1 #include "qemu/osdep.h" 2 #include "target/arm/idau.h" 3 #include "trace.h" 4 #include "cpu.h" 5 #include "internals.h" 6 #include "exec/gdbstub.h" 7 #include "exec/helper-proto.h" 8 #include "qemu/host-utils.h" 9 #include "sysemu/arch_init.h" 10 #include "sysemu/sysemu.h" 11 #include "qemu/bitops.h" 12 #include "qemu/crc32c.h" 13 #include "exec/exec-all.h" 14 #include "exec/cpu_ldst.h" 15 #include "arm_ldst.h" 16 #include <zlib.h> /* For crc32 */ 17 #include "exec/semihost.h" 18 #include "sysemu/kvm.h" 19 #include "fpu/softfloat.h" 20 21 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 22 23 #ifndef CONFIG_USER_ONLY 24 /* Cacheability and shareability attributes for a memory access */ 25 typedef struct ARMCacheAttrs { 26 unsigned int attrs:8; /* as in the MAIR register encoding */ 27 unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */ 28 } ARMCacheAttrs; 29 30 static bool get_phys_addr(CPUARMState *env, target_ulong address, 31 MMUAccessType access_type, ARMMMUIdx mmu_idx, 32 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 33 target_ulong *page_size, 34 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 35 36 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 37 MMUAccessType access_type, ARMMMUIdx mmu_idx, 38 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 39 target_ulong *page_size_ptr, 40 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs); 41 42 /* Security attributes for an address, as returned by v8m_security_lookup. */ 43 typedef struct V8M_SAttributes { 44 bool ns; 45 bool nsc; 46 uint8_t sregion; 47 bool srvalid; 48 uint8_t iregion; 49 bool irvalid; 50 } V8M_SAttributes; 51 52 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 53 MMUAccessType access_type, ARMMMUIdx mmu_idx, 54 V8M_SAttributes *sattrs); 55 #endif 56 57 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 58 { 59 int nregs; 60 61 /* VFP data registers are always little-endian. */ 62 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 63 if (reg < nregs) { 64 stq_le_p(buf, *aa32_vfp_dreg(env, reg)); 65 return 8; 66 } 67 if (arm_feature(env, ARM_FEATURE_NEON)) { 68 /* Aliases for Q regs. */ 69 nregs += 16; 70 if (reg < nregs) { 71 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 72 stq_le_p(buf, q[0]); 73 stq_le_p(buf + 8, q[1]); 74 return 16; 75 } 76 } 77 switch (reg - nregs) { 78 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4; 79 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4; 80 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4; 81 } 82 return 0; 83 } 84 85 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 86 { 87 int nregs; 88 89 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16; 90 if (reg < nregs) { 91 *aa32_vfp_dreg(env, reg) = ldq_le_p(buf); 92 return 8; 93 } 94 if (arm_feature(env, ARM_FEATURE_NEON)) { 95 nregs += 16; 96 if (reg < nregs) { 97 uint64_t *q = aa32_vfp_qreg(env, reg - 32); 98 q[0] = ldq_le_p(buf); 99 q[1] = ldq_le_p(buf + 8); 100 return 16; 101 } 102 } 103 switch (reg - nregs) { 104 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4; 105 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4; 106 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4; 107 } 108 return 0; 109 } 110 111 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg) 112 { 113 switch (reg) { 114 case 0 ... 31: 115 /* 128 bit FP register */ 116 { 117 uint64_t *q = aa64_vfp_qreg(env, reg); 118 stq_le_p(buf, q[0]); 119 stq_le_p(buf + 8, q[1]); 120 return 16; 121 } 122 case 32: 123 /* FPSR */ 124 stl_p(buf, vfp_get_fpsr(env)); 125 return 4; 126 case 33: 127 /* FPCR */ 128 stl_p(buf, vfp_get_fpcr(env)); 129 return 4; 130 default: 131 return 0; 132 } 133 } 134 135 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg) 136 { 137 switch (reg) { 138 case 0 ... 31: 139 /* 128 bit FP register */ 140 { 141 uint64_t *q = aa64_vfp_qreg(env, reg); 142 q[0] = ldq_le_p(buf); 143 q[1] = ldq_le_p(buf + 8); 144 return 16; 145 } 146 case 32: 147 /* FPSR */ 148 vfp_set_fpsr(env, ldl_p(buf)); 149 return 4; 150 case 33: 151 /* FPCR */ 152 vfp_set_fpcr(env, ldl_p(buf)); 153 return 4; 154 default: 155 return 0; 156 } 157 } 158 159 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 160 { 161 assert(ri->fieldoffset); 162 if (cpreg_field_is_64bit(ri)) { 163 return CPREG_FIELD64(env, ri); 164 } else { 165 return CPREG_FIELD32(env, ri); 166 } 167 } 168 169 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 170 uint64_t value) 171 { 172 assert(ri->fieldoffset); 173 if (cpreg_field_is_64bit(ri)) { 174 CPREG_FIELD64(env, ri) = value; 175 } else { 176 CPREG_FIELD32(env, ri) = value; 177 } 178 } 179 180 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 181 { 182 return (char *)env + ri->fieldoffset; 183 } 184 185 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 186 { 187 /* Raw read of a coprocessor register (as needed for migration, etc). */ 188 if (ri->type & ARM_CP_CONST) { 189 return ri->resetvalue; 190 } else if (ri->raw_readfn) { 191 return ri->raw_readfn(env, ri); 192 } else if (ri->readfn) { 193 return ri->readfn(env, ri); 194 } else { 195 return raw_read(env, ri); 196 } 197 } 198 199 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 200 uint64_t v) 201 { 202 /* Raw write of a coprocessor register (as needed for migration, etc). 203 * Note that constant registers are treated as write-ignored; the 204 * caller should check for success by whether a readback gives the 205 * value written. 206 */ 207 if (ri->type & ARM_CP_CONST) { 208 return; 209 } else if (ri->raw_writefn) { 210 ri->raw_writefn(env, ri, v); 211 } else if (ri->writefn) { 212 ri->writefn(env, ri, v); 213 } else { 214 raw_write(env, ri, v); 215 } 216 } 217 218 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 219 { 220 /* Return true if the regdef would cause an assertion if you called 221 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 222 * program bug for it not to have the NO_RAW flag). 223 * NB that returning false here doesn't necessarily mean that calling 224 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 225 * read/write access functions which are safe for raw use" from "has 226 * read/write access functions which have side effects but has forgotten 227 * to provide raw access functions". 228 * The tests here line up with the conditions in read/write_raw_cp_reg() 229 * and assertions in raw_read()/raw_write(). 230 */ 231 if ((ri->type & ARM_CP_CONST) || 232 ri->fieldoffset || 233 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 234 return false; 235 } 236 return true; 237 } 238 239 bool write_cpustate_to_list(ARMCPU *cpu) 240 { 241 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 242 int i; 243 bool ok = true; 244 245 for (i = 0; i < cpu->cpreg_array_len; i++) { 246 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 247 const ARMCPRegInfo *ri; 248 249 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 250 if (!ri) { 251 ok = false; 252 continue; 253 } 254 if (ri->type & ARM_CP_NO_RAW) { 255 continue; 256 } 257 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri); 258 } 259 return ok; 260 } 261 262 bool write_list_to_cpustate(ARMCPU *cpu) 263 { 264 int i; 265 bool ok = true; 266 267 for (i = 0; i < cpu->cpreg_array_len; i++) { 268 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 269 uint64_t v = cpu->cpreg_values[i]; 270 const ARMCPRegInfo *ri; 271 272 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 273 if (!ri) { 274 ok = false; 275 continue; 276 } 277 if (ri->type & ARM_CP_NO_RAW) { 278 continue; 279 } 280 /* Write value and confirm it reads back as written 281 * (to catch read-only registers and partially read-only 282 * registers where the incoming migration value doesn't match) 283 */ 284 write_raw_cp_reg(&cpu->env, ri, v); 285 if (read_raw_cp_reg(&cpu->env, ri) != v) { 286 ok = false; 287 } 288 } 289 return ok; 290 } 291 292 static void add_cpreg_to_list(gpointer key, gpointer opaque) 293 { 294 ARMCPU *cpu = opaque; 295 uint64_t regidx; 296 const ARMCPRegInfo *ri; 297 298 regidx = *(uint32_t *)key; 299 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 300 301 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 302 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 303 /* The value array need not be initialized at this point */ 304 cpu->cpreg_array_len++; 305 } 306 } 307 308 static void count_cpreg(gpointer key, gpointer opaque) 309 { 310 ARMCPU *cpu = opaque; 311 uint64_t regidx; 312 const ARMCPRegInfo *ri; 313 314 regidx = *(uint32_t *)key; 315 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 316 317 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) { 318 cpu->cpreg_array_len++; 319 } 320 } 321 322 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 323 { 324 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a); 325 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b); 326 327 if (aidx > bidx) { 328 return 1; 329 } 330 if (aidx < bidx) { 331 return -1; 332 } 333 return 0; 334 } 335 336 void init_cpreg_list(ARMCPU *cpu) 337 { 338 /* Initialise the cpreg_tuples[] array based on the cp_regs hash. 339 * Note that we require cpreg_tuples[] to be sorted by key ID. 340 */ 341 GList *keys; 342 int arraylen; 343 344 keys = g_hash_table_get_keys(cpu->cp_regs); 345 keys = g_list_sort(keys, cpreg_key_compare); 346 347 cpu->cpreg_array_len = 0; 348 349 g_list_foreach(keys, count_cpreg, cpu); 350 351 arraylen = cpu->cpreg_array_len; 352 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 353 cpu->cpreg_values = g_new(uint64_t, arraylen); 354 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 355 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 356 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 357 cpu->cpreg_array_len = 0; 358 359 g_list_foreach(keys, add_cpreg_to_list, cpu); 360 361 assert(cpu->cpreg_array_len == arraylen); 362 363 g_list_free(keys); 364 } 365 366 /* 367 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but 368 * they are accessible when EL3 is using AArch64 regardless of EL3.NS. 369 * 370 * access_el3_aa32ns: Used to check AArch32 register views. 371 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views. 372 */ 373 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 374 const ARMCPRegInfo *ri, 375 bool isread) 376 { 377 bool secure = arm_is_secure_below_el3(env); 378 379 assert(!arm_el_is_aa64(env, 3)); 380 if (secure) { 381 return CP_ACCESS_TRAP_UNCATEGORIZED; 382 } 383 return CP_ACCESS_OK; 384 } 385 386 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env, 387 const ARMCPRegInfo *ri, 388 bool isread) 389 { 390 if (!arm_el_is_aa64(env, 3)) { 391 return access_el3_aa32ns(env, ri, isread); 392 } 393 return CP_ACCESS_OK; 394 } 395 396 /* Some secure-only AArch32 registers trap to EL3 if used from 397 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 398 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 399 * We assume that the .access field is set to PL1_RW. 400 */ 401 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 402 const ARMCPRegInfo *ri, 403 bool isread) 404 { 405 if (arm_current_el(env) == 3) { 406 return CP_ACCESS_OK; 407 } 408 if (arm_is_secure_below_el3(env)) { 409 return CP_ACCESS_TRAP_EL3; 410 } 411 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 412 return CP_ACCESS_TRAP_UNCATEGORIZED; 413 } 414 415 /* Check for traps to "powerdown debug" registers, which are controlled 416 * by MDCR.TDOSA 417 */ 418 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri, 419 bool isread) 420 { 421 int el = arm_current_el(env); 422 423 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) 424 && !arm_is_secure_below_el3(env)) { 425 return CP_ACCESS_TRAP_EL2; 426 } 427 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { 428 return CP_ACCESS_TRAP_EL3; 429 } 430 return CP_ACCESS_OK; 431 } 432 433 /* Check for traps to "debug ROM" registers, which are controlled 434 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3. 435 */ 436 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri, 437 bool isread) 438 { 439 int el = arm_current_el(env); 440 441 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) 442 && !arm_is_secure_below_el3(env)) { 443 return CP_ACCESS_TRAP_EL2; 444 } 445 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 446 return CP_ACCESS_TRAP_EL3; 447 } 448 return CP_ACCESS_OK; 449 } 450 451 /* Check for traps to general debug registers, which are controlled 452 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3. 453 */ 454 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri, 455 bool isread) 456 { 457 int el = arm_current_el(env); 458 459 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) 460 && !arm_is_secure_below_el3(env)) { 461 return CP_ACCESS_TRAP_EL2; 462 } 463 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { 464 return CP_ACCESS_TRAP_EL3; 465 } 466 return CP_ACCESS_OK; 467 } 468 469 /* Check for traps to performance monitor registers, which are controlled 470 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 471 */ 472 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 473 bool isread) 474 { 475 int el = arm_current_el(env); 476 477 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 478 && !arm_is_secure_below_el3(env)) { 479 return CP_ACCESS_TRAP_EL2; 480 } 481 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 482 return CP_ACCESS_TRAP_EL3; 483 } 484 return CP_ACCESS_OK; 485 } 486 487 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 488 { 489 ARMCPU *cpu = arm_env_get_cpu(env); 490 491 raw_write(env, ri, value); 492 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 493 } 494 495 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 496 { 497 ARMCPU *cpu = arm_env_get_cpu(env); 498 499 if (raw_read(env, ri) != value) { 500 /* Unlike real hardware the qemu TLB uses virtual addresses, 501 * not modified virtual addresses, so this causes a TLB flush. 502 */ 503 tlb_flush(CPU(cpu)); 504 raw_write(env, ri, value); 505 } 506 } 507 508 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 ARMCPU *cpu = arm_env_get_cpu(env); 512 513 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 514 && !extended_addresses_enabled(env)) { 515 /* For VMSA (when not using the LPAE long descriptor page table 516 * format) this register includes the ASID, so do a TLB flush. 517 * For PMSA it is purely a process ID and no action is needed. 518 */ 519 tlb_flush(CPU(cpu)); 520 } 521 raw_write(env, ri, value); 522 } 523 524 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 /* Invalidate all (TLBIALL) */ 528 ARMCPU *cpu = arm_env_get_cpu(env); 529 530 tlb_flush(CPU(cpu)); 531 } 532 533 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 534 uint64_t value) 535 { 536 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 537 ARMCPU *cpu = arm_env_get_cpu(env); 538 539 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 540 } 541 542 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 /* Invalidate by ASID (TLBIASID) */ 546 ARMCPU *cpu = arm_env_get_cpu(env); 547 548 tlb_flush(CPU(cpu)); 549 } 550 551 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 552 uint64_t value) 553 { 554 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 555 ARMCPU *cpu = arm_env_get_cpu(env); 556 557 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK); 558 } 559 560 /* IS variants of TLB operations must affect all cores */ 561 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 562 uint64_t value) 563 { 564 CPUState *cs = ENV_GET_CPU(env); 565 566 tlb_flush_all_cpus_synced(cs); 567 } 568 569 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 570 uint64_t value) 571 { 572 CPUState *cs = ENV_GET_CPU(env); 573 574 tlb_flush_all_cpus_synced(cs); 575 } 576 577 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 578 uint64_t value) 579 { 580 CPUState *cs = ENV_GET_CPU(env); 581 582 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 583 } 584 585 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 586 uint64_t value) 587 { 588 CPUState *cs = ENV_GET_CPU(env); 589 590 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 591 } 592 593 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 594 uint64_t value) 595 { 596 CPUState *cs = ENV_GET_CPU(env); 597 598 tlb_flush_by_mmuidx(cs, 599 ARMMMUIdxBit_S12NSE1 | 600 ARMMMUIdxBit_S12NSE0 | 601 ARMMMUIdxBit_S2NS); 602 } 603 604 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 CPUState *cs = ENV_GET_CPU(env); 608 609 tlb_flush_by_mmuidx_all_cpus_synced(cs, 610 ARMMMUIdxBit_S12NSE1 | 611 ARMMMUIdxBit_S12NSE0 | 612 ARMMMUIdxBit_S2NS); 613 } 614 615 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 /* Invalidate by IPA. This has to invalidate any structures that 619 * contain only stage 2 translation information, but does not need 620 * to apply to structures that contain combined stage 1 and stage 2 621 * translation information. 622 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 623 */ 624 CPUState *cs = ENV_GET_CPU(env); 625 uint64_t pageaddr; 626 627 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 628 return; 629 } 630 631 pageaddr = sextract64(value << 12, 0, 40); 632 633 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 634 } 635 636 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 637 uint64_t value) 638 { 639 CPUState *cs = ENV_GET_CPU(env); 640 uint64_t pageaddr; 641 642 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 643 return; 644 } 645 646 pageaddr = sextract64(value << 12, 0, 40); 647 648 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 649 ARMMMUIdxBit_S2NS); 650 } 651 652 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 653 uint64_t value) 654 { 655 CPUState *cs = ENV_GET_CPU(env); 656 657 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 658 } 659 660 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 661 uint64_t value) 662 { 663 CPUState *cs = ENV_GET_CPU(env); 664 665 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 666 } 667 668 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 669 uint64_t value) 670 { 671 CPUState *cs = ENV_GET_CPU(env); 672 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 673 674 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 675 } 676 677 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 678 uint64_t value) 679 { 680 CPUState *cs = ENV_GET_CPU(env); 681 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 682 683 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 684 ARMMMUIdxBit_S1E2); 685 } 686 687 static const ARMCPRegInfo cp_reginfo[] = { 688 /* Define the secure and non-secure FCSE identifier CP registers 689 * separately because there is no secure bank in V8 (no _EL3). This allows 690 * the secure register to be properly reset and migrated. There is also no 691 * v8 EL1 version of the register so the non-secure instance stands alone. 692 */ 693 { .name = "FCSEIDR(NS)", 694 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 696 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 697 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 698 { .name = "FCSEIDR(S)", 699 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 700 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 701 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 702 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 703 /* Define the secure and non-secure context identifier CP registers 704 * separately because there is no secure bank in V8 (no _EL3). This allows 705 * the secure register to be properly reset and migrated. In the 706 * non-secure case, the 32-bit register will have reset and migration 707 * disabled during registration as it is handled by the 64-bit instance. 708 */ 709 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 710 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 711 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 712 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 713 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 714 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32, 715 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 716 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 717 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 718 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 719 REGINFO_SENTINEL 720 }; 721 722 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 723 /* NB: Some of these registers exist in v8 but with more precise 724 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 725 */ 726 /* MMU Domain access control / MPU write buffer control */ 727 { .name = "DACR", 728 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 729 .access = PL1_RW, .resetvalue = 0, 730 .writefn = dacr_write, .raw_writefn = raw_write, 731 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 732 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 733 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 734 * For v6 and v5, these mappings are overly broad. 735 */ 736 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 737 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 738 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 739 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 740 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 741 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 742 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 743 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 744 /* Cache maintenance ops; some of this space may be overridden later. */ 745 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 746 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 747 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 748 REGINFO_SENTINEL 749 }; 750 751 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 752 /* Not all pre-v6 cores implemented this WFI, so this is slightly 753 * over-broad. 754 */ 755 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 756 .access = PL1_W, .type = ARM_CP_WFI }, 757 REGINFO_SENTINEL 758 }; 759 760 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 761 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 762 * is UNPREDICTABLE; we choose to NOP as most implementations do). 763 */ 764 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 765 .access = PL1_W, .type = ARM_CP_WFI }, 766 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice 767 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 768 * OMAPCP will override this space. 769 */ 770 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 771 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 772 .resetvalue = 0 }, 773 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 774 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 775 .resetvalue = 0 }, 776 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 777 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 778 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 779 .resetvalue = 0 }, 780 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 781 * implementing it as RAZ means the "debug architecture version" bits 782 * will read as a reserved value, which should cause Linux to not try 783 * to use the debug hardware. 784 */ 785 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 786 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 787 /* MMU TLB control. Note that the wildcarding means we cover not just 788 * the unified TLB ops but also the dside/iside/inner-shareable variants. 789 */ 790 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 791 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 792 .type = ARM_CP_NO_RAW }, 793 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 794 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 795 .type = ARM_CP_NO_RAW }, 796 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 797 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 798 .type = ARM_CP_NO_RAW }, 799 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 800 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 801 .type = ARM_CP_NO_RAW }, 802 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 803 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 804 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 805 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 806 REGINFO_SENTINEL 807 }; 808 809 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 810 uint64_t value) 811 { 812 uint32_t mask = 0; 813 814 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 815 if (!arm_feature(env, ARM_FEATURE_V8)) { 816 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 817 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 818 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 819 */ 820 if (arm_feature(env, ARM_FEATURE_VFP)) { 821 /* VFP coprocessor: cp10 & cp11 [23:20] */ 822 mask |= (1 << 31) | (1 << 30) | (0xf << 20); 823 824 if (!arm_feature(env, ARM_FEATURE_NEON)) { 825 /* ASEDIS [31] bit is RAO/WI */ 826 value |= (1 << 31); 827 } 828 829 /* VFPv3 and upwards with NEON implement 32 double precision 830 * registers (D0-D31). 831 */ 832 if (!arm_feature(env, ARM_FEATURE_NEON) || 833 !arm_feature(env, ARM_FEATURE_VFP3)) { 834 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 835 value |= (1 << 30); 836 } 837 } 838 value &= mask; 839 } 840 env->cp15.cpacr_el1 = value; 841 } 842 843 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 844 bool isread) 845 { 846 if (arm_feature(env, ARM_FEATURE_V8)) { 847 /* Check if CPACR accesses are to be trapped to EL2 */ 848 if (arm_current_el(env) == 1 && 849 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) { 850 return CP_ACCESS_TRAP_EL2; 851 /* Check if CPACR accesses are to be trapped to EL3 */ 852 } else if (arm_current_el(env) < 3 && 853 (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 854 return CP_ACCESS_TRAP_EL3; 855 } 856 } 857 858 return CP_ACCESS_OK; 859 } 860 861 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 862 bool isread) 863 { 864 /* Check if CPTR accesses are set to trap to EL3 */ 865 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) { 866 return CP_ACCESS_TRAP_EL3; 867 } 868 869 return CP_ACCESS_OK; 870 } 871 872 static const ARMCPRegInfo v6_cp_reginfo[] = { 873 /* prefetch by MVA in v6, NOP in v7 */ 874 { .name = "MVA_prefetch", 875 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 876 .access = PL1_W, .type = ARM_CP_NOP }, 877 /* We need to break the TB after ISB to execute self-modifying code 878 * correctly and also to take any pending interrupts immediately. 879 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 880 */ 881 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 882 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 883 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 884 .access = PL0_W, .type = ARM_CP_NOP }, 885 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 886 .access = PL0_W, .type = ARM_CP_NOP }, 887 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 888 .access = PL1_RW, 889 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 890 offsetof(CPUARMState, cp15.ifar_ns) }, 891 .resetvalue = 0, }, 892 /* Watchpoint Fault Address Register : should actually only be present 893 * for 1136, 1176, 11MPCore. 894 */ 895 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 896 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 897 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 898 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 899 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 900 .resetvalue = 0, .writefn = cpacr_write }, 901 REGINFO_SENTINEL 902 }; 903 904 /* Definitions for the PMU registers */ 905 #define PMCRN_MASK 0xf800 906 #define PMCRN_SHIFT 11 907 #define PMCRD 0x8 908 #define PMCRC 0x4 909 #define PMCRE 0x1 910 911 static inline uint32_t pmu_num_counters(CPUARMState *env) 912 { 913 return (env->cp15.c9_pmcr & PMCRN_MASK) >> PMCRN_SHIFT; 914 } 915 916 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */ 917 static inline uint64_t pmu_counter_mask(CPUARMState *env) 918 { 919 return (1 << 31) | ((1 << pmu_num_counters(env)) - 1); 920 } 921 922 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 923 bool isread) 924 { 925 /* Performance monitor registers user accessibility is controlled 926 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 927 * trapping to EL2 or EL3 for other accesses. 928 */ 929 int el = arm_current_el(env); 930 931 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 932 return CP_ACCESS_TRAP; 933 } 934 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM) 935 && !arm_is_secure_below_el3(env)) { 936 return CP_ACCESS_TRAP_EL2; 937 } 938 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 939 return CP_ACCESS_TRAP_EL3; 940 } 941 942 return CP_ACCESS_OK; 943 } 944 945 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 946 const ARMCPRegInfo *ri, 947 bool isread) 948 { 949 /* ER: event counter read trap control */ 950 if (arm_feature(env, ARM_FEATURE_V8) 951 && arm_current_el(env) == 0 952 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 953 && isread) { 954 return CP_ACCESS_OK; 955 } 956 957 return pmreg_access(env, ri, isread); 958 } 959 960 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 961 const ARMCPRegInfo *ri, 962 bool isread) 963 { 964 /* SW: software increment write trap control */ 965 if (arm_feature(env, ARM_FEATURE_V8) 966 && arm_current_el(env) == 0 967 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 968 && !isread) { 969 return CP_ACCESS_OK; 970 } 971 972 return pmreg_access(env, ri, isread); 973 } 974 975 #ifndef CONFIG_USER_ONLY 976 977 static CPAccessResult pmreg_access_selr(CPUARMState *env, 978 const ARMCPRegInfo *ri, 979 bool isread) 980 { 981 /* ER: event counter read trap control */ 982 if (arm_feature(env, ARM_FEATURE_V8) 983 && arm_current_el(env) == 0 984 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 985 return CP_ACCESS_OK; 986 } 987 988 return pmreg_access(env, ri, isread); 989 } 990 991 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 992 const ARMCPRegInfo *ri, 993 bool isread) 994 { 995 /* CR: cycle counter read trap control */ 996 if (arm_feature(env, ARM_FEATURE_V8) 997 && arm_current_el(env) == 0 998 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 999 && isread) { 1000 return CP_ACCESS_OK; 1001 } 1002 1003 return pmreg_access(env, ri, isread); 1004 } 1005 1006 static inline bool arm_ccnt_enabled(CPUARMState *env) 1007 { 1008 /* This does not support checking PMCCFILTR_EL0 register */ 1009 1010 if (!(env->cp15.c9_pmcr & PMCRE) || !(env->cp15.c9_pmcnten & (1 << 31))) { 1011 return false; 1012 } 1013 1014 return true; 1015 } 1016 1017 void pmccntr_sync(CPUARMState *env) 1018 { 1019 uint64_t temp_ticks; 1020 1021 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1022 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1023 1024 if (env->cp15.c9_pmcr & PMCRD) { 1025 /* Increment once every 64 processor clock cycles */ 1026 temp_ticks /= 64; 1027 } 1028 1029 if (arm_ccnt_enabled(env)) { 1030 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt; 1031 } 1032 } 1033 1034 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1035 uint64_t value) 1036 { 1037 pmccntr_sync(env); 1038 1039 if (value & PMCRC) { 1040 /* The counter has been reset */ 1041 env->cp15.c15_ccnt = 0; 1042 } 1043 1044 /* only the DP, X, D and E bits are writable */ 1045 env->cp15.c9_pmcr &= ~0x39; 1046 env->cp15.c9_pmcr |= (value & 0x39); 1047 1048 pmccntr_sync(env); 1049 } 1050 1051 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1052 { 1053 uint64_t total_ticks; 1054 1055 if (!arm_ccnt_enabled(env)) { 1056 /* Counter is disabled, do not change value */ 1057 return env->cp15.c15_ccnt; 1058 } 1059 1060 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1061 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1062 1063 if (env->cp15.c9_pmcr & PMCRD) { 1064 /* Increment once every 64 processor clock cycles */ 1065 total_ticks /= 64; 1066 } 1067 return total_ticks - env->cp15.c15_ccnt; 1068 } 1069 1070 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1071 uint64_t value) 1072 { 1073 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1074 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1075 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1076 * accessed. 1077 */ 1078 env->cp15.c9_pmselr = value & 0x1f; 1079 } 1080 1081 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1082 uint64_t value) 1083 { 1084 uint64_t total_ticks; 1085 1086 if (!arm_ccnt_enabled(env)) { 1087 /* Counter is disabled, set the absolute value */ 1088 env->cp15.c15_ccnt = value; 1089 return; 1090 } 1091 1092 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1093 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 1094 1095 if (env->cp15.c9_pmcr & PMCRD) { 1096 /* Increment once every 64 processor clock cycles */ 1097 total_ticks /= 64; 1098 } 1099 env->cp15.c15_ccnt = total_ticks - value; 1100 } 1101 1102 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1103 uint64_t value) 1104 { 1105 uint64_t cur_val = pmccntr_read(env, NULL); 1106 1107 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1108 } 1109 1110 #else /* CONFIG_USER_ONLY */ 1111 1112 void pmccntr_sync(CPUARMState *env) 1113 { 1114 } 1115 1116 #endif 1117 1118 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1119 uint64_t value) 1120 { 1121 pmccntr_sync(env); 1122 env->cp15.pmccfiltr_el0 = value & 0xfc000000; 1123 pmccntr_sync(env); 1124 } 1125 1126 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1127 uint64_t value) 1128 { 1129 value &= pmu_counter_mask(env); 1130 env->cp15.c9_pmcnten |= value; 1131 } 1132 1133 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1134 uint64_t value) 1135 { 1136 value &= pmu_counter_mask(env); 1137 env->cp15.c9_pmcnten &= ~value; 1138 } 1139 1140 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1141 uint64_t value) 1142 { 1143 env->cp15.c9_pmovsr &= ~value; 1144 } 1145 1146 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1147 uint64_t value) 1148 { 1149 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1150 * PMSELR value is equal to or greater than the number of implemented 1151 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1152 */ 1153 if (env->cp15.c9_pmselr == 0x1f) { 1154 pmccfiltr_write(env, ri, value); 1155 } 1156 } 1157 1158 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1159 { 1160 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1161 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write(). 1162 */ 1163 if (env->cp15.c9_pmselr == 0x1f) { 1164 return env->cp15.pmccfiltr_el0; 1165 } else { 1166 return 0; 1167 } 1168 } 1169 1170 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1171 uint64_t value) 1172 { 1173 if (arm_feature(env, ARM_FEATURE_V8)) { 1174 env->cp15.c9_pmuserenr = value & 0xf; 1175 } else { 1176 env->cp15.c9_pmuserenr = value & 1; 1177 } 1178 } 1179 1180 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1181 uint64_t value) 1182 { 1183 /* We have no event counters so only the C bit can be changed */ 1184 value &= pmu_counter_mask(env); 1185 env->cp15.c9_pminten |= value; 1186 } 1187 1188 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1189 uint64_t value) 1190 { 1191 value &= pmu_counter_mask(env); 1192 env->cp15.c9_pminten &= ~value; 1193 } 1194 1195 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1196 uint64_t value) 1197 { 1198 /* Note that even though the AArch64 view of this register has bits 1199 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1200 * architectural requirements for bits which are RES0 only in some 1201 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1202 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1203 */ 1204 raw_write(env, ri, value & ~0x1FULL); 1205 } 1206 1207 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1208 { 1209 /* We only mask off bits that are RES0 both for AArch64 and AArch32. 1210 * For bits that vary between AArch32/64, code needs to check the 1211 * current execution mode before directly using the feature bit. 1212 */ 1213 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK; 1214 1215 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1216 valid_mask &= ~SCR_HCE; 1217 1218 /* On ARMv7, SMD (or SCD as it is called in v7) is only 1219 * supported if EL2 exists. The bit is UNK/SBZP when 1220 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1221 * when EL2 is unavailable. 1222 * On ARMv8, this bit is always available. 1223 */ 1224 if (arm_feature(env, ARM_FEATURE_V7) && 1225 !arm_feature(env, ARM_FEATURE_V8)) { 1226 valid_mask &= ~SCR_SMD; 1227 } 1228 } 1229 1230 /* Clear all-context RES0 bits. */ 1231 value &= valid_mask; 1232 raw_write(env, ri, value); 1233 } 1234 1235 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1236 { 1237 ARMCPU *cpu = arm_env_get_cpu(env); 1238 1239 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR 1240 * bank 1241 */ 1242 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1243 ri->secure & ARM_CP_SECSTATE_S); 1244 1245 return cpu->ccsidr[index]; 1246 } 1247 1248 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1249 uint64_t value) 1250 { 1251 raw_write(env, ri, value & 0xf); 1252 } 1253 1254 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1255 { 1256 CPUState *cs = ENV_GET_CPU(env); 1257 uint64_t ret = 0; 1258 1259 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1260 ret |= CPSR_I; 1261 } 1262 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1263 ret |= CPSR_F; 1264 } 1265 /* External aborts are not possible in QEMU so A bit is always clear */ 1266 return ret; 1267 } 1268 1269 static const ARMCPRegInfo v7_cp_reginfo[] = { 1270 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 1271 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 1272 .access = PL1_W, .type = ARM_CP_NOP }, 1273 /* Performance monitors are implementation defined in v7, 1274 * but with an ARM recommended set of registers, which we 1275 * follow (although we don't actually implement any counters) 1276 * 1277 * Performance registers fall into three categories: 1278 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 1279 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 1280 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 1281 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 1282 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 1283 */ 1284 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 1285 .access = PL0_RW, .type = ARM_CP_ALIAS, 1286 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1287 .writefn = pmcntenset_write, 1288 .accessfn = pmreg_access, 1289 .raw_writefn = raw_write }, 1290 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, 1291 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 1292 .access = PL0_RW, .accessfn = pmreg_access, 1293 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 1294 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 1295 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 1296 .access = PL0_RW, 1297 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 1298 .accessfn = pmreg_access, 1299 .writefn = pmcntenclr_write, 1300 .type = ARM_CP_ALIAS }, 1301 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 1302 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 1303 .access = PL0_RW, .accessfn = pmreg_access, 1304 .type = ARM_CP_ALIAS, 1305 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 1306 .writefn = pmcntenclr_write }, 1307 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 1308 .access = PL0_RW, 1309 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 1310 .accessfn = pmreg_access, 1311 .writefn = pmovsr_write, 1312 .raw_writefn = raw_write }, 1313 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 1314 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 1315 .access = PL0_RW, .accessfn = pmreg_access, 1316 .type = ARM_CP_ALIAS, 1317 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 1318 .writefn = pmovsr_write, 1319 .raw_writefn = raw_write }, 1320 /* Unimplemented so WI. */ 1321 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 1322 .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP }, 1323 #ifndef CONFIG_USER_ONLY 1324 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 1325 .access = PL0_RW, .type = ARM_CP_ALIAS, 1326 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 1327 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 1328 .raw_writefn = raw_write}, 1329 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 1330 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 1331 .access = PL0_RW, .accessfn = pmreg_access_selr, 1332 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 1333 .writefn = pmselr_write, .raw_writefn = raw_write, }, 1334 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 1335 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 1336 .readfn = pmccntr_read, .writefn = pmccntr_write32, 1337 .accessfn = pmreg_access_ccntr }, 1338 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 1339 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 1340 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 1341 .type = ARM_CP_IO, 1342 .readfn = pmccntr_read, .writefn = pmccntr_write, }, 1343 #endif 1344 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 1345 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 1346 .writefn = pmccfiltr_write, 1347 .access = PL0_RW, .accessfn = pmreg_access, 1348 .type = ARM_CP_IO, 1349 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 1350 .resetvalue = 0, }, 1351 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 1352 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1353 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1354 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 1355 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 1356 .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access, 1357 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 1358 /* Unimplemented, RAZ/WI. */ 1359 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 1360 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0, 1361 .accessfn = pmreg_access_xevcntr }, 1362 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 1363 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 1364 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 1365 .resetvalue = 0, 1366 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1367 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 1368 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 1369 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1370 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 1371 .resetvalue = 0, 1372 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 1373 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 1374 .access = PL1_RW, .accessfn = access_tpm, 1375 .type = ARM_CP_ALIAS, 1376 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 1377 .resetvalue = 0, 1378 .writefn = pmintenset_write, .raw_writefn = raw_write }, 1379 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 1380 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 1381 .access = PL1_RW, .accessfn = access_tpm, 1382 .type = ARM_CP_IO, 1383 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1384 .writefn = pmintenset_write, .raw_writefn = raw_write, 1385 .resetvalue = 0x0 }, 1386 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 1387 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1388 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1389 .writefn = pmintenclr_write, }, 1390 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 1391 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 1392 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 1393 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 1394 .writefn = pmintenclr_write }, 1395 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 1396 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 1397 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 1398 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 1399 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 1400 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0, 1401 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 1402 offsetof(CPUARMState, cp15.csselr_ns) } }, 1403 /* Auxiliary ID register: this actually has an IMPDEF value but for now 1404 * just RAZ for all cores: 1405 */ 1406 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 1407 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 1408 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 1409 /* Auxiliary fault status registers: these also are IMPDEF, and we 1410 * choose to RAZ/WI for all cores. 1411 */ 1412 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 1413 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 1414 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1415 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 1416 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 1417 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 1418 /* MAIR can just read-as-written because we don't implement caches 1419 * and so don't need to care about memory attributes. 1420 */ 1421 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 1422 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 1423 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 1424 .resetvalue = 0 }, 1425 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 1426 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 1427 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 1428 .resetvalue = 0 }, 1429 /* For non-long-descriptor page tables these are PRRR and NMRR; 1430 * regardless they still act as reads-as-written for QEMU. 1431 */ 1432 /* MAIR0/1 are defined separately from their 64-bit counterpart which 1433 * allows them to assign the correct fieldoffset based on the endianness 1434 * handled in the field definitions. 1435 */ 1436 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 1437 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW, 1438 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 1439 offsetof(CPUARMState, cp15.mair0_ns) }, 1440 .resetfn = arm_cp_reset_ignore }, 1441 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 1442 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW, 1443 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 1444 offsetof(CPUARMState, cp15.mair1_ns) }, 1445 .resetfn = arm_cp_reset_ignore }, 1446 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 1447 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 1448 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 1449 /* 32 bit ITLB invalidates */ 1450 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 1451 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1452 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 1453 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1454 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 1455 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1456 /* 32 bit DTLB invalidates */ 1457 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 1458 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1459 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 1460 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1461 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 1462 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1463 /* 32 bit TLB invalidates */ 1464 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 1465 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write }, 1466 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 1467 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 1468 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 1469 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write }, 1470 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 1471 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 1472 REGINFO_SENTINEL 1473 }; 1474 1475 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 1476 /* 32 bit TLB invalidates, Inner Shareable */ 1477 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 1478 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write }, 1479 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 1480 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 1481 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 1482 .type = ARM_CP_NO_RAW, .access = PL1_W, 1483 .writefn = tlbiasid_is_write }, 1484 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 1485 .type = ARM_CP_NO_RAW, .access = PL1_W, 1486 .writefn = tlbimvaa_is_write }, 1487 REGINFO_SENTINEL 1488 }; 1489 1490 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1491 uint64_t value) 1492 { 1493 value &= 1; 1494 env->teecr = value; 1495 } 1496 1497 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 1498 bool isread) 1499 { 1500 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 1501 return CP_ACCESS_TRAP; 1502 } 1503 return CP_ACCESS_OK; 1504 } 1505 1506 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 1507 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 1508 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 1509 .resetvalue = 0, 1510 .writefn = teecr_write }, 1511 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 1512 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 1513 .accessfn = teehbr_access, .resetvalue = 0 }, 1514 REGINFO_SENTINEL 1515 }; 1516 1517 static const ARMCPRegInfo v6k_cp_reginfo[] = { 1518 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 1519 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 1520 .access = PL0_RW, 1521 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 1522 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 1523 .access = PL0_RW, 1524 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 1525 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 1526 .resetfn = arm_cp_reset_ignore }, 1527 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 1528 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 1529 .access = PL0_R|PL1_W, 1530 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 1531 .resetvalue = 0}, 1532 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 1533 .access = PL0_R|PL1_W, 1534 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 1535 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 1536 .resetfn = arm_cp_reset_ignore }, 1537 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 1538 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 1539 .access = PL1_RW, 1540 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 1541 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 1542 .access = PL1_RW, 1543 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 1544 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 1545 .resetvalue = 0 }, 1546 REGINFO_SENTINEL 1547 }; 1548 1549 #ifndef CONFIG_USER_ONLY 1550 1551 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 1552 bool isread) 1553 { 1554 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 1555 * Writable only at the highest implemented exception level. 