1 /* 2 * ARM generic helpers. 3 * 4 * This code is licensed under the GNU GPL v2 or later. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "trace.h" 12 #include "cpu.h" 13 #include "internals.h" 14 #include "exec/helper-proto.h" 15 #include "qemu/main-loop.h" 16 #include "qemu/timer.h" 17 #include "qemu/bitops.h" 18 #include "qemu/crc32c.h" 19 #include "qemu/qemu-print.h" 20 #include "exec/exec-all.h" 21 #include <zlib.h> /* For crc32 */ 22 #include "hw/irq.h" 23 #include "sysemu/cpu-timers.h" 24 #include "sysemu/kvm.h" 25 #include "sysemu/tcg.h" 26 #include "qapi/qapi-commands-machine-target.h" 27 #include "qapi/error.h" 28 #include "qemu/guest-random.h" 29 #ifdef CONFIG_TCG 30 #include "semihosting/common-semi.h" 31 #endif 32 #include "cpregs.h" 33 34 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */ 35 36 static void switch_mode(CPUARMState *env, int mode); 37 38 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri) 39 { 40 assert(ri->fieldoffset); 41 if (cpreg_field_is_64bit(ri)) { 42 return CPREG_FIELD64(env, ri); 43 } else { 44 return CPREG_FIELD32(env, ri); 45 } 46 } 47 48 void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 49 { 50 assert(ri->fieldoffset); 51 if (cpreg_field_is_64bit(ri)) { 52 CPREG_FIELD64(env, ri) = value; 53 } else { 54 CPREG_FIELD32(env, ri) = value; 55 } 56 } 57 58 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri) 59 { 60 return (char *)env + ri->fieldoffset; 61 } 62 63 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri) 64 { 65 /* Raw read of a coprocessor register (as needed for migration, etc). */ 66 if (ri->type & ARM_CP_CONST) { 67 return ri->resetvalue; 68 } else if (ri->raw_readfn) { 69 return ri->raw_readfn(env, ri); 70 } else if (ri->readfn) { 71 return ri->readfn(env, ri); 72 } else { 73 return raw_read(env, ri); 74 } 75 } 76 77 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri, 78 uint64_t v) 79 { 80 /* 81 * Raw write of a coprocessor register (as needed for migration, etc). 82 * Note that constant registers are treated as write-ignored; the 83 * caller should check for success by whether a readback gives the 84 * value written. 85 */ 86 if (ri->type & ARM_CP_CONST) { 87 return; 88 } else if (ri->raw_writefn) { 89 ri->raw_writefn(env, ri, v); 90 } else if (ri->writefn) { 91 ri->writefn(env, ri, v); 92 } else { 93 raw_write(env, ri, v); 94 } 95 } 96 97 static bool raw_accessors_invalid(const ARMCPRegInfo *ri) 98 { 99 /* 100 * Return true if the regdef would cause an assertion if you called 101 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a 102 * program bug for it not to have the NO_RAW flag). 103 * NB that returning false here doesn't necessarily mean that calling 104 * read/write_raw_cp_reg() is safe, because we can't distinguish "has 105 * read/write access functions which are safe for raw use" from "has 106 * read/write access functions which have side effects but has forgotten 107 * to provide raw access functions". 108 * The tests here line up with the conditions in read/write_raw_cp_reg() 109 * and assertions in raw_read()/raw_write(). 110 */ 111 if ((ri->type & ARM_CP_CONST) || 112 ri->fieldoffset || 113 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) { 114 return false; 115 } 116 return true; 117 } 118 119 bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync) 120 { 121 /* Write the coprocessor state from cpu->env to the (index,value) list. */ 122 int i; 123 bool ok = true; 124 125 for (i = 0; i < cpu->cpreg_array_len; i++) { 126 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 127 const ARMCPRegInfo *ri; 128 uint64_t newval; 129 130 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 131 if (!ri) { 132 ok = false; 133 continue; 134 } 135 if (ri->type & ARM_CP_NO_RAW) { 136 continue; 137 } 138 139 newval = read_raw_cp_reg(&cpu->env, ri); 140 if (kvm_sync) { 141 /* 142 * Only sync if the previous list->cpustate sync succeeded. 143 * Rather than tracking the success/failure state for every 144 * item in the list, we just recheck "does the raw write we must 145 * have made in write_list_to_cpustate() read back OK" here. 146 */ 147 uint64_t oldval = cpu->cpreg_values[i]; 148 149 if (oldval == newval) { 150 continue; 151 } 152 153 write_raw_cp_reg(&cpu->env, ri, oldval); 154 if (read_raw_cp_reg(&cpu->env, ri) != oldval) { 155 continue; 156 } 157 158 write_raw_cp_reg(&cpu->env, ri, newval); 159 } 160 cpu->cpreg_values[i] = newval; 161 } 162 return ok; 163 } 164 165 bool write_list_to_cpustate(ARMCPU *cpu) 166 { 167 int i; 168 bool ok = true; 169 170 for (i = 0; i < cpu->cpreg_array_len; i++) { 171 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]); 172 uint64_t v = cpu->cpreg_values[i]; 173 const ARMCPRegInfo *ri; 174 175 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 176 if (!ri) { 177 ok = false; 178 continue; 179 } 180 if (ri->type & ARM_CP_NO_RAW) { 181 continue; 182 } 183 /* 184 * Write value and confirm it reads back as written 185 * (to catch read-only registers and partially read-only 186 * registers where the incoming migration value doesn't match) 187 */ 188 write_raw_cp_reg(&cpu->env, ri, v); 189 if (read_raw_cp_reg(&cpu->env, ri) != v) { 190 ok = false; 191 } 192 } 193 return ok; 194 } 195 196 static void add_cpreg_to_list(gpointer key, gpointer opaque) 197 { 198 ARMCPU *cpu = opaque; 199 uint32_t regidx = (uintptr_t)key; 200 const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx); 201 202 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 203 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx); 204 /* The value array need not be initialized at this point */ 205 cpu->cpreg_array_len++; 206 } 207 } 208 209 static void count_cpreg(gpointer key, gpointer opaque) 210 { 211 ARMCPU *cpu = opaque; 212 const ARMCPRegInfo *ri; 213 214 ri = g_hash_table_lookup(cpu->cp_regs, key); 215 216 if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) { 217 cpu->cpreg_array_len++; 218 } 219 } 220 221 static gint cpreg_key_compare(gconstpointer a, gconstpointer b) 222 { 223 uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a); 224 uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b); 225 226 if (aidx > bidx) { 227 return 1; 228 } 229 if (aidx < bidx) { 230 return -1; 231 } 232 return 0; 233 } 234 235 void init_cpreg_list(ARMCPU *cpu) 236 { 237 /* 238 * Initialise the cpreg_tuples[] array based on the cp_regs hash. 239 * Note that we require cpreg_tuples[] to be sorted by key ID. 240 */ 241 GList *keys; 242 int arraylen; 243 244 keys = g_hash_table_get_keys(cpu->cp_regs); 245 keys = g_list_sort(keys, cpreg_key_compare); 246 247 cpu->cpreg_array_len = 0; 248 249 g_list_foreach(keys, count_cpreg, cpu); 250 251 arraylen = cpu->cpreg_array_len; 252 cpu->cpreg_indexes = g_new(uint64_t, arraylen); 253 cpu->cpreg_values = g_new(uint64_t, arraylen); 254 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen); 255 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen); 256 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len; 257 cpu->cpreg_array_len = 0; 258 259 g_list_foreach(keys, add_cpreg_to_list, cpu); 260 261 assert(cpu->cpreg_array_len == arraylen); 262 263 g_list_free(keys); 264 } 265 266 /* 267 * Some registers are not accessible from AArch32 EL3 if SCR.NS == 0. 268 */ 269 static CPAccessResult access_el3_aa32ns(CPUARMState *env, 270 const ARMCPRegInfo *ri, 271 bool isread) 272 { 273 if (!is_a64(env) && arm_current_el(env) == 3 && 274 arm_is_secure_below_el3(env)) { 275 return CP_ACCESS_TRAP_UNCATEGORIZED; 276 } 277 return CP_ACCESS_OK; 278 } 279 280 /* 281 * Some secure-only AArch32 registers trap to EL3 if used from 282 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts). 283 * Note that an access from Secure EL1 can only happen if EL3 is AArch64. 284 * We assume that the .access field is set to PL1_RW. 285 */ 286 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env, 287 const ARMCPRegInfo *ri, 288 bool isread) 289 { 290 if (arm_current_el(env) == 3) { 291 return CP_ACCESS_OK; 292 } 293 if (arm_is_secure_below_el3(env)) { 294 if (env->cp15.scr_el3 & SCR_EEL2) { 295 return CP_ACCESS_TRAP_EL2; 296 } 297 return CP_ACCESS_TRAP_EL3; 298 } 299 /* This will be EL1 NS and EL2 NS, which just UNDEF */ 300 return CP_ACCESS_TRAP_UNCATEGORIZED; 301 } 302 303 /* 304 * Check for traps to performance monitor registers, which are controlled 305 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3. 306 */ 307 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri, 308 bool isread) 309 { 310 int el = arm_current_el(env); 311 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 312 313 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 314 return CP_ACCESS_TRAP_EL2; 315 } 316 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 317 return CP_ACCESS_TRAP_EL3; 318 } 319 return CP_ACCESS_OK; 320 } 321 322 /* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */ 323 static CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri, 324 bool isread) 325 { 326 if (arm_current_el(env) == 1) { 327 uint64_t trap = isread ? HCR_TRVM : HCR_TVM; 328 if (arm_hcr_el2_eff(env) & trap) { 329 return CP_ACCESS_TRAP_EL2; 330 } 331 } 332 return CP_ACCESS_OK; 333 } 334 335 /* Check for traps from EL1 due to HCR_EL2.TSW. */ 336 static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri, 337 bool isread) 338 { 339 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) { 340 return CP_ACCESS_TRAP_EL2; 341 } 342 return CP_ACCESS_OK; 343 } 344 345 /* Check for traps from EL1 due to HCR_EL2.TACR. */ 346 static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri, 347 bool isread) 348 { 349 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) { 350 return CP_ACCESS_TRAP_EL2; 351 } 352 return CP_ACCESS_OK; 353 } 354 355 /* Check for traps from EL1 due to HCR_EL2.TTLB. */ 356 static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri, 357 bool isread) 358 { 359 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) { 360 return CP_ACCESS_TRAP_EL2; 361 } 362 return CP_ACCESS_OK; 363 } 364 365 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */ 366 static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri, 367 bool isread) 368 { 369 if (arm_current_el(env) == 1 && 370 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) { 371 return CP_ACCESS_TRAP_EL2; 372 } 373 return CP_ACCESS_OK; 374 } 375 376 #ifdef TARGET_AARCH64 377 /* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */ 378 static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri, 379 bool isread) 380 { 381 if (arm_current_el(env) == 1 && 382 (arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) { 383 return CP_ACCESS_TRAP_EL2; 384 } 385 return CP_ACCESS_OK; 386 } 387 #endif 388 389 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 390 { 391 ARMCPU *cpu = env_archcpu(env); 392 393 raw_write(env, ri, value); 394 tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */ 395 } 396 397 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 398 { 399 ARMCPU *cpu = env_archcpu(env); 400 401 if (raw_read(env, ri) != value) { 402 /* 403 * Unlike real hardware the qemu TLB uses virtual addresses, 404 * not modified virtual addresses, so this causes a TLB flush. 405 */ 406 tlb_flush(CPU(cpu)); 407 raw_write(env, ri, value); 408 } 409 } 410 411 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri, 412 uint64_t value) 413 { 414 ARMCPU *cpu = env_archcpu(env); 415 416 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA) 417 && !extended_addresses_enabled(env)) { 418 /* 419 * For VMSA (when not using the LPAE long descriptor page table 420 * format) this register includes the ASID, so do a TLB flush. 421 * For PMSA it is purely a process ID and no action is needed. 422 */ 423 tlb_flush(CPU(cpu)); 424 } 425 raw_write(env, ri, value); 426 } 427 428 static int alle1_tlbmask(CPUARMState *env) 429 { 430 /* 431 * Note that the 'ALL' scope must invalidate both stage 1 and 432 * stage 2 translations, whereas most other scopes only invalidate 433 * stage 1 translations. 434 */ 435 return (ARMMMUIdxBit_E10_1 | 436 ARMMMUIdxBit_E10_1_PAN | 437 ARMMMUIdxBit_E10_0 | 438 ARMMMUIdxBit_Stage2 | 439 ARMMMUIdxBit_Stage2_S); 440 } 441 442 443 /* IS variants of TLB operations must affect all cores */ 444 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 445 uint64_t value) 446 { 447 CPUState *cs = env_cpu(env); 448 449 tlb_flush_all_cpus_synced(cs); 450 } 451 452 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 453 uint64_t value) 454 { 455 CPUState *cs = env_cpu(env); 456 457 tlb_flush_all_cpus_synced(cs); 458 } 459 460 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 461 uint64_t value) 462 { 463 CPUState *cs = env_cpu(env); 464 465 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 466 } 467 468 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 469 uint64_t value) 470 { 471 CPUState *cs = env_cpu(env); 472 473 tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK); 474 } 475 476 /* 477 * Non-IS variants of TLB operations are upgraded to 478 * IS versions if we are at EL1 and HCR_EL2.FB is effectively set to 479 * force broadcast of these operations. 480 */ 481 static bool tlb_force_broadcast(CPUARMState *env) 482 { 483 return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB); 484 } 485 486 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 /* Invalidate all (TLBIALL) */ 490 CPUState *cs = env_cpu(env); 491 492 if (tlb_force_broadcast(env)) { 493 tlb_flush_all_cpus_synced(cs); 494 } else { 495 tlb_flush(cs); 496 } 497 } 498 499 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri, 500 uint64_t value) 501 { 502 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */ 503 CPUState *cs = env_cpu(env); 504 505 value &= TARGET_PAGE_MASK; 506 if (tlb_force_broadcast(env)) { 507 tlb_flush_page_all_cpus_synced(cs, value); 508 } else { 509 tlb_flush_page(cs, value); 510 } 511 } 512 513 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 /* Invalidate by ASID (TLBIASID) */ 517 CPUState *cs = env_cpu(env); 518 519 if (tlb_force_broadcast(env)) { 520 tlb_flush_all_cpus_synced(cs); 521 } else { 522 tlb_flush(cs); 523 } 524 } 525 526 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri, 527 uint64_t value) 528 { 529 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */ 530 CPUState *cs = env_cpu(env); 531 532 value &= TARGET_PAGE_MASK; 533 if (tlb_force_broadcast(env)) { 534 tlb_flush_page_all_cpus_synced(cs, value); 535 } else { 536 tlb_flush_page(cs, value); 537 } 538 } 539 540 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 CPUState *cs = env_cpu(env); 544 545 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 546 } 547 548 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 549 uint64_t value) 550 { 551 CPUState *cs = env_cpu(env); 552 553 tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env)); 554 } 555 556 557 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 CPUState *cs = env_cpu(env); 561 562 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2); 563 } 564 565 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 566 uint64_t value) 567 { 568 CPUState *cs = env_cpu(env); 569 570 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2); 571 } 572 573 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 574 uint64_t value) 575 { 576 CPUState *cs = env_cpu(env); 577 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 578 579 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2); 580 } 581 582 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 CPUState *cs = env_cpu(env); 586 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12); 587 588 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, 589 ARMMMUIdxBit_E2); 590 } 591 592 static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 593 uint64_t value) 594 { 595 CPUState *cs = env_cpu(env); 596 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 597 598 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2); 599 } 600 601 static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri, 602 uint64_t value) 603 { 604 CPUState *cs = env_cpu(env); 605 uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12; 606 607 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2); 608 } 609 610 static const ARMCPRegInfo cp_reginfo[] = { 611 /* 612 * Define the secure and non-secure FCSE identifier CP registers 613 * separately because there is no secure bank in V8 (no _EL3). This allows 614 * the secure register to be properly reset and migrated. There is also no 615 * v8 EL1 version of the register so the non-secure instance stands alone. 616 */ 617 { .name = "FCSEIDR", 618 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 619 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS, 620 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns), 621 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 622 { .name = "FCSEIDR_S", 623 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0, 624 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S, 625 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s), 626 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, }, 627 /* 628 * Define the secure and non-secure context identifier CP registers 629 * separately because there is no secure bank in V8 (no _EL3). This allows 630 * the secure register to be properly reset and migrated. In the 631 * non-secure case, the 32-bit register will have reset and migration 632 * disabled during registration as it is handled by the 64-bit instance. 633 */ 634 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH, 635 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 636 .access = PL1_RW, .accessfn = access_tvm_trvm, 637 .fgt = FGT_CONTEXTIDR_EL1, 638 .secure = ARM_CP_SECSTATE_NS, 639 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]), 640 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 641 { .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32, 642 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1, 643 .access = PL1_RW, .accessfn = access_tvm_trvm, 644 .secure = ARM_CP_SECSTATE_S, 645 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s), 646 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, }, 647 }; 648 649 static const ARMCPRegInfo not_v8_cp_reginfo[] = { 650 /* 651 * NB: Some of these registers exist in v8 but with more precise 652 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]). 653 */ 654 /* MMU Domain access control / MPU write buffer control */ 655 { .name = "DACR", 656 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY, 657 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 658 .writefn = dacr_write, .raw_writefn = raw_write, 659 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 660 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 661 /* 662 * ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs. 663 * For v6 and v5, these mappings are overly broad. 664 */ 665 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0, 666 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 667 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1, 668 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 669 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4, 670 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 671 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8, 672 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP }, 673 /* Cache maintenance ops; some of this space may be overridden later. */ 674 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 675 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 676 .type = ARM_CP_NOP | ARM_CP_OVERRIDE }, 677 }; 678 679 static const ARMCPRegInfo not_v6_cp_reginfo[] = { 680 /* 681 * Not all pre-v6 cores implemented this WFI, so this is slightly 682 * over-broad. 683 */ 684 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2, 685 .access = PL1_W, .type = ARM_CP_WFI }, 686 }; 687 688 static const ARMCPRegInfo not_v7_cp_reginfo[] = { 689 /* 690 * Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which 691 * is UNPREDICTABLE; we choose to NOP as most implementations do). 692 */ 693 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 694 .access = PL1_W, .type = ARM_CP_WFI }, 695 /* 696 * L1 cache lockdown. Not architectural in v6 and earlier but in practice 697 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and 698 * OMAPCP will override this space. 699 */ 700 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0, 701 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data), 702 .resetvalue = 0 }, 703 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1, 704 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn), 705 .resetvalue = 0 }, 706 /* v6 doesn't have the cache ID registers but Linux reads them anyway */ 707 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY, 708 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 709 .resetvalue = 0 }, 710 /* 711 * We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR; 712 * implementing it as RAZ means the "debug architecture version" bits 713 * will read as a reserved value, which should cause Linux to not try 714 * to use the debug hardware. 715 */ 716 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0, 717 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 718 /* 719 * MMU TLB control. Note that the wildcarding means we cover not just 720 * the unified TLB ops but also the dside/iside/inner-shareable variants. 721 */ 722 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY, 723 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, 724 .type = ARM_CP_NO_RAW }, 725 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY, 726 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, 727 .type = ARM_CP_NO_RAW }, 728 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY, 729 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, 730 .type = ARM_CP_NO_RAW }, 731 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY, 732 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, 733 .type = ARM_CP_NO_RAW }, 734 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2, 735 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP }, 736 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2, 737 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP }, 738 }; 739 740 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, 741 uint64_t value) 742 { 743 uint32_t mask = 0; 744 745 /* In ARMv8 most bits of CPACR_EL1 are RES0. */ 746 if (!arm_feature(env, ARM_FEATURE_V8)) { 747 /* 748 * ARMv7 defines bits for unimplemented coprocessors as RAZ/WI. 749 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP. 750 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell. 751 */ 752 if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) { 753 /* VFP coprocessor: cp10 & cp11 [23:20] */ 754 mask |= R_CPACR_ASEDIS_MASK | 755 R_CPACR_D32DIS_MASK | 756 R_CPACR_CP11_MASK | 757 R_CPACR_CP10_MASK; 758 759 if (!arm_feature(env, ARM_FEATURE_NEON)) { 760 /* ASEDIS [31] bit is RAO/WI */ 761 value |= R_CPACR_ASEDIS_MASK; 762 } 763 764 /* 765 * VFPv3 and upwards with NEON implement 32 double precision 766 * registers (D0-D31). 767 */ 768 if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) { 769 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */ 770 value |= R_CPACR_D32DIS_MASK; 771 } 772 } 773 value &= mask; 774 } 775 776 /* 777 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 778 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 779 */ 780 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 781 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 782 mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK; 783 value = (value & ~mask) | (env->cp15.cpacr_el1 & mask); 784 } 785 786 env->cp15.cpacr_el1 = value; 787 } 788 789 static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri) 790 { 791 /* 792 * For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10 793 * is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00. 794 */ 795 uint64_t value = env->cp15.cpacr_el1; 796 797 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 798 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 799 value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK); 800 } 801 return value; 802 } 803 804 805 static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 806 { 807 /* 808 * Call cpacr_write() so that we reset with the correct RAO bits set 809 * for our CPU features. 810 */ 811 cpacr_write(env, ri, 0); 812 } 813 814 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 815 bool isread) 816 { 817 if (arm_feature(env, ARM_FEATURE_V8)) { 818 /* Check if CPACR accesses are to be trapped to EL2 */ 819 if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) && 820 FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) { 821 return CP_ACCESS_TRAP_EL2; 822 /* Check if CPACR accesses are to be trapped to EL3 */ 823 } else if (arm_current_el(env) < 3 && 824 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 825 return CP_ACCESS_TRAP_EL3; 826 } 827 } 828 829 return CP_ACCESS_OK; 830 } 831 832 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri, 833 bool isread) 834 { 835 /* Check if CPTR accesses are set to trap to EL3 */ 836 if (arm_current_el(env) == 2 && 837 FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) { 838 return CP_ACCESS_TRAP_EL3; 839 } 840 841 return CP_ACCESS_OK; 842 } 843 844 static const ARMCPRegInfo v6_cp_reginfo[] = { 845 /* prefetch by MVA in v6, NOP in v7 */ 846 { .name = "MVA_prefetch", 847 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1, 848 .access = PL1_W, .type = ARM_CP_NOP }, 849 /* 850 * We need to break the TB after ISB to execute self-modifying code 851 * correctly and also to take any pending interrupts immediately. 852 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag. 853 */ 854 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4, 855 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore }, 856 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4, 857 .access = PL0_W, .type = ARM_CP_NOP }, 858 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5, 859 .access = PL0_W, .type = ARM_CP_NOP }, 860 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2, 861 .access = PL1_RW, .accessfn = access_tvm_trvm, 862 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s), 863 offsetof(CPUARMState, cp15.ifar_ns) }, 864 .resetvalue = 0, }, 865 /* 866 * Watchpoint Fault Address Register : should actually only be present 867 * for 1136, 1176, 11MPCore. 