2_RW, 8611 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 8612 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 8613 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 8614 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 8615 .type = ARM_CP_IO | ARM_CP_ALIAS, 8616 .access = PL2_RW, .accessfn = access_el1nvpct, 8617 .nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1, 8618 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 8619 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 8620 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 8621 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 8622 .type = ARM_CP_IO | ARM_CP_ALIAS, 8623 .access = PL2_RW, .accessfn = access_el1nvvct, 8624 .nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1, 8625 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 8626 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 8627 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8628 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 8629 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8630 .access = PL2_RW, .accessfn = e2h_access, 8631 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 8632 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 8633 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 8634 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 8635 .access = PL2_RW, .accessfn = e2h_access, 8636 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 8637 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8638 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 8639 .type = ARM_CP_IO | ARM_CP_ALIAS, 8640 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 8641 .nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1, 8642 .access = PL2_RW, .accessfn = access_el1nvpct, 8643 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 8644 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 8645 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 8646 .type = ARM_CP_IO | ARM_CP_ALIAS, 8647 .nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1, 8648 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 8649 .access = PL2_RW, .accessfn = access_el1nvvct, 8650 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 8651 #endif 8652 }; 8653 8654 #ifndef CONFIG_USER_ONLY 8655 static const ARMCPRegInfo ats1e1_reginfo[] = { 8656 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 8657 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8658 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8659 .fgt = FGT_ATS1E1RP, 8660 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8661 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 8662 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8663 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8664 .fgt = FGT_ATS1E1WP, 8665 .accessfn = at_s1e01_access, .writefn = ats_write64 }, 8666 }; 8667 8668 static const ARMCPRegInfo ats1cp_reginfo[] = { 8669 { .name = "ATS1CPRP", 8670 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 8671 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8672 .writefn = ats_write }, 8673 { .name = "ATS1CPWP", 8674 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 8675 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 8676 .writefn = ats_write }, 8677 }; 8678 #endif 8679 8680 /* 8681 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 8682 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 8683 * is non-zero, which is never for ARMv7, optionally in ARMv8 8684 * and mandatorily for ARMv8.2 and up. 8685 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 8686 * implementation is RAZ/WI we can ignore this detail, as we 8687 * do for ACTLR. 8688 */ 8689 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 8690 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 8691 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 8692 .access = PL1_RW, .accessfn = access_tacr, 8693 .type = ARM_CP_CONST, .resetvalue = 0 }, 8694 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 8695 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 8696 .access = PL2_RW, .type = ARM_CP_CONST, 8697 .resetvalue = 0 }, 8698 }; 8699 8700 void register_cp_regs_for_features(ARMCPU *cpu) 8701 { 8702 /* Register all the coprocessor registers based on feature bits */ 8703 CPUARMState *env = &cpu->env; 8704 if (arm_feature(env, ARM_FEATURE_M)) { 8705 /* M profile has no coprocessor registers */ 8706 return; 8707 } 8708 8709 define_arm_cp_regs(cpu, cp_reginfo); 8710 if (!arm_feature(env, ARM_FEATURE_V8)) { 8711 /* 8712 * Must go early as it is full of wildcards that may be 8713 * overridden by later definitions. 8714 */ 8715 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 8716 } 8717 8718 if (arm_feature(env, ARM_FEATURE_V6)) { 8719 /* The ID registers all have impdef reset values */ 8720 ARMCPRegInfo v6_idregs[] = { 8721 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 8722 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 8723 .access = PL1_R, .type = ARM_CP_CONST, 8724 .accessfn = access_aa32_tid3, 8725 .resetvalue = cpu->isar.id_pfr0 }, 8726 /* 8727 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 8728 * the value of the GIC field until after we define these regs. 8729 */ 8730 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8731 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8732 .access = PL1_R, .type = ARM_CP_NO_RAW, 8733 .accessfn = access_aa32_tid3, 8734 #ifdef CONFIG_USER_ONLY 8735 .type = ARM_CP_CONST, 8736 .resetvalue = cpu->isar.id_pfr1, 8737 #else 8738 .type = ARM_CP_NO_RAW, 8739 .accessfn = access_aa32_tid3, 8740 .readfn = id_pfr1_read, 8741 .writefn = arm_cp_write_ignore 8742 #endif 8743 }, 8744 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8746 .access = PL1_R, .type = ARM_CP_CONST, 8747 .accessfn = access_aa32_tid3, 8748 .resetvalue = cpu->isar.id_dfr0 }, 8749 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8750 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8751 .access = PL1_R, .type = ARM_CP_CONST, 8752 .accessfn = access_aa32_tid3, 8753 .resetvalue = cpu->id_afr0 }, 8754 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8756 .access = PL1_R, .type = ARM_CP_CONST, 8757 .accessfn = access_aa32_tid3, 8758 .resetvalue = cpu->isar.id_mmfr0 }, 8759 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8760 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8761 .access = PL1_R, .type = ARM_CP_CONST, 8762 .accessfn = access_aa32_tid3, 8763 .resetvalue = cpu->isar.id_mmfr1 }, 8764 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8765 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8766 .access = PL1_R, .type = ARM_CP_CONST, 8767 .accessfn = access_aa32_tid3, 8768 .resetvalue = cpu->isar.id_mmfr2 }, 8769 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8770 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8771 .access = PL1_R, .type = ARM_CP_CONST, 8772 .accessfn = access_aa32_tid3, 8773 .resetvalue = cpu->isar.id_mmfr3 }, 8774 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8776 .access = PL1_R, .type = ARM_CP_CONST, 8777 .accessfn = access_aa32_tid3, 8778 .resetvalue = cpu->isar.id_isar0 }, 8779 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8780 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8781 .access = PL1_R, .type = ARM_CP_CONST, 8782 .accessfn = access_aa32_tid3, 8783 .resetvalue = cpu->isar.id_isar1 }, 8784 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8785 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8786 .access = PL1_R, .type = ARM_CP_CONST, 8787 .accessfn = access_aa32_tid3, 8788 .resetvalue = cpu->isar.id_isar2 }, 8789 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8790 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8791 .access = PL1_R, .type = ARM_CP_CONST, 8792 .accessfn = access_aa32_tid3, 8793 .resetvalue = cpu->isar.id_isar3 }, 8794 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8796 .access = PL1_R, .type = ARM_CP_CONST, 8797 .accessfn = access_aa32_tid3, 8798 .resetvalue = cpu->isar.id_isar4 }, 8799 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8800 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8801 .access = PL1_R, .type = ARM_CP_CONST, 8802 .accessfn = access_aa32_tid3, 8803 .resetvalue = cpu->isar.id_isar5 }, 8804 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8805 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8806 .access = PL1_R, .type = ARM_CP_CONST, 8807 .accessfn = access_aa32_tid3, 8808 .resetvalue = cpu->isar.id_mmfr4 }, 8809 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8810 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8811 .access = PL1_R, .type = ARM_CP_CONST, 8812 .accessfn = access_aa32_tid3, 8813 .resetvalue = cpu->isar.id_isar6 }, 8814 }; 8815 define_arm_cp_regs(cpu, v6_idregs); 8816 define_arm_cp_regs(cpu, v6_cp_reginfo); 8817 } else { 8818 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8819 } 8820 if (arm_feature(env, ARM_FEATURE_V6K)) { 8821 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8822 } 8823 if (arm_feature(env, ARM_FEATURE_V7MP) && 8824 !arm_feature(env, ARM_FEATURE_PMSA)) { 8825 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8826 } 8827 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8828 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8829 } 8830 if (arm_feature(env, ARM_FEATURE_V7)) { 8831 ARMCPRegInfo clidr = { 8832 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8833 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8834 .access = PL1_R, .type = ARM_CP_CONST, 8835 .accessfn = access_tid4, 8836 .fgt = FGT_CLIDR_EL1, 8837 .resetvalue = cpu->clidr 8838 }; 8839 define_one_arm_cp_reg(cpu, &clidr); 8840 define_arm_cp_regs(cpu, v7_cp_reginfo); 8841 define_debug_regs(cpu); 8842 define_pmu_regs(cpu); 8843 } else { 8844 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8845 } 8846 if (arm_feature(env, ARM_FEATURE_V8)) { 8847 /* 8848 * v8 ID registers, which all have impdef reset values. 8849 * Note that within the ID register ranges the unused slots 8850 * must all RAZ, not UNDEF; future architecture versions may 8851 * define new registers here. 8852 * ID registers which are AArch64 views of the AArch32 ID registers 8853 * which already existed in v6 and v7 are handled elsewhere, 8854 * in v6_idregs[]. 8855 */ 8856 int i; 8857 ARMCPRegInfo v8_idregs[] = { 8858 /* 8859 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8860 * emulation because we don't know the right value for the 8861 * GIC field until after we define these regs. 8862 */ 8863 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8864 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8865 .access = PL1_R, 8866 #ifdef CONFIG_USER_ONLY 8867 .type = ARM_CP_CONST, 8868 .resetvalue = cpu->isar.id_aa64pfr0 8869 #else 8870 .type = ARM_CP_NO_RAW, 8871 .accessfn = access_aa64_tid3, 8872 .readfn = id_aa64pfr0_read, 8873 .writefn = arm_cp_write_ignore 8874 #endif 8875 }, 8876 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8877 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8878 .access = PL1_R, .type = ARM_CP_CONST, 8879 .accessfn = access_aa64_tid3, 8880 .resetvalue = cpu->isar.id_aa64pfr1}, 8881 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8882 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8883 .access = PL1_R, .type = ARM_CP_CONST, 8884 .accessfn = access_aa64_tid3, 8885 .resetvalue = 0 }, 8886 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8887 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8888 .access = PL1_R, .type = ARM_CP_CONST, 8889 .accessfn = access_aa64_tid3, 8890 .resetvalue = 0 }, 8891 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8892 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8893 .access = PL1_R, .type = ARM_CP_CONST, 8894 .accessfn = access_aa64_tid3, 8895 .resetvalue = cpu->isar.id_aa64zfr0 }, 8896 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8897 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8898 .access = PL1_R, .type = ARM_CP_CONST, 8899 .accessfn = access_aa64_tid3, 8900 .resetvalue = cpu->isar.id_aa64smfr0 }, 8901 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8902 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8903 .access = PL1_R, .type = ARM_CP_CONST, 8904 .accessfn = access_aa64_tid3, 8905 .resetvalue = 0 }, 8906 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8908 .access = PL1_R, .type = ARM_CP_CONST, 8909 .accessfn = access_aa64_tid3, 8910 .resetvalue = 0 }, 8911 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8912 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8913 .access = PL1_R, .type = ARM_CP_CONST, 8914 .accessfn = access_aa64_tid3, 8915 .resetvalue = cpu->isar.id_aa64dfr0 }, 8916 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8917 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8918 .access = PL1_R, .type = ARM_CP_CONST, 8919 .accessfn = access_aa64_tid3, 8920 .resetvalue = cpu->isar.id_aa64dfr1 }, 8921 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8922 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8923 .access = PL1_R, .type = ARM_CP_CONST, 8924 .accessfn = access_aa64_tid3, 8925 .resetvalue = 0 }, 8926 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8928 .access = PL1_R, .type = ARM_CP_CONST, 8929 .accessfn = access_aa64_tid3, 8930 .resetvalue = 0 }, 8931 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8932 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8933 .access = PL1_R, .type = ARM_CP_CONST, 8934 .accessfn = access_aa64_tid3, 8935 .resetvalue = cpu->id_aa64afr0 }, 8936 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8938 .access = PL1_R, .type = ARM_CP_CONST, 8939 .accessfn = access_aa64_tid3, 8940 .resetvalue = cpu->id_aa64afr1 }, 8941 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8942 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8943 .access = PL1_R, .type = ARM_CP_CONST, 8944 .accessfn = access_aa64_tid3, 8945 .resetvalue = 0 }, 8946 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8948 .access = PL1_R, .type = ARM_CP_CONST, 8949 .accessfn = access_aa64_tid3, 8950 .resetvalue = 0 }, 8951 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8952 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8953 .access = PL1_R, .type = ARM_CP_CONST, 8954 .accessfn = access_aa64_tid3, 8955 .resetvalue = cpu->isar.id_aa64isar0 }, 8956 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8957 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8958 .access = PL1_R, .type = ARM_CP_CONST, 8959 .accessfn = access_aa64_tid3, 8960 .resetvalue = cpu->isar.id_aa64isar1 }, 8961 { .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64, 8962 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8963 .access = PL1_R, .type = ARM_CP_CONST, 8964 .accessfn = access_aa64_tid3, 8965 .resetvalue = cpu->isar.id_aa64isar2 }, 8966 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8968 .access = PL1_R, .type = ARM_CP_CONST, 8969 .accessfn = access_aa64_tid3, 8970 .resetvalue = 0 }, 8971 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8972 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8973 .access = PL1_R, .type = ARM_CP_CONST, 8974 .accessfn = access_aa64_tid3, 8975 .resetvalue = 0 }, 8976 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8977 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8978 .access = PL1_R, .type = ARM_CP_CONST, 8979 .accessfn = access_aa64_tid3, 8980 .resetvalue = 0 }, 8981 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8982 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8983 .access = PL1_R, .type = ARM_CP_CONST, 8984 .accessfn = access_aa64_tid3, 8985 .resetvalue = 0 }, 8986 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8988 .access = PL1_R, .type = ARM_CP_CONST, 8989 .accessfn = access_aa64_tid3, 8990 .resetvalue = 0 }, 8991 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8993 .access = PL1_R, .type = ARM_CP_CONST, 8994 .accessfn = access_aa64_tid3, 8995 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8996 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8997 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8998 .access = PL1_R, .type = ARM_CP_CONST, 8999 .accessfn = access_aa64_tid3, 9000 .resetvalue = cpu->isar.id_aa64mmfr1 }, 9001 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 9002 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 9003 .access = PL1_R, .type = ARM_CP_CONST, 9004 .accessfn = access_aa64_tid3, 9005 .resetvalue = cpu->isar.id_aa64mmfr2 }, 9006 { .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64, 9007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 9008 .access = PL1_R, .type = ARM_CP_CONST, 9009 .accessfn = access_aa64_tid3, 9010 .resetvalue = cpu->isar.id_aa64mmfr3 }, 9011 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9012 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 9013 .access = PL1_R, .type = ARM_CP_CONST, 9014 .accessfn = access_aa64_tid3, 9015 .resetvalue = 0 }, 9016 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9017 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 9018 .access = PL1_R, .type = ARM_CP_CONST, 9019 .accessfn = access_aa64_tid3, 9020 .resetvalue = 0 }, 9021 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9022 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 9023 .access = PL1_R, .type = ARM_CP_CONST, 9024 .accessfn = access_aa64_tid3, 9025 .resetvalue = 0 }, 9026 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 9027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 9028 .access = PL1_R, .type = ARM_CP_CONST, 9029 .accessfn = access_aa64_tid3, 9030 .resetvalue = 0 }, 9031 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 9032 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9033 .access = PL1_R, .type = ARM_CP_CONST, 9034 .accessfn = access_aa64_tid3, 9035 .resetvalue = cpu->isar.mvfr0 }, 9036 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 9037 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9038 .access = PL1_R, .type = ARM_CP_CONST, 9039 .accessfn = access_aa64_tid3, 9040 .resetvalue = cpu->isar.mvfr1 }, 9041 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 9042 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9043 .access = PL1_R, .type = ARM_CP_CONST, 9044 .accessfn = access_aa64_tid3, 9045 .resetvalue = cpu->isar.mvfr2 }, 9046 /* 9047 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 9048 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 9049 * as RAZ, since it is in the "reserved for future ID 9050 * registers, RAZ" part of the AArch32 encoding space. 