1556 */ 1557 int el = arm_current_el(env); 1558 1559 switch (el) { 1560 case 0: 1561 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) { 1562 return CP_ACCESS_TRAP; 1563 } 1564 break; 1565 case 1: 1566 if (!isread && ri->state == ARM_CP_STATE_AA32 && 1567 arm_is_secure_below_el3(env)) { 1568 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 1569 return CP_ACCESS_TRAP_UNCATEGORIZED; 1570 } 1571 break; 1572 case 2: 1573 case 3: 1574 break; 1575 } 1576 1577 if (!isread && el < arm_highest_el(env)) { 1578 return CP_ACCESS_TRAP_UNCATEGORIZED; 1579 } 1580 1581 return CP_ACCESS_OK; 1582 } 1583 1584 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 1585 bool isread) 1586 { 1587 unsigned int cur_el = arm_current_el(env); 1588 bool secure = arm_is_secure(env); 1589 1590 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */ 1591 if (cur_el == 0 && 1592 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 1593 return CP_ACCESS_TRAP; 1594 } 1595 1596 if (arm_feature(env, ARM_FEATURE_EL2) && 1597 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1598 !extract32(env->cp15.cnthctl_el2, 0, 1)) { 1599 return CP_ACCESS_TRAP_EL2; 1600 } 1601 return CP_ACCESS_OK; 1602 } 1603 1604 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 1605 bool isread) 1606 { 1607 unsigned int cur_el = arm_current_el(env); 1608 bool secure = arm_is_secure(env); 1609 1610 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if 1611 * EL0[PV]TEN is zero. 1612 */ 1613 if (cur_el == 0 && 1614 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 1615 return CP_ACCESS_TRAP; 1616 } 1617 1618 if (arm_feature(env, ARM_FEATURE_EL2) && 1619 timeridx == GTIMER_PHYS && !secure && cur_el < 2 && 1620 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 1621 return CP_ACCESS_TRAP_EL2; 1622 } 1623 return CP_ACCESS_OK; 1624 } 1625 1626 static CPAccessResult gt_pct_access(CPUARMState *env, 1627 const ARMCPRegInfo *ri, 1628 bool isread) 1629 { 1630 return gt_counter_access(env, GTIMER_PHYS, isread); 1631 } 1632 1633 static CPAccessResult gt_vct_access(CPUARMState *env, 1634 const ARMCPRegInfo *ri, 1635 bool isread) 1636 { 1637 return gt_counter_access(env, GTIMER_VIRT, isread); 1638 } 1639 1640 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1641 bool isread) 1642 { 1643 return gt_timer_access(env, GTIMER_PHYS, isread); 1644 } 1645 1646 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 1647 bool isread) 1648 { 1649 return gt_timer_access(env, GTIMER_VIRT, isread); 1650 } 1651 1652 static CPAccessResult gt_stimer_access(CPUARMState *env, 1653 const ARMCPRegInfo *ri, 1654 bool isread) 1655 { 1656 /* The AArch64 register view of the secure physical timer is 1657 * always accessible from EL3, and configurably accessible from 1658 * Secure EL1. 1659 */ 1660 switch (arm_current_el(env)) { 1661 case 1: 1662 if (!arm_is_secure(env)) { 1663 return CP_ACCESS_TRAP; 1664 } 1665 if (!(env->cp15.scr_el3 & SCR_ST)) { 1666 return CP_ACCESS_TRAP_EL3; 1667 } 1668 return CP_ACCESS_OK; 1669 case 0: 1670 case 2: 1671 return CP_ACCESS_TRAP; 1672 case 3: 1673 return CP_ACCESS_OK; 1674 default: 1675 g_assert_not_reached(); 1676 } 1677 } 1678 1679 static uint64_t gt_get_countervalue(CPUARMState *env) 1680 { 1681 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE; 1682 } 1683 1684 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 1685 { 1686 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 1687 1688 if (gt->ctl & 1) { 1689 /* Timer enabled: calculate and set current ISTATUS, irq, and 1690 * reset timer to when ISTATUS next has to change 1691 */ 1692 uint64_t offset = timeridx == GTIMER_VIRT ? 1693 cpu->env.cp15.cntvoff_el2 : 0; 1694 uint64_t count = gt_get_countervalue(&cpu->env); 1695 /* Note that this must be unsigned 64 bit arithmetic: */ 1696 int istatus = count - offset >= gt->cval; 1697 uint64_t nexttick; 1698 int irqstate; 1699 1700 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 1701 1702 irqstate = (istatus && !(gt->ctl & 2)); 1703 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1704 1705 if (istatus) { 1706 /* Next transition is when count rolls back over to zero */ 1707 nexttick = UINT64_MAX; 1708 } else { 1709 /* Next transition is when we hit cval */ 1710 nexttick = gt->cval + offset; 1711 } 1712 /* Note that the desired next expiry time might be beyond the 1713 * signed-64-bit range of a QEMUTimer -- in this case we just 1714 * set the timer for as far in the future as possible. When the 1715 * timer expires we will reset the timer for any remaining period. 1716 */ 1717 if (nexttick > INT64_MAX / GTIMER_SCALE) { 1718 nexttick = INT64_MAX / GTIMER_SCALE; 1719 } 1720 timer_mod(cpu->gt_timer[timeridx], nexttick); 1721 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 1722 } else { 1723 /* Timer disabled: ISTATUS and timer output always clear */ 1724 gt->ctl &= ~4; 1725 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 1726 timer_del(cpu->gt_timer[timeridx]); 1727 trace_arm_gt_recalc_disabled(timeridx); 1728 } 1729 } 1730 1731 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 1732 int timeridx) 1733 { 1734 ARMCPU *cpu = arm_env_get_cpu(env); 1735 1736 timer_del(cpu->gt_timer[timeridx]); 1737 } 1738 1739 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1740 { 1741 return gt_get_countervalue(env); 1742 } 1743 1744 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 1745 { 1746 return gt_get_countervalue(env) - env->cp15.cntvoff_el2; 1747 } 1748 1749 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1750 int timeridx, 1751 uint64_t value) 1752 { 1753 trace_arm_gt_cval_write(timeridx, value); 1754 env->cp15.c14_timer[timeridx].cval = value; 1755 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1756 } 1757 1758 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 1759 int timeridx) 1760 { 1761 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1762 1763 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 1764 (gt_get_countervalue(env) - offset)); 1765 } 1766 1767 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1768 int timeridx, 1769 uint64_t value) 1770 { 1771 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0; 1772 1773 trace_arm_gt_tval_write(timeridx, value); 1774 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 1775 sextract64(value, 0, 32); 1776 gt_recalc_timer(arm_env_get_cpu(env), timeridx); 1777 } 1778 1779 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1780 int timeridx, 1781 uint64_t value) 1782 { 1783 ARMCPU *cpu = arm_env_get_cpu(env); 1784 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 1785 1786 trace_arm_gt_ctl_write(timeridx, value); 1787 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 1788 if ((oldval ^ value) & 1) { 1789 /* Enable toggled */ 1790 gt_recalc_timer(cpu, timeridx); 1791 } else if ((oldval ^ value) & 2) { 1792 /* IMASK toggled: don't need to recalculate, 1793 * just set the interrupt line based on ISTATUS 1794 */ 1795 int irqstate = (oldval & 4) && !(value & 2); 1796 1797 trace_arm_gt_imask_toggle(timeridx, irqstate); 1798 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 1799 } 1800 } 1801 1802 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1803 { 1804 gt_timer_reset(env, ri, GTIMER_PHYS); 1805 } 1806 1807 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 gt_cval_write(env, ri, GTIMER_PHYS, value); 1811 } 1812 1813 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1814 { 1815 return gt_tval_read(env, ri, GTIMER_PHYS); 1816 } 1817 1818 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1819 uint64_t value) 1820 { 1821 gt_tval_write(env, ri, GTIMER_PHYS, value); 1822 } 1823 1824 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1825 uint64_t value) 1826 { 1827 gt_ctl_write(env, ri, GTIMER_PHYS, value); 1828 } 1829 1830 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1831 { 1832 gt_timer_reset(env, ri, GTIMER_VIRT); 1833 } 1834 1835 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 gt_cval_write(env, ri, GTIMER_VIRT, value); 1839 } 1840 1841 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1842 { 1843 return gt_tval_read(env, ri, GTIMER_VIRT); 1844 } 1845 1846 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 gt_tval_write(env, ri, GTIMER_VIRT, value); 1850 } 1851 1852 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 gt_ctl_write(env, ri, GTIMER_VIRT, value); 1856 } 1857 1858 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 1859 uint64_t value) 1860 { 1861 ARMCPU *cpu = arm_env_get_cpu(env); 1862 1863 trace_arm_gt_cntvoff_write(value); 1864 raw_write(env, ri, value); 1865 gt_recalc_timer(cpu, GTIMER_VIRT); 1866 } 1867 1868 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1869 { 1870 gt_timer_reset(env, ri, GTIMER_HYP); 1871 } 1872 1873 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1874 uint64_t value) 1875 { 1876 gt_cval_write(env, ri, GTIMER_HYP, value); 1877 } 1878 1879 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1880 { 1881 return gt_tval_read(env, ri, GTIMER_HYP); 1882 } 1883 1884 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1885 uint64_t value) 1886 { 1887 gt_tval_write(env, ri, GTIMER_HYP, value); 1888 } 1889 1890 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1891 uint64_t value) 1892 { 1893 gt_ctl_write(env, ri, GTIMER_HYP, value); 1894 } 1895 1896 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1897 { 1898 gt_timer_reset(env, ri, GTIMER_SEC); 1899 } 1900 1901 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1902 uint64_t value) 1903 { 1904 gt_cval_write(env, ri, GTIMER_SEC, value); 1905 } 1906 1907 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 1908 { 1909 return gt_tval_read(env, ri, GTIMER_SEC); 1910 } 1911 1912 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 1913 uint64_t value) 1914 { 1915 gt_tval_write(env, ri, GTIMER_SEC, value); 1916 } 1917 1918 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 1919 uint64_t value) 1920 { 1921 gt_ctl_write(env, ri, GTIMER_SEC, value); 1922 } 1923 1924 void arm_gt_ptimer_cb(void *opaque) 1925 { 1926 ARMCPU *cpu = opaque; 1927 1928 gt_recalc_timer(cpu, GTIMER_PHYS); 1929 } 1930 1931 void arm_gt_vtimer_cb(void *opaque) 1932 { 1933 ARMCPU *cpu = opaque; 1934 1935 gt_recalc_timer(cpu, GTIMER_VIRT); 1936 } 1937 1938 void arm_gt_htimer_cb(void *opaque) 1939 { 1940 ARMCPU *cpu = opaque; 1941 1942 gt_recalc_timer(cpu, GTIMER_HYP); 1943 } 1944 1945 void arm_gt_stimer_cb(void *opaque) 1946 { 1947 ARMCPU *cpu = opaque; 1948 1949 gt_recalc_timer(cpu, GTIMER_SEC); 1950 } 1951 1952 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 1953 /* Note that CNTFRQ is purely reads-as-written for the benefit 1954 * of software; writing it doesn't actually change the timer frequency. 1955 * Our reset value matches the fixed frequency we implement the timer at. 1956 */ 1957 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 1958 .type = ARM_CP_ALIAS, 1959 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1960 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 1961 }, 1962 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 1963 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 1964 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 1965 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 1966 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE, 1967 }, 1968 /* overall control: mostly access permissions */ 1969 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 1970 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 1971 .access = PL1_RW, 1972 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 1973 .resetvalue = 0, 1974 }, 1975 /* per-timer control */ 1976 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1977 .secure = ARM_CP_SECSTATE_NS, 1978 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1979 .accessfn = gt_ptimer_access, 1980 .fieldoffset = offsetoflow32(CPUARMState, 1981 cp15.c14_timer[GTIMER_PHYS].ctl), 1982 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 1983 }, 1984 { .name = "CNTP_CTL(S)", 1985 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 1986 .secure = ARM_CP_SECSTATE_S, 1987 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 1988 .accessfn = gt_ptimer_access, 1989 .fieldoffset = offsetoflow32(CPUARMState, 1990 cp15.c14_timer[GTIMER_SEC].ctl), 1991 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 1992 }, 1993 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 1994 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 1995 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 1996 .accessfn = gt_ptimer_access, 1997 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 1998 .resetvalue = 0, 1999 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write, 2000 }, 2001 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 2002 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R, 2003 .accessfn = gt_vtimer_access, 2004 .fieldoffset = offsetoflow32(CPUARMState, 2005 cp15.c14_timer[GTIMER_VIRT].ctl), 2006 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2007 }, 2008 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 2009 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 2010 .type = ARM_CP_IO, .access = PL1_RW | PL0_R, 2011 .accessfn = gt_vtimer_access, 2012 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 2013 .resetvalue = 0, 2014 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write, 2015 }, 2016 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 2017 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2018 .secure = ARM_CP_SECSTATE_NS, 2019 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2020 .accessfn = gt_ptimer_access, 2021 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2022 }, 2023 { .name = "CNTP_TVAL(S)", 2024 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 2025 .secure = ARM_CP_SECSTATE_S, 2026 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2027 .accessfn = gt_ptimer_access, 2028 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 2029 }, 2030 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2031 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 2032 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2033 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 2034 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write, 2035 }, 2036 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 2037 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2038 .accessfn = gt_vtimer_access, 2039 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2040 }, 2041 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 2042 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 2043 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R, 2044 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 2045 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write, 2046 }, 2047 /* The counter itself */ 2048 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 2049 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2050 .accessfn = gt_pct_access, 2051 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 2052 }, 2053 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 2054 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 2055 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2056 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 2057 }, 2058 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 2059 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 2060 .accessfn = gt_vct_access, 2061 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 2062 }, 2063 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 2064 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 2065 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2066 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 2067 }, 2068 /* Comparison value, indicating when the timer goes off */ 2069 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 2070 .secure = ARM_CP_SECSTATE_NS, 2071 .access = PL1_RW | PL0_R, 2072 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2073 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2074 .accessfn = gt_ptimer_access, 2075 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2076 }, 2077 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2, 2078 .secure = ARM_CP_SECSTATE_S, 2079 .access = PL1_RW | PL0_R, 2080 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2081 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2082 .accessfn = gt_ptimer_access, 2083 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2084 }, 2085 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2086 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 2087 .access = PL1_RW | PL0_R, 2088 .type = ARM_CP_IO, 2089 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 2090 .resetvalue = 0, .accessfn = gt_ptimer_access, 2091 .writefn = gt_phys_cval_write, .raw_writefn = raw_write, 2092 }, 2093 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 2094 .access = PL1_RW | PL0_R, 2095 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 2096 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2097 .accessfn = gt_vtimer_access, 2098 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2099 }, 2100 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 2101 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 2102 .access = PL1_RW | PL0_R, 2103 .type = ARM_CP_IO, 2104 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 2105 .resetvalue = 0, .accessfn = gt_vtimer_access, 2106 .writefn = gt_virt_cval_write, .raw_writefn = raw_write, 2107 }, 2108 /* Secure timer -- this is actually restricted to only EL3 2109 * and configurably Secure-EL1 via the accessfn. 2110 */ 2111 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 2112 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 2113 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 2114 .accessfn = gt_stimer_access, 2115 .readfn = gt_sec_tval_read, 2116 .writefn = gt_sec_tval_write, 2117 .resetfn = gt_sec_timer_reset, 2118 }, 2119 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 2120 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 2121 .type = ARM_CP_IO, .access = PL1_RW, 2122 .accessfn = gt_stimer_access, 2123 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 2124 .resetvalue = 0, 2125 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 2126 }, 2127 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 2128 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 2129 .type = ARM_CP_IO, .access = PL1_RW, 2130 .accessfn = gt_stimer_access, 2131 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 2132 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 2133 }, 2134 REGINFO_SENTINEL 2135 }; 2136 2137 #else 2138 /* In user-mode none of the generic timer registers are accessible, 2139 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs, 2140 * so instead just don't register any of them. 2141 */ 2142 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 2143 REGINFO_SENTINEL 2144 }; 2145 2146 #endif 2147 2148 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2149 { 2150 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2151 raw_write(env, ri, value); 2152 } else if (arm_feature(env, ARM_FEATURE_V7)) { 2153 raw_write(env, ri, value & 0xfffff6ff); 2154 } else { 2155 raw_write(env, ri, value & 0xfffff1ff); 2156 } 2157 } 2158 2159 #ifndef CONFIG_USER_ONLY 2160 /* get_phys_addr() isn't present for user-mode-only targets */ 2161 2162 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 2163 bool isread) 2164 { 2165 if (ri->opc2 & 4) { 2166 /* The ATS12NSO* operations must trap to EL3 if executed in 2167 * Secure EL1 (which can only happen if EL3 is AArch64). 2168 * They are simply UNDEF if executed from NS EL1. 2169 * They function normally from EL2 or EL3. 2170 */ 2171 if (arm_current_el(env) == 1) { 2172 if (arm_is_secure_below_el3(env)) { 2173 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3; 2174 } 2175 return CP_ACCESS_TRAP_UNCATEGORIZED; 2176 } 2177 } 2178 return CP_ACCESS_OK; 2179 } 2180 2181 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 2182 MMUAccessType access_type, ARMMMUIdx mmu_idx) 2183 { 2184 hwaddr phys_addr; 2185 target_ulong page_size; 2186 int prot; 2187 bool ret; 2188 uint64_t par64; 2189 bool format64 = false; 2190 MemTxAttrs attrs = {}; 2191 ARMMMUFaultInfo fi = {}; 2192 ARMCacheAttrs cacheattrs = {}; 2193 2194 ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs, 2195 &prot, &page_size, &fi, &cacheattrs); 2196 2197 if (is_a64(env)) { 2198 format64 = true; 2199 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 2200 /* 2201 * ATS1Cxx: 2202 * * TTBCR.EAE determines whether the result is returned using the 2203 * 32-bit or the 64-bit PAR format 2204 * * Instructions executed in Hyp mode always use the 64bit format 2205 * 2206 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 2207 * * The Non-secure TTBCR.EAE bit is set to 1 2208 * * The implementation includes EL2, and the value of HCR.VM is 1 2209 * 2210 * ATS1Hx always uses the 64bit format (not supported yet). 2211 */ 2212 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 2213 2214 if (arm_feature(env, ARM_FEATURE_EL2)) { 2215 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 2216 format64 |= env->cp15.hcr_el2 & HCR_VM; 2217 } else { 2218 format64 |= arm_current_el(env) == 2; 2219 } 2220 } 2221 } 2222 2223 if (format64) { 2224 /* Create a 64-bit PAR */ 2225 par64 = (1 << 11); /* LPAE bit always set */ 2226 if (!ret) { 2227 par64 |= phys_addr & ~0xfffULL; 2228 if (!attrs.secure) { 2229 par64 |= (1 << 9); /* NS */ 2230 } 2231 par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */ 2232 par64 |= cacheattrs.shareability << 7; /* SH */ 2233 } else { 2234 uint32_t fsr = arm_fi_to_lfsc(&fi); 2235 2236 par64 |= 1; /* F */ 2237 par64 |= (fsr & 0x3f) << 1; /* FS */ 2238 /* Note that S2WLK and FSTAGE are always zero, because we don't 2239 * implement virtualization and therefore there can't be a stage 2 2240 * fault. 2241 */ 2242 } 2243 } else { 2244 /* fsr is a DFSR/IFSR value for the short descriptor 2245 * translation table format (with WnR always clear). 2246 * Convert it to a 32-bit PAR. 2247 */ 2248 if (!ret) { 2249 /* We do not set any attribute bits in the PAR */ 2250 if (page_size == (1 << 24) 2251 && arm_feature(env, ARM_FEATURE_V7)) { 2252 par64 = (phys_addr & 0xff000000) | (1 << 1); 2253 } else { 2254 par64 = phys_addr & 0xfffff000; 2255 } 2256 if (!attrs.secure) { 2257 par64 |= (1 << 9); /* NS */ 2258 } 2259 } else { 2260 uint32_t fsr = arm_fi_to_sfsc(&fi); 2261 2262 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 2263 ((fsr & 0xf) << 1) | 1; 2264 } 2265 } 2266 return par64; 2267 } 2268 2269 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 2270 { 2271 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2272 uint64_t par64; 2273 ARMMMUIdx mmu_idx; 2274 int el = arm_current_el(env); 2275 bool secure = arm_is_secure_below_el3(env); 2276 2277 switch (ri->opc2 & 6) { 2278 case 0: 2279 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */ 2280 switch (el) { 2281 case 3: 2282 mmu_idx = ARMMMUIdx_S1E3; 2283 break; 2284 case 2: 2285 mmu_idx = ARMMMUIdx_S1NSE1; 2286 break; 2287 case 1: 2288 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2289 break; 2290 default: 2291 g_assert_not_reached(); 2292 } 2293 break; 2294 case 2: 2295 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 2296 switch (el) { 2297 case 3: 2298 mmu_idx = ARMMMUIdx_S1SE0; 2299 break; 2300 case 2: 2301 mmu_idx = ARMMMUIdx_S1NSE0; 2302 break; 2303 case 1: 2304 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2305 break; 2306 default: 2307 g_assert_not_reached(); 2308 } 2309 break; 2310 case 4: 2311 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 2312 mmu_idx = ARMMMUIdx_S12NSE1; 2313 break; 2314 case 6: 2315 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 2316 mmu_idx = ARMMMUIdx_S12NSE0; 2317 break; 2318 default: 2319 g_assert_not_reached(); 2320 } 2321 2322 par64 = do_ats_write(env, value, access_type, mmu_idx); 2323 2324 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2325 } 2326 2327 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 2328 uint64_t value) 2329 { 2330 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2331 uint64_t par64; 2332 2333 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS); 2334 2335 A32_BANKED_CURRENT_REG_SET(env, par, par64); 2336 } 2337 2338 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 2339 bool isread) 2340 { 2341 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) { 2342 return CP_ACCESS_TRAP; 2343 } 2344 return CP_ACCESS_OK; 2345 } 2346 2347 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 2348 uint64_t value) 2349 { 2350 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 2351 ARMMMUIdx mmu_idx; 2352 int secure = arm_is_secure_below_el3(env); 2353 2354 switch (ri->opc2 & 6) { 2355 case 0: 2356 switch (ri->opc1) { 2357 case 0: /* AT S1E1R, AT S1E1W */ 2358 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1; 2359 break; 2360 case 4: /* AT S1E2R, AT S1E2W */ 2361 mmu_idx = ARMMMUIdx_S1E2; 2362 break; 2363 case 6: /* AT S1E3R, AT S1E3W */ 2364 mmu_idx = ARMMMUIdx_S1E3; 2365 break; 2366 default: 2367 g_assert_not_reached(); 2368 } 2369 break; 2370 case 2: /* AT S1E0R, AT S1E0W */ 2371 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0; 2372 break; 2373 case 4: /* AT S12E1R, AT S12E1W */ 2374 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1; 2375 break; 2376 case 6: /* AT S12E0R, AT S12E0W */ 2377 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0; 2378 break; 2379 default: 2380 g_assert_not_reached(); 2381 } 2382 2383 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx); 2384 } 2385 #endif 2386 2387 static const ARMCPRegInfo vapa_cp_reginfo[] = { 2388 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 2389 .access = PL1_RW, .resetvalue = 0, 2390 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 2391 offsetoflow32(CPUARMState, cp15.par_ns) }, 2392 .writefn = par_write }, 2393 #ifndef CONFIG_USER_ONLY 2394 /* This underdecoding is safe because the reginfo is NO_RAW. */ 2395 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 2396 .access = PL1_W, .accessfn = ats_access, 2397 .writefn = ats_write, .type = ARM_CP_NO_RAW }, 2398 #endif 2399 REGINFO_SENTINEL 2400 }; 2401 2402 /* Return basic MPU access permission bits. */ 2403 static uint32_t simple_mpu_ap_bits(uint32_t val) 2404 { 2405 uint32_t ret; 2406 uint32_t mask; 2407 int i; 2408 ret = 0; 2409 mask = 3; 2410 for (i = 0; i < 16; i += 2) { 2411 ret |= (val >> i) & mask; 2412 mask <<= 2; 2413 } 2414 return ret; 2415 } 2416 2417 /* Pad basic MPU access permission bits to extended format. */ 2418 static uint32_t extended_mpu_ap_bits(uint32_t val) 2419 { 2420 uint32_t ret; 2421 uint32_t mask; 2422 int i; 2423 ret = 0; 2424 mask = 3; 2425 for (i = 0; i < 16; i += 2) { 2426 ret |= (val & mask) << i; 2427 mask <<= 2; 2428 } 2429 return ret; 2430 } 2431 2432 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2433 uint64_t value) 2434 { 2435 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 2436 } 2437 2438 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2439 { 2440 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 2441 } 2442 2443 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2444 uint64_t value) 2445 { 2446 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 2447 } 2448 2449 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2450 { 2451 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 2452 } 2453 2454 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 2455 { 2456 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2457 2458 if (!u32p) { 2459 return 0; 2460 } 2461 2462 u32p += env->pmsav7.rnr[M_REG_NS]; 2463 return *u32p; 2464 } 2465 2466 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 2467 uint64_t value) 2468 { 2469 ARMCPU *cpu = arm_env_get_cpu(env); 2470 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 2471 2472 if (!u32p) { 2473 return; 2474 } 2475 2476 u32p += env->pmsav7.rnr[M_REG_NS]; 2477 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 2478 *u32p = value; 2479 } 2480 2481 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2482 uint64_t value) 2483 { 2484 ARMCPU *cpu = arm_env_get_cpu(env); 2485 uint32_t nrgs = cpu->pmsav7_dregion; 2486 2487 if (value >= nrgs) { 2488 qemu_log_mask(LOG_GUEST_ERROR, 2489 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 2490 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 2491 return; 2492 } 2493 2494 raw_write(env, ri, value); 2495 } 2496 2497 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 2498 /* Reset for all these registers is handled in arm_cpu_reset(), 2499 * because the PMSAv7 is also used by M-profile CPUs, which do 2500 * not register cpregs but still need the state to be reset. 2501 */ 2502 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 2503 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2504 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 2505 .readfn = pmsav7_read, .writefn = pmsav7_write, 2506 .resetfn = arm_cp_reset_ignore }, 2507 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 2508 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2509 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 2510 .readfn = pmsav7_read, .writefn = pmsav7_write, 2511 .resetfn = arm_cp_reset_ignore }, 2512 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 2513 .access = PL1_RW, .type = ARM_CP_NO_RAW, 2514 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 2515 .readfn = pmsav7_read, .writefn = pmsav7_write, 2516 .resetfn = arm_cp_reset_ignore }, 2517 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 2518 .access = PL1_RW, 2519 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 2520 .writefn = pmsav7_rgnr_write, 2521 .resetfn = arm_cp_reset_ignore }, 2522 REGINFO_SENTINEL 2523 }; 2524 2525 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 2526 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2527 .access = PL1_RW, .type = ARM_CP_ALIAS, 2528 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2529 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 2530 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2531 .access = PL1_RW, .type = ARM_CP_ALIAS, 2532 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2533 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 2534 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 2535 .access = PL1_RW, 2536 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 2537 .resetvalue = 0, }, 2538 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 2539 .access = PL1_RW, 2540 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 2541 .resetvalue = 0, }, 2542 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 2543 .access = PL1_RW, 2544 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 2545 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 2546 .access = PL1_RW, 2547 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 2548 /* Protection region base and size registers */ 2549 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 2550 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2551 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 2552 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 2553 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2554 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 2555 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 2556 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2557 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 2558 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 2559 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2560 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 2561 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 2562 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2563 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 2564 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 2565 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2566 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 2567 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 2568 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2569 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 2570 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 2571 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 2572 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 2573 REGINFO_SENTINEL 2574 }; 2575 2576 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri, 2577 uint64_t value) 2578 { 2579 TCR *tcr = raw_ptr(env, ri); 2580 int maskshift = extract32(value, 0, 3); 2581 2582 if (!arm_feature(env, ARM_FEATURE_V8)) { 2583 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 2584 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 2585 * using Long-desciptor translation table format */ 2586 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 2587 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 2588 /* In an implementation that includes the Security Extensions 2589 * TTBCR has additional fields PD0 [4] and PD1 [5] for 2590 * Short-descriptor translation table format. 2591 */ 2592 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 2593 } else { 2594 value &= TTBCR_N; 2595 } 2596 } 2597 2598 /* Update the masks corresponding to the TCR bank being written 2599 * Note that we always calculate mask and base_mask, but 2600 * they are only used for short-descriptor tables (ie if EAE is 0); 2601 * for long-descriptor tables the TCR fields are used differently 2602 * and the mask and base_mask values are meaningless. 2603 */ 2604 tcr->raw_tcr = value; 2605 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift); 2606 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift); 2607 } 2608 2609 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2610 uint64_t value) 2611 { 2612 ARMCPU *cpu = arm_env_get_cpu(env); 2613 2614 if (arm_feature(env, ARM_FEATURE_LPAE)) { 2615 /* With LPAE the TTBCR could result in a change of ASID 2616 * via the TTBCR.A1 bit, so do a TLB flush. 2617 */ 2618 tlb_flush(CPU(cpu)); 2619 } 2620 vmsa_ttbcr_raw_write(env, ri, value); 2621 } 2622 2623 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2624 { 2625 TCR *tcr = raw_ptr(env, ri); 2626 2627 /* Reset both the TCR as well as the masks corresponding to the bank of 2628 * the TCR being reset. 2629 */ 2630 tcr->raw_tcr = 0; 2631 tcr->mask = 0; 2632 tcr->base_mask = 0xffffc000u; 2633 } 2634 2635 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2636 uint64_t value) 2637 { 2638 ARMCPU *cpu = arm_env_get_cpu(env); 2639 TCR *tcr = raw_ptr(env, ri); 2640 2641 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 2642 tlb_flush(CPU(cpu)); 2643 tcr->raw_tcr = value; 2644 } 2645 2646 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2647 uint64_t value) 2648 { 2649 /* 64 bit accesses to the TTBRs can change the ASID and so we 2650 * must flush the TLB. 2651 */ 2652 if (cpreg_field_is_64bit(ri)) { 2653 ARMCPU *cpu = arm_env_get_cpu(env); 2654 2655 tlb_flush(CPU(cpu)); 2656 } 2657 raw_write(env, ri, value); 2658 } 2659 2660 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2661 uint64_t value) 2662 { 2663 ARMCPU *cpu = arm_env_get_cpu(env); 2664 CPUState *cs = CPU(cpu); 2665 2666 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */ 2667 if (raw_read(env, ri) != value) { 2668 tlb_flush_by_mmuidx(cs, 2669 ARMMMUIdxBit_S12NSE1 | 2670 ARMMMUIdxBit_S12NSE0 | 2671 ARMMMUIdxBit_S2NS); 2672 raw_write(env, ri, value); 2673 } 2674 } 2675 2676 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 2677 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 2678 .access = PL1_RW, .type = ARM_CP_ALIAS, 2679 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 2680 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 2681 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 2682 .access = PL1_RW, .resetvalue = 0, 2683 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 2684 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 2685 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 2686 .access = PL1_RW, .resetvalue = 0, 2687 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 2688 offsetof(CPUARMState, cp15.dfar_ns) } }, 2689 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 2690 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 2691 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 2692 .resetvalue = 0, }, 2693 REGINFO_SENTINEL 2694 }; 2695 2696 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 2697 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 2698 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 2699 .access = PL1_RW, 2700 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 2701 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 2702 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 2703 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2704 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2705 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 2706 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 2707 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 2708 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 2709 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2710 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 2711 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 2712 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2713 .access = PL1_RW, .writefn = vmsa_tcr_el1_write, 2714 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write, 2715 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 2716 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 2717 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 2718 .raw_writefn = vmsa_ttbcr_raw_write, 2719 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 2720 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 2721 REGINFO_SENTINEL 2722 }; 2723 2724 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 2725 uint64_t value) 2726 { 2727 env->cp15.c15_ticonfig = value & 0xe7; 2728 /* The OS_TYPE bit in this register changes the reported CPUID! */ 2729 env->cp15.c0_cpuid = (value & (1 << 5)) ? 2730 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 2731 } 2732 2733 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 2734 uint64_t value) 2735 { 2736 env->cp15.c15_threadid = value & 0xffff; 2737 } 2738 2739 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 2740 uint64_t value) 2741 { 2742 /* Wait-for-interrupt (deprecated) */ 2743 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT); 2744 } 2745 2746 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 2747 uint64_t value) 2748 { 2749 /* On OMAP there are registers indicating the max/min index of dcache lines 2750 * containing a dirty line; cache flush operations have to reset these. 2751 */ 2752 env->cp15.c15_i_max = 0x000; 2753 env->cp15.c15_i_min = 0xff0; 2754 } 2755 2756 static const ARMCPRegInfo omap_cp_reginfo[] = { 2757 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 2758 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 2759 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 2760 .resetvalue = 0, }, 2761 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 2762 .access = PL1_RW, .type = ARM_CP_NOP }, 2763 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 2764 .access = PL1_RW, 2765 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 2766 .writefn = omap_ticonfig_write }, 2767 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 2768 .access = PL1_RW, 2769 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 2770 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 2771 .access = PL1_RW, .resetvalue = 0xff0, 2772 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 2773 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 2774 .access = PL1_RW, 2775 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 2776 .writefn = omap_threadid_write }, 2777 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 2778 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2779 .type = ARM_CP_NO_RAW, 2780 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 2781 /* TODO: Peripheral port remap register: 2782 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 2783 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 2784 * when MMU is off. 2785 */ 2786 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 2787 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 2788 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 2789 .writefn = omap_cachemaint_write }, 2790 { .name = "C9", .cp = 15, .crn = 9, 2791 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 2792 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 2793 REGINFO_SENTINEL 2794 }; 2795 2796 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 2797 uint64_t value) 2798 { 2799 env->cp15.c15_cpar = value & 0x3fff; 2800 } 2801 2802 static const ARMCPRegInfo xscale_cp_reginfo[] = { 2803 { .name = "XSCALE_CPAR", 2804 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 2805 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 2806 .writefn = xscale_cpar_write, }, 2807 { .name = "XSCALE_AUXCR", 2808 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 2809 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 2810 .resetvalue = 0, }, 2811 /* XScale specific cache-lockdown: since we have no cache we NOP these 2812 * and hope the guest does not really rely on cache behaviour. 2813 */ 2814 { .name = "XSCALE_LOCK_ICACHE_LINE", 2815 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 2816 .access = PL1_W, .type = ARM_CP_NOP }, 2817 { .name = "XSCALE_UNLOCK_ICACHE", 2818 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 2819 .access = PL1_W, .type = ARM_CP_NOP }, 2820 { .name = "XSCALE_DCACHE_LOCK", 2821 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 2822 .access = PL1_RW, .type = ARM_CP_NOP }, 2823 { .name = "XSCALE_UNLOCK_DCACHE", 2824 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 2825 .access = PL1_W, .type = ARM_CP_NOP }, 2826 REGINFO_SENTINEL 2827 }; 2828 2829 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 2830 /* RAZ/WI the whole crn=15 space, when we don't have a more specific 2831 * implementation of this implementation-defined space. 2832 * Ideally this should eventually disappear in favour of actually 2833 * implementing the correct behaviour for all cores. 2834 */ 2835 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 2836 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2837 .access = PL1_RW, 2838 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 2839 .resetvalue = 0 }, 2840 REGINFO_SENTINEL 2841 }; 2842 2843 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 2844 /* Cache status: RAZ because we have no cache so it's always clean */ 2845 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 2846 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2847 .resetvalue = 0 }, 2848 REGINFO_SENTINEL 2849 }; 2850 2851 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 2852 /* We never have a a block transfer operation in progress */ 2853 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 2854 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2855 .resetvalue = 0 }, 2856 /* The cache ops themselves: these all NOP for QEMU */ 2857 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 2858 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2859 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 2860 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2861 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 2862 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2863 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 2864 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2865 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 2866 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2867 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 2868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT }, 2869 REGINFO_SENTINEL 2870 }; 2871 2872 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 2873 /* The cache test-and-clean instructions always return (1 << 30) 2874 * to indicate that there are no dirty cache lines. 2875 */ 2876 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 2877 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2878 .resetvalue = (1 << 30) }, 2879 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 2880 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 2881 .resetvalue = (1 << 30) }, 2882 REGINFO_SENTINEL 2883 }; 2884 2885 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 2886 /* Ignore ReadBuffer accesses */ 2887 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 2888 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 2889 .access = PL1_RW, .resetvalue = 0, 2890 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 2891 REGINFO_SENTINEL 2892 }; 2893 2894 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2895 { 2896 ARMCPU *cpu = arm_env_get_cpu(env); 2897 unsigned int cur_el = arm_current_el(env); 2898 bool secure = arm_is_secure(env); 2899 2900 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2901 return env->cp15.vpidr_el2; 2902 } 2903 return raw_read(env, ri); 2904 } 2905 2906 static uint64_t mpidr_read_val(CPUARMState *env) 2907 { 2908 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env)); 2909 uint64_t mpidr = cpu->mp_affinity; 2910 2911 if (arm_feature(env, ARM_FEATURE_V7MP)) { 2912 mpidr |= (1U << 31); 2913 /* Cores which are uniprocessor (non-coherent) 2914 * but still implement the MP extensions set 2915 * bit 30. (For instance, Cortex-R5). 2916 */ 2917 if (cpu->mp_is_up) { 2918 mpidr |= (1u << 30); 2919 } 2920 } 2921 return mpidr; 2922 } 2923 2924 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2925 { 2926 unsigned int cur_el = arm_current_el(env); 2927 bool secure = arm_is_secure(env); 2928 2929 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) { 2930 return env->cp15.vmpidr_el2; 2931 } 2932 return mpidr_read_val(env); 2933 } 2934 2935 static const ARMCPRegInfo mpidr_cp_reginfo[] = { 2936 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH, 2937 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 2938 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 2939 REGINFO_SENTINEL 2940 }; 2941 2942 static const ARMCPRegInfo lpae_cp_reginfo[] = { 2943 /* NOP AMAIR0/1 */ 2944 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 2945 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 2946 .access = PL1_RW, .type = ARM_CP_CONST, 2947 .resetvalue = 0 }, 2948 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 2949 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 2950 .access = PL1_RW, .type = ARM_CP_CONST, 2951 .resetvalue = 0 }, 2952 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 2953 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 2954 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 2955 offsetof(CPUARMState, cp15.par_ns)} }, 2956 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 2957 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2958 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 2959 offsetof(CPUARMState, cp15.ttbr0_ns) }, 2960 .writefn = vmsa_ttbr_write, }, 2961 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 2962 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 2963 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 2964 offsetof(CPUARMState, cp15.ttbr1_ns) }, 2965 .writefn = vmsa_ttbr_write, }, 2966 REGINFO_SENTINEL 2967 }; 2968 2969 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2970 { 2971 return vfp_get_fpcr(env); 2972 } 2973 2974 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2975 uint64_t value) 2976 { 2977 vfp_set_fpcr(env, value); 2978 } 2979 2980 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2981 { 2982 return vfp_get_fpsr(env); 2983 } 2984 2985 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2986 uint64_t value) 2987 { 2988 vfp_set_fpsr(env, value); 2989 } 2990 2991 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 2992 bool isread) 2993 { 2994 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) { 2995 return CP_ACCESS_TRAP; 2996 } 2997 return CP_ACCESS_OK; 2998 } 2999 3000 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 3001 uint64_t value) 3002 { 3003 env->daif = value & PSTATE_DAIF; 3004 } 3005 3006 static CPAccessResult aa64_cacheop_access(CPUARMState *env, 3007 const ARMCPRegInfo *ri, 3008 bool isread) 3009 { 3010 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless 3011 * SCTLR_EL1.UCI is set. 3012 */ 3013 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) { 3014 return CP_ACCESS_TRAP; 3015 } 3016 return CP_ACCESS_OK; 3017 } 3018 3019 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 3020 * Page D4-1736 (DDI0487A.b) 3021 */ 3022 3023 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3024 uint64_t value) 3025 { 3026 CPUState *cs = ENV_GET_CPU(env); 3027 3028 if (arm_is_secure_below_el3(env)) { 3029 tlb_flush_by_mmuidx(cs, 3030 ARMMMUIdxBit_S1SE1 | 3031 ARMMMUIdxBit_S1SE0); 3032 } else { 3033 tlb_flush_by_mmuidx(cs, 3034 ARMMMUIdxBit_S12NSE1 | 3035 ARMMMUIdxBit_S12NSE0); 3036 } 3037 } 3038 3039 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3040 uint64_t value) 3041 { 3042 CPUState *cs = ENV_GET_CPU(env); 3043 bool sec = arm_is_secure_below_el3(env); 3044 3045 if (sec) { 3046 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3047 ARMMMUIdxBit_S1SE1 | 3048 ARMMMUIdxBit_S1SE0); 3049 } else { 3050 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3051 ARMMMUIdxBit_S12NSE1 | 3052 ARMMMUIdxBit_S12NSE0); 3053 } 3054 } 3055 3056 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3057 uint64_t value) 3058 { 3059 /* Note that the 'ALL' scope must invalidate both stage 1 and 3060 * stage 2 translations, whereas most other scopes only invalidate 3061 * stage 1 translations. 3062 */ 3063 ARMCPU *cpu = arm_env_get_cpu(env); 3064 CPUState *cs = CPU(cpu); 3065 3066 if (arm_is_secure_below_el3(env)) { 3067 tlb_flush_by_mmuidx(cs, 3068 ARMMMUIdxBit_S1SE1 | 3069 ARMMMUIdxBit_S1SE0); 3070 } else { 3071 if (arm_feature(env, ARM_FEATURE_EL2)) { 3072 tlb_flush_by_mmuidx(cs, 3073 ARMMMUIdxBit_S12NSE1 | 3074 ARMMMUIdxBit_S12NSE0 | 3075 ARMMMUIdxBit_S2NS); 3076 } else { 3077 tlb_flush_by_mmuidx(cs, 3078 ARMMMUIdxBit_S12NSE1 | 3079 ARMMMUIdxBit_S12NSE0); 3080 } 3081 } 3082 } 3083 3084 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3085 uint64_t value) 3086 { 3087 ARMCPU *cpu = arm_env_get_cpu(env); 3088 CPUState *cs = CPU(cpu); 3089 3090 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2); 3091 } 3092 3093 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3094 uint64_t value) 3095 { 3096 ARMCPU *cpu = arm_env_get_cpu(env); 3097 CPUState *cs = CPU(cpu); 3098 3099 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3); 3100 } 3101 3102 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3103 uint64_t value) 3104 { 3105 /* Note that the 'ALL' scope must invalidate both stage 1 and 3106 * stage 2 translations, whereas most other scopes only invalidate 3107 * stage 1 translations. 3108 */ 3109 CPUState *cs = ENV_GET_CPU(env); 3110 bool sec = arm_is_secure_below_el3(env); 3111 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2); 3112 3113 if (sec) { 3114 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3115 ARMMMUIdxBit_S1SE1 | 3116 ARMMMUIdxBit_S1SE0); 3117 } else if (has_el2) { 3118 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3119 ARMMMUIdxBit_S12NSE1 | 3120 ARMMMUIdxBit_S12NSE0 | 3121 ARMMMUIdxBit_S2NS); 3122 } else { 3123 tlb_flush_by_mmuidx_all_cpus_synced(cs, 3124 ARMMMUIdxBit_S12NSE1 | 3125 ARMMMUIdxBit_S12NSE0); 3126 } 3127 } 3128 3129 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3130 uint64_t value) 3131 { 3132 CPUState *cs = ENV_GET_CPU(env); 3133 3134 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2); 3135 } 3136 3137 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3138 uint64_t value) 3139 { 3140 CPUState *cs = ENV_GET_CPU(env); 3141 3142 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3); 3143 } 3144 3145 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3146 uint64_t value) 3147 { 3148 /* Invalidate by VA, EL1&0 (AArch64 version). 