868 */ 869 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1, 870 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, }, 871 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3, 872 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access, 873 .fgt = FGT_CPACR_EL1, 874 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1), 875 .resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read }, 876 }; 877 878 typedef struct pm_event { 879 uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */ 880 /* If the event is supported on this CPU (used to generate PMCEID[01]) */ 881 bool (*supported)(CPUARMState *); 882 /* 883 * Retrieve the current count of the underlying event. The programmed 884 * counters hold a difference from the return value from this function 885 */ 886 uint64_t (*get_count)(CPUARMState *); 887 /* 888 * Return how many nanoseconds it will take (at a minimum) for count events 889 * to occur. A negative value indicates the counter will never overflow, or 890 * that the counter has otherwise arranged for the overflow bit to be set 891 * and the PMU interrupt to be raised on overflow. 892 */ 893 int64_t (*ns_per_count)(uint64_t); 894 } pm_event; 895 896 static bool event_always_supported(CPUARMState *env) 897 { 898 return true; 899 } 900 901 static uint64_t swinc_get_count(CPUARMState *env) 902 { 903 /* 904 * SW_INCR events are written directly to the pmevcntr's by writes to 905 * PMSWINC, so there is no underlying count maintained by the PMU itself 906 */ 907 return 0; 908 } 909 910 static int64_t swinc_ns_per(uint64_t ignored) 911 { 912 return -1; 913 } 914 915 /* 916 * Return the underlying cycle count for the PMU cycle counters. If we're in 917 * usermode, simply return 0. 918 */ 919 static uint64_t cycles_get_count(CPUARMState *env) 920 { 921 #ifndef CONFIG_USER_ONLY 922 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 923 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND); 924 #else 925 return cpu_get_host_ticks(); 926 #endif 927 } 928 929 #ifndef CONFIG_USER_ONLY 930 static int64_t cycles_ns_per(uint64_t cycles) 931 { 932 return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles; 933 } 934 935 static bool instructions_supported(CPUARMState *env) 936 { 937 return icount_enabled() == 1; /* Precise instruction counting */ 938 } 939 940 static uint64_t instructions_get_count(CPUARMState *env) 941 { 942 return (uint64_t)icount_get_raw(); 943 } 944 945 static int64_t instructions_ns_per(uint64_t icount) 946 { 947 return icount_to_ns((int64_t)icount); 948 } 949 #endif 950 951 static bool pmuv3p1_events_supported(CPUARMState *env) 952 { 953 /* For events which are supported in any v8.1 PMU */ 954 return cpu_isar_feature(any_pmuv3p1, env_archcpu(env)); 955 } 956 957 static bool pmuv3p4_events_supported(CPUARMState *env) 958 { 959 /* For events which are supported in any v8.1 PMU */ 960 return cpu_isar_feature(any_pmuv3p4, env_archcpu(env)); 961 } 962 963 static uint64_t zero_event_get_count(CPUARMState *env) 964 { 965 /* For events which on QEMU never fire, so their count is always zero */ 966 return 0; 967 } 968 969 static int64_t zero_event_ns_per(uint64_t cycles) 970 { 971 /* An event which never fires can never overflow */ 972 return -1; 973 } 974 975 static const pm_event pm_events[] = { 976 { .number = 0x000, /* SW_INCR */ 977 .supported = event_always_supported, 978 .get_count = swinc_get_count, 979 .ns_per_count = swinc_ns_per, 980 }, 981 #ifndef CONFIG_USER_ONLY 982 { .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */ 983 .supported = instructions_supported, 984 .get_count = instructions_get_count, 985 .ns_per_count = instructions_ns_per, 986 }, 987 { .number = 0x011, /* CPU_CYCLES, Cycle */ 988 .supported = event_always_supported, 989 .get_count = cycles_get_count, 990 .ns_per_count = cycles_ns_per, 991 }, 992 #endif 993 { .number = 0x023, /* STALL_FRONTEND */ 994 .supported = pmuv3p1_events_supported, 995 .get_count = zero_event_get_count, 996 .ns_per_count = zero_event_ns_per, 997 }, 998 { .number = 0x024, /* STALL_BACKEND */ 999 .supported = pmuv3p1_events_supported, 1000 .get_count = zero_event_get_count, 1001 .ns_per_count = zero_event_ns_per, 1002 }, 1003 { .number = 0x03c, /* STALL */ 1004 .supported = pmuv3p4_events_supported, 1005 .get_count = zero_event_get_count, 1006 .ns_per_count = zero_event_ns_per, 1007 }, 1008 }; 1009 1010 /* 1011 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of 1012 * events (i.e. the statistical profiling extension), this implementation 1013 * should first be updated to something sparse instead of the current 1014 * supported_event_map[] array. 1015 */ 1016 #define MAX_EVENT_ID 0x3c 1017 #define UNSUPPORTED_EVENT UINT16_MAX 1018 static uint16_t supported_event_map[MAX_EVENT_ID + 1]; 1019 1020 /* 1021 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map 1022 * of ARM event numbers to indices in our pm_events array. 1023 * 1024 * Note: Events in the 0x40XX range are not currently supported. 1025 */ 1026 void pmu_init(ARMCPU *cpu) 1027 { 1028 unsigned int i; 1029 1030 /* 1031 * Empty supported_event_map and cpu->pmceid[01] before adding supported 1032 * events to them 1033 */ 1034 for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) { 1035 supported_event_map[i] = UNSUPPORTED_EVENT; 1036 } 1037 cpu->pmceid0 = 0; 1038 cpu->pmceid1 = 0; 1039 1040 for (i = 0; i < ARRAY_SIZE(pm_events); i++) { 1041 const pm_event *cnt = &pm_events[i]; 1042 assert(cnt->number <= MAX_EVENT_ID); 1043 /* We do not currently support events in the 0x40xx range */ 1044 assert(cnt->number <= 0x3f); 1045 1046 if (cnt->supported(&cpu->env)) { 1047 supported_event_map[cnt->number] = i; 1048 uint64_t event_mask = 1ULL << (cnt->number & 0x1f); 1049 if (cnt->number & 0x20) { 1050 cpu->pmceid1 |= event_mask; 1051 } else { 1052 cpu->pmceid0 |= event_mask; 1053 } 1054 } 1055 } 1056 } 1057 1058 /* 1059 * Check at runtime whether a PMU event is supported for the current machine 1060 */ 1061 static bool event_supported(uint16_t number) 1062 { 1063 if (number > MAX_EVENT_ID) { 1064 return false; 1065 } 1066 return supported_event_map[number] != UNSUPPORTED_EVENT; 1067 } 1068 1069 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri, 1070 bool isread) 1071 { 1072 /* 1073 * Performance monitor registers user accessibility is controlled 1074 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable 1075 * trapping to EL2 or EL3 for other accesses. 1076 */ 1077 int el = arm_current_el(env); 1078 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1079 1080 if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) { 1081 return CP_ACCESS_TRAP; 1082 } 1083 if (el < 2 && (mdcr_el2 & MDCR_TPM)) { 1084 return CP_ACCESS_TRAP_EL2; 1085 } 1086 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) { 1087 return CP_ACCESS_TRAP_EL3; 1088 } 1089 1090 return CP_ACCESS_OK; 1091 } 1092 1093 static CPAccessResult pmreg_access_xevcntr(CPUARMState *env, 1094 const ARMCPRegInfo *ri, 1095 bool isread) 1096 { 1097 /* ER: event counter read trap control */ 1098 if (arm_feature(env, ARM_FEATURE_V8) 1099 && arm_current_el(env) == 0 1100 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0 1101 && isread) { 1102 return CP_ACCESS_OK; 1103 } 1104 1105 return pmreg_access(env, ri, isread); 1106 } 1107 1108 static CPAccessResult pmreg_access_swinc(CPUARMState *env, 1109 const ARMCPRegInfo *ri, 1110 bool isread) 1111 { 1112 /* SW: software increment write trap control */ 1113 if (arm_feature(env, ARM_FEATURE_V8) 1114 && arm_current_el(env) == 0 1115 && (env->cp15.c9_pmuserenr & (1 << 1)) != 0 1116 && !isread) { 1117 return CP_ACCESS_OK; 1118 } 1119 1120 return pmreg_access(env, ri, isread); 1121 } 1122 1123 static CPAccessResult pmreg_access_selr(CPUARMState *env, 1124 const ARMCPRegInfo *ri, 1125 bool isread) 1126 { 1127 /* ER: event counter read trap control */ 1128 if (arm_feature(env, ARM_FEATURE_V8) 1129 && arm_current_el(env) == 0 1130 && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) { 1131 return CP_ACCESS_OK; 1132 } 1133 1134 return pmreg_access(env, ri, isread); 1135 } 1136 1137 static CPAccessResult pmreg_access_ccntr(CPUARMState *env, 1138 const ARMCPRegInfo *ri, 1139 bool isread) 1140 { 1141 /* CR: cycle counter read trap control */ 1142 if (arm_feature(env, ARM_FEATURE_V8) 1143 && arm_current_el(env) == 0 1144 && (env->cp15.c9_pmuserenr & (1 << 2)) != 0 1145 && isread) { 1146 return CP_ACCESS_OK; 1147 } 1148 1149 return pmreg_access(env, ri, isread); 1150 } 1151 1152 /* 1153 * Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at. 1154 * We use these to decide whether we need to wrap a write to MDCR_EL2 1155 * or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls. 1156 */ 1157 #define MDCR_EL2_PMU_ENABLE_BITS \ 1158 (MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP) 1159 #define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD) 1160 1161 /* 1162 * Returns true if the counter (pass 31 for PMCCNTR) should count events using 1163 * the current EL, security state, and register configuration. 1164 */ 1165 static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter) 1166 { 1167 uint64_t filter; 1168 bool e, p, u, nsk, nsu, nsh, m; 1169 bool enabled, prohibited = false, filtered; 1170 bool secure = arm_is_secure(env); 1171 int el = arm_current_el(env); 1172 uint64_t mdcr_el2 = arm_mdcr_el2_eff(env); 1173 uint8_t hpmn = mdcr_el2 & MDCR_HPMN; 1174 1175 if (!arm_feature(env, ARM_FEATURE_PMU)) { 1176 return false; 1177 } 1178 1179 if (!arm_feature(env, ARM_FEATURE_EL2) || 1180 (counter < hpmn || counter == 31)) { 1181 e = env->cp15.c9_pmcr & PMCRE; 1182 } else { 1183 e = mdcr_el2 & MDCR_HPME; 1184 } 1185 enabled = e && (env->cp15.c9_pmcnten & (1 << counter)); 1186 1187 /* Is event counting prohibited? */ 1188 if (el == 2 && (counter < hpmn || counter == 31)) { 1189 prohibited = mdcr_el2 & MDCR_HPMD; 1190 } 1191 if (secure) { 1192 prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME); 1193 } 1194 1195 if (counter == 31) { 1196 /* 1197 * The cycle counter defaults to running. PMCR.DP says "disable 1198 * the cycle counter when event counting is prohibited". 1199 * Some MDCR bits disable the cycle counter specifically. 1200 */ 1201 prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP; 1202 if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1203 if (secure) { 1204 prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD); 1205 } 1206 if (el == 2) { 1207 prohibited = prohibited || (mdcr_el2 & MDCR_HCCD); 1208 } 1209 } 1210 } 1211 1212 if (counter == 31) { 1213 filter = env->cp15.pmccfiltr_el0; 1214 } else { 1215 filter = env->cp15.c14_pmevtyper[counter]; 1216 } 1217 1218 p = filter & PMXEVTYPER_P; 1219 u = filter & PMXEVTYPER_U; 1220 nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK); 1221 nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU); 1222 nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH); 1223 m = arm_el_is_aa64(env, 1) && 1224 arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M); 1225 1226 if (el == 0) { 1227 filtered = secure ? u : u != nsu; 1228 } else if (el == 1) { 1229 filtered = secure ? p : p != nsk; 1230 } else if (el == 2) { 1231 filtered = !nsh; 1232 } else { /* EL3 */ 1233 filtered = m != p; 1234 } 1235 1236 if (counter != 31) { 1237 /* 1238 * If not checking PMCCNTR, ensure the counter is setup to an event we 1239 * support 1240 */ 1241 uint16_t event = filter & PMXEVTYPER_EVTCOUNT; 1242 if (!event_supported(event)) { 1243 return false; 1244 } 1245 } 1246 1247 return enabled && !prohibited && !filtered; 1248 } 1249 1250 static void pmu_update_irq(CPUARMState *env) 1251 { 1252 ARMCPU *cpu = env_archcpu(env); 1253 qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) && 1254 (env->cp15.c9_pminten & env->cp15.c9_pmovsr)); 1255 } 1256 1257 static bool pmccntr_clockdiv_enabled(CPUARMState *env) 1258 { 1259 /* 1260 * Return true if the clock divider is enabled and the cycle counter 1261 * is supposed to tick only once every 64 clock cycles. This is 1262 * controlled by PMCR.D, but if PMCR.LC is set to enable the long 1263 * (64-bit) cycle counter PMCR.D has no effect. 1264 */ 1265 return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD; 1266 } 1267 1268 static bool pmevcntr_is_64_bit(CPUARMState *env, int counter) 1269 { 1270 /* Return true if the specified event counter is configured to be 64 bit */ 1271 1272 /* This isn't intended to be used with the cycle counter */ 1273 assert(counter < 31); 1274 1275 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1276 return false; 1277 } 1278 1279 if (arm_feature(env, ARM_FEATURE_EL2)) { 1280 /* 1281 * MDCR_EL2.HLP still applies even when EL2 is disabled in the 1282 * current security state, so we don't use arm_mdcr_el2_eff() here. 1283 */ 1284 bool hlp = env->cp15.mdcr_el2 & MDCR_HLP; 1285 int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN; 1286 1287 if (hpmn != 0 && counter >= hpmn) { 1288 return hlp; 1289 } 1290 } 1291 return env->cp15.c9_pmcr & PMCRLP; 1292 } 1293 1294 /* 1295 * Ensure c15_ccnt is the guest-visible count so that operations such as 1296 * enabling/disabling the counter or filtering, modifying the count itself, 1297 * etc. can be done logically. This is essentially a no-op if the counter is 1298 * not enabled at the time of the call. 1299 */ 1300 static void pmccntr_op_start(CPUARMState *env) 1301 { 1302 uint64_t cycles = cycles_get_count(env); 1303 1304 if (pmu_counter_enabled(env, 31)) { 1305 uint64_t eff_cycles = cycles; 1306 if (pmccntr_clockdiv_enabled(env)) { 1307 eff_cycles /= 64; 1308 } 1309 1310 uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta; 1311 1312 uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \ 1313 1ull << 63 : 1ull << 31; 1314 if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) { 1315 env->cp15.c9_pmovsr |= (1ULL << 31); 1316 pmu_update_irq(env); 1317 } 1318 1319 env->cp15.c15_ccnt = new_pmccntr; 1320 } 1321 env->cp15.c15_ccnt_delta = cycles; 1322 } 1323 1324 /* 1325 * If PMCCNTR is enabled, recalculate the delta between the clock and the 1326 * guest-visible count. A call to pmccntr_op_finish should follow every call to 1327 * pmccntr_op_start. 1328 */ 1329 static void pmccntr_op_finish(CPUARMState *env) 1330 { 1331 if (pmu_counter_enabled(env, 31)) { 1332 #ifndef CONFIG_USER_ONLY 1333 /* Calculate when the counter will next overflow */ 1334 uint64_t remaining_cycles = -env->cp15.c15_ccnt; 1335 if (!(env->cp15.c9_pmcr & PMCRLC)) { 1336 remaining_cycles = (uint32_t)remaining_cycles; 1337 } 1338 int64_t overflow_in = cycles_ns_per(remaining_cycles); 1339 1340 if (overflow_in > 0) { 1341 int64_t overflow_at; 1342 1343 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1344 overflow_in, &overflow_at)) { 1345 ARMCPU *cpu = env_archcpu(env); 1346 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1347 } 1348 } 1349 #endif 1350 1351 uint64_t prev_cycles = env->cp15.c15_ccnt_delta; 1352 if (pmccntr_clockdiv_enabled(env)) { 1353 prev_cycles /= 64; 1354 } 1355 env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt; 1356 } 1357 } 1358 1359 static void pmevcntr_op_start(CPUARMState *env, uint8_t counter) 1360 { 1361 1362 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1363 uint64_t count = 0; 1364 if (event_supported(event)) { 1365 uint16_t event_idx = supported_event_map[event]; 1366 count = pm_events[event_idx].get_count(env); 1367 } 1368 1369 if (pmu_counter_enabled(env, counter)) { 1370 uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter]; 1371 uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ? 1372 1ULL << 63 : 1ULL << 31; 1373 1374 if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) { 1375 env->cp15.c9_pmovsr |= (1 << counter); 1376 pmu_update_irq(env); 1377 } 1378 env->cp15.c14_pmevcntr[counter] = new_pmevcntr; 1379 } 1380 env->cp15.c14_pmevcntr_delta[counter] = count; 1381 } 1382 1383 static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter) 1384 { 1385 if (pmu_counter_enabled(env, counter)) { 1386 #ifndef CONFIG_USER_ONLY 1387 uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT; 1388 uint16_t event_idx = supported_event_map[event]; 1389 uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1); 1390 int64_t overflow_in; 1391 1392 if (!pmevcntr_is_64_bit(env, counter)) { 1393 delta = (uint32_t)delta; 1394 } 1395 overflow_in = pm_events[event_idx].ns_per_count(delta); 1396 1397 if (overflow_in > 0) { 1398 int64_t overflow_at; 1399 1400 if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 1401 overflow_in, &overflow_at)) { 1402 ARMCPU *cpu = env_archcpu(env); 1403 timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); 1404 } 1405 } 1406 #endif 1407 1408 env->cp15.c14_pmevcntr_delta[counter] -= 1409 env->cp15.c14_pmevcntr[counter]; 1410 } 1411 } 1412 1413 void pmu_op_start(CPUARMState *env) 1414 { 1415 unsigned int i; 1416 pmccntr_op_start(env); 1417 for (i = 0; i < pmu_num_counters(env); i++) { 1418 pmevcntr_op_start(env, i); 1419 } 1420 } 1421 1422 void pmu_op_finish(CPUARMState *env) 1423 { 1424 unsigned int i; 1425 pmccntr_op_finish(env); 1426 for (i = 0; i < pmu_num_counters(env); i++) { 1427 pmevcntr_op_finish(env, i); 1428 } 1429 } 1430 1431 void pmu_pre_el_change(ARMCPU *cpu, void *ignored) 1432 { 1433 pmu_op_start(&cpu->env); 1434 } 1435 1436 void pmu_post_el_change(ARMCPU *cpu, void *ignored) 1437 { 1438 pmu_op_finish(&cpu->env); 1439 } 1440 1441 void arm_pmu_timer_cb(void *opaque) 1442 { 1443 ARMCPU *cpu = opaque; 1444 1445 /* 1446 * Update all the counter values based on the current underlying counts, 1447 * triggering interrupts to be raised, if necessary. pmu_op_finish() also 1448 * has the effect of setting the cpu->pmu_timer to the next earliest time a 1449 * counter may expire. 1450 */ 1451 pmu_op_start(&cpu->env); 1452 pmu_op_finish(&cpu->env); 1453 } 1454 1455 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1456 uint64_t value) 1457 { 1458 pmu_op_start(env); 1459 1460 if (value & PMCRC) { 1461 /* The counter has been reset */ 1462 env->cp15.c15_ccnt = 0; 1463 } 1464 1465 if (value & PMCRP) { 1466 unsigned int i; 1467 for (i = 0; i < pmu_num_counters(env); i++) { 1468 env->cp15.c14_pmevcntr[i] = 0; 1469 } 1470 } 1471 1472 env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK; 1473 env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK); 1474 1475 pmu_op_finish(env); 1476 } 1477 1478 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri, 1479 uint64_t value) 1480 { 1481 unsigned int i; 1482 uint64_t overflow_mask, new_pmswinc; 1483 1484 for (i = 0; i < pmu_num_counters(env); i++) { 1485 /* Increment a counter's count iff: */ 1486 if ((value & (1 << i)) && /* counter's bit is set */ 1487 /* counter is enabled and not filtered */ 1488 pmu_counter_enabled(env, i) && 1489 /* counter is SW_INCR */ 1490 (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) { 1491 pmevcntr_op_start(env, i); 1492 1493 /* 1494 * Detect if this write causes an overflow since we can't predict 1495 * PMSWINC overflows like we can for other events 1496 */ 1497 new_pmswinc = env->cp15.c14_pmevcntr[i] + 1; 1498 1499 overflow_mask = pmevcntr_is_64_bit(env, i) ? 1500 1ULL << 63 : 1ULL << 31; 1501 1502 if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) { 1503 env->cp15.c9_pmovsr |= (1 << i); 1504 pmu_update_irq(env); 1505 } 1506 1507 env->cp15.c14_pmevcntr[i] = new_pmswinc; 1508 1509 pmevcntr_op_finish(env, i); 1510 } 1511 } 1512 } 1513 1514 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1515 { 1516 uint64_t ret; 1517 pmccntr_op_start(env); 1518 ret = env->cp15.c15_ccnt; 1519 pmccntr_op_finish(env); 1520 return ret; 1521 } 1522 1523 static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1524 uint64_t value) 1525 { 1526 /* 1527 * The value of PMSELR.SEL affects the behavior of PMXEVTYPER and 1528 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the 1529 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are 1530 * accessed. 1531 */ 1532 env->cp15.c9_pmselr = value & 0x1f; 1533 } 1534 1535 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 pmccntr_op_start(env); 1539 env->cp15.c15_ccnt = value; 1540 pmccntr_op_finish(env); 1541 } 1542 1543 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri, 1544 uint64_t value) 1545 { 1546 uint64_t cur_val = pmccntr_read(env, NULL); 1547 1548 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value)); 1549 } 1550 1551 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1552 uint64_t value) 1553 { 1554 pmccntr_op_start(env); 1555 env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0; 1556 pmccntr_op_finish(env); 1557 } 1558 1559 static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri, 1560 uint64_t value) 1561 { 1562 pmccntr_op_start(env); 1563 /* M is not accessible from AArch32 */ 1564 env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) | 1565 (value & PMCCFILTR); 1566 pmccntr_op_finish(env); 1567 } 1568 1569 static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri) 1570 { 1571 /* M is not visible in AArch32 */ 1572 return env->cp15.pmccfiltr_el0 & PMCCFILTR; 1573 } 1574 1575 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1576 uint64_t value) 1577 { 1578 pmu_op_start(env); 1579 value &= pmu_counter_mask(env); 1580 env->cp15.c9_pmcnten |= value; 1581 pmu_op_finish(env); 1582 } 1583 1584 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1585 uint64_t value) 1586 { 1587 pmu_op_start(env); 1588 value &= pmu_counter_mask(env); 1589 env->cp15.c9_pmcnten &= ~value; 1590 pmu_op_finish(env); 1591 } 1592 1593 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 value &= pmu_counter_mask(env); 1597 env->cp15.c9_pmovsr &= ~value; 1598 pmu_update_irq(env); 1599 } 1600 1601 static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1602 uint64_t value) 1603 { 1604 value &= pmu_counter_mask(env); 1605 env->cp15.c9_pmovsr |= value; 1606 pmu_update_irq(env); 1607 } 1608 1609 static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1610 uint64_t value, const uint8_t counter) 1611 { 1612 if (counter == 31) { 1613 pmccfiltr_write(env, ri, value); 1614 } else if (counter < pmu_num_counters(env)) { 1615 pmevcntr_op_start(env, counter); 1616 1617 /* 1618 * If this counter's event type is changing, store the current 1619 * underlying count for the new type in c14_pmevcntr_delta[counter] so 1620 * pmevcntr_op_finish has the correct baseline when it converts back to 1621 * a delta. 1622 */ 1623 uint16_t old_event = env->cp15.c14_pmevtyper[counter] & 1624 PMXEVTYPER_EVTCOUNT; 1625 uint16_t new_event = value & PMXEVTYPER_EVTCOUNT; 1626 if (old_event != new_event) { 1627 uint64_t count = 0; 1628 if (event_supported(new_event)) { 1629 uint16_t event_idx = supported_event_map[new_event]; 1630 count = pm_events[event_idx].get_count(env); 1631 } 1632 env->cp15.c14_pmevcntr_delta[counter] = count; 1633 } 1634 1635 env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK; 1636 pmevcntr_op_finish(env, counter); 1637 } 1638 /* 1639 * Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when 1640 * PMSELR value is equal to or greater than the number of implemented 1641 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI. 1642 */ 1643 } 1644 1645 static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri, 1646 const uint8_t counter) 1647 { 1648 if (counter == 31) { 1649 return env->cp15.pmccfiltr_el0; 1650 } else if (counter < pmu_num_counters(env)) { 1651 return env->cp15.c14_pmevtyper[counter]; 1652 } else { 1653 /* 1654 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER 1655 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write(). 1656 */ 1657 return 0; 1658 } 1659 } 1660 1661 static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1662 uint64_t value) 1663 { 1664 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1665 pmevtyper_write(env, ri, value, counter); 1666 } 1667 1668 static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1672 env->cp15.c14_pmevtyper[counter] = value; 1673 1674 /* 1675 * pmevtyper_rawwrite is called between a pair of pmu_op_start and 1676 * pmu_op_finish calls when loading saved state for a migration. Because 1677 * we're potentially updating the type of event here, the value written to 1678 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a 1679 * different counter type. Therefore, we need to set this value to the 1680 * current count for the counter type we're writing so that pmu_op_finish 1681 * has the correct count for its calculation. 1682 */ 1683 uint16_t event = value & PMXEVTYPER_EVTCOUNT; 1684 if (event_supported(event)) { 1685 uint16_t event_idx = supported_event_map[event]; 1686 env->cp15.c14_pmevcntr_delta[counter] = 1687 pm_events[event_idx].get_count(env); 1688 } 1689 } 1690 1691 static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1692 { 1693 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1694 return pmevtyper_read(env, ri, counter); 1695 } 1696 1697 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri, 1698 uint64_t value) 1699 { 1700 pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31); 1701 } 1702 1703 static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri) 1704 { 1705 return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31); 1706 } 1707 1708 static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value, uint8_t counter) 1710 { 1711 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1712 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1713 value &= MAKE_64BIT_MASK(0, 32); 1714 } 1715 if (counter < pmu_num_counters(env)) { 1716 pmevcntr_op_start(env, counter); 1717 env->cp15.c14_pmevcntr[counter] = value; 1718 pmevcntr_op_finish(env, counter); 1719 } 1720 /* 1721 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1722 * are CONSTRAINED UNPREDICTABLE. 1723 */ 1724 } 1725 1726 static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri, 1727 uint8_t counter) 1728 { 1729 if (counter < pmu_num_counters(env)) { 1730 uint64_t ret; 1731 pmevcntr_op_start(env, counter); 1732 ret = env->cp15.c14_pmevcntr[counter]; 1733 pmevcntr_op_finish(env, counter); 1734 if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) { 1735 /* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */ 1736 ret &= MAKE_64BIT_MASK(0, 32); 1737 } 1738 return ret; 1739 } else { 1740 /* 1741 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR 1742 * are CONSTRAINED UNPREDICTABLE. 