9051 */ 9052 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 9053 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 9054 .access = PL1_R, .type = ARM_CP_CONST, 9055 .accessfn = access_aa64_tid3, 9056 .resetvalue = 0 }, 9057 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 9058 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 9059 .access = PL1_R, .type = ARM_CP_CONST, 9060 .accessfn = access_aa64_tid3, 9061 .resetvalue = 0 }, 9062 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 9063 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 9064 .access = PL1_R, .type = ARM_CP_CONST, 9065 .accessfn = access_aa64_tid3, 9066 .resetvalue = 0 }, 9067 /* 9068 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 9069 * they're also RAZ for AArch64, and in v8 are gradually 9070 * being filled with AArch64-view-of-AArch32-ID-register 9071 * for new ID registers. 9072 */ 9073 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 9074 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 9075 .access = PL1_R, .type = ARM_CP_CONST, 9076 .accessfn = access_aa64_tid3, 9077 .resetvalue = 0 }, 9078 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 9079 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 9080 .access = PL1_R, .type = ARM_CP_CONST, 9081 .accessfn = access_aa64_tid3, 9082 .resetvalue = cpu->isar.id_pfr2 }, 9083 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 9084 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 9085 .access = PL1_R, .type = ARM_CP_CONST, 9086 .accessfn = access_aa64_tid3, 9087 .resetvalue = cpu->isar.id_dfr1 }, 9088 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 9089 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 9090 .access = PL1_R, .type = ARM_CP_CONST, 9091 .accessfn = access_aa64_tid3, 9092 .resetvalue = cpu->isar.id_mmfr5 }, 9093 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 9094 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 9095 .access = PL1_R, .type = ARM_CP_CONST, 9096 .accessfn = access_aa64_tid3, 9097 .resetvalue = 0 }, 9098 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 9099 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 9100 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9101 .fgt = FGT_PMCEIDN_EL0, 9102 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 9103 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 9104 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 9105 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9106 .fgt = FGT_PMCEIDN_EL0, 9107 .resetvalue = cpu->pmceid0 }, 9108 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 9109 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 9110 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9111 .fgt = FGT_PMCEIDN_EL0, 9112 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 9113 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 9114 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 9115 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 9116 .fgt = FGT_PMCEIDN_EL0, 9117 .resetvalue = cpu->pmceid1 }, 9118 }; 9119 #ifdef CONFIG_USER_ONLY 9120 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 9121 { .name = "ID_AA64PFR0_EL1", 9122 .exported_bits = R_ID_AA64PFR0_FP_MASK | 9123 R_ID_AA64PFR0_ADVSIMD_MASK | 9124 R_ID_AA64PFR0_SVE_MASK | 9125 R_ID_AA64PFR0_DIT_MASK, 9126 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 9127 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 9128 { .name = "ID_AA64PFR1_EL1", 9129 .exported_bits = R_ID_AA64PFR1_BT_MASK | 9130 R_ID_AA64PFR1_SSBS_MASK | 9131 R_ID_AA64PFR1_MTE_MASK | 9132 R_ID_AA64PFR1_SME_MASK }, 9133 { .name = "ID_AA64PFR*_EL1_RESERVED", 9134 .is_glob = true }, 9135 { .name = "ID_AA64ZFR0_EL1", 9136 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 9137 R_ID_AA64ZFR0_AES_MASK | 9138 R_ID_AA64ZFR0_BITPERM_MASK | 9139 R_ID_AA64ZFR0_BFLOAT16_MASK | 9140 R_ID_AA64ZFR0_B16B16_MASK | 9141 R_ID_AA64ZFR0_SHA3_MASK | 9142 R_ID_AA64ZFR0_SM4_MASK | 9143 R_ID_AA64ZFR0_I8MM_MASK | 9144 R_ID_AA64ZFR0_F32MM_MASK | 9145 R_ID_AA64ZFR0_F64MM_MASK }, 9146 { .name = "ID_AA64SMFR0_EL1", 9147 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 9148 R_ID_AA64SMFR0_BI32I32_MASK | 9149 R_ID_AA64SMFR0_B16F32_MASK | 9150 R_ID_AA64SMFR0_F16F32_MASK | 9151 R_ID_AA64SMFR0_I8I32_MASK | 9152 R_ID_AA64SMFR0_F16F16_MASK | 9153 R_ID_AA64SMFR0_B16B16_MASK | 9154 R_ID_AA64SMFR0_I16I32_MASK | 9155 R_ID_AA64SMFR0_F64F64_MASK | 9156 R_ID_AA64SMFR0_I16I64_MASK | 9157 R_ID_AA64SMFR0_SMEVER_MASK | 9158 R_ID_AA64SMFR0_FA64_MASK }, 9159 { .name = "ID_AA64MMFR0_EL1", 9160 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 9161 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 9162 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 9163 { .name = "ID_AA64MMFR1_EL1", 9164 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 9165 { .name = "ID_AA64MMFR2_EL1", 9166 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 9167 { .name = "ID_AA64MMFR3_EL1", 9168 .exported_bits = 0 }, 9169 { .name = "ID_AA64MMFR*_EL1_RESERVED", 9170 .is_glob = true }, 9171 { .name = "ID_AA64DFR0_EL1", 9172 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 9173 { .name = "ID_AA64DFR1_EL1" }, 9174 { .name = "ID_AA64DFR*_EL1_RESERVED", 9175 .is_glob = true }, 9176 { .name = "ID_AA64AFR*", 9177 .is_glob = true }, 9178 { .name = "ID_AA64ISAR0_EL1", 9179 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 9180 R_ID_AA64ISAR0_SHA1_MASK | 9181 R_ID_AA64ISAR0_SHA2_MASK | 9182 R_ID_AA64ISAR0_CRC32_MASK | 9183 R_ID_AA64ISAR0_ATOMIC_MASK | 9184 R_ID_AA64ISAR0_RDM_MASK | 9185 R_ID_AA64ISAR0_SHA3_MASK | 9186 R_ID_AA64ISAR0_SM3_MASK | 9187 R_ID_AA64ISAR0_SM4_MASK | 9188 R_ID_AA64ISAR0_DP_MASK | 9189 R_ID_AA64ISAR0_FHM_MASK | 9190 R_ID_AA64ISAR0_TS_MASK | 9191 R_ID_AA64ISAR0_RNDR_MASK }, 9192 { .name = "ID_AA64ISAR1_EL1", 9193 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 9194 R_ID_AA64ISAR1_APA_MASK | 9195 R_ID_AA64ISAR1_API_MASK | 9196 R_ID_AA64ISAR1_JSCVT_MASK | 9197 R_ID_AA64ISAR1_FCMA_MASK | 9198 R_ID_AA64ISAR1_LRCPC_MASK | 9199 R_ID_AA64ISAR1_GPA_MASK | 9200 R_ID_AA64ISAR1_GPI_MASK | 9201 R_ID_AA64ISAR1_FRINTTS_MASK | 9202 R_ID_AA64ISAR1_SB_MASK | 9203 R_ID_AA64ISAR1_BF16_MASK | 9204 R_ID_AA64ISAR1_DGH_MASK | 9205 R_ID_AA64ISAR1_I8MM_MASK }, 9206 { .name = "ID_AA64ISAR2_EL1", 9207 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 9208 R_ID_AA64ISAR2_RPRES_MASK | 9209 R_ID_AA64ISAR2_GPA3_MASK | 9210 R_ID_AA64ISAR2_APA3_MASK | 9211 R_ID_AA64ISAR2_MOPS_MASK | 9212 R_ID_AA64ISAR2_BC_MASK | 9213 R_ID_AA64ISAR2_RPRFM_MASK | 9214 R_ID_AA64ISAR2_CSSC_MASK }, 9215 { .name = "ID_AA64ISAR*_EL1_RESERVED", 9216 .is_glob = true }, 9217 }; 9218 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 9219 #endif 9220 /* 9221 * RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL. 9222 * TODO: For RMR, a write with bit 1 set should do something with 9223 * cpu_reset(). In the meantime, "the bit is strictly a request", 9224 * so we are in spec just ignoring writes. 9225 */ 9226 if (!arm_feature(env, ARM_FEATURE_EL3) && 9227 !arm_feature(env, ARM_FEATURE_EL2)) { 9228 ARMCPRegInfo el1_reset_regs[] = { 9229 { .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 9230 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9231 .access = PL1_R, 9232 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9233 { .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH, 9234 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9235 .access = PL1_RW, .type = ARM_CP_CONST, 9236 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) } 9237 }; 9238 define_arm_cp_regs(cpu, el1_reset_regs); 9239 } 9240 define_arm_cp_regs(cpu, v8_idregs); 9241 define_arm_cp_regs(cpu, v8_cp_reginfo); 9242 if (cpu_isar_feature(aa64_aa32_el1, cpu)) { 9243 define_arm_cp_regs(cpu, v8_aa32_el1_reginfo); 9244 } 9245 9246 for (i = 4; i < 16; i++) { 9247 /* 9248 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 9249 * For pre-v8 cores there are RAZ patterns for these in 9250 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 9251 * v8 extends the "must RAZ" part of the ID register space 9252 * to also cover c0, 0, c{8-15}, {0-7}. 9253 * These are STATE_AA32 because in the AArch64 sysreg space 9254 * c4-c7 is where the AArch64 ID registers live (and we've 9255 * already defined those in v8_idregs[]), and c8-c15 are not 9256 * "must RAZ" for AArch64. 9257 */ 9258 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 9259 ARMCPRegInfo v8_aa32_raz_idregs = { 9260 .name = name, 9261 .state = ARM_CP_STATE_AA32, 9262 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 9263 .access = PL1_R, .type = ARM_CP_CONST, 9264 .accessfn = access_aa64_tid3, 9265 .resetvalue = 0 }; 9266 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 9267 } 9268 } 9269 9270 /* 9271 * Register the base EL2 cpregs. 9272 * Pre v8, these registers are implemented only as part of the 9273 * Virtualization Extensions (EL2 present). Beginning with v8, 9274 * if EL2 is missing but EL3 is enabled, mostly these become 9275 * RES0 from EL3, with some specific exceptions. 9276 */ 9277 if (arm_feature(env, ARM_FEATURE_EL2) 9278 || (arm_feature(env, ARM_FEATURE_EL3) 9279 && arm_feature(env, ARM_FEATURE_V8))) { 9280 uint64_t vmpidr_def = mpidr_read_val(env); 9281 ARMCPRegInfo vpidr_regs[] = { 9282 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 9283 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9284 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9285 .resetvalue = cpu->midr, 9286 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9287 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 9288 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 9289 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 9290 .access = PL2_RW, .resetvalue = cpu->midr, 9291 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9292 .nv2_redirect_offset = 0x88, 9293 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 9294 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 9295 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9296 .access = PL2_RW, .accessfn = access_el3_aa32ns, 9297 .resetvalue = vmpidr_def, 9298 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 9299 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 9300 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 9301 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 9302 .access = PL2_RW, .resetvalue = vmpidr_def, 9303 .type = ARM_CP_EL3_NO_EL2_C_NZ, 9304 .nv2_redirect_offset = 0x50, 9305 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 9306 }; 9307 /* 9308 * The only field of MDCR_EL2 that has a defined architectural reset 9309 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 9310 */ 9311 ARMCPRegInfo mdcr_el2 = { 9312 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 9313 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 9314 .writefn = mdcr_el2_write, 9315 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 9316 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 9317 }; 9318 define_one_arm_cp_reg(cpu, &mdcr_el2); 9319 define_arm_cp_regs(cpu, vpidr_regs); 9320 define_arm_cp_regs(cpu, el2_cp_reginfo); 9321 if (arm_feature(env, ARM_FEATURE_V8)) { 9322 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 9323 } 9324 if (cpu_isar_feature(aa64_sel2, cpu)) { 9325 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 9326 } 9327 /* 9328 * RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL. 9329 * See commentary near RMR_EL1. 9330 */ 9331 if (!arm_feature(env, ARM_FEATURE_EL3)) { 9332 static const ARMCPRegInfo el2_reset_regs[] = { 9333 { .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 9334 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 9335 .access = PL2_R, 9336 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9337 { .name = "RVBAR", .type = ARM_CP_ALIAS, 9338 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 9339 .access = PL2_R, 9340 .fieldoffset = offsetof(CPUARMState, cp15.rvbar) }, 9341 { .name = "RMR_EL2", .state = ARM_CP_STATE_AA64, 9342 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2, 9343 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9344 }; 9345 define_arm_cp_regs(cpu, el2_reset_regs); 9346 } 9347 } 9348 9349 /* Register the base EL3 cpregs. */ 9350 if (arm_feature(env, ARM_FEATURE_EL3)) { 9351 define_arm_cp_regs(cpu, el3_cp_reginfo); 9352 ARMCPRegInfo el3_regs[] = { 9353 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 9354 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 9355 .access = PL3_R, 9356 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), }, 9357 { .name = "RMR_EL3", .state = ARM_CP_STATE_AA64, 9358 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2, 9359 .access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 }, 9360 { .name = "RMR", .state = ARM_CP_STATE_AA32, 9361 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2, 9362 .access = PL3_RW, .type = ARM_CP_CONST, 9363 .resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }, 9364 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 9365 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 9366 .access = PL3_RW, 9367 .raw_writefn = raw_write, .writefn = sctlr_write, 9368 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 9369 .resetvalue = cpu->reset_sctlr }, 9370 }; 9371 9372 define_arm_cp_regs(cpu, el3_regs); 9373 } 9374 /* 9375 * The behaviour of NSACR is sufficiently various that we don't 9376 * try to describe it in a single reginfo: 9377 * if EL3 is 64 bit, then trap to EL3 from S EL1, 9378 * reads as constant 0xc00 from NS EL1 and NS EL2 9379 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 9380 * if v7 without EL3, register doesn't exist 9381 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 9382 */ 9383 if (arm_feature(env, ARM_FEATURE_EL3)) { 9384 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 9385 static const ARMCPRegInfo nsacr = { 9386 .name = "NSACR", .type = ARM_CP_CONST, 9387 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9388 .access = PL1_RW, .accessfn = nsacr_access, 9389 .resetvalue = 0xc00 9390 }; 9391 define_one_arm_cp_reg(cpu, &nsacr); 9392 } else { 9393 static const ARMCPRegInfo nsacr = { 9394 .name = "NSACR", 9395 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9396 .access = PL3_RW | PL1_R, 9397 .resetvalue = 0, 9398 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 9399 }; 9400 define_one_arm_cp_reg(cpu, &nsacr); 9401 } 9402 } else { 9403 if (arm_feature(env, ARM_FEATURE_V8)) { 9404 static const ARMCPRegInfo nsacr = { 9405 .name = "NSACR", .type = ARM_CP_CONST, 9406 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 9407 .access = PL1_R, 9408 .resetvalue = 0xc00 9409 }; 9410 define_one_arm_cp_reg(cpu, &nsacr); 9411 } 9412 } 9413 9414 if (arm_feature(env, ARM_FEATURE_PMSA)) { 9415 if (arm_feature(env, ARM_FEATURE_V6)) { 9416 /* PMSAv6 not implemented */ 9417 assert(arm_feature(env, ARM_FEATURE_V7)); 9418 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9419 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 9420 } else { 9421 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 9422 } 9423 } else { 9424 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 9425 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 9426 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 9427 if (cpu_isar_feature(aa32_hpd, cpu)) { 9428 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 9429 } 9430 } 9431 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 9432 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 9433 } 9434 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 9435 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 9436 } 9437 if (cpu_isar_feature(aa64_ecv_traps, cpu)) { 9438 define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo); 9439 } 9440 #ifndef CONFIG_USER_ONLY 9441 if (cpu_isar_feature(aa64_ecv, cpu)) { 9442 define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo); 9443 } 9444 #endif 9445 if (arm_feature(env, ARM_FEATURE_VAPA)) { 9446 ARMCPRegInfo vapa_cp_reginfo[] = { 9447 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 9448 .access = PL1_RW, .resetvalue = 0, 9449 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 9450 offsetoflow32(CPUARMState, cp15.par_ns) }, 9451 .writefn = par_write}, 9452 #ifndef CONFIG_USER_ONLY 9453 /* This underdecoding is safe because the reginfo is NO_RAW. */ 9454 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 9455 .access = PL1_W, .accessfn = ats_access, 9456 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 9457 #endif 9458 }; 9459 9460 /* 9461 * When LPAE exists this 32-bit PAR register is an alias of the 9462 * 64-bit AArch32 PAR register defined in lpae_cp_reginfo[] 9463 */ 9464 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9465 vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB; 9466 } 9467 define_arm_cp_regs(cpu, vapa_cp_reginfo); 9468 } 9469 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 9470 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 9471 } 9472 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 9473 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 9474 } 9475 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 9476 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 9477 } 9478 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 9479 define_arm_cp_regs(cpu, omap_cp_reginfo); 9480 } 9481 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 9482 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 9483 } 9484 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9485 define_arm_cp_regs(cpu, xscale_cp_reginfo); 9486 } 9487 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 9488 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 9489 } 9490 if (arm_feature(env, ARM_FEATURE_LPAE)) { 9491 define_arm_cp_regs(cpu, lpae_cp_reginfo); 9492 } 9493 if (cpu_isar_feature(aa32_jazelle, cpu)) { 9494 define_arm_cp_regs(cpu, jazelle_regs); 9495 } 9496 /* 9497 * Slightly awkwardly, the OMAP and StrongARM cores need all of 9498 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 9499 * be read-only (ie write causes UNDEF exception). 