3149 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 3150 * since we don't support flush-for-specific-ASID-only or 3151 * flush-last-level-only. 3152 */ 3153 ARMCPU *cpu = arm_env_get_cpu(env); 3154 CPUState *cs = CPU(cpu); 3155 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3156 3157 if (arm_is_secure_below_el3(env)) { 3158 tlb_flush_page_by_mmuidx(cs, pageaddr, 3159 ARMMMUIdxBit_S1SE1 | 3160 ARMMMUIdxBit_S1SE0); 3161 } else { 3162 tlb_flush_page_by_mmuidx(cs, pageaddr, 3163 ARMMMUIdxBit_S12NSE1 | 3164 ARMMMUIdxBit_S12NSE0); 3165 } 3166 } 3167 3168 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 3169 uint64_t value) 3170 { 3171 /* Invalidate by VA, EL2 3172 * Currently handles both VAE2 and VALE2, since we don't support 3173 * flush-last-level-only. 3174 */ 3175 ARMCPU *cpu = arm_env_get_cpu(env); 3176 CPUState *cs = CPU(cpu); 3177 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3178 3179 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2); 3180 } 3181 3182 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 3183 uint64_t value) 3184 { 3185 /* Invalidate by VA, EL3 3186 * Currently handles both VAE3 and VALE3, since we don't support 3187 * flush-last-level-only. 3188 */ 3189 ARMCPU *cpu = arm_env_get_cpu(env); 3190 CPUState *cs = CPU(cpu); 3191 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3192 3193 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3); 3194 } 3195 3196 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3197 uint64_t value) 3198 { 3199 ARMCPU *cpu = arm_env_get_cpu(env); 3200 CPUState *cs = CPU(cpu); 3201 bool sec = arm_is_secure_below_el3(env); 3202 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3203 3204 if (sec) { 3205 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3206 ARMMMUIdxBit_S1SE1 | 3207 ARMMMUIdxBit_S1SE0); 3208 } else { 3209 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3210 ARMMMUIdxBit_S12NSE1 | 3211 ARMMMUIdxBit_S12NSE0); 3212 } 3213 } 3214 3215 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3216 uint64_t value) 3217 { 3218 CPUState *cs = ENV_GET_CPU(env); 3219 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3220 3221 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3222 ARMMMUIdxBit_S1E2); 3223 } 3224 3225 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3226 uint64_t value) 3227 { 3228 CPUState *cs = ENV_GET_CPU(env); 3229 uint64_t pageaddr = sextract64(value << 12, 0, 56); 3230 3231 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3232 ARMMMUIdxBit_S1E3); 3233 } 3234 3235 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 3236 uint64_t value) 3237 { 3238 /* Invalidate by IPA. This has to invalidate any structures that 3239 * contain only stage 2 translation information, but does not need 3240 * to apply to structures that contain combined stage 1 and stage 2 3241 * translation information. 3242 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero. 3243 */ 3244 ARMCPU *cpu = arm_env_get_cpu(env); 3245 CPUState *cs = CPU(cpu); 3246 uint64_t pageaddr; 3247 3248 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3249 return; 3250 } 3251 3252 pageaddr = sextract64(value << 12, 0, 48); 3253 3254 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS); 3255 } 3256 3257 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 3258 uint64_t value) 3259 { 3260 CPUState *cs = ENV_GET_CPU(env); 3261 uint64_t pageaddr; 3262 3263 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) { 3264 return; 3265 } 3266 3267 pageaddr = sextract64(value << 12, 0, 48); 3268 3269 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 3270 ARMMMUIdxBit_S2NS); 3271 } 3272 3273 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 3274 bool isread) 3275 { 3276 /* We don't implement EL2, so the only control on DC ZVA is the 3277 * bit in the SCTLR which can prohibit access for EL0. 3278 */ 3279 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 3280 return CP_ACCESS_TRAP; 3281 } 3282 return CP_ACCESS_OK; 3283 } 3284 3285 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 3286 { 3287 ARMCPU *cpu = arm_env_get_cpu(env); 3288 int dzp_bit = 1 << 4; 3289 3290 /* DZP indicates whether DC ZVA access is allowed */ 3291 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 3292 dzp_bit = 0; 3293 } 3294 return cpu->dcz_blocksize | dzp_bit; 3295 } 3296 3297 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 3298 bool isread) 3299 { 3300 if (!(env->pstate & PSTATE_SP)) { 3301 /* Access to SP_EL0 is undefined if it's being used as 3302 * the stack pointer. 3303 */ 3304 return CP_ACCESS_TRAP_UNCATEGORIZED; 3305 } 3306 return CP_ACCESS_OK; 3307 } 3308 3309 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 3310 { 3311 return env->pstate & PSTATE_SP; 3312 } 3313 3314 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 3315 { 3316 update_spsel(env, val); 3317 } 3318 3319 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3320 uint64_t value) 3321 { 3322 ARMCPU *cpu = arm_env_get_cpu(env); 3323 3324 if (raw_read(env, ri) == value) { 3325 /* Skip the TLB flush if nothing actually changed; Linux likes 3326 * to do a lot of pointless SCTLR writes. 3327 */ 3328 return; 3329 } 3330 3331 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 3332 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 3333 value &= ~SCTLR_M; 3334 } 3335 3336 raw_write(env, ri, value); 3337 /* ??? Lots of these bits are not implemented. */ 3338 /* This may enable/disable the MMU, so do a TLB flush. */ 3339 tlb_flush(CPU(cpu)); 3340 } 3341 3342 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri, 3343 bool isread) 3344 { 3345 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) { 3346 return CP_ACCESS_TRAP_FP_EL2; 3347 } 3348 if (env->cp15.cptr_el[3] & CPTR_TFP) { 3349 return CP_ACCESS_TRAP_FP_EL3; 3350 } 3351 return CP_ACCESS_OK; 3352 } 3353 3354 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3355 uint64_t value) 3356 { 3357 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK; 3358 } 3359 3360 static const ARMCPRegInfo v8_cp_reginfo[] = { 3361 /* Minimal set of EL0-visible registers. This will need to be expanded 3362 * significantly for system emulation of AArch64 CPUs. 3363 */ 3364 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 3365 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 3366 .access = PL0_RW, .type = ARM_CP_NZCV }, 3367 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 3368 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 3369 .type = ARM_CP_NO_RAW, 3370 .access = PL0_RW, .accessfn = aa64_daif_access, 3371 .fieldoffset = offsetof(CPUARMState, daif), 3372 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 3373 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 3374 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 3375 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3376 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 3377 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 3378 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 3379 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 3380 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 3381 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 3382 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 3383 .access = PL0_R, .type = ARM_CP_NO_RAW, 3384 .readfn = aa64_dczid_read }, 3385 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 3386 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 3387 .access = PL0_W, .type = ARM_CP_DC_ZVA, 3388 #ifndef CONFIG_USER_ONLY 3389 /* Avoid overhead of an access check that always passes in user-mode */ 3390 .accessfn = aa64_zva_access, 3391 #endif 3392 }, 3393 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 3394 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 3395 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 3396 /* Cache ops: all NOPs since we don't emulate caches */ 3397 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 3398 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3399 .access = PL1_W, .type = ARM_CP_NOP }, 3400 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 3401 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3402 .access = PL1_W, .type = ARM_CP_NOP }, 3403 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 3404 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 3405 .access = PL0_W, .type = ARM_CP_NOP, 3406 .accessfn = aa64_cacheop_access }, 3407 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 3408 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3409 .access = PL1_W, .type = ARM_CP_NOP }, 3410 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 3411 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3412 .access = PL1_W, .type = ARM_CP_NOP }, 3413 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 3414 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 3415 .access = PL0_W, .type = ARM_CP_NOP, 3416 .accessfn = aa64_cacheop_access }, 3417 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 3418 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3419 .access = PL1_W, .type = ARM_CP_NOP }, 3420 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 3421 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 3422 .access = PL0_W, .type = ARM_CP_NOP, 3423 .accessfn = aa64_cacheop_access }, 3424 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 3425 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 3426 .access = PL0_W, .type = ARM_CP_NOP, 3427 .accessfn = aa64_cacheop_access }, 3428 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 3429 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3430 .access = PL1_W, .type = ARM_CP_NOP }, 3431 /* TLBI operations */ 3432 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 3433 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 3434 .access = PL1_W, .type = ARM_CP_NO_RAW, 3435 .writefn = tlbi_aa64_vmalle1is_write }, 3436 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 3437 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 3438 .access = PL1_W, .type = ARM_CP_NO_RAW, 3439 .writefn = tlbi_aa64_vae1is_write }, 3440 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 3441 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 3442 .access = PL1_W, .type = ARM_CP_NO_RAW, 3443 .writefn = tlbi_aa64_vmalle1is_write }, 3444 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 3445 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 3446 .access = PL1_W, .type = ARM_CP_NO_RAW, 3447 .writefn = tlbi_aa64_vae1is_write }, 3448 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 3449 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3450 .access = PL1_W, .type = ARM_CP_NO_RAW, 3451 .writefn = tlbi_aa64_vae1is_write }, 3452 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 3453 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3454 .access = PL1_W, .type = ARM_CP_NO_RAW, 3455 .writefn = tlbi_aa64_vae1is_write }, 3456 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 3457 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 3458 .access = PL1_W, .type = ARM_CP_NO_RAW, 3459 .writefn = tlbi_aa64_vmalle1_write }, 3460 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 3461 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 3462 .access = PL1_W, .type = ARM_CP_NO_RAW, 3463 .writefn = tlbi_aa64_vae1_write }, 3464 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 3465 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 3466 .access = PL1_W, .type = ARM_CP_NO_RAW, 3467 .writefn = tlbi_aa64_vmalle1_write }, 3468 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 3469 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 3470 .access = PL1_W, .type = ARM_CP_NO_RAW, 3471 .writefn = tlbi_aa64_vae1_write }, 3472 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 3473 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3474 .access = PL1_W, .type = ARM_CP_NO_RAW, 3475 .writefn = tlbi_aa64_vae1_write }, 3476 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 3477 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3478 .access = PL1_W, .type = ARM_CP_NO_RAW, 3479 .writefn = tlbi_aa64_vae1_write }, 3480 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 3481 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3482 .access = PL2_W, .type = ARM_CP_NO_RAW, 3483 .writefn = tlbi_aa64_ipas2e1is_write }, 3484 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 3485 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3486 .access = PL2_W, .type = ARM_CP_NO_RAW, 3487 .writefn = tlbi_aa64_ipas2e1is_write }, 3488 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 3489 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3490 .access = PL2_W, .type = ARM_CP_NO_RAW, 3491 .writefn = tlbi_aa64_alle1is_write }, 3492 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 3493 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 3494 .access = PL2_W, .type = ARM_CP_NO_RAW, 3495 .writefn = tlbi_aa64_alle1is_write }, 3496 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 3497 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3498 .access = PL2_W, .type = ARM_CP_NO_RAW, 3499 .writefn = tlbi_aa64_ipas2e1_write }, 3500 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 3501 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3502 .access = PL2_W, .type = ARM_CP_NO_RAW, 3503 .writefn = tlbi_aa64_ipas2e1_write }, 3504 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 3505 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3506 .access = PL2_W, .type = ARM_CP_NO_RAW, 3507 .writefn = tlbi_aa64_alle1_write }, 3508 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 3509 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 3510 .access = PL2_W, .type = ARM_CP_NO_RAW, 3511 .writefn = tlbi_aa64_alle1is_write }, 3512 #ifndef CONFIG_USER_ONLY 3513 /* 64 bit address translation operations */ 3514 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 3515 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 3516 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3517 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 3518 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 3519 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3520 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 3521 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 3522 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3523 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 3524 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 3525 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3526 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 3527 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 3528 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3529 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 3530 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 3531 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3532 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 3533 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 3534 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3535 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 3536 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 3537 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3538 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 3539 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 3540 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 3541 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3542 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 3543 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 3544 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3545 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 3546 .type = ARM_CP_ALIAS, 3547 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 3548 .access = PL1_RW, .resetvalue = 0, 3549 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 3550 .writefn = par_write }, 3551 #endif 3552 /* TLB invalidate last level of translation table walk */ 3553 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 3554 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write }, 3555 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 3556 .type = ARM_CP_NO_RAW, .access = PL1_W, 3557 .writefn = tlbimvaa_is_write }, 3558 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 3559 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write }, 3560 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 3561 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write }, 3562 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3563 .type = ARM_CP_NO_RAW, .access = PL2_W, 3564 .writefn = tlbimva_hyp_write }, 3565 { .name = "TLBIMVALHIS", 3566 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3567 .type = ARM_CP_NO_RAW, .access = PL2_W, 3568 .writefn = tlbimva_hyp_is_write }, 3569 { .name = "TLBIIPAS2", 3570 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 3571 .type = ARM_CP_NO_RAW, .access = PL2_W, 3572 .writefn = tlbiipas2_write }, 3573 { .name = "TLBIIPAS2IS", 3574 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 3575 .type = ARM_CP_NO_RAW, .access = PL2_W, 3576 .writefn = tlbiipas2_is_write }, 3577 { .name = "TLBIIPAS2L", 3578 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 3579 .type = ARM_CP_NO_RAW, .access = PL2_W, 3580 .writefn = tlbiipas2_write }, 3581 { .name = "TLBIIPAS2LIS", 3582 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 3583 .type = ARM_CP_NO_RAW, .access = PL2_W, 3584 .writefn = tlbiipas2_is_write }, 3585 /* 32 bit cache operations */ 3586 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 3587 .type = ARM_CP_NOP, .access = PL1_W }, 3588 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 3589 .type = ARM_CP_NOP, .access = PL1_W }, 3590 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 3591 .type = ARM_CP_NOP, .access = PL1_W }, 3592 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 3593 .type = ARM_CP_NOP, .access = PL1_W }, 3594 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 3595 .type = ARM_CP_NOP, .access = PL1_W }, 3596 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 3597 .type = ARM_CP_NOP, .access = PL1_W }, 3598 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 3599 .type = ARM_CP_NOP, .access = PL1_W }, 3600 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 3601 .type = ARM_CP_NOP, .access = PL1_W }, 3602 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 3603 .type = ARM_CP_NOP, .access = PL1_W }, 3604 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 3605 .type = ARM_CP_NOP, .access = PL1_W }, 3606 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 3607 .type = ARM_CP_NOP, .access = PL1_W }, 3608 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 3609 .type = ARM_CP_NOP, .access = PL1_W }, 3610 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 3611 .type = ARM_CP_NOP, .access = PL1_W }, 3612 /* MMU Domain access control / MPU write buffer control */ 3613 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 3614 .access = PL1_RW, .resetvalue = 0, 3615 .writefn = dacr_write, .raw_writefn = raw_write, 3616 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 3617 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 3618 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 3619 .type = ARM_CP_ALIAS, 3620 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 3621 .access = PL1_RW, 3622 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 3623 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 3624 .type = ARM_CP_ALIAS, 3625 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 3626 .access = PL1_RW, 3627 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 3628 /* We rely on the access checks not allowing the guest to write to the 3629 * state field when SPSel indicates that it's being used as the stack 3630 * pointer. 3631 */ 3632 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 3633 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 3634 .access = PL1_RW, .accessfn = sp_el0_access, 3635 .type = ARM_CP_ALIAS, 3636 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 3637 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 3638 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 3639 .access = PL2_RW, .type = ARM_CP_ALIAS, 3640 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 3641 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 3642 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 3643 .type = ARM_CP_NO_RAW, 3644 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 3645 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 3646 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 3647 .type = ARM_CP_ALIAS, 3648 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]), 3649 .access = PL2_RW, .accessfn = fpexc32_access }, 3650 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 3651 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 3652 .access = PL2_RW, .resetvalue = 0, 3653 .writefn = dacr_write, .raw_writefn = raw_write, 3654 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 3655 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 3656 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 3657 .access = PL2_RW, .resetvalue = 0, 3658 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 3659 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 3660 .type = ARM_CP_ALIAS, 3661 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 3662 .access = PL2_RW, 3663 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 3664 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 3665 .type = ARM_CP_ALIAS, 3666 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 3667 .access = PL2_RW, 3668 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 3669 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 3670 .type = ARM_CP_ALIAS, 3671 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 3672 .access = PL2_RW, 3673 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 3674 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 3675 .type = ARM_CP_ALIAS, 3676 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 3677 .access = PL2_RW, 3678 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 3679 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 3680 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 3681 .resetvalue = 0, 3682 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 3683 { .name = "SDCR", .type = ARM_CP_ALIAS, 3684 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 3685 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 3686 .writefn = sdcr_write, 3687 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 3688 REGINFO_SENTINEL 3689 }; 3690 3691 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */ 3692 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = { 3693 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3694 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3695 .access = PL2_RW, 3696 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3697 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3698 .type = ARM_CP_NO_RAW, 3699 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3700 .access = PL2_RW, 3701 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore }, 3702 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3703 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3704 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3705 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3706 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3707 .access = PL2_RW, .type = ARM_CP_CONST, 3708 .resetvalue = 0 }, 3709 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3710 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3711 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3712 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3713 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3714 .access = PL2_RW, .type = ARM_CP_CONST, 3715 .resetvalue = 0 }, 3716 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3717 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3718 .access = PL2_RW, .type = ARM_CP_CONST, 3719 .resetvalue = 0 }, 3720 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3721 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3722 .access = PL2_RW, .type = ARM_CP_CONST, 3723 .resetvalue = 0 }, 3724 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3725 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3726 .access = PL2_RW, .type = ARM_CP_CONST, 3727 .resetvalue = 0 }, 3728 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3729 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3730 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3731 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH, 3732 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3733 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3734 .type = ARM_CP_CONST, .resetvalue = 0 }, 3735 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3736 .cp = 15, .opc1 = 6, .crm = 2, 3737 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3738 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 }, 3739 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3740 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3741 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3742 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3743 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3744 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3745 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3746 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3747 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3748 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3749 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3750 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3751 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3752 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3753 .resetvalue = 0 }, 3754 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3755 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3756 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3757 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 3758 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 3759 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3760 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 3761 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3762 .resetvalue = 0 }, 3763 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 3764 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 3765 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3766 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 3767 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST, 3768 .resetvalue = 0 }, 3769 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 3770 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 3771 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3772 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 3773 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 3774 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3775 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 3776 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 3777 .access = PL2_RW, .accessfn = access_tda, 3778 .type = ARM_CP_CONST, .resetvalue = 0 }, 3779 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH, 3780 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 3781 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 3782 .type = ARM_CP_CONST, .resetvalue = 0 }, 3783 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 3784 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 3785 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 3786 REGINFO_SENTINEL 3787 }; 3788 3789 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3790 { 3791 ARMCPU *cpu = arm_env_get_cpu(env); 3792 uint64_t valid_mask = HCR_MASK; 3793 3794 if (arm_feature(env, ARM_FEATURE_EL3)) { 3795 valid_mask &= ~HCR_HCD; 3796 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 3797 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented. 3798 * However, if we're using the SMC PSCI conduit then QEMU is 3799 * effectively acting like EL3 firmware and so the guest at 3800 * EL2 should retain the ability to prevent EL1 from being 3801 * able to make SMC calls into the ersatz firmware, so in 3802 * that case HCR.TSC should be read/write. 3803 */ 3804 valid_mask &= ~HCR_TSC; 3805 } 3806 3807 /* Clear RES0 bits. */ 3808 value &= valid_mask; 3809 3810 /* These bits change the MMU setup: 3811 * HCR_VM enables stage 2 translation 3812 * HCR_PTW forbids certain page-table setups 3813 * HCR_DC Disables stage1 and enables stage2 translation 3814 */ 3815 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) { 3816 tlb_flush(CPU(cpu)); 3817 } 3818 raw_write(env, ri, value); 3819 } 3820 3821 static const ARMCPRegInfo el2_cp_reginfo[] = { 3822 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 3823 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 3824 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 3825 .writefn = hcr_write }, 3826 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 3827 .type = ARM_CP_ALIAS, 3828 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 3829 .access = PL2_RW, 3830 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 3831 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64, 3832 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 3833 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 3834 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64, 3835 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 3836 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 3837 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 3838 .type = ARM_CP_ALIAS, 3839 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 3840 .access = PL2_RW, 3841 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 3842 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64, 3843 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 3844 .access = PL2_RW, .writefn = vbar_write, 3845 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 3846 .resetvalue = 0 }, 3847 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 3848 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 3849 .access = PL3_RW, .type = ARM_CP_ALIAS, 3850 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 3851 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 3852 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 3853 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 3854 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) }, 3855 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 3856 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 3857 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 3858 .resetvalue = 0 }, 3859 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3860 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 3861 .access = PL2_RW, .type = ARM_CP_ALIAS, 3862 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 3863 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 3864 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 3865 .access = PL2_RW, .type = ARM_CP_CONST, 3866 .resetvalue = 0 }, 3867 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 3868 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 3869 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 3870 .access = PL2_RW, .type = ARM_CP_CONST, 3871 .resetvalue = 0 }, 3872 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 3873 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 3874 .access = PL2_RW, .type = ARM_CP_CONST, 3875 .resetvalue = 0 }, 3876 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 3877 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 3878 .access = PL2_RW, .type = ARM_CP_CONST, 3879 .resetvalue = 0 }, 3880 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 3881 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 3882 .access = PL2_RW, 3883 /* no .writefn needed as this can't cause an ASID change; 3884 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3885 */ 3886 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 3887 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 3888 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3889 .type = ARM_CP_ALIAS, 3890 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3891 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3892 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 3893 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 3894 .access = PL2_RW, 3895 /* no .writefn needed as this can't cause an ASID change; 3896 * no .raw_writefn or .resetfn needed as we never use mask/base_mask 3897 */ 3898 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 3899 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 3900 .cp = 15, .opc1 = 6, .crm = 2, 3901 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3902 .access = PL2_RW, .accessfn = access_el3_aa32ns, 3903 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 3904 .writefn = vttbr_write }, 3905 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 3906 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 3907 .access = PL2_RW, .writefn = vttbr_write, 3908 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 3909 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 3910 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 3911 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 3912 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 3913 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 3914 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 3915 .access = PL2_RW, .resetvalue = 0, 3916 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 3917 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 3918 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 3919 .access = PL2_RW, .resetvalue = 0, 3920 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3921 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 3922 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 3923 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 3924 { .name = "TLBIALLNSNH", 3925 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 3926 .type = ARM_CP_NO_RAW, .access = PL2_W, 3927 .writefn = tlbiall_nsnh_write }, 3928 { .name = "TLBIALLNSNHIS", 3929 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 3930 .type = ARM_CP_NO_RAW, .access = PL2_W, 3931 .writefn = tlbiall_nsnh_is_write }, 3932 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3933 .type = ARM_CP_NO_RAW, .access = PL2_W, 3934 .writefn = tlbiall_hyp_write }, 3935 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3936 .type = ARM_CP_NO_RAW, .access = PL2_W, 3937 .writefn = tlbiall_hyp_is_write }, 3938 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3939 .type = ARM_CP_NO_RAW, .access = PL2_W, 3940 .writefn = tlbimva_hyp_write }, 3941 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3942 .type = ARM_CP_NO_RAW, .access = PL2_W, 3943 .writefn = tlbimva_hyp_is_write }, 3944 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 3945 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 3946 .type = ARM_CP_NO_RAW, .access = PL2_W, 3947 .writefn = tlbi_aa64_alle2_write }, 3948 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 3949 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 3950 .type = ARM_CP_NO_RAW, .access = PL2_W, 3951 .writefn = tlbi_aa64_vae2_write }, 3952 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 3953 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 3954 .access = PL2_W, .type = ARM_CP_NO_RAW, 3955 .writefn = tlbi_aa64_vae2_write }, 3956 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 3957 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 3958 .access = PL2_W, .type = ARM_CP_NO_RAW, 3959 .writefn = tlbi_aa64_alle2is_write }, 3960 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 3961 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 3962 .type = ARM_CP_NO_RAW, .access = PL2_W, 3963 .writefn = tlbi_aa64_vae2is_write }, 3964 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 3965 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 3966 .access = PL2_W, .type = ARM_CP_NO_RAW, 3967 .writefn = tlbi_aa64_vae2is_write }, 3968 #ifndef CONFIG_USER_ONLY 3969 /* Unlike the other EL2-related AT operations, these must 3970 * UNDEF from EL3 if EL2 is not implemented, which is why we 3971 * define them here rather than with the rest of the AT ops. 3972 */ 3973 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 3974 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3975 .access = PL2_W, .accessfn = at_s1e2_access, 3976 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3977 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 3978 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3979 .access = PL2_W, .accessfn = at_s1e2_access, 3980 .type = ARM_CP_NO_RAW, .writefn = ats_write64 }, 3981 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 3982 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 3983 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 3984 * to behave as if SCR.NS was 1. 3985 */ 3986 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 3987 .access = PL2_W, 3988 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3989 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 3990 .access = PL2_W, 3991 .writefn = ats1h_write, .type = ARM_CP_NO_RAW }, 3992 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 3993 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 3994 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 3995 * reset values as IMPDEF. We choose to reset to 3 to comply with 3996 * both ARMv7 and ARMv8. 3997 */ 3998 .access = PL2_RW, .resetvalue = 3, 3999 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 4000 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 4001 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 4002 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 4003 .writefn = gt_cntvoff_write, 4004 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4005 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 4006 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 4007 .writefn = gt_cntvoff_write, 4008 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 4009 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 4010 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 4011 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4012 .type = ARM_CP_IO, .access = PL2_RW, 4013 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4014 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 4015 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 4016 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 4017 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 4018 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 4019 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 4020 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 4021 .resetfn = gt_hyp_timer_reset, 4022 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 4023 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 4024 .type = ARM_CP_IO, 4025 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 4026 .access = PL2_RW, 4027 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 4028 .resetvalue = 0, 4029 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 4030 #endif 4031 /* The only field of MDCR_EL2 that has a defined architectural reset value 4032 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we 4033 * don't impelment any PMU event counters, so using zero as a reset 4034 * value for MDCR_EL2 is okay 4035 */ 4036 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, 4037 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 4038 .access = PL2_RW, .resetvalue = 0, 4039 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), }, 4040 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 4041 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4042 .access = PL2_RW, .accessfn = access_el3_aa32ns, 4043 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4044 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 4045 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 4046 .access = PL2_RW, 4047 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 4048 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 4049 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 4050 .access = PL2_RW, 4051 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 4052 REGINFO_SENTINEL 4053 }; 4054 4055 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 4056 bool isread) 4057 { 4058 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 4059 * At Secure EL1 it traps to EL3. 4060 */ 4061 if (arm_current_el(env) == 3) { 4062 return CP_ACCESS_OK; 4063 } 4064 if (arm_is_secure_below_el3(env)) { 4065 return CP_ACCESS_TRAP_EL3; 4066 } 4067 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 4068 if (isread) { 4069 return CP_ACCESS_OK; 4070 } 4071 return CP_ACCESS_TRAP_UNCATEGORIZED; 4072 } 4073 4074 static const ARMCPRegInfo el3_cp_reginfo[] = { 4075 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 4076 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 4077 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 4078 .resetvalue = 0, .writefn = scr_write }, 4079 { .name = "SCR", .type = ARM_CP_ALIAS, 4080 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 4081 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4082 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 4083 .writefn = scr_write }, 4084 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 4085 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 4086 .access = PL3_RW, .resetvalue = 0, 4087 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 4088 { .name = "SDER", 4089 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 4090 .access = PL3_RW, .resetvalue = 0, 4091 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 4092 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 4093 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 4094 .writefn = vbar_write, .resetvalue = 0, 4095 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 4096 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 4097 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 4098 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0, 4099 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 4100 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 4101 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 4102 .access = PL3_RW, 4103 /* no .writefn needed as this can't cause an ASID change; 4104 * we must provide a .raw_writefn and .resetfn because we handle 4105 * reset and migration for the AArch32 TTBCR(S), which might be 4106 * using mask and base_mask. 4107 */ 4108 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write, 4109 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 4110 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 4111 .type = ARM_CP_ALIAS, 4112 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 4113 .access = PL3_RW, 4114 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 4115 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 4116 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 4117 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 4118 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 4119 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 4120 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 4121 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 4122 .type = ARM_CP_ALIAS, 4123 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 4124 .access = PL3_RW, 4125 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 4126 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 4127 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 4128 .access = PL3_RW, .writefn = vbar_write, 4129 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 4130 .resetvalue = 0 }, 4131 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 4132 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 4133 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 4134 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 4135 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 4136 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 4137 .access = PL3_RW, .resetvalue = 0, 4138 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 4139 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 4140 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 4141 .access = PL3_RW, .type = ARM_CP_CONST, 4142 .resetvalue = 0 }, 4143 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 4144 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 4145 .access = PL3_RW, .type = ARM_CP_CONST, 4146 .resetvalue = 0 }, 4147 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 4148 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 4149 .access = PL3_RW, .type = ARM_CP_CONST, 4150 .resetvalue = 0 }, 4151 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 4152 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 4153 .access = PL3_W, .type = ARM_CP_NO_RAW, 4154 .writefn = tlbi_aa64_alle3is_write }, 4155 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 4156 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 4157 .access = PL3_W, .type = ARM_CP_NO_RAW, 4158 .writefn = tlbi_aa64_vae3is_write }, 4159 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 4160 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 4161 .access = PL3_W, .type = ARM_CP_NO_RAW, 4162 .writefn = tlbi_aa64_vae3is_write }, 4163 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 4164 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 4165 .access = PL3_W, .type = ARM_CP_NO_RAW, 4166 .writefn = tlbi_aa64_alle3_write }, 4167 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 4168 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 4169 .access = PL3_W, .type = ARM_CP_NO_RAW, 4170 .writefn = tlbi_aa64_vae3_write }, 4171 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 4172 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 4173 .access = PL3_W, .type = ARM_CP_NO_RAW, 4174 .writefn = tlbi_aa64_vae3_write }, 4175 REGINFO_SENTINEL 4176 }; 4177 4178 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 4179 bool isread) 4180 { 4181 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64, 4182 * but the AArch32 CTR has its own reginfo struct) 4183 */ 4184 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 4185 return CP_ACCESS_TRAP; 4186 } 4187 return CP_ACCESS_OK; 4188 } 4189 4190 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4191 uint64_t value) 4192 { 4193 /* Writes to OSLAR_EL1 may update the OS lock status, which can be 4194 * read via a bit in OSLSR_EL1. 4195 */ 4196 int oslock; 4197 4198 if (ri->state == ARM_CP_STATE_AA32) { 4199 oslock = (value == 0xC5ACCE55); 4200 } else { 4201 oslock = value & 1; 4202 } 4203 4204 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock); 4205 } 4206 4207 static const ARMCPRegInfo debug_cp_reginfo[] = { 4208 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped 4209 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1; 4210 * unlike DBGDRAR it is never accessible from EL0. 4211 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64 4212 * accessor. 4213 */ 4214 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0, 4215 .access = PL0_R, .accessfn = access_tdra, 4216 .type = ARM_CP_CONST, .resetvalue = 0 }, 4217 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64, 4218 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 4219 .access = PL1_R, .accessfn = access_tdra, 4220 .type = ARM_CP_CONST, .resetvalue = 0 }, 4221 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4222 .access = PL0_R, .accessfn = access_tdra, 4223 .type = ARM_CP_CONST, .resetvalue = 0 }, 4224 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */ 4225 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH, 4226 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4227 .access = PL1_RW, .accessfn = access_tda, 4228 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), 4229 .resetvalue = 0 }, 4230 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1. 4231 * We don't implement the configurable EL0 access. 4232 */ 4233 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH, 4234 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4235 .type = ARM_CP_ALIAS, 4236 .access = PL1_R, .accessfn = access_tda, 4237 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), }, 4238 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH, 4239 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4, 4240 .access = PL1_W, .type = ARM_CP_NO_RAW, 4241 .accessfn = access_tdosa, 4242 .writefn = oslar_write }, 4243 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH, 4244 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4, 4245 .access = PL1_R, .resetvalue = 10, 4246 .accessfn = access_tdosa, 4247 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) }, 4248 /* Dummy OSDLR_EL1: 32-bit Linux will read this */ 4249 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH, 4250 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4, 4251 .access = PL1_RW, .accessfn = access_tdosa, 4252 .type = ARM_CP_NOP }, 4253 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't 4254 * implement vector catch debug events yet. 4255 */ 4256 { .name = "DBGVCR", 4257 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4258 .access = PL1_RW, .accessfn = access_tda, 4259 .type = ARM_CP_NOP }, 4260 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor 4261 * to save and restore a 32-bit guest's DBGVCR) 4262 */ 4263 { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64, 4264 .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0, 4265 .access = PL2_RW, .accessfn = access_tda, 4266 .type = ARM_CP_NOP }, 4267 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications 4268 * Channel but Linux may try to access this register. The 32-bit 4269 * alias is DBGDCCINT. 4270 */ 4271 { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH, 4272 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4273 .access = PL1_RW, .accessfn = access_tda, 4274 .type = ARM_CP_NOP }, 4275 REGINFO_SENTINEL 4276 }; 4277 4278 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = { 4279 /* 64 bit access versions of the (dummy) debug registers */ 4280 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0, 4281 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4282 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0, 4283 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 }, 4284 REGINFO_SENTINEL 4285 }; 4286 4287 /* Return the exception level to which SVE-disabled exceptions should 4288 * be taken, or 0 if SVE is enabled. 4289 */ 4290 static int sve_exception_el(CPUARMState *env) 4291 { 4292 #ifndef CONFIG_USER_ONLY 4293 unsigned current_el = arm_current_el(env); 4294 4295 /* The CPACR.ZEN controls traps to EL1: 4296 * 0, 2 : trap EL0 and EL1 accesses 4297 * 1 : trap only EL0 accesses 4298 * 3 : trap no accesses 4299 */ 4300 switch (extract32(env->cp15.cpacr_el1, 16, 2)) { 4301 default: 4302 if (current_el <= 1) { 4303 /* Trap to PL1, which might be EL1 or EL3 */ 4304 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4305 return 3; 4306 } 4307 return 1; 4308 } 4309 break; 4310 case 1: 4311 if (current_el == 0) { 4312 return 1; 4313 } 4314 break; 4315 case 3: 4316 break; 4317 } 4318 4319 /* Similarly for CPACR.FPEN, after having checked ZEN. */ 4320 switch (extract32(env->cp15.cpacr_el1, 20, 2)) { 4321 default: 4322 if (current_el <= 1) { 4323 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 4324 return 3; 4325 } 4326 return 1; 4327 } 4328 break; 4329 case 1: 4330 if (current_el == 0) { 4331 return 1; 4332 } 4333 break; 4334 case 3: 4335 break; 4336 } 4337 4338 /* CPTR_EL2. Check both TZ and TFP. */ 4339 if (current_el <= 2 4340 && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ)) 4341 && !arm_is_secure_below_el3(env)) { 4342 return 2; 4343 } 4344 4345 /* CPTR_EL3. Check both EZ and TFP. */ 4346 if (!(env->cp15.cptr_el[3] & CPTR_EZ) 4347 || (env->cp15.cptr_el[3] & CPTR_TFP)) { 4348 return 3; 4349 } 4350 #endif 4351 return 0; 4352 } 4353 4354 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4355 uint64_t value) 4356 { 4357 /* Bits other than [3:0] are RAZ/WI. */ 4358 raw_write(env, ri, value & 0xf); 4359 } 4360 4361 static const ARMCPRegInfo zcr_el1_reginfo = { 4362 .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 4363 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 4364 .