1743 */ 1744 return 0; 1745 } 1746 } 1747 1748 static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri, 1749 uint64_t value) 1750 { 1751 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1752 pmevcntr_write(env, ri, value, counter); 1753 } 1754 1755 static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 1756 { 1757 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1758 return pmevcntr_read(env, ri, counter); 1759 } 1760 1761 static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1765 assert(counter < pmu_num_counters(env)); 1766 env->cp15.c14_pmevcntr[counter] = value; 1767 pmevcntr_write(env, ri, value, counter); 1768 } 1769 1770 static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri) 1771 { 1772 uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7); 1773 assert(counter < pmu_num_counters(env)); 1774 return env->cp15.c14_pmevcntr[counter]; 1775 } 1776 1777 static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1778 uint64_t value) 1779 { 1780 pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31); 1781 } 1782 1783 static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31); 1786 } 1787 1788 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 if (arm_feature(env, ARM_FEATURE_V8)) { 1792 env->cp15.c9_pmuserenr = value & 0xf; 1793 } else { 1794 env->cp15.c9_pmuserenr = value & 1; 1795 } 1796 } 1797 1798 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri, 1799 uint64_t value) 1800 { 1801 /* We have no event counters so only the C bit can be changed */ 1802 value &= pmu_counter_mask(env); 1803 env->cp15.c9_pminten |= value; 1804 pmu_update_irq(env); 1805 } 1806 1807 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1808 uint64_t value) 1809 { 1810 value &= pmu_counter_mask(env); 1811 env->cp15.c9_pminten &= ~value; 1812 pmu_update_irq(env); 1813 } 1814 1815 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 /* 1819 * Note that even though the AArch64 view of this register has bits 1820 * [10:0] all RES0 we can only mask the bottom 5, to comply with the 1821 * architectural requirements for bits which are RES0 only in some 1822 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7 1823 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.) 1824 */ 1825 raw_write(env, ri, value & ~0x1FULL); 1826 } 1827 1828 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 1829 { 1830 /* Begin with base v8.0 state. */ 1831 uint64_t valid_mask = 0x3fff; 1832 ARMCPU *cpu = env_archcpu(env); 1833 uint64_t changed; 1834 1835 /* 1836 * Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always 1837 * passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64. 1838 * Instead, choose the format based on the mode of EL3. 1839 */ 1840 if (arm_el_is_aa64(env, 3)) { 1841 value |= SCR_FW | SCR_AW; /* RES1 */ 1842 valid_mask &= ~SCR_NET; /* RES0 */ 1843 1844 if (!cpu_isar_feature(aa64_aa32_el1, cpu) && 1845 !cpu_isar_feature(aa64_aa32_el2, cpu)) { 1846 value |= SCR_RW; /* RAO/WI */ 1847 } 1848 if (cpu_isar_feature(aa64_ras, cpu)) { 1849 valid_mask |= SCR_TERR; 1850 } 1851 if (cpu_isar_feature(aa64_lor, cpu)) { 1852 valid_mask |= SCR_TLOR; 1853 } 1854 if (cpu_isar_feature(aa64_pauth, cpu)) { 1855 valid_mask |= SCR_API | SCR_APK; 1856 } 1857 if (cpu_isar_feature(aa64_sel2, cpu)) { 1858 valid_mask |= SCR_EEL2; 1859 } 1860 if (cpu_isar_feature(aa64_mte, cpu)) { 1861 valid_mask |= SCR_ATA; 1862 } 1863 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 1864 valid_mask |= SCR_ENSCXT; 1865 } 1866 if (cpu_isar_feature(aa64_doublefault, cpu)) { 1867 valid_mask |= SCR_EASE | SCR_NMEA; 1868 } 1869 if (cpu_isar_feature(aa64_sme, cpu)) { 1870 valid_mask |= SCR_ENTP2; 1871 } 1872 if (cpu_isar_feature(aa64_hcx, cpu)) { 1873 valid_mask |= SCR_HXEN; 1874 } 1875 if (cpu_isar_feature(aa64_fgt, cpu)) { 1876 valid_mask |= SCR_FGTEN; 1877 } 1878 } else { 1879 valid_mask &= ~(SCR_RW | SCR_ST); 1880 if (cpu_isar_feature(aa32_ras, cpu)) { 1881 valid_mask |= SCR_TERR; 1882 } 1883 } 1884 1885 if (!arm_feature(env, ARM_FEATURE_EL2)) { 1886 valid_mask &= ~SCR_HCE; 1887 1888 /* 1889 * On ARMv7, SMD (or SCD as it is called in v7) is only 1890 * supported if EL2 exists. The bit is UNK/SBZP when 1891 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero 1892 * when EL2 is unavailable. 1893 * On ARMv8, this bit is always available. 1894 */ 1895 if (arm_feature(env, ARM_FEATURE_V7) && 1896 !arm_feature(env, ARM_FEATURE_V8)) { 1897 valid_mask &= ~SCR_SMD; 1898 } 1899 } 1900 1901 /* Clear all-context RES0 bits. */ 1902 value &= valid_mask; 1903 changed = env->cp15.scr_el3 ^ value; 1904 env->cp15.scr_el3 = value; 1905 1906 /* 1907 * If SCR_EL3.NS changes, i.e. arm_is_secure_below_el3, then 1908 * we must invalidate all TLBs below EL3. 1909 */ 1910 if (changed & SCR_NS) { 1911 tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 | 1912 ARMMMUIdxBit_E20_0 | 1913 ARMMMUIdxBit_E10_1 | 1914 ARMMMUIdxBit_E20_2 | 1915 ARMMMUIdxBit_E10_1_PAN | 1916 ARMMMUIdxBit_E20_2_PAN | 1917 ARMMMUIdxBit_E2)); 1918 } 1919 } 1920 1921 static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1922 { 1923 /* 1924 * scr_write will set the RES1 bits on an AArch64-only CPU. 1925 * The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise. 1926 */ 1927 scr_write(env, ri, 0); 1928 } 1929 1930 static CPAccessResult access_tid4(CPUARMState *env, 1931 const ARMCPRegInfo *ri, 1932 bool isread) 1933 { 1934 if (arm_current_el(env) == 1 && 1935 (arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) { 1936 return CP_ACCESS_TRAP_EL2; 1937 } 1938 1939 return CP_ACCESS_OK; 1940 } 1941 1942 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1943 { 1944 ARMCPU *cpu = env_archcpu(env); 1945 1946 /* 1947 * Acquire the CSSELR index from the bank corresponding to the CCSIDR 1948 * bank 1949 */ 1950 uint32_t index = A32_BANKED_REG_GET(env, csselr, 1951 ri->secure & ARM_CP_SECSTATE_S); 1952 1953 return cpu->ccsidr[index]; 1954 } 1955 1956 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1957 uint64_t value) 1958 { 1959 raw_write(env, ri, value & 0xf); 1960 } 1961 1962 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1963 { 1964 CPUState *cs = env_cpu(env); 1965 bool el1 = arm_current_el(env) == 1; 1966 uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0; 1967 uint64_t ret = 0; 1968 1969 if (hcr_el2 & HCR_IMO) { 1970 if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) { 1971 ret |= CPSR_I; 1972 } 1973 } else { 1974 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 1975 ret |= CPSR_I; 1976 } 1977 } 1978 1979 if (hcr_el2 & HCR_FMO) { 1980 if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) { 1981 ret |= CPSR_F; 1982 } 1983 } else { 1984 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) { 1985 ret |= CPSR_F; 1986 } 1987 } 1988 1989 if (hcr_el2 & HCR_AMO) { 1990 if (cs->interrupt_request & CPU_INTERRUPT_VSERR) { 1991 ret |= CPSR_A; 1992 } 1993 } 1994 1995 return ret; 1996 } 1997 1998 static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 1999 bool isread) 2000 { 2001 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) { 2002 return CP_ACCESS_TRAP_EL2; 2003 } 2004 2005 return CP_ACCESS_OK; 2006 } 2007 2008 static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri, 2009 bool isread) 2010 { 2011 if (arm_feature(env, ARM_FEATURE_V8)) { 2012 return access_aa64_tid1(env, ri, isread); 2013 } 2014 2015 return CP_ACCESS_OK; 2016 } 2017 2018 static const ARMCPRegInfo v7_cp_reginfo[] = { 2019 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */ 2020 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4, 2021 .access = PL1_W, .type = ARM_CP_NOP }, 2022 /* 2023 * Performance monitors are implementation defined in v7, 2024 * but with an ARM recommended set of registers, which we 2025 * follow. 2026 * 2027 * Performance registers fall into three categories: 2028 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR) 2029 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR) 2030 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others) 2031 * For the cases controlled by PMUSERENR we must set .access to PL0_RW 2032 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn. 2033 */ 2034 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1, 2035 .access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO, 2036 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2037 .writefn = pmcntenset_write, 2038 .accessfn = pmreg_access, 2039 .fgt = FGT_PMCNTEN, 2040 .raw_writefn = raw_write }, 2041 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO, 2042 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1, 2043 .access = PL0_RW, .accessfn = pmreg_access, 2044 .fgt = FGT_PMCNTEN, 2045 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0, 2046 .writefn = pmcntenset_write, .raw_writefn = raw_write }, 2047 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2, 2048 .access = PL0_RW, 2049 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten), 2050 .accessfn = pmreg_access, 2051 .fgt = FGT_PMCNTEN, 2052 .writefn = pmcntenclr_write, 2053 .type = ARM_CP_ALIAS | ARM_CP_IO }, 2054 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64, 2055 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2, 2056 .access = PL0_RW, .accessfn = pmreg_access, 2057 .fgt = FGT_PMCNTEN, 2058 .type = ARM_CP_ALIAS | ARM_CP_IO, 2059 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), 2060 .writefn = pmcntenclr_write }, 2061 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3, 2062 .access = PL0_RW, .type = ARM_CP_IO, 2063 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2064 .accessfn = pmreg_access, 2065 .fgt = FGT_PMOVS, 2066 .writefn = pmovsr_write, 2067 .raw_writefn = raw_write }, 2068 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64, 2069 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3, 2070 .access = PL0_RW, .accessfn = pmreg_access, 2071 .fgt = FGT_PMOVS, 2072 .type = ARM_CP_ALIAS | ARM_CP_IO, 2073 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2074 .writefn = pmovsr_write, 2075 .raw_writefn = raw_write }, 2076 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4, 2077 .access = PL0_W, .accessfn = pmreg_access_swinc, 2078 .fgt = FGT_PMSWINC_EL0, 2079 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2080 .writefn = pmswinc_write }, 2081 { .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64, 2082 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4, 2083 .access = PL0_W, .accessfn = pmreg_access_swinc, 2084 .fgt = FGT_PMSWINC_EL0, 2085 .type = ARM_CP_NO_RAW | ARM_CP_IO, 2086 .writefn = pmswinc_write }, 2087 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5, 2088 .access = PL0_RW, .type = ARM_CP_ALIAS, 2089 .fgt = FGT_PMSELR_EL0, 2090 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr), 2091 .accessfn = pmreg_access_selr, .writefn = pmselr_write, 2092 .raw_writefn = raw_write}, 2093 { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64, 2094 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5, 2095 .access = PL0_RW, .accessfn = pmreg_access_selr, 2096 .fgt = FGT_PMSELR_EL0, 2097 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr), 2098 .writefn = pmselr_write, .raw_writefn = raw_write, }, 2099 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0, 2100 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO, 2101 .fgt = FGT_PMCCNTR_EL0, 2102 .readfn = pmccntr_read, .writefn = pmccntr_write32, 2103 .accessfn = pmreg_access_ccntr }, 2104 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64, 2105 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0, 2106 .access = PL0_RW, .accessfn = pmreg_access_ccntr, 2107 .fgt = FGT_PMCCNTR_EL0, 2108 .type = ARM_CP_IO, 2109 .fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt), 2110 .readfn = pmccntr_read, .writefn = pmccntr_write, 2111 .raw_readfn = raw_read, .raw_writefn = raw_write, }, 2112 { .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7, 2113 .writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32, 2114 .access = PL0_RW, .accessfn = pmreg_access, 2115 .fgt = FGT_PMCCFILTR_EL0, 2116 .type = ARM_CP_ALIAS | ARM_CP_IO, 2117 .resetvalue = 0, }, 2118 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64, 2119 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7, 2120 .writefn = pmccfiltr_write, .raw_writefn = raw_write, 2121 .access = PL0_RW, .accessfn = pmreg_access, 2122 .fgt = FGT_PMCCFILTR_EL0, 2123 .type = ARM_CP_IO, 2124 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0), 2125 .resetvalue = 0, }, 2126 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1, 2127 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2128 .accessfn = pmreg_access, 2129 .fgt = FGT_PMEVTYPERN_EL0, 2130 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2131 { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64, 2132 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1, 2133 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2134 .accessfn = pmreg_access, 2135 .fgt = FGT_PMEVTYPERN_EL0, 2136 .writefn = pmxevtyper_write, .readfn = pmxevtyper_read }, 2137 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2, 2138 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2139 .accessfn = pmreg_access_xevcntr, 2140 .fgt = FGT_PMEVCNTRN_EL0, 2141 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2142 { .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64, 2143 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2, 2144 .access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO, 2145 .accessfn = pmreg_access_xevcntr, 2146 .fgt = FGT_PMEVCNTRN_EL0, 2147 .writefn = pmxevcntr_write, .readfn = pmxevcntr_read }, 2148 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0, 2149 .access = PL0_R | PL1_RW, .accessfn = access_tpm, 2150 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr), 2151 .resetvalue = 0, 2152 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2153 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64, 2154 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0, 2155 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS, 2156 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr), 2157 .resetvalue = 0, 2158 .writefn = pmuserenr_write, .raw_writefn = raw_write }, 2159 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1, 2160 .access = PL1_RW, .accessfn = access_tpm, 2161 .fgt = FGT_PMINTEN, 2162 .type = ARM_CP_ALIAS | ARM_CP_IO, 2163 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten), 2164 .resetvalue = 0, 2165 .writefn = pmintenset_write, .raw_writefn = raw_write }, 2166 { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1, 2168 .access = PL1_RW, .accessfn = access_tpm, 2169 .fgt = FGT_PMINTEN, 2170 .type = ARM_CP_IO, 2171 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2172 .writefn = pmintenset_write, .raw_writefn = raw_write, 2173 .resetvalue = 0x0 }, 2174 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2, 2175 .access = PL1_RW, .accessfn = access_tpm, 2176 .fgt = FGT_PMINTEN, 2177 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2178 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2179 .writefn = pmintenclr_write, }, 2180 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64, 2181 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2, 2182 .access = PL1_RW, .accessfn = access_tpm, 2183 .fgt = FGT_PMINTEN, 2184 .type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW, 2185 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten), 2186 .writefn = pmintenclr_write }, 2187 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH, 2188 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0, 2189 .access = PL1_R, 2190 .accessfn = access_tid4, 2191 .fgt = FGT_CCSIDR_EL1, 2192 .readfn = ccsidr_read, .type = ARM_CP_NO_RAW }, 2193 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH, 2194 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0, 2195 .access = PL1_RW, 2196 .accessfn = access_tid4, 2197 .fgt = FGT_CSSELR_EL1, 2198 .writefn = csselr_write, .resetvalue = 0, 2199 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s), 2200 offsetof(CPUARMState, cp15.csselr_ns) } }, 2201 /* 2202 * Auxiliary ID register: this actually has an IMPDEF value but for now 2203 * just RAZ for all cores: 2204 */ 2205 { .name = "AIDR", .state = ARM_CP_STATE_BOTH, 2206 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7, 2207 .access = PL1_R, .type = ARM_CP_CONST, 2208 .accessfn = access_aa64_tid1, 2209 .fgt = FGT_AIDR_EL1, 2210 .resetvalue = 0 }, 2211 /* 2212 * Auxiliary fault status registers: these also are IMPDEF, and we 2213 * choose to RAZ/WI for all cores. 2214 */ 2215 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH, 2216 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0, 2217 .access = PL1_RW, .accessfn = access_tvm_trvm, 2218 .fgt = FGT_AFSR0_EL1, 2219 .type = ARM_CP_CONST, .resetvalue = 0 }, 2220 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH, 2221 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1, 2222 .access = PL1_RW, .accessfn = access_tvm_trvm, 2223 .fgt = FGT_AFSR1_EL1, 2224 .type = ARM_CP_CONST, .resetvalue = 0 }, 2225 /* 2226 * MAIR can just read-as-written because we don't implement caches 2227 * and so don't need to care about memory attributes. 2228 */ 2229 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64, 2230 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2231 .access = PL1_RW, .accessfn = access_tvm_trvm, 2232 .fgt = FGT_MAIR_EL1, 2233 .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]), 2234 .resetvalue = 0 }, 2235 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64, 2236 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0, 2237 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]), 2238 .resetvalue = 0 }, 2239 /* 2240 * For non-long-descriptor page tables these are PRRR and NMRR; 2241 * regardless they still act as reads-as-written for QEMU. 2242 */ 2243 /* 2244 * MAIR0/1 are defined separately from their 64-bit counterpart which 2245 * allows them to assign the correct fieldoffset based on the endianness 2246 * handled in the field definitions. 2247 */ 2248 { .name = "MAIR0", .state = ARM_CP_STATE_AA32, 2249 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, 2250 .access = PL1_RW, .accessfn = access_tvm_trvm, 2251 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s), 2252 offsetof(CPUARMState, cp15.mair0_ns) }, 2253 .resetfn = arm_cp_reset_ignore }, 2254 { .name = "MAIR1", .state = ARM_CP_STATE_AA32, 2255 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, 2256 .access = PL1_RW, .accessfn = access_tvm_trvm, 2257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s), 2258 offsetof(CPUARMState, cp15.mair1_ns) }, 2259 .resetfn = arm_cp_reset_ignore }, 2260 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH, 2261 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0, 2262 .fgt = FGT_ISR_EL1, 2263 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read }, 2264 /* 32 bit ITLB invalidates */ 2265 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0, 2266 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2267 .writefn = tlbiall_write }, 2268 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 2269 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2270 .writefn = tlbimva_write }, 2271 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2, 2272 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2273 .writefn = tlbiasid_write }, 2274 /* 32 bit DTLB invalidates */ 2275 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0, 2276 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2277 .writefn = tlbiall_write }, 2278 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 2279 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2280 .writefn = tlbimva_write }, 2281 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2, 2282 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2283 .writefn = tlbiasid_write }, 2284 /* 32 bit TLB invalidates */ 2285 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 2286 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2287 .writefn = tlbiall_write }, 2288 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 2289 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2290 .writefn = tlbimva_write }, 2291 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 2292 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2293 .writefn = tlbiasid_write }, 2294 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 2295 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 2296 .writefn = tlbimvaa_write }, 2297 }; 2298 2299 static const ARMCPRegInfo v7mp_cp_reginfo[] = { 2300 /* 32 bit TLB invalidates, Inner Shareable */ 2301 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 2302 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2303 .writefn = tlbiall_is_write }, 2304 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 2305 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2306 .writefn = tlbimva_is_write }, 2307 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 2308 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2309 .writefn = tlbiasid_is_write }, 2310 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 2311 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 2312 .writefn = tlbimvaa_is_write }, 2313 }; 2314 2315 static const ARMCPRegInfo pmovsset_cp_reginfo[] = { 2316 /* PMOVSSET is not implemented in v7 before v7ve */ 2317 { .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3, 2318 .access = PL0_RW, .accessfn = pmreg_access, 2319 .fgt = FGT_PMOVS, 2320 .type = ARM_CP_ALIAS | ARM_CP_IO, 2321 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr), 2322 .writefn = pmovsset_write, 2323 .raw_writefn = raw_write }, 2324 { .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64, 2325 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3, 2326 .access = PL0_RW, .accessfn = pmreg_access, 2327 .fgt = FGT_PMOVS, 2328 .type = ARM_CP_ALIAS | ARM_CP_IO, 2329 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr), 2330 .writefn = pmovsset_write, 2331 .raw_writefn = raw_write }, 2332 }; 2333 2334 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2335 uint64_t value) 2336 { 2337 value &= 1; 2338 env->teecr = value; 2339 } 2340 2341 static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2342 bool isread) 2343 { 2344 /* 2345 * HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE 2346 * at all, so we don't need to check whether we're v8A. 2347 */ 2348 if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 2349 (env->cp15.hstr_el2 & HSTR_TTEE)) { 2350 return CP_ACCESS_TRAP_EL2; 2351 } 2352 return CP_ACCESS_OK; 2353 } 2354 2355 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri, 2356 bool isread) 2357 { 2358 if (arm_current_el(env) == 0 && (env->teecr & 1)) { 2359 return CP_ACCESS_TRAP; 2360 } 2361 return teecr_access(env, ri, isread); 2362 } 2363 2364 static const ARMCPRegInfo t2ee_cp_reginfo[] = { 2365 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0, 2366 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr), 2367 .resetvalue = 0, 2368 .writefn = teecr_write, .accessfn = teecr_access }, 2369 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0, 2370 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr), 2371 .accessfn = teehbr_access, .resetvalue = 0 }, 2372 }; 2373 2374 static const ARMCPRegInfo v6k_cp_reginfo[] = { 2375 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64, 2376 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0, 2377 .access = PL0_RW, 2378 .fgt = FGT_TPIDR_EL0, 2379 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 }, 2380 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2, 2381 .access = PL0_RW, 2382 .fgt = FGT_TPIDR_EL0, 2383 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s), 2384 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) }, 2385 .resetfn = arm_cp_reset_ignore }, 2386 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64, 2387 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0, 2388 .access = PL0_R | PL1_W, 2389 .fgt = FGT_TPIDRRO_EL0, 2390 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]), 2391 .resetvalue = 0}, 2392 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3, 2393 .access = PL0_R | PL1_W, 2394 .fgt = FGT_TPIDRRO_EL0, 2395 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s), 2396 offsetoflow32(CPUARMState, cp15.tpidruro_ns) }, 2397 .resetfn = arm_cp_reset_ignore }, 2398 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64, 2399 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0, 2400 .access = PL1_RW, 2401 .fgt = FGT_TPIDR_EL1, 2402 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 }, 2403 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4, 2404 .access = PL1_RW, 2405 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s), 2406 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) }, 2407 .resetvalue = 0 }, 2408 }; 2409 2410 #ifndef CONFIG_USER_ONLY 2411 2412 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri, 2413 bool isread) 2414 { 2415 /* 2416 * CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero. 2417 * Writable only at the highest implemented exception level. 2418 */ 2419 int el = arm_current_el(env); 2420 uint64_t hcr; 2421 uint32_t cntkctl; 2422 2423 switch (el) { 2424 case 0: 2425 hcr = arm_hcr_el2_eff(env); 2426 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2427 cntkctl = env->cp15.cnthctl_el2; 2428 } else { 2429 cntkctl = env->cp15.c14_cntkctl; 2430 } 2431 if (!extract32(cntkctl, 0, 2)) { 2432 return CP_ACCESS_TRAP; 2433 } 2434 break; 2435 case 1: 2436 if (!isread && ri->state == ARM_CP_STATE_AA32 && 2437 arm_is_secure_below_el3(env)) { 2438 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */ 2439 return CP_ACCESS_TRAP_UNCATEGORIZED; 2440 } 2441 break; 2442 case 2: 2443 case 3: 2444 break; 2445 } 2446 2447 if (!isread && el < arm_highest_el(env)) { 2448 return CP_ACCESS_TRAP_UNCATEGORIZED; 2449 } 2450 2451 return CP_ACCESS_OK; 2452 } 2453 2454 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx, 2455 bool isread) 2456 { 2457 unsigned int cur_el = arm_current_el(env); 2458 bool has_el2 = arm_is_el2_enabled(env); 2459 uint64_t hcr = arm_hcr_el2_eff(env); 2460 2461 switch (cur_el) { 2462 case 0: 2463 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */ 2464 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2465 return (extract32(env->cp15.cnthctl_el2, timeridx, 1) 2466 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2467 } 2468 2469 /* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */ 2470 if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) { 2471 return CP_ACCESS_TRAP; 2472 } 2473 2474 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PCTEN. */ 2475 if (hcr & HCR_E2H) { 2476 if (timeridx == GTIMER_PHYS && 2477 !extract32(env->cp15.cnthctl_el2, 10, 1)) { 2478 return CP_ACCESS_TRAP_EL2; 2479 } 2480 } else { 2481 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2482 if (has_el2 && timeridx == GTIMER_PHYS && 2483 !extract32(env->cp15.cnthctl_el2, 1, 1)) { 2484 return CP_ACCESS_TRAP_EL2; 2485 } 2486 } 2487 break; 2488 2489 case 1: 2490 /* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */ 2491 if (has_el2 && timeridx == GTIMER_PHYS && 2492 (hcr & HCR_E2H 2493 ? !extract32(env->cp15.cnthctl_el2, 10, 1) 2494 : !extract32(env->cp15.cnthctl_el2, 0, 1))) { 2495 return CP_ACCESS_TRAP_EL2; 2496 } 2497 break; 2498 } 2499 return CP_ACCESS_OK; 2500 } 2501 2502 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx, 2503 bool isread) 2504 { 2505 unsigned int cur_el = arm_current_el(env); 2506 bool has_el2 = arm_is_el2_enabled(env); 2507 uint64_t hcr = arm_hcr_el2_eff(env); 2508 2509 switch (cur_el) { 2510 case 0: 2511 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2512 /* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */ 2513 return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1) 2514 ? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2); 2515 } 2516 2517 /* 2518 * CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from 2519 * EL0 if EL0[PV]TEN is zero. 2520 */ 2521 if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) { 2522 return CP_ACCESS_TRAP; 2523 } 2524 /* fall through */ 2525 2526 case 1: 2527 if (has_el2 && timeridx == GTIMER_PHYS) { 2528 if (hcr & HCR_E2H) { 2529 /* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */ 2530 if (!extract32(env->cp15.cnthctl_el2, 11, 1)) { 2531 return CP_ACCESS_TRAP_EL2; 2532 } 2533 } else { 2534 /* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */ 2535 if (!extract32(env->cp15.cnthctl_el2, 1, 1)) { 2536 return CP_ACCESS_TRAP_EL2; 2537 } 2538 } 2539 } 2540 break; 2541 } 2542 return CP_ACCESS_OK; 2543 } 2544 2545 static CPAccessResult gt_pct_access(CPUARMState *env, 2546 const ARMCPRegInfo *ri, 2547 bool isread) 2548 { 2549 return gt_counter_access(env, GTIMER_PHYS, isread); 2550 } 2551 2552 static CPAccessResult gt_vct_access(CPUARMState *env, 2553 const ARMCPRegInfo *ri, 2554 bool isread) 2555 { 2556 return gt_counter_access(env, GTIMER_VIRT, isread); 2557 } 2558 2559 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2560 bool isread) 2561 { 2562 return gt_timer_access(env, GTIMER_PHYS, isread); 2563 } 2564 2565 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri, 2566 bool isread) 2567 { 2568 return gt_timer_access(env, GTIMER_VIRT, isread); 2569 } 2570 2571 static CPAccessResult gt_stimer_access(CPUARMState *env, 2572 const ARMCPRegInfo *ri, 2573 bool isread) 2574 { 2575 /* 2576 * The AArch64 register view of the secure physical timer is 2577 * always accessible from EL3, and configurably accessible from 2578 * Secure EL1. 2579 */ 2580 switch (arm_current_el(env)) { 2581 case 1: 2582 if (!arm_is_secure(env)) { 2583 return CP_ACCESS_TRAP; 2584 } 2585 if (!(env->cp15.scr_el3 & SCR_ST)) { 2586 return CP_ACCESS_TRAP_EL3; 2587 } 2588 return CP_ACCESS_OK; 2589 case 0: 2590 case 2: 2591 return CP_ACCESS_TRAP; 2592 case 3: 2593 return CP_ACCESS_OK; 2594 default: 2595 g_assert_not_reached(); 2596 } 2597 } 2598 2599 static uint64_t gt_get_countervalue(CPUARMState *env) 2600 { 2601 ARMCPU *cpu = env_archcpu(env); 2602 2603 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu); 2604 } 2605 2606 static void gt_recalc_timer(ARMCPU *cpu, int timeridx) 2607 { 2608 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx]; 2609 2610 if (gt->ctl & 1) { 2611 /* 2612 * Timer enabled: calculate and set current ISTATUS, irq, and 2613 * reset timer to when ISTATUS next has to change 2614 */ 2615 uint64_t offset = timeridx == GTIMER_VIRT ? 2616 cpu->env.cp15.cntvoff_el2 : 0; 2617 uint64_t count = gt_get_countervalue(&cpu->env); 2618 /* Note that this must be unsigned 64 bit arithmetic: */ 2619 int istatus = count - offset >= gt->cval; 2620 uint64_t nexttick; 2621 int irqstate; 2622 2623 gt->ctl = deposit32(gt->ctl, 2, 1, istatus); 2624 2625 irqstate = (istatus && !(gt->ctl & 2)); 2626 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2627 2628 if (istatus) { 2629 /* Next transition is when count rolls back over to zero */ 2630 nexttick = UINT64_MAX; 2631 } else { 2632 /* Next transition is when we hit cval */ 2633 nexttick = gt->cval + offset; 2634 } 2635 /* 2636 * Note that the desired next expiry time might be beyond the 2637 * signed-64-bit range of a QEMUTimer -- in this case we just 2638 * set the timer for as far in the future as possible. When the 2639 * timer expires we will reset the timer for any remaining period. 2640 */ 2641 if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) { 2642 timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX); 2643 } else { 2644 timer_mod(cpu->gt_timer[timeridx], nexttick); 2645 } 2646 trace_arm_gt_recalc(timeridx, irqstate, nexttick); 2647 } else { 2648 /* Timer disabled: ISTATUS and timer output always clear */ 2649 gt->ctl &= ~4; 2650 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0); 2651 timer_del(cpu->gt_timer[timeridx]); 2652 trace_arm_gt_recalc_disabled(timeridx); 2653 } 2654 } 2655 2656 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri, 2657 int timeridx) 2658 { 2659 ARMCPU *cpu = env_archcpu(env); 2660 2661 timer_del(cpu->gt_timer[timeridx]); 2662 } 2663 2664 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2665 { 2666 return gt_get_countervalue(env); 2667 } 2668 2669 static uint64_t gt_virt_cnt_offset(CPUARMState *env) 2670 { 2671 uint64_t hcr; 2672 2673 switch (arm_current_el(env)) { 2674 case 2: 2675 hcr = arm_hcr_el2_eff(env); 2676 if (hcr & HCR_E2H) { 2677 return 0; 2678 } 2679 break; 2680 case 0: 2681 hcr = arm_hcr_el2_eff(env); 2682 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 2683 return 0; 2684 } 2685 break; 2686 } 2687 2688 return env->cp15.cntvoff_el2; 2689 } 2690 2691 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 2692 { 2693 return gt_get_countervalue(env) - gt_virt_cnt_offset(env); 2694 } 2695 2696 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2697 int timeridx, 2698 uint64_t value) 2699 { 2700 trace_arm_gt_cval_write(timeridx, value); 2701 env->cp15.c14_timer[timeridx].cval = value; 2702 gt_recalc_timer(env_archcpu(env), timeridx); 2703 } 2704 2705 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri, 2706 int timeridx) 2707 { 2708 uint64_t offset = 0; 2709 2710 switch (timeridx) { 2711 case GTIMER_VIRT: 2712 case GTIMER_HYPVIRT: 2713 offset = gt_virt_cnt_offset(env); 2714 break; 2715 } 2716 2717 return (uint32_t)(env->cp15.c14_timer[timeridx].cval - 2718 (gt_get_countervalue(env) - offset)); 2719 } 2720 2721 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2722 int timeridx, 2723 uint64_t value) 2724 { 2725 uint64_t offset = 0; 2726 2727 switch (timeridx) { 2728 case GTIMER_VIRT: 2729 case GTIMER_HYPVIRT: 2730 offset = gt_virt_cnt_offset(env); 2731 break; 2732 } 2733 2734 trace_arm_gt_tval_write(timeridx, value); 2735 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset + 2736 sextract64(value, 0, 32); 2737 gt_recalc_timer(env_archcpu(env), timeridx); 2738 } 2739 2740 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2741 int timeridx, 2742 uint64_t value) 2743 { 2744 ARMCPU *cpu = env_archcpu(env); 2745 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl; 2746 2747 trace_arm_gt_ctl_write(timeridx, value); 2748 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value); 2749 if ((oldval ^ value) & 1) { 2750 /* Enable toggled */ 2751 gt_recalc_timer(cpu, timeridx); 2752 } else if ((oldval ^ value) & 2) { 2753 /* 2754 * IMASK toggled: don't need to recalculate, 2755 * just set the interrupt line based on ISTATUS 2756 */ 2757 int irqstate = (oldval & 4) && !(value & 2); 2758 2759 trace_arm_gt_imask_toggle(timeridx, irqstate); 2760 qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate); 2761 } 2762 } 2763 2764 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2765 { 2766 gt_timer_reset(env, ri, GTIMER_PHYS); 2767 } 2768 2769 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2770 uint64_t value) 2771 { 2772 gt_cval_write(env, ri, GTIMER_PHYS, value); 2773 } 2774 2775 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2776 { 2777 return gt_tval_read(env, ri, GTIMER_PHYS); 2778 } 2779 2780 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2781 uint64_t value) 2782 { 2783 gt_tval_write(env, ri, GTIMER_PHYS, value); 2784 } 2785 2786 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2787 uint64_t value) 2788 { 2789 gt_ctl_write(env, ri, GTIMER_PHYS, value); 2790 } 2791 2792 static int gt_phys_redir_timeridx(CPUARMState *env) 2793 { 2794 switch (arm_mmu_idx(env)) { 2795 case ARMMMUIdx_E20_0: 2796 case ARMMMUIdx_E20_2: 2797 case ARMMMUIdx_E20_2_PAN: 2798 return GTIMER_HYP; 2799 default: 2800 return GTIMER_PHYS; 2801 } 2802 } 2803 2804 static int gt_virt_redir_timeridx(CPUARMState *env) 2805 { 2806 switch (arm_mmu_idx(env)) { 2807 case ARMMMUIdx_E20_0: 2808 case ARMMMUIdx_E20_2: 2809 case ARMMMUIdx_E20_2_PAN: 2810 return GTIMER_HYPVIRT; 2811 default: 2812 return GTIMER_VIRT; 2813 } 2814 } 2815 2816 static uint64_t gt_phys_redir_cval_read(CPUARMState *env, 2817 const ARMCPRegInfo *ri) 2818 { 2819 int timeridx = gt_phys_redir_timeridx(env); 2820 return env->cp15.c14_timer[timeridx].cval; 2821 } 2822 2823 static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2824 uint64_t value) 2825 { 2826 int timeridx = gt_phys_redir_timeridx(env); 2827 gt_cval_write(env, ri, timeridx, value); 2828 } 2829 2830 static uint64_t gt_phys_redir_tval_read(CPUARMState *env, 2831 const ARMCPRegInfo *ri) 2832 { 2833 int timeridx = gt_phys_redir_timeridx(env); 2834 return gt_tval_read(env, ri, timeridx); 2835 } 2836 2837 static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2838 uint64_t value) 2839 { 2840 int timeridx = gt_phys_redir_timeridx(env); 2841 gt_tval_write(env, ri, timeridx, value); 2842 } 2843 2844 static uint64_t gt_phys_redir_ctl_read(CPUARMState *env, 2845 const ARMCPRegInfo *ri) 2846 { 2847 int timeridx = gt_phys_redir_timeridx(env); 2848 return env->cp15.c14_timer[timeridx].ctl; 2849 } 2850 2851 static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2852 uint64_t value) 2853 { 2854 int timeridx = gt_phys_redir_timeridx(env); 2855 gt_ctl_write(env, ri, timeridx, value); 2856 } 2857 2858 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2859 { 2860 gt_timer_reset(env, ri, GTIMER_VIRT); 2861 } 2862 2863 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2864 uint64_t value) 2865 { 2866 gt_cval_write(env, ri, GTIMER_VIRT, value); 2867 } 2868 2869 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2870 { 2871 return gt_tval_read(env, ri, GTIMER_VIRT); 2872 } 2873 2874 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2875 uint64_t value) 2876 { 2877 gt_tval_write(env, ri, GTIMER_VIRT, value); 2878 } 2879 2880 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2881 uint64_t value) 2882 { 2883 gt_ctl_write(env, ri, GTIMER_VIRT, value); 2884 } 2885 2886 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri, 2887 uint64_t value) 2888 { 2889 ARMCPU *cpu = env_archcpu(env); 2890 2891 trace_arm_gt_cntvoff_write(value); 2892 raw_write(env, ri, value); 2893 gt_recalc_timer(cpu, GTIMER_VIRT); 2894 } 2895 2896 static uint64_t gt_virt_redir_cval_read(CPUARMState *env, 2897 const ARMCPRegInfo *ri) 2898 { 2899 int timeridx = gt_virt_redir_timeridx(env); 2900 return env->cp15.c14_timer[timeridx].cval; 2901 } 2902 2903 static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2904 uint64_t value) 2905 { 2906 int timeridx = gt_virt_redir_timeridx(env); 2907 gt_cval_write(env, ri, timeridx, value); 2908 } 2909 2910 static uint64_t gt_virt_redir_tval_read(CPUARMState *env, 2911 const ARMCPRegInfo *ri) 2912 { 2913 int timeridx = gt_virt_redir_timeridx(env); 2914 return gt_tval_read(env, ri, timeridx); 2915 } 2916 2917 static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2918 uint64_t value) 2919 { 2920 int timeridx = gt_virt_redir_timeridx(env); 2921 gt_tval_write(env, ri, timeridx, value); 2922 } 2923 2924 static uint64_t gt_virt_redir_ctl_read(CPUARMState *env, 2925 const ARMCPRegInfo *ri) 2926 { 2927 int timeridx = gt_virt_redir_timeridx(env); 2928 return env->cp15.c14_timer[timeridx].ctl; 2929 } 2930 2931 static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2932 uint64_t value) 2933 { 2934 int timeridx = gt_virt_redir_timeridx(env); 2935 gt_ctl_write(env, ri, timeridx, value); 2936 } 2937 2938 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2939 { 2940 gt_timer_reset(env, ri, GTIMER_HYP); 2941 } 2942 2943 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2944 uint64_t value) 2945 { 2946 gt_cval_write(env, ri, GTIMER_HYP, value); 2947 } 2948 2949 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2950 { 2951 return gt_tval_read(env, ri, GTIMER_HYP); 2952 } 2953 2954 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2955 uint64_t value) 2956 { 2957 gt_tval_write(env, ri, GTIMER_HYP, value); 2958 } 2959 2960 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2961 uint64_t value) 2962 { 2963 gt_ctl_write(env, ri, GTIMER_HYP, value); 2964 } 2965 2966 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2967 { 2968 gt_timer_reset(env, ri, GTIMER_SEC); 2969 } 2970 2971 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2972 uint64_t value) 2973 { 2974 gt_cval_write(env, ri, GTIMER_SEC, value); 2975 } 2976 2977 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 2978 { 2979 return gt_tval_read(env, ri, GTIMER_SEC); 2980 } 2981 2982 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 2983 uint64_t value) 2984 { 2985 gt_tval_write(env, ri, GTIMER_SEC, value); 2986 } 2987 2988 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 2989 uint64_t value) 2990 { 2991 gt_ctl_write(env, ri, GTIMER_SEC, value); 2992 } 2993 2994 static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2995 { 2996 gt_timer_reset(env, ri, GTIMER_HYPVIRT); 2997 } 2998 2999 static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3000 uint64_t value) 3001 { 3002 gt_cval_write(env, ri, GTIMER_HYPVIRT, value); 3003 } 3004 3005 static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri) 3006 { 3007 return gt_tval_read(env, ri, GTIMER_HYPVIRT); 3008 } 3009 3010 static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri, 3011 uint64_t value) 3012 { 3013 gt_tval_write(env, ri, GTIMER_HYPVIRT, value); 3014 } 3015 3016 static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri, 3017 uint64_t value) 3018 { 3019 gt_ctl_write(env, ri, GTIMER_HYPVIRT, value); 3020 } 3021 3022 void arm_gt_ptimer_cb(void *opaque) 3023 { 3024 ARMCPU *cpu = opaque; 3025 3026 gt_recalc_timer(cpu, GTIMER_PHYS); 3027 } 3028 3029 void arm_gt_vtimer_cb(void *opaque) 3030 { 3031 ARMCPU *cpu = opaque; 3032 3033 gt_recalc_timer(cpu, GTIMER_VIRT); 3034 } 3035 3036 void arm_gt_htimer_cb(void *opaque) 3037 { 3038 ARMCPU *cpu = opaque; 3039 3040 gt_recalc_timer(cpu, GTIMER_HYP); 3041 } 3042 3043 void arm_gt_stimer_cb(void *opaque) 3044 { 3045 ARMCPU *cpu = opaque; 3046 3047 gt_recalc_timer(cpu, GTIMER_SEC); 3048 } 3049 3050 void arm_gt_hvtimer_cb(void *opaque) 3051 { 3052 ARMCPU *cpu = opaque; 3053 3054 gt_recalc_timer(cpu, GTIMER_HYPVIRT); 3055 } 3056 3057 static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque) 3058 { 3059 ARMCPU *cpu = env_archcpu(env); 3060 3061 cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz; 3062 } 3063 3064 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3065 /* 3066 * Note that CNTFRQ is purely reads-as-written for the benefit 3067 * of software; writing it doesn't actually change the timer frequency. 3068 * Our reset value matches the fixed frequency we implement the timer at. 3069 */ 3070 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0, 3071 .type = ARM_CP_ALIAS, 3072 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3073 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq), 3074 }, 3075 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3076 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3077 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access, 3078 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3079 .resetfn = arm_gt_cntfrq_reset, 3080 }, 3081 /* overall control: mostly access permissions */ 3082 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH, 3083 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0, 3084 .access = PL1_RW, 3085 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl), 3086 .resetvalue = 0, 3087 }, 3088 /* per-timer control */ 3089 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3090 .secure = ARM_CP_SECSTATE_NS, 3091 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3092 .accessfn = gt_ptimer_access, 3093 .fieldoffset = offsetoflow32(CPUARMState, 3094 cp15.c14_timer[GTIMER_PHYS].ctl), 3095 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3096 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3097 }, 3098 { .name = "CNTP_CTL_S", 3099 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1, 3100 .secure = ARM_CP_SECSTATE_S, 3101 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3102 .accessfn = gt_ptimer_access, 3103 .fieldoffset = offsetoflow32(CPUARMState, 3104 cp15.c14_timer[GTIMER_SEC].ctl), 3105 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3106 }, 3107 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64, 3108 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1, 3109 .type = ARM_CP_IO, .access = PL0_RW, 3110 .accessfn = gt_ptimer_access, 3111 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 3112 .resetvalue = 0, 3113 .readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read, 3114 .writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write, 3115 }, 3116 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1, 3117 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW, 3118 .accessfn = gt_vtimer_access, 3119 .fieldoffset = offsetoflow32(CPUARMState, 3120 cp15.c14_timer[GTIMER_VIRT].ctl), 3121 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3122 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3123 }, 3124 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64, 3125 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1, 3126 .type = ARM_CP_IO, .access = PL0_RW, 3127 .accessfn = gt_vtimer_access, 3128 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 3129 .resetvalue = 0, 3130 .readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read, 3131 .writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write, 3132 }, 3133 /* TimerValue views: a 32 bit downcounting view of the underlying state */ 3134 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3135 .secure = ARM_CP_SECSTATE_NS, 3136 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3137 .accessfn = gt_ptimer_access, 3138 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3139 }, 3140 { .name = "CNTP_TVAL_S", 3141 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0, 3142 .secure = ARM_CP_SECSTATE_S, 3143 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3144 .accessfn = gt_ptimer_access, 3145 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write, 3146 }, 3147 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3148 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0, 3149 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3150 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset, 3151 .readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write, 3152 }, 3153 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0, 3154 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3155 .accessfn = gt_vtimer_access, 3156 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3157 }, 3158 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64, 3159 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0, 3160 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW, 3161 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset, 3162 .readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write, 3163 }, 3164 /* The counter itself */ 3165 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0, 3166 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3167 .accessfn = gt_pct_access, 3168 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore, 3169 }, 3170 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64, 3171 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1, 3172 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3173 .accessfn = gt_pct_access, .readfn = gt_cnt_read, 3174 }, 3175 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1, 3176 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO, 3177 .accessfn = gt_vct_access, 3178 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore, 3179 }, 3180 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3181 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3182 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3183 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read, 3184 }, 3185 /* Comparison value, indicating when the timer goes off */ 3186 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2, 3187 .secure = ARM_CP_SECSTATE_NS, 3188 .access = PL0_RW, 3189 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3190 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3191 .accessfn = gt_ptimer_access, 3192 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3193 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3194 }, 3195 { .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2, 3196 .secure = ARM_CP_SECSTATE_S, 3197 .access = PL0_RW, 3198 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3199 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3200 .accessfn = gt_ptimer_access, 3201 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3202 }, 3203 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3204 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2, 3205 .access = PL0_RW, 3206 .type = ARM_CP_IO, 3207 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 3208 .resetvalue = 0, .accessfn = gt_ptimer_access, 3209 .readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read, 3210 .writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write, 3211 }, 3212 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3, 3213 .access = PL0_RW, 3214 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS, 3215 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3216 .accessfn = gt_vtimer_access, 3217 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3218 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3219 }, 3220 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64, 3221 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2, 3222 .access = PL0_RW, 3223 .type = ARM_CP_IO, 3224 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 3225 .resetvalue = 0, .accessfn = gt_vtimer_access, 3226 .readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read, 3227 .writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write, 3228 }, 3229 /* 3230 * Secure timer -- this is actually restricted to only EL3 3231 * and configurably Secure-EL1 via the accessfn. 3232 */ 3233 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64, 3234 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0, 3235 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW, 3236 .accessfn = gt_stimer_access, 3237 .readfn = gt_sec_tval_read, 3238 .writefn = gt_sec_tval_write, 3239 .resetfn = gt_sec_timer_reset, 3240 }, 3241 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64, 3242 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1, 3243 .type = ARM_CP_IO, .access = PL1_RW, 3244 .accessfn = gt_stimer_access, 3245 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl), 3246 .resetvalue = 0, 3247 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write, 3248 }, 3249 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64, 3250 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2, 3251 .type = ARM_CP_IO, .access = PL1_RW, 3252 .accessfn = gt_stimer_access, 3253 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval), 3254 .writefn = gt_sec_cval_write, .raw_writefn = raw_write, 3255 }, 3256 }; 3257 3258 static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri, 3259 bool isread) 3260 { 3261 if (!(arm_hcr_el2_eff(env) & HCR_E2H)) { 3262 return CP_ACCESS_TRAP; 3263 } 3264 return CP_ACCESS_OK; 3265 } 3266 3267 #else 3268 3269 /* 3270 * In user-mode most of the generic timer registers are inaccessible 3271 * however modern kernels (4.12+) allow access to cntvct_el0 3272 */ 3273 3274 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri) 3275 { 3276 ARMCPU *cpu = env_archcpu(env); 3277 3278 /* 3279 * Currently we have no support for QEMUTimer in linux-user so we 3280 * can't call gt_get_countervalue(env), instead we directly 3281 * call the lower level functions. 3282 */ 3283 return cpu_get_clock() / gt_cntfrq_period_ns(cpu); 3284 } 3285 3286 static const ARMCPRegInfo generic_timer_cp_reginfo[] = { 3287 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64, 3288 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0, 3289 .type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */, 3290 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq), 3291 .resetvalue = NANOSECONDS_PER_SECOND / GTIMER_SCALE, 3292 }, 3293 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64, 3294 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2, 3295 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO, 3296 .readfn = gt_virt_cnt_read, 3297 }, 3298 }; 3299 3300 #endif 3301 3302 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3303 { 3304 if (arm_feature(env, ARM_FEATURE_LPAE)) { 3305 raw_write(env, ri, value); 3306 } else if (arm_feature(env, ARM_FEATURE_V7)) { 3307 raw_write(env, ri, value & 0xfffff6ff); 3308 } else { 3309 raw_write(env, ri, value & 0xfffff1ff); 3310 } 3311 } 3312 3313 #ifndef CONFIG_USER_ONLY 3314 /* get_phys_addr() isn't present for user-mode-only targets */ 3315 3316 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri, 3317 bool isread) 3318 { 3319 if (ri->opc2 & 4) { 3320 /* 3321 * The ATS12NSO* operations must trap to EL3 or EL2 if executed in 3322 * Secure EL1 (which can only happen if EL3 is AArch64). 3323 * They are simply UNDEF if executed from NS EL1. 3324 * They function normally from EL2 or EL3. 3325 */ 3326 if (arm_current_el(env) == 1) { 3327 if (arm_is_secure_below_el3(env)) { 3328 if (env->cp15.scr_el3 & SCR_EEL2) { 3329 return CP_ACCESS_TRAP_EL2; 3330 } 3331 return CP_ACCESS_TRAP_EL3; 3332 } 3333 return CP_ACCESS_TRAP_UNCATEGORIZED; 3334 } 3335 } 3336 return CP_ACCESS_OK; 3337 } 3338 3339 #ifdef CONFIG_TCG 3340 static uint64_t do_ats_write(CPUARMState *env, uint64_t value, 3341 MMUAccessType access_type, ARMMMUIdx mmu_idx, 3342 bool is_secure) 3343 { 3344 bool ret; 3345 uint64_t par64; 3346 bool format64 = false; 3347 ARMMMUFaultInfo fi = {}; 3348 GetPhysAddrResult res = {}; 3349 3350 ret = get_phys_addr_with_secure(env, value, access_type, mmu_idx, 3351 is_secure, &res, &fi); 3352 3353 /* 3354 * ATS operations only do S1 or S1+S2 translations, so we never 3355 * have to deal with the ARMCacheAttrs format for S2 only. 3356 */ 3357 assert(!res.cacheattrs.is_s2_format); 3358 3359 if (ret) { 3360 /* 3361 * Some kinds of translation fault must cause exceptions rather 3362 * than being reported in the PAR. 3363 */ 3364 int current_el = arm_current_el(env); 3365 int target_el; 3366 uint32_t syn, fsr, fsc; 3367 bool take_exc = false; 3368 3369 if (fi.s1ptw && current_el == 1 3370 && arm_mmu_idx_is_stage1_of_2(mmu_idx)) { 3371 /* 3372 * Synchronous stage 2 fault on an access made as part of the 3373 * translation table walk for AT S1E0* or AT S1E1* insn 3374 * executed from NS EL1. If this is a synchronous external abort 3375 * and SCR_EL3.EA == 1, then we take a synchronous external abort 3376 * to EL3. Otherwise the fault is taken as an exception to EL2, 3377 * and HPFAR_EL2 holds the faulting IPA. 3378 */ 3379 if (fi.type == ARMFault_SyncExternalOnWalk && 3380 (env->cp15.scr_el3 & SCR_EA)) { 3381 target_el = 3; 3382 } else { 3383 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4; 3384 if (arm_is_secure_below_el3(env) && fi.s1ns) { 3385 env->cp15.hpfar_el2 |= HPFAR_NS; 3386 } 3387 target_el = 2; 3388 } 3389 take_exc = true; 3390 } else if (fi.type == ARMFault_SyncExternalOnWalk) { 3391 /* 3392 * Synchronous external aborts during a translation table walk 3393 * are taken as Data Abort exceptions. 