9500 */ 9501 { 9502 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 9503 /* 9504 * Pre-v8 MIDR space. 9505 * Note that the MIDR isn't a simple constant register because 9506 * of the TI925 behaviour where writes to another register can 9507 * cause the MIDR value to change. 9508 * 9509 * Unimplemented registers in the c15 0 0 0 space default to 9510 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 9511 * and friends override accordingly. 9512 */ 9513 { .name = "MIDR", 9514 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 9515 .access = PL1_R, .resetvalue = cpu->midr, 9516 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 9517 .readfn = midr_read, 9518 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9519 .type = ARM_CP_OVERRIDE }, 9520 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 9521 { .name = "DUMMY", 9522 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 9523 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9524 { .name = "DUMMY", 9525 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 9526 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9527 { .name = "DUMMY", 9528 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 9529 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9530 { .name = "DUMMY", 9531 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 9532 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9533 { .name = "DUMMY", 9534 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 9535 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 9536 }; 9537 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 9538 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 9539 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 9540 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 9541 .fgt = FGT_MIDR_EL1, 9542 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 9543 .readfn = midr_read }, 9544 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 9545 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 9546 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 9547 .access = PL1_R, .resetvalue = cpu->midr }, 9548 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 9549 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 9550 .access = PL1_R, 9551 .accessfn = access_aa64_tid1, 9552 .fgt = FGT_REVIDR_EL1, 9553 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 9554 }; 9555 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 9556 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB, 9557 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9558 .access = PL1_R, .resetvalue = cpu->midr 9559 }; 9560 ARMCPRegInfo id_cp_reginfo[] = { 9561 /* These are common to v8 and pre-v8 */ 9562 { .name = "CTR", 9563 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 9564 .access = PL1_R, .accessfn = ctr_el0_access, 9565 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9566 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 9567 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 9568 .access = PL0_R, .accessfn = ctr_el0_access, 9569 .fgt = FGT_CTR_EL0, 9570 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 9571 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 9572 { .name = "TCMTR", 9573 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 9574 .access = PL1_R, 9575 .accessfn = access_aa32_tid1, 9576 .type = ARM_CP_CONST, .resetvalue = 0 }, 9577 }; 9578 /* TLBTR is specific to VMSA */ 9579 ARMCPRegInfo id_tlbtr_reginfo = { 9580 .name = "TLBTR", 9581 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 9582 .access = PL1_R, 9583 .accessfn = access_aa32_tid1, 9584 .type = ARM_CP_CONST, .resetvalue = 0, 9585 }; 9586 /* MPUIR is specific to PMSA V6+ */ 9587 ARMCPRegInfo id_mpuir_reginfo = { 9588 .name = "MPUIR", 9589 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 9590 .access = PL1_R, .type = ARM_CP_CONST, 9591 .resetvalue = cpu->pmsav7_dregion << 8 9592 }; 9593 /* HMPUIR is specific to PMSA V8 */ 9594 ARMCPRegInfo id_hmpuir_reginfo = { 9595 .name = "HMPUIR", 9596 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 9597 .access = PL2_R, .type = ARM_CP_CONST, 9598 .resetvalue = cpu->pmsav8r_hdregion 9599 }; 9600 static const ARMCPRegInfo crn0_wi_reginfo = { 9601 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 9602 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 9603 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 9604 }; 9605 #ifdef CONFIG_USER_ONLY 9606 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 9607 { .name = "MIDR_EL1", 9608 .exported_bits = R_MIDR_EL1_REVISION_MASK | 9609 R_MIDR_EL1_PARTNUM_MASK | 9610 R_MIDR_EL1_ARCHITECTURE_MASK | 9611 R_MIDR_EL1_VARIANT_MASK | 9612 R_MIDR_EL1_IMPLEMENTER_MASK }, 9613 { .name = "REVIDR_EL1" }, 9614 }; 9615 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 9616 #endif 9617 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 9618 arm_feature(env, ARM_FEATURE_STRONGARM)) { 9619 size_t i; 9620 /* 9621 * Register the blanket "writes ignored" value first to cover the 9622 * whole space. Then update the specific ID registers to allow write 9623 * access, so that they ignore writes rather than causing them to 9624 * UNDEF. 9625 */ 9626 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 9627 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 9628 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 9629 } 9630 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 9631 id_cp_reginfo[i].access = PL1_RW; 9632 } 9633 id_mpuir_reginfo.access = PL1_RW; 9634 id_tlbtr_reginfo.access = PL1_RW; 9635 } 9636 if (arm_feature(env, ARM_FEATURE_V8)) { 9637 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 9638 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9639 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 9640 } 9641 } else { 9642 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 9643 } 9644 define_arm_cp_regs(cpu, id_cp_reginfo); 9645 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 9646 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 9647 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 9648 arm_feature(env, ARM_FEATURE_V8)) { 9649 uint32_t i = 0; 9650 char *tmp_string; 9651 9652 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9653 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 9654 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 9655 9656 /* Register alias is only valid for first 32 indexes */ 9657 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 9658 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9659 uint8_t opc1 = extract32(i, 4, 1); 9660 uint8_t opc2 = extract32(i, 0, 1) << 2; 9661 9662 tmp_string = g_strdup_printf("PRBAR%u", i); 9663 ARMCPRegInfo tmp_prbarn_reginfo = { 9664 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9665 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9666 .access = PL1_RW, .resetvalue = 0, 9667 .accessfn = access_tvm_trvm, 9668 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9669 }; 9670 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 9671 g_free(tmp_string); 9672 9673 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9674 tmp_string = g_strdup_printf("PRLAR%u", i); 9675 ARMCPRegInfo tmp_prlarn_reginfo = { 9676 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 9677 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9678 .access = PL1_RW, .resetvalue = 0, 9679 .accessfn = access_tvm_trvm, 9680 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9681 }; 9682 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 9683 g_free(tmp_string); 9684 } 9685 9686 /* Register alias is only valid for first 32 indexes */ 9687 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 9688 uint8_t crm = 0b1000 | extract32(i, 1, 3); 9689 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 9690 uint8_t opc2 = extract32(i, 0, 1) << 2; 9691 9692 tmp_string = g_strdup_printf("HPRBAR%u", i); 9693 ARMCPRegInfo tmp_hprbarn_reginfo = { 9694 .name = tmp_string, 9695 .type = ARM_CP_NO_RAW, 9696 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9697 .access = PL2_RW, .resetvalue = 0, 9698 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9699 }; 9700 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 9701 g_free(tmp_string); 9702 9703 opc2 = extract32(i, 0, 1) << 2 | 0x1; 9704 tmp_string = g_strdup_printf("HPRLAR%u", i); 9705 ARMCPRegInfo tmp_hprlarn_reginfo = { 9706 .name = tmp_string, 9707 .type = ARM_CP_NO_RAW, 9708 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 9709 .access = PL2_RW, .resetvalue = 0, 9710 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 9711 }; 9712 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 9713 g_free(tmp_string); 9714 } 9715 } else if (arm_feature(env, ARM_FEATURE_V7)) { 9716 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 9717 } 9718 } 9719 9720 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 9721 ARMCPRegInfo mpidr_cp_reginfo[] = { 9722 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 9723 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 9724 .fgt = FGT_MPIDR_EL1, 9725 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 9726 }; 9727 #ifdef CONFIG_USER_ONLY 9728 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 9729 { .name = "MPIDR_EL1", 9730 .fixed_bits = 0x0000000080000000 }, 9731 }; 9732 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 9733 #endif 9734 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 9735 } 9736 9737 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 9738 ARMCPRegInfo auxcr_reginfo[] = { 9739 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 9740 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 9741 .access = PL1_RW, .accessfn = access_tacr, 9742 .nv2_redirect_offset = 0x118, 9743 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 9744 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 9745 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 9746 .access = PL2_RW, .type = ARM_CP_CONST, 9747 .resetvalue = 0 }, 9748 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 9749 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 9750 .access = PL3_RW, .type = ARM_CP_CONST, 9751 .resetvalue = 0 }, 9752 }; 9753 define_arm_cp_regs(cpu, auxcr_reginfo); 9754 if (cpu_isar_feature(aa32_ac2, cpu)) { 9755 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 9756 } 9757 } 9758 9759 if (arm_feature(env, ARM_FEATURE_CBAR)) { 9760 /* 9761 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 9762 * There are two flavours: 9763 * (1) older 32-bit only cores have a simple 32-bit CBAR 9764 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 9765 * 32-bit register visible to AArch32 at a different encoding 9766 * to the "flavour 1" register and with the bits rearranged to 9767 * be able to squash a 64-bit address into the 32-bit view. 9768 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 9769 * in future if we support AArch32-only configs of some of the 9770 * AArch64 cores we might need to add a specific feature flag 9771 * to indicate cores with "flavour 2" CBAR. 9772 */ 9773 if (arm_feature(env, ARM_FEATURE_V8)) { 9774 /* 32 bit view is [31:18] 0...0 [43:32]. */ 9775 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 9776 | extract64(cpu->reset_cbar, 32, 12); 9777 ARMCPRegInfo cbar_reginfo[] = { 9778 { .name = "CBAR", 9779 .type = ARM_CP_CONST, 9780 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 9781 .access = PL1_R, .resetvalue = cbar32 }, 9782 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 9783 .type = ARM_CP_CONST, 9784 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 9785 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 9786 }; 9787 /* We don't implement a r/w 64 bit CBAR currently */ 9788 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 9789 define_arm_cp_regs(cpu, cbar_reginfo); 9790 } else { 9791 ARMCPRegInfo cbar = { 9792 .name = "CBAR", 9793 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 9794 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9795 .fieldoffset = offsetof(CPUARMState, 9796 cp15.c15_config_base_address) 9797 }; 9798 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9799 cbar.access = PL1_R; 9800 cbar.fieldoffset = 0; 9801 cbar.type = ARM_CP_CONST; 9802 } 9803 define_one_arm_cp_reg(cpu, &cbar); 9804 } 9805 } 9806 9807 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9808 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9809 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9810 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9811 .access = PL1_RW, .writefn = vbar_write, 9812 .accessfn = access_nv1, 9813 .fgt = FGT_VBAR_EL1, 9814 .nv2_redirect_offset = 0x250 | NV2_REDIR_NV1, 9815 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9816 offsetof(CPUARMState, cp15.vbar_ns) }, 9817 .resetvalue = 0 }, 9818 }; 9819 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9820 } 9821 9822 /* Generic registers whose values depend on the implementation */ 9823 { 9824 ARMCPRegInfo sctlr = { 9825 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9826 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9827 .access = PL1_RW, .accessfn = access_tvm_trvm, 9828 .fgt = FGT_SCTLR_EL1, 9829 .nv2_redirect_offset = 0x110 | NV2_REDIR_NV1, 9830 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9831 offsetof(CPUARMState, cp15.sctlr_ns) }, 9832 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9833 .raw_writefn = raw_write, 9834 }; 9835 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9836 /* 9837 * Normally we would always end the TB on an SCTLR write, but Linux 9838 * arch/arm/mach-pxa/sleep.S expects two instructions following 9839 * an MMU enable to execute from cache. Imitate this behaviour. 9840 */ 9841 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9842 } 9843 define_one_arm_cp_reg(cpu, &sctlr); 9844 9845 if (arm_feature(env, ARM_FEATURE_PMSA) && 9846 arm_feature(env, ARM_FEATURE_V8)) { 9847 ARMCPRegInfo vsctlr = { 9848 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9849 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9850 .access = PL2_RW, .resetvalue = 0x0, 9851 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9852 }; 9853 define_one_arm_cp_reg(cpu, &vsctlr); 9854 } 9855 } 9856 9857 if (cpu_isar_feature(aa64_lor, cpu)) { 9858 define_arm_cp_regs(cpu, lor_reginfo); 9859 } 9860 if (cpu_isar_feature(aa64_pan, cpu)) { 9861 define_one_arm_cp_reg(cpu, &pan_reginfo); 9862 } 9863 #ifndef CONFIG_USER_ONLY 9864 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9865 define_arm_cp_regs(cpu, ats1e1_reginfo); 9866 } 9867 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9868 define_arm_cp_regs(cpu, ats1cp_reginfo); 9869 } 9870 #endif 9871 if (cpu_isar_feature(aa64_uao, cpu)) { 9872 define_one_arm_cp_reg(cpu, &uao_reginfo); 9873 } 9874 9875 if (cpu_isar_feature(aa64_dit, cpu)) { 9876 define_one_arm_cp_reg(cpu, &dit_reginfo); 9877 } 9878 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9879 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9880 } 9881 if (cpu_isar_feature(any_ras, cpu)) { 9882 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9883 } 9884 9885 if (cpu_isar_feature(aa64_vh, cpu) || 9886 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9887 define_one_arm_cp_reg(cpu, &contextidr_el2); 9888 } 9889 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9890 define_arm_cp_regs(cpu, vhe_reginfo); 9891 } 9892 9893 if (cpu_isar_feature(aa64_sve, cpu)) { 9894 define_arm_cp_regs(cpu, zcr_reginfo); 9895 } 9896 9897 if (cpu_isar_feature(aa64_hcx, cpu)) { 9898 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9899 } 9900 9901 #ifdef TARGET_AARCH64 9902 if (cpu_isar_feature(aa64_sme, cpu)) { 9903 define_arm_cp_regs(cpu, sme_reginfo); 9904 } 9905 if (cpu_isar_feature(aa64_pauth, cpu)) { 9906 define_arm_cp_regs(cpu, pauth_reginfo); 9907 } 9908 if (cpu_isar_feature(aa64_rndr, cpu)) { 9909 define_arm_cp_regs(cpu, rndr_reginfo); 9910 } 9911 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9912 define_arm_cp_regs(cpu, tlbirange_reginfo); 9913 } 9914 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9915 define_arm_cp_regs(cpu, tlbios_reginfo); 9916 } 9917 /* Data Cache clean instructions up to PoP */ 9918 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9919 define_one_arm_cp_reg(cpu, dcpop_reg); 9920 9921 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9922 define_one_arm_cp_reg(cpu, dcpodp_reg); 9923 } 9924 } 9925 9926 /* 9927 * If full MTE is enabled, add all of the system registers. 9928 * If only "instructions available at EL0" are enabled, 9929 * then define only a RAZ/WI version of PSTATE.TCO. 9930 */ 9931 if (cpu_isar_feature(aa64_mte, cpu)) { 9932 ARMCPRegInfo gmid_reginfo = { 9933 .