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4365 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 4366 .writefn = zcr_write, .raw_writefn = raw_write 4367 }; 4368 4369 static const ARMCPRegInfo zcr_el2_reginfo = { 4370 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4371 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4372 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4373 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 4374 .writefn = zcr_write, .raw_writefn = raw_write 4375 }; 4376 4377 static const ARMCPRegInfo zcr_no_el2_reginfo = { 4378 .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 4379 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 4380 .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4381 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore 4382 }; 4383 4384 static const ARMCPRegInfo zcr_el3_reginfo = { 4385 .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 4386 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 4387 .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU, 4388 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 4389 .writefn = zcr_write, .raw_writefn = raw_write 4390 }; 4391 4392 void hw_watchpoint_update(ARMCPU *cpu, int n) 4393 { 4394 CPUARMState *env = &cpu->env; 4395 vaddr len = 0; 4396 vaddr wvr = env->cp15.dbgwvr[n]; 4397 uint64_t wcr = env->cp15.dbgwcr[n]; 4398 int mask; 4399 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS; 4400 4401 if (env->cpu_watchpoint[n]) { 4402 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]); 4403 env->cpu_watchpoint[n] = NULL; 4404 } 4405 4406 if (!extract64(wcr, 0, 1)) { 4407 /* E bit clear : watchpoint disabled */ 4408 return; 4409 } 4410 4411 switch (extract64(wcr, 3, 2)) { 4412 case 0: 4413 /* LSC 00 is reserved and must behave as if the wp is disabled */ 4414 return; 4415 case 1: 4416 flags |= BP_MEM_READ; 4417 break; 4418 case 2: 4419 flags |= BP_MEM_WRITE; 4420 break; 4421 case 3: 4422 flags |= BP_MEM_ACCESS; 4423 break; 4424 } 4425 4426 /* Attempts to use both MASK and BAS fields simultaneously are 4427 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case, 4428 * thus generating a watchpoint for every byte in the masked region. 4429 */ 4430 mask = extract64(wcr, 24, 4); 4431 if (mask == 1 || mask == 2) { 4432 /* Reserved values of MASK; we must act as if the mask value was 4433 * some non-reserved value, or as if the watchpoint were disabled. 4434 * We choose the latter. 4435 */ 4436 return; 4437 } else if (mask) { 4438 /* Watchpoint covers an aligned area up to 2GB in size */ 4439 len = 1ULL << mask; 4440 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE 4441 * whether the watchpoint fires when the unmasked bits match; we opt 4442 * to generate the exceptions. 4443 */ 4444 wvr &= ~(len - 1); 4445 } else { 4446 /* Watchpoint covers bytes defined by the byte address select bits */ 4447 int bas = extract64(wcr, 5, 8); 4448 int basstart; 4449 4450 if (bas == 0) { 4451 /* This must act as if the watchpoint is disabled */ 4452 return; 4453 } 4454 4455 if (extract64(wvr, 2, 1)) { 4456 /* Deprecated case of an only 4-aligned address. BAS[7:4] are 4457 * ignored, and BAS[3:0] define which bytes to watch. 4458 */ 4459 bas &= 0xf; 4460 } 4461 /* The BAS bits are supposed to be programmed to indicate a contiguous 4462 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether 4463 * we fire for each byte in the word/doubleword addressed by the WVR. 4464 * We choose to ignore any non-zero bits after the first range of 1s. 4465 */ 4466 basstart = ctz32(bas); 4467 len = cto32(bas >> basstart); 4468 wvr += basstart; 4469 } 4470 4471 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags, 4472 &env->cpu_watchpoint[n]); 4473 } 4474 4475 void hw_watchpoint_update_all(ARMCPU *cpu) 4476 { 4477 int i; 4478 CPUARMState *env = &cpu->env; 4479 4480 /* Completely clear out existing QEMU watchpoints and our array, to 4481 * avoid possible stale entries following migration load. 4482 */ 4483 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU); 4484 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint)); 4485 4486 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) { 4487 hw_watchpoint_update(cpu, i); 4488 } 4489 } 4490 4491 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4492 uint64_t value) 4493 { 4494 ARMCPU *cpu = arm_env_get_cpu(env); 4495 int i = ri->crm; 4496 4497 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the 4498 * register reads and behaves as if values written are sign extended. 4499 * Bits [1:0] are RES0. 4500 */ 4501 value = sextract64(value, 0, 49) & ~3ULL; 4502 4503 raw_write(env, ri, value); 4504 hw_watchpoint_update(cpu, i); 4505 } 4506 4507 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4508 uint64_t value) 4509 { 4510 ARMCPU *cpu = arm_env_get_cpu(env); 4511 int i = ri->crm; 4512 4513 raw_write(env, ri, value); 4514 hw_watchpoint_update(cpu, i); 4515 } 4516 4517 void hw_breakpoint_update(ARMCPU *cpu, int n) 4518 { 4519 CPUARMState *env = &cpu->env; 4520 uint64_t bvr = env->cp15.dbgbvr[n]; 4521 uint64_t bcr = env->cp15.dbgbcr[n]; 4522 vaddr addr; 4523 int bt; 4524 int flags = BP_CPU; 4525 4526 if (env->cpu_breakpoint[n]) { 4527 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]); 4528 env->cpu_breakpoint[n] = NULL; 4529 } 4530 4531 if (!extract64(bcr, 0, 1)) { 4532 /* E bit clear : watchpoint disabled */ 4533 return; 4534 } 4535 4536 bt = extract64(bcr, 20, 4); 4537 4538 switch (bt) { 4539 case 4: /* unlinked address mismatch (reserved if AArch64) */ 4540 case 5: /* linked address mismatch (reserved if AArch64) */ 4541 qemu_log_mask(LOG_UNIMP, 4542 "arm: address mismatch breakpoint types not implemented"); 4543 return; 4544 case 0: /* unlinked address match */ 4545 case 1: /* linked address match */ 4546 { 4547 /* Bits [63:49] are hardwired to the value of bit [48]; that is, 4548 * we behave as if the register was sign extended. Bits [1:0] are 4549 * RES0. The BAS field is used to allow setting breakpoints on 16 4550 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether 4551 * a bp will fire if the addresses covered by the bp and the addresses 4552 * covered by the insn overlap but the insn doesn't start at the 4553 * start of the bp address range. We choose to require the insn and 4554 * the bp to have the same address. The constraints on writing to 4555 * BAS enforced in dbgbcr_write mean we have only four cases: 4556 * 0b0000 => no breakpoint 4557 * 0b0011 => breakpoint on addr 4558 * 0b1100 => breakpoint on addr + 2 4559 * 0b1111 => breakpoint on addr 4560 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c). 4561 */ 4562 int bas = extract64(bcr, 5, 4); 4563 addr = sextract64(bvr, 0, 49) & ~3ULL; 4564 if (bas == 0) { 4565 return; 4566 } 4567 if (bas == 0xc) { 4568 addr += 2; 4569 } 4570 break; 4571 } 4572 case 2: /* unlinked context ID match */ 4573 case 8: /* unlinked VMID match (reserved if no EL2) */ 4574 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */ 4575 qemu_log_mask(LOG_UNIMP, 4576 "arm: unlinked context breakpoint types not implemented"); 4577 return; 4578 case 9: /* linked VMID match (reserved if no EL2) */ 4579 case 11: /* linked context ID and VMID match (reserved if no EL2) */ 4580 case 3: /* linked context ID match */ 4581 default: 4582 /* We must generate no events for Linked context matches (unless 4583 * they are linked to by some other bp/wp, which is handled in 4584 * updates for the linking bp/wp). We choose to also generate no events 4585 * for reserved values. 4586 */ 4587 return; 4588 } 4589 4590 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]); 4591 } 4592 4593 void hw_breakpoint_update_all(ARMCPU *cpu) 4594 { 4595 int i; 4596 CPUARMState *env = &cpu->env; 4597 4598 /* Completely clear out existing QEMU breakpoints and our array, to 4599 * avoid possible stale entries following migration load. 4600 */ 4601 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU); 4602 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint)); 4603 4604 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) { 4605 hw_breakpoint_update(cpu, i); 4606 } 4607 } 4608 4609 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4610 uint64_t value) 4611 { 4612 ARMCPU *cpu = arm_env_get_cpu(env); 4613 int i = ri->crm; 4614 4615 raw_write(env, ri, value); 4616 hw_breakpoint_update(cpu, i); 4617 } 4618 4619 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4620 uint64_t value) 4621 { 4622 ARMCPU *cpu = arm_env_get_cpu(env); 4623 int i = ri->crm; 4624 4625 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only 4626 * copy of BAS[0]. 4627 */ 4628 value = deposit64(value, 6, 1, extract64(value, 5, 1)); 4629 value = deposit64(value, 8, 1, extract64(value, 7, 1)); 4630 4631 raw_write(env, ri, value); 4632 hw_breakpoint_update(cpu, i); 4633 } 4634 4635 static void define_debug_regs(ARMCPU *cpu) 4636 { 4637 /* Define v7 and v8 architectural debug registers. 4638 * These are just dummy implementations for now. 4639 */ 4640 int i; 4641 int wrps, brps, ctx_cmps; 4642 ARMCPRegInfo dbgdidr = { 4643 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 4644 .access = PL0_R, .accessfn = access_tda, 4645 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr, 4646 }; 4647 4648 /* Note that all these register fields hold "number of Xs minus 1". */ 4649 brps = extract32(cpu->dbgdidr, 24, 4); 4650 wrps = extract32(cpu->dbgdidr, 28, 4); 4651 ctx_cmps = extract32(cpu->dbgdidr, 20, 4); 4652 4653 assert(ctx_cmps <= brps); 4654 4655 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties 4656 * of the debug registers such as number of breakpoints; 4657 * check that if they both exist then they agree. 4658 */ 4659 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { 4660 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps); 4661 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps); 4662 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps); 4663 } 4664 4665 define_one_arm_cp_reg(cpu, &dbgdidr); 4666 define_arm_cp_regs(cpu, debug_cp_reginfo); 4667 4668 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) { 4669 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo); 4670 } 4671 4672 for (i = 0; i < brps + 1; i++) { 4673 ARMCPRegInfo dbgregs[] = { 4674 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH, 4675 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4, 4676 .access = PL1_RW, .accessfn = access_tda, 4677 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]), 4678 .writefn = dbgbvr_write, .raw_writefn = raw_write 4679 }, 4680 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH, 4681 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5, 4682 .access = PL1_RW, .accessfn = access_tda, 4683 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]), 4684 .writefn = dbgbcr_write, .raw_writefn = raw_write 4685 }, 4686 REGINFO_SENTINEL 4687 }; 4688 define_arm_cp_regs(cpu, dbgregs); 4689 } 4690 4691 for (i = 0; i < wrps + 1; i++) { 4692 ARMCPRegInfo dbgregs[] = { 4693 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH, 4694 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6, 4695 .access = PL1_RW, .accessfn = access_tda, 4696 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]), 4697 .writefn = dbgwvr_write, .raw_writefn = raw_write 4698 }, 4699 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH, 4700 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7, 4701 .access = PL1_RW, .accessfn = access_tda, 4702 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]), 4703 .writefn = dbgwcr_write, .raw_writefn = raw_write 4704 }, 4705 REGINFO_SENTINEL 4706 }; 4707 define_arm_cp_regs(cpu, dbgregs); 4708 } 4709 } 4710 4711 /* We don't know until after realize whether there's a GICv3 4712 * attached, and that is what registers the gicv3 sysregs. 4713 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 4714 * at runtime. 4715 */ 4716 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 4717 { 4718 ARMCPU *cpu = arm_env_get_cpu(env); 4719 uint64_t pfr1 = cpu->id_pfr1; 4720 4721 if (env->gicv3state) { 4722 pfr1 |= 1 << 28; 4723 } 4724 return pfr1; 4725 } 4726 4727 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 4728 { 4729 ARMCPU *cpu = arm_env_get_cpu(env); 4730 uint64_t pfr0 = cpu->id_aa64pfr0; 4731 4732 if (env->gicv3state) { 4733 pfr0 |= 1 << 24; 4734 } 4735 return pfr0; 4736 } 4737 4738 void register_cp_regs_for_features(ARMCPU *cpu) 4739 { 4740 /* Register all the coprocessor registers based on feature bits */ 4741 CPUARMState *env = &cpu->env; 4742 if (arm_feature(env, ARM_FEATURE_M)) { 4743 /* M profile has no coprocessor registers */ 4744 return; 4745 } 4746 4747 define_arm_cp_regs(cpu, cp_reginfo); 4748 if (!arm_feature(env, ARM_FEATURE_V8)) { 4749 /* Must go early as it is full of wildcards that may be 4750 * overridden by later definitions. 4751 */ 4752 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 4753 } 4754 4755 if (arm_feature(env, ARM_FEATURE_V6)) { 4756 /* The ID registers all have impdef reset values */ 4757 ARMCPRegInfo v6_idregs[] = { 4758 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 4759 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 4760 .access = PL1_R, .type = ARM_CP_CONST, 4761 .resetvalue = cpu->id_pfr0 }, 4762 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know 4763 * the value of the GIC field until after we define these regs. 4764 */ 4765 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 4766 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 4767 .access = PL1_R, .type = ARM_CP_NO_RAW, 4768 .readfn = id_pfr1_read, 4769 .writefn = arm_cp_write_ignore }, 4770 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 4771 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 4772 .access = PL1_R, .type = ARM_CP_CONST, 4773 .resetvalue = cpu->id_dfr0 }, 4774 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 4775 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 4776 .access = PL1_R, .type = ARM_CP_CONST, 4777 .resetvalue = cpu->id_afr0 }, 4778 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 4779 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 4780 .access = PL1_R, .type = ARM_CP_CONST, 4781 .resetvalue = cpu->id_mmfr0 }, 4782 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 4783 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 4784 .access = PL1_R, .type = ARM_CP_CONST, 4785 .resetvalue = cpu->id_mmfr1 }, 4786 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 4787 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 4788 .access = PL1_R, .type = ARM_CP_CONST, 4789 .resetvalue = cpu->id_mmfr2 }, 4790 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 4791 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 4792 .access = PL1_R, .type = ARM_CP_CONST, 4793 .resetvalue = cpu->id_mmfr3 }, 4794 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 4795 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 4796 .access = PL1_R, .type = ARM_CP_CONST, 4797 .resetvalue = cpu->id_isar0 }, 4798 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 4799 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 4800 .access = PL1_R, .type = ARM_CP_CONST, 4801 .resetvalue = cpu->id_isar1 }, 4802 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 4803 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 4804 .access = PL1_R, .type = ARM_CP_CONST, 4805 .resetvalue = cpu->id_isar2 }, 4806 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 4807 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 4808 .access = PL1_R, .type = ARM_CP_CONST, 4809 .resetvalue = cpu->id_isar3 }, 4810 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 4811 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 4812 .access = PL1_R, .type = ARM_CP_CONST, 4813 .resetvalue = cpu->id_isar4 }, 4814 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 4815 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 4816 .access = PL1_R, .type = ARM_CP_CONST, 4817 .resetvalue = cpu->id_isar5 }, 4818 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 4819 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 4820 .access = PL1_R, .type = ARM_CP_CONST, 4821 .resetvalue = cpu->id_mmfr4 }, 4822 /* 7 is as yet unallocated and must RAZ */ 4823 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH, 4824 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 4825 .access = PL1_R, .type = ARM_CP_CONST, 4826 .resetvalue = 0 }, 4827 REGINFO_SENTINEL 4828 }; 4829 define_arm_cp_regs(cpu, v6_idregs); 4830 define_arm_cp_regs(cpu, v6_cp_reginfo); 4831 } else { 4832 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 4833 } 4834 if (arm_feature(env, ARM_FEATURE_V6K)) { 4835 define_arm_cp_regs(cpu, v6k_cp_reginfo); 4836 } 4837 if (arm_feature(env, ARM_FEATURE_V7MP) && 4838 !arm_feature(env, ARM_FEATURE_PMSA)) { 4839 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 4840 } 4841 if (arm_feature(env, ARM_FEATURE_V7)) { 4842 /* v7 performance monitor control register: same implementor 4843 * field as main ID register, and we implement only the cycle 4844 * count register. 4845 */ 4846 #ifndef CONFIG_USER_ONLY 4847 ARMCPRegInfo pmcr = { 4848 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 4849 .access = PL0_RW, 4850 .type = ARM_CP_IO | ARM_CP_ALIAS, 4851 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 4852 .accessfn = pmreg_access, .writefn = pmcr_write, 4853 .raw_writefn = raw_write, 4854 }; 4855 ARMCPRegInfo pmcr64 = { 4856 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 4857 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 4858 .access = PL0_RW, .accessfn = pmreg_access, 4859 .type = ARM_CP_IO, 4860 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 4861 .resetvalue = cpu->midr & 0xff000000, 4862 .writefn = pmcr_write, .raw_writefn = raw_write, 4863 }; 4864 define_one_arm_cp_reg(cpu, &pmcr); 4865 define_one_arm_cp_reg(cpu, &pmcr64); 4866 #endif 4867 ARMCPRegInfo clidr = { 4868 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 4869 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 4870 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr 4871 }; 4872 define_one_arm_cp_reg(cpu, &clidr); 4873 define_arm_cp_regs(cpu, v7_cp_reginfo); 4874 define_debug_regs(cpu); 4875 } else { 4876 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 4877 } 4878 if (arm_feature(env, ARM_FEATURE_V8)) { 4879 /* AArch64 ID registers, which all have impdef reset values. 4880 * Note that within the ID register ranges the unused slots 4881 * must all RAZ, not UNDEF; future architecture versions may 4882 * define new registers here. 4883 */ 4884 ARMCPRegInfo v8_idregs[] = { 4885 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't 4886 * know the right value for the GIC field until after we 4887 * define these regs. 4888 */ 4889 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 4890 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 4891 .access = PL1_R, .type = ARM_CP_NO_RAW, 4892 .readfn = id_aa64pfr0_read, 4893 .writefn = arm_cp_write_ignore }, 4894 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 4895 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 4896 .access = PL1_R, .type = ARM_CP_CONST, 4897 .resetvalue = cpu->id_aa64pfr1}, 4898 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4899 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 4900 .access = PL1_R, .type = ARM_CP_CONST, 4901 .resetvalue = 0 }, 4902 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4903 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 4904 .access = PL1_R, .type = ARM_CP_CONST, 4905 .resetvalue = 0 }, 4906 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4907 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 4908 .access = PL1_R, .type = ARM_CP_CONST, 4909 .resetvalue = 0 }, 4910 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4911 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 4912 .access = PL1_R, .type = ARM_CP_CONST, 4913 .resetvalue = 0 }, 4914 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4915 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 4916 .access = PL1_R, .type = ARM_CP_CONST, 4917 .resetvalue = 0 }, 4918 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4919 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 4920 .access = PL1_R, .type = ARM_CP_CONST, 4921 .resetvalue = 0 }, 4922 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 4923 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 4924 .access = PL1_R, .type = ARM_CP_CONST, 4925 .resetvalue = cpu->id_aa64dfr0 }, 4926 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 4927 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 4928 .access = PL1_R, .type = ARM_CP_CONST, 4929 .resetvalue = cpu->id_aa64dfr1 }, 4930 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4931 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 4932 .access = PL1_R, .type = ARM_CP_CONST, 4933 .resetvalue = 0 }, 4934 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4935 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 4936 .access = PL1_R, .type = ARM_CP_CONST, 4937 .resetvalue = 0 }, 4938 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 4939 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 4940 .access = PL1_R, .type = ARM_CP_CONST, 4941 .resetvalue = cpu->id_aa64afr0 }, 4942 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 4943 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 4944 .access = PL1_R, .type = ARM_CP_CONST, 4945 .resetvalue = cpu->id_aa64afr1 }, 4946 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4947 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 4948 .access = PL1_R, .type = ARM_CP_CONST, 4949 .resetvalue = 0 }, 4950 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4951 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 4952 .access = PL1_R, .type = ARM_CP_CONST, 4953 .resetvalue = 0 }, 4954 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 4955 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 4956 .access = PL1_R, .type = ARM_CP_CONST, 4957 .resetvalue = cpu->id_aa64isar0 }, 4958 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 4959 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 4960 .access = PL1_R, .type = ARM_CP_CONST, 4961 .resetvalue = cpu->id_aa64isar1 }, 4962 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4963 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 4964 .access = PL1_R, .type = ARM_CP_CONST, 4965 .resetvalue = 0 }, 4966 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4967 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 4968 .access = PL1_R, .type = ARM_CP_CONST, 4969 .resetvalue = 0 }, 4970 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4971 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 4972 .access = PL1_R, .type = ARM_CP_CONST, 4973 .resetvalue = 0 }, 4974 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4975 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 4976 .access = PL1_R, .type = ARM_CP_CONST, 4977 .resetvalue = 0 }, 4978 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4979 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 4980 .access = PL1_R, .type = ARM_CP_CONST, 4981 .resetvalue = 0 }, 4982 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4983 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 4984 .access = PL1_R, .type = ARM_CP_CONST, 4985 .resetvalue = 0 }, 4986 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 4987 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 4988 .access = PL1_R, .type = ARM_CP_CONST, 4989 .resetvalue = cpu->id_aa64mmfr0 }, 4990 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 4991 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 4992 .access = PL1_R, .type = ARM_CP_CONST, 4993 .resetvalue = cpu->id_aa64mmfr1 }, 4994 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4995 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 4996 .access = PL1_R, .type = ARM_CP_CONST, 4997 .resetvalue = 0 }, 4998 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 4999 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 5000 .access = PL1_R, .type = ARM_CP_CONST, 5001 .resetvalue = 0 }, 5002 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5003 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 5004 .access = PL1_R, .type = ARM_CP_CONST, 5005 .resetvalue = 0 }, 5006 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5007 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 5008 .access = PL1_R, .type = ARM_CP_CONST, 5009 .resetvalue = 0 }, 5010 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5011 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 5012 .access = PL1_R, .type = ARM_CP_CONST, 5013 .resetvalue = 0 }, 5014 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 5016 .access = PL1_R, .type = ARM_CP_CONST, 5017 .resetvalue = 0 }, 5018 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 5019 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 5020 .access = PL1_R, .type = ARM_CP_CONST, 5021 .resetvalue = cpu->mvfr0 }, 5022 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 5023 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 5024 .access = PL1_R, .type = ARM_CP_CONST, 5025 .resetvalue = cpu->mvfr1 }, 5026 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 5027 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 5028 .access = PL1_R, .type = ARM_CP_CONST, 5029 .resetvalue = cpu->mvfr2 }, 5030 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5031 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 5032 .access = PL1_R, .type = ARM_CP_CONST, 5033 .resetvalue = 0 }, 5034 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 5036 .access = PL1_R, .type = ARM_CP_CONST, 5037 .resetvalue = 0 }, 5038 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5039 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 5040 .access = PL1_R, .type = ARM_CP_CONST, 5041 .resetvalue = 0 }, 5042 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5043 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 5044 .access = PL1_R, .type = ARM_CP_CONST, 5045 .resetvalue = 0 }, 5046 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 5047 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 5048 .access = PL1_R, .type = ARM_CP_CONST, 5049 .resetvalue = 0 }, 5050 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 5051 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 5052 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5053 .resetvalue = cpu->pmceid0 }, 5054 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 5055 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 5056 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5057 .resetvalue = cpu->pmceid0 }, 5058 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 5059 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 5060 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5061 .resetvalue = cpu->pmceid1 }, 5062 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 5063 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 5064 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 5065 .resetvalue = cpu->pmceid1 }, 5066 REGINFO_SENTINEL 5067 }; 5068 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 5069 if (!arm_feature(env, ARM_FEATURE_EL3) && 5070 !arm_feature(env, ARM_FEATURE_EL2)) { 5071 ARMCPRegInfo rvbar = { 5072 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64, 5073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 5074 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar 5075 }; 5076 define_one_arm_cp_reg(cpu, &rvbar); 5077 } 5078 define_arm_cp_regs(cpu, v8_idregs); 5079 define_arm_cp_regs(cpu, v8_cp_reginfo); 5080 } 5081 if (arm_feature(env, ARM_FEATURE_EL2)) { 5082 uint64_t vmpidr_def = mpidr_read_val(env); 5083 ARMCPRegInfo vpidr_regs[] = { 5084 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 5085 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5086 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5087 .resetvalue = cpu->midr, .type = ARM_CP_ALIAS, 5088 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 5089 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 5090 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5091 .access = PL2_RW, .resetvalue = cpu->midr, 5092 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5093 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 5094 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5095 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5096 .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS, 5097 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 5098 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 5099 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5100 .access = PL2_RW, 5101 .resetvalue = vmpidr_def, 5102 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 5103 REGINFO_SENTINEL 5104 }; 5105 define_arm_cp_regs(cpu, vpidr_regs); 5106 define_arm_cp_regs(cpu, el2_cp_reginfo); 5107 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 5108 if (!arm_feature(env, ARM_FEATURE_EL3)) { 5109 ARMCPRegInfo rvbar = { 5110 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 5111 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 5112 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar 5113 }; 5114 define_one_arm_cp_reg(cpu, &rvbar); 5115 } 5116 } else { 5117 /* If EL2 is missing but higher ELs are enabled, we need to 5118 * register the no_el2 reginfos. 5119 */ 5120 if (arm_feature(env, ARM_FEATURE_EL3)) { 5121 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value 5122 * of MIDR_EL1 and MPIDR_EL1. 5123 */ 5124 ARMCPRegInfo vpidr_regs[] = { 5125 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5126 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 5127 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5128 .type = ARM_CP_CONST, .resetvalue = cpu->midr, 5129 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 5130 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH, 5131 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 5132 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any, 5133 .type = ARM_CP_NO_RAW, 5134 .writefn = arm_cp_write_ignore, .readfn = mpidr_read }, 5135 REGINFO_SENTINEL 5136 }; 5137 define_arm_cp_regs(cpu, vpidr_regs); 5138 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo); 5139 } 5140 } 5141 if (arm_feature(env, ARM_FEATURE_EL3)) { 5142 define_arm_cp_regs(cpu, el3_cp_reginfo); 5143 ARMCPRegInfo el3_regs[] = { 5144 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 5145 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 5146 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar }, 5147 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 5148 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 5149 .access = PL3_RW, 5150 .raw_writefn = raw_write, .writefn = sctlr_write, 5151 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 5152 .resetvalue = cpu->reset_sctlr }, 5153 REGINFO_SENTINEL 5154 }; 5155 5156 define_arm_cp_regs(cpu, el3_regs); 5157 } 5158 /* The behaviour of NSACR is sufficiently various that we don't 5159 * try to describe it in a single reginfo: 5160 * if EL3 is 64 bit, then trap to EL3 from S EL1, 5161 * reads as constant 0xc00 from NS EL1 and NS EL2 5162 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 5163 * if v7 without EL3, register doesn't exist 5164 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 5165 */ 5166 if (arm_feature(env, ARM_FEATURE_EL3)) { 5167 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5168 ARMCPRegInfo nsacr = { 5169 .name = "NSACR", .type = ARM_CP_CONST, 5170 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5171 .access = PL1_RW, .accessfn = nsacr_access, 5172 .resetvalue = 0xc00 5173 }; 5174 define_one_arm_cp_reg(cpu, &nsacr); 5175 } else { 5176 ARMCPRegInfo nsacr = { 5177 .name = "NSACR", 5178 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5179 .access = PL3_RW | PL1_R, 5180 .resetvalue = 0, 5181 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 5182 }; 5183 define_one_arm_cp_reg(cpu, &nsacr); 5184 } 5185 } else { 5186 if (arm_feature(env, ARM_FEATURE_V8)) { 5187 ARMCPRegInfo nsacr = { 5188 .name = "NSACR", .type = ARM_CP_CONST, 5189 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 5190 .access = PL1_R, 5191 .resetvalue = 0xc00 5192 }; 5193 define_one_arm_cp_reg(cpu, &nsacr); 5194 } 5195 } 5196 5197 if (arm_feature(env, ARM_FEATURE_PMSA)) { 5198 if (arm_feature(env, ARM_FEATURE_V6)) { 5199 /* PMSAv6 not implemented */ 5200 assert(arm_feature(env, ARM_FEATURE_V7)); 5201 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5202 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 5203 } else { 5204 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 5205 } 5206 } else { 5207 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 5208 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 5209 } 5210 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 5211 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 5212 } 5213 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 5214 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 5215 } 5216 if (arm_feature(env, ARM_FEATURE_VAPA)) { 5217 define_arm_cp_regs(cpu, vapa_cp_reginfo); 5218 } 5219 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 5220 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 5221 } 5222 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 5223 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 5224 } 5225 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 5226 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 5227 } 5228 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 5229 define_arm_cp_regs(cpu, omap_cp_reginfo); 5230 } 5231 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 5232 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 5233 } 5234 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5235 define_arm_cp_regs(cpu, xscale_cp_reginfo); 5236 } 5237 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 5238 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 5239 } 5240 if (arm_feature(env, ARM_FEATURE_LPAE)) { 5241 define_arm_cp_regs(cpu, lpae_cp_reginfo); 5242 } 5243 /* Slightly awkwardly, the OMAP and StrongARM cores need all of 5244 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 5245 * be read-only (ie write causes UNDEF exception). 5246 */ 5247 { 5248 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 5249 /* Pre-v8 MIDR space. 5250 * Note that the MIDR isn't a simple constant register because 5251 * of the TI925 behaviour where writes to another register can 5252 * cause the MIDR value to change. 5253 * 5254 * Unimplemented registers in the c15 0 0 0 space default to 5255 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 5256 * and friends override accordingly. 5257 */ 5258 { .name = "MIDR", 5259 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 5260 .access = PL1_R, .resetvalue = cpu->midr, 5261 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 5262 .readfn = midr_read, 5263 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5264 .type = ARM_CP_OVERRIDE }, 5265 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 5266 { .name = "DUMMY", 5267 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 5268 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5269 { .name = "DUMMY", 5270 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 5271 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5272 { .name = "DUMMY", 5273 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 5274 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5275 { .name = "DUMMY", 5276 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 5277 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5278 { .name = "DUMMY", 5279 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 5280 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5281 REGINFO_SENTINEL 5282 }; 5283 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 5284 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 5285 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 5286 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 5287 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 5288 .readfn = midr_read }, 5289 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */ 5290 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5291 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5292 .access = PL1_R, .resetvalue = cpu->midr }, 5293 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 5294 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 5295 .access = PL1_R, .resetvalue = cpu->midr }, 5296 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 5297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 5298 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 5299 REGINFO_SENTINEL 5300 }; 5301 ARMCPRegInfo id_cp_reginfo[] = { 5302 /* These are common to v8 and pre-v8 */ 5303 { .name = "CTR", 5304 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 5305 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5306 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 5307 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 5308 .access = PL0_R, .accessfn = ctr_el0_access, 5309 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 5310 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 5311 { .name = "TCMTR", 5312 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 5313 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 5314 REGINFO_SENTINEL 5315 }; 5316 /* TLBTR is specific to VMSA */ 5317 ARMCPRegInfo id_tlbtr_reginfo = { 5318 .name = "TLBTR", 5319 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 5320 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0, 5321 }; 5322 /* MPUIR is specific to PMSA V6+ */ 5323 ARMCPRegInfo id_mpuir_reginfo = { 5324 .name = "MPUIR", 5325 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 5326 .access = PL1_R, .type = ARM_CP_CONST, 5327 .resetvalue = cpu->pmsav7_dregion << 8 5328 }; 5329 ARMCPRegInfo crn0_wi_reginfo = { 5330 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 5331 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 5332 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 5333 }; 5334 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 5335 arm_feature(env, ARM_FEATURE_STRONGARM)) { 5336 ARMCPRegInfo *r; 5337 /* Register the blanket "writes ignored" value first to cover the 5338 * whole space. Then update the specific ID registers to allow write 5339 * access, so that they ignore writes rather than causing them to 5340 * UNDEF. 5341 */ 5342 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 5343 for (r = id_pre_v8_midr_cp_reginfo; 5344 r->type != ARM_CP_SENTINEL; r++) { 5345 r->access = PL1_RW; 5346 } 5347 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) { 5348 r->access = PL1_RW; 5349 } 5350 id_tlbtr_reginfo.access = PL1_RW; 5351 id_tlbtr_reginfo.access = PL1_RW; 5352 } 5353 if (arm_feature(env, ARM_FEATURE_V8)) { 5354 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 5355 } else { 5356 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 5357 } 5358 define_arm_cp_regs(cpu, id_cp_reginfo); 5359 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 5360 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 5361 } else if (arm_feature(env, ARM_FEATURE_V7)) { 5362 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 5363 } 5364 } 5365 5366 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 5367 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 5368 } 5369 5370 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 5371 ARMCPRegInfo auxcr_reginfo[] = { 5372 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 5373 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 5374 .access = PL1_RW, .type = ARM_CP_CONST, 5375 .resetvalue = cpu->reset_auxcr }, 5376 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 5377 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 5378 .access = PL2_RW, .type = ARM_CP_CONST, 5379 .resetvalue = 0 }, 5380 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 5381 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 5382 .access = PL3_RW, .type = ARM_CP_CONST, 5383 .resetvalue = 0 }, 5384 REGINFO_SENTINEL 5385 }; 5386 define_arm_cp_regs(cpu, auxcr_reginfo); 5387 } 5388 5389 if (arm_feature(env, ARM_FEATURE_CBAR)) { 5390 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5391 /* 32 bit view is [31:18] 0...0 [43:32]. */ 5392 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 5393 | extract64(cpu->reset_cbar, 32, 12); 5394 ARMCPRegInfo cbar_reginfo[] = { 5395 { .name = "CBAR", 5396 .type = ARM_CP_CONST, 5397 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5398 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 5399 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 5400 .type = ARM_CP_CONST, 5401 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 5402 .access = PL1_R, .resetvalue = cbar32 }, 5403 REGINFO_SENTINEL 5404 }; 5405 /* We don't implement a r/w 64 bit CBAR currently */ 5406 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 5407 define_arm_cp_regs(cpu, cbar_reginfo); 5408 } else { 5409 ARMCPRegInfo cbar = { 5410 .name = "CBAR", 5411 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 5412 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar, 5413 .fieldoffset = offsetof(CPUARMState, 5414 cp15.c15_config_base_address) 5415 }; 5416 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 5417 cbar.access = PL1_R; 5418 cbar.fieldoffset = 0; 5419 cbar.type = ARM_CP_CONST; 5420 } 5421 define_one_arm_cp_reg(cpu, &cbar); 5422 } 5423 } 5424 5425 if (arm_feature(env, ARM_FEATURE_VBAR)) { 5426 ARMCPRegInfo vbar_cp_reginfo[] = { 5427 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 5428 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 5429 .access = PL1_RW, .writefn = vbar_write, 5430 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 5431 offsetof(CPUARMState, cp15.vbar_ns) }, 5432 .resetvalue = 0 }, 5433 REGINFO_SENTINEL 5434 }; 5435 define_arm_cp_regs(cpu, vbar_cp_reginfo); 5436 } 5437 5438 /* Generic registers whose values depend on the implementation */ 5439 { 5440 ARMCPRegInfo sctlr = { 5441 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 5442 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 5443 .access = PL1_RW, 5444 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 5445 offsetof(CPUARMState, cp15.sctlr_ns) }, 5446 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 5447 .raw_writefn = raw_write, 5448 }; 5449 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 5450 /* Normally we would always end the TB on an SCTLR write, but Linux 5451 * arch/arm/mach-pxa/sleep.S expects two instructions following 5452 * an MMU enable to execute from cache. Imitate this behaviour. 5453 */ 5454 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 5455 } 5456 define_one_arm_cp_reg(cpu, &sctlr); 5457 } 5458 5459 if (arm_feature(env, ARM_FEATURE_SVE)) { 5460 define_one_arm_cp_reg(cpu, &zcr_el1_reginfo); 5461 if (arm_feature(env, ARM_FEATURE_EL2)) { 5462 define_one_arm_cp_reg(cpu, &zcr_el2_reginfo); 5463 } else { 5464 define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo); 5465 } 5466 if (arm_feature(env, ARM_FEATURE_EL3)) { 5467 define_one_arm_cp_reg(cpu, &zcr_el3_reginfo); 5468 } 5469 } 5470 } 5471 5472 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu) 5473 { 5474 CPUState *cs = CPU(cpu); 5475 CPUARMState *env = &cpu->env; 5476 5477 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5478 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg, 5479 aarch64_fpu_gdb_set_reg, 5480 34, "aarch64-fpu.xml", 0); 5481 } else if (arm_feature(env, ARM_FEATURE_NEON)) { 5482 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5483 51, "arm-neon.xml", 0); 5484 } else if (arm_feature(env, ARM_FEATURE_VFP3)) { 5485 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5486 35, "arm-vfp3.xml", 0); 5487 } else if (arm_feature(env, ARM_FEATURE_VFP)) { 5488 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg, 5489 19, "arm-vfp.xml", 0); 5490 } 5491 } 5492 5493 /* Sort alphabetically by type name, except for "any". */ 5494 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 5495 { 5496 ObjectClass *class_a = (ObjectClass *)a; 5497 ObjectClass *class_b = (ObjectClass *)b; 5498 const char *name_a, *name_b; 5499 5500 name_a = object_class_get_name(class_a); 5501 name_b = object_class_get_name(class_b); 5502 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 5503 return 1; 5504 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 5505 return -1; 5506 } else { 5507 return strcmp(name_a, name_b); 5508 } 5509 } 5510 5511 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 5512 { 5513 ObjectClass *oc = data; 5514 CPUListState *s = user_data; 5515 const char *typename; 5516 char *name; 5517 5518 typename = object_class_get_name(oc); 5519 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5520 (*s->cpu_fprintf)(s->file, " %s\n", 5521 name); 5522 g_free(name); 5523 } 5524 5525 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf) 5526 { 5527 CPUListState s = { 5528 .file = f, 5529 .cpu_fprintf = cpu_fprintf, 5530 }; 5531 GSList *list; 5532 5533 list = object_class_get_list(TYPE_ARM_CPU, false); 5534 list = g_slist_sort(list, arm_cpu_list_compare); 5535 (*cpu_fprintf)(f, "Available CPUs:\n"); 5536 g_slist_foreach(list, arm_cpu_list_entry, &s); 5537 g_slist_free(list); 5538 #ifdef CONFIG_KVM 5539 /* The 'host' CPU type is dynamically registered only if KVM is 5540 * enabled, so we have to special-case it here: 5541 */ 5542 (*cpu_fprintf)(f, " host (only available in KVM mode)\n"); 5543 #endif 5544 } 5545 5546 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 5547 { 5548 ObjectClass *oc = data; 5549 CpuDefinitionInfoList **cpu_list = user_data; 5550 CpuDefinitionInfoList *entry; 5551 CpuDefinitionInfo *info; 5552 const char *typename; 5553 5554 typename = object_class_get_name(oc); 5555 info = g_malloc0(sizeof(*info)); 5556 info->name = g_strndup(typename, 5557 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 5558 info->q_typename = g_strdup(typename); 5559 5560 entry = g_malloc0(sizeof(*entry)); 5561 entry->value = info; 5562 entry->next = *cpu_list; 5563 *cpu_list = entry; 5564 } 5565 5566 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp) 5567 { 5568 CpuDefinitionInfoList *cpu_list = NULL; 5569 GSList *list; 5570 5571 list = object_class_get_list(TYPE_ARM_CPU, false); 5572 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 5573 g_slist_free(list); 5574 5575 return cpu_list; 5576 } 5577 5578 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 5579 void *opaque, int state, int secstate, 5580 int crm, int opc1, int opc2) 5581 { 5582 /* Private utility function for define_one_arm_cp_reg_with_opaque(): 5583 * add a single reginfo struct to the hash table. 5584 */ 5585 uint32_t *key = g_new(uint32_t, 1); 5586 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo)); 5587 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0; 5588 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0; 5589 5590 /* Reset the secure state to the specific incoming state. This is 5591 * necessary as the register may have been defined with both states. 5592 */ 5593 r2->secure = secstate; 5594 5595 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5596 /* Register is banked (using both entries in array). 5597 * Overwriting fieldoffset as the array is only used to define 5598 * banked registers but later only fieldoffset is used. 5599 */ 5600 r2->fieldoffset = r->bank_fieldoffsets[ns]; 5601 } 5602 5603 if (state == ARM_CP_STATE_AA32) { 5604 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) { 5605 /* If the register is banked then we don't need to migrate or 5606 * reset the 32-bit instance in certain cases: 5607 * 5608 * 1) If the register has both 32-bit and 64-bit instances then we 5609 * can count on the 64-bit instance taking care of the 5610 * non-secure bank. 5611 * 2) If ARMv8 is enabled then we can count on a 64-bit version 5612 * taking care of the secure bank. This requires that separate 5613 * 32 and 64-bit definitions are provided. 5614 */ 5615 if ((r->state == ARM_CP_STATE_BOTH && ns) || 5616 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) { 5617 r2->type |= ARM_CP_ALIAS; 5618 } 5619 } else if ((secstate != r->secure) && !ns) { 5620 /* The register is not banked so we only want to allow migration of 5621 * the non-secure instance. 5622 */ 5623 r2->type |= ARM_CP_ALIAS; 5624 } 5625 5626 if (r->state == ARM_CP_STATE_BOTH) { 5627 /* We assume it is a cp15 register if the .cp field is left unset. 5628 */ 5629 if (r2->cp == 0) { 5630 r2->cp = 15; 5631 } 5632 5633 #ifdef HOST_WORDS_BIGENDIAN 5634 if (r2->fieldoffset) { 5635 r2->fieldoffset += sizeof(uint32_t); 5636 } 5637 #endif 5638 } 5639 } 5640 if (state == ARM_CP_STATE_AA64) { 5641 /* To allow abbreviation of ARMCPRegInfo 5642 * definitions, we treat cp == 0 as equivalent to 5643 * the value for "standard guest-visible sysreg". 5644 * STATE_BOTH definitions are also always "standard 5645 * sysreg" in their AArch64 view (the .cp value may 5646 * be non-zero for the benefit of the AArch32 view). 5647 */ 5648 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) { 5649 r2->cp = CP_REG_ARM64_SYSREG_CP; 5650 } 5651 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm, 5652 r2->opc0, opc1, opc2); 5653 } else { 5654 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2); 5655 } 5656 if (opaque) { 5657 r2->opaque = opaque; 5658 } 5659 /* reginfo passed to helpers is correct for the actual access, 5660 * and is never ARM_CP_STATE_BOTH: 5661 */ 5662 r2->state = state; 5663 /* Make sure reginfo passed to helpers for wildcarded regs 5664 * has the correct crm/opc1/opc2 for this reg, not CP_ANY: 5665 */ 5666 r2->crm = crm; 5667 r2->opc1 = opc1; 5668 r2->opc2 = opc2; 5669 /* By convention, for wildcarded registers only the first 5670 * entry is used for migration; the others are marked as 5671 * ALIAS so we don't try to transfer the register 5672 * multiple times. Special registers (ie NOP/WFI) are 5673 * never migratable and not even raw-accessible. 5674 */ 5675 if ((r->type & ARM_CP_SPECIAL)) { 5676 r2->type |= ARM_CP_NO_RAW; 5677 } 5678 if (((r->crm == CP_ANY) && crm != 0) || 5679 ((r->opc1 == CP_ANY) && opc1 != 0) || 5680 ((r->opc2 == CP_ANY) && opc2 != 0)) { 5681 r2->type |= ARM_CP_ALIAS; 5682 } 5683 5684 /* Check that raw accesses are either forbidden or handled. Note that 5685 * we can't assert this earlier because the setup of fieldoffset for 5686 * banked registers has to be done first. 5687 */ 5688 if (!(r2->type & ARM_CP_NO_RAW)) { 5689 assert(!raw_accessors_invalid(r2)); 5690 } 5691 5692 /* Overriding of an existing definition must be explicitly 5693 * requested. 5694 */ 5695 if (!(r->type & ARM_CP_OVERRIDE)) { 5696 ARMCPRegInfo *oldreg; 5697 oldreg = g_hash_table_lookup(cpu->cp_regs, key); 5698 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) { 5699 fprintf(stderr, "Register redefined: cp=%d %d bit " 5700 "crn=%d crm=%d opc1=%d opc2=%d, " 5701 "was %s, now %s\n", r2->cp, 32 + 32 * is64, 5702 r2->crn, r2->crm, r2->opc1, r2->opc2, 5703 oldreg->name, r2->name); 5704 g_assert_not_reached(); 5705 } 5706 } 5707 g_hash_table_insert(cpu->cp_regs, key, r2); 5708 } 5709 5710 5711 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 5712 const ARMCPRegInfo *r, void *opaque) 5713 { 5714 /* Define implementations of coprocessor registers. 5715 * We store these in a hashtable because typically 5716 * there are less than 150 registers in a space which 5717 * is 16*16*16*8*8 = 262144 in size. 5718 * Wildcarding is supported for the crm, opc1 and opc2 fields. 5719 * If a register is defined twice then the second definition is 5720 * used, so this can be used to define some generic registers and 5721 * then override them with implementation specific variations. 