3394 */ 3395 if (fi.stage2) { 3396 if (current_el == 3) { 3397 target_el = 3; 3398 } else { 3399 target_el = 2; 3400 } 3401 } else { 3402 target_el = exception_target_el(env); 3403 } 3404 take_exc = true; 3405 } 3406 3407 if (take_exc) { 3408 /* Construct FSR and FSC using same logic as arm_deliver_fault() */ 3409 if (target_el == 2 || arm_el_is_aa64(env, target_el) || 3410 arm_s1_regime_using_lpae_format(env, mmu_idx)) { 3411 fsr = arm_fi_to_lfsc(&fi); 3412 fsc = extract32(fsr, 0, 6); 3413 } else { 3414 fsr = arm_fi_to_sfsc(&fi); 3415 fsc = 0x3f; 3416 } 3417 /* 3418 * Report exception with ESR indicating a fault due to a 3419 * translation table walk for a cache maintenance instruction. 3420 */ 3421 syn = syn_data_abort_no_iss(current_el == target_el, 0, 3422 fi.ea, 1, fi.s1ptw, 1, fsc); 3423 env->exception.vaddress = value; 3424 env->exception.fsr = fsr; 3425 raise_exception(env, EXCP_DATA_ABORT, syn, target_el); 3426 } 3427 } 3428 3429 if (is_a64(env)) { 3430 format64 = true; 3431 } else if (arm_feature(env, ARM_FEATURE_LPAE)) { 3432 /* 3433 * ATS1Cxx: 3434 * * TTBCR.EAE determines whether the result is returned using the 3435 * 32-bit or the 64-bit PAR format 3436 * * Instructions executed in Hyp mode always use the 64bit format 3437 * 3438 * ATS1S2NSOxx uses the 64bit format if any of the following is true: 3439 * * The Non-secure TTBCR.EAE bit is set to 1 3440 * * The implementation includes EL2, and the value of HCR.VM is 1 3441 * 3442 * (Note that HCR.DC makes HCR.VM behave as if it is 1.) 3443 * 3444 * ATS1Hx always uses the 64bit format. 3445 */ 3446 format64 = arm_s1_regime_using_lpae_format(env, mmu_idx); 3447 3448 if (arm_feature(env, ARM_FEATURE_EL2)) { 3449 if (mmu_idx == ARMMMUIdx_E10_0 || 3450 mmu_idx == ARMMMUIdx_E10_1 || 3451 mmu_idx == ARMMMUIdx_E10_1_PAN) { 3452 format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC); 3453 } else { 3454 format64 |= arm_current_el(env) == 2; 3455 } 3456 } 3457 } 3458 3459 if (format64) { 3460 /* Create a 64-bit PAR */ 3461 par64 = (1 << 11); /* LPAE bit always set */ 3462 if (!ret) { 3463 par64 |= res.f.phys_addr & ~0xfffULL; 3464 if (!res.f.attrs.secure) { 3465 par64 |= (1 << 9); /* NS */ 3466 } 3467 par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */ 3468 par64 |= res.cacheattrs.shareability << 7; /* SH */ 3469 } else { 3470 uint32_t fsr = arm_fi_to_lfsc(&fi); 3471 3472 par64 |= 1; /* F */ 3473 par64 |= (fsr & 0x3f) << 1; /* FS */ 3474 if (fi.stage2) { 3475 par64 |= (1 << 9); /* S */ 3476 } 3477 if (fi.s1ptw) { 3478 par64 |= (1 << 8); /* PTW */ 3479 } 3480 } 3481 } else { 3482 /* 3483 * fsr is a DFSR/IFSR value for the short descriptor 3484 * translation table format (with WnR always clear). 3485 * Convert it to a 32-bit PAR. 3486 */ 3487 if (!ret) { 3488 /* We do not set any attribute bits in the PAR */ 3489 if (res.f.lg_page_size == 24 3490 && arm_feature(env, ARM_FEATURE_V7)) { 3491 par64 = (res.f.phys_addr & 0xff000000) | (1 << 1); 3492 } else { 3493 par64 = res.f.phys_addr & 0xfffff000; 3494 } 3495 if (!res.f.attrs.secure) { 3496 par64 |= (1 << 9); /* NS */ 3497 } 3498 } else { 3499 uint32_t fsr = arm_fi_to_sfsc(&fi); 3500 3501 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) | 3502 ((fsr & 0xf) << 1) | 1; 3503 } 3504 } 3505 return par64; 3506 } 3507 #endif /* CONFIG_TCG */ 3508 3509 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 3510 { 3511 #ifdef CONFIG_TCG 3512 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3513 uint64_t par64; 3514 ARMMMUIdx mmu_idx; 3515 int el = arm_current_el(env); 3516 bool secure = arm_is_secure_below_el3(env); 3517 3518 switch (ri->opc2 & 6) { 3519 case 0: 3520 /* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */ 3521 switch (el) { 3522 case 3: 3523 mmu_idx = ARMMMUIdx_E3; 3524 secure = true; 3525 break; 3526 case 2: 3527 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3528 /* fall through */ 3529 case 1: 3530 if (ri->crm == 9 && (env->uncached_cpsr & CPSR_PAN)) { 3531 mmu_idx = ARMMMUIdx_Stage1_E1_PAN; 3532 } else { 3533 mmu_idx = ARMMMUIdx_Stage1_E1; 3534 } 3535 break; 3536 default: 3537 g_assert_not_reached(); 3538 } 3539 break; 3540 case 2: 3541 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */ 3542 switch (el) { 3543 case 3: 3544 mmu_idx = ARMMMUIdx_E10_0; 3545 secure = true; 3546 break; 3547 case 2: 3548 g_assert(!secure); /* ARMv8.4-SecEL2 is 64-bit only */ 3549 mmu_idx = ARMMMUIdx_Stage1_E0; 3550 break; 3551 case 1: 3552 mmu_idx = ARMMMUIdx_Stage1_E0; 3553 break; 3554 default: 3555 g_assert_not_reached(); 3556 } 3557 break; 3558 case 4: 3559 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */ 3560 mmu_idx = ARMMMUIdx_E10_1; 3561 secure = false; 3562 break; 3563 case 6: 3564 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */ 3565 mmu_idx = ARMMMUIdx_E10_0; 3566 secure = false; 3567 break; 3568 default: 3569 g_assert_not_reached(); 3570 } 3571 3572 par64 = do_ats_write(env, value, access_type, mmu_idx, secure); 3573 3574 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3575 #else 3576 /* Handled by hardware accelerator. */ 3577 g_assert_not_reached(); 3578 #endif /* CONFIG_TCG */ 3579 } 3580 3581 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri, 3582 uint64_t value) 3583 { 3584 #ifdef CONFIG_TCG 3585 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3586 uint64_t par64; 3587 3588 /* There is no SecureEL2 for AArch32. */ 3589 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2, false); 3590 3591 A32_BANKED_CURRENT_REG_SET(env, par, par64); 3592 #else 3593 /* Handled by hardware accelerator. */ 3594 g_assert_not_reached(); 3595 #endif /* CONFIG_TCG */ 3596 } 3597 3598 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri, 3599 bool isread) 3600 { 3601 if (arm_current_el(env) == 3 && 3602 !(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) { 3603 return CP_ACCESS_TRAP; 3604 } 3605 return CP_ACCESS_OK; 3606 } 3607 3608 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri, 3609 uint64_t value) 3610 { 3611 #ifdef CONFIG_TCG 3612 MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD; 3613 ARMMMUIdx mmu_idx; 3614 int secure = arm_is_secure_below_el3(env); 3615 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 3616 bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE); 3617 3618 switch (ri->opc2 & 6) { 3619 case 0: 3620 switch (ri->opc1) { 3621 case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */ 3622 if (ri->crm == 9 && (env->pstate & PSTATE_PAN)) { 3623 mmu_idx = regime_e20 ? 3624 ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN; 3625 } else { 3626 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1; 3627 } 3628 break; 3629 case 4: /* AT S1E2R, AT S1E2W */ 3630 mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2; 3631 break; 3632 case 6: /* AT S1E3R, AT S1E3W */ 3633 mmu_idx = ARMMMUIdx_E3; 3634 secure = true; 3635 break; 3636 default: 3637 g_assert_not_reached(); 3638 } 3639 break; 3640 case 2: /* AT S1E0R, AT S1E0W */ 3641 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0; 3642 break; 3643 case 4: /* AT S12E1R, AT S12E1W */ 3644 mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1; 3645 break; 3646 case 6: /* AT S12E0R, AT S12E0W */ 3647 mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0; 3648 break; 3649 default: 3650 g_assert_not_reached(); 3651 } 3652 3653 env->cp15.par_el[1] = do_ats_write(env, value, access_type, 3654 mmu_idx, secure); 3655 #else 3656 /* Handled by hardware accelerator. */ 3657 g_assert_not_reached(); 3658 #endif /* CONFIG_TCG */ 3659 } 3660 #endif 3661 3662 static const ARMCPRegInfo vapa_cp_reginfo[] = { 3663 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0, 3664 .access = PL1_RW, .resetvalue = 0, 3665 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s), 3666 offsetoflow32(CPUARMState, cp15.par_ns) }, 3667 .writefn = par_write }, 3668 #ifndef CONFIG_USER_ONLY 3669 /* This underdecoding is safe because the reginfo is NO_RAW. */ 3670 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY, 3671 .access = PL1_W, .accessfn = ats_access, 3672 .writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 3673 #endif 3674 }; 3675 3676 /* Return basic MPU access permission bits. */ 3677 static uint32_t simple_mpu_ap_bits(uint32_t val) 3678 { 3679 uint32_t ret; 3680 uint32_t mask; 3681 int i; 3682 ret = 0; 3683 mask = 3; 3684 for (i = 0; i < 16; i += 2) { 3685 ret |= (val >> i) & mask; 3686 mask <<= 2; 3687 } 3688 return ret; 3689 } 3690 3691 /* Pad basic MPU access permission bits to extended format. */ 3692 static uint32_t extended_mpu_ap_bits(uint32_t val) 3693 { 3694 uint32_t ret; 3695 uint32_t mask; 3696 int i; 3697 ret = 0; 3698 mask = 3; 3699 for (i = 0; i < 16; i += 2) { 3700 ret |= (val & mask) << i; 3701 mask <<= 2; 3702 } 3703 return ret; 3704 } 3705 3706 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3707 uint64_t value) 3708 { 3709 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value); 3710 } 3711 3712 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3713 { 3714 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap); 3715 } 3716 3717 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 3718 uint64_t value) 3719 { 3720 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value); 3721 } 3722 3723 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 3724 { 3725 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap); 3726 } 3727 3728 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri) 3729 { 3730 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3731 3732 if (!u32p) { 3733 return 0; 3734 } 3735 3736 u32p += env->pmsav7.rnr[M_REG_NS]; 3737 return *u32p; 3738 } 3739 3740 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri, 3741 uint64_t value) 3742 { 3743 ARMCPU *cpu = env_archcpu(env); 3744 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri); 3745 3746 if (!u32p) { 3747 return; 3748 } 3749 3750 u32p += env->pmsav7.rnr[M_REG_NS]; 3751 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3752 *u32p = value; 3753 } 3754 3755 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3756 uint64_t value) 3757 { 3758 ARMCPU *cpu = env_archcpu(env); 3759 uint32_t nrgs = cpu->pmsav7_dregion; 3760 3761 if (value >= nrgs) { 3762 qemu_log_mask(LOG_GUEST_ERROR, 3763 "PMSAv7 RGNR write >= # supported regions, %" PRIu32 3764 " > %" PRIu32 "\n", (uint32_t)value, nrgs); 3765 return; 3766 } 3767 3768 raw_write(env, ri, value); 3769 } 3770 3771 static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3772 uint64_t value) 3773 { 3774 ARMCPU *cpu = env_archcpu(env); 3775 3776 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3777 env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3778 } 3779 3780 static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3781 { 3782 return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3783 } 3784 3785 static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3786 uint64_t value) 3787 { 3788 ARMCPU *cpu = env_archcpu(env); 3789 3790 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3791 env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value; 3792 } 3793 3794 static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3795 { 3796 return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]]; 3797 } 3798 3799 static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3800 uint64_t value) 3801 { 3802 ARMCPU *cpu = env_archcpu(env); 3803 3804 /* 3805 * Ignore writes that would select not implemented region. 3806 * This is architecturally UNPREDICTABLE. 3807 */ 3808 if (value >= cpu->pmsav7_dregion) { 3809 return; 3810 } 3811 3812 env->pmsav7.rnr[M_REG_NS] = value; 3813 } 3814 3815 static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3816 uint64_t value) 3817 { 3818 ARMCPU *cpu = env_archcpu(env); 3819 3820 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3821 env->pmsav8.hprbar[env->pmsav8.hprselr] = value; 3822 } 3823 3824 static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3825 { 3826 return env->pmsav8.hprbar[env->pmsav8.hprselr]; 3827 } 3828 3829 static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri, 3830 uint64_t value) 3831 { 3832 ARMCPU *cpu = env_archcpu(env); 3833 3834 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3835 env->pmsav8.hprlar[env->pmsav8.hprselr] = value; 3836 } 3837 3838 static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri) 3839 { 3840 return env->pmsav8.hprlar[env->pmsav8.hprselr]; 3841 } 3842 3843 static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3844 uint64_t value) 3845 { 3846 uint32_t n; 3847 uint32_t bit; 3848 ARMCPU *cpu = env_archcpu(env); 3849 3850 /* Ignore writes to unimplemented regions */ 3851 int rmax = MIN(cpu->pmsav8r_hdregion, 32); 3852 value &= MAKE_64BIT_MASK(0, rmax); 3853 3854 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3855 3856 /* Register alias is only valid for first 32 indexes */ 3857 for (n = 0; n < rmax; ++n) { 3858 bit = extract32(value, n, 1); 3859 env->pmsav8.hprlar[n] = deposit32( 3860 env->pmsav8.hprlar[n], 0, 1, bit); 3861 } 3862 } 3863 3864 static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri) 3865 { 3866 uint32_t n; 3867 uint32_t result = 0x0; 3868 ARMCPU *cpu = env_archcpu(env); 3869 3870 /* Register alias is only valid for first 32 indexes */ 3871 for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) { 3872 if (env->pmsav8.hprlar[n] & 0x1) { 3873 result |= (0x1 << n); 3874 } 3875 } 3876 return result; 3877 } 3878 3879 static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri, 3880 uint64_t value) 3881 { 3882 ARMCPU *cpu = env_archcpu(env); 3883 3884 /* 3885 * Ignore writes that would select not implemented region. 3886 * This is architecturally UNPREDICTABLE. 3887 */ 3888 if (value >= cpu->pmsav8r_hdregion) { 3889 return; 3890 } 3891 3892 env->pmsav8.hprselr = value; 3893 } 3894 3895 static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri, 3896 uint64_t value) 3897 { 3898 ARMCPU *cpu = env_archcpu(env); 3899 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3900 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3901 3902 tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */ 3903 3904 if (ri->opc1 & 4) { 3905 if (index >= cpu->pmsav8r_hdregion) { 3906 return; 3907 } 3908 if (ri->opc2 & 0x1) { 3909 env->pmsav8.hprlar[index] = value; 3910 } else { 3911 env->pmsav8.hprbar[index] = value; 3912 } 3913 } else { 3914 if (index >= cpu->pmsav7_dregion) { 3915 return; 3916 } 3917 if (ri->opc2 & 0x1) { 3918 env->pmsav8.rlar[M_REG_NS][index] = value; 3919 } else { 3920 env->pmsav8.rbar[M_REG_NS][index] = value; 3921 } 3922 } 3923 } 3924 3925 static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri) 3926 { 3927 ARMCPU *cpu = env_archcpu(env); 3928 uint8_t index = (extract32(ri->opc0, 0, 1) << 4) | 3929 (extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1); 3930 3931 if (ri->opc1 & 4) { 3932 if (index >= cpu->pmsav8r_hdregion) { 3933 return 0x0; 3934 } 3935 if (ri->opc2 & 0x1) { 3936 return env->pmsav8.hprlar[index]; 3937 } else { 3938 return env->pmsav8.hprbar[index]; 3939 } 3940 } else { 3941 if (index >= cpu->pmsav7_dregion) { 3942 return 0x0; 3943 } 3944 if (ri->opc2 & 0x1) { 3945 return env->pmsav8.rlar[M_REG_NS][index]; 3946 } else { 3947 return env->pmsav8.rbar[M_REG_NS][index]; 3948 } 3949 } 3950 } 3951 3952 static const ARMCPRegInfo pmsav8r_cp_reginfo[] = { 3953 { .name = "PRBAR", 3954 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0, 3955 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3956 .accessfn = access_tvm_trvm, 3957 .readfn = prbar_read, .writefn = prbar_write }, 3958 { .name = "PRLAR", 3959 .cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1, 3960 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3961 .accessfn = access_tvm_trvm, 3962 .readfn = prlar_read, .writefn = prlar_write }, 3963 { .name = "PRSELR", .resetvalue = 0, 3964 .cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1, 3965 .access = PL1_RW, .accessfn = access_tvm_trvm, 3966 .writefn = prselr_write, 3967 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) }, 3968 { .name = "HPRBAR", .resetvalue = 0, 3969 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0, 3970 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3971 .readfn = hprbar_read, .writefn = hprbar_write }, 3972 { .name = "HPRLAR", 3973 .cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1, 3974 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3975 .readfn = hprlar_read, .writefn = hprlar_write }, 3976 { .name = "HPRSELR", .resetvalue = 0, 3977 .cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1, 3978 .access = PL2_RW, 3979 .writefn = hprselr_write, 3980 .fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) }, 3981 { .name = "HPRENR", 3982 .cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1, 3983 .access = PL2_RW, .type = ARM_CP_NO_RAW, 3984 .readfn = hprenr_read, .writefn = hprenr_write }, 3985 }; 3986 3987 static const ARMCPRegInfo pmsav7_cp_reginfo[] = { 3988 /* 3989 * Reset for all these registers is handled in arm_cpu_reset(), 3990 * because the PMSAv7 is also used by M-profile CPUs, which do 3991 * not register cpregs but still need the state to be reset. 3992 */ 3993 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0, 3994 .access = PL1_RW, .type = ARM_CP_NO_RAW, 3995 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar), 3996 .readfn = pmsav7_read, .writefn = pmsav7_write, 3997 .resetfn = arm_cp_reset_ignore }, 3998 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2, 3999 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4000 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr), 4001 .readfn = pmsav7_read, .writefn = pmsav7_write, 4002 .resetfn = arm_cp_reset_ignore }, 4003 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4, 4004 .access = PL1_RW, .type = ARM_CP_NO_RAW, 4005 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr), 4006 .readfn = pmsav7_read, .writefn = pmsav7_write, 4007 .resetfn = arm_cp_reset_ignore }, 4008 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0, 4009 .access = PL1_RW, 4010 .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]), 4011 .writefn = pmsav7_rgnr_write, 4012 .resetfn = arm_cp_reset_ignore }, 4013 }; 4014 4015 static const ARMCPRegInfo pmsav5_cp_reginfo[] = { 4016 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4017 .access = PL1_RW, .type = ARM_CP_ALIAS, 4018 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4019 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, }, 4020 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4021 .access = PL1_RW, .type = ARM_CP_ALIAS, 4022 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4023 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, }, 4024 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2, 4025 .access = PL1_RW, 4026 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap), 4027 .resetvalue = 0, }, 4028 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3, 4029 .access = PL1_RW, 4030 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap), 4031 .resetvalue = 0, }, 4032 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0, 4033 .access = PL1_RW, 4034 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, }, 4035 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1, 4036 .access = PL1_RW, 4037 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, }, 4038 /* Protection region base and size registers */ 4039 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, 4040 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4041 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) }, 4042 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0, 4043 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4044 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) }, 4045 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0, 4046 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4047 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) }, 4048 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0, 4049 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4050 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) }, 4051 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0, 4052 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4053 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) }, 4054 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0, 4055 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4056 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) }, 4057 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0, 4058 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4059 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) }, 4060 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0, 4061 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0, 4062 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) }, 4063 }; 4064 4065 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4066 uint64_t value) 4067 { 4068 ARMCPU *cpu = env_archcpu(env); 4069 4070 if (!arm_feature(env, ARM_FEATURE_V8)) { 4071 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) { 4072 /* 4073 * Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when 4074 * using Long-descriptor translation table format 4075 */ 4076 value &= ~((7 << 19) | (3 << 14) | (0xf << 3)); 4077 } else if (arm_feature(env, ARM_FEATURE_EL3)) { 4078 /* 4079 * In an implementation that includes the Security Extensions 4080 * TTBCR has additional fields PD0 [4] and PD1 [5] for 4081 * Short-descriptor translation table format. 4082 */ 4083 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N; 4084 } else { 4085 value &= TTBCR_N; 4086 } 4087 } 4088 4089 if (arm_feature(env, ARM_FEATURE_LPAE)) { 4090 /* 4091 * With LPAE the TTBCR could result in a change of ASID 4092 * via the TTBCR.A1 bit, so do a TLB flush. 4093 */ 4094 tlb_flush(CPU(cpu)); 4095 } 4096 raw_write(env, ri, value); 4097 } 4098 4099 static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri, 4100 uint64_t value) 4101 { 4102 ARMCPU *cpu = env_archcpu(env); 4103 4104 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */ 4105 tlb_flush(CPU(cpu)); 4106 raw_write(env, ri, value); 4107 } 4108 4109 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4110 uint64_t value) 4111 { 4112 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */ 4113 if (cpreg_field_is_64bit(ri) && 4114 extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4115 ARMCPU *cpu = env_archcpu(env); 4116 tlb_flush(CPU(cpu)); 4117 } 4118 raw_write(env, ri, value); 4119 } 4120 4121 static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4122 uint64_t value) 4123 { 4124 /* 4125 * If we are running with E2&0 regime, then an ASID is active. 4126 * Flush if that might be changing. Note we're not checking 4127 * TCR_EL2.A1 to know if this is really the TTBRx_EL2 that 4128 * holds the active ASID, only checking the field that might. 4129 */ 4130 if (extract64(raw_read(env, ri) ^ value, 48, 16) && 4131 (arm_hcr_el2_eff(env) & HCR_E2H)) { 4132 uint16_t mask = ARMMMUIdxBit_E20_2 | 4133 ARMMMUIdxBit_E20_2_PAN | 4134 ARMMMUIdxBit_E20_0; 4135 tlb_flush_by_mmuidx(env_cpu(env), mask); 4136 } 4137 raw_write(env, ri, value); 4138 } 4139 4140 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4141 uint64_t value) 4142 { 4143 ARMCPU *cpu = env_archcpu(env); 4144 CPUState *cs = CPU(cpu); 4145 4146 /* 4147 * A change in VMID to the stage2 page table (Stage2) invalidates 4148 * the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0). 4149 */ 4150 if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) { 4151 tlb_flush_by_mmuidx(cs, alle1_tlbmask(env)); 4152 } 4153 raw_write(env, ri, value); 4154 } 4155 4156 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = { 4157 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0, 4158 .access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS, 4159 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s), 4160 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, }, 4161 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1, 4162 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4163 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s), 4164 offsetoflow32(CPUARMState, cp15.ifsr_ns) } }, 4165 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0, 4166 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 4167 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s), 4168 offsetof(CPUARMState, cp15.dfar_ns) } }, 4169 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64, 4170 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0, 4171 .access = PL1_RW, .accessfn = access_tvm_trvm, 4172 .fgt = FGT_FAR_EL1, 4173 .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]), 4174 .resetvalue = 0, }, 4175 }; 4176 4177 static const ARMCPRegInfo vmsa_cp_reginfo[] = { 4178 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64, 4179 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0, 4180 .access = PL1_RW, .accessfn = access_tvm_trvm, 4181 .fgt = FGT_ESR_EL1, 4182 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, }, 4183 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH, 4184 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0, 4185 .access = PL1_RW, .accessfn = access_tvm_trvm, 4186 .fgt = FGT_TTBR0_EL1, 4187 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4188 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4189 offsetof(CPUARMState, cp15.ttbr0_ns) } }, 4190 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH, 4191 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1, 4192 .access = PL1_RW, .accessfn = access_tvm_trvm, 4193 .fgt = FGT_TTBR1_EL1, 4194 .writefn = vmsa_ttbr_write, .resetvalue = 0, 4195 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4196 offsetof(CPUARMState, cp15.ttbr1_ns) } }, 4197 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64, 4198 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4199 .access = PL1_RW, .accessfn = access_tvm_trvm, 4200 .fgt = FGT_TCR_EL1, 4201 .writefn = vmsa_tcr_el12_write, 4202 .raw_writefn = raw_write, 4203 .resetvalue = 0, 4204 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) }, 4205 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2, 4206 .access = PL1_RW, .accessfn = access_tvm_trvm, 4207 .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write, 4208 .raw_writefn = raw_write, 4209 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]), 4210 offsetoflow32(CPUARMState, cp15.tcr_el[1])} }, 4211 }; 4212 4213 /* 4214 * Note that unlike TTBCR, writing to TTBCR2 does not require flushing 4215 * qemu tlbs nor adjusting cached masks. 