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 9934 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 9935 .access = PL1_R, .accessfn = access_aa64_tid5, 9936 .type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize, 9937 }; 9938 define_one_arm_cp_reg(cpu, &gmid_reginfo); 9939 define_arm_cp_regs(cpu, mte_reginfo); 9940 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9941 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9942 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9943 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9944 } 9945 9946 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9947 define_arm_cp_regs(cpu, scxtnum_reginfo); 9948 } 9949 9950 if (cpu_isar_feature(aa64_fgt, cpu)) { 9951 define_arm_cp_regs(cpu, fgt_reginfo); 9952 } 9953 9954 if (cpu_isar_feature(aa64_rme, cpu)) { 9955 define_arm_cp_regs(cpu, rme_reginfo); 9956 if (cpu_isar_feature(aa64_mte, cpu)) { 9957 define_arm_cp_regs(cpu, rme_mte_reginfo); 9958 } 9959 } 9960 9961 if (cpu_isar_feature(aa64_nv2, cpu)) { 9962 define_arm_cp_regs(cpu, nv2_reginfo); 9963 } 9964 9965 if (cpu_isar_feature(aa64_nmi, cpu)) { 9966 define_arm_cp_regs(cpu, nmi_reginfo); 9967 } 9968 #endif 9969 9970 if (cpu_isar_feature(any_predinv, cpu)) { 9971 define_arm_cp_regs(cpu, predinv_reginfo); 9972 } 9973 9974 if (cpu_isar_feature(any_ccidx, cpu)) { 9975 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9976 } 9977 9978 #ifndef CONFIG_USER_ONLY 9979 /* 9980 * Register redirections and aliases must be done last, 9981 * after the registers from the other extensions have been defined. 9982 */ 9983 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9984 define_arm_vh_e2h_redirects_aliases(cpu); 9985 } 9986 #endif 9987 } 9988 9989 /* 9990 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9991 * add a single reginfo struct to the hash table. 9992 */ 9993 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9994 void *opaque, CPState state, 9995 CPSecureState secstate, 9996 int crm, int opc1, int opc2, 9997 const char *name) 9998 { 9999 CPUARMState *env = &cpu->env; 10000 uint32_t key; 10001 ARMCPRegInfo *r2; 10002 bool is64 = r->type & ARM_CP_64BIT; 10003 bool ns = secstate & ARM_CP_SECSTATE_NS; 10004 int cp = r->cp; 10005 size_t name_len; 10006 bool make_const; 10007 10008 switch (state) { 10009 case ARM_CP_STATE_AA32: 10010 /* We assume it is a cp15 register if the .cp field is left unset. */ 10011 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 10012 cp = 15; 10013 } 10014 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 10015 break; 10016 case ARM_CP_STATE_AA64: 10017 /* 10018 * To allow abbreviation of ARMCPRegInfo definitions, we treat 10019 * cp == 0 as equivalent to the value for "standard guest-visible 10020 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 10021 * in their AArch64 view (the .cp value may be non-zero for the 10022 * benefit of the AArch32 view). 10023 */ 10024 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 10025 cp = CP_REG_ARM64_SYSREG_CP; 10026 } 10027 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 10028 break; 10029 default: 10030 g_assert_not_reached(); 10031 } 10032 10033 /* Overriding of an existing definition must be explicitly requested. */ 10034 if (!(r->type & ARM_CP_OVERRIDE)) { 10035 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 10036 if (oldreg) { 10037 assert(oldreg->type & ARM_CP_OVERRIDE); 10038 } 10039 } 10040 10041 /* 10042 * Eliminate registers that are not present because the EL is missing. 10043 * Doing this here makes it easier to put all registers for a given 10044 * feature into the same ARMCPRegInfo array and define them all at once. 10045 */ 10046 make_const = false; 10047 if (arm_feature(env, ARM_FEATURE_EL3)) { 10048 /* 10049 * An EL2 register without EL2 but with EL3 is (usually) RES0. 10050 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 10051 */ 10052 int min_el = ctz32(r->access) / 2; 10053 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 10054 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 10055 return; 10056 } 10057 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 10058 } 10059 } else { 10060 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 10061 ? PL2_RW : PL1_RW); 10062 if ((r->access & max_el) == 0) { 10063 return; 10064 } 10065 } 10066 10067 /* Combine cpreg and name into one allocation. */ 10068 name_len = strlen(name) + 1; 10069 r2 = g_malloc(sizeof(*r2) + name_len); 10070 *r2 = *r; 10071 r2->name = memcpy(r2 + 1, name, name_len); 10072 10073 /* 10074 * Update fields to match the instantiation, overwiting wildcards 10075 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 10076 */ 10077 r2->cp = cp; 10078 r2->crm = crm; 10079 r2->opc1 = opc1; 10080 r2->opc2 = opc2; 10081 r2->state = state; 10082 r2->secure = secstate; 10083 if (opaque) { 10084 r2->opaque = opaque; 10085 } 10086 10087 if (make_const) { 10088 /* This should not have been a very special register to begin. */ 10089 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 10090 assert(old_special == 0 || old_special == ARM_CP_NOP); 10091 /* 10092 * Set the special function to CONST, retaining the other flags. 10093 * This is important for e.g. ARM_CP_SVE so that we still 10094 * take the SVE trap if CPTR_EL3.EZ == 0. 10095 */ 10096 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 10097 /* 10098 * Usually, these registers become RES0, but there are a few 10099 * special cases like VPIDR_EL2 which have a constant non-zero 10100 * value with writes ignored. 10101 */ 10102 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 10103 r2->resetvalue = 0; 10104 } 10105 /* 10106 * ARM_CP_CONST has precedence, so removing the callbacks and 10107 * offsets are not strictly necessary, but it is potentially 10108 * less confusing to debug later. 10109 */ 10110 r2->readfn = NULL; 10111 r2->writefn = NULL; 10112 r2->raw_readfn = NULL; 10113 r2->raw_writefn = NULL; 10114 r2->resetfn = NULL; 10115 r2->fieldoffset = 0; 10116 r2->bank_fieldoffsets[0] = 0; 10117 r2->bank_fieldoffsets[1] = 0; 10118 } else { 10119 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 10120 10121 if (isbanked) { 10122 /* 10123 * Register is banked (using both entries in array). 10124 * Overwriting fieldoffset as the array is only used to define 10125 * banked registers but later only fieldoffset is used. 10126 */ 10127 r2->fieldoffset = r->bank_fieldoffsets[ns]; 10128 } 10129 if (state == ARM_CP_STATE_AA32) { 10130 if (isbanked) { 10131 /* 10132 * If the register is banked then we don't need to migrate or 10133 * reset the 32-bit instance in certain cases: 10134 * 10135 * 1) If the register has both 32-bit and 64-bit instances 10136 * then we can count on the 64-bit instance taking care 10137 * of the non-secure bank. 10138 * 2) If ARMv8 is enabled then we can count on a 64-bit 10139 * version taking care of the secure bank. This requires 10140 * that separate 32 and 64-bit definitions are provided. 10141 */ 10142 if ((r->state == ARM_CP_STATE_BOTH && ns) || 10143 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 10144 r2->type |= ARM_CP_ALIAS; 10145 } 10146 } else if ((secstate != r->secure) && !ns) { 10147 /* 10148 * The register is not banked so we only want to allow 10149 * migration of the non-secure instance. 10150 */ 10151 r2->type |= ARM_CP_ALIAS; 10152 } 10153 10154 if (HOST_BIG_ENDIAN && 10155 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 10156 r2->fieldoffset += sizeof(uint32_t); 10157 } 10158 } 10159 } 10160 10161 /* 10162 * By convention, for wildcarded registers only the first 10163 * entry is used for migration; the others are marked as 10164 * ALIAS so we don't try to transfer the register 10165 * multiple times. Special registers (ie NOP/WFI) are 10166 * never migratable and not even raw-accessible. 10167 */ 10168 if (r2->type & ARM_CP_SPECIAL_MASK) { 10169 r2->type |= ARM_CP_NO_RAW; 10170 } 10171 if (((r->crm == CP_ANY) && crm != 0) || 10172 ((r->opc1 == CP_ANY) && opc1 != 0) || 10173 ((r->opc2 == CP_ANY) && opc2 != 0)) { 10174 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 10175 } 10176 10177 /* 10178 * Check that raw accesses are either forbidden or handled. Note that 10179 * we can't assert this earlier because the setup of fieldoffset for 10180 * banked registers has to be done first. 10181 */ 10182 if (!(r2->type & ARM_CP_NO_RAW)) { 10183 assert(!raw_accessors_invalid(r2)); 10184 } 10185 10186 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 10187 } 10188 10189 10190 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 10191 const ARMCPRegInfo *r, void *opaque) 10192 { 10193 /* 10194 * Define implementations of coprocessor registers. 10195 * We store these in a hashtable because typically 10196 * there are less than 150 registers in a space which 10197 * is 16*16*16*8*8 = 262144 in size. 10198 * Wildcarding is supported for the crm, opc1 and opc2 fields. 10199 * If a register is defined twice then the second definition is 10200 * used, so this can be used to define some generic registers and 10201 * then override them with implementation specific variations. 10202 * At least one of the original and the second definition should 10203 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 10204 * against accidental use. 10205 * 10206 * The state field defines whether the register is to be 10207 * visible in the AArch32 or AArch64 execution state. If the 10208 * state is set to ARM_CP_STATE_BOTH then we synthesise a 10209 * reginfo structure for the AArch32 view, which sees the lower 10210 * 32 bits of the 64 bit register. 10211 * 10212 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 10213 * be wildcarded. AArch64 registers are always considered to be 64 10214 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 10215 * the register, if any. 10216 */ 10217 int crm, opc1, opc2; 10218 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 10219 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 10220 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 10221 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 10222 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 10223 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 10224 CPState state; 10225 10226 /* 64 bit registers have only CRm and Opc1 fields */ 10227 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 10228 /* op0 only exists in the AArch64 encodings */ 10229 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 10230 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 10231 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 10232 /* 10233 * This API is only for Arm's system coprocessors (14 and 15) or 10234 * (M-profile or v7A-and-earlier only) for implementation defined 10235 * coprocessors in the range 0..7. Our decode assumes this, since 10236 * 8..13 can be used for other insns including VFP and Neon. See 10237 * valid_cp() in translate.c. Assert here that we haven't tried 10238 * to use an invalid coprocessor number. 10239 */ 10240 switch (r->state) { 10241 case ARM_CP_STATE_BOTH: 10242 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 10243 if (r->cp == 0) { 10244 break; 10245 } 10246 /* fall through */ 10247 case ARM_CP_STATE_AA32: 10248 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 10249 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 10250 assert(r->cp >= 14 && r->cp <= 15); 10251 } else { 10252 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 10253 } 10254 break; 10255 case ARM_CP_STATE_AA64: 10256 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 10257 break; 10258 default: 10259 g_assert_not_reached(); 10260 } 10261 /* 10262 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 10263 * encodes a minimum access level for the register. We roll this 10264 * runtime check into our general permission check code, so check 10265 * here that the reginfo's specified permissions are strict enough 10266 * to encompass the generic architectural permission check. 10267 */ 10268 if (r->state != ARM_CP_STATE_AA32) { 10269 CPAccessRights mask; 10270 switch (r->opc1) { 10271 case 0: 10272 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 10273 mask = PL0U_R | PL1_RW; 10274 break; 10275 case 1: case 2: 10276 /* min_EL EL1 */ 10277 mask = PL1_RW; 10278 break; 10279 case 3: 10280 /* min_EL EL0 */ 10281 mask = PL0_RW; 10282 break; 10283 case 4: 10284 case 5: 10285 /* min_EL EL2 */ 10286 mask = PL2_RW; 10287 break; 10288 case 6: 10289 /* min_EL EL3 */ 10290 mask = PL3_RW; 10291 break; 10292 case 7: 10293 /* min_EL EL1, secure mode only (we don't check the latter) */ 10294 mask = PL1_RW; 10295 break; 10296 default: 10297 /* broken reginfo with out-of-range opc1 */ 10298 g_assert_not_reached(); 10299 } 10300 /* assert our permissions are not too lax (stricter is fine) */ 10301 assert((r->access & ~mask) == 0); 10302 } 10303 10304 /* 10305 * Check that the register definition has enough info to handle 10306 * reads and writes if they are permitted. 10307 */ 10308 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 10309 if (r->access & PL3_R) { 10310 assert((r->fieldoffset || 10311 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10312 r->readfn); 10313 } 10314 if (r->access & PL3_W) { 10315 assert((r->fieldoffset || 10316 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 10317 r->writefn); 10318 } 10319 } 10320 10321 for (crm = crmmin; crm <= crmmax; crm++) { 10322 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 10323 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 10324 for (state = ARM_CP_STATE_AA32; 10325 state <= ARM_CP_STATE_AA64; state++) { 10326 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 10327 continue; 10328 } 10329 if (state == ARM_CP_STATE_AA32) { 10330 /* 10331 * Under AArch32 CP registers can be common 10332 * (same for secure and non-secure world) or banked. 10333 */ 10334 char *name; 10335 10336 switch (r->secure) { 10337 case ARM_CP_SECSTATE_S: 10338 case ARM_CP_SECSTATE_NS: 10339 add_cpreg_to_hashtable(cpu, r, opaque, state, 10340 r->secure, crm, opc1, opc2, 10341 r->name); 10342 break; 10343 case ARM_CP_SECSTATE_BOTH: 10344 name = g_strdup_printf("%s_S", r->name); 10345 add_cpreg_to_hashtable(cpu, r, opaque, state, 10346 ARM_CP_SECSTATE_S, 10347 crm, opc1, opc2, name); 10348 g_free(name); 10349 add_cpreg_to_hashtable(cpu, r, opaque, state, 10350 ARM_CP_SECSTATE_NS, 10351 crm, opc1, opc2, r->name); 10352 break; 10353 default: 10354 g_assert_not_reached(); 10355 } 10356 } else { 10357 /* 10358 * AArch64 registers get mapped to non-secure instance 10359 * of AArch32 10360 */ 10361 add_cpreg_to_hashtable(cpu, r, opaque, state, 10362 ARM_CP_SECSTATE_NS, 10363 crm, opc1, opc2, r->name); 10364 } 10365 } 10366 } 10367 } 10368 } 10369 } 10370 10371 /* Define a whole list of registers */ 10372 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 10373 void *opaque, size_t len) 10374 { 10375 size_t i; 10376 for (i = 0; i < len; ++i) { 10377 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 10378 } 10379 } 10380 10381 /* 10382 * Modify ARMCPRegInfo for access from userspace. 10383 * 10384 * This is a data driven modification directed by 10385 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 10386 * user-space cannot alter any values and dynamic values pertaining to 10387 * execution state are hidden from user space view anyway. 10388 */ 10389 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 10390 const ARMCPRegUserSpaceInfo *mods, 10391 size_t mods_len) 10392 { 10393 for (size_t mi = 0; mi < mods_len; ++mi) { 10394 const ARMCPRegUserSpaceInfo *m = mods + mi; 10395 GPatternSpec *pat = NULL; 10396 10397 if (m->is_glob) { 10398 pat = g_pattern_spec_new(m->name); 10399 } 10400 for (size_t ri = 0; ri < regs_len; ++ri) { 10401 ARMCPRegInfo *r = regs + ri; 10402 10403 if (pat && g_pattern_match_string(pat, r->name)) { 10404 r->type = ARM_CP_CONST; 10405 r->access = PL0U_R; 10406 r->resetvalue = 0; 10407 /* continue */ 10408 } else if (strcmp(r->name, m->name) == 0) { 10409 r->type = ARM_CP_CONST; 10410 r->access = PL0U_R; 10411 r->resetvalue &= m->exported_bits; 10412 r->resetvalue |= m->fixed_bits; 10413 break; 10414 } 10415 } 10416 if (pat) { 10417 g_pattern_spec_free(pat); 10418 } 10419 } 10420 } 10421 10422 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 10423 { 10424 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 10425 } 10426 10427 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 10428 uint64_t value) 10429 { 10430 /* Helper coprocessor write function for write-ignore registers */ 10431 } 10432 10433 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 10434 { 10435 /* Helper coprocessor write function for read-as-zero registers */ 10436 return 0; 10437 } 10438 10439 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 10440 { 10441 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 10442 } 10443 10444 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 10445 { 10446 /* 10447 * Return true if it is not valid for us to switch to 10448 * this CPU mode (ie all the UNPREDICTABLE cases in 10449 * the ARM ARM CPSRWriteByInstr pseudocode). 10450 */ 10451 10452 /* Changes to or from Hyp via MSR and CPS are illegal. */ 10453 if (write_type == CPSRWriteByInstr && 10454 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 10455 mode == ARM_CPU_MODE_HYP)) { 10456 return 1; 10457 } 10458 10459 switch (mode) { 10460 case ARM_CPU_MODE_USR: 10461 return 0; 10462 case ARM_CPU_MODE_SYS: 10463 case ARM_CPU_MODE_SVC: 10464 case ARM_CPU_MODE_ABT: 10465 case ARM_CPU_MODE_UND: 10466 case ARM_CPU_MODE_IRQ: 10467 case ARM_CPU_MODE_FIQ: 10468 /* 10469 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 10470 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 10471 */ 10472 /* 10473 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 10474 * and CPS are treated as illegal mode changes. 