5722 * At least one of the original and the second definition should 5723 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 5724 * against accidental use. 5725 * 5726 * The state field defines whether the register is to be 5727 * visible in the AArch32 or AArch64 execution state. If the 5728 * state is set to ARM_CP_STATE_BOTH then we synthesise a 5729 * reginfo structure for the AArch32 view, which sees the lower 5730 * 32 bits of the 64 bit register. 5731 * 5732 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 5733 * be wildcarded. AArch64 registers are always considered to be 64 5734 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 5735 * the register, if any. 5736 */ 5737 int crm, opc1, opc2, state; 5738 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 5739 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 5740 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 5741 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 5742 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 5743 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 5744 /* 64 bit registers have only CRm and Opc1 fields */ 5745 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 5746 /* op0 only exists in the AArch64 encodings */ 5747 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 5748 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 5749 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 5750 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1 5751 * encodes a minimum access level for the register. We roll this 5752 * runtime check into our general permission check code, so check 5753 * here that the reginfo's specified permissions are strict enough 5754 * to encompass the generic architectural permission check. 5755 */ 5756 if (r->state != ARM_CP_STATE_AA32) { 5757 int mask = 0; 5758 switch (r->opc1) { 5759 case 0: case 1: case 2: 5760 /* min_EL EL1 */ 5761 mask = PL1_RW; 5762 break; 5763 case 3: 5764 /* min_EL EL0 */ 5765 mask = PL0_RW; 5766 break; 5767 case 4: 5768 /* min_EL EL2 */ 5769 mask = PL2_RW; 5770 break; 5771 case 5: 5772 /* unallocated encoding, so not possible */ 5773 assert(false); 5774 break; 5775 case 6: 5776 /* min_EL EL3 */ 5777 mask = PL3_RW; 5778 break; 5779 case 7: 5780 /* min_EL EL1, secure mode only (we don't check the latter) */ 5781 mask = PL1_RW; 5782 break; 5783 default: 5784 /* broken reginfo with out-of-range opc1 */ 5785 assert(false); 5786 break; 5787 } 5788 /* assert our permissions are not too lax (stricter is fine) */ 5789 assert((r->access & ~mask) == 0); 5790 } 5791 5792 /* Check that the register definition has enough info to handle 5793 * reads and writes if they are permitted. 5794 */ 5795 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) { 5796 if (r->access & PL3_R) { 5797 assert((r->fieldoffset || 5798 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5799 r->readfn); 5800 } 5801 if (r->access & PL3_W) { 5802 assert((r->fieldoffset || 5803 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 5804 r->writefn); 5805 } 5806 } 5807 /* Bad type field probably means missing sentinel at end of reg list */ 5808 assert(cptype_valid(r->type)); 5809 for (crm = crmmin; crm <= crmmax; crm++) { 5810 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 5811 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 5812 for (state = ARM_CP_STATE_AA32; 5813 state <= ARM_CP_STATE_AA64; state++) { 5814 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 5815 continue; 5816 } 5817 if (state == ARM_CP_STATE_AA32) { 5818 /* Under AArch32 CP registers can be common 5819 * (same for secure and non-secure world) or banked. 5820 */ 5821 switch (r->secure) { 5822 case ARM_CP_SECSTATE_S: 5823 case ARM_CP_SECSTATE_NS: 5824 add_cpreg_to_hashtable(cpu, r, opaque, state, 5825 r->secure, crm, opc1, opc2); 5826 break; 5827 default: 5828 add_cpreg_to_hashtable(cpu, r, opaque, state, 5829 ARM_CP_SECSTATE_S, 5830 crm, opc1, opc2); 5831 add_cpreg_to_hashtable(cpu, r, opaque, state, 5832 ARM_CP_SECSTATE_NS, 5833 crm, opc1, opc2); 5834 break; 5835 } 5836 } else { 5837 /* AArch64 registers get mapped to non-secure instance 5838 * of AArch32 */ 5839 add_cpreg_to_hashtable(cpu, r, opaque, state, 5840 ARM_CP_SECSTATE_NS, 5841 crm, opc1, opc2); 5842 } 5843 } 5844 } 5845 } 5846 } 5847 } 5848 5849 void define_arm_cp_regs_with_opaque(ARMCPU *cpu, 5850 const ARMCPRegInfo *regs, void *opaque) 5851 { 5852 /* Define a whole list of registers */ 5853 const ARMCPRegInfo *r; 5854 for (r = regs; r->type != ARM_CP_SENTINEL; r++) { 5855 define_one_arm_cp_reg_with_opaque(cpu, r, opaque); 5856 } 5857 } 5858 5859 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 5860 { 5861 return g_hash_table_lookup(cpregs, &encoded_cp); 5862 } 5863 5864 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 5865 uint64_t value) 5866 { 5867 /* Helper coprocessor write function for write-ignore registers */ 5868 } 5869 5870 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 5871 { 5872 /* Helper coprocessor write function for read-as-zero registers */ 5873 return 0; 5874 } 5875 5876 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 5877 { 5878 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 5879 } 5880 5881 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 5882 { 5883 /* Return true if it is not valid for us to switch to 5884 * this CPU mode (ie all the UNPREDICTABLE cases in 5885 * the ARM ARM CPSRWriteByInstr pseudocode). 5886 */ 5887 5888 /* Changes to or from Hyp via MSR and CPS are illegal. */ 5889 if (write_type == CPSRWriteByInstr && 5890 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 5891 mode == ARM_CPU_MODE_HYP)) { 5892 return 1; 5893 } 5894 5895 switch (mode) { 5896 case ARM_CPU_MODE_USR: 5897 return 0; 5898 case ARM_CPU_MODE_SYS: 5899 case ARM_CPU_MODE_SVC: 5900 case ARM_CPU_MODE_ABT: 5901 case ARM_CPU_MODE_UND: 5902 case ARM_CPU_MODE_IRQ: 5903 case ARM_CPU_MODE_FIQ: 5904 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7 5905 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 5906 */ 5907 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 5908 * and CPS are treated as illegal mode changes. 5909 */ 5910 if (write_type == CPSRWriteByInstr && 5911 (env->cp15.hcr_el2 & HCR_TGE) && 5912 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 5913 !arm_is_secure_below_el3(env)) { 5914 return 1; 5915 } 5916 return 0; 5917 case ARM_CPU_MODE_HYP: 5918 return !arm_feature(env, ARM_FEATURE_EL2) 5919 || arm_current_el(env) < 2 || arm_is_secure(env); 5920 case ARM_CPU_MODE_MON: 5921 return arm_current_el(env) < 3; 5922 default: 5923 return 1; 5924 } 5925 } 5926 5927 uint32_t cpsr_read(CPUARMState *env) 5928 { 5929 int ZF; 5930 ZF = (env->ZF == 0); 5931 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 5932 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 5933 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 5934 | ((env->condexec_bits & 0xfc) << 8) 5935 | (env->GE << 16) | (env->daif & CPSR_AIF); 5936 } 5937 5938 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 5939 CPSRWriteType write_type) 5940 { 5941 uint32_t changed_daif; 5942 5943 if (mask & CPSR_NZCV) { 5944 env->ZF = (~val) & CPSR_Z; 5945 env->NF = val; 5946 env->CF = (val >> 29) & 1; 5947 env->VF = (val << 3) & 0x80000000; 5948 } 5949 if (mask & CPSR_Q) 5950 env->QF = ((val & CPSR_Q) != 0); 5951 if (mask & CPSR_T) 5952 env->thumb = ((val & CPSR_T) != 0); 5953 if (mask & CPSR_IT_0_1) { 5954 env->condexec_bits &= ~3; 5955 env->condexec_bits |= (val >> 25) & 3; 5956 } 5957 if (mask & CPSR_IT_2_7) { 5958 env->condexec_bits &= 3; 5959 env->condexec_bits |= (val >> 8) & 0xfc; 5960 } 5961 if (mask & CPSR_GE) { 5962 env->GE = (val >> 16) & 0xf; 5963 } 5964 5965 /* In a V7 implementation that includes the security extensions but does 5966 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 5967 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 5968 * bits respectively. 5969 * 5970 * In a V8 implementation, it is permitted for privileged software to 5971 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 5972 */ 5973 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 5974 arm_feature(env, ARM_FEATURE_EL3) && 5975 !arm_feature(env, ARM_FEATURE_EL2) && 5976 !arm_is_secure(env)) { 5977 5978 changed_daif = (env->daif ^ val) & mask; 5979 5980 if (changed_daif & CPSR_A) { 5981 /* Check to see if we are allowed to change the masking of async 5982 * abort exceptions from a non-secure state. 5983 */ 5984 if (!(env->cp15.scr_el3 & SCR_AW)) { 5985 qemu_log_mask(LOG_GUEST_ERROR, 5986 "Ignoring attempt to switch CPSR_A flag from " 5987 "non-secure world with SCR.AW bit clear\n"); 5988 mask &= ~CPSR_A; 5989 } 5990 } 5991 5992 if (changed_daif & CPSR_F) { 5993 /* Check to see if we are allowed to change the masking of FIQ 5994 * exceptions from a non-secure state. 5995 */ 5996 if (!(env->cp15.scr_el3 & SCR_FW)) { 5997 qemu_log_mask(LOG_GUEST_ERROR, 5998 "Ignoring attempt to switch CPSR_F flag from " 5999 "non-secure world with SCR.FW bit clear\n"); 6000 mask &= ~CPSR_F; 6001 } 6002 6003 /* Check whether non-maskable FIQ (NMFI) support is enabled. 6004 * If this bit is set software is not allowed to mask 6005 * FIQs, but is allowed to set CPSR_F to 0. 6006 */ 6007 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 6008 (val & CPSR_F)) { 6009 qemu_log_mask(LOG_GUEST_ERROR, 6010 "Ignoring attempt to enable CPSR_F flag " 6011 "(non-maskable FIQ [NMFI] support enabled)\n"); 6012 mask &= ~CPSR_F; 6013 } 6014 } 6015 } 6016 6017 env->daif &= ~(CPSR_AIF & mask); 6018 env->daif |= val & CPSR_AIF & mask; 6019 6020 if (write_type != CPSRWriteRaw && 6021 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 6022 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 6023 /* Note that we can only get here in USR mode if this is a 6024 * gdb stub write; for this case we follow the architectural 6025 * behaviour for guest writes in USR mode of ignoring an attempt 6026 * to switch mode. (Those are caught by translate.c for writes 6027 * triggered by guest instructions.) 6028 */ 6029 mask &= ~CPSR_M; 6030 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 6031 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in 6032 * v7, and has defined behaviour in v8: 6033 * + leave CPSR.M untouched 6034 * + allow changes to the other CPSR fields 6035 * + set PSTATE.IL 6036 * For user changes via the GDB stub, we don't set PSTATE.IL, 6037 * as this would be unnecessarily harsh for a user error. 6038 */ 6039 mask &= ~CPSR_M; 6040 if (write_type != CPSRWriteByGDBStub && 6041 arm_feature(env, ARM_FEATURE_V8)) { 6042 mask |= CPSR_IL; 6043 val |= CPSR_IL; 6044 } 6045 } else { 6046 switch_mode(env, val & CPSR_M); 6047 } 6048 } 6049 mask &= ~CACHED_CPSR_BITS; 6050 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 6051 } 6052 6053 /* Sign/zero extend */ 6054 uint32_t HELPER(sxtb16)(uint32_t x) 6055 { 6056 uint32_t res; 6057 res = (uint16_t)(int8_t)x; 6058 res |= (uint32_t)(int8_t)(x >> 16) << 16; 6059 return res; 6060 } 6061 6062 uint32_t HELPER(uxtb16)(uint32_t x) 6063 { 6064 uint32_t res; 6065 res = (uint16_t)(uint8_t)x; 6066 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 6067 return res; 6068 } 6069 6070 int32_t HELPER(sdiv)(int32_t num, int32_t den) 6071 { 6072 if (den == 0) 6073 return 0; 6074 if (num == INT_MIN && den == -1) 6075 return INT_MIN; 6076 return num / den; 6077 } 6078 6079 uint32_t HELPER(udiv)(uint32_t num, uint32_t den) 6080 { 6081 if (den == 0) 6082 return 0; 6083 return num / den; 6084 } 6085 6086 uint32_t HELPER(rbit)(uint32_t x) 6087 { 6088 return revbit32(x); 6089 } 6090 6091 #if defined(CONFIG_USER_ONLY) 6092 6093 /* These should probably raise undefined insn exceptions. */ 6094 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val) 6095 { 6096 ARMCPU *cpu = arm_env_get_cpu(env); 6097 6098 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg); 6099 } 6100 6101 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 6102 { 6103 ARMCPU *cpu = arm_env_get_cpu(env); 6104 6105 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg); 6106 return 0; 6107 } 6108 6109 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6110 { 6111 /* translate.c should never generate calls here in user-only mode */ 6112 g_assert_not_reached(); 6113 } 6114 6115 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6116 { 6117 /* translate.c should never generate calls here in user-only mode */ 6118 g_assert_not_reached(); 6119 } 6120 6121 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 6122 { 6123 /* The TT instructions can be used by unprivileged code, but in 6124 * user-only emulation we don't have the MPU. 6125 * Luckily since we know we are NonSecure unprivileged (and that in 6126 * turn means that the A flag wasn't specified), all the bits in the 6127 * register must be zero: 6128 * IREGION: 0 because IRVALID is 0 6129 * IRVALID: 0 because NS 6130 * S: 0 because NS 6131 * NSRW: 0 because NS 6132 * NSR: 0 because NS 6133 * RW: 0 because unpriv and A flag not set 6134 * R: 0 because unpriv and A flag not set 6135 * SRVALID: 0 because NS 6136 * MRVALID: 0 because unpriv and A flag not set 6137 * SREGION: 0 becaus SRVALID is 0 6138 * MREGION: 0 because MRVALID is 0 6139 */ 6140 return 0; 6141 } 6142 6143 void switch_mode(CPUARMState *env, int mode) 6144 { 6145 ARMCPU *cpu = arm_env_get_cpu(env); 6146 6147 if (mode != ARM_CPU_MODE_USR) { 6148 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 6149 } 6150 } 6151 6152 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6153 uint32_t cur_el, bool secure) 6154 { 6155 return 1; 6156 } 6157 6158 void aarch64_sync_64_to_32(CPUARMState *env) 6159 { 6160 g_assert_not_reached(); 6161 } 6162 6163 #else 6164 6165 void switch_mode(CPUARMState *env, int mode) 6166 { 6167 int old_mode; 6168 int i; 6169 6170 old_mode = env->uncached_cpsr & CPSR_M; 6171 if (mode == old_mode) 6172 return; 6173 6174 if (old_mode == ARM_CPU_MODE_FIQ) { 6175 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6176 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 6177 } else if (mode == ARM_CPU_MODE_FIQ) { 6178 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 6179 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 6180 } 6181 6182 i = bank_number(old_mode); 6183 env->banked_r13[i] = env->regs[13]; 6184 env->banked_r14[i] = env->regs[14]; 6185 env->banked_spsr[i] = env->spsr; 6186 6187 i = bank_number(mode); 6188 env->regs[13] = env->banked_r13[i]; 6189 env->regs[14] = env->banked_r14[i]; 6190 env->spsr = env->banked_spsr[i]; 6191 } 6192 6193 /* Physical Interrupt Target EL Lookup Table 6194 * 6195 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 6196 * 6197 * The below multi-dimensional table is used for looking up the target 6198 * exception level given numerous condition criteria. Specifically, the 6199 * target EL is based on SCR and HCR routing controls as well as the 6200 * currently executing EL and secure state. 6201 * 6202 * Dimensions: 6203 * target_el_table[2][2][2][2][2][4] 6204 * | | | | | +--- Current EL 6205 * | | | | +------ Non-secure(0)/Secure(1) 6206 * | | | +--------- HCR mask override 6207 * | | +------------ SCR exec state control 6208 * | +--------------- SCR mask override 6209 * +------------------ 32-bit(0)/64-bit(1) EL3 6210 * 6211 * The table values are as such: 6212 * 0-3 = EL0-EL3 6213 * -1 = Cannot occur 6214 * 6215 * The ARM ARM target EL table includes entries indicating that an "exception 6216 * is not taken". The two cases where this is applicable are: 6217 * 1) An exception is taken from EL3 but the SCR does not have the exception 6218 * routed to EL3. 6219 * 2) An exception is taken from EL2 but the HCR does not have the exception 6220 * routed to EL2. 6221 * In these two cases, the below table contain a target of EL1. This value is 6222 * returned as it is expected that the consumer of the table data will check 6223 * for "target EL >= current EL" to ensure the exception is not taken. 6224 * 6225 * SCR HCR 6226 * 64 EA AMO From 6227 * BIT IRQ IMO Non-secure Secure 6228 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 6229 */ 6230 static const int8_t target_el_table[2][2][2][2][2][4] = { 6231 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6232 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 6233 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 6234 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 6235 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6236 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 6237 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 6238 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 6239 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 6240 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},}, 6241 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },}, 6242 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},}, 6243 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6244 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 6245 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 6246 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},}, 6247 }; 6248 6249 /* 6250 * Determine the target EL for physical exceptions 6251 */ 6252 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 6253 uint32_t cur_el, bool secure) 6254 { 6255 CPUARMState *env = cs->env_ptr; 6256 int rw; 6257 int scr; 6258 int hcr; 6259 int target_el; 6260 /* Is the highest EL AArch64? */ 6261 int is64 = arm_feature(env, ARM_FEATURE_AARCH64); 6262 6263 if (arm_feature(env, ARM_FEATURE_EL3)) { 6264 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 6265 } else { 6266 /* Either EL2 is the highest EL (and so the EL2 register width 6267 * is given by is64); or there is no EL2 or EL3, in which case 6268 * the value of 'rw' does not affect the table lookup anyway. 6269 */ 6270 rw = is64; 6271 } 6272 6273 switch (excp_idx) { 6274 case EXCP_IRQ: 6275 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 6276 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); 6277 break; 6278 case EXCP_FIQ: 6279 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 6280 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); 6281 break; 6282 default: 6283 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 6284 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); 6285 break; 6286 }; 6287 6288 /* If HCR.TGE is set then HCR is treated as being 1 */ 6289 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE); 6290 6291 /* Perform a table-lookup for the target EL given the current state */ 6292 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 6293 6294 assert(target_el > 0); 6295 6296 return target_el; 6297 } 6298 6299 static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value, 6300 ARMMMUIdx mmu_idx, bool ignfault) 6301 { 6302 CPUState *cs = CPU(cpu); 6303 CPUARMState *env = &cpu->env; 6304 MemTxAttrs attrs = {}; 6305 MemTxResult txres; 6306 target_ulong page_size; 6307 hwaddr physaddr; 6308 int prot; 6309 ARMMMUFaultInfo fi; 6310 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6311 int exc; 6312 bool exc_secure; 6313 6314 if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr, 6315 &attrs, &prot, &page_size, &fi, NULL)) { 6316 /* MPU/SAU lookup failed */ 6317 if (fi.type == ARMFault_QEMU_SFault) { 6318 qemu_log_mask(CPU_LOG_INT, 6319 "...SecureFault with SFSR.AUVIOL during stacking\n"); 6320 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6321 env->v7m.sfar = addr; 6322 exc = ARMV7M_EXCP_SECURE; 6323 exc_secure = false; 6324 } else { 6325 qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n"); 6326 env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK; 6327 exc = ARMV7M_EXCP_MEM; 6328 exc_secure = secure; 6329 } 6330 goto pend_fault; 6331 } 6332 address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value, 6333 attrs, &txres); 6334 if (txres != MEMTX_OK) { 6335 /* BusFault trying to write the data */ 6336 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n"); 6337 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK; 6338 exc = ARMV7M_EXCP_BUS; 6339 exc_secure = false; 6340 goto pend_fault; 6341 } 6342 return true; 6343 6344 pend_fault: 6345 /* By pending the exception at this point we are making 6346 * the IMPDEF choice "overridden exceptions pended" (see the 6347 * MergeExcInfo() pseudocode). The other choice would be to not 6348 * pend them now and then make a choice about which to throw away 6349 * later if we have two derived exceptions. 6350 * The only case when we must not pend the exception but instead 6351 * throw it away is if we are doing the push of the callee registers 6352 * and we've already generated a derived exception. Even in this 6353 * case we will still update the fault status registers. 6354 */ 6355 if (!ignfault) { 6356 armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure); 6357 } 6358 return false; 6359 } 6360 6361 static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr, 6362 ARMMMUIdx mmu_idx) 6363 { 6364 CPUState *cs = CPU(cpu); 6365 CPUARMState *env = &cpu->env; 6366 MemTxAttrs attrs = {}; 6367 MemTxResult txres; 6368 target_ulong page_size; 6369 hwaddr physaddr; 6370 int prot; 6371 ARMMMUFaultInfo fi; 6372 bool secure = mmu_idx & ARM_MMU_IDX_M_S; 6373 int exc; 6374 bool exc_secure; 6375 uint32_t value; 6376 6377 if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr, 6378 &attrs, &prot, &page_size, &fi, NULL)) { 6379 /* MPU/SAU lookup failed */ 6380 if (fi.type == ARMFault_QEMU_SFault) { 6381 qemu_log_mask(CPU_LOG_INT, 6382 "...SecureFault with SFSR.AUVIOL during unstack\n"); 6383 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK; 6384 env->v7m.sfar = addr; 6385 exc = ARMV7M_EXCP_SECURE; 6386 exc_secure = false; 6387 } else { 6388 qemu_log_mask(CPU_LOG_INT, 6389 "...MemManageFault with CFSR.MUNSTKERR\n"); 6390 env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK; 6391 exc = ARMV7M_EXCP_MEM; 6392 exc_secure = secure; 6393 } 6394 goto pend_fault; 6395 } 6396 6397 value = address_space_ldl(arm_addressspace(cs, attrs), physaddr, 6398 attrs, &txres); 6399 if (txres != MEMTX_OK) { 6400 /* BusFault trying to read the data */ 6401 qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n"); 6402 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK; 6403 exc = ARMV7M_EXCP_BUS; 6404 exc_secure = false; 6405 goto pend_fault; 6406 } 6407 6408 *dest = value; 6409 return true; 6410 6411 pend_fault: 6412 /* By pending the exception at this point we are making 6413 * the IMPDEF choice "overridden exceptions pended" (see the 6414 * MergeExcInfo() pseudocode). The other choice would be to not 6415 * pend them now and then make a choice about which to throw away 6416 * later if we have two derived exceptions. 6417 */ 6418 armv7m_nvic_set_pending(env->nvic, exc, exc_secure); 6419 return false; 6420 } 6421 6422 /* Return true if we're using the process stack pointer (not the MSP) */ 6423 static bool v7m_using_psp(CPUARMState *env) 6424 { 6425 /* Handler mode always uses the main stack; for thread mode 6426 * the CONTROL.SPSEL bit determines the answer. 6427 * Note that in v7M it is not possible to be in Handler mode with 6428 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both. 6429 */ 6430 return !arm_v7m_is_handler_mode(env) && 6431 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK; 6432 } 6433 6434 /* Write to v7M CONTROL.SPSEL bit for the specified security bank. 6435 * This may change the current stack pointer between Main and Process 6436 * stack pointers if it is done for the CONTROL register for the current 6437 * security state. 6438 */ 6439 static void write_v7m_control_spsel_for_secstate(CPUARMState *env, 6440 bool new_spsel, 6441 bool secstate) 6442 { 6443 bool old_is_psp = v7m_using_psp(env); 6444 6445 env->v7m.control[secstate] = 6446 deposit32(env->v7m.control[secstate], 6447 R_V7M_CONTROL_SPSEL_SHIFT, 6448 R_V7M_CONTROL_SPSEL_LENGTH, new_spsel); 6449 6450 if (secstate == env->v7m.secure) { 6451 bool new_is_psp = v7m_using_psp(env); 6452 uint32_t tmp; 6453 6454 if (old_is_psp != new_is_psp) { 6455 tmp = env->v7m.other_sp; 6456 env->v7m.other_sp = env->regs[13]; 6457 env->regs[13] = tmp; 6458 } 6459 } 6460 } 6461 6462 /* Write to v7M CONTROL.SPSEL bit. This may change the current 6463 * stack pointer between Main and Process stack pointers. 6464 */ 6465 static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel) 6466 { 6467 write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure); 6468 } 6469 6470 void write_v7m_exception(CPUARMState *env, uint32_t new_exc) 6471 { 6472 /* Write a new value to v7m.exception, thus transitioning into or out 6473 * of Handler mode; this may result in a change of active stack pointer. 6474 */ 6475 bool new_is_psp, old_is_psp = v7m_using_psp(env); 6476 uint32_t tmp; 6477 6478 env->v7m.exception = new_exc; 6479 6480 new_is_psp = v7m_using_psp(env); 6481 6482 if (old_is_psp != new_is_psp) { 6483 tmp = env->v7m.other_sp; 6484 env->v7m.other_sp = env->regs[13]; 6485 env->regs[13] = tmp; 6486 } 6487 } 6488 6489 /* Switch M profile security state between NS and S */ 6490 static void switch_v7m_security_state(CPUARMState *env, bool new_secstate) 6491 { 6492 uint32_t new_ss_msp, new_ss_psp; 6493 6494 if (env->v7m.secure == new_secstate) { 6495 return; 6496 } 6497 6498 /* All the banked state is accessed by looking at env->v7m.secure 6499 * except for the stack pointer; rearrange the SP appropriately. 6500 */ 6501 new_ss_msp = env->v7m.other_ss_msp; 6502 new_ss_psp = env->v7m.other_ss_psp; 6503 6504 if (v7m_using_psp(env)) { 6505 env->v7m.other_ss_psp = env->regs[13]; 6506 env->v7m.other_ss_msp = env->v7m.other_sp; 6507 } else { 6508 env->v7m.other_ss_msp = env->regs[13]; 6509 env->v7m.other_ss_psp = env->v7m.other_sp; 6510 } 6511 6512 env->v7m.secure = new_secstate; 6513 6514 if (v7m_using_psp(env)) { 6515 env->regs[13] = new_ss_psp; 6516 env->v7m.other_sp = new_ss_msp; 6517 } else { 6518 env->regs[13] = new_ss_msp; 6519 env->v7m.other_sp = new_ss_psp; 6520 } 6521 } 6522 6523 void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest) 6524 { 6525 /* Handle v7M BXNS: 6526 * - if the return value is a magic value, do exception return (like BX) 6527 * - otherwise bit 0 of the return value is the target security state 6528 */ 6529 uint32_t min_magic; 6530 6531 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6532 /* Covers FNC_RETURN and EXC_RETURN magic */ 6533 min_magic = FNC_RETURN_MIN_MAGIC; 6534 } else { 6535 /* EXC_RETURN magic only */ 6536 min_magic = EXC_RETURN_MIN_MAGIC; 6537 } 6538 6539 if (dest >= min_magic) { 6540 /* This is an exception return magic value; put it where 6541 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT. 6542 * Note that if we ever add gen_ss_advance() singlestep support to 6543 * M profile this should count as an "instruction execution complete" 6544 * event (compare gen_bx_excret_final_code()). 6545 */ 6546 env->regs[15] = dest & ~1; 6547 env->thumb = dest & 1; 6548 HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT); 6549 /* notreached */ 6550 } 6551 6552 /* translate.c should have made BXNS UNDEF unless we're secure */ 6553 assert(env->v7m.secure); 6554 6555 switch_v7m_security_state(env, dest & 1); 6556 env->thumb = 1; 6557 env->regs[15] = dest & ~1; 6558 } 6559 6560 void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest) 6561 { 6562 /* Handle v7M BLXNS: 6563 * - bit 0 of the destination address is the target security state 6564 */ 6565 6566 /* At this point regs[15] is the address just after the BLXNS */ 6567 uint32_t nextinst = env->regs[15] | 1; 6568 uint32_t sp = env->regs[13] - 8; 6569 uint32_t saved_psr; 6570 6571 /* translate.c will have made BLXNS UNDEF unless we're secure */ 6572 assert(env->v7m.secure); 6573 6574 if (dest & 1) { 6575 /* target is Secure, so this is just a normal BLX, 6576 * except that the low bit doesn't indicate Thumb/not. 6577 */ 6578 env->regs[14] = nextinst; 6579 env->thumb = 1; 6580 env->regs[15] = dest & ~1; 6581 return; 6582 } 6583 6584 /* Target is non-secure: first push a stack frame */ 6585 if (!QEMU_IS_ALIGNED(sp, 8)) { 6586 qemu_log_mask(LOG_GUEST_ERROR, 6587 "BLXNS with misaligned SP is UNPREDICTABLE\n"); 6588 } 6589 6590 saved_psr = env->v7m.exception; 6591 if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) { 6592 saved_psr |= XPSR_SFPA; 6593 } 6594 6595 /* Note that these stores can throw exceptions on MPU faults */ 6596 cpu_stl_data(env, sp, nextinst); 6597 cpu_stl_data(env, sp + 4, saved_psr); 6598 6599 env->regs[13] = sp; 6600 env->regs[14] = 0xfeffffff; 6601 if (arm_v7m_is_handler_mode(env)) { 6602 /* Write a dummy value to IPSR, to avoid leaking the current secure 6603 * exception number to non-secure code. This is guaranteed not 6604 * to cause write_v7m_exception() to actually change stacks. 6605 */ 6606 write_v7m_exception(env, 1); 6607 } 6608 switch_v7m_security_state(env, 0); 6609 env->thumb = 1; 6610 env->regs[15] = dest; 6611 } 6612 6613 static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode, 6614 bool spsel) 6615 { 6616 /* Return a pointer to the location where we currently store the 6617 * stack pointer for the requested security state and thread mode. 6618 * This pointer will become invalid if the CPU state is updated 6619 * such that the stack pointers are switched around (eg changing 6620 * the SPSEL control bit). 6621 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode(). 6622 * Unlike that pseudocode, we require the caller to pass us in the 6623 * SPSEL control bit value; this is because we also use this 6624 * function in handling of pushing of the callee-saves registers 6625 * part of the v8M stack frame (pseudocode PushCalleeStack()), 6626 * and in the tailchain codepath the SPSEL bit comes from the exception 6627 * return magic LR value from the previous exception. The pseudocode 6628 * opencodes the stack-selection in PushCalleeStack(), but we prefer 6629 * to make this utility function generic enough to do the job. 6630 */ 6631 bool want_psp = threadmode && spsel; 6632 6633 if (secure == env->v7m.secure) { 6634 if (want_psp == v7m_using_psp(env)) { 6635 return &env->regs[13]; 6636 } else { 6637 return &env->v7m.other_sp; 6638 } 6639 } else { 6640 if (want_psp) { 6641 return &env->v7m.other_ss_psp; 6642 } else { 6643 return &env->v7m.other_ss_msp; 6644 } 6645 } 6646 } 6647 6648 static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure, 6649 uint32_t *pvec) 6650 { 6651 CPUState *cs = CPU(cpu); 6652 CPUARMState *env = &cpu->env; 6653 MemTxResult result; 6654 uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4; 6655 uint32_t vector_entry; 6656 MemTxAttrs attrs = {}; 6657 ARMMMUIdx mmu_idx; 6658 bool exc_secure; 6659 6660 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true); 6661 6662 /* We don't do a get_phys_addr() here because the rules for vector 6663 * loads are special: they always use the default memory map, and 6664 * the default memory map permits reads from all addresses. 6665 * Since there's no easy way to pass through to pmsav8_mpu_lookup() 6666 * that we want this special case which would always say "yes", 6667 * we just do the SAU lookup here followed by a direct physical load. 6668 */ 6669 attrs.secure = targets_secure; 6670 attrs.user = false; 6671 6672 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6673 V8M_SAttributes sattrs = {}; 6674 6675 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 6676 if (sattrs.ns) { 6677 attrs.secure = false; 6678 } else if (!targets_secure) { 6679 /* NS access to S memory */ 6680 goto load_fail; 6681 } 6682 } 6683 6684 vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr, 6685 attrs, &result); 6686 if (result != MEMTX_OK) { 6687 goto load_fail; 6688 } 6689 *pvec = vector_entry; 6690 return true; 6691 6692 load_fail: 6693 /* All vector table fetch fails are reported as HardFault, with 6694 * HFSR.VECTTBL and .FORCED set. (FORCED is set because 6695 * technically the underlying exception is a MemManage or BusFault 6696 * that is escalated to HardFault.) This is a terminal exception, 6697 * so we will either take the HardFault immediately or else enter 6698 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()). 6699 */ 6700 exc_secure = targets_secure || 6701 !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 6702 env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK; 6703 armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure); 6704 return false; 6705 } 6706 6707 static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6708 bool ignore_faults) 6709 { 6710 /* For v8M, push the callee-saves register part of the stack frame. 6711 * Compare the v8M pseudocode PushCalleeStack(). 6712 * In the tailchaining case this may not be the current stack. 6713 */ 6714 CPUARMState *env = &cpu->env; 6715 uint32_t *frame_sp_p; 6716 uint32_t frameptr; 6717 ARMMMUIdx mmu_idx; 6718 bool stacked_ok; 6719 6720 if (dotailchain) { 6721 bool mode = lr & R_V7M_EXCRET_MODE_MASK; 6722 bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) || 6723 !mode; 6724 6725 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv); 6726 frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode, 6727 lr & R_V7M_EXCRET_SPSEL_MASK); 6728 } else { 6729 mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6730 frame_sp_p = &env->regs[13]; 6731 } 6732 6733 frameptr = *frame_sp_p - 0x28; 6734 6735 /* Write as much of the stack frame as we can. A write failure may 6736 * cause us to pend a derived exception. 6737 */ 6738 stacked_ok = 6739 v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) && 6740 v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx, 6741 ignore_faults) && 6742 v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx, 6743 ignore_faults) && 6744 v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx, 6745 ignore_faults) && 6746 v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx, 6747 ignore_faults) && 6748 v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx, 6749 ignore_faults) && 6750 v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx, 6751 ignore_faults) && 6752 v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx, 6753 ignore_faults) && 6754 v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx, 6755 ignore_faults); 6756 6757 /* Update SP regardless of whether any of the stack accesses failed. 6758 * When we implement v8M stack limit checking then this attempt to 6759 * update SP might also fail and result in a derived exception. 6760 */ 6761 *frame_sp_p = frameptr; 6762 6763 return !stacked_ok; 6764 } 6765 6766 static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain, 6767 bool ignore_stackfaults) 6768 { 6769 /* Do the "take the exception" parts of exception entry, 6770 * but not the pushing of state to the stack. This is 6771 * similar to the pseudocode ExceptionTaken() function. 6772 */ 6773 CPUARMState *env = &cpu->env; 6774 uint32_t addr; 6775 bool targets_secure; 6776 int exc; 6777 bool push_failed = false; 6778 6779 armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); 6780 6781 if (arm_feature(env, ARM_FEATURE_V8)) { 6782 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 6783 (lr & R_V7M_EXCRET_S_MASK)) { 6784 /* The background code (the owner of the registers in the 6785 * exception frame) is Secure. This means it may either already 6786 * have or now needs to push callee-saves registers. 6787 */ 6788 if (targets_secure) { 6789 if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) { 6790 /* We took an exception from Secure to NonSecure 6791 * (which means the callee-saved registers got stacked) 6792 * and are now tailchaining to a Secure exception. 6793 * Clear DCRS so eventual return from this Secure 6794 * exception unstacks the callee-saved registers. 6795 */ 6796 lr &= ~R_V7M_EXCRET_DCRS_MASK; 6797 } 6798 } else { 6799 /* We're going to a non-secure exception; push the 6800 * callee-saves registers to the stack now, if they're 6801 * not already saved. 6802 */ 6803 if (lr & R_V7M_EXCRET_DCRS_MASK && 6804 !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) { 6805 push_failed = v7m_push_callee_stack(cpu, lr, dotailchain, 6806 ignore_stackfaults); 6807 } 6808 lr |= R_V7M_EXCRET_DCRS_MASK; 6809 } 6810 } 6811 6812 lr &= ~R_V7M_EXCRET_ES_MASK; 6813 if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6814 lr |= R_V7M_EXCRET_ES_MASK; 6815 } 6816 lr &= ~R_V7M_EXCRET_SPSEL_MASK; 6817 if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) { 6818 lr |= R_V7M_EXCRET_SPSEL_MASK; 6819 } 6820 6821 /* Clear registers if necessary to prevent non-secure exception 6822 * code being able to see register values from secure code. 6823 * Where register values become architecturally UNKNOWN we leave 6824 * them with their previous values. 6825 */ 6826 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6827 if (!targets_secure) { 6828 /* Always clear the caller-saved registers (they have been 6829 * pushed to the stack earlier in v7m_push_stack()). 6830 * Clear callee-saved registers if the background code is 6831 * Secure (in which case these regs were saved in 6832 * v7m_push_callee_stack()). 6833 */ 6834 int i; 6835 6836 for (i = 0; i < 13; i++) { 6837 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */ 6838 if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) { 6839 env->regs[i] = 0; 6840 } 6841 } 6842 /* Clear EAPSR */ 6843 xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT); 6844 } 6845 } 6846 } 6847 6848 if (push_failed && !ignore_stackfaults) { 6849 /* Derived exception on callee-saves register stacking: 6850 * we might now want to take a different exception which 6851 * targets a different security state, so try again from the top. 6852 */ 6853 v7m_exception_taken(cpu, lr, true, true); 6854 return; 6855 } 6856 6857 if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { 6858 /* Vector load failed: derived exception */ 6859 v7m_exception_taken(cpu, lr, true, true); 6860 return; 6861 } 6862 6863 /* Now we've done everything that might cause a derived exception 6864 * we can go ahead and activate whichever exception we're going to 6865 * take (which might now be the derived exception). 6866 */ 6867 armv7m_nvic_acknowledge_irq(env->nvic); 6868 6869 /* Switch to target security state -- must do this before writing SPSEL */ 6870 switch_v7m_security_state(env, targets_secure); 6871 write_v7m_control_spsel(env, 0); 6872 arm_clear_exclusive(env); 6873 /* Clear IT bits */ 6874 env->condexec_bits = 0; 6875 env->regs[14] = lr; 6876 env->regs[15] = addr & 0xfffffffe; 6877 env->thumb = addr & 1; 6878 } 6879 6880 static bool v7m_push_stack(ARMCPU *cpu) 6881 { 6882 /* Do the "set up stack frame" part of exception entry, 6883 * similar to pseudocode PushStack(). 6884 * Return true if we generate a derived exception (and so 6885 * should ignore further stack faults trying to process 6886 * that derived exception.) 6887 */ 6888 bool stacked_ok; 6889 CPUARMState *env = &cpu->env; 6890 uint32_t xpsr = xpsr_read(env); 6891 uint32_t frameptr = env->regs[13]; 6892 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 6893 6894 /* Align stack pointer if the guest wants that */ 6895 if ((frameptr & 4) && 6896 (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) { 6897 frameptr -= 4; 6898 xpsr |= XPSR_SPREALIGN; 6899 } 6900 6901 frameptr -= 0x20; 6902 6903 /* Write as much of the stack frame as we can. If we fail a stack 6904 * write this will result in a derived exception being pended 6905 * (which may be taken in preference to the one we started with 6906 * if it has higher priority). 6907 */ 6908 stacked_ok = 6909 v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) && 6910 v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) && 6911 v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) && 6912 v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) && 6913 v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) && 6914 v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) && 6915 v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) && 6916 v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false); 6917 6918 /* Update SP regardless of whether any of the stack accesses failed. 6919 * When we implement v8M stack limit checking then this attempt to 6920 * update SP might also fail and result in a derived exception. 6921 */ 6922 env->regs[13] = frameptr; 6923 6924 return !stacked_ok; 6925 } 6926 6927 static void do_v7m_exception_exit(ARMCPU *cpu) 6928 { 6929 CPUARMState *env = &cpu->env; 6930 uint32_t excret; 6931 uint32_t xpsr; 6932 bool ufault = false; 6933 bool sfault = false; 6934 bool return_to_sp_process; 6935 bool return_to_handler; 6936 bool rettobase = false; 6937 bool exc_secure = false; 6938 bool return_to_secure; 6939 6940 /* If we're not in Handler mode then jumps to magic exception-exit 6941 * addresses don't have magic behaviour. However for the v8M 6942 * security extensions the magic secure-function-return has to 6943 * work in thread mode too, so to avoid doing an extra check in 6944 * the generated code we allow exception-exit magic to also cause the 6945 * internal exception and bring us here in thread mode. Correct code 6946 * will never try to do this (the following insn fetch will always 6947 * fault) so we the overhead of having taken an unnecessary exception 6948 * doesn't matter. 6949 */ 6950 if (!arm_v7m_is_handler_mode(env)) { 6951 return; 6952 } 6953 6954 /* In the spec pseudocode ExceptionReturn() is called directly 6955 * from BXWritePC() and gets the full target PC value including 6956 * bit zero. In QEMU's implementation we treat it as a normal 6957 * jump-to-register (which is then caught later on), and so split 6958 * the target value up between env->regs[15] and env->thumb in 6959 * gen_bx(). Reconstitute it. 6960 */ 6961 excret = env->regs[15]; 6962 if (env->thumb) { 6963 excret |= 1; 6964 } 6965 6966 qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32 6967 " previous exception %d\n", 6968 excret, env->v7m.exception); 6969 6970 if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) { 6971 qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception " 6972 "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", 6973 excret); 6974 } 6975 6976 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6977 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before 6978 * we pick which FAULTMASK to clear. 6979 */ 6980 if (!env->v7m.secure && 6981 ((excret & R_V7M_EXCRET_ES_MASK) || 6982 !(excret & R_V7M_EXCRET_DCRS_MASK))) { 6983 sfault = 1; 6984 /* For all other purposes, treat ES as 0 (R_HXSR) */ 6985 excret &= ~R_V7M_EXCRET_ES_MASK; 6986 } 6987 } 6988 6989 if (env->v7m.exception != ARMV7M_EXCP_NMI) { 6990 /* Auto-clear FAULTMASK on return from other than NMI. 6991 * If the security extension is implemented then this only 6992 * happens if the raw execution priority is >= 0; the 6993 * value of the ES bit in the exception return value indicates 6994 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) 6995 */ 6996 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 6997 exc_secure = excret & R_V7M_EXCRET_ES_MASK; 6998 if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { 6999 env->v7m.faultmask[exc_secure] = 0; 7000 } 7001 } else { 7002 env->v7m.faultmask[M_REG_NS] = 0; 7003 } 7004 } 7005 7006 switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception, 7007 exc_secure)) { 7008 case -1: 7009 /* attempt to exit an exception that isn't active */ 7010 ufault = true; 7011 break; 7012 case 0: 7013 /* still an irq active now */ 7014 break; 7015 case 1: 7016 /* we returned to base exception level, no nesting. 7017 * (In the pseudocode this is written using "NestedActivation != 1" 7018 * where we have 'rettobase == false'.) 7019 */ 7020 rettobase = true; 7021 break; 7022 default: 7023 g_assert_not_reached(); 7024 } 7025 7026 return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK); 7027 return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK; 7028 return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) && 7029 (excret & R_V7M_EXCRET_S_MASK); 7030 7031 if (arm_feature(env, ARM_FEATURE_V8)) { 7032 if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) { 7033 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP); 7034 * we choose to take the UsageFault. 7035 */ 7036 if ((excret & R_V7M_EXCRET_S_MASK) || 7037 (excret & R_V7M_EXCRET_ES_MASK) || 7038 !(excret & R_V7M_EXCRET_DCRS_MASK)) { 7039 ufault = true; 7040 } 7041 } 7042 if (excret & R_V7M_EXCRET_RES0_MASK) { 7043 ufault = true; 7044 } 7045 } else { 7046 /* For v7M we only recognize certain combinations of the low bits */ 7047 switch (excret & 0xf) { 7048 case 1: /* Return to Handler */ 7049 break; 7050 case 13: /* Return to Thread using Process stack */ 7051 case 9: /* Return to Thread using Main stack */ 7052 /* We only need to check NONBASETHRDENA for v7M, because in 7053 * v8M this bit does not exist (it is RES1). 7054 */ 7055 if (!rettobase && 7056 !(env->v7m.ccr[env->v7m.secure] & 7057 R_V7M_CCR_NONBASETHRDENA_MASK)) { 7058 ufault = true; 7059 } 7060 break; 7061 default: 7062 ufault = true; 7063 } 7064 } 7065 7066 if (sfault) { 7067 env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; 7068 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7069 v7m_exception_taken(cpu, excret, true, false); 7070 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7071 "stackframe: failed EXC_RETURN.ES validity check\n"); 7072 return; 7073 } 7074 7075 if (ufault) { 7076 /* Bad exception return: instead of popping the exception 7077 * stack, directly take a usage fault on the current stack. 7078 */ 7079 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7080 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7081 v7m_exception_taken(cpu, excret, true, false); 7082 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7083 "stackframe: failed exception return integrity check\n"); 7084 return; 7085 } 7086 7087 /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in 7088 * Handler mode (and will be until we write the new XPSR.Interrupt 7089 * field) this does not switch around the current stack pointer. 7090 */ 7091 write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); 7092 7093 switch_v7m_security_state(env, return_to_secure); 7094 7095 { 7096 /* The stack pointer we should be reading the exception frame from 7097 * depends on bits in the magic exception return type value (and 7098 * for v8M isn't necessarily the stack pointer we will eventually 7099 * end up resuming execution with). Get a pointer to the location 7100 * in the CPU state struct where the SP we need is currently being 7101 * stored; we will use and modify it in place. 7102 * We use this limited C variable scope so we don't accidentally 7103 * use 'frame_sp_p' after we do something that makes it invalid. 7104 */ 7105 uint32_t *frame_sp_p = get_v7m_sp_ptr(env, 7106 return_to_secure, 7107 !return_to_handler, 7108 return_to_sp_process); 7109 uint32_t frameptr = *frame_sp_p; 7110 bool pop_ok = true; 7111 ARMMMUIdx mmu_idx; 7112 7113 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure, 7114 !return_to_handler); 7115 7116 if (!QEMU_IS_ALIGNED(frameptr, 8) && 7117 arm_feature(env, ARM_FEATURE_V8)) { 7118 qemu_log_mask(LOG_GUEST_ERROR, 7119 "M profile exception return with non-8-aligned SP " 7120 "for destination state is UNPREDICTABLE\n"); 7121 } 7122 7123 /* Do we need to pop callee-saved registers? */ 7124 if (return_to_secure && 7125 ((excret & R_V7M_EXCRET_ES_MASK) == 0 || 7126 (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) { 7127 uint32_t expected_sig = 0xfefa125b; 7128 uint32_t actual_sig; 7129 7130 pop_ok = v7m_stack_read(cpu, &actual_sig, frameptr, mmu_idx); 7131 7132 if (pop_ok && expected_sig != actual_sig) { 7133 /* Take a SecureFault on the current stack */ 7134 env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; 7135 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7136 v7m_exception_taken(cpu, excret, true, false); 7137 qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " 7138 "stackframe: failed exception return integrity " 7139 "signature check\n"); 7140 return; 7141 } 7142 7143 pop_ok = pop_ok && 7144 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7145 v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) && 7146 v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) && 7147 v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) && 7148 v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) && 7149 v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) && 7150 v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) && 7151 v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) && 7152 v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx); 7153 7154 frameptr += 0x28; 7155 } 7156 7157 /* Pop registers */ 7158 pop_ok = pop_ok && 7159 v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) && 7160 v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) && 7161 v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) && 7162 v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) && 7163 v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) && 7164 v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) && 7165 v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) && 7166 v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx); 7167 7168 if (!pop_ok) { 7169 /* v7m_stack_read() pended a fault, so take it (as a tail 7170 * chained exception on the same stack frame) 7171 */ 7172 v7m_exception_taken(cpu, excret, true, false); 7173 return; 7174 } 7175 7176 /* Returning from an exception with a PC with bit 0 set is defined 7177 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified 7178 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore 7179 * the lsbit, and there are several RTOSes out there which incorrectly 7180 * assume the r15 in the stack frame should be a Thumb-style "lsbit 7181 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but 7182 * complain about the badly behaved guest. 7183 */ 7184 if (env->regs[15] & 1) { 7185 env->regs[15] &= ~1U; 7186 if (!arm_feature(env, ARM_FEATURE_V8)) { 7187 qemu_log_mask(LOG_GUEST_ERROR, 7188 "M profile return from interrupt with misaligned " 7189 "PC is UNPREDICTABLE on v7M\n"); 7190 } 7191 } 7192 7193 if (arm_feature(env, ARM_FEATURE_V8)) { 7194 /* For v8M we have to check whether the xPSR exception field 7195 * matches the EXCRET value for return to handler/thread 7196 * before we commit to changing the SP and xPSR. 7197 */ 7198 bool will_be_handler = (xpsr & XPSR_EXCP) != 0; 7199 if (return_to_handler != will_be_handler) { 7200 /* Take an INVPC UsageFault on the current stack. 7201 * By this point we will have switched to the security state 7202 * for the background state, so this UsageFault will target 7203 * that state. 7204 */ 7205 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7206 env->v7m.secure); 7207 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7208 v7m_exception_taken(cpu, excret, true, false); 7209 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " 7210 "stackframe: failed exception return integrity " 7211 "check\n"); 7212 return; 7213 } 7214 } 7215 7216 /* Commit to consuming the stack frame */ 7217 frameptr += 0x20; 7218 /* Undo stack alignment (the SPREALIGN bit indicates that the original 7219 * pre-exception SP was not 8-aligned and we added a padding word to 7220 * align it, so we undo this by ORing in the bit that increases it 7221 * from the current 8-aligned value to the 8-unaligned value. (Adding 4 7222 * would work too but a logical OR is how the pseudocode specifies it.) 7223 */ 7224 if (xpsr & XPSR_SPREALIGN) { 7225 frameptr |= 4; 7226 } 7227 *frame_sp_p = frameptr; 7228 } 7229 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */ 7230 xpsr_write(env, xpsr, ~XPSR_SPREALIGN); 7231 7232 /* The restored xPSR exception field will be zero if we're 7233 * resuming in Thread mode. If that doesn't match what the 7234 * exception return excret specified then this is a UsageFault. 7235 * v7M requires we make this check here; v8M did it earlier. 7236 */ 7237 if (return_to_handler != arm_v7m_is_handler_mode(env)) { 7238 /* Take an INVPC UsageFault by pushing the stack again; 7239 * we know we're v7M so this is never a Secure UsageFault. 