4216 */ 4217 static const ARMCPRegInfo ttbcr2_reginfo = { 4218 .name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3, 4219 .access = PL1_RW, .accessfn = access_tvm_trvm, 4220 .type = ARM_CP_ALIAS, 4221 .bank_fieldoffsets = { 4222 offsetofhigh32(CPUARMState, cp15.tcr_el[3]), 4223 offsetofhigh32(CPUARMState, cp15.tcr_el[1]), 4224 }, 4225 }; 4226 4227 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri, 4228 uint64_t value) 4229 { 4230 env->cp15.c15_ticonfig = value & 0xe7; 4231 /* The OS_TYPE bit in this register changes the reported CPUID! */ 4232 env->cp15.c0_cpuid = (value & (1 << 5)) ? 4233 ARM_CPUID_TI915T : ARM_CPUID_TI925T; 4234 } 4235 4236 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri, 4237 uint64_t value) 4238 { 4239 env->cp15.c15_threadid = value & 0xffff; 4240 } 4241 4242 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri, 4243 uint64_t value) 4244 { 4245 /* Wait-for-interrupt (deprecated) */ 4246 cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT); 4247 } 4248 4249 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri, 4250 uint64_t value) 4251 { 4252 /* 4253 * On OMAP there are registers indicating the max/min index of dcache lines 4254 * containing a dirty line; cache flush operations have to reset these. 4255 */ 4256 env->cp15.c15_i_max = 0x000; 4257 env->cp15.c15_i_min = 0xff0; 4258 } 4259 4260 static const ARMCPRegInfo omap_cp_reginfo[] = { 4261 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY, 4262 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE, 4263 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]), 4264 .resetvalue = 0, }, 4265 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0, 4266 .access = PL1_RW, .type = ARM_CP_NOP }, 4267 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, 4268 .access = PL1_RW, 4269 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0, 4270 .writefn = omap_ticonfig_write }, 4271 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0, 4272 .access = PL1_RW, 4273 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, }, 4274 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0, 4275 .access = PL1_RW, .resetvalue = 0xff0, 4276 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) }, 4277 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0, 4278 .access = PL1_RW, 4279 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0, 4280 .writefn = omap_threadid_write }, 4281 { .name = "TI925T_STATUS", .cp = 15, .crn = 15, 4282 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4283 .type = ARM_CP_NO_RAW, 4284 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, }, 4285 /* 4286 * TODO: Peripheral port remap register: 4287 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller 4288 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff), 4289 * when MMU is off. 4290 */ 4291 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY, 4292 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, 4293 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW, 4294 .writefn = omap_cachemaint_write }, 4295 { .name = "C9", .cp = 15, .crn = 9, 4296 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, 4297 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 }, 4298 }; 4299 4300 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri, 4301 uint64_t value) 4302 { 4303 env->cp15.c15_cpar = value & 0x3fff; 4304 } 4305 4306 static const ARMCPRegInfo xscale_cp_reginfo[] = { 4307 { .name = "XSCALE_CPAR", 4308 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW, 4309 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0, 4310 .writefn = xscale_cpar_write, }, 4311 { .name = "XSCALE_AUXCR", 4312 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW, 4313 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr), 4314 .resetvalue = 0, }, 4315 /* 4316 * XScale specific cache-lockdown: since we have no cache we NOP these 4317 * and hope the guest does not really rely on cache behaviour. 4318 */ 4319 { .name = "XSCALE_LOCK_ICACHE_LINE", 4320 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0, 4321 .access = PL1_W, .type = ARM_CP_NOP }, 4322 { .name = "XSCALE_UNLOCK_ICACHE", 4323 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1, 4324 .access = PL1_W, .type = ARM_CP_NOP }, 4325 { .name = "XSCALE_DCACHE_LOCK", 4326 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0, 4327 .access = PL1_RW, .type = ARM_CP_NOP }, 4328 { .name = "XSCALE_UNLOCK_DCACHE", 4329 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1, 4330 .access = PL1_W, .type = ARM_CP_NOP }, 4331 }; 4332 4333 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = { 4334 /* 4335 * RAZ/WI the whole crn=15 space, when we don't have a more specific 4336 * implementation of this implementation-defined space. 4337 * Ideally this should eventually disappear in favour of actually 4338 * implementing the correct behaviour for all cores. 4339 */ 4340 { .name = "C15_IMPDEF", .cp = 15, .crn = 15, 4341 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4342 .access = PL1_RW, 4343 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE, 4344 .resetvalue = 0 }, 4345 }; 4346 4347 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = { 4348 /* Cache status: RAZ because we have no cache so it's always clean */ 4349 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6, 4350 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4351 .resetvalue = 0 }, 4352 }; 4353 4354 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = { 4355 /* We never have a block transfer operation in progress */ 4356 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4, 4357 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4358 .resetvalue = 0 }, 4359 /* The cache ops themselves: these all NOP for QEMU */ 4360 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0, 4361 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4362 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0, 4363 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4364 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0, 4365 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4366 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1, 4367 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4368 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2, 4369 .access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4370 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0, 4371 .access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT }, 4372 }; 4373 4374 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = { 4375 /* 4376 * The cache test-and-clean instructions always return (1 << 30) 4377 * to indicate that there are no dirty cache lines. 4378 */ 4379 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3, 4380 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4381 .resetvalue = (1 << 30) }, 4382 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3, 4383 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW, 4384 .resetvalue = (1 << 30) }, 4385 }; 4386 4387 static const ARMCPRegInfo strongarm_cp_reginfo[] = { 4388 /* Ignore ReadBuffer accesses */ 4389 { .name = "C9_READBUFFER", .cp = 15, .crn = 9, 4390 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, 4391 .access = PL1_RW, .resetvalue = 0, 4392 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW }, 4393 }; 4394 4395 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4396 { 4397 unsigned int cur_el = arm_current_el(env); 4398 4399 if (arm_is_el2_enabled(env) && cur_el == 1) { 4400 return env->cp15.vpidr_el2; 4401 } 4402 return raw_read(env, ri); 4403 } 4404 4405 static uint64_t mpidr_read_val(CPUARMState *env) 4406 { 4407 ARMCPU *cpu = env_archcpu(env); 4408 uint64_t mpidr = cpu->mp_affinity; 4409 4410 if (arm_feature(env, ARM_FEATURE_V7MP)) { 4411 mpidr |= (1U << 31); 4412 /* 4413 * Cores which are uniprocessor (non-coherent) 4414 * but still implement the MP extensions set 4415 * bit 30. (For instance, Cortex-R5). 4416 */ 4417 if (cpu->mp_is_up) { 4418 mpidr |= (1u << 30); 4419 } 4420 } 4421 return mpidr; 4422 } 4423 4424 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4425 { 4426 unsigned int cur_el = arm_current_el(env); 4427 4428 if (arm_is_el2_enabled(env) && cur_el == 1) { 4429 return env->cp15.vmpidr_el2; 4430 } 4431 return mpidr_read_val(env); 4432 } 4433 4434 static const ARMCPRegInfo lpae_cp_reginfo[] = { 4435 /* NOP AMAIR0/1 */ 4436 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH, 4437 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0, 4438 .access = PL1_RW, .accessfn = access_tvm_trvm, 4439 .fgt = FGT_AMAIR_EL1, 4440 .type = ARM_CP_CONST, .resetvalue = 0 }, 4441 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */ 4442 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1, 4443 .access = PL1_RW, .accessfn = access_tvm_trvm, 4444 .type = ARM_CP_CONST, .resetvalue = 0 }, 4445 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0, 4446 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0, 4447 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s), 4448 offsetof(CPUARMState, cp15.par_ns)} }, 4449 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0, 4450 .access = PL1_RW, .accessfn = access_tvm_trvm, 4451 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4452 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s), 4453 offsetof(CPUARMState, cp15.ttbr0_ns) }, 4454 .writefn = vmsa_ttbr_write, }, 4455 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1, 4456 .access = PL1_RW, .accessfn = access_tvm_trvm, 4457 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 4458 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s), 4459 offsetof(CPUARMState, cp15.ttbr1_ns) }, 4460 .writefn = vmsa_ttbr_write, }, 4461 }; 4462 4463 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4464 { 4465 return vfp_get_fpcr(env); 4466 } 4467 4468 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4469 uint64_t value) 4470 { 4471 vfp_set_fpcr(env, value); 4472 } 4473 4474 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 4475 { 4476 return vfp_get_fpsr(env); 4477 } 4478 4479 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri, 4480 uint64_t value) 4481 { 4482 vfp_set_fpsr(env, value); 4483 } 4484 4485 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri, 4486 bool isread) 4487 { 4488 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) { 4489 return CP_ACCESS_TRAP; 4490 } 4491 return CP_ACCESS_OK; 4492 } 4493 4494 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri, 4495 uint64_t value) 4496 { 4497 env->daif = value & PSTATE_DAIF; 4498 } 4499 4500 static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri) 4501 { 4502 return env->pstate & PSTATE_PAN; 4503 } 4504 4505 static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri, 4506 uint64_t value) 4507 { 4508 env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN); 4509 } 4510 4511 static const ARMCPRegInfo pan_reginfo = { 4512 .name = "PAN", .state = ARM_CP_STATE_AA64, 4513 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3, 4514 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4515 .readfn = aa64_pan_read, .writefn = aa64_pan_write 4516 }; 4517 4518 static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri) 4519 { 4520 return env->pstate & PSTATE_UAO; 4521 } 4522 4523 static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri, 4524 uint64_t value) 4525 { 4526 env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO); 4527 } 4528 4529 static const ARMCPRegInfo uao_reginfo = { 4530 .name = "UAO", .state = ARM_CP_STATE_AA64, 4531 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4, 4532 .type = ARM_CP_NO_RAW, .access = PL1_RW, 4533 .readfn = aa64_uao_read, .writefn = aa64_uao_write 4534 }; 4535 4536 static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri) 4537 { 4538 return env->pstate & PSTATE_DIT; 4539 } 4540 4541 static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri, 4542 uint64_t value) 4543 { 4544 env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT); 4545 } 4546 4547 static const ARMCPRegInfo dit_reginfo = { 4548 .name = "DIT", .state = ARM_CP_STATE_AA64, 4549 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5, 4550 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4551 .readfn = aa64_dit_read, .writefn = aa64_dit_write 4552 }; 4553 4554 static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri) 4555 { 4556 return env->pstate & PSTATE_SSBS; 4557 } 4558 4559 static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri, 4560 uint64_t value) 4561 { 4562 env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS); 4563 } 4564 4565 static const ARMCPRegInfo ssbs_reginfo = { 4566 .name = "SSBS", .state = ARM_CP_STATE_AA64, 4567 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6, 4568 .type = ARM_CP_NO_RAW, .access = PL0_RW, 4569 .readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write 4570 }; 4571 4572 static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env, 4573 const ARMCPRegInfo *ri, 4574 bool isread) 4575 { 4576 /* Cache invalidate/clean to Point of Coherency or Persistence... */ 4577 switch (arm_current_el(env)) { 4578 case 0: 4579 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4580 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4581 return CP_ACCESS_TRAP; 4582 } 4583 /* fall through */ 4584 case 1: 4585 /* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */ 4586 if (arm_hcr_el2_eff(env) & HCR_TPCP) { 4587 return CP_ACCESS_TRAP_EL2; 4588 } 4589 break; 4590 } 4591 return CP_ACCESS_OK; 4592 } 4593 4594 static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags) 4595 { 4596 /* Cache invalidate/clean to Point of Unification... */ 4597 switch (arm_current_el(env)) { 4598 case 0: 4599 /* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */ 4600 if (!(arm_sctlr(env, 0) & SCTLR_UCI)) { 4601 return CP_ACCESS_TRAP; 4602 } 4603 /* fall through */ 4604 case 1: 4605 /* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */ 4606 if (arm_hcr_el2_eff(env) & hcrflags) { 4607 return CP_ACCESS_TRAP_EL2; 4608 } 4609 break; 4610 } 4611 return CP_ACCESS_OK; 4612 } 4613 4614 static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri, 4615 bool isread) 4616 { 4617 return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU); 4618 } 4619 4620 static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri, 4621 bool isread) 4622 { 4623 return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU); 4624 } 4625 4626 /* 4627 * See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions 4628 * Page D4-1736 (DDI0487A.b) 4629 */ 4630 4631 static int vae1_tlbmask(CPUARMState *env) 4632 { 4633 uint64_t hcr = arm_hcr_el2_eff(env); 4634 uint16_t mask; 4635 4636 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4637 mask = ARMMMUIdxBit_E20_2 | 4638 ARMMMUIdxBit_E20_2_PAN | 4639 ARMMMUIdxBit_E20_0; 4640 } else { 4641 mask = ARMMMUIdxBit_E10_1 | 4642 ARMMMUIdxBit_E10_1_PAN | 4643 ARMMMUIdxBit_E10_0; 4644 } 4645 return mask; 4646 } 4647 4648 /* Return 56 if TBI is enabled, 64 otherwise. */ 4649 static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx, 4650 uint64_t addr) 4651 { 4652 uint64_t tcr = regime_tcr(env, mmu_idx); 4653 int tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 4654 int select = extract64(addr, 55, 1); 4655 4656 return (tbi >> select) & 1 ? 56 : 64; 4657 } 4658 4659 static int vae1_tlbbits(CPUARMState *env, uint64_t addr) 4660 { 4661 uint64_t hcr = arm_hcr_el2_eff(env); 4662 ARMMMUIdx mmu_idx; 4663 4664 /* Only the regime of the mmu_idx below is significant. */ 4665 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 4666 mmu_idx = ARMMMUIdx_E20_0; 4667 } else { 4668 mmu_idx = ARMMMUIdx_E10_0; 4669 } 4670 4671 return tlbbits_for_regime(env, mmu_idx, addr); 4672 } 4673 4674 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4675 uint64_t value) 4676 { 4677 CPUState *cs = env_cpu(env); 4678 int mask = vae1_tlbmask(env); 4679 4680 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4681 } 4682 4683 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4684 uint64_t value) 4685 { 4686 CPUState *cs = env_cpu(env); 4687 int mask = vae1_tlbmask(env); 4688 4689 if (tlb_force_broadcast(env)) { 4690 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4691 } else { 4692 tlb_flush_by_mmuidx(cs, mask); 4693 } 4694 } 4695 4696 static int e2_tlbmask(CPUARMState *env) 4697 { 4698 return (ARMMMUIdxBit_E20_0 | 4699 ARMMMUIdxBit_E20_2 | 4700 ARMMMUIdxBit_E20_2_PAN | 4701 ARMMMUIdxBit_E2); 4702 } 4703 4704 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4705 uint64_t value) 4706 { 4707 CPUState *cs = env_cpu(env); 4708 int mask = alle1_tlbmask(env); 4709 4710 tlb_flush_by_mmuidx(cs, mask); 4711 } 4712 4713 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4714 uint64_t value) 4715 { 4716 CPUState *cs = env_cpu(env); 4717 int mask = e2_tlbmask(env); 4718 4719 tlb_flush_by_mmuidx(cs, mask); 4720 } 4721 4722 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4723 uint64_t value) 4724 { 4725 ARMCPU *cpu = env_archcpu(env); 4726 CPUState *cs = CPU(cpu); 4727 4728 tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3); 4729 } 4730 4731 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4732 uint64_t value) 4733 { 4734 CPUState *cs = env_cpu(env); 4735 int mask = alle1_tlbmask(env); 4736 4737 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4738 } 4739 4740 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4741 uint64_t value) 4742 { 4743 CPUState *cs = env_cpu(env); 4744 int mask = e2_tlbmask(env); 4745 4746 tlb_flush_by_mmuidx_all_cpus_synced(cs, mask); 4747 } 4748 4749 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4750 uint64_t value) 4751 { 4752 CPUState *cs = env_cpu(env); 4753 4754 tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3); 4755 } 4756 4757 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri, 4758 uint64_t value) 4759 { 4760 /* 4761 * Invalidate by VA, EL2 4762 * Currently handles both VAE2 and VALE2, since we don't support 4763 * flush-last-level-only. 4764 */ 4765 CPUState *cs = env_cpu(env); 4766 int mask = e2_tlbmask(env); 4767 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4768 4769 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4770 } 4771 4772 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri, 4773 uint64_t value) 4774 { 4775 /* 4776 * Invalidate by VA, EL3 4777 * Currently handles both VAE3 and VALE3, since we don't support 4778 * flush-last-level-only. 4779 */ 4780 ARMCPU *cpu = env_archcpu(env); 4781 CPUState *cs = CPU(cpu); 4782 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4783 4784 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3); 4785 } 4786 4787 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4788 uint64_t value) 4789 { 4790 CPUState *cs = env_cpu(env); 4791 int mask = vae1_tlbmask(env); 4792 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4793 int bits = vae1_tlbbits(env, pageaddr); 4794 4795 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4796 } 4797 4798 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4799 uint64_t value) 4800 { 4801 /* 4802 * Invalidate by VA, EL1&0 (AArch64 version). 4803 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1, 4804 * since we don't support flush-for-specific-ASID-only or 4805 * flush-last-level-only. 4806 */ 4807 CPUState *cs = env_cpu(env); 4808 int mask = vae1_tlbmask(env); 4809 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4810 int bits = vae1_tlbbits(env, pageaddr); 4811 4812 if (tlb_force_broadcast(env)) { 4813 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits); 4814 } else { 4815 tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits); 4816 } 4817 } 4818 4819 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4820 uint64_t value) 4821 { 4822 CPUState *cs = env_cpu(env); 4823 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4824 int bits = tlbbits_for_regime(env, ARMMMUIdx_E2, pageaddr); 4825 4826 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4827 ARMMMUIdxBit_E2, bits); 4828 } 4829 4830 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4831 uint64_t value) 4832 { 4833 CPUState *cs = env_cpu(env); 4834 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4835 int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr); 4836 4837 tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, 4838 ARMMMUIdxBit_E3, bits); 4839 } 4840 4841 static int ipas2e1_tlbmask(CPUARMState *env, int64_t value) 4842 { 4843 /* 4844 * The MSB of value is the NS field, which only applies if SEL2 4845 * is implemented and SCR_EL3.NS is not set (i.e. in secure mode). 4846 */ 4847 return (value >= 0 4848 && cpu_isar_feature(aa64_sel2, env_archcpu(env)) 4849 && arm_is_secure_below_el3(env) 4850 ? ARMMMUIdxBit_Stage2_S 4851 : ARMMMUIdxBit_Stage2); 4852 } 4853 4854 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 4855 uint64_t value) 4856 { 4857 CPUState *cs = env_cpu(env); 4858 int mask = ipas2e1_tlbmask(env, value); 4859 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4860 4861 if (tlb_force_broadcast(env)) { 4862 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4863 } else { 4864 tlb_flush_page_by_mmuidx(cs, pageaddr, mask); 4865 } 4866 } 4867 4868 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri, 4869 uint64_t value) 4870 { 4871 CPUState *cs = env_cpu(env); 4872 int mask = ipas2e1_tlbmask(env, value); 4873 uint64_t pageaddr = sextract64(value << 12, 0, 56); 4874 4875 tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask); 4876 } 4877 4878 #ifdef TARGET_AARCH64 4879 typedef struct { 4880 uint64_t base; 4881 uint64_t length; 4882 } TLBIRange; 4883 4884 static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg) 4885 { 4886 /* 4887 * Note that the TLBI range TG field encoding differs from both 4888 * TG0 and TG1 encodings. 4889 */ 4890 switch (tg) { 4891 case 1: 4892 return Gran4K; 4893 case 2: 4894 return Gran16K; 4895 case 3: 4896 return Gran64K; 4897 default: 4898 return GranInvalid; 4899 } 4900 } 4901 4902 static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx, 4903 uint64_t value) 4904 { 4905 unsigned int page_size_granule, page_shift, num, scale, exponent; 4906 /* Extract one bit to represent the va selector in use. */ 4907 uint64_t select = sextract64(value, 36, 1); 4908 ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true); 4909 TLBIRange ret = { }; 4910 ARMGranuleSize gran; 4911 4912 page_size_granule = extract64(value, 46, 2); 4913 gran = tlbi_range_tg_to_gran_size(page_size_granule); 4914 4915 /* The granule encoded in value must match the granule in use. */ 4916 if (gran != param.gran) { 4917 qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n", 4918 page_size_granule); 4919 return ret; 4920 } 4921 4922 page_shift = arm_granule_bits(gran); 4923 num = extract64(value, 39, 5); 4924 scale = extract64(value, 44, 2); 4925 exponent = (5 * scale) + 1; 4926 4927 ret.length = (num + 1) << (exponent + page_shift); 4928 4929 if (param.select) { 4930 ret.base = sextract64(value, 0, 37); 4931 } else { 4932 ret.base = extract64(value, 0, 37); 4933 } 4934 if (param.ds) { 4935 /* 4936 * With DS=1, BaseADDR is always shifted 16 so that it is able 4937 * to address all 52 va bits. The input address is perforce 4938 * aligned on a 64k boundary regardless of translation granule. 4939 */ 4940 page_shift = 16; 4941 } 4942 ret.base <<= page_shift; 4943 4944 return ret; 4945 } 4946 4947 static void do_rvae_write(CPUARMState *env, uint64_t value, 4948 int idxmap, bool synced) 4949 { 4950 ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap); 4951 TLBIRange range; 4952 int bits; 4953 4954 range = tlbi_aa64_get_range(env, one_idx, value); 4955 bits = tlbbits_for_regime(env, one_idx, range.base); 4956 4957 if (synced) { 4958 tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env), 4959 range.base, 4960 range.length, 4961 idxmap, 4962 bits); 4963 } else { 4964 tlb_flush_range_by_mmuidx(env_cpu(env), range.base, 4965 range.length, idxmap, bits); 4966 } 4967 } 4968 4969 static void tlbi_aa64_rvae1_write(CPUARMState *env, 4970 const ARMCPRegInfo *ri, 4971 uint64_t value) 4972 { 4973 /* 4974 * Invalidate by VA range, EL1&0. 4975 * Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1, 4976 * since we don't support flush-for-specific-ASID-only or 4977 * flush-last-level-only. 4978 */ 4979 4980 do_rvae_write(env, value, vae1_tlbmask(env), 4981 tlb_force_broadcast(env)); 4982 } 4983 4984 static void tlbi_aa64_rvae1is_write(CPUARMState *env, 4985 const ARMCPRegInfo *ri, 4986 uint64_t value) 4987 { 4988 /* 4989 * Invalidate by VA range, Inner/Outer Shareable EL1&0. 4990 * Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS, 4991 * RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support 4992 * flush-for-specific-ASID-only, flush-last-level-only or inner/outer 4993 * shareable specific flushes. 4994 */ 4995 4996 do_rvae_write(env, value, vae1_tlbmask(env), true); 4997 } 4998 4999 static int vae2_tlbmask(CPUARMState *env) 5000 { 5001 return ARMMMUIdxBit_E2; 5002 } 5003 5004 static void tlbi_aa64_rvae2_write(CPUARMState *env, 5005 const ARMCPRegInfo *ri, 5006 uint64_t value) 5007 { 5008 /* 5009 * Invalidate by VA range, EL2. 5010 * Currently handles all of RVAE2 and RVALE2, 5011 * since we don't support flush-for-specific-ASID-only or 5012 * flush-last-level-only. 5013 */ 5014 5015 do_rvae_write(env, value, vae2_tlbmask(env), 5016 tlb_force_broadcast(env)); 5017 5018 5019 } 5020 5021 static void tlbi_aa64_rvae2is_write(CPUARMState *env, 5022 const ARMCPRegInfo *ri, 5023 uint64_t value) 5024 { 5025 /* 5026 * Invalidate by VA range, Inner/Outer Shareable, EL2. 5027 * Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS, 5028 * since we don't support flush-for-specific-ASID-only, 5029 * flush-last-level-only or inner/outer shareable specific flushes. 5030 */ 5031 5032 do_rvae_write(env, value, vae2_tlbmask(env), true); 5033 5034 } 5035 5036 static void tlbi_aa64_rvae3_write(CPUARMState *env, 5037 const ARMCPRegInfo *ri, 5038 uint64_t value) 5039 { 5040 /* 5041 * Invalidate by VA range, EL3. 5042 * Currently handles all of RVAE3 and RVALE3, 5043 * since we don't support flush-for-specific-ASID-only or 5044 * flush-last-level-only. 5045 */ 5046 5047 do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env)); 5048 } 5049 5050 static void tlbi_aa64_rvae3is_write(CPUARMState *env, 5051 const ARMCPRegInfo *ri, 5052 uint64_t value) 5053 { 5054 /* 5055 * Invalidate by VA range, EL3, Inner/Outer Shareable. 5056 * Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS, 5057 * since we don't support flush-for-specific-ASID-only, 5058 * flush-last-level-only or inner/outer specific flushes. 