10475 */ 10476 if (write_type == CPSRWriteByInstr && 10477 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 10478 (arm_hcr_el2_eff(env) & HCR_TGE)) { 10479 return 1; 10480 } 10481 return 0; 10482 case ARM_CPU_MODE_HYP: 10483 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 10484 case ARM_CPU_MODE_MON: 10485 return arm_current_el(env) < 3; 10486 default: 10487 return 1; 10488 } 10489 } 10490 10491 uint32_t cpsr_read(CPUARMState *env) 10492 { 10493 int ZF; 10494 ZF = (env->ZF == 0); 10495 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 10496 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 10497 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 10498 | ((env->condexec_bits & 0xfc) << 8) 10499 | (env->GE << 16) | (env->daif & CPSR_AIF); 10500 } 10501 10502 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 10503 CPSRWriteType write_type) 10504 { 10505 uint32_t changed_daif; 10506 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 10507 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 10508 10509 if (mask & CPSR_NZCV) { 10510 env->ZF = (~val) & CPSR_Z; 10511 env->NF = val; 10512 env->CF = (val >> 29) & 1; 10513 env->VF = (val << 3) & 0x80000000; 10514 } 10515 if (mask & CPSR_Q) { 10516 env->QF = ((val & CPSR_Q) != 0); 10517 } 10518 if (mask & CPSR_T) { 10519 env->thumb = ((val & CPSR_T) != 0); 10520 } 10521 if (mask & CPSR_IT_0_1) { 10522 env->condexec_bits &= ~3; 10523 env->condexec_bits |= (val >> 25) & 3; 10524 } 10525 if (mask & CPSR_IT_2_7) { 10526 env->condexec_bits &= 3; 10527 env->condexec_bits |= (val >> 8) & 0xfc; 10528 } 10529 if (mask & CPSR_GE) { 10530 env->GE = (val >> 16) & 0xf; 10531 } 10532 10533 /* 10534 * In a V7 implementation that includes the security extensions but does 10535 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 10536 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 10537 * bits respectively. 10538 * 10539 * In a V8 implementation, it is permitted for privileged software to 10540 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 10541 */ 10542 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 10543 arm_feature(env, ARM_FEATURE_EL3) && 10544 !arm_feature(env, ARM_FEATURE_EL2) && 10545 !arm_is_secure(env)) { 10546 10547 changed_daif = (env->daif ^ val) & mask; 10548 10549 if (changed_daif & CPSR_A) { 10550 /* 10551 * Check to see if we are allowed to change the masking of async 10552 * abort exceptions from a non-secure state. 10553 */ 10554 if (!(env->cp15.scr_el3 & SCR_AW)) { 10555 qemu_log_mask(LOG_GUEST_ERROR, 10556 "Ignoring attempt to switch CPSR_A flag from " 10557 "non-secure world with SCR.AW bit clear\n"); 10558 mask &= ~CPSR_A; 10559 } 10560 } 10561 10562 if (changed_daif & CPSR_F) { 10563 /* 10564 * Check to see if we are allowed to change the masking of FIQ 10565 * exceptions from a non-secure state. 10566 */ 10567 if (!(env->cp15.scr_el3 & SCR_FW)) { 10568 qemu_log_mask(LOG_GUEST_ERROR, 10569 "Ignoring attempt to switch CPSR_F flag from " 10570 "non-secure world with SCR.FW bit clear\n"); 10571 mask &= ~CPSR_F; 10572 } 10573 10574 /* 10575 * Check whether non-maskable FIQ (NMFI) support is enabled. 10576 * If this bit is set software is not allowed to mask 10577 * FIQs, but is allowed to set CPSR_F to 0. 10578 */ 10579 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 10580 (val & CPSR_F)) { 10581 qemu_log_mask(LOG_GUEST_ERROR, 10582 "Ignoring attempt to enable CPSR_F flag " 10583 "(non-maskable FIQ [NMFI] support enabled)\n"); 10584 mask &= ~CPSR_F; 10585 } 10586 } 10587 } 10588 10589 env->daif &= ~(CPSR_AIF & mask); 10590 env->daif |= val & CPSR_AIF & mask; 10591 10592 if (write_type != CPSRWriteRaw && 10593 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 10594 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 10595 /* 10596 * Note that we can only get here in USR mode if this is a 10597 * gdb stub write; for this case we follow the architectural 10598 * behaviour for guest writes in USR mode of ignoring an attempt 10599 * to switch mode. (Those are caught by translate.c for writes 10600 * triggered by guest instructions.) 10601 */ 10602 mask &= ~CPSR_M; 10603 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 10604 /* 10605 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 10606 * v7, and has defined behaviour in v8: 10607 * + leave CPSR.M untouched 10608 * + allow changes to the other CPSR fields 10609 * + set PSTATE.IL 10610 * For user changes via the GDB stub, we don't set PSTATE.IL, 10611 * as this would be unnecessarily harsh for a user error. 10612 */ 10613 mask &= ~CPSR_M; 10614 if (write_type != CPSRWriteByGDBStub && 10615 arm_feature(env, ARM_FEATURE_V8)) { 10616 mask |= CPSR_IL; 10617 val |= CPSR_IL; 10618 } 10619 qemu_log_mask(LOG_GUEST_ERROR, 10620 "Illegal AArch32 mode switch attempt from %s to %s\n", 10621 aarch32_mode_name(env->uncached_cpsr), 10622 aarch32_mode_name(val)); 10623 } else { 10624 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 10625 write_type == CPSRWriteExceptionReturn ? 10626 "Exception return from AArch32" : 10627 "AArch32 mode switch from", 10628 aarch32_mode_name(env->uncached_cpsr), 10629 aarch32_mode_name(val), env->regs[15]); 10630 switch_mode(env, val & CPSR_M); 10631 } 10632 } 10633 mask &= ~CACHED_CPSR_BITS; 10634 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 10635 if (tcg_enabled() && rebuild_hflags) { 10636 arm_rebuild_hflags(env); 10637 } 10638 } 10639 10640 #ifdef CONFIG_USER_ONLY 10641 10642 static void switch_mode(CPUARMState *env, int mode) 10643 { 10644 ARMCPU *cpu = env_archcpu(env); 10645 10646 if (mode != ARM_CPU_MODE_USR) { 10647 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 10648 } 10649 } 10650 10651 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10652 uint32_t cur_el, bool secure) 10653 { 10654 return 1; 10655 } 10656 10657 void aarch64_sync_64_to_32(CPUARMState *env) 10658 { 10659 g_assert_not_reached(); 10660 } 10661 10662 #else 10663 10664 static void switch_mode(CPUARMState *env, int mode) 10665 { 10666 int old_mode; 10667 int i; 10668 10669 old_mode = env->uncached_cpsr & CPSR_M; 10670 if (mode == old_mode) { 10671 return; 10672 } 10673 10674 if (old_mode == ARM_CPU_MODE_FIQ) { 10675 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10676 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 10677 } else if (mode == ARM_CPU_MODE_FIQ) { 10678 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 10679 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 10680 } 10681 10682 i = bank_number(old_mode); 10683 env->banked_r13[i] = env->regs[13]; 10684 env->banked_spsr[i] = env->spsr; 10685 10686 i = bank_number(mode); 10687 env->regs[13] = env->banked_r13[i]; 10688 env->spsr = env->banked_spsr[i]; 10689 10690 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10691 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10692 } 10693 10694 /* 10695 * Physical Interrupt Target EL Lookup Table 10696 * 10697 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10698 * 10699 * The below multi-dimensional table is used for looking up the target 10700 * exception level given numerous condition criteria. Specifically, the 10701 * target EL is based on SCR and HCR routing controls as well as the 10702 * currently executing EL and secure state. 10703 * 10704 * Dimensions: 10705 * target_el_table[2][2][2][2][2][4] 10706 * | | | | | +--- Current EL 10707 * | | | | +------ Non-secure(0)/Secure(1) 10708 * | | | +--------- HCR mask override 10709 * | | +------------ SCR exec state control 10710 * | +--------------- SCR mask override 10711 * +------------------ 32-bit(0)/64-bit(1) EL3 10712 * 10713 * The table values are as such: 10714 * 0-3 = EL0-EL3 10715 * -1 = Cannot occur 10716 * 10717 * The ARM ARM target EL table includes entries indicating that an "exception 10718 * is not taken". The two cases where this is applicable are: 10719 * 1) An exception is taken from EL3 but the SCR does not have the exception 10720 * routed to EL3. 10721 * 2) An exception is taken from EL2 but the HCR does not have the exception 10722 * routed to EL2. 10723 * In these two cases, the below table contain a target of EL1. This value is 10724 * returned as it is expected that the consumer of the table data will check 10725 * for "target EL >= current EL" to ensure the exception is not taken. 10726 * 10727 * SCR HCR 10728 * 64 EA AMO From 10729 * BIT IRQ IMO Non-secure Secure 10730 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10731 */ 10732 static const int8_t target_el_table[2][2][2][2][2][4] = { 10733 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10734 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10735 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10736 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10737 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10738 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10739 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10740 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10741 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10742 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10743 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10744 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10745 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10746 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10747 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10748 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10749 }; 10750 10751 /* 10752 * Determine the target EL for physical exceptions 10753 */ 10754 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10755 uint32_t cur_el, bool secure) 10756 { 10757 CPUARMState *env = cpu_env(cs); 10758 bool rw; 10759 bool scr; 10760 bool hcr; 10761 int target_el; 10762 /* Is the highest EL AArch64? */ 10763 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10764 uint64_t hcr_el2; 10765 10766 if (arm_feature(env, ARM_FEATURE_EL3)) { 10767 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10768 } else { 10769 /* 10770 * Either EL2 is the highest EL (and so the EL2 register width 10771 * is given by is64); or there is no EL2 or EL3, in which case 10772 * the value of 'rw' does not affect the table lookup anyway. 10773 */ 10774 rw = is64; 10775 } 10776 10777 hcr_el2 = arm_hcr_el2_eff(env); 10778 switch (excp_idx) { 10779 case EXCP_IRQ: 10780 case EXCP_NMI: 10781 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10782 hcr = hcr_el2 & HCR_IMO; 10783 break; 10784 case EXCP_FIQ: 10785 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10786 hcr = hcr_el2 & HCR_FMO; 10787 break; 10788 default: 10789 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10790 hcr = hcr_el2 & HCR_AMO; 10791 break; 10792 }; 10793 10794 /* 10795 * For these purposes, TGE and AMO/IMO/FMO both force the 10796 * interrupt to EL2. Fold TGE into the bit extracted above. 10797 */ 10798 hcr |= (hcr_el2 & HCR_TGE) != 0; 10799 10800 /* Perform a table-lookup for the target EL given the current state */ 10801 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10802 10803 assert(target_el > 0); 10804 10805 return target_el; 10806 } 10807 10808 void arm_log_exception(CPUState *cs) 10809 { 10810 int idx = cs->exception_index; 10811 10812 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10813 const char *exc = NULL; 10814 static const char * const excnames[] = { 10815 [EXCP_UDEF] = "Undefined Instruction", 10816 [EXCP_SWI] = "SVC", 10817 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10818 [EXCP_DATA_ABORT] = "Data Abort", 10819 [EXCP_IRQ] = "IRQ", 10820 [EXCP_FIQ] = "FIQ", 10821 [EXCP_BKPT] = "Breakpoint", 10822 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10823 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10824 [EXCP_HVC] = "Hypervisor Call", 10825 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10826 [EXCP_SMC] = "Secure Monitor Call", 10827 [EXCP_VIRQ] = "Virtual IRQ", 10828 [EXCP_VFIQ] = "Virtual FIQ", 10829 [EXCP_SEMIHOST] = "Semihosting call", 10830 [EXCP_NOCP] = "v7M NOCP UsageFault", 10831 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10832 [EXCP_STKOF] = "v8M STKOF UsageFault", 10833 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10834 [EXCP_LSERR] = "v8M LSERR UsageFault", 10835 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10836 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10837 [EXCP_VSERR] = "Virtual SERR", 10838 [EXCP_GPC] = "Granule Protection Check", 10839 [EXCP_NMI] = "NMI", 10840 [EXCP_VINMI] = "Virtual IRQ NMI", 10841 [EXCP_VFNMI] = "Virtual FIQ NMI", 10842 }; 10843 10844 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10845 exc = excnames[idx]; 10846 } 10847 if (!exc) { 10848 exc = "unknown"; 10849 } 10850 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10851 idx, exc, cs->cpu_index); 10852 } 10853 } 10854 10855 /* 10856 * Function used to synchronize QEMU's AArch64 register set with AArch32 10857 * register set. This is necessary when switching between AArch32 and AArch64 10858 * execution state. 10859 */ 10860 void aarch64_sync_32_to_64(CPUARMState *env) 10861 { 10862 int i; 10863 uint32_t mode = env->uncached_cpsr & CPSR_M; 10864 10865 /* We can blanket copy R[0:7] to X[0:7] */ 10866 for (i = 0; i < 8; i++) { 10867 env->xregs[i] = env->regs[i]; 10868 } 10869 10870 /* 10871 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10872 * Otherwise, they come from the banked user regs. 10873 */ 10874 if (mode == ARM_CPU_MODE_FIQ) { 10875 for (i = 8; i < 13; i++) { 10876 env->xregs[i] = env->usr_regs[i - 8]; 10877 } 10878 } else { 10879 for (i = 8; i < 13; i++) { 10880 env->xregs[i] = env->regs[i]; 10881 } 10882 } 10883 10884 /* 10885 * Registers x13-x23 are the various mode SP and FP registers. Registers 10886 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10887 * from the mode banked register. 10888 */ 10889 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10890 env->xregs[13] = env->regs[13]; 10891 env->xregs[14] = env->regs[14]; 10892 } else { 10893 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10894 /* HYP is an exception in that it is copied from r14 */ 10895 if (mode == ARM_CPU_MODE_HYP) { 10896 env->xregs[14] = env->regs[14]; 10897 } else { 10898 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10899 } 10900 } 10901 10902 if (mode == ARM_CPU_MODE_HYP) { 10903 env->xregs[15] = env->regs[13]; 10904 } else { 10905 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10906 } 10907 10908 if (mode == ARM_CPU_MODE_IRQ) { 10909 env->xregs[16] = env->regs[14]; 10910 env->xregs[17] = env->regs[13]; 10911 } else { 10912 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10913 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10914 } 10915 10916 if (mode == ARM_CPU_MODE_SVC) { 10917 env->xregs[18] = env->regs[14]; 10918 env->xregs[19] = env->regs[13]; 10919 } else { 10920 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10921 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10922 } 10923 10924 if (mode == ARM_CPU_MODE_ABT) { 10925 env->xregs[20] = env->regs[14]; 10926 env->xregs[21] = env->regs[13]; 10927 } else { 10928 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10929 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10930 } 10931 10932 if (mode == ARM_CPU_MODE_UND) { 10933 env->xregs[22] = env->regs[14]; 10934 env->xregs[23] = env->regs[13]; 10935 } else { 10936 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10937 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10938 } 10939 10940 /* 10941 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10942 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10943 * FIQ bank for r8-r14. 10944 */ 10945 if (mode == ARM_CPU_MODE_FIQ) { 10946 for (i = 24; i < 31; i++) { 10947 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10948 } 10949 } else { 10950 for (i = 24; i < 29; i++) { 10951 env->xregs[i] = env->fiq_regs[i - 24]; 10952 } 10953 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10954 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10955 } 10956 10957 env->pc = env->regs[15]; 10958 } 10959 10960 /* 10961 * Function used to synchronize QEMU's AArch32 register set with AArch64 10962 * register set. This is necessary when switching between AArch32 and AArch64 10963 * execution state. 10964 */ 10965 void aarch64_sync_64_to_32(CPUARMState *env) 10966 { 10967 int i; 10968 uint32_t mode = env->uncached_cpsr & CPSR_M; 10969 10970 /* We can blanket copy X[0:7] to R[0:7] */ 10971 for (i = 0; i < 8; i++) { 10972 env->regs[i] = env->xregs[i]; 10973 } 10974 10975 /* 10976 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10977 * Otherwise, we copy x8-x12 into the banked user regs. 10978 */ 10979 if (mode == ARM_CPU_MODE_FIQ) { 10980 for (i = 8; i < 13; i++) { 10981 env->usr_regs[i - 8] = env->xregs[i]; 10982 } 10983 } else { 10984 for (i = 8; i < 13; i++) { 10985 env->regs[i] = env->xregs[i]; 10986 } 10987 } 10988 10989 /* 10990 * Registers r13 & r14 depend on the current mode. 10991 * If we are in a given mode, we copy the corresponding x registers to r13 10992 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10993 * for the mode. 10994 */ 10995 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10996 env->regs[13] = env->xregs[13]; 10997 env->regs[14] = env->xregs[14]; 10998 } else { 10999 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 11000 11001 /* 11002 * HYP is an exception in that it does not have its own banked r14 but 11003 * shares the USR r14 11004 */ 11005 if (mode == ARM_CPU_MODE_HYP) { 11006 env->regs[14] = env->xregs[14]; 11007 } else { 11008 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 11009 } 11010 } 11011 11012 if (mode == ARM_CPU_MODE_HYP) { 11013 env->regs[13] = env->xregs[15]; 11014 } else { 11015 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 11016 } 11017 11018 if (mode == ARM_CPU_MODE_IRQ) { 11019 env->regs[14] = env->xregs[16]; 11020 env->regs[13] = env->xregs[17]; 11021 } else { 11022 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 11023 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 11024 } 11025 11026 if (mode == ARM_CPU_MODE_SVC) { 11027 env->regs[14] = env->xregs[18]; 11028 env->regs[13] = env->xregs[19]; 11029 } else { 11030 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 11031 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 11032 } 11033 11034 if (mode == ARM_CPU_MODE_ABT) { 11035 env->regs[14] = env->xregs[20]; 11036 env->regs[13] = env->xregs[21]; 11037 } else { 11038 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 11039 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 11040 } 11041 11042 if (mode == ARM_CPU_MODE_UND) { 11043 env->regs[14] = env->xregs[22]; 11044 env->regs[13] = env->xregs[23]; 11045 } else { 11046 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 11047 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 11048 } 11049 11050 /* 11051 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 11052 * mode, then we can copy to r8-r14. Otherwise, we copy to the 11053 * FIQ bank for r8-r14. 