7240 */ 7241 bool ignore_stackfaults; 7242 7243 assert(!arm_feature(env, ARM_FEATURE_V8)); 7244 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); 7245 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7246 ignore_stackfaults = v7m_push_stack(cpu); 7247 v7m_exception_taken(cpu, excret, false, ignore_stackfaults); 7248 qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " 7249 "failed exception return integrity check\n"); 7250 return; 7251 } 7252 7253 /* Otherwise, we have a successful exception exit. */ 7254 arm_clear_exclusive(env); 7255 qemu_log_mask(CPU_LOG_INT, "...successful exception return\n"); 7256 } 7257 7258 static bool do_v7m_function_return(ARMCPU *cpu) 7259 { 7260 /* v8M security extensions magic function return. 7261 * We may either: 7262 * (1) throw an exception (longjump) 7263 * (2) return true if we successfully handled the function return 7264 * (3) return false if we failed a consistency check and have 7265 * pended a UsageFault that needs to be taken now 7266 * 7267 * At this point the magic return value is split between env->regs[15] 7268 * and env->thumb. We don't bother to reconstitute it because we don't 7269 * need it (all values are handled the same way). 7270 */ 7271 CPUARMState *env = &cpu->env; 7272 uint32_t newpc, newpsr, newpsr_exc; 7273 7274 qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n"); 7275 7276 { 7277 bool threadmode, spsel; 7278 TCGMemOpIdx oi; 7279 ARMMMUIdx mmu_idx; 7280 uint32_t *frame_sp_p; 7281 uint32_t frameptr; 7282 7283 /* Pull the return address and IPSR from the Secure stack */ 7284 threadmode = !arm_v7m_is_handler_mode(env); 7285 spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK; 7286 7287 frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel); 7288 frameptr = *frame_sp_p; 7289 7290 /* These loads may throw an exception (for MPU faults). We want to 7291 * do them as secure, so work out what MMU index that is. 7292 */ 7293 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7294 oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx)); 7295 newpc = helper_le_ldul_mmu(env, frameptr, oi, 0); 7296 newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0); 7297 7298 /* Consistency checks on new IPSR */ 7299 newpsr_exc = newpsr & XPSR_EXCP; 7300 if (!((env->v7m.exception == 0 && newpsr_exc == 0) || 7301 (env->v7m.exception == 1 && newpsr_exc != 0))) { 7302 /* Pend the fault and tell our caller to take it */ 7303 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; 7304 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, 7305 env->v7m.secure); 7306 qemu_log_mask(CPU_LOG_INT, 7307 "...taking INVPC UsageFault: " 7308 "IPSR consistency check failed\n"); 7309 return false; 7310 } 7311 7312 *frame_sp_p = frameptr + 8; 7313 } 7314 7315 /* This invalidates frame_sp_p */ 7316 switch_v7m_security_state(env, true); 7317 env->v7m.exception = newpsr_exc; 7318 env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK; 7319 if (newpsr & XPSR_SFPA) { 7320 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK; 7321 } 7322 xpsr_write(env, 0, XPSR_IT); 7323 env->thumb = newpc & 1; 7324 env->regs[15] = newpc & ~1; 7325 7326 qemu_log_mask(CPU_LOG_INT, "...function return successful\n"); 7327 return true; 7328 } 7329 7330 static void arm_log_exception(int idx) 7331 { 7332 if (qemu_loglevel_mask(CPU_LOG_INT)) { 7333 const char *exc = NULL; 7334 static const char * const excnames[] = { 7335 [EXCP_UDEF] = "Undefined Instruction", 7336 [EXCP_SWI] = "SVC", 7337 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 7338 [EXCP_DATA_ABORT] = "Data Abort", 7339 [EXCP_IRQ] = "IRQ", 7340 [EXCP_FIQ] = "FIQ", 7341 [EXCP_BKPT] = "Breakpoint", 7342 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 7343 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 7344 [EXCP_HVC] = "Hypervisor Call", 7345 [EXCP_HYP_TRAP] = "Hypervisor Trap", 7346 [EXCP_SMC] = "Secure Monitor Call", 7347 [EXCP_VIRQ] = "Virtual IRQ", 7348 [EXCP_VFIQ] = "Virtual FIQ", 7349 [EXCP_SEMIHOST] = "Semihosting call", 7350 [EXCP_NOCP] = "v7M NOCP UsageFault", 7351 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 7352 }; 7353 7354 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 7355 exc = excnames[idx]; 7356 } 7357 if (!exc) { 7358 exc = "unknown"; 7359 } 7360 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc); 7361 } 7362 } 7363 7364 static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx, 7365 uint32_t addr, uint16_t *insn) 7366 { 7367 /* Load a 16-bit portion of a v7M instruction, returning true on success, 7368 * or false on failure (in which case we will have pended the appropriate 7369 * exception). 7370 * We need to do the instruction fetch's MPU and SAU checks 7371 * like this because there is no MMU index that would allow 7372 * doing the load with a single function call. Instead we must 7373 * first check that the security attributes permit the load 7374 * and that they don't mismatch on the two halves of the instruction, 7375 * and then we do the load as a secure load (ie using the security 7376 * attributes of the address, not the CPU, as architecturally required). 7377 */ 7378 CPUState *cs = CPU(cpu); 7379 CPUARMState *env = &cpu->env; 7380 V8M_SAttributes sattrs = {}; 7381 MemTxAttrs attrs = {}; 7382 ARMMMUFaultInfo fi = {}; 7383 MemTxResult txres; 7384 target_ulong page_size; 7385 hwaddr physaddr; 7386 int prot; 7387 7388 v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs); 7389 if (!sattrs.nsc || sattrs.ns) { 7390 /* This must be the second half of the insn, and it straddles a 7391 * region boundary with the second half not being S&NSC. 7392 */ 7393 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7394 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7395 qemu_log_mask(CPU_LOG_INT, 7396 "...really SecureFault with SFSR.INVEP\n"); 7397 return false; 7398 } 7399 if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx, 7400 &physaddr, &attrs, &prot, &page_size, &fi, NULL)) { 7401 /* the MPU lookup failed */ 7402 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7403 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure); 7404 qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n"); 7405 return false; 7406 } 7407 *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr, 7408 attrs, &txres); 7409 if (txres != MEMTX_OK) { 7410 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7411 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7412 qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n"); 7413 return false; 7414 } 7415 return true; 7416 } 7417 7418 static bool v7m_handle_execute_nsc(ARMCPU *cpu) 7419 { 7420 /* Check whether this attempt to execute code in a Secure & NS-Callable 7421 * memory region is for an SG instruction; if so, then emulate the 7422 * effect of the SG instruction and return true. Otherwise pend 7423 * the correct kind of exception and return false. 7424 */ 7425 CPUARMState *env = &cpu->env; 7426 ARMMMUIdx mmu_idx; 7427 uint16_t insn; 7428 7429 /* We should never get here unless get_phys_addr_pmsav8() caused 7430 * an exception for NS executing in S&NSC memory. 7431 */ 7432 assert(!env->v7m.secure); 7433 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7434 7435 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */ 7436 mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true); 7437 7438 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) { 7439 return false; 7440 } 7441 7442 if (!env->thumb) { 7443 goto gen_invep; 7444 } 7445 7446 if (insn != 0xe97f) { 7447 /* Not an SG instruction first half (we choose the IMPDEF 7448 * early-SG-check option). 7449 */ 7450 goto gen_invep; 7451 } 7452 7453 if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) { 7454 return false; 7455 } 7456 7457 if (insn != 0xe97f) { 7458 /* Not an SG instruction second half (yes, both halves of the SG 7459 * insn have the same hex value) 7460 */ 7461 goto gen_invep; 7462 } 7463 7464 /* OK, we have confirmed that we really have an SG instruction. 7465 * We know we're NS in S memory so don't need to repeat those checks. 7466 */ 7467 qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32 7468 ", executing it\n", env->regs[15]); 7469 env->regs[14] &= ~1; 7470 switch_v7m_security_state(env, true); 7471 xpsr_write(env, 0, XPSR_IT); 7472 env->regs[15] += 4; 7473 return true; 7474 7475 gen_invep: 7476 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7477 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7478 qemu_log_mask(CPU_LOG_INT, 7479 "...really SecureFault with SFSR.INVEP\n"); 7480 return false; 7481 } 7482 7483 void arm_v7m_cpu_do_interrupt(CPUState *cs) 7484 { 7485 ARMCPU *cpu = ARM_CPU(cs); 7486 CPUARMState *env = &cpu->env; 7487 uint32_t lr; 7488 bool ignore_stackfaults; 7489 7490 arm_log_exception(cs->exception_index); 7491 7492 /* For exceptions we just mark as pending on the NVIC, and let that 7493 handle it. */ 7494 switch (cs->exception_index) { 7495 case EXCP_UDEF: 7496 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7497 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK; 7498 break; 7499 case EXCP_NOCP: 7500 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7501 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK; 7502 break; 7503 case EXCP_INVSTATE: 7504 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); 7505 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK; 7506 break; 7507 case EXCP_SWI: 7508 /* The PC already points to the next instruction. */ 7509 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure); 7510 break; 7511 case EXCP_PREFETCH_ABORT: 7512 case EXCP_DATA_ABORT: 7513 /* Note that for M profile we don't have a guest facing FSR, but 7514 * the env->exception.fsr will be populated by the code that 7515 * raises the fault, in the A profile short-descriptor format. 7516 */ 7517 switch (env->exception.fsr & 0xf) { 7518 case M_FAKE_FSR_NSC_EXEC: 7519 /* Exception generated when we try to execute code at an address 7520 * which is marked as Secure & Non-Secure Callable and the CPU 7521 * is in the Non-Secure state. The only instruction which can 7522 * be executed like this is SG (and that only if both halves of 7523 * the SG instruction have the same security attributes.) 7524 * Everything else must generate an INVEP SecureFault, so we 7525 * emulate the SG instruction here. 7526 */ 7527 if (v7m_handle_execute_nsc(cpu)) { 7528 return; 7529 } 7530 break; 7531 case M_FAKE_FSR_SFAULT: 7532 /* Various flavours of SecureFault for attempts to execute or 7533 * access data in the wrong security state. 7534 */ 7535 switch (cs->exception_index) { 7536 case EXCP_PREFETCH_ABORT: 7537 if (env->v7m.secure) { 7538 env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK; 7539 qemu_log_mask(CPU_LOG_INT, 7540 "...really SecureFault with SFSR.INVTRAN\n"); 7541 } else { 7542 env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK; 7543 qemu_log_mask(CPU_LOG_INT, 7544 "...really SecureFault with SFSR.INVEP\n"); 7545 } 7546 break; 7547 case EXCP_DATA_ABORT: 7548 /* This must be an NS access to S memory */ 7549 env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK; 7550 qemu_log_mask(CPU_LOG_INT, 7551 "...really SecureFault with SFSR.AUVIOL\n"); 7552 break; 7553 } 7554 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); 7555 break; 7556 case 0x8: /* External Abort */ 7557 switch (cs->exception_index) { 7558 case EXCP_PREFETCH_ABORT: 7559 env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK; 7560 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n"); 7561 break; 7562 case EXCP_DATA_ABORT: 7563 env->v7m.cfsr[M_REG_NS] |= 7564 (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK); 7565 env->v7m.bfar = env->exception.vaddress; 7566 qemu_log_mask(CPU_LOG_INT, 7567 "...with CFSR.PRECISERR and BFAR 0x%x\n", 7568 env->v7m.bfar); 7569 break; 7570 } 7571 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false); 7572 break; 7573 default: 7574 /* All other FSR values are either MPU faults or "can't happen 7575 * for M profile" cases. 7576 */ 7577 switch (cs->exception_index) { 7578 case EXCP_PREFETCH_ABORT: 7579 env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK; 7580 qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n"); 7581 break; 7582 case EXCP_DATA_ABORT: 7583 env->v7m.cfsr[env->v7m.secure] |= 7584 (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK); 7585 env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress; 7586 qemu_log_mask(CPU_LOG_INT, 7587 "...with CFSR.DACCVIOL and MMFAR 0x%x\n", 7588 env->v7m.mmfar[env->v7m.secure]); 7589 break; 7590 } 7591 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, 7592 env->v7m.secure); 7593 break; 7594 } 7595 break; 7596 case EXCP_BKPT: 7597 if (semihosting_enabled()) { 7598 int nr; 7599 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff; 7600 if (nr == 0xab) { 7601 env->regs[15] += 2; 7602 qemu_log_mask(CPU_LOG_INT, 7603 "...handling as semihosting call 0x%x\n", 7604 env->regs[0]); 7605 env->regs[0] = do_arm_semihosting(env); 7606 return; 7607 } 7608 } 7609 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false); 7610 break; 7611 case EXCP_IRQ: 7612 break; 7613 case EXCP_EXCEPTION_EXIT: 7614 if (env->regs[15] < EXC_RETURN_MIN_MAGIC) { 7615 /* Must be v8M security extension function return */ 7616 assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC); 7617 assert(arm_feature(env, ARM_FEATURE_M_SECURITY)); 7618 if (do_v7m_function_return(cpu)) { 7619 return; 7620 } 7621 } else { 7622 do_v7m_exception_exit(cpu); 7623 return; 7624 } 7625 break; 7626 default: 7627 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7628 return; /* Never happens. Keep compiler happy. */ 7629 } 7630 7631 if (arm_feature(env, ARM_FEATURE_V8)) { 7632 lr = R_V7M_EXCRET_RES1_MASK | 7633 R_V7M_EXCRET_DCRS_MASK | 7634 R_V7M_EXCRET_FTYPE_MASK; 7635 /* The S bit indicates whether we should return to Secure 7636 * or NonSecure (ie our current state). 7637 * The ES bit indicates whether we're taking this exception 7638 * to Secure or NonSecure (ie our target state). We set it 7639 * later, in v7m_exception_taken(). 7640 * The SPSEL bit is also set in v7m_exception_taken() for v8M. 7641 * This corresponds to the ARM ARM pseudocode for v8M setting 7642 * some LR bits in PushStack() and some in ExceptionTaken(); 7643 * the distinction matters for the tailchain cases where we 7644 * can take an exception without pushing the stack. 7645 */ 7646 if (env->v7m.secure) { 7647 lr |= R_V7M_EXCRET_S_MASK; 7648 } 7649 } else { 7650 lr = R_V7M_EXCRET_RES1_MASK | 7651 R_V7M_EXCRET_S_MASK | 7652 R_V7M_EXCRET_DCRS_MASK | 7653 R_V7M_EXCRET_FTYPE_MASK | 7654 R_V7M_EXCRET_ES_MASK; 7655 if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) { 7656 lr |= R_V7M_EXCRET_SPSEL_MASK; 7657 } 7658 } 7659 if (!arm_v7m_is_handler_mode(env)) { 7660 lr |= R_V7M_EXCRET_MODE_MASK; 7661 } 7662 7663 ignore_stackfaults = v7m_push_stack(cpu); 7664 v7m_exception_taken(cpu, lr, false, ignore_stackfaults); 7665 qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception); 7666 } 7667 7668 /* Function used to synchronize QEMU's AArch64 register set with AArch32 7669 * register set. This is necessary when switching between AArch32 and AArch64 7670 * execution state. 7671 */ 7672 void aarch64_sync_32_to_64(CPUARMState *env) 7673 { 7674 int i; 7675 uint32_t mode = env->uncached_cpsr & CPSR_M; 7676 7677 /* We can blanket copy R[0:7] to X[0:7] */ 7678 for (i = 0; i < 8; i++) { 7679 env->xregs[i] = env->regs[i]; 7680 } 7681 7682 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 7683 * Otherwise, they come from the banked user regs. 7684 */ 7685 if (mode == ARM_CPU_MODE_FIQ) { 7686 for (i = 8; i < 13; i++) { 7687 env->xregs[i] = env->usr_regs[i - 8]; 7688 } 7689 } else { 7690 for (i = 8; i < 13; i++) { 7691 env->xregs[i] = env->regs[i]; 7692 } 7693 } 7694 7695 /* Registers x13-x23 are the various mode SP and FP registers. Registers 7696 * r13 and r14 are only copied if we are in that mode, otherwise we copy 7697 * from the mode banked register. 7698 */ 7699 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7700 env->xregs[13] = env->regs[13]; 7701 env->xregs[14] = env->regs[14]; 7702 } else { 7703 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 7704 /* HYP is an exception in that it is copied from r14 */ 7705 if (mode == ARM_CPU_MODE_HYP) { 7706 env->xregs[14] = env->regs[14]; 7707 } else { 7708 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)]; 7709 } 7710 } 7711 7712 if (mode == ARM_CPU_MODE_HYP) { 7713 env->xregs[15] = env->regs[13]; 7714 } else { 7715 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 7716 } 7717 7718 if (mode == ARM_CPU_MODE_IRQ) { 7719 env->xregs[16] = env->regs[14]; 7720 env->xregs[17] = env->regs[13]; 7721 } else { 7722 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)]; 7723 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 7724 } 7725 7726 if (mode == ARM_CPU_MODE_SVC) { 7727 env->xregs[18] = env->regs[14]; 7728 env->xregs[19] = env->regs[13]; 7729 } else { 7730 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)]; 7731 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 7732 } 7733 7734 if (mode == ARM_CPU_MODE_ABT) { 7735 env->xregs[20] = env->regs[14]; 7736 env->xregs[21] = env->regs[13]; 7737 } else { 7738 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)]; 7739 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 7740 } 7741 7742 if (mode == ARM_CPU_MODE_UND) { 7743 env->xregs[22] = env->regs[14]; 7744 env->xregs[23] = env->regs[13]; 7745 } else { 7746 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)]; 7747 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 7748 } 7749 7750 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7751 * mode, then we can copy from r8-r14. Otherwise, we copy from the 7752 * FIQ bank for r8-r14. 7753 */ 7754 if (mode == ARM_CPU_MODE_FIQ) { 7755 for (i = 24; i < 31; i++) { 7756 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 7757 } 7758 } else { 7759 for (i = 24; i < 29; i++) { 7760 env->xregs[i] = env->fiq_regs[i - 24]; 7761 } 7762 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 7763 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)]; 7764 } 7765 7766 env->pc = env->regs[15]; 7767 } 7768 7769 /* Function used to synchronize QEMU's AArch32 register set with AArch64 7770 * register set. This is necessary when switching between AArch32 and AArch64 7771 * execution state. 7772 */ 7773 void aarch64_sync_64_to_32(CPUARMState *env) 7774 { 7775 int i; 7776 uint32_t mode = env->uncached_cpsr & CPSR_M; 7777 7778 /* We can blanket copy X[0:7] to R[0:7] */ 7779 for (i = 0; i < 8; i++) { 7780 env->regs[i] = env->xregs[i]; 7781 } 7782 7783 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 7784 * Otherwise, we copy x8-x12 into the banked user regs. 7785 */ 7786 if (mode == ARM_CPU_MODE_FIQ) { 7787 for (i = 8; i < 13; i++) { 7788 env->usr_regs[i - 8] = env->xregs[i]; 7789 } 7790 } else { 7791 for (i = 8; i < 13; i++) { 7792 env->regs[i] = env->xregs[i]; 7793 } 7794 } 7795 7796 /* Registers r13 & r14 depend on the current mode. 7797 * If we are in a given mode, we copy the corresponding x registers to r13 7798 * and r14. Otherwise, we copy the x register to the banked r13 and r14 7799 * for the mode. 7800 */ 7801 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 7802 env->regs[13] = env->xregs[13]; 7803 env->regs[14] = env->xregs[14]; 7804 } else { 7805 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 7806 7807 /* HYP is an exception in that it does not have its own banked r14 but 7808 * shares the USR r14 7809 */ 7810 if (mode == ARM_CPU_MODE_HYP) { 7811 env->regs[14] = env->xregs[14]; 7812 } else { 7813 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 7814 } 7815 } 7816 7817 if (mode == ARM_CPU_MODE_HYP) { 7818 env->regs[13] = env->xregs[15]; 7819 } else { 7820 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 7821 } 7822 7823 if (mode == ARM_CPU_MODE_IRQ) { 7824 env->regs[14] = env->xregs[16]; 7825 env->regs[13] = env->xregs[17]; 7826 } else { 7827 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 7828 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 7829 } 7830 7831 if (mode == ARM_CPU_MODE_SVC) { 7832 env->regs[14] = env->xregs[18]; 7833 env->regs[13] = env->xregs[19]; 7834 } else { 7835 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 7836 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 7837 } 7838 7839 if (mode == ARM_CPU_MODE_ABT) { 7840 env->regs[14] = env->xregs[20]; 7841 env->regs[13] = env->xregs[21]; 7842 } else { 7843 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 7844 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 7845 } 7846 7847 if (mode == ARM_CPU_MODE_UND) { 7848 env->regs[14] = env->xregs[22]; 7849 env->regs[13] = env->xregs[23]; 7850 } else { 7851 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 7852 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 7853 } 7854 7855 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 7856 * mode, then we can copy to r8-r14. Otherwise, we copy to the 7857 * FIQ bank for r8-r14. 7858 */ 7859 if (mode == ARM_CPU_MODE_FIQ) { 7860 for (i = 24; i < 31; i++) { 7861 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 7862 } 7863 } else { 7864 for (i = 24; i < 29; i++) { 7865 env->fiq_regs[i - 24] = env->xregs[i]; 7866 } 7867 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 7868 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 7869 } 7870 7871 env->regs[15] = env->pc; 7872 } 7873 7874 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 7875 { 7876 ARMCPU *cpu = ARM_CPU(cs); 7877 CPUARMState *env = &cpu->env; 7878 uint32_t addr; 7879 uint32_t mask; 7880 int new_mode; 7881 uint32_t offset; 7882 uint32_t moe; 7883 7884 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 7885 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) { 7886 case EC_BREAKPOINT: 7887 case EC_BREAKPOINT_SAME_EL: 7888 moe = 1; 7889 break; 7890 case EC_WATCHPOINT: 7891 case EC_WATCHPOINT_SAME_EL: 7892 moe = 10; 7893 break; 7894 case EC_AA32_BKPT: 7895 moe = 3; 7896 break; 7897 case EC_VECTORCATCH: 7898 moe = 5; 7899 break; 7900 default: 7901 moe = 0; 7902 break; 7903 } 7904 7905 if (moe) { 7906 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 7907 } 7908 7909 /* TODO: Vectored interrupt controller. */ 7910 switch (cs->exception_index) { 7911 case EXCP_UDEF: 7912 new_mode = ARM_CPU_MODE_UND; 7913 addr = 0x04; 7914 mask = CPSR_I; 7915 if (env->thumb) 7916 offset = 2; 7917 else 7918 offset = 4; 7919 break; 7920 case EXCP_SWI: 7921 new_mode = ARM_CPU_MODE_SVC; 7922 addr = 0x08; 7923 mask = CPSR_I; 7924 /* The PC already points to the next instruction. */ 7925 offset = 0; 7926 break; 7927 case EXCP_BKPT: 7928 /* Fall through to prefetch abort. */ 7929 case EXCP_PREFETCH_ABORT: 7930 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 7931 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 7932 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 7933 env->exception.fsr, (uint32_t)env->exception.vaddress); 7934 new_mode = ARM_CPU_MODE_ABT; 7935 addr = 0x0c; 7936 mask = CPSR_A | CPSR_I; 7937 offset = 4; 7938 break; 7939 case EXCP_DATA_ABORT: 7940 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 7941 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 7942 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 7943 env->exception.fsr, 7944 (uint32_t)env->exception.vaddress); 7945 new_mode = ARM_CPU_MODE_ABT; 7946 addr = 0x10; 7947 mask = CPSR_A | CPSR_I; 7948 offset = 8; 7949 break; 7950 case EXCP_IRQ: 7951 new_mode = ARM_CPU_MODE_IRQ; 7952 addr = 0x18; 7953 /* Disable IRQ and imprecise data aborts. */ 7954 mask = CPSR_A | CPSR_I; 7955 offset = 4; 7956 if (env->cp15.scr_el3 & SCR_IRQ) { 7957 /* IRQ routed to monitor mode */ 7958 new_mode = ARM_CPU_MODE_MON; 7959 mask |= CPSR_F; 7960 } 7961 break; 7962 case EXCP_FIQ: 7963 new_mode = ARM_CPU_MODE_FIQ; 7964 addr = 0x1c; 7965 /* Disable FIQ, IRQ and imprecise data aborts. */ 7966 mask = CPSR_A | CPSR_I | CPSR_F; 7967 if (env->cp15.scr_el3 & SCR_FIQ) { 7968 /* FIQ routed to monitor mode */ 7969 new_mode = ARM_CPU_MODE_MON; 7970 } 7971 offset = 4; 7972 break; 7973 case EXCP_VIRQ: 7974 new_mode = ARM_CPU_MODE_IRQ; 7975 addr = 0x18; 7976 /* Disable IRQ and imprecise data aborts. */ 7977 mask = CPSR_A | CPSR_I; 7978 offset = 4; 7979 break; 7980 case EXCP_VFIQ: 7981 new_mode = ARM_CPU_MODE_FIQ; 7982 addr = 0x1c; 7983 /* Disable FIQ, IRQ and imprecise data aborts. */ 7984 mask = CPSR_A | CPSR_I | CPSR_F; 7985 offset = 4; 7986 break; 7987 case EXCP_SMC: 7988 new_mode = ARM_CPU_MODE_MON; 7989 addr = 0x08; 7990 mask = CPSR_A | CPSR_I | CPSR_F; 7991 offset = 0; 7992 break; 7993 default: 7994 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 7995 return; /* Never happens. Keep compiler happy. */ 7996 } 7997 7998 if (new_mode == ARM_CPU_MODE_MON) { 7999 addr += env->cp15.mvbar; 8000 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 8001 /* High vectors. When enabled, base address cannot be remapped. */ 8002 addr += 0xffff0000; 8003 } else { 8004 /* ARM v7 architectures provide a vector base address register to remap 8005 * the interrupt vector table. 8006 * This register is only followed in non-monitor mode, and is banked. 8007 * Note: only bits 31:5 are valid. 8008 */ 8009 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 8010 } 8011 8012 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 8013 env->cp15.scr_el3 &= ~SCR_NS; 8014 } 8015 8016 switch_mode (env, new_mode); 8017 /* For exceptions taken to AArch32 we must clear the SS bit in both 8018 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 8019 */ 8020 env->uncached_cpsr &= ~PSTATE_SS; 8021 env->spsr = cpsr_read(env); 8022 /* Clear IT bits. */ 8023 env->condexec_bits = 0; 8024 /* Switch to the new mode, and to the correct instruction set. */ 8025 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 8026 /* Set new mode endianness */ 8027 env->uncached_cpsr &= ~CPSR_E; 8028 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) { 8029 env->uncached_cpsr |= CPSR_E; 8030 } 8031 env->daif |= mask; 8032 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares 8033 * and we should just guard the thumb mode on V4 */ 8034 if (arm_feature(env, ARM_FEATURE_V4T)) { 8035 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 8036 } 8037 env->regs[14] = env->regs[15] + offset; 8038 env->regs[15] = addr; 8039 } 8040 8041 /* Handle exception entry to a target EL which is using AArch64 */ 8042 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 8043 { 8044 ARMCPU *cpu = ARM_CPU(cs); 8045 CPUARMState *env = &cpu->env; 8046 unsigned int new_el = env->exception.target_el; 8047 target_ulong addr = env->cp15.vbar_el[new_el]; 8048 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 8049 8050 if (arm_current_el(env) < new_el) { 8051 /* Entry vector offset depends on whether the implemented EL 8052 * immediately lower than the target level is using AArch32 or AArch64 8053 */ 8054 bool is_aa64; 8055 8056 switch (new_el) { 8057 case 3: 8058 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 8059 break; 8060 case 2: 8061 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0; 8062 break; 8063 case 1: 8064 is_aa64 = is_a64(env); 8065 break; 8066 default: 8067 g_assert_not_reached(); 8068 } 8069 8070 if (is_aa64) { 8071 addr += 0x400; 8072 } else { 8073 addr += 0x600; 8074 } 8075 } else if (pstate_read(env) & PSTATE_SP) { 8076 addr += 0x200; 8077 } 8078 8079 switch (cs->exception_index) { 8080 case EXCP_PREFETCH_ABORT: 8081 case EXCP_DATA_ABORT: 8082 env->cp15.far_el[new_el] = env->exception.vaddress; 8083 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 8084 env->cp15.far_el[new_el]); 8085 /* fall through */ 8086 case EXCP_BKPT: 8087 case EXCP_UDEF: 8088 case EXCP_SWI: 8089 case EXCP_HVC: 8090 case EXCP_HYP_TRAP: 8091 case EXCP_SMC: 8092 env->cp15.esr_el[new_el] = env->exception.syndrome; 8093 break; 8094 case EXCP_IRQ: 8095 case EXCP_VIRQ: 8096 addr += 0x80; 8097 break; 8098 case EXCP_FIQ: 8099 case EXCP_VFIQ: 8100 addr += 0x100; 8101 break; 8102 case EXCP_SEMIHOST: 8103 qemu_log_mask(CPU_LOG_INT, 8104 "...handling as semihosting call 0x%" PRIx64 "\n", 8105 env->xregs[0]); 8106 env->xregs[0] = do_arm_semihosting(env); 8107 return; 8108 default: 8109 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 8110 } 8111 8112 if (is_a64(env)) { 8113 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env); 8114 aarch64_save_sp(env, arm_current_el(env)); 8115 env->elr_el[new_el] = env->pc; 8116 } else { 8117 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env); 8118 env->elr_el[new_el] = env->regs[15]; 8119 8120 aarch64_sync_32_to_64(env); 8121 8122 env->condexec_bits = 0; 8123 } 8124 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 8125 env->elr_el[new_el]); 8126 8127 pstate_write(env, PSTATE_DAIF | new_mode); 8128 env->aarch64 = 1; 8129 aarch64_restore_sp(env, new_el); 8130 8131 env->pc = addr; 8132 8133 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 8134 new_el, env->pc, pstate_read(env)); 8135 } 8136 8137 static inline bool check_for_semihosting(CPUState *cs) 8138 { 8139 /* Check whether this exception is a semihosting call; if so 8140 * then handle it and return true; otherwise return false. 8141 */ 8142 ARMCPU *cpu = ARM_CPU(cs); 8143 CPUARMState *env = &cpu->env; 8144 8145 if (is_a64(env)) { 8146 if (cs->exception_index == EXCP_SEMIHOST) { 8147 /* This is always the 64-bit semihosting exception. 8148 * The "is this usermode" and "is semihosting enabled" 8149 * checks have been done at translate time. 8150 */ 8151 qemu_log_mask(CPU_LOG_INT, 8152 "...handling as semihosting call 0x%" PRIx64 "\n", 8153 env->xregs[0]); 8154 env->xregs[0] = do_arm_semihosting(env); 8155 return true; 8156 } 8157 return false; 8158 } else { 8159 uint32_t imm; 8160 8161 /* Only intercept calls from privileged modes, to provide some 8162 * semblance of security. 8163 */ 8164 if (cs->exception_index != EXCP_SEMIHOST && 8165 (!semihosting_enabled() || 8166 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) { 8167 return false; 8168 } 8169 8170 switch (cs->exception_index) { 8171 case EXCP_SEMIHOST: 8172 /* This is always a semihosting call; the "is this usermode" 8173 * and "is semihosting enabled" checks have been done at 8174 * translate time. 8175 */ 8176 break; 8177 case EXCP_SWI: 8178 /* Check for semihosting interrupt. */ 8179 if (env->thumb) { 8180 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env)) 8181 & 0xff; 8182 if (imm == 0xab) { 8183 break; 8184 } 8185 } else { 8186 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env)) 8187 & 0xffffff; 8188 if (imm == 0x123456) { 8189 break; 8190 } 8191 } 8192 return false; 8193 case EXCP_BKPT: 8194 /* See if this is a semihosting syscall. */ 8195 if (env->thumb) { 8196 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) 8197 & 0xff; 8198 if (imm == 0xab) { 8199 env->regs[15] += 2; 8200 break; 8201 } 8202 } 8203 return false; 8204 default: 8205 return false; 8206 } 8207 8208 qemu_log_mask(CPU_LOG_INT, 8209 "...handling as semihosting call 0x%x\n", 8210 env->regs[0]); 8211 env->regs[0] = do_arm_semihosting(env); 8212 return true; 8213 } 8214 } 8215 8216 /* Handle a CPU exception for A and R profile CPUs. 8217 * Do any appropriate logging, handle PSCI calls, and then hand off 8218 * to the AArch64-entry or AArch32-entry function depending on the 8219 * target exception level's register width. 8220 */ 8221 void arm_cpu_do_interrupt(CPUState *cs) 8222 { 8223 ARMCPU *cpu = ARM_CPU(cs); 8224 CPUARMState *env = &cpu->env; 8225 unsigned int new_el = env->exception.target_el; 8226 8227 assert(!arm_feature(env, ARM_FEATURE_M)); 8228 8229 arm_log_exception(cs->exception_index); 8230 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 8231 new_el); 8232 if (qemu_loglevel_mask(CPU_LOG_INT) 8233 && !excp_is_internal(cs->exception_index)) { 8234 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 8235 env->exception.syndrome >> ARM_EL_EC_SHIFT, 8236 env->exception.syndrome); 8237 } 8238 8239 if (arm_is_psci_call(cpu, cs->exception_index)) { 8240 arm_handle_psci_call(cpu); 8241 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 8242 return; 8243 } 8244 8245 /* Semihosting semantics depend on the register width of the 8246 * code that caused the exception, not the target exception level, 8247 * so must be handled here. 8248 */ 8249 if (check_for_semihosting(cs)) { 8250 return; 8251 } 8252 8253 /* Hooks may change global state so BQL should be held, also the 8254 * BQL needs to be held for any modification of 8255 * cs->interrupt_request. 8256 */ 8257 g_assert(qemu_mutex_iothread_locked()); 8258 8259 arm_call_pre_el_change_hook(cpu); 8260 8261 assert(!excp_is_internal(cs->exception_index)); 8262 if (arm_el_is_aa64(env, new_el)) { 8263 arm_cpu_do_interrupt_aarch64(cs); 8264 } else { 8265 arm_cpu_do_interrupt_aarch32(cs); 8266 } 8267 8268 arm_call_el_change_hook(cpu); 8269 8270 if (!kvm_enabled()) { 8271 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 8272 } 8273 } 8274 8275 /* Return the exception level which controls this address translation regime */ 8276 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx) 8277 { 8278 switch (mmu_idx) { 8279 case ARMMMUIdx_S2NS: 8280 case ARMMMUIdx_S1E2: 8281 return 2; 8282 case ARMMMUIdx_S1E3: 8283 return 3; 8284 case ARMMMUIdx_S1SE0: 8285 return arm_el_is_aa64(env, 3) ? 1 : 3; 8286 case ARMMMUIdx_S1SE1: 8287 case ARMMMUIdx_S1NSE0: 8288 case ARMMMUIdx_S1NSE1: 8289 case ARMMMUIdx_MPrivNegPri: 8290 case ARMMMUIdx_MUserNegPri: 8291 case ARMMMUIdx_MPriv: 8292 case ARMMMUIdx_MUser: 8293 case ARMMMUIdx_MSPrivNegPri: 8294 case ARMMMUIdx_MSUserNegPri: 8295 case ARMMMUIdx_MSPriv: 8296 case ARMMMUIdx_MSUser: 8297 return 1; 8298 default: 8299 g_assert_not_reached(); 8300 } 8301 } 8302 8303 /* Return the SCTLR value which controls this address translation regime */ 8304 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx) 8305 { 8306 return env->cp15.sctlr_el[regime_el(env, mmu_idx)]; 8307 } 8308 8309 /* Return true if the specified stage of address translation is disabled */ 8310 static inline bool regime_translation_disabled(CPUARMState *env, 8311 ARMMMUIdx mmu_idx) 8312 { 8313 if (arm_feature(env, ARM_FEATURE_M)) { 8314 switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] & 8315 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) { 8316 case R_V7M_MPU_CTRL_ENABLE_MASK: 8317 /* Enabled, but not for HardFault and NMI */ 8318 return mmu_idx & ARM_MMU_IDX_M_NEGPRI; 8319 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK: 8320 /* Enabled for all cases */ 8321 return false; 8322 case 0: 8323 default: 8324 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but 8325 * we warned about that in armv7m_nvic.c when the guest set it. 8326 */ 8327 return true; 8328 } 8329 } 8330 8331 if (mmu_idx == ARMMMUIdx_S2NS) { 8332 return (env->cp15.hcr_el2 & HCR_VM) == 0; 8333 } 8334 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; 8335 } 8336 8337 static inline bool regime_translation_big_endian(CPUARMState *env, 8338 ARMMMUIdx mmu_idx) 8339 { 8340 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0; 8341 } 8342 8343 /* Return the TCR controlling this translation regime */ 8344 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx) 8345 { 8346 if (mmu_idx == ARMMMUIdx_S2NS) { 8347 return &env->cp15.vtcr_el2; 8348 } 8349 return &env->cp15.tcr_el[regime_el(env, mmu_idx)]; 8350 } 8351 8352 /* Convert a possible stage1+2 MMU index into the appropriate 8353 * stage 1 MMU index 8354 */ 8355 static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx) 8356 { 8357 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 8358 mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0); 8359 } 8360 return mmu_idx; 8361 } 8362 8363 /* Returns TBI0 value for current regime el */ 8364 uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx) 8365 { 8366 TCR *tcr; 8367 uint32_t el; 8368 8369 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8370 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8371 */ 8372 mmu_idx = stage_1_mmu_idx(mmu_idx); 8373 8374 tcr = regime_tcr(env, mmu_idx); 8375 el = regime_el(env, mmu_idx); 8376 8377 if (el > 1) { 8378 return extract64(tcr->raw_tcr, 20, 1); 8379 } else { 8380 return extract64(tcr->raw_tcr, 37, 1); 8381 } 8382 } 8383 8384 /* Returns TBI1 value for current regime el */ 8385 uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx) 8386 { 8387 TCR *tcr; 8388 uint32_t el; 8389 8390 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert 8391 * a stage 1+2 mmu index into the appropriate stage 1 mmu index. 8392 */ 8393 mmu_idx = stage_1_mmu_idx(mmu_idx); 8394 8395 tcr = regime_tcr(env, mmu_idx); 8396 el = regime_el(env, mmu_idx); 8397 8398 if (el > 1) { 8399 return 0; 8400 } else { 8401 return extract64(tcr->raw_tcr, 38, 1); 8402 } 8403 } 8404 8405 /* Return the TTBR associated with this translation regime */ 8406 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, 8407 int ttbrn) 8408 { 8409 if (mmu_idx == ARMMMUIdx_S2NS) { 8410 return env->cp15.vttbr_el2; 8411 } 8412 if (ttbrn == 0) { 8413 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)]; 8414 } else { 8415 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)]; 8416 } 8417 } 8418 8419 /* Return true if the translation regime is using LPAE format page tables */ 8420 static inline bool regime_using_lpae_format(CPUARMState *env, 8421 ARMMMUIdx mmu_idx) 8422 { 8423 int el = regime_el(env, mmu_idx); 8424 if (el == 2 || arm_el_is_aa64(env, el)) { 8425 return true; 8426 } 8427 if (arm_feature(env, ARM_FEATURE_LPAE) 8428 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) { 8429 return true; 8430 } 8431 return false; 8432 } 8433 8434 /* Returns true if the stage 1 translation regime is using LPAE format page 8435 * tables. Used when raising alignment exceptions, whose FSR changes depending 8436 * on whether the long or short descriptor format is in use. */ 8437 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx) 8438 { 8439 mmu_idx = stage_1_mmu_idx(mmu_idx); 8440 8441 return regime_using_lpae_format(env, mmu_idx); 8442 } 8443 8444 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx) 8445 { 8446 switch (mmu_idx) { 8447 case ARMMMUIdx_S1SE0: 8448 case ARMMMUIdx_S1NSE0: 8449 case ARMMMUIdx_MUser: 8450 case ARMMMUIdx_MSUser: 8451 case ARMMMUIdx_MUserNegPri: 8452 case ARMMMUIdx_MSUserNegPri: 8453 return true; 8454 default: 8455 return false; 8456 case ARMMMUIdx_S12NSE0: 8457 case ARMMMUIdx_S12NSE1: 8458 g_assert_not_reached(); 8459 } 8460 } 8461 8462 /* Translate section/page access permissions to page 8463 * R/W protection flags 8464 * 8465 * @env: CPUARMState 8466 * @mmu_idx: MMU index indicating required translation regime 8467 * @ap: The 3-bit access permissions (AP[2:0]) 8468 * @domain_prot: The 2-bit domain access permissions 8469 */ 8470 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, 8471 int ap, int domain_prot) 8472 { 8473 bool is_user = regime_is_user(env, mmu_idx); 8474 8475 if (domain_prot == 3) { 8476 return PAGE_READ | PAGE_WRITE; 8477 } 8478 8479 switch (ap) { 8480 case 0: 8481 if (arm_feature(env, ARM_FEATURE_V7)) { 8482 return 0; 8483 } 8484 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) { 8485 case SCTLR_S: 8486 return is_user ? 0 : PAGE_READ; 8487 case SCTLR_R: 8488 return PAGE_READ; 8489 default: 8490 return 0; 8491 } 8492 case 1: 8493 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8494 case 2: 8495 if (is_user) { 8496 return PAGE_READ; 8497 } else { 8498 return PAGE_READ | PAGE_WRITE; 8499 } 8500 case 3: 8501 return PAGE_READ | PAGE_WRITE; 8502 case 4: /* Reserved. */ 8503 return 0; 8504 case 5: 8505 return is_user ? 0 : PAGE_READ; 8506 case 6: 8507 return PAGE_READ; 8508 case 7: 8509 if (!arm_feature(env, ARM_FEATURE_V6K)) { 8510 return 0; 8511 } 8512 return PAGE_READ; 8513 default: 8514 g_assert_not_reached(); 8515 } 8516 } 8517 8518 /* Translate section/page access permissions to page 8519 * R/W protection flags. 8520 * 8521 * @ap: The 2-bit simple AP (AP[2:1]) 8522 * @is_user: TRUE if accessing from PL0 8523 */ 8524 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user) 8525 { 8526 switch (ap) { 8527 case 0: 8528 return is_user ? 0 : PAGE_READ | PAGE_WRITE; 8529 case 1: 8530 return PAGE_READ | PAGE_WRITE; 8531 case 2: 8532 return is_user ? 0 : PAGE_READ; 8533 case 3: 8534 return PAGE_READ; 8535 default: 8536 g_assert_not_reached(); 8537 } 8538 } 8539 8540 static inline int 8541 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap) 8542 { 8543 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx)); 8544 } 8545 8546 /* Translate S2 section/page access permissions to protection flags 8547 * 8548 * @env: CPUARMState 8549 * @s2ap: The 2-bit stage2 access permissions (S2AP) 8550 * @xn: XN (execute-never) bit 8551 */ 8552 static int get_S2prot(CPUARMState *env, int s2ap, int xn) 8553 { 8554 int prot = 0; 8555 8556 if (s2ap & 1) { 8557 prot |= PAGE_READ; 8558 } 8559 if (s2ap & 2) { 8560 prot |= PAGE_WRITE; 8561 } 8562 if (!xn) { 8563 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) { 8564 prot |= PAGE_EXEC; 8565 } 8566 } 8567 return prot; 8568 } 8569 8570 /* Translate section/page access permissions to protection flags 8571 * 8572 * @env: CPUARMState 8573 * @mmu_idx: MMU index indicating required translation regime 8574 * @is_aa64: TRUE if AArch64 8575 * @ap: The 2-bit simple AP (AP[2:1]) 8576 * @ns: NS (non-secure) bit 8577 * @xn: XN (execute-never) bit 8578 * @pxn: PXN (privileged execute-never) bit 8579 */ 8580 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64, 8581 int ap, int ns, int xn, int pxn) 8582 { 8583 bool is_user = regime_is_user(env, mmu_idx); 8584 int prot_rw, user_rw; 8585 bool have_wxn; 8586 int wxn = 0; 8587 8588 assert(mmu_idx != ARMMMUIdx_S2NS); 8589 8590 user_rw = simple_ap_to_rw_prot_is_user(ap, true); 8591 if (is_user) { 8592 prot_rw = user_rw; 8593 } else { 8594 prot_rw = simple_ap_to_rw_prot_is_user(ap, false); 8595 } 8596 8597 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) { 8598 return prot_rw; 8599 } 8600 8601 /* TODO have_wxn should be replaced with 8602 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2) 8603 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE 8604 * compatible processors have EL2, which is required for [U]WXN. 8605 */ 8606 have_wxn = arm_feature(env, ARM_FEATURE_LPAE); 8607 8608 if (have_wxn) { 8609 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN; 8610 } 8611 8612 if (is_aa64) { 8613 switch (regime_el(env, mmu_idx)) { 8614 case 1: 8615 if (!is_user) { 8616 xn = pxn || (user_rw & PAGE_WRITE); 8617 } 8618 break; 8619 case 2: 8620 case 3: 8621 break; 8622 } 8623 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8624 switch (regime_el(env, mmu_idx)) { 8625 case 1: 8626 case 3: 8627 if (is_user) { 8628 xn = xn || !(user_rw & PAGE_READ); 8629 } else { 8630 int uwxn = 0; 8631 if (have_wxn) { 8632 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN; 8633 } 8634 xn = xn || !(prot_rw & PAGE_READ) || pxn || 8635 (uwxn && (user_rw & PAGE_WRITE)); 8636 } 8637 break; 8638 case 2: 8639 break; 8640 } 8641 } else { 8642 xn = wxn = 0; 8643 } 8644 8645 if (xn || (wxn && (prot_rw & PAGE_WRITE))) { 8646 return prot_rw; 8647 } 8648 return prot_rw | PAGE_EXEC; 8649 } 8650 8651 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx, 8652 uint32_t *table, uint32_t address) 8653 { 8654 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */ 8655 TCR *tcr = regime_tcr(env, mmu_idx); 8656 8657 if (address & tcr->mask) { 8658 if (tcr->raw_tcr & TTBCR_PD1) { 8659 /* Translation table walk disabled for TTBR1 */ 8660 return false; 8661 } 8662 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000; 8663 } else { 8664 if (tcr->raw_tcr & TTBCR_PD0) { 8665 /* Translation table walk disabled for TTBR0 */ 8666 return false; 8667 } 8668 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask; 8669 } 8670 *table |= (address >> 18) & 0x3ffc; 8671 return true; 8672 } 8673 8674 /* Translate a S1 pagetable walk through S2 if needed. */ 8675 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx, 8676 hwaddr addr, MemTxAttrs txattrs, 8677 ARMMMUFaultInfo *fi) 8678 { 8679 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) && 8680 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 8681 target_ulong s2size; 8682 hwaddr s2pa; 8683 int s2prot; 8684 int ret; 8685 8686 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa, 8687 &txattrs, &s2prot, &s2size, fi, NULL); 8688 if (ret) { 8689 assert(fi->type != ARMFault_None); 8690 fi->s2addr = addr; 8691 fi->stage2 = true; 8692 fi->s1ptw = true; 8693 return ~0; 8694 } 8695 addr = s2pa; 8696 } 8697 return addr; 8698 } 8699 8700 /* All loads done in the course of a page table walk go through here. */ 8701 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8702 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8703 { 8704 ARMCPU *cpu = ARM_CPU(cs); 8705 CPUARMState *env = &cpu->env; 8706 MemTxAttrs attrs = {}; 8707 MemTxResult result = MEMTX_OK; 8708 AddressSpace *as; 8709 uint32_t data; 8710 8711 attrs.secure = is_secure; 8712 as = arm_addressspace(cs, attrs); 8713 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8714 if (fi->s1ptw) { 8715 return 0; 8716 } 8717 if (regime_translation_big_endian(env, mmu_idx)) { 8718 data = address_space_ldl_be(as, addr, attrs, &result); 8719 } else { 8720 data = address_space_ldl_le(as, addr, attrs, &result); 8721 } 8722 if (result == MEMTX_OK) { 8723 return data; 8724 } 8725 fi->type = ARMFault_SyncExternalOnWalk; 8726 fi->ea = arm_extabort_type(result); 8727 return 0; 8728 } 8729 8730 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure, 8731 ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi) 8732 { 8733 ARMCPU *cpu = ARM_CPU(cs); 8734 CPUARMState *env = &cpu->env; 8735 MemTxAttrs attrs = {}; 8736 MemTxResult result = MEMTX_OK; 8737 AddressSpace *as; 8738 uint64_t data; 8739 8740 attrs.secure = is_secure; 8741 as = arm_addressspace(cs, attrs); 8742 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi); 8743 if (fi->s1ptw) { 8744 return 0; 8745 } 8746 if (regime_translation_big_endian(env, mmu_idx)) { 8747 data = address_space_ldq_be(as, addr, attrs, &result); 8748 } else { 8749 data = address_space_ldq_le(as, addr, attrs, &result); 8750 } 8751 if (result == MEMTX_OK) { 8752 return data; 8753 } 8754 fi->type = ARMFault_SyncExternalOnWalk; 8755 fi->ea = arm_extabort_type(result); 8756 return 0; 8757 } 8758 8759 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address, 8760 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8761 hwaddr *phys_ptr, int *prot, 8762 target_ulong *page_size, 8763 ARMMMUFaultInfo *fi) 8764 { 8765 CPUState *cs = CPU(arm_env_get_cpu(env)); 8766 int level = 1; 8767 uint32_t table; 8768 uint32_t desc; 8769 int type; 8770 int ap; 8771 int domain = 0; 8772 int domain_prot; 8773 hwaddr phys_addr; 8774 uint32_t dacr; 8775 8776 /* Pagetable walk. */ 8777 /* Lookup l1 descriptor. */ 8778 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8779 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8780 fi->type = ARMFault_Translation; 8781 goto do_fault; 8782 } 8783 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8784 mmu_idx, fi); 8785 if (fi->type != ARMFault_None) { 8786 goto do_fault; 8787 } 8788 type = (desc & 3); 8789 domain = (desc >> 5) & 0x0f; 8790 if (regime_el(env, mmu_idx) == 1) { 8791 dacr = env->cp15.dacr_ns; 8792 } else { 8793 dacr = env->cp15.dacr_s; 8794 } 8795 domain_prot = (dacr >> (domain * 2)) & 3; 8796 if (type == 0) { 8797 /* Section translation fault. */ 8798 fi->type = ARMFault_Translation; 8799 goto do_fault; 8800 } 8801 if (type != 2) { 8802 level = 2; 8803 } 8804 if (domain_prot == 0 || domain_prot == 2) { 8805 fi->type = ARMFault_Domain; 8806 goto do_fault; 8807 } 8808 if (type == 2) { 8809 /* 1Mb section. */ 8810 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8811 ap = (desc >> 10) & 3; 8812 *page_size = 1024 * 1024; 8813 } else { 8814 /* Lookup l2 entry. */ 8815 if (type == 1) { 8816 /* Coarse pagetable. */ 8817 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8818 } else { 8819 /* Fine pagetable. */ 8820 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc); 8821 } 8822 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8823 mmu_idx, fi); 8824 if (fi->type != ARMFault_None) { 8825 goto do_fault; 8826 } 8827 switch (desc & 3) { 8828 case 0: /* Page translation fault. */ 8829 fi->type = ARMFault_Translation; 8830 goto do_fault; 8831 case 1: /* 64k page. */ 8832 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8833 ap = (desc >> (4 + ((address >> 13) & 6))) & 3; 8834 *page_size = 0x10000; 8835 break; 8836 case 2: /* 4k page. */ 8837 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8838 ap = (desc >> (4 + ((address >> 9) & 6))) & 3; 8839 *page_size = 0x1000; 8840 break; 8841 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */ 8842 if (type == 1) { 8843 /* ARMv6/XScale extended small page format */ 8844 if (arm_feature(env, ARM_FEATURE_XSCALE) 8845 || arm_feature(env, ARM_FEATURE_V6)) { 8846 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8847 *page_size = 0x1000; 8848 } else { 8849 /* UNPREDICTABLE in ARMv5; we choose to take a 8850 * page translation fault. 8851 */ 8852 fi->type = ARMFault_Translation; 8853 goto do_fault; 8854 } 8855 } else { 8856 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff); 8857 *page_size = 0x400; 8858 } 8859 ap = (desc >> 4) & 3; 8860 break; 8861 default: 8862 /* Never happens, but compiler isn't smart enough to tell. */ 8863 abort(); 8864 } 8865 } 8866 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 8867 *prot |= *prot ? PAGE_EXEC : 0; 8868 if (!(*prot & (1 << access_type))) { 8869 /* Access permission fault. */ 8870 fi->type = ARMFault_Permission; 8871 goto do_fault; 8872 } 8873 *phys_ptr = phys_addr; 8874 return false; 8875 do_fault: 8876 fi->domain = domain; 8877 fi->level = level; 8878 return true; 8879 } 8880 8881 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address, 8882 MMUAccessType access_type, ARMMMUIdx mmu_idx, 8883 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 8884 target_ulong *page_size, ARMMMUFaultInfo *fi) 8885 { 8886 CPUState *cs = CPU(arm_env_get_cpu(env)); 8887 int level = 1; 8888 uint32_t table; 8889 uint32_t desc; 8890 uint32_t xn; 8891 uint32_t pxn = 0; 8892 int type; 8893 int ap; 8894 int domain = 0; 8895 int domain_prot; 8896 hwaddr phys_addr; 8897 uint32_t dacr; 8898 bool ns; 8899 8900 /* Pagetable walk. */ 8901 /* Lookup l1 descriptor. */ 8902 if (!get_level1_table_address(env, mmu_idx, &table, address)) { 8903 /* Section translation fault if page walk is disabled by PD0 or PD1 */ 8904 fi->type = ARMFault_Translation; 8905 goto do_fault; 8906 } 8907 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8908 mmu_idx, fi); 8909 if (fi->type != ARMFault_None) { 8910 goto do_fault; 8911 } 8912 type = (desc & 3); 8913 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) { 8914 /* Section translation fault, or attempt to use the encoding 8915 * which is Reserved on implementations without PXN. 8916 */ 8917 fi->type = ARMFault_Translation; 8918 goto do_fault; 8919 } 8920 if ((type == 1) || !