5059 */ 5060 5061 do_rvae_write(env, value, ARMMMUIdxBit_E3, true); 5062 } 5063 5064 static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri, 5065 uint64_t value) 5066 { 5067 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), 5068 tlb_force_broadcast(env)); 5069 } 5070 5071 static void tlbi_aa64_ripas2e1is_write(CPUARMState *env, 5072 const ARMCPRegInfo *ri, 5073 uint64_t value) 5074 { 5075 do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true); 5076 } 5077 #endif 5078 5079 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri, 5080 bool isread) 5081 { 5082 int cur_el = arm_current_el(env); 5083 5084 if (cur_el < 2) { 5085 uint64_t hcr = arm_hcr_el2_eff(env); 5086 5087 if (cur_el == 0) { 5088 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 5089 if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) { 5090 return CP_ACCESS_TRAP_EL2; 5091 } 5092 } else { 5093 if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) { 5094 return CP_ACCESS_TRAP; 5095 } 5096 if (hcr & HCR_TDZ) { 5097 return CP_ACCESS_TRAP_EL2; 5098 } 5099 } 5100 } else if (hcr & HCR_TDZ) { 5101 return CP_ACCESS_TRAP_EL2; 5102 } 5103 } 5104 return CP_ACCESS_OK; 5105 } 5106 5107 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri) 5108 { 5109 ARMCPU *cpu = env_archcpu(env); 5110 int dzp_bit = 1 << 4; 5111 5112 /* DZP indicates whether DC ZVA access is allowed */ 5113 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) { 5114 dzp_bit = 0; 5115 } 5116 return cpu->dcz_blocksize | dzp_bit; 5117 } 5118 5119 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 5120 bool isread) 5121 { 5122 if (!(env->pstate & PSTATE_SP)) { 5123 /* 5124 * Access to SP_EL0 is undefined if it's being used as 5125 * the stack pointer. 5126 */ 5127 return CP_ACCESS_TRAP_UNCATEGORIZED; 5128 } 5129 return CP_ACCESS_OK; 5130 } 5131 5132 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri) 5133 { 5134 return env->pstate & PSTATE_SP; 5135 } 5136 5137 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 5138 { 5139 update_spsel(env, val); 5140 } 5141 5142 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5143 uint64_t value) 5144 { 5145 ARMCPU *cpu = env_archcpu(env); 5146 5147 if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) { 5148 /* M bit is RAZ/WI for PMSA with no MPU implemented */ 5149 value &= ~SCTLR_M; 5150 } 5151 5152 /* ??? Lots of these bits are not implemented. */ 5153 5154 if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) { 5155 if (ri->opc1 == 6) { /* SCTLR_EL3 */ 5156 value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA); 5157 } else { 5158 value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF | 5159 SCTLR_ATA0 | SCTLR_ATA); 5160 } 5161 } 5162 5163 if (raw_read(env, ri) == value) { 5164 /* 5165 * Skip the TLB flush if nothing actually changed; Linux likes 5166 * to do a lot of pointless SCTLR writes. 5167 */ 5168 return; 5169 } 5170 5171 raw_write(env, ri, value); 5172 5173 /* This may enable/disable the MMU, so do a TLB flush. */ 5174 tlb_flush(CPU(cpu)); 5175 5176 if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) { 5177 /* 5178 * Normally we would always end the TB on an SCTLR write; see the 5179 * comment in ARMCPRegInfo sctlr initialization below for why Xscale 5180 * is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild 5181 * of hflags from the translator, so do it here. 5182 */ 5183 arm_rebuild_hflags(env); 5184 } 5185 } 5186 5187 static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 5188 uint64_t value) 5189 { 5190 /* 5191 * Some MDCR_EL3 bits affect whether PMU counters are running: 5192 * if we are trying to change any of those then we must 5193 * bracket this update with PMU start/finish calls. 5194 */ 5195 bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS; 5196 5197 if (pmu_op) { 5198 pmu_op_start(env); 5199 } 5200 env->cp15.mdcr_el3 = value; 5201 if (pmu_op) { 5202 pmu_op_finish(env); 5203 } 5204 } 5205 5206 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 5207 uint64_t value) 5208 { 5209 /* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */ 5210 mdcr_el3_write(env, ri, value & SDCR_VALID_MASK); 5211 } 5212 5213 static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5214 uint64_t value) 5215 { 5216 /* 5217 * Some MDCR_EL2 bits affect whether PMU counters are running: 5218 * if we are trying to change any of those then we must 5219 * bracket this update with PMU start/finish calls. 5220 */ 5221 bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS; 5222 5223 if (pmu_op) { 5224 pmu_op_start(env); 5225 } 5226 env->cp15.mdcr_el2 = value; 5227 if (pmu_op) { 5228 pmu_op_finish(env); 5229 } 5230 } 5231 5232 static const ARMCPRegInfo v8_cp_reginfo[] = { 5233 /* 5234 * Minimal set of EL0-visible registers. This will need to be expanded 5235 * significantly for system emulation of AArch64 CPUs. 5236 */ 5237 { .name = "NZCV", .state = ARM_CP_STATE_AA64, 5238 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2, 5239 .access = PL0_RW, .type = ARM_CP_NZCV }, 5240 { .name = "DAIF", .state = ARM_CP_STATE_AA64, 5241 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2, 5242 .type = ARM_CP_NO_RAW, 5243 .access = PL0_RW, .accessfn = aa64_daif_access, 5244 .fieldoffset = offsetof(CPUARMState, daif), 5245 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore }, 5246 { .name = "FPCR", .state = ARM_CP_STATE_AA64, 5247 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4, 5248 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5249 .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write }, 5250 { .name = "FPSR", .state = ARM_CP_STATE_AA64, 5251 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4, 5252 .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END, 5253 .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write }, 5254 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64, 5255 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0, 5256 .access = PL0_R, .type = ARM_CP_NO_RAW, 5257 .fgt = FGT_DCZID_EL0, 5258 .readfn = aa64_dczid_read }, 5259 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64, 5260 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1, 5261 .access = PL0_W, .type = ARM_CP_DC_ZVA, 5262 #ifndef CONFIG_USER_ONLY 5263 /* Avoid overhead of an access check that always passes in user-mode */ 5264 .accessfn = aa64_zva_access, 5265 .fgt = FGT_DCZVA, 5266 #endif 5267 }, 5268 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64, 5269 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2, 5270 .access = PL1_R, .type = ARM_CP_CURRENTEL }, 5271 /* Cache ops: all NOPs since we don't emulate caches */ 5272 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64, 5273 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5274 .access = PL1_W, .type = ARM_CP_NOP, 5275 .fgt = FGT_ICIALLUIS, 5276 .accessfn = access_ticab }, 5277 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64, 5278 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5279 .access = PL1_W, .type = ARM_CP_NOP, 5280 .fgt = FGT_ICIALLU, 5281 .accessfn = access_tocu }, 5282 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64, 5283 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1, 5284 .access = PL0_W, .type = ARM_CP_NOP, 5285 .fgt = FGT_ICIVAU, 5286 .accessfn = access_tocu }, 5287 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64, 5288 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5289 .access = PL1_W, .accessfn = aa64_cacheop_poc_access, 5290 .fgt = FGT_DCIVAC, 5291 .type = ARM_CP_NOP }, 5292 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64, 5293 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5294 .fgt = FGT_DCISW, 5295 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5296 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64, 5297 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1, 5298 .access = PL0_W, .type = ARM_CP_NOP, 5299 .fgt = FGT_DCCVAC, 5300 .accessfn = aa64_cacheop_poc_access }, 5301 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64, 5302 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5303 .fgt = FGT_DCCSW, 5304 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5305 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64, 5306 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1, 5307 .access = PL0_W, .type = ARM_CP_NOP, 5308 .fgt = FGT_DCCVAU, 5309 .accessfn = access_tocu }, 5310 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64, 5311 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1, 5312 .access = PL0_W, .type = ARM_CP_NOP, 5313 .fgt = FGT_DCCIVAC, 5314 .accessfn = aa64_cacheop_poc_access }, 5315 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64, 5316 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5317 .fgt = FGT_DCCISW, 5318 .access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP }, 5319 /* TLBI operations */ 5320 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64, 5321 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0, 5322 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5323 .fgt = FGT_TLBIVMALLE1IS, 5324 .writefn = tlbi_aa64_vmalle1is_write }, 5325 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64, 5326 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1, 5327 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5328 .fgt = FGT_TLBIVAE1IS, 5329 .writefn = tlbi_aa64_vae1is_write }, 5330 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64, 5331 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2, 5332 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5333 .fgt = FGT_TLBIASIDE1IS, 5334 .writefn = tlbi_aa64_vmalle1is_write }, 5335 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64, 5336 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3, 5337 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5338 .fgt = FGT_TLBIVAAE1IS, 5339 .writefn = tlbi_aa64_vae1is_write }, 5340 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64, 5341 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5342 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5343 .fgt = FGT_TLBIVALE1IS, 5344 .writefn = tlbi_aa64_vae1is_write }, 5345 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64, 5346 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5347 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 5348 .fgt = FGT_TLBIVAALE1IS, 5349 .writefn = tlbi_aa64_vae1is_write }, 5350 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64, 5351 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0, 5352 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5353 .fgt = FGT_TLBIVMALLE1, 5354 .writefn = tlbi_aa64_vmalle1_write }, 5355 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64, 5356 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1, 5357 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5358 .fgt = FGT_TLBIVAE1, 5359 .writefn = tlbi_aa64_vae1_write }, 5360 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64, 5361 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2, 5362 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5363 .fgt = FGT_TLBIASIDE1, 5364 .writefn = tlbi_aa64_vmalle1_write }, 5365 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64, 5366 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3, 5367 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5368 .fgt = FGT_TLBIVAAE1, 5369 .writefn = tlbi_aa64_vae1_write }, 5370 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64, 5371 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5372 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5373 .fgt = FGT_TLBIVALE1, 5374 .writefn = tlbi_aa64_vae1_write }, 5375 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64, 5376 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5377 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 5378 .fgt = FGT_TLBIVAALE1, 5379 .writefn = tlbi_aa64_vae1_write }, 5380 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64, 5381 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5382 .access = PL2_W, .type = ARM_CP_NO_RAW, 5383 .writefn = tlbi_aa64_ipas2e1is_write }, 5384 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64, 5385 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5386 .access = PL2_W, .type = ARM_CP_NO_RAW, 5387 .writefn = tlbi_aa64_ipas2e1is_write }, 5388 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64, 5389 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 5390 .access = PL2_W, .type = ARM_CP_NO_RAW, 5391 .writefn = tlbi_aa64_alle1is_write }, 5392 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64, 5393 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6, 5394 .access = PL2_W, .type = ARM_CP_NO_RAW, 5395 .writefn = tlbi_aa64_alle1is_write }, 5396 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64, 5397 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5398 .access = PL2_W, .type = ARM_CP_NO_RAW, 5399 .writefn = tlbi_aa64_ipas2e1_write }, 5400 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64, 5401 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5402 .access = PL2_W, .type = ARM_CP_NO_RAW, 5403 .writefn = tlbi_aa64_ipas2e1_write }, 5404 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64, 5405 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 5406 .access = PL2_W, .type = ARM_CP_NO_RAW, 5407 .writefn = tlbi_aa64_alle1_write }, 5408 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64, 5409 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6, 5410 .access = PL2_W, .type = ARM_CP_NO_RAW, 5411 .writefn = tlbi_aa64_alle1is_write }, 5412 #ifndef CONFIG_USER_ONLY 5413 /* 64 bit address translation operations */ 5414 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64, 5415 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0, 5416 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5417 .fgt = FGT_ATS1E1R, 5418 .writefn = ats_write64 }, 5419 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64, 5420 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1, 5421 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5422 .fgt = FGT_ATS1E1W, 5423 .writefn = ats_write64 }, 5424 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64, 5425 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2, 5426 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5427 .fgt = FGT_ATS1E0R, 5428 .writefn = ats_write64 }, 5429 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64, 5430 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3, 5431 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5432 .fgt = FGT_ATS1E0W, 5433 .writefn = ats_write64 }, 5434 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64, 5435 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4, 5436 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5437 .writefn = ats_write64 }, 5438 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64, 5439 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5, 5440 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5441 .writefn = ats_write64 }, 5442 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64, 5443 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6, 5444 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5445 .writefn = ats_write64 }, 5446 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64, 5447 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7, 5448 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5449 .writefn = ats_write64 }, 5450 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */ 5451 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64, 5452 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0, 5453 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5454 .writefn = ats_write64 }, 5455 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64, 5456 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1, 5457 .access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 5458 .writefn = ats_write64 }, 5459 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64, 5460 .type = ARM_CP_ALIAS, 5461 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0, 5462 .access = PL1_RW, .resetvalue = 0, 5463 .fgt = FGT_PAR_EL1, 5464 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]), 5465 .writefn = par_write }, 5466 #endif 5467 /* TLB invalidate last level of translation table walk */ 5468 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5, 5469 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5470 .writefn = tlbimva_is_write }, 5471 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7, 5472 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis, 5473 .writefn = tlbimvaa_is_write }, 5474 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5, 5475 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5476 .writefn = tlbimva_write }, 5477 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7, 5478 .type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb, 5479 .writefn = tlbimvaa_write }, 5480 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 5481 .type = ARM_CP_NO_RAW, .access = PL2_W, 5482 .writefn = tlbimva_hyp_write }, 5483 { .name = "TLBIMVALHIS", 5484 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 5485 .type = ARM_CP_NO_RAW, .access = PL2_W, 5486 .writefn = tlbimva_hyp_is_write }, 5487 { .name = "TLBIIPAS2", 5488 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1, 5489 .type = ARM_CP_NO_RAW, .access = PL2_W, 5490 .writefn = tlbiipas2_hyp_write }, 5491 { .name = "TLBIIPAS2IS", 5492 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1, 5493 .type = ARM_CP_NO_RAW, .access = PL2_W, 5494 .writefn = tlbiipas2is_hyp_write }, 5495 { .name = "TLBIIPAS2L", 5496 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5, 5497 .type = ARM_CP_NO_RAW, .access = PL2_W, 5498 .writefn = tlbiipas2_hyp_write }, 5499 { .name = "TLBIIPAS2LIS", 5500 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5, 5501 .type = ARM_CP_NO_RAW, .access = PL2_W, 5502 .writefn = tlbiipas2is_hyp_write }, 5503 /* 32 bit cache operations */ 5504 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0, 5505 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab }, 5506 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6, 5507 .type = ARM_CP_NOP, .access = PL1_W }, 5508 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0, 5509 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5510 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1, 5511 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5512 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6, 5513 .type = ARM_CP_NOP, .access = PL1_W }, 5514 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7, 5515 .type = ARM_CP_NOP, .access = PL1_W }, 5516 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1, 5517 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5518 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2, 5519 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5520 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1, 5521 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5522 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2, 5523 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5524 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1, 5525 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu }, 5526 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1, 5527 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access }, 5528 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2, 5529 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 5530 /* MMU Domain access control / MPU write buffer control */ 5531 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0, 5532 .access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0, 5533 .writefn = dacr_write, .raw_writefn = raw_write, 5534 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s), 5535 offsetoflow32(CPUARMState, cp15.dacr_ns) } }, 5536 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64, 5537 .type = ARM_CP_ALIAS, 5538 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1, 5539 .access = PL1_RW, 5540 .fieldoffset = offsetof(CPUARMState, elr_el[1]) }, 5541 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64, 5542 .type = ARM_CP_ALIAS, 5543 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0, 5544 .access = PL1_RW, 5545 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) }, 5546 /* 5547 * We rely on the access checks not allowing the guest to write to the 5548 * state field when SPSel indicates that it's being used as the stack 5549 * pointer. 5550 */ 5551 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64, 5552 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0, 5553 .access = PL1_RW, .accessfn = sp_el0_access, 5554 .type = ARM_CP_ALIAS, 5555 .fieldoffset = offsetof(CPUARMState, sp_el[0]) }, 5556 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64, 5557 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0, 5558 .access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP, 5559 .fieldoffset = offsetof(CPUARMState, sp_el[1]) }, 5560 { .name = "SPSel", .state = ARM_CP_STATE_AA64, 5561 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0, 5562 .type = ARM_CP_NO_RAW, 5563 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write }, 5564 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64, 5565 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0, 5566 .access = PL2_RW, 5567 .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP, 5568 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) }, 5569 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64, 5570 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0, 5571 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5572 .writefn = dacr_write, .raw_writefn = raw_write, 5573 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) }, 5574 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64, 5575 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1, 5576 .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP, 5577 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) }, 5578 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64, 5579 .type = ARM_CP_ALIAS, 5580 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0, 5581 .access = PL2_RW, 5582 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) }, 5583 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64, 5584 .type = ARM_CP_ALIAS, 5585 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1, 5586 .access = PL2_RW, 5587 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) }, 5588 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64, 5589 .type = ARM_CP_ALIAS, 5590 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2, 5591 .access = PL2_RW, 5592 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) }, 5593 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64, 5594 .type = ARM_CP_ALIAS, 5595 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3, 5596 .access = PL2_RW, 5597 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) }, 5598 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64, 5599 .type = ARM_CP_IO, 5600 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1, 5601 .resetvalue = 0, 5602 .access = PL3_RW, 5603 .writefn = mdcr_el3_write, 5604 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) }, 5605 { .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO, 5606 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1, 5607 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 5608 .writefn = sdcr_write, 5609 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) }, 5610 }; 5611 5612 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask) 5613 { 5614 ARMCPU *cpu = env_archcpu(env); 5615 5616 if (arm_feature(env, ARM_FEATURE_V8)) { 5617 valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */ 5618 } else { 5619 valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */ 5620 } 5621 5622 if (arm_feature(env, ARM_FEATURE_EL3)) { 5623 valid_mask &= ~HCR_HCD; 5624 } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) { 5625 /* 5626 * Architecturally HCR.TSC is RES0 if EL3 is not implemented. 5627 * However, if we're using the SMC PSCI conduit then QEMU is 5628 * effectively acting like EL3 firmware and so the guest at 5629 * EL2 should retain the ability to prevent EL1 from being 5630 * able to make SMC calls into the ersatz firmware, so in 5631 * that case HCR.TSC should be read/write. 5632 */ 5633 valid_mask &= ~HCR_TSC; 5634 } 5635 5636 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 5637 if (cpu_isar_feature(aa64_vh, cpu)) { 5638 valid_mask |= HCR_E2H; 5639 } 5640 if (cpu_isar_feature(aa64_ras, cpu)) { 5641 valid_mask |= HCR_TERR | HCR_TEA; 5642 } 5643 if (cpu_isar_feature(aa64_lor, cpu)) { 5644 valid_mask |= HCR_TLOR; 5645 } 5646 if (cpu_isar_feature(aa64_pauth, cpu)) { 5647 valid_mask |= HCR_API | HCR_APK; 5648 } 5649 if (cpu_isar_feature(aa64_mte, cpu)) { 5650 valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5; 5651 } 5652 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 5653 valid_mask |= HCR_ENSCXT; 5654 } 5655 if (cpu_isar_feature(aa64_fwb, cpu)) { 5656 valid_mask |= HCR_FWB; 5657 } 5658 } 5659 5660 if (cpu_isar_feature(any_evt, cpu)) { 5661 valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4; 5662 } else if (cpu_isar_feature(any_half_evt, cpu)) { 5663 valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4; 5664 } 5665 5666 /* Clear RES0 bits. */ 5667 value &= valid_mask; 5668 5669 /* 5670 * These bits change the MMU setup: 5671 * HCR_VM enables stage 2 translation 5672 * HCR_PTW forbids certain page-table setups 5673 * HCR_DC disables stage1 and enables stage2 translation 5674 * HCR_DCT enables tagging on (disabled) stage1 translation 5675 * HCR_FWB changes the interpretation of stage2 descriptor bits 5676 */ 5677 if ((env->cp15.hcr_el2 ^ value) & 5678 (HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB)) { 5679 tlb_flush(CPU(cpu)); 5680 } 5681 env->cp15.hcr_el2 = value; 5682 5683 /* 5684 * Updates to VI and VF require us to update the status of 5685 * virtual interrupts, which are the logical OR of these bits 5686 * and the state of the input lines from the GIC. (This requires 5687 * that we have the iothread lock, which is done by marking the 5688 * reginfo structs as ARM_CP_IO.) 5689 * Note that if a write to HCR pends a VIRQ or VFIQ it is never 5690 * possible for it to be taken immediately, because VIRQ and 5691 * VFIQ are masked unless running at EL0 or EL1, and HCR 5692 * can only be written at EL2. 5693 */ 5694 g_assert(qemu_mutex_iothread_locked()); 5695 arm_cpu_update_virq(cpu); 5696 arm_cpu_update_vfiq(cpu); 5697 arm_cpu_update_vserr(cpu); 5698 } 5699 5700 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value) 5701 { 5702 do_hcr_write(env, value, 0); 5703 } 5704 5705 static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri, 5706 uint64_t value) 5707 { 5708 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */ 5709 value = deposit64(env->cp15.hcr_el2, 32, 32, value); 5710 do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32)); 5711 } 5712 5713 static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri, 5714 uint64_t value) 5715 { 5716 /* Handle HCR write, i.e. write to low half of HCR_EL2 */ 5717 value = deposit64(env->cp15.hcr_el2, 0, 32, value); 5718 do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32)); 5719 } 5720 5721 /* 5722 * Return the effective value of HCR_EL2, at the given security state. 