11054 */ 11055 if (mode == ARM_CPU_MODE_FIQ) { 11056 for (i = 24; i < 31; i++) { 11057 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 11058 } 11059 } else { 11060 for (i = 24; i < 29; i++) { 11061 env->fiq_regs[i - 24] = env->xregs[i]; 11062 } 11063 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 11064 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 11065 } 11066 11067 env->regs[15] = env->pc; 11068 } 11069 11070 static void take_aarch32_exception(CPUARMState *env, int new_mode, 11071 uint32_t mask, uint32_t offset, 11072 uint32_t newpc) 11073 { 11074 int new_el; 11075 11076 /* Change the CPU state so as to actually take the exception. */ 11077 switch_mode(env, new_mode); 11078 11079 /* 11080 * For exceptions taken to AArch32 we must clear the SS bit in both 11081 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 11082 */ 11083 env->pstate &= ~PSTATE_SS; 11084 env->spsr = cpsr_read(env); 11085 /* Clear IT bits. */ 11086 env->condexec_bits = 0; 11087 /* Switch to the new mode, and to the correct instruction set. */ 11088 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 11089 11090 /* This must be after mode switching. */ 11091 new_el = arm_current_el(env); 11092 11093 /* Set new mode endianness */ 11094 env->uncached_cpsr &= ~CPSR_E; 11095 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 11096 env->uncached_cpsr |= CPSR_E; 11097 } 11098 /* J and IL must always be cleared for exception entry */ 11099 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 11100 env->daif |= mask; 11101 11102 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 11103 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 11104 env->uncached_cpsr |= CPSR_SSBS; 11105 } else { 11106 env->uncached_cpsr &= ~CPSR_SSBS; 11107 } 11108 } 11109 11110 if (new_mode == ARM_CPU_MODE_HYP) { 11111 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 11112 env->elr_el[2] = env->regs[15]; 11113 } else { 11114 /* CPSR.PAN is normally preserved preserved unless... */ 11115 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 11116 switch (new_el) { 11117 case 3: 11118 if (!arm_is_secure_below_el3(env)) { 11119 /* ... the target is EL3, from non-secure state. */ 11120 env->uncached_cpsr &= ~CPSR_PAN; 11121 break; 11122 } 11123 /* ... the target is EL3, from secure state ... */ 11124 /* fall through */ 11125 case 1: 11126 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 11127 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 11128 env->uncached_cpsr |= CPSR_PAN; 11129 } 11130 break; 11131 } 11132 } 11133 /* 11134 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 11135 * and we should just guard the thumb mode on V4 11136 */ 11137 if (arm_feature(env, ARM_FEATURE_V4T)) { 11138 env->thumb = 11139 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 11140 } 11141 env->regs[14] = env->regs[15] + offset; 11142 } 11143 env->regs[15] = newpc; 11144 11145 if (tcg_enabled()) { 11146 arm_rebuild_hflags(env); 11147 } 11148 } 11149 11150 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 11151 { 11152 /* 11153 * Handle exception entry to Hyp mode; this is sufficiently 11154 * different to entry to other AArch32 modes that we handle it 11155 * separately here. 11156 * 11157 * The vector table entry used is always the 0x14 Hyp mode entry point, 11158 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 11159 * The offset applied to the preferred return address is always zero 11160 * (see DDI0487C.a section G1.12.3). 11161 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 11162 */ 11163 uint32_t addr, mask; 11164 ARMCPU *cpu = ARM_CPU(cs); 11165 CPUARMState *env = &cpu->env; 11166 11167 switch (cs->exception_index) { 11168 case EXCP_UDEF: 11169 addr = 0x04; 11170 break; 11171 case EXCP_SWI: 11172 addr = 0x08; 11173 break; 11174 case EXCP_BKPT: 11175 /* Fall through to prefetch abort. */ 11176 case EXCP_PREFETCH_ABORT: 11177 env->cp15.ifar_s = env->exception.vaddress; 11178 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 11179 (uint32_t)env->exception.vaddress); 11180 addr = 0x0c; 11181 break; 11182 case EXCP_DATA_ABORT: 11183 env->cp15.dfar_s = env->exception.vaddress; 11184 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 11185 (uint32_t)env->exception.vaddress); 11186 addr = 0x10; 11187 break; 11188 case EXCP_IRQ: 11189 addr = 0x18; 11190 break; 11191 case EXCP_FIQ: 11192 addr = 0x1c; 11193 break; 11194 case EXCP_HVC: 11195 addr = 0x08; 11196 break; 11197 case EXCP_HYP_TRAP: 11198 addr = 0x14; 11199 break; 11200 default: 11201 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11202 } 11203 11204 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 11205 if (!arm_feature(env, ARM_FEATURE_V8)) { 11206 /* 11207 * QEMU syndrome values are v8-style. v7 has the IL bit 11208 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 11209 * If this is a v7 CPU, squash the IL bit in those cases. 11210 */ 11211 if (cs->exception_index == EXCP_PREFETCH_ABORT || 11212 (cs->exception_index == EXCP_DATA_ABORT && 11213 !(env->exception.syndrome & ARM_EL_ISV)) || 11214 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 11215 env->exception.syndrome &= ~ARM_EL_IL; 11216 } 11217 } 11218 env->cp15.esr_el[2] = env->exception.syndrome; 11219 } 11220 11221 if (arm_current_el(env) != 2 && addr < 0x14) { 11222 addr = 0x14; 11223 } 11224 11225 mask = 0; 11226 if (!(env->cp15.scr_el3 & SCR_EA)) { 11227 mask |= CPSR_A; 11228 } 11229 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 11230 mask |= CPSR_I; 11231 } 11232 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 11233 mask |= CPSR_F; 11234 } 11235 11236 addr += env->cp15.hvbar; 11237 11238 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 11239 } 11240 11241 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 11242 { 11243 ARMCPU *cpu = ARM_CPU(cs); 11244 CPUARMState *env = &cpu->env; 11245 uint32_t addr; 11246 uint32_t mask; 11247 int new_mode; 11248 uint32_t offset; 11249 uint32_t moe; 11250 11251 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 11252 switch (syn_get_ec(env->exception.syndrome)) { 11253 case EC_BREAKPOINT: 11254 case EC_BREAKPOINT_SAME_EL: 11255 moe = 1; 11256 break; 11257 case EC_WATCHPOINT: 11258 case EC_WATCHPOINT_SAME_EL: 11259 moe = 10; 11260 break; 11261 case EC_AA32_BKPT: 11262 moe = 3; 11263 break; 11264 case EC_VECTORCATCH: 11265 moe = 5; 11266 break; 11267 default: 11268 moe = 0; 11269 break; 11270 } 11271 11272 if (moe) { 11273 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 11274 } 11275 11276 if (env->exception.target_el == 2) { 11277 /* Debug exceptions are reported differently on AArch32 */ 11278 switch (syn_get_ec(env->exception.syndrome)) { 11279 case EC_BREAKPOINT: 11280 case EC_BREAKPOINT_SAME_EL: 11281 case EC_AA32_BKPT: 11282 case EC_VECTORCATCH: 11283 env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2, 11284 0, 0, 0x22); 11285 break; 11286 case EC_WATCHPOINT: 11287 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11288 EC_DATAABORT); 11289 break; 11290 case EC_WATCHPOINT_SAME_EL: 11291 env->exception.syndrome = syn_set_ec(env->exception.syndrome, 11292 EC_DATAABORT_SAME_EL); 11293 break; 11294 } 11295 arm_cpu_do_interrupt_aarch32_hyp(cs); 11296 return; 11297 } 11298 11299 switch (cs->exception_index) { 11300 case EXCP_UDEF: 11301 new_mode = ARM_CPU_MODE_UND; 11302 addr = 0x04; 11303 mask = CPSR_I; 11304 if (env->thumb) { 11305 offset = 2; 11306 } else { 11307 offset = 4; 11308 } 11309 break; 11310 case EXCP_SWI: 11311 new_mode = ARM_CPU_MODE_SVC; 11312 addr = 0x08; 11313 mask = CPSR_I; 11314 /* The PC already points to the next instruction. */ 11315 offset = 0; 11316 break; 11317 case EXCP_BKPT: 11318 /* Fall through to prefetch abort. */ 11319 case EXCP_PREFETCH_ABORT: 11320 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 11321 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 11322 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 11323 env->exception.fsr, (uint32_t)env->exception.vaddress); 11324 new_mode = ARM_CPU_MODE_ABT; 11325 addr = 0x0c; 11326 mask = CPSR_A | CPSR_I; 11327 offset = 4; 11328 break; 11329 case EXCP_DATA_ABORT: 11330 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11331 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 11332 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 11333 env->exception.fsr, 11334 (uint32_t)env->exception.vaddress); 11335 new_mode = ARM_CPU_MODE_ABT; 11336 addr = 0x10; 11337 mask = CPSR_A | CPSR_I; 11338 offset = 8; 11339 break; 11340 case EXCP_IRQ: 11341 new_mode = ARM_CPU_MODE_IRQ; 11342 addr = 0x18; 11343 /* Disable IRQ and imprecise data aborts. */ 11344 mask = CPSR_A | CPSR_I; 11345 offset = 4; 11346 if (env->cp15.scr_el3 & SCR_IRQ) { 11347 /* IRQ routed to monitor mode */ 11348 new_mode = ARM_CPU_MODE_MON; 11349 mask |= CPSR_F; 11350 } 11351 break; 11352 case EXCP_FIQ: 11353 new_mode = ARM_CPU_MODE_FIQ; 11354 addr = 0x1c; 11355 /* Disable FIQ, IRQ and imprecise data aborts. */ 11356 mask = CPSR_A | CPSR_I | CPSR_F; 11357 if (env->cp15.scr_el3 & SCR_FIQ) { 11358 /* FIQ routed to monitor mode */ 11359 new_mode = ARM_CPU_MODE_MON; 11360 } 11361 offset = 4; 11362 break; 11363 case EXCP_VIRQ: 11364 new_mode = ARM_CPU_MODE_IRQ; 11365 addr = 0x18; 11366 /* Disable IRQ and imprecise data aborts. */ 11367 mask = CPSR_A | CPSR_I; 11368 offset = 4; 11369 break; 11370 case EXCP_VFIQ: 11371 new_mode = ARM_CPU_MODE_FIQ; 11372 addr = 0x1c; 11373 /* Disable FIQ, IRQ and imprecise data aborts. */ 11374 mask = CPSR_A | CPSR_I | CPSR_F; 11375 offset = 4; 11376 break; 11377 case EXCP_VSERR: 11378 { 11379 /* 11380 * Note that this is reported as a data abort, but the DFAR 11381 * has an UNKNOWN value. Construct the SError syndrome from 11382 * AET and ExT fields. 11383 */ 11384 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 11385 11386 if (extended_addresses_enabled(env)) { 11387 env->exception.fsr = arm_fi_to_lfsc(&fi); 11388 } else { 11389 env->exception.fsr = arm_fi_to_sfsc(&fi); 11390 } 11391 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 11392 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 11393 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 11394 env->exception.fsr); 11395 11396 new_mode = ARM_CPU_MODE_ABT; 11397 addr = 0x10; 11398 mask = CPSR_A | CPSR_I; 11399 offset = 8; 11400 } 11401 break; 11402 case EXCP_SMC: 11403 new_mode = ARM_CPU_MODE_MON; 11404 addr = 0x08; 11405 mask = CPSR_A | CPSR_I | CPSR_F; 11406 offset = 0; 11407 break; 11408 default: 11409 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11410 return; /* Never happens. Keep compiler happy. */ 11411 } 11412 11413 if (new_mode == ARM_CPU_MODE_MON) { 11414 addr += env->cp15.mvbar; 11415 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 11416 /* High vectors. When enabled, base address cannot be remapped. */ 11417 addr += 0xffff0000; 11418 } else { 11419 /* 11420 * ARM v7 architectures provide a vector base address register to remap 11421 * the interrupt vector table. 11422 * This register is only followed in non-monitor mode, and is banked. 11423 * Note: only bits 31:5 are valid. 11424 */ 11425 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 11426 } 11427 11428 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 11429 env->cp15.scr_el3 &= ~SCR_NS; 11430 } 11431 11432 take_aarch32_exception(env, new_mode, mask, offset, addr); 11433 } 11434 11435 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 11436 { 11437 /* 11438 * Return the register number of the AArch64 view of the AArch32 11439 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 11440 * be that of the AArch32 mode the exception came from. 11441 */ 11442 int mode = env->uncached_cpsr & CPSR_M; 11443 11444 switch (aarch32_reg) { 11445 case 0 ... 7: 11446 return aarch32_reg; 11447 case 8 ... 12: 11448 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 11449 case 13: 11450 switch (mode) { 11451 case ARM_CPU_MODE_USR: 11452 case ARM_CPU_MODE_SYS: 11453 return 13; 11454 case ARM_CPU_MODE_HYP: 11455 return 15; 11456 case ARM_CPU_MODE_IRQ: 11457 return 17; 11458 case ARM_CPU_MODE_SVC: 11459 return 19; 11460 case ARM_CPU_MODE_ABT: 11461 return 21; 11462 case ARM_CPU_MODE_UND: 11463 return 23; 11464 case ARM_CPU_MODE_FIQ: 11465 return 29; 11466 default: 11467 g_assert_not_reached(); 11468 } 11469 case 14: 11470 switch (mode) { 11471 case ARM_CPU_MODE_USR: 11472 case ARM_CPU_MODE_SYS: 11473 case ARM_CPU_MODE_HYP: 11474 return 14; 11475 case ARM_CPU_MODE_IRQ: 11476 return 16; 11477 case ARM_CPU_MODE_SVC: 11478 return 18; 11479 case ARM_CPU_MODE_ABT: 11480 return 20; 11481 case ARM_CPU_MODE_UND: 11482 return 22; 11483 case ARM_CPU_MODE_FIQ: 11484 return 30; 11485 default: 11486 g_assert_not_reached(); 11487 } 11488 case 15: 11489 return 31; 11490 default: 11491 g_assert_not_reached(); 11492 } 11493 } 11494 11495 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 11496 { 11497 uint32_t ret = cpsr_read(env); 11498 11499 /* Move DIT to the correct location for SPSR_ELx */ 11500 if (ret & CPSR_DIT) { 11501 ret &= ~CPSR_DIT; 11502 ret |= PSTATE_DIT; 11503 } 11504 /* Merge PSTATE.SS into SPSR_ELx */ 11505 ret |= env->pstate & PSTATE_SS; 11506 11507 return ret; 11508 } 11509 11510 static bool syndrome_is_sync_extabt(uint32_t syndrome) 11511 { 11512 /* Return true if this syndrome value is a synchronous external abort */ 11513 switch (syn_get_ec(syndrome)) { 11514 case EC_INSNABORT: 11515 case EC_INSNABORT_SAME_EL: 11516 case EC_DATAABORT: 11517 case EC_DATAABORT_SAME_EL: 11518 /* Look at fault status code for all the synchronous ext abort cases */ 11519 switch (syndrome & 0x3f) { 11520 case 0x10: 11521 case 0x13: 11522 case 0x14: 11523 case 0x15: 11524 case 0x16: 11525 case 0x17: 11526 return true; 11527 default: 11528 return false; 11529 } 11530 default: 11531 return false; 11532 } 11533 } 11534 11535 /* Handle exception entry to a target EL which is using AArch64 */ 11536 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 11537 { 11538 ARMCPU *cpu = ARM_CPU(cs); 11539 CPUARMState *env = &cpu->env; 11540 unsigned int new_el = env->exception.target_el; 11541 target_ulong addr = env->cp15.vbar_el[new_el]; 11542 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 11543 unsigned int old_mode; 11544 unsigned int cur_el = arm_current_el(env); 11545 int rt; 11546 11547 if (tcg_enabled()) { 11548 /* 11549 * Note that new_el can never be 0. If cur_el is 0, then 11550 * el0_a64 is is_a64(), else el0_a64 is ignored. 11551 */ 11552 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 11553 } 11554 11555 if (cur_el < new_el) { 11556 /* 11557 * Entry vector offset depends on whether the implemented EL 11558 * immediately lower than the target level is using AArch32 or AArch64 11559 */ 11560 bool is_aa64; 11561 uint64_t hcr; 11562 11563 switch (new_el) { 11564 case 3: 11565 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 11566 break; 11567 case 2: 11568 hcr = arm_hcr_el2_eff(env); 11569 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11570 is_aa64 = (hcr & HCR_RW) != 0; 11571 break; 11572 } 11573 /* fall through */ 11574 case 1: 11575 is_aa64 = is_a64(env); 11576 break; 11577 default: 11578 g_assert_not_reached(); 11579 } 11580 11581 if (is_aa64) { 11582 addr += 0x400; 11583 } else { 11584 addr += 0x600; 11585 } 11586 } else if (pstate_read(env) & PSTATE_SP) { 11587 addr += 0x200; 11588 } 11589 11590 switch (cs->exception_index) { 11591 case EXCP_GPC: 11592 qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n", 11593 env->cp15.mfar_el3); 11594 /* fall through */ 11595 case EXCP_PREFETCH_ABORT: 11596 case EXCP_DATA_ABORT: 11597 /* 11598 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 11599 * to be taken to the SError vector entrypoint. 11600 */ 11601 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 11602 syndrome_is_sync_extabt(env->exception.syndrome)) { 11603 addr += 0x180; 11604 } 11605 env->cp15.far_el[new_el] = env->exception.vaddress; 11606 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 11607 env->cp15.far_el[new_el]); 11608 /* fall through */ 11609 case EXCP_BKPT: 11610 case EXCP_UDEF: 11611 case EXCP_SWI: 11612 case EXCP_HVC: 11613 case EXCP_HYP_TRAP: 11614 case EXCP_SMC: 11615 switch (syn_get_ec(env->exception.syndrome)) { 11616 case EC_ADVSIMDFPACCESSTRAP: 11617 /* 11618 * QEMU internal FP/SIMD syndromes from AArch32 include the 11619 * TA and coproc fields which are only exposed if the exception 11620 * is taken to AArch32 Hyp mode. Mask them out to get a valid 11621 * AArch64 format syndrome. 