(desc & (1 << 18))) { 8921 /* Page or Section. */ 8922 domain = (desc >> 5) & 0x0f; 8923 } 8924 if (regime_el(env, mmu_idx) == 1) { 8925 dacr = env->cp15.dacr_ns; 8926 } else { 8927 dacr = env->cp15.dacr_s; 8928 } 8929 if (type == 1) { 8930 level = 2; 8931 } 8932 domain_prot = (dacr >> (domain * 2)) & 3; 8933 if (domain_prot == 0 || domain_prot == 2) { 8934 /* Section or Page domain fault */ 8935 fi->type = ARMFault_Domain; 8936 goto do_fault; 8937 } 8938 if (type != 1) { 8939 if (desc & (1 << 18)) { 8940 /* Supersection. */ 8941 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff); 8942 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32; 8943 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36; 8944 *page_size = 0x1000000; 8945 } else { 8946 /* Section. */ 8947 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff); 8948 *page_size = 0x100000; 8949 } 8950 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4); 8951 xn = desc & (1 << 4); 8952 pxn = desc & 1; 8953 ns = extract32(desc, 19, 1); 8954 } else { 8955 if (arm_feature(env, ARM_FEATURE_PXN)) { 8956 pxn = (desc >> 2) & 1; 8957 } 8958 ns = extract32(desc, 3, 1); 8959 /* Lookup l2 entry. */ 8960 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc); 8961 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx), 8962 mmu_idx, fi); 8963 if (fi->type != ARMFault_None) { 8964 goto do_fault; 8965 } 8966 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4); 8967 switch (desc & 3) { 8968 case 0: /* Page translation fault. */ 8969 fi->type = ARMFault_Translation; 8970 goto do_fault; 8971 case 1: /* 64k page. */ 8972 phys_addr = (desc & 0xffff0000) | (address & 0xffff); 8973 xn = desc & (1 << 15); 8974 *page_size = 0x10000; 8975 break; 8976 case 2: case 3: /* 4k page. */ 8977 phys_addr = (desc & 0xfffff000) | (address & 0xfff); 8978 xn = desc & 1; 8979 *page_size = 0x1000; 8980 break; 8981 default: 8982 /* Never happens, but compiler isn't smart enough to tell. */ 8983 abort(); 8984 } 8985 } 8986 if (domain_prot == 3) { 8987 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 8988 } else { 8989 if (pxn && !regime_is_user(env, mmu_idx)) { 8990 xn = 1; 8991 } 8992 if (xn && access_type == MMU_INST_FETCH) { 8993 fi->type = ARMFault_Permission; 8994 goto do_fault; 8995 } 8996 8997 if (arm_feature(env, ARM_FEATURE_V6K) && 8998 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) { 8999 /* The simplified model uses AP[0] as an access control bit. */ 9000 if ((ap & 1) == 0) { 9001 /* Access flag fault. */ 9002 fi->type = ARMFault_AccessFlag; 9003 goto do_fault; 9004 } 9005 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1); 9006 } else { 9007 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot); 9008 } 9009 if (*prot && !xn) { 9010 *prot |= PAGE_EXEC; 9011 } 9012 if (!(*prot & (1 << access_type))) { 9013 /* Access permission fault. */ 9014 fi->type = ARMFault_Permission; 9015 goto do_fault; 9016 } 9017 } 9018 if (ns) { 9019 /* The NS bit will (as required by the architecture) have no effect if 9020 * the CPU doesn't support TZ or this is a non-secure translation 9021 * regime, because the attribute will already be non-secure. 9022 */ 9023 attrs->secure = false; 9024 } 9025 *phys_ptr = phys_addr; 9026 return false; 9027 do_fault: 9028 fi->domain = domain; 9029 fi->level = level; 9030 return true; 9031 } 9032 9033 /* 9034 * check_s2_mmu_setup 9035 * @cpu: ARMCPU 9036 * @is_aa64: True if the translation regime is in AArch64 state 9037 * @startlevel: Suggested starting level 9038 * @inputsize: Bitsize of IPAs 9039 * @stride: Page-table stride (See the ARM ARM) 9040 * 9041 * Returns true if the suggested S2 translation parameters are OK and 9042 * false otherwise. 9043 */ 9044 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level, 9045 int inputsize, int stride) 9046 { 9047 const int grainsize = stride + 3; 9048 int startsizecheck; 9049 9050 /* Negative levels are never allowed. */ 9051 if (level < 0) { 9052 return false; 9053 } 9054 9055 startsizecheck = inputsize - ((3 - level) * stride + grainsize); 9056 if (startsizecheck < 1 || startsizecheck > stride + 4) { 9057 return false; 9058 } 9059 9060 if (is_aa64) { 9061 CPUARMState *env = &cpu->env; 9062 unsigned int pamax = arm_pamax(cpu); 9063 9064 switch (stride) { 9065 case 13: /* 64KB Pages. */ 9066 if (level == 0 || (level == 1 && pamax <= 42)) { 9067 return false; 9068 } 9069 break; 9070 case 11: /* 16KB Pages. */ 9071 if (level == 0 || (level == 1 && pamax <= 40)) { 9072 return false; 9073 } 9074 break; 9075 case 9: /* 4KB Pages. */ 9076 if (level == 0 && pamax <= 42) { 9077 return false; 9078 } 9079 break; 9080 default: 9081 g_assert_not_reached(); 9082 } 9083 9084 /* Inputsize checks. */ 9085 if (inputsize > pamax && 9086 (arm_el_is_aa64(env, 1) || inputsize > 40)) { 9087 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */ 9088 return false; 9089 } 9090 } else { 9091 /* AArch32 only supports 4KB pages. Assert on that. */ 9092 assert(stride == 9); 9093 9094 if (level == 0) { 9095 return false; 9096 } 9097 } 9098 return true; 9099 } 9100 9101 /* Translate from the 4-bit stage 2 representation of 9102 * memory attributes (without cache-allocation hints) to 9103 * the 8-bit representation of the stage 1 MAIR registers 9104 * (which includes allocation hints). 9105 * 9106 * ref: shared/translation/attrs/S2AttrDecode() 9107 * .../S2ConvertAttrsHints() 9108 */ 9109 static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs) 9110 { 9111 uint8_t hiattr = extract32(s2attrs, 2, 2); 9112 uint8_t loattr = extract32(s2attrs, 0, 2); 9113 uint8_t hihint = 0, lohint = 0; 9114 9115 if (hiattr != 0) { /* normal memory */ 9116 if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */ 9117 hiattr = loattr = 1; /* non-cacheable */ 9118 } else { 9119 if (hiattr != 1) { /* Write-through or write-back */ 9120 hihint = 3; /* RW allocate */ 9121 } 9122 if (loattr != 1) { /* Write-through or write-back */ 9123 lohint = 3; /* RW allocate */ 9124 } 9125 } 9126 } 9127 9128 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint; 9129 } 9130 9131 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address, 9132 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9133 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot, 9134 target_ulong *page_size_ptr, 9135 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 9136 { 9137 ARMCPU *cpu = arm_env_get_cpu(env); 9138 CPUState *cs = CPU(cpu); 9139 /* Read an LPAE long-descriptor translation table. */ 9140 ARMFaultType fault_type = ARMFault_Translation; 9141 uint32_t level; 9142 uint32_t epd = 0; 9143 int32_t t0sz, t1sz; 9144 uint32_t tg; 9145 uint64_t ttbr; 9146 int ttbr_select; 9147 hwaddr descaddr, indexmask, indexmask_grainsize; 9148 uint32_t tableattrs; 9149 target_ulong page_size; 9150 uint32_t attrs; 9151 int32_t stride = 9; 9152 int32_t addrsize; 9153 int inputsize; 9154 int32_t tbi = 0; 9155 TCR *tcr = regime_tcr(env, mmu_idx); 9156 int ap, ns, xn, pxn; 9157 uint32_t el = regime_el(env, mmu_idx); 9158 bool ttbr1_valid = true; 9159 uint64_t descaddrmask; 9160 bool aarch64 = arm_el_is_aa64(env, el); 9161 9162 /* TODO: 9163 * This code does not handle the different format TCR for VTCR_EL2. 9164 * This code also does not support shareability levels. 9165 * Attribute and permission bit handling should also be checked when adding 9166 * support for those page table walks. 9167 */ 9168 if (aarch64) { 9169 level = 0; 9170 addrsize = 64; 9171 if (el > 1) { 9172 if (mmu_idx != ARMMMUIdx_S2NS) { 9173 tbi = extract64(tcr->raw_tcr, 20, 1); 9174 } 9175 } else { 9176 if (extract64(address, 55, 1)) { 9177 tbi = extract64(tcr->raw_tcr, 38, 1); 9178 } else { 9179 tbi = extract64(tcr->raw_tcr, 37, 1); 9180 } 9181 } 9182 tbi *= 8; 9183 9184 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it 9185 * invalid. 9186 */ 9187 if (el > 1) { 9188 ttbr1_valid = false; 9189 } 9190 } else { 9191 level = 1; 9192 addrsize = 32; 9193 /* There is no TTBR1 for EL2 */ 9194 if (el == 2) { 9195 ttbr1_valid = false; 9196 } 9197 } 9198 9199 /* Determine whether this address is in the region controlled by 9200 * TTBR0 or TTBR1 (or if it is in neither region and should fault). 9201 * This is a Non-secure PL0/1 stage 1 translation, so controlled by 9202 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32: 9203 */ 9204 if (aarch64) { 9205 /* AArch64 translation. */ 9206 t0sz = extract32(tcr->raw_tcr, 0, 6); 9207 t0sz = MIN(t0sz, 39); 9208 t0sz = MAX(t0sz, 16); 9209 } else if (mmu_idx != ARMMMUIdx_S2NS) { 9210 /* AArch32 stage 1 translation. */ 9211 t0sz = extract32(tcr->raw_tcr, 0, 3); 9212 } else { 9213 /* AArch32 stage 2 translation. */ 9214 bool sext = extract32(tcr->raw_tcr, 4, 1); 9215 bool sign = extract32(tcr->raw_tcr, 3, 1); 9216 /* Address size is 40-bit for a stage 2 translation, 9217 * and t0sz can be negative (from -8 to 7), 9218 * so we need to adjust it to use the TTBR selecting logic below. 9219 */ 9220 addrsize = 40; 9221 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8; 9222 9223 /* If the sign-extend bit is not the same as t0sz[3], the result 9224 * is unpredictable. Flag this as a guest error. */ 9225 if (sign != sext) { 9226 qemu_log_mask(LOG_GUEST_ERROR, 9227 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n"); 9228 } 9229 } 9230 t1sz = extract32(tcr->raw_tcr, 16, 6); 9231 if (aarch64) { 9232 t1sz = MIN(t1sz, 39); 9233 t1sz = MAX(t1sz, 16); 9234 } 9235 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) { 9236 /* there is a ttbr0 region and we are in it (high bits all zero) */ 9237 ttbr_select = 0; 9238 } else if (ttbr1_valid && t1sz && 9239 !extract64(~address, addrsize - t1sz, t1sz - tbi)) { 9240 /* there is a ttbr1 region and we are in it (high bits all one) */ 9241 ttbr_select = 1; 9242 } else if (!t0sz) { 9243 /* ttbr0 region is "everything not in the ttbr1 region" */ 9244 ttbr_select = 0; 9245 } else if (!t1sz && ttbr1_valid) { 9246 /* ttbr1 region is "everything not in the ttbr0 region" */ 9247 ttbr_select = 1; 9248 } else { 9249 /* in the gap between the two regions, this is a Translation fault */ 9250 fault_type = ARMFault_Translation; 9251 goto do_fault; 9252 } 9253 9254 /* Note that QEMU ignores shareability and cacheability attributes, 9255 * so we don't need to do anything with the SH, ORGN, IRGN fields 9256 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the 9257 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently 9258 * implement any ASID-like capability so we can ignore it (instead 9259 * we will always flush the TLB any time the ASID is changed). 9260 */ 9261 if (ttbr_select == 0) { 9262 ttbr = regime_ttbr(env, mmu_idx, 0); 9263 if (el < 2) { 9264 epd = extract32(tcr->raw_tcr, 7, 1); 9265 } 9266 inputsize = addrsize - t0sz; 9267 9268 tg = extract32(tcr->raw_tcr, 14, 2); 9269 if (tg == 1) { /* 64KB pages */ 9270 stride = 13; 9271 } 9272 if (tg == 2) { /* 16KB pages */ 9273 stride = 11; 9274 } 9275 } else { 9276 /* We should only be here if TTBR1 is valid */ 9277 assert(ttbr1_valid); 9278 9279 ttbr = regime_ttbr(env, mmu_idx, 1); 9280 epd = extract32(tcr->raw_tcr, 23, 1); 9281 inputsize = addrsize - t1sz; 9282 9283 tg = extract32(tcr->raw_tcr, 30, 2); 9284 if (tg == 3) { /* 64KB pages */ 9285 stride = 13; 9286 } 9287 if (tg == 1) { /* 16KB pages */ 9288 stride = 11; 9289 } 9290 } 9291 9292 /* Here we should have set up all the parameters for the translation: 9293 * inputsize, ttbr, epd, stride, tbi 9294 */ 9295 9296 if (epd) { 9297 /* Translation table walk disabled => Translation fault on TLB miss 9298 * Note: This is always 0 on 64-bit EL2 and EL3. 9299 */ 9300 goto do_fault; 9301 } 9302 9303 if (mmu_idx != ARMMMUIdx_S2NS) { 9304 /* The starting level depends on the virtual address size (which can 9305 * be up to 48 bits) and the translation granule size. It indicates 9306 * the number of strides (stride bits at a time) needed to 9307 * consume the bits of the input address. In the pseudocode this is: 9308 * level = 4 - RoundUp((inputsize - grainsize) / stride) 9309 * where their 'inputsize' is our 'inputsize', 'grainsize' is 9310 * our 'stride + 3' and 'stride' is our 'stride'. 9311 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying: 9312 * = 4 - (inputsize - stride - 3 + stride - 1) / stride 9313 * = 4 - (inputsize - 4) / stride; 9314 */ 9315 level = 4 - (inputsize - 4) / stride; 9316 } else { 9317 /* For stage 2 translations the starting level is specified by the 9318 * VTCR_EL2.SL0 field (whose interpretation depends on the page size) 9319 */ 9320 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2); 9321 uint32_t startlevel; 9322 bool ok; 9323 9324 if (!aarch64 || stride == 9) { 9325 /* AArch32 or 4KB pages */ 9326 startlevel = 2 - sl0; 9327 } else { 9328 /* 16KB or 64KB pages */ 9329 startlevel = 3 - sl0; 9330 } 9331 9332 /* Check that the starting level is valid. */ 9333 ok = check_s2_mmu_setup(cpu, aarch64, startlevel, 9334 inputsize, stride); 9335 if (!ok) { 9336 fault_type = ARMFault_Translation; 9337 goto do_fault; 9338 } 9339 level = startlevel; 9340 } 9341 9342 indexmask_grainsize = (1ULL << (stride + 3)) - 1; 9343 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1; 9344 9345 /* Now we can extract the actual base address from the TTBR */ 9346 descaddr = extract64(ttbr, 0, 48); 9347 descaddr &= ~indexmask; 9348 9349 /* The address field in the descriptor goes up to bit 39 for ARMv7 9350 * but up to bit 47 for ARMv8, but we use the descaddrmask 9351 * up to bit 39 for AArch32, because we don't need other bits in that case 9352 * to construct next descriptor address (anyway they should be all zeroes). 9353 */ 9354 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) & 9355 ~indexmask_grainsize; 9356 9357 /* Secure accesses start with the page table in secure memory and 9358 * can be downgraded to non-secure at any step. Non-secure accesses 9359 * remain non-secure. We implement this by just ORing in the NSTable/NS 9360 * bits at each step. 9361 */ 9362 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4); 9363 for (;;) { 9364 uint64_t descriptor; 9365 bool nstable; 9366 9367 descaddr |= (address >> (stride * (4 - level))) & indexmask; 9368 descaddr &= ~7ULL; 9369 nstable = extract32(tableattrs, 4, 1); 9370 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi); 9371 if (fi->type != ARMFault_None) { 9372 goto do_fault; 9373 } 9374 9375 if (!(descriptor & 1) || 9376 (!(descriptor & 2) && (level == 3))) { 9377 /* Invalid, or the Reserved level 3 encoding */ 9378 goto do_fault; 9379 } 9380 descaddr = descriptor & descaddrmask; 9381 9382 if ((descriptor & 2) && (level < 3)) { 9383 /* Table entry. The top five bits are attributes which may 9384 * propagate down through lower levels of the table (and 9385 * which are all arranged so that 0 means "no effect", so 9386 * we can gather them up by ORing in the bits at each level). 9387 */ 9388 tableattrs |= extract64(descriptor, 59, 5); 9389 level++; 9390 indexmask = indexmask_grainsize; 9391 continue; 9392 } 9393 /* Block entry at level 1 or 2, or page entry at level 3. 9394 * These are basically the same thing, although the number 9395 * of bits we pull in from the vaddr varies. 9396 */ 9397 page_size = (1ULL << ((stride * (4 - level)) + 3)); 9398 descaddr |= (address & (page_size - 1)); 9399 /* Extract attributes from the descriptor */ 9400 attrs = extract64(descriptor, 2, 10) 9401 | (extract64(descriptor, 52, 12) << 10); 9402 9403 if (mmu_idx == ARMMMUIdx_S2NS) { 9404 /* Stage 2 table descriptors do not include any attribute fields */ 9405 break; 9406 } 9407 /* Merge in attributes from table descriptors */ 9408 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */ 9409 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */ 9410 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1 9411 * means "force PL1 access only", which means forcing AP[1] to 0. 9412 */ 9413 if (extract32(tableattrs, 2, 1)) { 9414 attrs &= ~(1 << 4); 9415 } 9416 attrs |= nstable << 3; /* NS */ 9417 break; 9418 } 9419 /* Here descaddr is the final physical address, and attributes 9420 * are all in attrs. 9421 */ 9422 fault_type = ARMFault_AccessFlag; 9423 if ((attrs & (1 << 8)) == 0) { 9424 /* Access flag */ 9425 goto do_fault; 9426 } 9427 9428 ap = extract32(attrs, 4, 2); 9429 xn = extract32(attrs, 12, 1); 9430 9431 if (mmu_idx == ARMMMUIdx_S2NS) { 9432 ns = true; 9433 *prot = get_S2prot(env, ap, xn); 9434 } else { 9435 ns = extract32(attrs, 3, 1); 9436 pxn = extract32(attrs, 11, 1); 9437 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn); 9438 } 9439 9440 fault_type = ARMFault_Permission; 9441 if (!(*prot & (1 << access_type))) { 9442 goto do_fault; 9443 } 9444 9445 if (ns) { 9446 /* The NS bit will (as required by the architecture) have no effect if 9447 * the CPU doesn't support TZ or this is a non-secure translation 9448 * regime, because the attribute will already be non-secure. 9449 */ 9450 txattrs->secure = false; 9451 } 9452 9453 if (cacheattrs != NULL) { 9454 if (mmu_idx == ARMMMUIdx_S2NS) { 9455 cacheattrs->attrs = convert_stage2_attrs(env, 9456 extract32(attrs, 0, 4)); 9457 } else { 9458 /* Index into MAIR registers for cache attributes */ 9459 uint8_t attrindx = extract32(attrs, 0, 3); 9460 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)]; 9461 assert(attrindx <= 7); 9462 cacheattrs->attrs = extract64(mair, attrindx * 8, 8); 9463 } 9464 cacheattrs->shareability = extract32(attrs, 6, 2); 9465 } 9466 9467 *phys_ptr = descaddr; 9468 *page_size_ptr = page_size; 9469 return false; 9470 9471 do_fault: 9472 fi->type = fault_type; 9473 fi->level = level; 9474 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */ 9475 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS); 9476 return true; 9477 } 9478 9479 static inline void get_phys_addr_pmsav7_default(CPUARMState *env, 9480 ARMMMUIdx mmu_idx, 9481 int32_t address, int *prot) 9482 { 9483 if (!arm_feature(env, ARM_FEATURE_M)) { 9484 *prot = PAGE_READ | PAGE_WRITE; 9485 switch (address) { 9486 case 0xF0000000 ... 0xFFFFFFFF: 9487 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { 9488 /* hivecs execing is ok */ 9489 *prot |= PAGE_EXEC; 9490 } 9491 break; 9492 case 0x00000000 ... 0x7FFFFFFF: 9493 *prot |= PAGE_EXEC; 9494 break; 9495 } 9496 } else { 9497 /* Default system address map for M profile cores. 9498 * The architecture specifies which regions are execute-never; 9499 * at the MPU level no other checks are defined. 9500 */ 9501 switch (address) { 9502 case 0x00000000 ... 0x1fffffff: /* ROM */ 9503 case 0x20000000 ... 0x3fffffff: /* SRAM */ 9504 case 0x60000000 ... 0x7fffffff: /* RAM */ 9505 case 0x80000000 ... 0x9fffffff: /* RAM */ 9506 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 9507 break; 9508 case 0x40000000 ... 0x5fffffff: /* Peripheral */ 9509 case 0xa0000000 ... 0xbfffffff: /* Device */ 9510 case 0xc0000000 ... 0xdfffffff: /* Device */ 9511 case 0xe0000000 ... 0xffffffff: /* System */ 9512 *prot = PAGE_READ | PAGE_WRITE; 9513 break; 9514 default: 9515 g_assert_not_reached(); 9516 } 9517 } 9518 } 9519 9520 static bool pmsav7_use_background_region(ARMCPU *cpu, 9521 ARMMMUIdx mmu_idx, bool is_user) 9522 { 9523 /* Return true if we should use the default memory map as a 9524 * "background" region if there are no hits against any MPU regions. 9525 */ 9526 CPUARMState *env = &cpu->env; 9527 9528 if (is_user) { 9529 return false; 9530 } 9531 9532 if (arm_feature(env, ARM_FEATURE_M)) { 9533 return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] 9534 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK; 9535 } else { 9536 return regime_sctlr(env, mmu_idx) & SCTLR_BR; 9537 } 9538 } 9539 9540 static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address) 9541 { 9542 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */ 9543 return arm_feature(env, ARM_FEATURE_M) && 9544 extract32(address, 20, 12) == 0xe00; 9545 } 9546 9547 static inline bool m_is_system_region(CPUARMState *env, uint32_t address) 9548 { 9549 /* True if address is in the M profile system region 9550 * 0xe0000000 - 0xffffffff 9551 */ 9552 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7; 9553 } 9554 9555 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address, 9556 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9557 hwaddr *phys_ptr, int *prot, 9558 ARMMMUFaultInfo *fi) 9559 { 9560 ARMCPU *cpu = arm_env_get_cpu(env); 9561 int n; 9562 bool is_user = regime_is_user(env, mmu_idx); 9563 9564 *phys_ptr = address; 9565 *prot = 0; 9566 9567 if (regime_translation_disabled(env, mmu_idx) || 9568 m_is_ppb_region(env, address)) { 9569 /* MPU disabled or M profile PPB access: use default memory map. 9570 * The other case which uses the default memory map in the 9571 * v7M ARM ARM pseudocode is exception vector reads from the vector 9572 * table. In QEMU those accesses are done in arm_v7m_load_vector(), 9573 * which always does a direct read using address_space_ldl(), rather 9574 * than going via this function, so we don't need to check that here. 9575 */ 9576 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9577 } else { /* MPU enabled */ 9578 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9579 /* region search */ 9580 uint32_t base = env->pmsav7.drbar[n]; 9581 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5); 9582 uint32_t rmask; 9583 bool srdis = false; 9584 9585 if (!(env->pmsav7.drsr[n] & 0x1)) { 9586 continue; 9587 } 9588 9589 if (!rsize) { 9590 qemu_log_mask(LOG_GUEST_ERROR, 9591 "DRSR[%d]: Rsize field cannot be 0\n", n); 9592 continue; 9593 } 9594 rsize++; 9595 rmask = (1ull << rsize) - 1; 9596 9597 if (base & rmask) { 9598 qemu_log_mask(LOG_GUEST_ERROR, 9599 "DRBAR[%d]: 0x%" PRIx32 " misaligned " 9600 "to DRSR region size, mask = 0x%" PRIx32 "\n", 9601 n, base, rmask); 9602 continue; 9603 } 9604 9605 if (address < base || address > base + rmask) { 9606 continue; 9607 } 9608 9609 /* Region matched */ 9610 9611 if (rsize >= 8) { /* no subregions for regions < 256 bytes */ 9612 int i, snd; 9613 uint32_t srdis_mask; 9614 9615 rsize -= 3; /* sub region size (power of 2) */ 9616 snd = ((address - base) >> rsize) & 0x7; 9617 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1); 9618 9619 srdis_mask = srdis ? 0x3 : 0x0; 9620 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) { 9621 /* This will check in groups of 2, 4 and then 8, whether 9622 * the subregion bits are consistent. rsize is incremented 9623 * back up to give the region size, considering consistent 9624 * adjacent subregions as one region. Stop testing if rsize 9625 * is already big enough for an entire QEMU page. 9626 */ 9627 int snd_rounded = snd & ~(i - 1); 9628 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n], 9629 snd_rounded + 8, i); 9630 if (srdis_mask ^ srdis_multi) { 9631 break; 9632 } 9633 srdis_mask = (srdis_mask << i) | srdis_mask; 9634 rsize++; 9635 } 9636 } 9637 if (rsize < TARGET_PAGE_BITS) { 9638 qemu_log_mask(LOG_UNIMP, 9639 "DRSR[%d]: No support for MPU (sub)region size of" 9640 " %" PRIu32 " bytes. Minimum is %d.\n", 9641 n, (1 << rsize), TARGET_PAGE_SIZE); 9642 continue; 9643 } 9644 if (srdis) { 9645 continue; 9646 } 9647 break; 9648 } 9649 9650 if (n == -1) { /* no hits */ 9651 if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9652 /* background fault */ 9653 fi->type = ARMFault_Background; 9654 return true; 9655 } 9656 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9657 } else { /* a MPU hit! */ 9658 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3); 9659 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1); 9660 9661 if (m_is_system_region(env, address)) { 9662 /* System space is always execute never */ 9663 xn = 1; 9664 } 9665 9666 if (is_user) { /* User mode AP bit decoding */ 9667 switch (ap) { 9668 case 0: 9669 case 1: 9670 case 5: 9671 break; /* no access */ 9672 case 3: 9673 *prot |= PAGE_WRITE; 9674 /* fall through */ 9675 case 2: 9676 case 6: 9677 *prot |= PAGE_READ | PAGE_EXEC; 9678 break; 9679 case 7: 9680 /* for v7M, same as 6; for R profile a reserved value */ 9681 if (arm_feature(env, ARM_FEATURE_M)) { 9682 *prot |= PAGE_READ | PAGE_EXEC; 9683 break; 9684 } 9685 /* fall through */ 9686 default: 9687 qemu_log_mask(LOG_GUEST_ERROR, 9688 "DRACR[%d]: Bad value for AP bits: 0x%" 9689 PRIx32 "\n", n, ap); 9690 } 9691 } else { /* Priv. mode AP bits decoding */ 9692 switch (ap) { 9693 case 0: 9694 break; /* no access */ 9695 case 1: 9696 case 2: 9697 case 3: 9698 *prot |= PAGE_WRITE; 9699 /* fall through */ 9700 case 5: 9701 case 6: 9702 *prot |= PAGE_READ | PAGE_EXEC; 9703 break; 9704 case 7: 9705 /* for v7M, same as 6; for R profile a reserved value */ 9706 if (arm_feature(env, ARM_FEATURE_M)) { 9707 *prot |= PAGE_READ | PAGE_EXEC; 9708 break; 9709 } 9710 /* fall through */ 9711 default: 9712 qemu_log_mask(LOG_GUEST_ERROR, 9713 "DRACR[%d]: Bad value for AP bits: 0x%" 9714 PRIx32 "\n", n, ap); 9715 } 9716 } 9717 9718 /* execute never */ 9719 if (xn) { 9720 *prot &= ~PAGE_EXEC; 9721 } 9722 } 9723 } 9724 9725 fi->type = ARMFault_Permission; 9726 fi->level = 1; 9727 return !(*prot & (1 << access_type)); 9728 } 9729 9730 static bool v8m_is_sau_exempt(CPUARMState *env, 9731 uint32_t address, MMUAccessType access_type) 9732 { 9733 /* The architecture specifies that certain address ranges are 9734 * exempt from v8M SAU/IDAU checks. 9735 */ 9736 return 9737 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) || 9738 (address >= 0xe0000000 && address <= 0xe0002fff) || 9739 (address >= 0xe000e000 && address <= 0xe000efff) || 9740 (address >= 0xe002e000 && address <= 0xe002efff) || 9741 (address >= 0xe0040000 && address <= 0xe0041fff) || 9742 (address >= 0xe00ff000 && address <= 0xe00fffff); 9743 } 9744 9745 static void v8m_security_lookup(CPUARMState *env, uint32_t address, 9746 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9747 V8M_SAttributes *sattrs) 9748 { 9749 /* Look up the security attributes for this address. Compare the 9750 * pseudocode SecurityCheck() function. 9751 * We assume the caller has zero-initialized *sattrs. 9752 */ 9753 ARMCPU *cpu = arm_env_get_cpu(env); 9754 int r; 9755 bool idau_exempt = false, idau_ns = true, idau_nsc = true; 9756 int idau_region = IREGION_NOTVALID; 9757 9758 if (cpu->idau) { 9759 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau); 9760 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau); 9761 9762 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns, 9763 &idau_nsc); 9764 } 9765 9766 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) { 9767 /* 0xf0000000..0xffffffff is always S for insn fetches */ 9768 return; 9769 } 9770 9771 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) { 9772 sattrs->ns = !regime_is_secure(env, mmu_idx); 9773 return; 9774 } 9775 9776 if (idau_region != IREGION_NOTVALID) { 9777 sattrs->irvalid = true; 9778 sattrs->iregion = idau_region; 9779 } 9780 9781 switch (env->sau.ctrl & 3) { 9782 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */ 9783 break; 9784 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */ 9785 sattrs->ns = true; 9786 break; 9787 default: /* SAU.ENABLE == 1 */ 9788 for (r = 0; r < cpu->sau_sregion; r++) { 9789 if (env->sau.rlar[r] & 1) { 9790 uint32_t base = env->sau.rbar[r] & ~0x1f; 9791 uint32_t limit = env->sau.rlar[r] | 0x1f; 9792 9793 if (base <= address && limit >= address) { 9794 if (sattrs->srvalid) { 9795 /* If we hit in more than one region then we must report 9796 * as Secure, not NS-Callable, with no valid region 9797 * number info. 9798 */ 9799 sattrs->ns = false; 9800 sattrs->nsc = false; 9801 sattrs->sregion = 0; 9802 sattrs->srvalid = false; 9803 break; 9804 } else { 9805 if (env->sau.rlar[r] & 2) { 9806 sattrs->nsc = true; 9807 } else { 9808 sattrs->ns = true; 9809 } 9810 sattrs->srvalid = true; 9811 sattrs->sregion = r; 9812 } 9813 } 9814 } 9815 } 9816 9817 /* The IDAU will override the SAU lookup results if it specifies 9818 * higher security than the SAU does. 9819 */ 9820 if (!idau_ns) { 9821 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) { 9822 sattrs->ns = false; 9823 sattrs->nsc = idau_nsc; 9824 } 9825 } 9826 break; 9827 } 9828 } 9829 9830 static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address, 9831 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9832 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9833 int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion) 9834 { 9835 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check 9836 * that a full phys-to-virt translation does). 9837 * mregion is (if not NULL) set to the region number which matched, 9838 * or -1 if no region number is returned (MPU off, address did not 9839 * hit a region, address hit in multiple regions). 9840 */ 9841 ARMCPU *cpu = arm_env_get_cpu(env); 9842 bool is_user = regime_is_user(env, mmu_idx); 9843 uint32_t secure = regime_is_secure(env, mmu_idx); 9844 int n; 9845 int matchregion = -1; 9846 bool hit = false; 9847 9848 *phys_ptr = address; 9849 *prot = 0; 9850 if (mregion) { 9851 *mregion = -1; 9852 } 9853 9854 /* Unlike the ARM ARM pseudocode, we don't need to check whether this 9855 * was an exception vector read from the vector table (which is always 9856 * done using the default system address map), because those accesses 9857 * are done in arm_v7m_load_vector(), which always does a direct 9858 * read using address_space_ldl(), rather than going via this function. 9859 */ 9860 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */ 9861 hit = true; 9862 } else if (m_is_ppb_region(env, address)) { 9863 hit = true; 9864 } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) { 9865 hit = true; 9866 } else { 9867 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) { 9868 /* region search */ 9869 /* Note that the base address is bits [31:5] from the register 9870 * with bits [4:0] all zeroes, but the limit address is bits 9871 * [31:5] from the register with bits [4:0] all ones. 9872 */ 9873 uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f; 9874 uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f; 9875 9876 if (!(env->pmsav8.rlar[secure][n] & 0x1)) { 9877 /* Region disabled */ 9878 continue; 9879 } 9880 9881 if (address < base || address > limit) { 9882 continue; 9883 } 9884 9885 if (hit) { 9886 /* Multiple regions match -- always a failure (unlike 9887 * PMSAv7 where highest-numbered-region wins) 9888 */ 9889 fi->type = ARMFault_Permission; 9890 fi->level = 1; 9891 return true; 9892 } 9893 9894 matchregion = n; 9895 hit = true; 9896 9897 if (base & ~TARGET_PAGE_MASK) { 9898 qemu_log_mask(LOG_UNIMP, 9899 "MPU_RBAR[%d]: No support for MPU region base" 9900 "address of 0x%" PRIx32 ". Minimum alignment is " 9901 "%d\n", 9902 n, base, TARGET_PAGE_BITS); 9903 continue; 9904 } 9905 if ((limit + 1) & ~TARGET_PAGE_MASK) { 9906 qemu_log_mask(LOG_UNIMP, 9907 "MPU_RBAR[%d]: No support for MPU region limit" 9908 "address of 0x%" PRIx32 ". Minimum alignment is " 9909 "%d\n", 9910 n, limit, TARGET_PAGE_BITS); 9911 continue; 9912 } 9913 } 9914 } 9915 9916 if (!hit) { 9917 /* background fault */ 9918 fi->type = ARMFault_Background; 9919 return true; 9920 } 9921 9922 if (matchregion == -1) { 9923 /* hit using the background region */ 9924 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot); 9925 } else { 9926 uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2); 9927 uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1); 9928 9929 if (m_is_system_region(env, address)) { 9930 /* System space is always execute never */ 9931 xn = 1; 9932 } 9933 9934 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap); 9935 if (*prot && !xn) { 9936 *prot |= PAGE_EXEC; 9937 } 9938 /* We don't need to look the attribute up in the MAIR0/MAIR1 9939 * registers because that only tells us about cacheability. 9940 */ 9941 if (mregion) { 9942 *mregion = matchregion; 9943 } 9944 } 9945 9946 fi->type = ARMFault_Permission; 9947 fi->level = 1; 9948 return !(*prot & (1 << access_type)); 9949 } 9950 9951 9952 static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address, 9953 MMUAccessType access_type, ARMMMUIdx mmu_idx, 9954 hwaddr *phys_ptr, MemTxAttrs *txattrs, 9955 int *prot, ARMMMUFaultInfo *fi) 9956 { 9957 uint32_t secure = regime_is_secure(env, mmu_idx); 9958 V8M_SAttributes sattrs = {}; 9959 9960 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 9961 v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs); 9962 if (access_type == MMU_INST_FETCH) { 9963 /* Instruction fetches always use the MMU bank and the 9964 * transaction attribute determined by the fetch address, 9965 * regardless of CPU state. This is painful for QEMU 9966 * to handle, because it would mean we need to encode 9967 * into the mmu_idx not just the (user, negpri) information 9968 * for the current security state but also that for the 9969 * other security state, which would balloon the number 9970 * of mmu_idx values needed alarmingly. 9971 * Fortunately we can avoid this because it's not actually 9972 * possible to arbitrarily execute code from memory with 9973 * the wrong security attribute: it will always generate 9974 * an exception of some kind or another, apart from the 9975 * special case of an NS CPU executing an SG instruction 9976 * in S&NSC memory. So we always just fail the translation 9977 * here and sort things out in the exception handler 9978 * (including possibly emulating an SG instruction). 9979 */ 9980 if (sattrs.ns != !secure) { 9981 if (sattrs.nsc) { 9982 fi->type = ARMFault_QEMU_NSCExec; 9983 } else { 9984 fi->type = ARMFault_QEMU_SFault; 9985 } 9986 *phys_ptr = address; 9987 *prot = 0; 9988 return true; 9989 } 9990 } else { 9991 /* For data accesses we always use the MMU bank indicated 9992 * by the current CPU state, but the security attributes 9993 * might downgrade a secure access to nonsecure. 9994 */ 9995 if (sattrs.ns) { 9996 txattrs->secure = false; 9997 } else if (!secure) { 9998 /* NS access to S memory must fault. 9999 * Architecturally we should first check whether the 10000 * MPU information for this address indicates that we 10001 * are doing an unaligned access to Device memory, which 10002 * should generate a UsageFault instead. QEMU does not 10003 * currently check for that kind of unaligned access though. 10004 * If we added it we would need to do so as a special case 10005 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt(). 10006 */ 10007 fi->type = ARMFault_QEMU_SFault; 10008 *phys_ptr = address; 10009 *prot = 0; 10010 return true; 10011 } 10012 } 10013 } 10014 10015 return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr, 10016 txattrs, prot, fi, NULL); 10017 } 10018 10019 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address, 10020 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10021 hwaddr *phys_ptr, int *prot, 10022 ARMMMUFaultInfo *fi) 10023 { 10024 int n; 10025 uint32_t mask; 10026 uint32_t base; 10027 bool is_user = regime_is_user(env, mmu_idx); 10028 10029 if (regime_translation_disabled(env, mmu_idx)) { 10030 /* MPU disabled. */ 10031 *phys_ptr = address; 10032 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10033 return false; 10034 } 10035 10036 *phys_ptr = address; 10037 for (n = 7; n >= 0; n--) { 10038 base = env->cp15.c6_region[n]; 10039 if ((base & 1) == 0) { 10040 continue; 10041 } 10042 mask = 1 << ((base >> 1) & 0x1f); 10043 /* Keep this shift separate from the above to avoid an 10044 (undefined) << 32. */ 10045 mask = (mask << 1) - 1; 10046 if (((base ^ address) & ~mask) == 0) { 10047 break; 10048 } 10049 } 10050 if (n < 0) { 10051 fi->type = ARMFault_Background; 10052 return true; 10053 } 10054 10055 if (access_type == MMU_INST_FETCH) { 10056 mask = env->cp15.pmsav5_insn_ap; 10057 } else { 10058 mask = env->cp15.pmsav5_data_ap; 10059 } 10060 mask = (mask >> (n * 4)) & 0xf; 10061 switch (mask) { 10062 case 0: 10063 fi->type = ARMFault_Permission; 10064 fi->level = 1; 10065 return true; 10066 case 1: 10067 if (is_user) { 10068 fi->type = ARMFault_Permission; 10069 fi->level = 1; 10070 return true; 10071 } 10072 *prot = PAGE_READ | PAGE_WRITE; 10073 break; 10074 case 2: 10075 *prot = PAGE_READ; 10076 if (!is_user) { 10077 *prot |= PAGE_WRITE; 10078 } 10079 break; 10080 case 3: 10081 *prot = PAGE_READ | PAGE_WRITE; 10082 break; 10083 case 5: 10084 if (is_user) { 10085 fi->type = ARMFault_Permission; 10086 fi->level = 1; 10087 return true; 10088 } 10089 *prot = PAGE_READ; 10090 break; 10091 case 6: 10092 *prot = PAGE_READ; 10093 break; 10094 default: 10095 /* Bad permission. */ 10096 fi->type = ARMFault_Permission; 10097 fi->level = 1; 10098 return true; 10099 } 10100 *prot |= PAGE_EXEC; 10101 return false; 10102 } 10103 10104 /* Combine either inner or outer cacheability attributes for normal 10105 * memory, according to table D4-42 and pseudocode procedure 10106 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM). 10107 * 10108 * NB: only stage 1 includes allocation hints (RW bits), leading to 10109 * some asymmetry. 10110 */ 10111 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2) 10112 { 10113 if (s1 == 4 || s2 == 4) { 10114 /* non-cacheable has precedence */ 10115 return 4; 10116 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) { 10117 /* stage 1 write-through takes precedence */ 10118 return s1; 10119 } else if (extract32(s2, 2, 2) == 2) { 10120 /* stage 2 write-through takes precedence, but the allocation hint 10121 * is still taken from stage 1 10122 */ 10123 return (2 << 2) | extract32(s1, 0, 2); 10124 } else { /* write-back */ 10125 return s1; 10126 } 10127 } 10128 10129 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4 10130 * and CombineS1S2Desc() 10131 * 10132 * @s1: Attributes from stage 1 walk 10133 * @s2: Attributes from stage 2 walk 10134 */ 10135 static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2) 10136 { 10137 uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4); 10138 uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4); 10139 ARMCacheAttrs ret; 10140 10141 /* Combine shareability attributes (table D4-43) */ 10142 if (s1.shareability == 2 || s2.shareability == 2) { 10143 /* if either are outer-shareable, the result is outer-shareable */ 10144 ret.shareability = 2; 10145 } else if (s1.shareability == 3 || s2.shareability == 3) { 10146 /* if either are inner-shareable, the result is inner-shareable */ 10147 ret.shareability = 3; 10148 } else { 10149 /* both non-shareable */ 10150 ret.shareability = 0; 10151 } 10152 10153 /* Combine memory type and cacheability attributes */ 10154 if (s1hi == 0 || s2hi == 0) { 10155 /* Device has precedence over normal */ 10156 if (s1lo == 0 || s2lo == 0) { 10157 /* nGnRnE has precedence over anything */ 10158 ret.attrs = 0; 10159 } else if (s1lo == 4 || s2lo == 4) { 10160 /* non-Reordering has precedence over Reordering */ 10161 ret.attrs = 4; /* nGnRE */ 10162 } else if (s1lo == 8 || s2lo == 8) { 10163 /* non-Gathering has precedence over Gathering */ 10164 ret.attrs = 8; /* nGRE */ 10165 } else { 10166 ret.attrs = 0xc; /* GRE */ 10167 } 10168 10169 /* Any location for which the resultant memory type is any 10170 * type of Device memory is always treated as Outer Shareable. 10171 */ 10172 ret.shareability = 2; 10173 } else { /* Normal memory */ 10174 /* Outer/inner cacheability combine independently */ 10175 ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4 10176 | combine_cacheattr_nibble(s1lo, s2lo); 10177 10178 if (ret.attrs == 0x44) { 10179 /* Any location for which the resultant memory type is Normal 10180 * Inner Non-cacheable, Outer Non-cacheable is always treated 10181 * as Outer Shareable. 10182 */ 10183 ret.shareability = 2; 10184 } 10185 } 10186 10187 return ret; 10188 } 10189 10190 10191 /* get_phys_addr - get the physical address for this virtual address 10192 * 10193 * Find the physical address corresponding to the given virtual address, 10194 * by doing a translation table walk on MMU based systems or using the 10195 * MPU state on MPU based systems. 10196 * 10197 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs, 10198 * prot and page_size may not be filled in, and the populated fsr value provides 10199 * information on why the translation aborted, in the format of a 10200 * DFSR/IFSR fault register, with the following caveats: 10201 * * we honour the short vs long DFSR format differences. 10202 * * the WnR bit is never set (the caller must do this). 10203 * * for PSMAv5 based systems we don't bother to return a full FSR format 10204 * value. 10205 * 10206 * @env: CPUARMState 10207 * @address: virtual address to get physical address for 10208 * @access_type: 0 for read, 1 for write, 2 for execute 10209 * @mmu_idx: MMU index indicating required translation regime 10210 * @phys_ptr: set to the physical address corresponding to the virtual address 10211 * @attrs: set to the memory transaction attributes to use 10212 * @prot: set to the permissions for the page containing phys_ptr 10213 * @page_size: set to the size of the page containing phys_ptr 10214 * @fi: set to fault info if the translation fails 10215 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes 10216 */ 10217 static bool get_phys_addr(CPUARMState *env, target_ulong address, 10218 MMUAccessType access_type, ARMMMUIdx mmu_idx, 10219 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot, 10220 target_ulong *page_size, 10221 ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs) 10222 { 10223 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) { 10224 /* Call ourselves recursively to do the stage 1 and then stage 2 10225 * translations. 10226 */ 10227 if (arm_feature(env, ARM_FEATURE_EL2)) { 10228 hwaddr ipa; 10229 int s2_prot; 10230 int ret; 10231 ARMCacheAttrs cacheattrs2 = {}; 10232 10233 ret = get_phys_addr(env, address, access_type, 10234 stage_1_mmu_idx(mmu_idx), &ipa, attrs, 10235 prot, page_size, fi, cacheattrs); 10236 10237 /* If S1 fails or S2 is disabled, return early. */ 10238 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) { 10239 *phys_ptr = ipa; 10240 return ret; 10241 } 10242 10243 /* S1 is done. Now do S2 translation. */ 10244 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS, 10245 phys_ptr, attrs, &s2_prot, 10246 page_size, fi, 10247 cacheattrs != NULL ? &cacheattrs2 : NULL); 10248 fi->s2addr = ipa; 10249 /* Combine the S1 and S2 perms. */ 10250 *prot &= s2_prot; 10251 10252 /* Combine the S1 and S2 cache attributes, if needed */ 10253 if (!ret && cacheattrs != NULL) { 10254 *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2); 10255 } 10256 10257 return ret; 10258 } else { 10259 /* 10260 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1. 10261 */ 10262 mmu_idx = stage_1_mmu_idx(mmu_idx); 10263 } 10264 } 10265 10266 /* The page table entries may downgrade secure to non-secure, but 10267 * cannot upgrade an non-secure translation regime's attributes 10268 * to secure. 10269 */ 10270 attrs->secure = regime_is_secure(env, mmu_idx); 10271 attrs->user = regime_is_user(env, mmu_idx); 10272 10273 /* Fast Context Switch Extension. This doesn't exist at all in v8. 10274 * In v7 and earlier it affects all stage 1 translations. 10275 */ 10276 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS 10277 && !arm_feature(env, ARM_FEATURE_V8)) { 10278 if (regime_el(env, mmu_idx) == 3) { 10279 address += env->cp15.fcseidr_s; 10280 } else { 10281 address += env->cp15.fcseidr_ns; 10282 } 10283 } 10284 10285 if (arm_feature(env, ARM_FEATURE_PMSA)) { 10286 bool ret; 10287 *page_size = TARGET_PAGE_SIZE; 10288 10289 if (arm_feature(env, ARM_FEATURE_V8)) { 10290 /* PMSAv8 */ 10291 ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx, 10292 phys_ptr, attrs, prot, fi); 10293 } else if (arm_feature(env, ARM_FEATURE_V7)) { 10294 /* PMSAv7 */ 10295 ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx, 10296 phys_ptr, prot, fi); 10297 } else { 10298 /* Pre-v7 MPU */ 10299 ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx, 10300 phys_ptr, prot, fi); 10301 } 10302 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32 10303 " mmu_idx %u -> %s (prot %c%c%c)\n", 10304 access_type == MMU_DATA_LOAD ? "reading" : 10305 (access_type == MMU_DATA_STORE ? "writing" : "execute"), 10306 (uint32_t)address, mmu_idx, 10307 ret ? "Miss" : "Hit", 10308 *prot & PAGE_READ ? 'r' : '-', 10309 *prot & PAGE_WRITE ? 'w' : '-', 10310 *prot & PAGE_EXEC ? 'x' : '-'); 10311 10312 return ret; 10313 } 10314 10315 /* Definitely a real MMU, not an MPU */ 10316 10317 if (regime_translation_disabled(env, mmu_idx)) { 10318 /* MMU disabled. */ 10319 *phys_ptr = address; 10320 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; 10321 *page_size = TARGET_PAGE_SIZE; 10322 return 0; 10323 } 10324 10325 if (regime_using_lpae_format(env, mmu_idx)) { 10326 return get_phys_addr_lpae(env, address, access_type, mmu_idx, 10327 phys_ptr, attrs, prot, page_size, 10328 fi, cacheattrs); 10329 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) { 10330 return get_phys_addr_v6(env, address, access_type, mmu_idx, 10331 phys_ptr, attrs, prot, page_size, fi); 10332 } else { 10333 return get_phys_addr_v5(env, address, access_type, mmu_idx, 10334 phys_ptr, prot, page_size, fi); 10335 } 10336 } 10337 10338 /* Walk the page table and (if the mapping exists) add the page 10339 * to the TLB. Return false on success, or true on failure. Populate 10340 * fsr with ARM DFSR/IFSR fault register format value on failure. 10341 */ 10342 bool arm_tlb_fill(CPUState *cs, vaddr address, 10343 MMUAccessType access_type, int mmu_idx, 10344 ARMMMUFaultInfo *fi) 10345 { 10346 ARMCPU *cpu = ARM_CPU(cs); 10347 CPUARMState *env = &cpu->env; 10348 hwaddr phys_addr; 10349 target_ulong page_size; 10350 int prot; 10351 int ret; 10352 MemTxAttrs attrs = {}; 10353 10354 ret = get_phys_addr(env, address, access_type, 10355 core_to_arm_mmu_idx(env, mmu_idx), &phys_addr, 10356 &attrs, &prot, &page_size, fi, NULL); 10357 if (!ret) { 10358 /* Map a single [sub]page. */ 10359 phys_addr &= TARGET_PAGE_MASK; 10360 address &= TARGET_PAGE_MASK; 10361 tlb_set_page_with_attrs(cs, address, phys_addr, attrs, 10362 prot, mmu_idx, page_size); 10363 return 0; 10364 } 10365 10366 return ret; 10367 } 10368 10369 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr, 10370 MemTxAttrs *attrs) 10371 { 10372 ARMCPU *cpu = ARM_CPU(cs); 10373 CPUARMState *env = &cpu->env; 10374 hwaddr phys_addr; 10375 target_ulong page_size; 10376 int prot; 10377 bool ret; 10378 ARMMMUFaultInfo fi = {}; 10379 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 10380 10381 *attrs = (MemTxAttrs) {}; 10382 10383 ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr, 10384 attrs, &prot, &page_size, &fi, NULL); 10385 10386 if (ret) { 10387 return -1; 10388 } 10389 return phys_addr; 10390 } 10391 10392 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg) 10393 { 10394 uint32_t mask; 10395 unsigned el = arm_current_el(env); 10396 10397 /* First handle registers which unprivileged can read */ 10398 10399 switch (reg) { 10400 case 0 ... 7: /* xPSR sub-fields */ 10401 mask = 0; 10402 if ((reg & 1) && el) { 10403 mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */ 10404 } 10405 if (!(reg & 4)) { 10406 mask |= XPSR_NZCV | XPSR_Q; /* APSR */ 10407 } 10408 /* EPSR reads as zero */ 10409 return xpsr_read(env) & mask; 10410 break; 10411 case 20: /* CONTROL */ 10412 return env->v7m.control[env->v7m.secure]; 10413 case 0x94: /* CONTROL_NS */ 10414 /* We have to handle this here because unprivileged Secure code 10415 * can read the NS CONTROL register. 10416 */ 10417 if (!env->v7m.secure) { 10418 return 0; 10419 } 10420 return env->v7m.control[M_REG_NS]; 10421 } 10422 10423 if (el == 0) { 10424 return 0; /* unprivileged reads others as zero */ 10425 } 10426 10427 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10428 switch (reg) { 10429 case 0x88: /* MSP_NS */ 10430 if (!env->v7m.secure) { 10431 return 0; 10432 } 10433 return env->v7m.other_ss_msp; 10434 case 0x89: /* PSP_NS */ 10435 if (!env->v7m.secure) { 10436 return 0; 10437 } 10438 return env->v7m.other_ss_psp; 10439 case 0x8a: /* MSPLIM_NS */ 10440 if (!env->v7m.secure) { 10441 return 0; 10442 } 10443 return env->v7m.msplim[M_REG_NS]; 10444 case 0x8b: /* PSPLIM_NS */ 10445 if (!env->v7m.secure) { 10446 return 0; 10447 } 10448 return env->v7m.psplim[M_REG_NS]; 10449 case 0x90: /* PRIMASK_NS */ 10450 if (!env->v7m.secure) { 10451 return 0; 10452 } 10453 return env->v7m.primask[M_REG_NS]; 10454 case 0x91: /* BASEPRI_NS */ 10455 if (!env->v7m.secure) { 10456 return 0; 10457 } 10458 return env->v7m.basepri[M_REG_NS]; 10459 case 0x93: /* FAULTMASK_NS */ 10460 if (!env->v7m.secure) { 10461 return 0; 10462 } 10463 return env->v7m.faultmask[M_REG_NS]; 10464 case 0x98: /* SP_NS */ 10465 { 10466 /* This gives the non-secure SP selected based on whether we're 10467 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10468 */ 10469 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10470 10471 if (!env->v7m.secure) { 10472 return 0; 10473 } 10474 if (!arm_v7m_is_handler_mode(env) && spsel) { 10475 return env->v7m.other_ss_psp; 10476 } else { 10477 return env->v7m.other_ss_msp; 10478 } 10479 } 10480 default: 10481 break; 10482 } 10483 } 10484 10485 switch (reg) { 10486 case 8: /* MSP */ 10487 return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13]; 10488 case 9: /* PSP */ 10489 return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp; 10490 case 10: /* MSPLIM */ 10491 if (!arm_feature(env, ARM_FEATURE_V8)) { 10492 goto bad_reg; 10493 } 10494 return env->v7m.msplim[env->v7m.secure]; 10495 case 11: /* PSPLIM */ 10496 if (!arm_feature(env, ARM_FEATURE_V8)) { 10497 goto bad_reg; 10498 } 10499 return env->v7m.psplim[env->v7m.secure]; 10500 case 16: /* PRIMASK */ 10501 return env->v7m.primask[env->v7m.secure]; 10502 case 17: /* BASEPRI */ 10503 case 18: /* BASEPRI_MAX */ 10504 return env->v7m.basepri[env->v7m.secure]; 10505 case 19: /* FAULTMASK */ 10506 return env->v7m.faultmask[env->v7m.secure]; 10507 default: 10508 bad_reg: 10509 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special" 10510 " register %d\n", reg); 10511 return 0; 10512 } 10513 } 10514 10515 void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val) 10516 { 10517 /* We're passed bits [11..0] of the instruction; extract 10518 * SYSm and the mask bits. 10519 * Invalid combinations of SYSm and mask are UNPREDICTABLE; 10520 * we choose to treat them as if the mask bits were valid. 10521 * NB that the pseudocode 'mask' variable is bits [11..10], 10522 * whereas ours is [11..8]. 10523 */ 10524 uint32_t mask = extract32(maskreg, 8, 4); 10525 uint32_t reg = extract32(maskreg, 0, 8); 10526 10527 if (arm_current_el(env) == 0 && reg > 7) { 10528 /* only xPSR sub-fields may be written by unprivileged */ 10529 return; 10530 } 10531 10532 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { 10533 switch (reg) { 10534 case 0x88: /* MSP_NS */ 10535 if (!env->v7m.secure) { 10536 return; 10537 } 10538 env->v7m.other_ss_msp = val; 10539 return; 10540 case 0x89: /* PSP_NS */ 10541 if (!env->v7m.secure) { 10542 return; 10543 } 10544 env->v7m.other_ss_psp = val; 10545 return; 10546 case 0x8a: /* MSPLIM_NS */ 10547 if (!env->v7m.secure) { 10548 return; 10549 } 10550 env->v7m.msplim[M_REG_NS] = val & ~7; 10551 return; 10552 case 0x8b: /* PSPLIM_NS */ 10553 if (!env->v7m.secure) { 10554 return; 10555 } 10556 env->v7m.psplim[M_REG_NS] = val & ~7; 10557 return; 10558 case 0x90: /* PRIMASK_NS */ 10559 if (!env->v7m.secure) { 10560 return; 10561 } 10562 env->v7m.primask[M_REG_NS] = val & 1; 10563 return; 10564 case 0x91: /* BASEPRI_NS */ 10565 if (!env->v7m.secure) { 10566 return; 10567 } 10568 env->v7m.basepri[M_REG_NS] = val & 0xff; 10569 return; 10570 case 0x93: /* FAULTMASK_NS */ 10571 if (!env->v7m.secure) { 10572 return; 10573 } 10574 env->v7m.faultmask[M_REG_NS] = val & 1; 10575 return; 10576 case 0x94: /* CONTROL_NS */ 10577 if (!env->v7m.secure) { 10578 return; 10579 } 10580 write_v7m_control_spsel_for_secstate(env, 10581 val & R_V7M_CONTROL_SPSEL_MASK, 10582 M_REG_NS); 10583 env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; 10584 env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; 10585 return; 10586 case 0x98: /* SP_NS */ 10587 { 10588 /* This gives the non-secure SP selected based on whether we're 10589 * currently in handler mode or not, using the NS CONTROL.SPSEL. 10590 */ 10591 bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK; 10592 10593 if (!env->v7m.secure) { 10594 return; 10595 } 10596 if (!arm_v7m_is_handler_mode(env) && spsel) { 10597 env->v7m.other_ss_psp = val; 10598 } else { 10599 env->v7m.other_ss_msp = val; 10600 } 10601 return; 10602 } 10603 default: 10604 break; 10605 } 10606 } 10607 10608 switch (reg) { 10609 case 0 ... 7: /* xPSR sub-fields */ 10610 /* only APSR is actually writable */ 10611 if (!