11622 */ 11623 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 11624 break; 11625 case EC_CP14RTTRAP: 11626 case EC_CP15RTTRAP: 11627 case EC_CP14DTTRAP: 11628 /* 11629 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 11630 * the raw register field from the insn; when taking this to 11631 * AArch64 we must convert it to the AArch64 view of the register 11632 * number. Notice that we read a 4-bit AArch32 register number and 11633 * write back a 5-bit AArch64 one. 11634 */ 11635 rt = extract32(env->exception.syndrome, 5, 4); 11636 rt = aarch64_regnum(env, rt); 11637 env->exception.syndrome = deposit32(env->exception.syndrome, 11638 5, 5, rt); 11639 break; 11640 case EC_CP15RRTTRAP: 11641 case EC_CP14RRTTRAP: 11642 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 11643 rt = extract32(env->exception.syndrome, 5, 4); 11644 rt = aarch64_regnum(env, rt); 11645 env->exception.syndrome = deposit32(env->exception.syndrome, 11646 5, 5, rt); 11647 rt = extract32(env->exception.syndrome, 10, 4); 11648 rt = aarch64_regnum(env, rt); 11649 env->exception.syndrome = deposit32(env->exception.syndrome, 11650 10, 5, rt); 11651 break; 11652 } 11653 env->cp15.esr_el[new_el] = env->exception.syndrome; 11654 break; 11655 case EXCP_IRQ: 11656 case EXCP_VIRQ: 11657 case EXCP_NMI: 11658 case EXCP_VINMI: 11659 addr += 0x80; 11660 break; 11661 case EXCP_FIQ: 11662 case EXCP_VFIQ: 11663 case EXCP_VFNMI: 11664 addr += 0x100; 11665 break; 11666 case EXCP_VSERR: 11667 addr += 0x180; 11668 /* Construct the SError syndrome from IDS and ISS fields. */ 11669 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 11670 env->cp15.esr_el[new_el] = env->exception.syndrome; 11671 break; 11672 default: 11673 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 11674 } 11675 11676 if (is_a64(env)) { 11677 old_mode = pstate_read(env); 11678 aarch64_save_sp(env, arm_current_el(env)); 11679 env->elr_el[new_el] = env->pc; 11680 11681 if (cur_el == 1 && new_el == 1) { 11682 uint64_t hcr = arm_hcr_el2_eff(env); 11683 if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV || 11684 (hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) { 11685 /* 11686 * FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR 11687 * by setting M[3:2] to 0b10. 11688 * If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN) 11689 * If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM) 11690 */ 11691 old_mode = deposit32(old_mode, 2, 2, 2); 11692 } 11693 } 11694 } else { 11695 old_mode = cpsr_read_for_spsr_elx(env); 11696 env->elr_el[new_el] = env->regs[15]; 11697 11698 aarch64_sync_32_to_64(env); 11699 11700 env->condexec_bits = 0; 11701 } 11702 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 11703 11704 qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode); 11705 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 11706 env->elr_el[new_el]); 11707 11708 if (cpu_isar_feature(aa64_pan, cpu)) { 11709 /* The value of PSTATE.PAN is normally preserved, except when ... */ 11710 new_mode |= old_mode & PSTATE_PAN; 11711 switch (new_el) { 11712 case 2: 11713 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 11714 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 11715 != (HCR_E2H | HCR_TGE)) { 11716 break; 11717 } 11718 /* fall through */ 11719 case 1: 11720 /* ... the target is EL1 ... */ 11721 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 11722 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 11723 new_mode |= PSTATE_PAN; 11724 } 11725 break; 11726 } 11727 } 11728 if (cpu_isar_feature(aa64_mte, cpu)) { 11729 new_mode |= PSTATE_TCO; 11730 } 11731 11732 if (cpu_isar_feature(aa64_ssbs, cpu)) { 11733 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11734 new_mode |= PSTATE_SSBS; 11735 } else { 11736 new_mode &= ~PSTATE_SSBS; 11737 } 11738 } 11739 11740 if (cpu_isar_feature(aa64_nmi, cpu)) { 11741 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) { 11742 new_mode |= PSTATE_ALLINT; 11743 } else { 11744 new_mode &= ~PSTATE_ALLINT; 11745 } 11746 } 11747 11748 pstate_write(env, PSTATE_DAIF | new_mode); 11749 env->aarch64 = true; 11750 aarch64_restore_sp(env, new_el); 11751 11752 if (tcg_enabled()) { 11753 helper_rebuild_hflags_a64(env, new_el); 11754 } 11755 11756 env->pc = addr; 11757 11758 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11759 new_el, env->pc, pstate_read(env)); 11760 } 11761 11762 /* 11763 * Do semihosting call and set the appropriate return value. All the 11764 * permission and validity checks have been done at translate time. 11765 * 11766 * We only see semihosting exceptions in TCG only as they are not 11767 * trapped to the hypervisor in KVM. 11768 */ 11769 #ifdef CONFIG_TCG 11770 static void tcg_handle_semihosting(CPUState *cs) 11771 { 11772 ARMCPU *cpu = ARM_CPU(cs); 11773 CPUARMState *env = &cpu->env; 11774 11775 if (is_a64(env)) { 11776 qemu_log_mask(CPU_LOG_INT, 11777 "...handling as semihosting call 0x%" PRIx64 "\n", 11778 env->xregs[0]); 11779 do_common_semihosting(cs); 11780 env->pc += 4; 11781 } else { 11782 qemu_log_mask(CPU_LOG_INT, 11783 "...handling as semihosting call 0x%x\n", 11784 env->regs[0]); 11785 do_common_semihosting(cs); 11786 env->regs[15] += env->thumb ? 2 : 4; 11787 } 11788 } 11789 #endif 11790 11791 /* 11792 * Handle a CPU exception for A and R profile CPUs. 11793 * Do any appropriate logging, handle PSCI calls, and then hand off 11794 * to the AArch64-entry or AArch32-entry function depending on the 11795 * target exception level's register width. 11796 * 11797 * Note: this is used for both TCG (as the do_interrupt tcg op), 11798 * and KVM to re-inject guest debug exceptions, and to 11799 * inject a Synchronous-External-Abort. 11800 */ 11801 void arm_cpu_do_interrupt(CPUState *cs) 11802 { 11803 ARMCPU *cpu = ARM_CPU(cs); 11804 CPUARMState *env = &cpu->env; 11805 unsigned int new_el = env->exception.target_el; 11806 11807 assert(!arm_feature(env, ARM_FEATURE_M)); 11808 11809 arm_log_exception(cs); 11810 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11811 new_el); 11812 if (qemu_loglevel_mask(CPU_LOG_INT) 11813 && !excp_is_internal(cs->exception_index)) { 11814 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11815 syn_get_ec(env->exception.syndrome), 11816 env->exception.syndrome); 11817 } 11818 11819 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11820 arm_handle_psci_call(cpu); 11821 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11822 return; 11823 } 11824 11825 /* 11826 * Semihosting semantics depend on the register width of the code 11827 * that caused the exception, not the target exception level, so 11828 * must be handled here. 11829 */ 11830 #ifdef CONFIG_TCG 11831 if (cs->exception_index == EXCP_SEMIHOST) { 11832 tcg_handle_semihosting(cs); 11833 return; 11834 } 11835 #endif 11836 11837 /* 11838 * Hooks may change global state so BQL should be held, also the 11839 * BQL needs to be held for any modification of 11840 * cs->interrupt_request. 11841 */ 11842 g_assert(bql_locked()); 11843 11844 arm_call_pre_el_change_hook(cpu); 11845 11846 assert(!excp_is_internal(cs->exception_index)); 11847 if (arm_el_is_aa64(env, new_el)) { 11848 arm_cpu_do_interrupt_aarch64(cs); 11849 } else { 11850 arm_cpu_do_interrupt_aarch32(cs); 11851 } 11852 11853 arm_call_el_change_hook(cpu); 11854 11855 if (!kvm_enabled()) { 11856 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11857 } 11858 } 11859 #endif /* !CONFIG_USER_ONLY */ 11860 11861 uint64_t arm_sctlr(CPUARMState *env, int el) 11862 { 11863 if (arm_aa32_secure_pl1_0(env)) { 11864 /* In Secure PL1&0 SCTLR_S is always controlling */ 11865 el = 3; 11866 } else if (el == 0) { 11867 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11868 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11869 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11870 } 11871 return env->cp15.sctlr_el[el]; 11872 } 11873 11874 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11875 { 11876 if (regime_has_2_ranges(mmu_idx)) { 11877 return extract64(tcr, 37, 2); 11878 } else if (regime_is_stage2(mmu_idx)) { 11879 return 0; /* VTCR_EL2 */ 11880 } else { 11881 /* Replicate the single TBI bit so we always have 2 bits. */ 11882 return extract32(tcr, 20, 1) * 3; 11883 } 11884 } 11885 11886 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11887 { 11888 if (regime_has_2_ranges(mmu_idx)) { 11889 return extract64(tcr, 51, 2); 11890 } else if (regime_is_stage2(mmu_idx)) { 11891 return 0; /* VTCR_EL2 */ 11892 } else { 11893 /* Replicate the single TBID bit so we always have 2 bits. */ 11894 return extract32(tcr, 29, 1) * 3; 11895 } 11896 } 11897 11898 int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11899 { 11900 if (regime_has_2_ranges(mmu_idx)) { 11901 return extract64(tcr, 57, 2); 11902 } else { 11903 /* Replicate the single TCMA bit so we always have 2 bits. */ 11904 return extract32(tcr, 30, 1) * 3; 11905 } 11906 } 11907 11908 static ARMGranuleSize tg0_to_gran_size(int tg) 11909 { 11910 switch (tg) { 11911 case 0: 11912 return Gran4K; 11913 case 1: 11914 return Gran64K; 11915 case 2: 11916 return Gran16K; 11917 default: 11918 return GranInvalid; 11919 } 11920 } 11921 11922 static ARMGranuleSize tg1_to_gran_size(int tg) 11923 { 11924 switch (tg) { 11925 case 1: 11926 return Gran16K; 11927 case 2: 11928 return Gran4K; 11929 case 3: 11930 return Gran64K; 11931 default: 11932 return GranInvalid; 11933 } 11934 } 11935 11936 static inline bool have4k(ARMCPU *cpu, bool stage2) 11937 { 11938 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11939 : cpu_isar_feature(aa64_tgran4, cpu); 11940 } 11941 11942 static inline bool have16k(ARMCPU *cpu, bool stage2) 11943 { 11944 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11945 : cpu_isar_feature(aa64_tgran16, cpu); 11946 } 11947 11948 static inline bool have64k(ARMCPU *cpu, bool stage2) 11949 { 11950 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11951 : cpu_isar_feature(aa64_tgran64, cpu); 11952 } 11953 11954 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11955 bool stage2) 11956 { 11957 switch (gran) { 11958 case Gran4K: 11959 if (have4k(cpu, stage2)) { 11960 return gran; 11961 } 11962 break; 11963 case Gran16K: 11964 if (have16k(cpu, stage2)) { 11965 return gran; 11966 } 11967 break; 11968 case Gran64K: 11969 if (have64k(cpu, stage2)) { 11970 return gran; 11971 } 11972 break; 11973 case GranInvalid: 11974 break; 11975 } 11976 /* 11977 * If the guest selects a granule size that isn't implemented, 11978 * the architecture requires that we behave as if it selected one 11979 * that is (with an IMPDEF choice of which one to pick). We choose 11980 * to implement the smallest supported granule size. 11981 */ 11982 if (have4k(cpu, stage2)) { 11983 return Gran4K; 11984 } 11985 if (have16k(cpu, stage2)) { 11986 return Gran16K; 11987 } 11988 assert(have64k(cpu, stage2)); 11989 return Gran64K; 11990 } 11991 11992 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11993 ARMMMUIdx mmu_idx, bool data, 11994 bool el1_is_aa32) 11995 { 11996 uint64_t tcr = regime_tcr(env, mmu_idx); 11997 bool epd, hpd, tsz_oob, ds, ha, hd; 11998 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11999 ARMGranuleSize gran; 12000 ARMCPU *cpu = env_archcpu(env); 12001 bool stage2 = regime_is_stage2(mmu_idx); 12002 12003 if (!regime_has_2_ranges(mmu_idx)) { 12004 select = 0; 12005 tsz = extract32(tcr, 0, 6); 12006 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12007 if (stage2) { 12008 /* VTCR_EL2 */ 12009 hpd = false; 12010 } else { 12011 hpd = extract32(tcr, 24, 1); 12012 } 12013 epd = false; 12014 sh = extract32(tcr, 12, 2); 12015 ps = extract32(tcr, 16, 3); 12016 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 12017 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12018 ds = extract64(tcr, 32, 1); 12019 } else { 12020 bool e0pd; 12021 12022 /* 12023 * Bit 55 is always between the two regions, and is canonical for 12024 * determining if address tagging is enabled. 12025 */ 12026 select = extract64(va, 55, 1); 12027 if (!select) { 12028 tsz = extract32(tcr, 0, 6); 12029 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 12030 epd = extract32(tcr, 7, 1); 12031 sh = extract32(tcr, 12, 2); 12032 hpd = extract64(tcr, 41, 1); 12033 e0pd = extract64(tcr, 55, 1); 12034 } else { 12035 tsz = extract32(tcr, 16, 6); 12036 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 12037 epd = extract32(tcr, 23, 1); 12038 sh = extract32(tcr, 28, 2); 12039 hpd = extract64(tcr, 42, 1); 12040 e0pd = extract64(tcr, 56, 1); 12041 } 12042 ps = extract64(tcr, 32, 3); 12043 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 12044 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 12045 ds = extract64(tcr, 59, 1); 12046 12047 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 12048 regime_is_user(env, mmu_idx)) { 12049 epd = true; 12050 } 12051 } 12052 12053 gran = sanitize_gran_size(cpu, gran, stage2); 12054 12055 if (cpu_isar_feature(aa64_st, cpu)) { 12056 max_tsz = 48 - (gran == Gran64K); 12057 } else { 12058 max_tsz = 39; 12059 } 12060 12061 /* 12062 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 12063 * adjust the effective value of DS, as documented. 12064 */ 12065 min_tsz = 16; 12066 if (gran == Gran64K) { 12067 if (cpu_isar_feature(aa64_lva, cpu)) { 12068 min_tsz = 12; 12069 } 12070 ds = false; 12071 } else if (ds) { 12072 if (regime_is_stage2(mmu_idx)) { 12073 if (gran == Gran16K) { 12074 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 12075 } else { 12076 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 12077 } 12078 } else { 12079 if (gran == Gran16K) { 12080 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 12081 } else { 12082 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 12083 } 12084 } 12085 if (ds) { 12086 min_tsz = 12; 12087 } 12088 } 12089 12090 if (stage2 && el1_is_aa32) { 12091 /* 12092 * For AArch32 EL1 the min txsz (and thus max IPA size) requirements 12093 * are loosened: a configured IPA of 40 bits is permitted even if 12094 * the implemented PA is less than that (and so a 40 bit IPA would 12095 * fault for an AArch64 EL1). See R_DTLMN. 12096 */ 12097 min_tsz = MIN(min_tsz, 24); 12098 } 12099 12100 if (tsz > max_tsz) { 12101 tsz = max_tsz; 12102 tsz_oob = true; 12103 } else if (tsz < min_tsz) { 12104 tsz = min_tsz; 12105 tsz_oob = true; 12106 } else { 12107 tsz_oob = false; 12108 } 12109 12110 /* Present TBI as a composite with TBID. */ 12111 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 12112 if (!data) { 12113 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 12114 } 12115 tbi = (tbi >> select) & 1; 12116 12117 return (ARMVAParameters) { 12118 .tsz = tsz, 12119 .ps = ps, 12120 .sh = sh, 12121 .select = select, 12122 .tbi = tbi, 12123 .epd = epd, 12124 .hpd = hpd, 12125 .tsz_oob = tsz_oob, 12126 .ds = ds, 12127 .ha = ha, 12128 .hd = ha && hd, 12129 .gran = gran, 12130 }; 12131 } 12132 12133 /* 12134 * Note that signed overflow is undefined in C. The following routines are 12135 * careful to use unsigned types where modulo arithmetic is required. 12136 * Failure to do so _will_ break on newer gcc. 12137 */ 12138 12139 /* Signed saturating arithmetic. */ 12140 12141 /* Perform 16-bit signed saturating addition. */ 12142 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 12143 { 12144 uint16_t res; 12145 12146 res = a + b; 12147 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 12148 if (a & 0x8000) { 12149 res = 0x8000; 12150 } else { 12151 res = 0x7fff; 12152 } 12153 } 12154 return res; 12155 } 12156 12157 /* Perform 8-bit signed saturating addition. */ 12158 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 12159 { 12160 uint8_t res; 12161 12162 res = a + b; 12163 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 12164 if (a & 0x80) { 12165 res = 0x80; 12166 } else { 12167 res = 0x7f; 12168 } 12169 } 12170 return res; 12171 } 12172 12173 /* Perform 16-bit signed saturating subtraction. */ 12174 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 12175 { 12176 uint16_t res; 12177 12178 res = a - b; 12179 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 12180 if (a & 0x8000) { 12181 res = 0x8000; 12182 } else { 12183 res = 0x7fff; 12184 } 12185 } 12186 return res; 12187 } 12188 12189 /* Perform 8-bit signed saturating subtraction. */ 12190 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 12191 { 12192 uint8_t res; 12193 12194 res = a - b; 12195 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 12196 if (a & 0x80) { 12197 res = 0x80; 12198 } else { 12199 res = 0x7f; 12200 } 12201 } 12202 return res; 12203 } 12204 12205 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 12206 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 12207 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 12208 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 12209 #define PFX q 12210 12211 #include "op_addsub.h" 12212 12213 /* Unsigned saturating arithmetic. */ 12214 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 12215 { 12216 uint16_t res; 12217 res = a + b; 12218 if (res < a) { 12219 res = 0xffff; 12220 } 12221 return res; 12222 } 12223 12224 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 12225 { 12226 if (a > b) { 12227 return a - b; 12228 } else { 12229 return 0; 12230 } 12231 } 12232 12233 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 12234 { 12235 uint8_t res; 12236 res = a + b; 12237 if (res < a) { 12238 res = 0xff; 12239 } 12240 return res; 12241 } 12242 12243 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 12244 { 12245 if (a > b) { 12246 return a - b; 12247 } else { 12248 return 0; 12249 } 12250 } 12251 12252 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 12253 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 12254 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 12255 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 12256 #define PFX uq 12257 12258 #include "op_addsub.h" 12259 12260 /* Signed modulo arithmetic. */ 12261 #define SARITH16(a, b, n, op) do { \ 12262 int32_t sum; \ 12263 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 12264 RESULT(sum, n, 16); \ 12265 if (sum >= 0) \ 12266 ge |= 3 << (n * 2); \ 12267 } while (0) 12268 12269 #define SARITH8(a, b, n, op) do { \ 12270 int32_t sum; \ 12271 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 12272 RESULT(sum, n, 8); \ 12273 if (sum >= 0) \ 12274 ge |= 1 << n; \ 12275 } while (0) 12276 12277 12278 #define ADD16(a, b, n) SARITH16(a, b, n, +) 12279 #define SUB16(a, b, n) SARITH16(a, b, n, -) 12280 #define ADD8(a, b, n) SARITH8(a, b, n, +) 12281 #define SUB8(a, b, n) SARITH8(a, b, n, -) 12282 #define PFX s 12283 #define ARITH_GE 12284 12285 #include "op_addsub.h" 12286 12287 /* Unsigned modulo arithmetic. */ 