(reg & 4)) { 10612 uint32_t apsrmask = 0; 10613 10614 if (mask & 8) { 10615 apsrmask |= XPSR_NZCV | XPSR_Q; 10616 } 10617 if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) { 10618 apsrmask |= XPSR_GE; 10619 } 10620 xpsr_write(env, val, apsrmask); 10621 } 10622 break; 10623 case 8: /* MSP */ 10624 if (v7m_using_psp(env)) { 10625 env->v7m.other_sp = val; 10626 } else { 10627 env->regs[13] = val; 10628 } 10629 break; 10630 case 9: /* PSP */ 10631 if (v7m_using_psp(env)) { 10632 env->regs[13] = val; 10633 } else { 10634 env->v7m.other_sp = val; 10635 } 10636 break; 10637 case 10: /* MSPLIM */ 10638 if (!arm_feature(env, ARM_FEATURE_V8)) { 10639 goto bad_reg; 10640 } 10641 env->v7m.msplim[env->v7m.secure] = val & ~7; 10642 break; 10643 case 11: /* PSPLIM */ 10644 if (!arm_feature(env, ARM_FEATURE_V8)) { 10645 goto bad_reg; 10646 } 10647 env->v7m.psplim[env->v7m.secure] = val & ~7; 10648 break; 10649 case 16: /* PRIMASK */ 10650 env->v7m.primask[env->v7m.secure] = val & 1; 10651 break; 10652 case 17: /* BASEPRI */ 10653 env->v7m.basepri[env->v7m.secure] = val & 0xff; 10654 break; 10655 case 18: /* BASEPRI_MAX */ 10656 val &= 0xff; 10657 if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] 10658 || env->v7m.basepri[env->v7m.secure] == 0)) { 10659 env->v7m.basepri[env->v7m.secure] = val; 10660 } 10661 break; 10662 case 19: /* FAULTMASK */ 10663 env->v7m.faultmask[env->v7m.secure] = val & 1; 10664 break; 10665 case 20: /* CONTROL */ 10666 /* Writing to the SPSEL bit only has an effect if we are in 10667 * thread mode; other bits can be updated by any privileged code. 10668 * write_v7m_control_spsel() deals with updating the SPSEL bit in 10669 * env->v7m.control, so we only need update the others. 10670 * For v7M, we must just ignore explicit writes to SPSEL in handler 10671 * mode; for v8M the write is permitted but will have no effect. 10672 */ 10673 if (arm_feature(env, ARM_FEATURE_V8) || 10674 !arm_v7m_is_handler_mode(env)) { 10675 write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); 10676 } 10677 env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; 10678 env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; 10679 break; 10680 default: 10681 bad_reg: 10682 qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special" 10683 " register %d\n", reg); 10684 return; 10685 } 10686 } 10687 10688 uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op) 10689 { 10690 /* Implement the TT instruction. op is bits [7:6] of the insn. */ 10691 bool forceunpriv = op & 1; 10692 bool alt = op & 2; 10693 V8M_SAttributes sattrs = {}; 10694 uint32_t tt_resp; 10695 bool r, rw, nsr, nsrw, mrvalid; 10696 int prot; 10697 ARMMMUFaultInfo fi = {}; 10698 MemTxAttrs attrs = {}; 10699 hwaddr phys_addr; 10700 ARMMMUIdx mmu_idx; 10701 uint32_t mregion; 10702 bool targetpriv; 10703 bool targetsec = env->v7m.secure; 10704 10705 /* Work out what the security state and privilege level we're 10706 * interested in is... 10707 */ 10708 if (alt) { 10709 targetsec = !targetsec; 10710 } 10711 10712 if (forceunpriv) { 10713 targetpriv = false; 10714 } else { 10715 targetpriv = arm_v7m_is_handler_mode(env) || 10716 !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK); 10717 } 10718 10719 /* ...and then figure out which MMU index this is */ 10720 mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv); 10721 10722 /* We know that the MPU and SAU don't care about the access type 10723 * for our purposes beyond that we don't want to claim to be 10724 * an insn fetch, so we arbitrarily call this a read. 10725 */ 10726 10727 /* MPU region info only available for privileged or if 10728 * inspecting the other MPU state. 10729 */ 10730 if (arm_current_el(env) != 0 || alt) { 10731 /* We can ignore the return value as prot is always set */ 10732 pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, 10733 &phys_addr, &attrs, &prot, &fi, &mregion); 10734 if (mregion == -1) { 10735 mrvalid = false; 10736 mregion = 0; 10737 } else { 10738 mrvalid = true; 10739 } 10740 r = prot & PAGE_READ; 10741 rw = prot & PAGE_WRITE; 10742 } else { 10743 r = false; 10744 rw = false; 10745 mrvalid = false; 10746 mregion = 0; 10747 } 10748 10749 if (env->v7m.secure) { 10750 v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs); 10751 nsr = sattrs.ns && r; 10752 nsrw = sattrs.ns && rw; 10753 } else { 10754 sattrs.ns = true; 10755 nsr = false; 10756 nsrw = false; 10757 } 10758 10759 tt_resp = (sattrs.iregion << 24) | 10760 (sattrs.irvalid << 23) | 10761 ((!sattrs.ns) << 22) | 10762 (nsrw << 21) | 10763 (nsr << 20) | 10764 (rw << 19) | 10765 (r << 18) | 10766 (sattrs.srvalid << 17) | 10767 (mrvalid << 16) | 10768 (sattrs.sregion << 8) | 10769 mregion; 10770 10771 return tt_resp; 10772 } 10773 10774 #endif 10775 10776 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in) 10777 { 10778 /* Implement DC ZVA, which zeroes a fixed-length block of memory. 10779 * Note that we do not implement the (architecturally mandated) 10780 * alignment fault for attempts to use this on Device memory 10781 * (which matches the usual QEMU behaviour of not implementing either 10782 * alignment faults or any memory attribute handling). 10783 */ 10784 10785 ARMCPU *cpu = arm_env_get_cpu(env); 10786 uint64_t blocklen = 4 << cpu->dcz_blocksize; 10787 uint64_t vaddr = vaddr_in & ~(blocklen - 1); 10788 10789 #ifndef CONFIG_USER_ONLY 10790 { 10791 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than 10792 * the block size so we might have to do more than one TLB lookup. 10793 * We know that in fact for any v8 CPU the page size is at least 4K 10794 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only 10795 * 1K as an artefact of legacy v5 subpage support being present in the 10796 * same QEMU executable. 10797 */ 10798 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE); 10799 void *hostaddr[maxidx]; 10800 int try, i; 10801 unsigned mmu_idx = cpu_mmu_index(env, false); 10802 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx); 10803 10804 for (try = 0; try < 2; try++) { 10805 10806 for (i = 0; i < maxidx; i++) { 10807 hostaddr[i] = tlb_vaddr_to_host(env, 10808 vaddr + TARGET_PAGE_SIZE * i, 10809 1, mmu_idx); 10810 if (!hostaddr[i]) { 10811 break; 10812 } 10813 } 10814 if (i == maxidx) { 10815 /* If it's all in the TLB it's fair game for just writing to; 10816 * we know we don't need to update dirty status, etc. 10817 */ 10818 for (i = 0; i < maxidx - 1; i++) { 10819 memset(hostaddr[i], 0, TARGET_PAGE_SIZE); 10820 } 10821 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE)); 10822 return; 10823 } 10824 /* OK, try a store and see if we can populate the tlb. This 10825 * might cause an exception if the memory isn't writable, 10826 * in which case we will longjmp out of here. We must for 10827 * this purpose use the actual register value passed to us 10828 * so that we get the fault address right. 10829 */ 10830 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC()); 10831 /* Now we can populate the other TLB entries, if any */ 10832 for (i = 0; i < maxidx; i++) { 10833 uint64_t va = vaddr + TARGET_PAGE_SIZE * i; 10834 if (va != (vaddr_in & TARGET_PAGE_MASK)) { 10835 helper_ret_stb_mmu(env, va, 0, oi, GETPC()); 10836 } 10837 } 10838 } 10839 10840 /* Slow path (probably attempt to do this to an I/O device or 10841 * similar, or clearing of a block of code we have translations 10842 * cached for). Just do a series of byte writes as the architecture 10843 * demands. It's not worth trying to use a cpu_physical_memory_map(), 10844 * memset(), unmap() sequence here because: 10845 * + we'd need to account for the blocksize being larger than a page 10846 * + the direct-RAM access case is almost always going to be dealt 10847 * with in the fastpath code above, so there's no speed benefit 10848 * + we would have to deal with the map returning NULL because the 10849 * bounce buffer was in use 10850 */ 10851 for (i = 0; i < blocklen; i++) { 10852 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC()); 10853 } 10854 } 10855 #else 10856 memset(g2h(vaddr), 0, blocklen); 10857 #endif 10858 } 10859 10860 /* Note that signed overflow is undefined in C. The following routines are 10861 careful to use unsigned types where modulo arithmetic is required. 10862 Failure to do so _will_ break on newer gcc. */ 10863 10864 /* Signed saturating arithmetic. */ 10865 10866 /* Perform 16-bit signed saturating addition. */ 10867 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 10868 { 10869 uint16_t res; 10870 10871 res = a + b; 10872 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 10873 if (a & 0x8000) 10874 res = 0x8000; 10875 else 10876 res = 0x7fff; 10877 } 10878 return res; 10879 } 10880 10881 /* Perform 8-bit signed saturating addition. */ 10882 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 10883 { 10884 uint8_t res; 10885 10886 res = a + b; 10887 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 10888 if (a & 0x80) 10889 res = 0x80; 10890 else 10891 res = 0x7f; 10892 } 10893 return res; 10894 } 10895 10896 /* Perform 16-bit signed saturating subtraction. */ 10897 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 10898 { 10899 uint16_t res; 10900 10901 res = a - b; 10902 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 10903 if (a & 0x8000) 10904 res = 0x8000; 10905 else 10906 res = 0x7fff; 10907 } 10908 return res; 10909 } 10910 10911 /* Perform 8-bit signed saturating subtraction. */ 10912 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 10913 { 10914 uint8_t res; 10915 10916 res = a - b; 10917 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 10918 if (a & 0x80) 10919 res = 0x80; 10920 else 10921 res = 0x7f; 10922 } 10923 return res; 10924 } 10925 10926 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 10927 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 10928 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 10929 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 10930 #define PFX q 10931 10932 #include "op_addsub.h" 10933 10934 /* Unsigned saturating arithmetic. */ 10935 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 10936 { 10937 uint16_t res; 10938 res = a + b; 10939 if (res < a) 10940 res = 0xffff; 10941 return res; 10942 } 10943 10944 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 10945 { 10946 if (a > b) 10947 return a - b; 10948 else 10949 return 0; 10950 } 10951 10952 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 10953 { 10954 uint8_t res; 10955 res = a + b; 10956 if (res < a) 10957 res = 0xff; 10958 return res; 10959 } 10960 10961 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 10962 { 10963 if (a > b) 10964 return a - b; 10965 else 10966 return 0; 10967 } 10968 10969 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 10970 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 10971 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 10972 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 10973 #define PFX uq 10974 10975 #include "op_addsub.h" 10976 10977 /* Signed modulo arithmetic. */ 10978 #define SARITH16(a, b, n, op) do { \ 10979 int32_t sum; \ 10980 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 10981 RESULT(sum, n, 16); \ 10982 if (sum >= 0) \ 10983 ge |= 3 << (n * 2); \ 10984 } while(0) 10985 10986 #define SARITH8(a, b, n, op) do { \ 10987 int32_t sum; \ 10988 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 10989 RESULT(sum, n, 8); \ 10990 if (sum >= 0) \ 10991 ge |= 1 << n; \ 10992 } while(0) 10993 10994 10995 #define ADD16(a, b, n) SARITH16(a, b, n, +) 10996 #define SUB16(a, b, n) SARITH16(a, b, n, -) 10997 #define ADD8(a, b, n) SARITH8(a, b, n, +) 10998 #define SUB8(a, b, n) SARITH8(a, b, n, -) 10999 #define PFX s 11000 #define ARITH_GE 11001 11002 #include "op_addsub.h" 11003 11004 /* Unsigned modulo arithmetic. */ 11005 #define ADD16(a, b, n) do { \ 11006 uint32_t sum; \ 11007 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11008 RESULT(sum, n, 16); \ 11009 if ((sum >> 16) == 1) \ 11010 ge |= 3 << (n * 2); \ 11011 } while(0) 11012 11013 #define ADD8(a, b, n) do { \ 11014 uint32_t sum; \ 11015 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11016 RESULT(sum, n, 8); \ 11017 if ((sum >> 8) == 1) \ 11018 ge |= 1 << n; \ 11019 } while(0) 11020 11021 #define SUB16(a, b, n) do { \ 11022 uint32_t sum; \ 11023 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11024 RESULT(sum, n, 16); \ 11025 if ((sum >> 16) == 0) \ 11026 ge |= 3 << (n * 2); \ 11027 } while(0) 11028 11029 #define SUB8(a, b, n) do { \ 11030 uint32_t sum; \ 11031 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11032 RESULT(sum, n, 8); \ 11033 if ((sum >> 8) == 0) \ 11034 ge |= 1 << n; \ 11035 } while(0) 11036 11037 #define PFX u 11038 #define ARITH_GE 11039 11040 #include "op_addsub.h" 11041 11042 /* Halved signed arithmetic. */ 11043 #define ADD16(a, b, n) \ 11044 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11045 #define SUB16(a, b, n) \ 11046 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11047 #define ADD8(a, b, n) \ 11048 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11049 #define SUB8(a, b, n) \ 11050 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11051 #define PFX sh 11052 11053 #include "op_addsub.h" 11054 11055 /* Halved unsigned arithmetic. */ 11056 #define ADD16(a, b, n) \ 11057 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11058 #define SUB16(a, b, n) \ 11059 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11060 #define ADD8(a, b, n) \ 11061 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11062 #define SUB8(a, b, n) \ 11063 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11064 #define PFX uh 11065 11066 #include "op_addsub.h" 11067 11068 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11069 { 11070 if (a > b) 11071 return a - b; 11072 else 11073 return b - a; 11074 } 11075 11076 /* Unsigned sum of absolute byte differences. */ 11077 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11078 { 11079 uint32_t sum; 11080 sum = do_usad(a, b); 11081 sum += do_usad(a >> 8, b >> 8); 11082 sum += do_usad(a >> 16, b >>16); 11083 sum += do_usad(a >> 24, b >> 24); 11084 return sum; 11085 } 11086 11087 /* For ARMv6 SEL instruction. */ 11088 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11089 { 11090 uint32_t mask; 11091 11092 mask = 0; 11093 if (flags & 1) 11094 mask |= 0xff; 11095 if (flags & 2) 11096 mask |= 0xff00; 11097 if (flags & 4) 11098 mask |= 0xff0000; 11099 if (flags & 8) 11100 mask |= 0xff000000; 11101 return (a & mask) | (b & ~mask); 11102 } 11103 11104 /* VFP support. We follow the convention used for VFP instructions: 11105 Single precision routines have a "s" suffix, double precision a 11106 "d" suffix. */ 11107 11108 /* Convert host exception flags to vfp form. */ 11109 static inline int vfp_exceptbits_from_host(int host_bits) 11110 { 11111 int target_bits = 0; 11112 11113 if (host_bits & float_flag_invalid) 11114 target_bits |= 1; 11115 if (host_bits & float_flag_divbyzero) 11116 target_bits |= 2; 11117 if (host_bits & float_flag_overflow) 11118 target_bits |= 4; 11119 if (host_bits & (float_flag_underflow | float_flag_output_denormal)) 11120 target_bits |= 8; 11121 if (host_bits & float_flag_inexact) 11122 target_bits |= 0x10; 11123 if (host_bits & float_flag_input_denormal) 11124 target_bits |= 0x80; 11125 return target_bits; 11126 } 11127 11128 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env) 11129 { 11130 int i; 11131 uint32_t fpscr; 11132 11133 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) 11134 | (env->vfp.vec_len << 16) 11135 | (env->vfp.vec_stride << 20); 11136 i = get_float_exception_flags(&env->vfp.fp_status); 11137 i |= get_float_exception_flags(&env->vfp.standard_fp_status); 11138 i |= get_float_exception_flags(&env->vfp.fp_status_f16); 11139 fpscr |= vfp_exceptbits_from_host(i); 11140 return fpscr; 11141 } 11142 11143 uint32_t vfp_get_fpscr(CPUARMState *env) 11144 { 11145 return HELPER(vfp_get_fpscr)(env); 11146 } 11147 11148 /* Convert vfp exception flags to target form. */ 11149 static inline int vfp_exceptbits_to_host(int target_bits) 11150 { 11151 int host_bits = 0; 11152 11153 if (target_bits & 1) 11154 host_bits |= float_flag_invalid; 11155 if (target_bits & 2) 11156 host_bits |= float_flag_divbyzero; 11157 if (target_bits & 4) 11158 host_bits |= float_flag_overflow; 11159 if (target_bits & 8) 11160 host_bits |= float_flag_underflow; 11161 if (target_bits & 0x10) 11162 host_bits |= float_flag_inexact; 11163 if (target_bits & 0x80) 11164 host_bits |= float_flag_input_denormal; 11165 return host_bits; 11166 } 11167 11168 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val) 11169 { 11170 int i; 11171 uint32_t changed; 11172 11173 changed = env->vfp.xregs[ARM_VFP_FPSCR]; 11174 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff); 11175 env->vfp.vec_len = (val >> 16) & 7; 11176 env->vfp.vec_stride = (val >> 20) & 3; 11177 11178 changed ^= val; 11179 if (changed & (3 << 22)) { 11180 i = (val >> 22) & 3; 11181 switch (i) { 11182 case FPROUNDING_TIEEVEN: 11183 i = float_round_nearest_even; 11184 break; 11185 case FPROUNDING_POSINF: 11186 i = float_round_up; 11187 break; 11188 case FPROUNDING_NEGINF: 11189 i = float_round_down; 11190 break; 11191 case FPROUNDING_ZERO: 11192 i = float_round_to_zero; 11193 break; 11194 } 11195 set_float_rounding_mode(i, &env->vfp.fp_status); 11196 set_float_rounding_mode(i, &env->vfp.fp_status_f16); 11197 } 11198 if (changed & FPCR_FZ16) { 11199 bool ftz_enabled = val & FPCR_FZ16; 11200 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11201 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16); 11202 } 11203 if (changed & FPCR_FZ) { 11204 bool ftz_enabled = val & FPCR_FZ; 11205 set_flush_to_zero(ftz_enabled, &env->vfp.fp_status); 11206 set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status); 11207 } 11208 if (changed & FPCR_DN) { 11209 bool dnan_enabled = val & FPCR_DN; 11210 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status); 11211 set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16); 11212 } 11213 11214 /* The exception flags are ORed together when we read fpscr so we 11215 * only need to preserve the current state in one of our 11216 * float_status values. 11217 */ 11218 i = vfp_exceptbits_to_host(val); 11219 set_float_exception_flags(i, &env->vfp.fp_status); 11220 set_float_exception_flags(0, &env->vfp.fp_status_f16); 11221 set_float_exception_flags(0, &env->vfp.standard_fp_status); 11222 } 11223 11224 void vfp_set_fpscr(CPUARMState *env, uint32_t val) 11225 { 11226 HELPER(vfp_set_fpscr)(env, val); 11227 } 11228 11229 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p)) 11230 11231 #define VFP_BINOP(name) \ 11232 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \ 11233 { \ 11234 float_status *fpst = fpstp; \ 11235 return float32_ ## name(a, b, fpst); \ 11236 } \ 11237 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \ 11238 { \ 11239 float_status *fpst = fpstp; \ 11240 return float64_ ## name(a, b, fpst); \ 11241 } 11242 VFP_BINOP(add) 11243 VFP_BINOP(sub) 11244 VFP_BINOP(mul) 11245 VFP_BINOP(div) 11246 VFP_BINOP(min) 11247 VFP_BINOP(max) 11248 VFP_BINOP(minnum) 11249 VFP_BINOP(maxnum) 11250 #undef VFP_BINOP 11251 11252 float32 VFP_HELPER(neg, s)(float32 a) 11253 { 11254 return float32_chs(a); 11255 } 11256 11257 float64 VFP_HELPER(neg, d)(float64 a) 11258 { 11259 return float64_chs(a); 11260 } 11261 11262 float32 VFP_HELPER(abs, s)(float32 a) 11263 { 11264 return float32_abs(a); 11265 } 11266 11267 float64 VFP_HELPER(abs, d)(float64 a) 11268 { 11269 return float64_abs(a); 11270 } 11271 11272 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env) 11273 { 11274 return float32_sqrt(a, &env->vfp.fp_status); 11275 } 11276 11277 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env) 11278 { 11279 return float64_sqrt(a, &env->vfp.fp_status); 11280 } 11281 11282 /* XXX: check quiet/signaling case */ 11283 #define DO_VFP_cmp(p, type) \ 11284 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \ 11285 { \ 11286 uint32_t flags; \ 11287 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \ 11288 case 0: flags = 0x6; break; \ 11289 case -1: flags = 0x8; break; \ 11290 case 1: flags = 0x2; break; \ 11291 default: case 2: flags = 0x3; break; \ 11292 } \ 11293 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11294 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11295 } \ 11296 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \ 11297 { \ 11298 uint32_t flags; \ 11299 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \ 11300 case 0: flags = 0x6; break; \ 11301 case -1: flags = 0x8; break; \ 11302 case 1: flags = 0x2; break; \ 11303 default: case 2: flags = 0x3; break; \ 11304 } \ 11305 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \ 11306 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ 11307 } 11308 DO_VFP_cmp(s, float32) 11309 DO_VFP_cmp(d, float64) 11310 #undef DO_VFP_cmp 11311 11312 /* Integer to float and float to integer conversions */ 11313 11314 #define CONV_ITOF(name, fsz, sign) \ 11315 float##fsz HELPER(name)(uint32_t x, void *fpstp) \ 11316 { \ 11317 float_status *fpst = fpstp; \ 11318 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \ 11319 } 11320 11321 #define CONV_FTOI(name, fsz, sign, round) \ 11322 uint32_t HELPER(name)(float##fsz x, void *fpstp) \ 11323 { \ 11324 float_status *fpst = fpstp; \ 11325 if (float##fsz##_is_any_nan(x)) { \ 11326 float_raise(float_flag_invalid, fpst); \ 11327 return 0; \ 11328 } \ 11329 return float##fsz##_to_##sign##int32##round(x, fpst); \ 11330 } 11331 11332 #define FLOAT_CONVS(name, p, fsz, sign) \ 11333 CONV_ITOF(vfp_##name##to##p, fsz, sign) \ 11334 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \ 11335 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero) 11336 11337 FLOAT_CONVS(si, h, 16, ) 11338 FLOAT_CONVS(si, s, 32, ) 11339 FLOAT_CONVS(si, d, 64, ) 11340 FLOAT_CONVS(ui, h, 16, u) 11341 FLOAT_CONVS(ui, s, 32, u) 11342 FLOAT_CONVS(ui, d, 64, u) 11343 11344 #undef CONV_ITOF 11345 #undef CONV_FTOI 11346 #undef FLOAT_CONVS 11347 11348 /* floating point conversion */ 11349 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env) 11350 { 11351 float64 r = float32_to_float64(x, &env->vfp.fp_status); 11352 /* ARM requires that S<->D conversion of any kind of NaN generates 11353 * a quiet NaN by forcing the most significant frac bit to 1. 11354 */ 11355 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11356 } 11357 11358 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env) 11359 { 11360 float32 r = float64_to_float32(x, &env->vfp.fp_status); 11361 /* ARM requires that S<->D conversion of any kind of NaN generates 11362 * a quiet NaN by forcing the most significant frac bit to 1. 11363 */ 11364 return float32_maybe_silence_nan(r, &env->vfp.fp_status); 11365 } 11366 11367 /* VFP3 fixed point conversion. */ 11368 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11369 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \ 11370 void *fpstp) \ 11371 { \ 11372 float_status *fpst = fpstp; \ 11373 float##fsz tmp; \ 11374 tmp = itype##_to_##float##fsz(x, fpst); \ 11375 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \ 11376 } 11377 11378 /* Notice that we want only input-denormal exception flags from the 11379 * scalbn operation: the other possible flags (overflow+inexact if 11380 * we overflow to infinity, output-denormal) aren't correct for the 11381 * complete scale-and-convert operation. 11382 */ 11383 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \ 11384 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \ 11385 uint32_t shift, \ 11386 void *fpstp) \ 11387 { \ 11388 float_status *fpst = fpstp; \ 11389 int old_exc_flags = get_float_exception_flags(fpst); \ 11390 float##fsz tmp; \ 11391 if (float##fsz##_is_any_nan(x)) { \ 11392 float_raise(float_flag_invalid, fpst); \ 11393 return 0; \ 11394 } \ 11395 tmp = float##fsz##_scalbn(x, shift, fpst); \ 11396 old_exc_flags |= get_float_exception_flags(fpst) \ 11397 & float_flag_input_denormal; \ 11398 set_float_exception_flags(old_exc_flags, fpst); \ 11399 return float##fsz##_to_##itype##round(tmp, fpst); \ 11400 } 11401 11402 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \ 11403 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11404 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \ 11405 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11406 11407 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \ 11408 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \ 11409 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ) 11410 11411 VFP_CONV_FIX(sh, d, 64, 64, int16) 11412 VFP_CONV_FIX(sl, d, 64, 64, int32) 11413 VFP_CONV_FIX_A64(sq, d, 64, 64, int64) 11414 VFP_CONV_FIX(uh, d, 64, 64, uint16) 11415 VFP_CONV_FIX(ul, d, 64, 64, uint32) 11416 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64) 11417 VFP_CONV_FIX(sh, s, 32, 32, int16) 11418 VFP_CONV_FIX(sl, s, 32, 32, int32) 11419 VFP_CONV_FIX_A64(sq, s, 32, 64, int64) 11420 VFP_CONV_FIX(uh, s, 32, 32, uint16) 11421 VFP_CONV_FIX(ul, s, 32, 32, uint32) 11422 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64) 11423 VFP_CONV_FIX_A64(sl, h, 16, 32, int32) 11424 VFP_CONV_FIX_A64(ul, h, 16, 32, uint32) 11425 #undef VFP_CONV_FIX 11426 #undef VFP_CONV_FIX_FLOAT 11427 #undef VFP_CONV_FLOAT_FIX_ROUND 11428 11429 /* Set the current fp rounding mode and return the old one. 11430 * The argument is a softfloat float_round_ value. 11431 */ 11432 uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp) 11433 { 11434 float_status *fp_status = fpstp; 11435 11436 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11437 set_float_rounding_mode(rmode, fp_status); 11438 11439 return prev_rmode; 11440 } 11441 11442 /* Set the current fp rounding mode in the standard fp status and return 11443 * the old one. This is for NEON instructions that need to change the 11444 * rounding mode but wish to use the standard FPSCR values for everything 11445 * else. Always set the rounding mode back to the correct value after 11446 * modifying it. 11447 * The argument is a softfloat float_round_ value. 11448 */ 11449 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env) 11450 { 11451 float_status *fp_status = &env->vfp.standard_fp_status; 11452 11453 uint32_t prev_rmode = get_float_rounding_mode(fp_status); 11454 set_float_rounding_mode(rmode, fp_status); 11455 11456 return prev_rmode; 11457 } 11458 11459 /* Half precision conversions. */ 11460 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s) 11461 { 11462 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11463 float32 r = float16_to_float32(make_float16(a), ieee, s); 11464 if (ieee) { 11465 return float32_maybe_silence_nan(r, s); 11466 } 11467 return r; 11468 } 11469 11470 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s) 11471 { 11472 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11473 float16 r = float32_to_float16(a, ieee, s); 11474 if (ieee) { 11475 r = float16_maybe_silence_nan(r, s); 11476 } 11477 return float16_val(r); 11478 } 11479 11480 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11481 { 11482 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status); 11483 } 11484 11485 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11486 { 11487 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status); 11488 } 11489 11490 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env) 11491 { 11492 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status); 11493 } 11494 11495 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env) 11496 { 11497 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status); 11498 } 11499 11500 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env) 11501 { 11502 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11503 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status); 11504 if (ieee) { 11505 return float64_maybe_silence_nan(r, &env->vfp.fp_status); 11506 } 11507 return r; 11508 } 11509 11510 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env) 11511 { 11512 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0; 11513 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status); 11514 if (ieee) { 11515 r = float16_maybe_silence_nan(r, &env->vfp.fp_status); 11516 } 11517 return float16_val(r); 11518 } 11519 11520 #define float32_two make_float32(0x40000000) 11521 #define float32_three make_float32(0x40400000) 11522 #define float32_one_point_five make_float32(0x3fc00000) 11523 11524 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env) 11525 { 11526 float_status *s = &env->vfp.standard_fp_status; 11527 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11528 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11529 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11530 float_raise(float_flag_input_denormal, s); 11531 } 11532 return float32_two; 11533 } 11534 return float32_sub(float32_two, float32_mul(a, b, s), s); 11535 } 11536 11537 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env) 11538 { 11539 float_status *s = &env->vfp.standard_fp_status; 11540 float32 product; 11541 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) || 11542 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) { 11543 if (!(float32_is_zero(a) || float32_is_zero(b))) { 11544 float_raise(float_flag_input_denormal, s); 11545 } 11546 return float32_one_point_five; 11547 } 11548 product = float32_mul(a, b, s); 11549 return float32_div(float32_sub(float32_three, product, s), float32_two, s); 11550 } 11551 11552 /* NEON helpers. */ 11553 11554 /* Constants 256 and 512 are used in some helpers; we avoid relying on 11555 * int->float conversions at run-time. */ 11556 #define float64_256 make_float64(0x4070000000000000LL) 11557 #define float64_512 make_float64(0x4080000000000000LL) 11558 #define float16_maxnorm make_float16(0x7bff) 11559 #define float32_maxnorm make_float32(0x7f7fffff) 11560 #define float64_maxnorm make_float64(0x7fefffffffffffffLL) 11561 11562 /* Reciprocal functions 11563 * 11564 * The algorithm that must be used to calculate the estimate 11565 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate 11566 */ 11567 11568 /* See RecipEstimate() 11569 * 11570 * input is a 9 bit fixed point number 11571 * input range 256 .. 511 for a number from 0.5 <= x < 1.0. 11572 * result range 256 .. 511 for a number from 1.0 to 511/256. 11573 */ 11574 11575 static int recip_estimate(int input) 11576 { 11577 int a, b, r; 11578 assert(256 <= input && input < 512); 11579 a = (input * 2) + 1; 11580 b = (1 << 19) / a; 11581 r = (b + 1) >> 1; 11582 assert(256 <= r && r < 512); 11583 return r; 11584 } 11585 11586 /* 11587 * Common wrapper to call recip_estimate 11588 * 11589 * The parameters are exponent and 64 bit fraction (without implicit 11590 * bit) where the binary point is nominally at bit 52. Returns a 11591 * float64 which can then be rounded to the appropriate size by the 11592 * callee. 11593 */ 11594 11595 static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac) 11596 { 11597 uint32_t scaled, estimate; 11598 uint64_t result_frac; 11599 int result_exp; 11600 11601 /* Handle sub-normals */ 11602 if (*exp == 0) { 11603 if (extract64(frac, 51, 1) == 0) { 11604 *exp = -1; 11605 frac <<= 2; 11606 } else { 11607 frac <<= 1; 11608 } 11609 } 11610 11611 /* scaled = UInt('1':fraction<51:44>) */ 11612 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11613 estimate = recip_estimate(scaled); 11614 11615 result_exp = exp_off - *exp; 11616 result_frac = deposit64(0, 44, 8, estimate); 11617 if (result_exp == 0) { 11618 result_frac = deposit64(result_frac >> 1, 51, 1, 1); 11619 } else if (result_exp == -1) { 11620 result_frac = deposit64(result_frac >> 2, 50, 2, 1); 11621 result_exp = 0; 11622 } 11623 11624 *exp = result_exp; 11625 11626 return result_frac; 11627 } 11628 11629 static bool round_to_inf(float_status *fpst, bool sign_bit) 11630 { 11631 switch (fpst->float_rounding_mode) { 11632 case float_round_nearest_even: /* Round to Nearest */ 11633 return true; 11634 case float_round_up: /* Round to +Inf */ 11635 return !sign_bit; 11636 case float_round_down: /* Round to -Inf */ 11637 return sign_bit; 11638 case float_round_to_zero: /* Round to Zero */ 11639 return false; 11640 } 11641 11642 g_assert_not_reached(); 11643 } 11644 11645 float16 HELPER(recpe_f16)(float16 input, void *fpstp) 11646 { 11647 float_status *fpst = fpstp; 11648 float16 f16 = float16_squash_input_denormal(input, fpst); 11649 uint32_t f16_val = float16_val(f16); 11650 uint32_t f16_sign = float16_is_neg(f16); 11651 int f16_exp = extract32(f16_val, 10, 5); 11652 uint32_t f16_frac = extract32(f16_val, 0, 10); 11653 uint64_t f64_frac; 11654 11655 if (float16_is_any_nan(f16)) { 11656 float16 nan = f16; 11657 if (float16_is_signaling_nan(f16, fpst)) { 11658 float_raise(float_flag_invalid, fpst); 11659 nan = float16_maybe_silence_nan(f16, fpst); 11660 } 11661 if (fpst->default_nan_mode) { 11662 nan = float16_default_nan(fpst); 11663 } 11664 return nan; 11665 } else if (float16_is_infinity(f16)) { 11666 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11667 } else if (float16_is_zero(f16)) { 11668 float_raise(float_flag_divbyzero, fpst); 11669 return float16_set_sign(float16_infinity, float16_is_neg(f16)); 11670 } else if (float16_abs(f16) < (1 << 8)) { 11671 /* Abs(value) < 2.0^-16 */ 11672 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11673 if (round_to_inf(fpst, f16_sign)) { 11674 return float16_set_sign(float16_infinity, f16_sign); 11675 } else { 11676 return float16_set_sign(float16_maxnorm, f16_sign); 11677 } 11678 } else if (f16_exp >= 29 && fpst->flush_to_zero) { 11679 float_raise(float_flag_underflow, fpst); 11680 return float16_set_sign(float16_zero, float16_is_neg(f16)); 11681 } 11682 11683 f64_frac = call_recip_estimate(&f16_exp, 29, 11684 ((uint64_t) f16_frac) << (52 - 10)); 11685 11686 /* result = sign : result_exp<4:0> : fraction<51:42> */ 11687 f16_val = deposit32(0, 15, 1, f16_sign); 11688 f16_val = deposit32(f16_val, 10, 5, f16_exp); 11689 f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10)); 11690 return make_float16(f16_val); 11691 } 11692 11693 float32 HELPER(recpe_f32)(float32 input, void *fpstp) 11694 { 11695 float_status *fpst = fpstp; 11696 float32 f32 = float32_squash_input_denormal(input, fpst); 11697 uint32_t f32_val = float32_val(f32); 11698 bool f32_sign = float32_is_neg(f32); 11699 int f32_exp = extract32(f32_val, 23, 8); 11700 uint32_t f32_frac = extract32(f32_val, 0, 23); 11701 uint64_t f64_frac; 11702 11703 if (float32_is_any_nan(f32)) { 11704 float32 nan = f32; 11705 if (float32_is_signaling_nan(f32, fpst)) { 11706 float_raise(float_flag_invalid, fpst); 11707 nan = float32_maybe_silence_nan(f32, fpst); 11708 } 11709 if (fpst->default_nan_mode) { 11710 nan = float32_default_nan(fpst); 11711 } 11712 return nan; 11713 } else if (float32_is_infinity(f32)) { 11714 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11715 } else if (float32_is_zero(f32)) { 11716 float_raise(float_flag_divbyzero, fpst); 11717 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11718 } else if (float32_abs(f32) < (1ULL << 21)) { 11719 /* Abs(value) < 2.0^-128 */ 11720 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11721 if (round_to_inf(fpst, f32_sign)) { 11722 return float32_set_sign(float32_infinity, f32_sign); 11723 } else { 11724 return float32_set_sign(float32_maxnorm, f32_sign); 11725 } 11726 } else if (f32_exp >= 253 && fpst->flush_to_zero) { 11727 float_raise(float_flag_underflow, fpst); 11728 return float32_set_sign(float32_zero, float32_is_neg(f32)); 11729 } 11730 11731 f64_frac = call_recip_estimate(&f32_exp, 253, 11732 ((uint64_t) f32_frac) << (52 - 23)); 11733 11734 /* result = sign : result_exp<7:0> : fraction<51:29> */ 11735 f32_val = deposit32(0, 31, 1, f32_sign); 11736 f32_val = deposit32(f32_val, 23, 8, f32_exp); 11737 f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23)); 11738 return make_float32(f32_val); 11739 } 11740 11741 float64 HELPER(recpe_f64)(float64 input, void *fpstp) 11742 { 11743 float_status *fpst = fpstp; 11744 float64 f64 = float64_squash_input_denormal(input, fpst); 11745 uint64_t f64_val = float64_val(f64); 11746 bool f64_sign = float64_is_neg(f64); 11747 int f64_exp = extract64(f64_val, 52, 11); 11748 uint64_t f64_frac = extract64(f64_val, 0, 52); 11749 11750 /* Deal with any special cases */ 11751 if (float64_is_any_nan(f64)) { 11752 float64 nan = f64; 11753 if (float64_is_signaling_nan(f64, fpst)) { 11754 float_raise(float_flag_invalid, fpst); 11755 nan = float64_maybe_silence_nan(f64, fpst); 11756 } 11757 if (fpst->default_nan_mode) { 11758 nan = float64_default_nan(fpst); 11759 } 11760 return nan; 11761 } else if (float64_is_infinity(f64)) { 11762 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11763 } else if (float64_is_zero(f64)) { 11764 float_raise(float_flag_divbyzero, fpst); 11765 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11766 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) { 11767 /* Abs(value) < 2.0^-1024 */ 11768 float_raise(float_flag_overflow | float_flag_inexact, fpst); 11769 if (round_to_inf(fpst, f64_sign)) { 11770 return float64_set_sign(float64_infinity, f64_sign); 11771 } else { 11772 return float64_set_sign(float64_maxnorm, f64_sign); 11773 } 11774 } else if (f64_exp >= 2045 && fpst->flush_to_zero) { 11775 float_raise(float_flag_underflow, fpst); 11776 return float64_set_sign(float64_zero, float64_is_neg(f64)); 11777 } 11778 11779 f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac); 11780 11781 /* result = sign : result_exp<10:0> : fraction<51:0>; */ 11782 f64_val = deposit64(0, 63, 1, f64_sign); 11783 f64_val = deposit64(f64_val, 52, 11, f64_exp); 11784 f64_val = deposit64(f64_val, 0, 52, f64_frac); 11785 return make_float64(f64_val); 11786 } 11787 11788 /* The algorithm that must be used to calculate the estimate 11789 * is specified by the ARM ARM. 11790 */ 11791 11792 static int do_recip_sqrt_estimate(int a) 11793 { 11794 int b, estimate; 11795 11796 assert(128 <= a && a < 512); 11797 if (a < 256) { 11798 a = a * 2 + 1; 11799 } else { 11800 a = (a >> 1) << 1; 11801 a = (a + 1) * 2; 11802 } 11803 b = 512; 11804 while (a * (b + 1) * (b + 1) < (1 << 28)) { 11805 b += 1; 11806 } 11807 estimate = (b + 1) / 2; 11808 assert(256 <= estimate && estimate < 512); 11809 11810 return estimate; 11811 } 11812 11813 11814 static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac) 11815 { 11816 int estimate; 11817 uint32_t scaled; 11818 11819 if (*exp == 0) { 11820 while (extract64(frac, 51, 1) == 0) { 11821 frac = frac << 1; 11822 *exp -= 1; 11823 } 11824 frac = extract64(frac, 0, 51) << 1; 11825 } 11826 11827 if (*exp & 1) { 11828 /* scaled = UInt('01':fraction<51:45>) */ 11829 scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7)); 11830 } else { 11831 /* scaled = UInt('1':fraction<51:44>) */ 11832 scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8)); 11833 } 11834 estimate = do_recip_sqrt_estimate(scaled); 11835 11836 *exp = (exp_off - *exp) / 2; 11837 return extract64(estimate, 0, 8) << 44; 11838 } 11839 11840 float16 HELPER(rsqrte_f16)(float16 input, void *fpstp) 11841 { 11842 float_status *s = fpstp; 11843 float16 f16 = float16_squash_input_denormal(input, s); 11844 uint16_t val = float16_val(f16); 11845 bool f16_sign = float16_is_neg(f16); 11846 int f16_exp = extract32(val, 10, 5); 11847 uint16_t f16_frac = extract32(val, 0, 10); 11848 uint64_t f64_frac; 11849 11850 if (float16_is_any_nan(f16)) { 11851 float16 nan = f16; 11852 if (float16_is_signaling_nan(f16, s)) { 11853 float_raise(float_flag_invalid, s); 11854 nan = float16_maybe_silence_nan(f16, s); 11855 } 11856 if (s->default_nan_mode) { 11857 nan = float16_default_nan(s); 11858 } 11859 return nan; 11860 } else if (float16_is_zero(f16)) { 11861 float_raise(float_flag_divbyzero, s); 11862 return float16_set_sign(float16_infinity, f16_sign); 11863 } else if (f16_sign) { 11864 float_raise(float_flag_invalid, s); 11865 return float16_default_nan(s); 11866 } else if (float16_is_infinity(f16)) { 11867 return float16_zero; 11868 } 11869 11870 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11871 * preserving the parity of the exponent. */ 11872 11873 f64_frac = ((uint64_t) f16_frac) << (52 - 10); 11874 11875 f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac); 11876 11877 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */ 11878 val = deposit32(0, 15, 1, f16_sign); 11879 val = deposit32(val, 10, 5, f16_exp); 11880 val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8)); 11881 return make_float16(val); 11882 } 11883 11884 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp) 11885 { 11886 float_status *s = fpstp; 11887 float32 f32 = float32_squash_input_denormal(input, s); 11888 uint32_t val = float32_val(f32); 11889 uint32_t f32_sign = float32_is_neg(f32); 11890 int f32_exp = extract32(val, 23, 8); 11891 uint32_t f32_frac = extract32(val, 0, 23); 11892 uint64_t f64_frac; 11893 11894 if (float32_is_any_nan(f32)) { 11895 float32 nan = f32; 11896 if (float32_is_signaling_nan(f32, s)) { 11897 float_raise(float_flag_invalid, s); 11898 nan = float32_maybe_silence_nan(f32, s); 11899 } 11900 if (s->default_nan_mode) { 11901 nan = float32_default_nan(s); 11902 } 11903 return nan; 11904 } else if (float32_is_zero(f32)) { 11905 float_raise(float_flag_divbyzero, s); 11906 return float32_set_sign(float32_infinity, float32_is_neg(f32)); 11907 } else if (float32_is_neg(f32)) { 11908 float_raise(float_flag_invalid, s); 11909 return float32_default_nan(s); 11910 } else if (float32_is_infinity(f32)) { 11911 return float32_zero; 11912 } 11913 11914 /* Scale and normalize to a double-precision value between 0.25 and 1.0, 11915 * preserving the parity of the exponent. */ 11916 11917 f64_frac = ((uint64_t) f32_frac) << 29; 11918 11919 f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac); 11920 11921 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */ 11922 val = deposit32(0, 31, 1, f32_sign); 11923 val = deposit32(val, 23, 8, f32_exp); 11924 val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8)); 11925 return make_float32(val); 11926 } 11927 11928 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp) 11929 { 11930 float_status *s = fpstp; 11931 float64 f64 = float64_squash_input_denormal(input, s); 11932 uint64_t val = float64_val(f64); 11933 bool f64_sign = float64_is_neg(f64); 11934 int f64_exp = extract64(val, 52, 11); 11935 uint64_t f64_frac = extract64(val, 0, 52); 11936 11937 if (float64_is_any_nan(f64)) { 11938 float64 nan = f64; 11939 if (float64_is_signaling_nan(f64, s)) { 11940 float_raise(float_flag_invalid, s); 11941 nan = float64_maybe_silence_nan(f64, s); 11942 } 11943 if (s->default_nan_mode) { 11944 nan = float64_default_nan(s); 11945 } 11946 return nan; 11947 } else if (float64_is_zero(f64)) { 11948 float_raise(float_flag_divbyzero, s); 11949 return float64_set_sign(float64_infinity, float64_is_neg(f64)); 11950 } else if (float64_is_neg(f64)) { 11951 float_raise(float_flag_invalid, s); 11952 return float64_default_nan(s); 11953 } else if (float64_is_infinity(f64)) { 11954 return float64_zero; 11955 } 11956 11957 f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac); 11958 11959 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */ 11960 val = deposit64(0, 61, 1, f64_sign); 11961 val = deposit64(val, 52, 11, f64_exp); 11962 val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8)); 11963 return make_float64(val); 11964 } 11965 11966 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp) 11967 { 11968 /* float_status *s = fpstp; */ 11969 int input, estimate; 11970 11971 if ((a & 0x80000000) == 0) { 11972 return 0xffffffff; 11973 } 11974 11975 input = extract32(a, 23, 9); 11976 estimate = recip_estimate(input); 11977 11978 return deposit32(0, (32 - 9), 9, estimate); 11979 } 11980 11981 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp) 11982 { 11983 int estimate; 11984 11985 if ((a & 0xc0000000) == 0) { 11986 return 0xffffffff; 11987 } 11988 11989 estimate = do_recip_sqrt_estimate(extract32(a, 23, 9)); 11990 11991 return deposit32(0, 23, 9, estimate); 11992 } 11993 11994 /* VFPv4 fused multiply-accumulate */ 11995 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp) 11996 { 11997 float_status *fpst = fpstp; 11998 return float32_muladd(a, b, c, 0, fpst); 11999 } 12000 12001 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp) 12002 { 12003 float_status *fpst = fpstp; 12004 return float64_muladd(a, b, c, 0, fpst); 12005 } 12006 12007 /* ARMv8 round to integral */ 12008 float32 HELPER(rints_exact)(float32 x, void *fp_status) 12009 { 12010 return float32_round_to_int(x, fp_status); 12011 } 12012 12013 float64 HELPER(rintd_exact)(float64 x, void *fp_status) 12014 { 12015 return float64_round_to_int(x, fp_status); 12016 } 12017 12018 float32 HELPER(rints)(float32 x, void *fp_status) 12019 { 12020 int old_flags = get_float_exception_flags(fp_status), new_flags; 12021 float32 ret; 12022 12023 ret = float32_round_to_int(x, fp_status); 12024 12025 /* Suppress any inexact exceptions the conversion produced */ 12026 if (!(old_flags & float_flag_inexact)) { 12027 new_flags = get_float_exception_flags(fp_status); 12028 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12029 } 12030 12031 return ret; 12032 } 12033 12034 float64 HELPER(rintd)(float64 x, void *fp_status) 12035 { 12036 int old_flags = get_float_exception_flags(fp_status), new_flags; 12037 float64 ret; 12038 12039 ret = float64_round_to_int(x, fp_status); 12040 12041 new_flags = get_float_exception_flags(fp_status); 12042 12043 /* Suppress any inexact exceptions the conversion produced */ 12044 if (!(old_flags & float_flag_inexact)) { 12045 new_flags = get_float_exception_flags(fp_status); 12046 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status); 12047 } 12048 12049 return ret; 12050 } 12051 12052 /* Convert ARM rounding mode to softfloat */ 12053 int arm_rmode_to_sf(int rmode) 12054 { 12055 switch (rmode) { 12056 case FPROUNDING_TIEAWAY: 12057 rmode = float_round_ties_away; 12058 break; 12059 case FPROUNDING_ODD: 12060 /* FIXME: add support for TIEAWAY and ODD */ 12061 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n", 12062 rmode); 12063 case FPROUNDING_TIEEVEN: 12064 default: 12065 rmode = float_round_nearest_even; 12066 break; 12067 case FPROUNDING_POSINF: 12068 rmode = float_round_up; 12069 break; 12070 case FPROUNDING_NEGINF: 12071 rmode = float_round_down; 12072 break; 12073 case FPROUNDING_ZERO: 12074 rmode = float_round_to_zero; 12075 break; 12076 } 12077 return rmode; 12078 } 12079 12080 /* CRC helpers. 12081 * The upper bytes of val (above the number specified by 'bytes') must have 12082 * been zeroed out by the caller. 12083 */ 12084 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 12085 { 12086 uint8_t buf[4]; 12087 12088 stl_le_p(buf, val); 12089 12090 /* zlib crc32 converts the accumulator and output to one's complement. */ 12091 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 12092 } 12093 12094 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 12095 { 12096 uint8_t buf[4]; 12097 12098 stl_le_p(buf, val); 12099 12100 /* Linux crc32c converts the output to one's complement. */ 12101 return crc32c(acc, buf, bytes) ^ 0xffffffff; 12102 } 12103 12104 /* Return the exception level to which FP-disabled exceptions should 12105 * be taken, or 0 if FP is enabled. 12106 */ 12107 static inline int fp_exception_el(CPUARMState *env) 12108 { 12109 #ifndef CONFIG_USER_ONLY 12110 int fpen; 12111 int cur_el = arm_current_el(env); 12112 12113 /* CPACR and the CPTR registers don't exist before v6, so FP is 12114 * always accessible 12115 */ 12116 if (!arm_feature(env, ARM_FEATURE_V6)) { 12117 return 0; 12118 } 12119 12120 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit: 12121 * 0, 2 : trap EL0 and EL1/PL1 accesses 12122 * 1 : trap only EL0 accesses 12123 * 3 : trap no accesses 12124 */ 12125 fpen = extract32(env->cp15.cpacr_el1, 20, 2); 12126 switch (fpen) { 12127 case 0: 12128 case 2: 12129 if (cur_el == 0 || cur_el == 1) { 12130 /* Trap to PL1, which might be EL1 or EL3 */ 12131 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) { 12132 return 3; 12133 } 12134 return 1; 12135 } 12136 if (cur_el == 3 && !is_a64(env)) { 12137 /* Secure PL1 running at EL3 */ 12138 return 3; 12139 } 12140 break; 12141 case 1: 12142 if (cur_el == 0) { 12143 return 1; 12144 } 12145 break; 12146 case 3: 12147 break; 12148 } 12149 12150 /* For the CPTR registers we don't need to guard with an ARM_FEATURE 12151 * check because zero bits in the registers mean "don't trap". 12152 */ 12153 12154 /* CPTR_EL2 : present in v7VE or v8 */ 12155 if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1) 12156 && !arm_is_secure_below_el3(env)) { 12157 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */ 12158 return 2; 12159 } 12160 12161 /* CPTR_EL3 : present in v8 */ 12162 if (extract32(env->cp15.cptr_el[3], 10, 1)) { 12163 /* Trap all FP ops to EL3 */ 12164 return 3; 12165 } 12166 #endif 12167 return 0; 12168 } 12169 12170 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12171 target_ulong *cs_base, uint32_t *pflags) 12172 { 12173 ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false)); 12174 int fp_el = fp_exception_el(env); 12175 uint32_t flags; 12176 12177 if (is_a64(env)) { 12178 int sve_el = sve_exception_el(env); 12179 uint32_t zcr_len; 12180 12181 *pc = env->pc; 12182 flags = ARM_TBFLAG_AARCH64_STATE_MASK; 12183 /* Get control bits for tagged addresses */ 12184 flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT); 12185 flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT); 12186 flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT; 12187 12188 /* If SVE is disabled, but FP is enabled, 12189 then the effective len is 0. */ 12190 if (sve_el != 0 && fp_el == 0) { 12191 zcr_len = 0; 12192 } else { 12193 int current_el = arm_current_el(env); 12194 12195 zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el]; 12196 zcr_len &= 0xf; 12197 if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) { 12198 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]); 12199 } 12200 if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) { 12201 zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]); 12202 } 12203 } 12204 flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT; 12205 } else { 12206 *pc = env->regs[15]; 12207 flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT) 12208 | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT) 12209 | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT) 12210 | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT) 12211 | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT); 12212 if (!(access_secure_reg(env))) { 12213 flags |= ARM_TBFLAG_NS_MASK; 12214 } 12215 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30) 12216 || arm_el_is_aa64(env, 1)) { 12217 flags |= ARM_TBFLAG_VFPEN_MASK; 12218 } 12219 flags |= (extract32(env->cp15.c15_cpar, 0, 2) 12220 << ARM_TBFLAG_XSCALE_CPAR_SHIFT); 12221 } 12222 12223 flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT); 12224 12225 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12226 * states defined in the ARM ARM for software singlestep: 12227 * SS_ACTIVE PSTATE.SS State 12228 * 0 x Inactive (the TB flag for SS is always 0) 12229 * 1 0 Active-pending 12230 * 1 1 Active-not-pending 12231 */ 12232 if (arm_singlestep_active(env)) { 12233 flags |= ARM_TBFLAG_SS_ACTIVE_MASK; 12234 if (is_a64(env)) { 12235 if (env->pstate & PSTATE_SS) { 12236 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12237 } 12238 } else { 12239 if (env->uncached_cpsr & PSTATE_SS) { 12240 flags |= ARM_TBFLAG_PSTATE_SS_MASK; 12241 } 12242 } 12243 } 12244 if (arm_cpu_data_is_big_endian(env)) { 12245 flags |= ARM_TBFLAG_BE_DATA_MASK; 12246 } 12247 flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT; 12248 12249 if (arm_v7m_is_handler_mode(env)) { 12250 flags |= ARM_TBFLAG_HANDLER_MASK; 12251 } 12252 12253 *pflags = flags; 12254 *cs_base = 0; 12255 } 12256