12288 #define ADD16(a, b, n) do { \ 12289 uint32_t sum; \ 12290 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 12291 RESULT(sum, n, 16); \ 12292 if ((sum >> 16) == 1) \ 12293 ge |= 3 << (n * 2); \ 12294 } while (0) 12295 12296 #define ADD8(a, b, n) do { \ 12297 uint32_t sum; \ 12298 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 12299 RESULT(sum, n, 8); \ 12300 if ((sum >> 8) == 1) \ 12301 ge |= 1 << n; \ 12302 } while (0) 12303 12304 #define SUB16(a, b, n) do { \ 12305 uint32_t sum; \ 12306 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 12307 RESULT(sum, n, 16); \ 12308 if ((sum >> 16) == 0) \ 12309 ge |= 3 << (n * 2); \ 12310 } while (0) 12311 12312 #define SUB8(a, b, n) do { \ 12313 uint32_t sum; \ 12314 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 12315 RESULT(sum, n, 8); \ 12316 if ((sum >> 8) == 0) \ 12317 ge |= 1 << n; \ 12318 } while (0) 12319 12320 #define PFX u 12321 #define ARITH_GE 12322 12323 #include "op_addsub.h" 12324 12325 /* Halved signed arithmetic. */ 12326 #define ADD16(a, b, n) \ 12327 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 12328 #define SUB16(a, b, n) \ 12329 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 12330 #define ADD8(a, b, n) \ 12331 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 12332 #define SUB8(a, b, n) \ 12333 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 12334 #define PFX sh 12335 12336 #include "op_addsub.h" 12337 12338 /* Halved unsigned arithmetic. */ 12339 #define ADD16(a, b, n) \ 12340 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12341 #define SUB16(a, b, n) \ 12342 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 12343 #define ADD8(a, b, n) \ 12344 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12345 #define SUB8(a, b, n) \ 12346 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 12347 #define PFX uh 12348 12349 #include "op_addsub.h" 12350 12351 static inline uint8_t do_usad(uint8_t a, uint8_t b) 12352 { 12353 if (a > b) { 12354 return a - b; 12355 } else { 12356 return b - a; 12357 } 12358 } 12359 12360 /* Unsigned sum of absolute byte differences. */ 12361 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 12362 { 12363 uint32_t sum; 12364 sum = do_usad(a, b); 12365 sum += do_usad(a >> 8, b >> 8); 12366 sum += do_usad(a >> 16, b >> 16); 12367 sum += do_usad(a >> 24, b >> 24); 12368 return sum; 12369 } 12370 12371 /* For ARMv6 SEL instruction. */ 12372 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 12373 { 12374 uint32_t mask; 12375 12376 mask = 0; 12377 if (flags & 1) { 12378 mask |= 0xff; 12379 } 12380 if (flags & 2) { 12381 mask |= 0xff00; 12382 } 12383 if (flags & 4) { 12384 mask |= 0xff0000; 12385 } 12386 if (flags & 8) { 12387 mask |= 0xff000000; 12388 } 12389 return (a & mask) | (b & ~mask); 12390 } 12391 12392 /* 12393 * CRC helpers. 12394 * The upper bytes of val (above the number specified by 'bytes') must have 12395 * been zeroed out by the caller. 12396 */ 12397 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12398 { 12399 uint8_t buf[4]; 12400 12401 stl_le_p(buf, val); 12402 12403 /* zlib crc32 converts the accumulator and output to one's complement. */ 12404 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12405 } 12406 12407 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12408 { 12409 uint8_t buf[4]; 12410 12411 stl_le_p(buf, val); 12412 12413 /* Linux crc32c converts the output to one's complement. */ 12414 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12415 } 12416 12417 /* 12418 * Return the exception level to which FP-disabled exceptions should 12419 * be taken, or 0 if FP is enabled. 12420 */ 12421 int fp_exception_el(CPUARMState *env, int cur_el) 12422 { 12423 #ifndef CONFIG_USER_ONLY 12424 uint64_t hcr_el2; 12425 12426 /* 12427 * CPACR and the CPTR registers don't exist before v6, so FP is 12428 * always accessible 12429 */ 12430 if (!arm_feature(env, ARM_FEATURE_V6)) { 12431 return 0; 12432 } 12433 12434 if (arm_feature(env, ARM_FEATURE_M)) { 12435 /* CPACR can cause a NOCP UsageFault taken to current security state */ 12436 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 12437 return 1; 12438 } 12439 12440 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 12441 if (!extract32(env->v7m.nsacr, 10, 1)) { 12442 /* FP insns cause a NOCP UsageFault taken to Secure */ 12443 return 3; 12444 } 12445 } 12446 12447 return 0; 12448 } 12449 12450 hcr_el2 = arm_hcr_el2_eff(env); 12451 12452 /* 12453 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12454 * 0, 2 : trap EL0 and EL1/PL1 accesses 12455 * 1 : trap only EL0 accesses 12456 * 3 : trap no accesses 12457 * This register is ignored if E2H+TGE are both set. 12458 */ 12459 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 12460 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 12461 12462 switch (fpen) { 12463 case 1: 12464 if (cur_el != 0) { 12465 break; 12466 } 12467 /* fall through */ 12468 case 0: 12469 case 2: 12470 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 12471 if (!arm_el_is_aa64(env, 3) 12472 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 12473 return 3; 12474 } 12475 if (cur_el <= 1) { 12476 return 1; 12477 } 12478 break; 12479 } 12480 } 12481 12482 /* 12483 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 12484 * to control non-secure access to the FPU. It doesn't have any 12485 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 12486 */ 12487 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 12488 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 12489 if (!extract32(env->cp15.nsacr, 10, 1)) { 12490 /* FP insns act as UNDEF */ 12491 return cur_el == 2 ? 2 : 1; 12492 } 12493 } 12494 12495 /* 12496 * CPTR_EL2 is present in v7VE or v8, and changes format 12497 * with HCR_EL2.E2H (regardless of TGE). 12498 */ 12499 if (cur_el <= 2) { 12500 if (hcr_el2 & HCR_E2H) { 12501 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 12502 case 1: 12503 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 12504 break; 12505 } 12506 /* fall through */ 12507 case 0: 12508 case 2: 12509 return 2; 12510 } 12511 } else if (arm_is_el2_enabled(env)) { 12512 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 12513 return 2; 12514 } 12515 } 12516 } 12517 12518 /* CPTR_EL3 : present in v8 */ 12519 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 12520 /* Trap all FP ops to EL3 */ 12521 return 3; 12522 } 12523 #endif 12524 return 0; 12525 } 12526 12527 /* 12528 * Return the exception level we're running at if this is our mmu_idx. 12529 * s_pl1_0 should be true if this is the AArch32 Secure PL1&0 translation 12530 * regime. 12531 */ 12532 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0) 12533 { 12534 if (mmu_idx & ARM_MMU_IDX_M) { 12535 return mmu_idx & ARM_MMU_IDX_M_PRIV; 12536 } 12537 12538 switch (mmu_idx) { 12539 case ARMMMUIdx_E10_0: 12540 case ARMMMUIdx_E20_0: 12541 return 0; 12542 case ARMMMUIdx_E10_1: 12543 case ARMMMUIdx_E10_1_PAN: 12544 return s_pl1_0 ? 3 : 1; 12545 case ARMMMUIdx_E2: 12546 case ARMMMUIdx_E20_2: 12547 case ARMMMUIdx_E20_2_PAN: 12548 return 2; 12549 case ARMMMUIdx_E3: 12550 return 3; 12551 default: 12552 g_assert_not_reached(); 12553 } 12554 } 12555 12556 #ifndef CONFIG_TCG 12557 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 12558 { 12559 g_assert_not_reached(); 12560 } 12561 #endif 12562 12563 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 12564 { 12565 ARMMMUIdx idx; 12566 uint64_t hcr; 12567 12568 if (arm_feature(env, ARM_FEATURE_M)) { 12569 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 12570 } 12571 12572 /* See ARM pseudo-function ELIsInHost. */ 12573 switch (el) { 12574 case 0: 12575 hcr = arm_hcr_el2_eff(env); 12576 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 12577 idx = ARMMMUIdx_E20_0; 12578 } else { 12579 idx = ARMMMUIdx_E10_0; 12580 } 12581 break; 12582 case 3: 12583 /* 12584 * AArch64 EL3 has its own translation regime; AArch32 EL3 12585 * uses the Secure PL1&0 translation regime. 12586 */ 12587 if (arm_el_is_aa64(env, 3)) { 12588 return ARMMMUIdx_E3; 12589 } 12590 /* fall through */ 12591 case 1: 12592 if (arm_pan_enabled(env)) { 12593 idx = ARMMMUIdx_E10_1_PAN; 12594 } else { 12595 idx = ARMMMUIdx_E10_1; 12596 } 12597 break; 12598 case 2: 12599 /* Note that TGE does not apply at EL2. */ 12600 if (arm_hcr_el2_eff(env) & HCR_E2H) { 12601 if (arm_pan_enabled(env)) { 12602 idx = ARMMMUIdx_E20_2_PAN; 12603 } else { 12604 idx = ARMMMUIdx_E20_2; 12605 } 12606 } else { 12607 idx = ARMMMUIdx_E2; 12608 } 12609 break; 12610 default: 12611 g_assert_not_reached(); 12612 } 12613 12614 return idx; 12615 } 12616 12617 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 12618 { 12619 return arm_mmu_idx_el(env, arm_current_el(env)); 12620 } 12621 12622 static bool mve_no_pred(CPUARMState *env) 12623 { 12624 /* 12625 * Return true if there is definitely no predication of MVE 12626 * instructions by VPR or LTPSIZE. (Returning false even if there 12627 * isn't any predication is OK; generated code will just be 12628 * a little worse.) 12629 * If the CPU does not implement MVE then this TB flag is always 0. 12630 * 12631 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12632 * logic in gen_update_fp_context() needs to be updated to match. 12633 * 12634 * We do not include the effect of the ECI bits here -- they are 12635 * tracked in other TB flags. This simplifies the logic for 12636 * "when did we emit code that changes the MVE_NO_PRED TB flag 12637 * and thus need to end the TB?". 12638 */ 12639 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12640 return false; 12641 } 12642 if (env->v7m.vpr) { 12643 return false; 12644 } 12645 if (env->v7m.ltpsize < 4) { 12646 return false; 12647 } 12648 return true; 12649 } 12650 12651 void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc, 12652 uint64_t *cs_base, uint32_t *pflags) 12653 { 12654 CPUARMTBFlags flags; 12655 12656 assert_hflags_rebuild_correctly(env); 12657 flags = env->hflags; 12658 12659 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12660 *pc = env->pc; 12661 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12662 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12663 } 12664 } else { 12665 *pc = env->regs[15]; 12666 12667 if (arm_feature(env, ARM_FEATURE_M)) { 12668 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12669 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12670 != env->v7m.secure) { 12671 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12672 } 12673 12674 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12675 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12676 (env->v7m.secure && 12677 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12678 /* 12679 * ASPEN is set, but FPCA/SFPA indicate that there is no 12680 * active FP context; we must create a new FP context before 12681 * executing any FP insn. 12682 */ 12683 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12684 } 12685 12686 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12687 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12688 DP_TBFLAG_M32(flags, LSPACT, 1); 12689 } 12690 12691 if (mve_no_pred(env)) { 12692 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12693 } 12694 } else { 12695 /* 12696 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12697 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12698 */ 12699 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12700 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12701 } else { 12702 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12703 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12704 } 12705 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12706 DP_TBFLAG_A32(flags, VFPEN, 1); 12707 } 12708 } 12709 12710 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12711 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12712 } 12713 12714 /* 12715 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12716 * states defined in the ARM ARM for software singlestep: 12717 * SS_ACTIVE PSTATE.SS State 12718 * 0 x Inactive (the TB flag for SS is always 0) 12719 * 1 0 Active-pending 12720 * 1 1 Active-not-pending 12721 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12722 */ 12723 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12724 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12725 } 12726 12727 *pflags = flags.flags; 12728 *cs_base = flags.flags2; 12729 } 12730 12731 #ifdef TARGET_AARCH64 12732 /* 12733 * The manual says that when SVE is enabled and VQ is widened the 12734 * implementation is allowed to zero the previously inaccessible 12735 * portion of the registers. The corollary to that is that when 12736 * SVE is enabled and VQ is narrowed we are also allowed to zero 12737 * the now inaccessible portion of the registers. 12738 * 12739 * The intent of this is that no predicate bit beyond VQ is ever set. 12740 * Which means that some operations on predicate registers themselves 12741 * may operate on full uint64_t or even unrolled across the maximum 12742 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12743 * may well be cheaper than conditionals to restrict the operation 12744 * to the relevant portion of a uint16_t[16]. 12745 */ 12746 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12747 { 12748 int i, j; 12749 uint64_t pmask; 12750 12751 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12752 assert(vq <= env_archcpu(env)->sve_max_vq); 12753 12754 /* Zap the high bits of the zregs. */ 12755 for (i = 0; i < 32; i++) { 12756 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12757 } 12758 12759 /* Zap the high bits of the pregs and ffr. */ 12760 pmask = 0; 12761 if (vq & 3) { 12762 pmask = ~(-1ULL << (16 * (vq & 3))); 12763 } 12764 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12765 for (i = 0; i < 17; ++i) { 12766 env->vfp.pregs[i].p[j] &= pmask; 12767 } 12768 pmask = 0; 12769 } 12770 } 12771 12772 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12773 { 12774 int exc_el; 12775 12776 if (sm) { 12777 exc_el = sme_exception_el(env, el); 12778 } else { 12779 exc_el = sve_exception_el(env, el); 12780 } 12781 if (exc_el) { 12782 return 0; /* disabled */ 12783 } 12784 return sve_vqm1_for_el_sm(env, el, sm); 12785 } 12786 12787 /* 12788 * Notice a change in SVE vector size when changing EL. 12789 */ 12790 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12791 int new_el, bool el0_a64) 12792 { 12793 ARMCPU *cpu = env_archcpu(env); 12794 int old_len, new_len; 12795 bool old_a64, new_a64, sm; 12796 12797 /* Nothing to do if no SVE. */ 12798 if (!cpu_isar_feature(aa64_sve, cpu)) { 12799 return; 12800 } 12801 12802 /* Nothing to do if FP is disabled in either EL. */ 12803 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12804 return; 12805 } 12806 12807 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12808 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12809 12810 /* 12811 * Both AArch64.TakeException and AArch64.ExceptionReturn 12812 * invoke ResetSVEState when taking an exception from, or 12813 * returning to, AArch32 state when PSTATE.SM is enabled. 12814 */ 12815 sm = FIELD_EX64(env->svcr, SVCR, SM); 12816 if (old_a64 != new_a64 && sm) { 12817 arm_reset_sve_state(env); 12818 return; 12819 } 12820 12821 /* 12822 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12823 * at ELx, or not available because the EL is in AArch32 state, then 12824 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12825 * has an effective value of 0". 12826 * 12827 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12828 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12829 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12830 * we already have the correct register contents when encountering the 12831 * vq0->vq0 transition between EL0->EL1. 12832 */ 12833 old_len = new_len = 0; 12834 if (old_a64) { 12835 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12836 } 12837 if (new_a64) { 12838 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12839 } 12840 12841 /* When changing vector length, clear inaccessible state. */ 12842 if (new_len < old_len) { 12843 aarch64_sve_narrow_vq(env, new_len + 1); 12844 } 12845 } 12846 #endif 12847 12848 #ifndef CONFIG_USER_ONLY 12849 ARMSecuritySpace arm_security_space(CPUARMState *env) 12850 { 12851 if (arm_feature(env, ARM_FEATURE_M)) { 12852 return arm_secure_to_space(env->v7m.secure); 12853 } 12854 12855 /* 12856 * If EL3 is not supported then the secure state is implementation 12857 * defined, in which case QEMU defaults to non-secure. 12858 */ 12859 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12860 return ARMSS_NonSecure; 12861 } 12862 12863 /* Check for AArch64 EL3 or AArch32 Mon. */ 12864 if (is_a64(env)) { 12865 if (extract32(env->pstate, 2, 2) == 3) { 12866 if (cpu_isar_feature(aa64_rme, env_archcpu(env))) { 12867 return ARMSS_Root; 12868 } else { 12869 return ARMSS_Secure; 12870 } 12871 } 12872 } else { 12873 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 12874 return ARMSS_Secure; 12875 } 12876 } 12877 12878 return arm_security_space_below_el3(env); 12879 } 12880 12881 ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env) 12882 { 12883 assert(!arm_feature(env, ARM_FEATURE_M)); 12884 12885 /* 12886 * If EL3 is not supported then the secure state is implementation 12887 * defined, in which case QEMU defaults to non-secure. 12888 */ 12889 if (!arm_feature(env, ARM_FEATURE_EL3)) { 12890 return ARMSS_NonSecure; 12891 } 12892 12893 /* 12894 * Note NSE cannot be set without RME, and NSE & !NS is Reserved. 12895 * Ignoring NSE when !NS retains consistency without having to 12896 * modify other predicates. 12897 */ 12898 if (!(env->cp15.scr_el3 & SCR_NS)) { 12899 return ARMSS_Secure; 12900 } else if (env->cp15.scr_el3 & SCR_NSE) { 12901 return ARMSS_Realm; 12902 } else { 12903 return ARMSS_NonSecure; 12904 } 12905 } 12906 #endif /* !CONFIG_USER_ONLY */ 12907