5723 * Bits that are not included here: 5724 * RW (read from SCR_EL3.RW as needed) 5725 */ 5726 uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, bool secure) 5727 { 5728 uint64_t ret = env->cp15.hcr_el2; 5729 5730 if (!arm_is_el2_enabled_secstate(env, secure)) { 5731 /* 5732 * "This register has no effect if EL2 is not enabled in the 5733 * current Security state". This is ARMv8.4-SecEL2 speak for 5734 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1). 5735 * 5736 * Prior to that, the language was "In an implementation that 5737 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves 5738 * as if this field is 0 for all purposes other than a direct 5739 * read or write access of HCR_EL2". With lots of enumeration 5740 * on a per-field basis. In current QEMU, this is condition 5741 * is arm_is_secure_below_el3. 5742 * 5743 * Since the v8.4 language applies to the entire register, and 5744 * appears to be backward compatible, use that. 5745 */ 5746 return 0; 5747 } 5748 5749 /* 5750 * For a cpu that supports both aarch64 and aarch32, we can set bits 5751 * in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32. 5752 * Ignore all of the bits in HCR+HCR2 that are not valid for aarch32. 5753 */ 5754 if (!arm_el_is_aa64(env, 2)) { 5755 uint64_t aa32_valid; 5756 5757 /* 5758 * These bits are up-to-date as of ARMv8.6. 5759 * For HCR, it's easiest to list just the 2 bits that are invalid. 5760 * For HCR2, list those that are valid. 5761 */ 5762 aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ); 5763 aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE | 5764 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS); 5765 ret &= aa32_valid; 5766 } 5767 5768 if (ret & HCR_TGE) { 5769 /* These bits are up-to-date as of ARMv8.6. */ 5770 if (ret & HCR_E2H) { 5771 ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO | 5772 HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE | 5773 HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU | 5774 HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE | 5775 HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT | 5776 HCR_TTLBIS | HCR_TTLBOS | HCR_TID5); 5777 } else { 5778 ret |= HCR_FMO | HCR_IMO | HCR_AMO; 5779 } 5780 ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE | 5781 HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR | 5782 HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM | 5783 HCR_TLOR); 5784 } 5785 5786 return ret; 5787 } 5788 5789 uint64_t arm_hcr_el2_eff(CPUARMState *env) 5790 { 5791 return arm_hcr_el2_eff_secstate(env, arm_is_secure_below_el3(env)); 5792 } 5793 5794 /* 5795 * Corresponds to ARM pseudocode function ELIsInHost(). 5796 */ 5797 bool el_is_in_host(CPUARMState *env, int el) 5798 { 5799 uint64_t mask; 5800 5801 /* 5802 * Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff(). 5803 * Perform the simplest bit tests first, and validate EL2 afterward. 5804 */ 5805 if (el & 1) { 5806 return false; /* EL1 or EL3 */ 5807 } 5808 5809 /* 5810 * Note that hcr_write() checks isar_feature_aa64_vh(), 5811 * aka HaveVirtHostExt(), in allowing HCR_E2H to be set. 5812 */ 5813 mask = el ? HCR_E2H : HCR_E2H | HCR_TGE; 5814 if ((env->cp15.hcr_el2 & mask) != mask) { 5815 return false; 5816 } 5817 5818 /* TGE and/or E2H set: double check those bits are currently legal. */ 5819 return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2); 5820 } 5821 5822 static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri, 5823 uint64_t value) 5824 { 5825 uint64_t valid_mask = 0; 5826 5827 /* No features adding bits to HCRX are implemented. */ 5828 5829 /* Clear RES0 bits. */ 5830 env->cp15.hcrx_el2 = value & valid_mask; 5831 } 5832 5833 static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri, 5834 bool isread) 5835 { 5836 if (arm_current_el(env) < 3 5837 && arm_feature(env, ARM_FEATURE_EL3) 5838 && !(env->cp15.scr_el3 & SCR_HXEN)) { 5839 return CP_ACCESS_TRAP_EL3; 5840 } 5841 return CP_ACCESS_OK; 5842 } 5843 5844 static const ARMCPRegInfo hcrx_el2_reginfo = { 5845 .name = "HCRX_EL2", .state = ARM_CP_STATE_AA64, 5846 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2, 5847 .access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen, 5848 .fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2), 5849 }; 5850 5851 /* Return the effective value of HCRX_EL2. */ 5852 uint64_t arm_hcrx_el2_eff(CPUARMState *env) 5853 { 5854 /* 5855 * The bits in this register behave as 0 for all purposes other than 5856 * direct reads of the register if: 5857 * - EL2 is not enabled in the current security state, 5858 * - SCR_EL3.HXEn is 0. 5859 */ 5860 if (!arm_is_el2_enabled(env) 5861 || (arm_feature(env, ARM_FEATURE_EL3) 5862 && !(env->cp15.scr_el3 & SCR_HXEN))) { 5863 return 0; 5864 } 5865 return env->cp15.hcrx_el2; 5866 } 5867 5868 static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri, 5869 uint64_t value) 5870 { 5871 /* 5872 * For A-profile AArch32 EL3, if NSACR.CP10 5873 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5874 */ 5875 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5876 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5877 uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5878 value = (value & ~mask) | (env->cp15.cptr_el[2] & mask); 5879 } 5880 env->cp15.cptr_el[2] = value; 5881 } 5882 5883 static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri) 5884 { 5885 /* 5886 * For A-profile AArch32 EL3, if NSACR.CP10 5887 * is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1. 5888 */ 5889 uint64_t value = env->cp15.cptr_el[2]; 5890 5891 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 5892 !arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) { 5893 value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK; 5894 } 5895 return value; 5896 } 5897 5898 static const ARMCPRegInfo el2_cp_reginfo[] = { 5899 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64, 5900 .type = ARM_CP_IO, 5901 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5902 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5903 .writefn = hcr_write }, 5904 { .name = "HCR", .state = ARM_CP_STATE_AA32, 5905 .type = ARM_CP_ALIAS | ARM_CP_IO, 5906 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0, 5907 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2), 5908 .writefn = hcr_writelow }, 5909 { .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH, 5910 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7, 5911 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 5912 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64, 5913 .type = ARM_CP_ALIAS, 5914 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1, 5915 .access = PL2_RW, 5916 .fieldoffset = offsetof(CPUARMState, elr_el[2]) }, 5917 { .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH, 5918 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0, 5919 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) }, 5920 { .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH, 5921 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0, 5922 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) }, 5923 { .name = "HIFAR", .state = ARM_CP_STATE_AA32, 5924 .type = ARM_CP_ALIAS, 5925 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2, 5926 .access = PL2_RW, 5927 .fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) }, 5928 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64, 5929 .type = ARM_CP_ALIAS, 5930 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0, 5931 .access = PL2_RW, 5932 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) }, 5933 { .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH, 5934 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0, 5935 .access = PL2_RW, .writefn = vbar_write, 5936 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]), 5937 .resetvalue = 0 }, 5938 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64, 5939 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0, 5940 .access = PL3_RW, .type = ARM_CP_ALIAS, 5941 .fieldoffset = offsetof(CPUARMState, sp_el[2]) }, 5942 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH, 5943 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2, 5944 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0, 5945 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]), 5946 .readfn = cptr_el2_read, .writefn = cptr_el2_write }, 5947 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH, 5948 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0, 5949 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]), 5950 .resetvalue = 0 }, 5951 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32, 5952 .cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1, 5953 .access = PL2_RW, .type = ARM_CP_ALIAS, 5954 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) }, 5955 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH, 5956 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0, 5957 .access = PL2_RW, .type = ARM_CP_CONST, 5958 .resetvalue = 0 }, 5959 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */ 5960 { .name = "HAMAIR1", .state = ARM_CP_STATE_AA32, 5961 .cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1, 5962 .access = PL2_RW, .type = ARM_CP_CONST, 5963 .resetvalue = 0 }, 5964 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH, 5965 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0, 5966 .access = PL2_RW, .type = ARM_CP_CONST, 5967 .resetvalue = 0 }, 5968 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH, 5969 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1, 5970 .access = PL2_RW, .type = ARM_CP_CONST, 5971 .resetvalue = 0 }, 5972 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH, 5973 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2, 5974 .access = PL2_RW, .writefn = vmsa_tcr_el12_write, 5975 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) }, 5976 { .name = "VTCR", .state = ARM_CP_STATE_AA32, 5977 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5978 .type = ARM_CP_ALIAS, 5979 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5980 .fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) }, 5981 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64, 5982 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2, 5983 .access = PL2_RW, 5984 /* no .writefn needed as this can't cause an ASID change */ 5985 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) }, 5986 { .name = "VTTBR", .state = ARM_CP_STATE_AA32, 5987 .cp = 15, .opc1 = 6, .crm = 2, 5988 .type = ARM_CP_64BIT | ARM_CP_ALIAS, 5989 .access = PL2_RW, .accessfn = access_el3_aa32ns, 5990 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2), 5991 .writefn = vttbr_write }, 5992 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64, 5993 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0, 5994 .access = PL2_RW, .writefn = vttbr_write, 5995 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) }, 5996 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH, 5997 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0, 5998 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write, 5999 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) }, 6000 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH, 6001 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2, 6002 .access = PL2_RW, .resetvalue = 0, 6003 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) }, 6004 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64, 6005 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 6006 .access = PL2_RW, .resetvalue = 0, .writefn = vmsa_tcr_ttbr_el2_write, 6007 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6008 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2, 6009 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS, 6010 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) }, 6011 { .name = "TLBIALLNSNH", 6012 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4, 6013 .type = ARM_CP_NO_RAW, .access = PL2_W, 6014 .writefn = tlbiall_nsnh_write }, 6015 { .name = "TLBIALLNSNHIS", 6016 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4, 6017 .type = ARM_CP_NO_RAW, .access = PL2_W, 6018 .writefn = tlbiall_nsnh_is_write }, 6019 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6020 .type = ARM_CP_NO_RAW, .access = PL2_W, 6021 .writefn = tlbiall_hyp_write }, 6022 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6023 .type = ARM_CP_NO_RAW, .access = PL2_W, 6024 .writefn = tlbiall_hyp_is_write }, 6025 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6026 .type = ARM_CP_NO_RAW, .access = PL2_W, 6027 .writefn = tlbimva_hyp_write }, 6028 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6029 .type = ARM_CP_NO_RAW, .access = PL2_W, 6030 .writefn = tlbimva_hyp_is_write }, 6031 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64, 6032 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0, 6033 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6034 .writefn = tlbi_aa64_alle2_write }, 6035 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64, 6036 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1, 6037 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6038 .writefn = tlbi_aa64_vae2_write }, 6039 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64, 6040 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5, 6041 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6042 .writefn = tlbi_aa64_vae2_write }, 6043 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64, 6044 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0, 6045 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6046 .writefn = tlbi_aa64_alle2is_write }, 6047 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64, 6048 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1, 6049 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6050 .writefn = tlbi_aa64_vae2is_write }, 6051 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64, 6052 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5, 6053 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 6054 .writefn = tlbi_aa64_vae2is_write }, 6055 #ifndef CONFIG_USER_ONLY 6056 /* 6057 * Unlike the other EL2-related AT operations, these must 6058 * UNDEF from EL3 if EL2 is not implemented, which is why we 6059 * define them here rather than with the rest of the AT ops. 6060 */ 6061 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64, 6062 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6063 .access = PL2_W, .accessfn = at_s1e2_access, 6064 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6065 .writefn = ats_write64 }, 6066 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64, 6067 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6068 .access = PL2_W, .accessfn = at_s1e2_access, 6069 .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF, 6070 .writefn = ats_write64 }, 6071 /* 6072 * The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE 6073 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3 6074 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose 6075 * to behave as if SCR.NS was 1. 6076 */ 6077 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0, 6078 .access = PL2_W, 6079 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6080 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1, 6081 .access = PL2_W, 6082 .writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC }, 6083 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH, 6084 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0, 6085 /* 6086 * ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the 6087 * reset values as IMPDEF. We choose to reset to 3 to comply with 6088 * both ARMv7 and ARMv8. 6089 */ 6090 .access = PL2_RW, .resetvalue = 3, 6091 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) }, 6092 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64, 6093 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3, 6094 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0, 6095 .writefn = gt_cntvoff_write, 6096 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6097 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14, 6098 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO, 6099 .writefn = gt_cntvoff_write, 6100 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) }, 6101 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64, 6102 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2, 6103 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6104 .type = ARM_CP_IO, .access = PL2_RW, 6105 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6106 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14, 6107 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval), 6108 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO, 6109 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write }, 6110 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 6111 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0, 6112 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 6113 .resetfn = gt_hyp_timer_reset, 6114 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write }, 6115 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH, 6116 .type = ARM_CP_IO, 6117 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1, 6118 .access = PL2_RW, 6119 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl), 6120 .resetvalue = 0, 6121 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write }, 6122 #endif 6123 { .name = "HPFAR", .state = ARM_CP_STATE_AA32, 6124 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6125 .access = PL2_RW, .accessfn = access_el3_aa32ns, 6126 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6127 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64, 6128 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4, 6129 .access = PL2_RW, 6130 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) }, 6131 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH, 6132 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3, 6133 .access = PL2_RW, 6134 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) }, 6135 }; 6136 6137 static const ARMCPRegInfo el2_v8_cp_reginfo[] = { 6138 { .name = "HCR2", .state = ARM_CP_STATE_AA32, 6139 .type = ARM_CP_ALIAS | ARM_CP_IO, 6140 .cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 6141 .access = PL2_RW, 6142 .fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2), 6143 .writefn = hcr_writehigh }, 6144 }; 6145 6146 static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri, 6147 bool isread) 6148 { 6149 if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) { 6150 return CP_ACCESS_OK; 6151 } 6152 return CP_ACCESS_TRAP_UNCATEGORIZED; 6153 } 6154 6155 static const ARMCPRegInfo el2_sec_cp_reginfo[] = { 6156 { .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64, 6157 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0, 6158 .access = PL2_RW, .accessfn = sel2_access, 6159 .fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) }, 6160 { .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64, 6161 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2, 6162 .access = PL2_RW, .accessfn = sel2_access, 6163 .fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) }, 6164 }; 6165 6166 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri, 6167 bool isread) 6168 { 6169 /* 6170 * The NSACR is RW at EL3, and RO for NS EL1 and NS EL2. 6171 * At Secure EL1 it traps to EL3 or EL2. 6172 */ 6173 if (arm_current_el(env) == 3) { 6174 return CP_ACCESS_OK; 6175 } 6176 if (arm_is_secure_below_el3(env)) { 6177 if (env->cp15.scr_el3 & SCR_EEL2) { 6178 return CP_ACCESS_TRAP_EL2; 6179 } 6180 return CP_ACCESS_TRAP_EL3; 6181 } 6182 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */ 6183 if (isread) { 6184 return CP_ACCESS_OK; 6185 } 6186 return CP_ACCESS_TRAP_UNCATEGORIZED; 6187 } 6188 6189 static const ARMCPRegInfo el3_cp_reginfo[] = { 6190 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64, 6191 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0, 6192 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3), 6193 .resetfn = scr_reset, .writefn = scr_write }, 6194 { .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL, 6195 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0, 6196 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6197 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3), 6198 .writefn = scr_write }, 6199 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64, 6200 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1, 6201 .access = PL3_RW, .resetvalue = 0, 6202 .fieldoffset = offsetof(CPUARMState, cp15.sder) }, 6203 { .name = "SDER", 6204 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1, 6205 .access = PL3_RW, .resetvalue = 0, 6206 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) }, 6207 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 6208 .access = PL1_RW, .accessfn = access_trap_aa32s_el1, 6209 .writefn = vbar_write, .resetvalue = 0, 6210 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) }, 6211 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64, 6212 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0, 6213 .access = PL3_RW, .resetvalue = 0, 6214 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) }, 6215 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64, 6216 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2, 6217 .access = PL3_RW, 6218 /* no .writefn needed as this can't cause an ASID change */ 6219 .resetvalue = 0, 6220 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) }, 6221 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64, 6222 .type = ARM_CP_ALIAS, 6223 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1, 6224 .access = PL3_RW, 6225 .fieldoffset = offsetof(CPUARMState, elr_el[3]) }, 6226 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64, 6227 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0, 6228 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) }, 6229 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64, 6230 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0, 6231 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) }, 6232 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64, 6233 .type = ARM_CP_ALIAS, 6234 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0, 6235 .access = PL3_RW, 6236 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) }, 6237 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64, 6238 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0, 6239 .access = PL3_RW, .writefn = vbar_write, 6240 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]), 6241 .resetvalue = 0 }, 6242 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64, 6243 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2, 6244 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0, 6245 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) }, 6246 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64, 6247 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2, 6248 .access = PL3_RW, .resetvalue = 0, 6249 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) }, 6250 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64, 6251 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0, 6252 .access = PL3_RW, .type = ARM_CP_CONST, 6253 .resetvalue = 0 }, 6254 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH, 6255 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0, 6256 .access = PL3_RW, .type = ARM_CP_CONST, 6257 .resetvalue = 0 }, 6258 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH, 6259 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1, 6260 .access = PL3_RW, .type = ARM_CP_CONST, 6261 .resetvalue = 0 }, 6262 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64, 6263 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0, 6264 .access = PL3_W, .type = ARM_CP_NO_RAW, 6265 .writefn = tlbi_aa64_alle3is_write }, 6266 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64, 6267 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1, 6268 .access = PL3_W, .type = ARM_CP_NO_RAW, 6269 .writefn = tlbi_aa64_vae3is_write }, 6270 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64, 6271 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5, 6272 .access = PL3_W, .type = ARM_CP_NO_RAW, 6273 .writefn = tlbi_aa64_vae3is_write }, 6274 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64, 6275 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0, 6276 .access = PL3_W, .type = ARM_CP_NO_RAW, 6277 .writefn = tlbi_aa64_alle3_write }, 6278 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64, 6279 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1, 6280 .access = PL3_W, .type = ARM_CP_NO_RAW, 6281 .writefn = tlbi_aa64_vae3_write }, 6282 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64, 6283 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5, 6284 .access = PL3_W, .type = ARM_CP_NO_RAW, 6285 .writefn = tlbi_aa64_vae3_write }, 6286 }; 6287 6288 #ifndef CONFIG_USER_ONLY 6289 /* Test if system register redirection is to occur in the current state. */ 6290 static bool redirect_for_e2h(CPUARMState *env) 6291 { 6292 return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H); 6293 } 6294 6295 static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri) 6296 { 6297 CPReadFn *readfn; 6298 6299 if (redirect_for_e2h(env)) { 6300 /* Switch to the saved EL2 version of the register. */ 6301 ri = ri->opaque; 6302 readfn = ri->readfn; 6303 } else { 6304 readfn = ri->orig_readfn; 6305 } 6306 if (readfn == NULL) { 6307 readfn = raw_read; 6308 } 6309 return readfn(env, ri); 6310 } 6311 6312 static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri, 6313 uint64_t value) 6314 { 6315 CPWriteFn *writefn; 6316 6317 if (redirect_for_e2h(env)) { 6318 /* Switch to the saved EL2 version of the register. */ 6319 ri = ri->opaque; 6320 writefn = ri->writefn; 6321 } else { 6322 writefn = ri->orig_writefn; 6323 } 6324 if (writefn == NULL) { 6325 writefn = raw_write; 6326 } 6327 writefn(env, ri, value); 6328 } 6329 6330 static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu) 6331 { 6332 struct E2HAlias { 6333 uint32_t src_key, dst_key, new_key; 6334 const char *src_name, *dst_name, *new_name; 6335 bool (*feature)(const ARMISARegisters *id); 6336 }; 6337 6338 #define K(op0, op1, crn, crm, op2) \ 6339 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2) 6340 6341 static const struct E2HAlias aliases[] = { 6342 { K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0), 6343 "SCTLR", "SCTLR_EL2", "SCTLR_EL12" }, 6344 { K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2), 6345 "CPACR", "CPTR_EL2", "CPACR_EL12" }, 6346 { K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0), 6347 "TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" }, 6348 { K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1), 6349 "TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" }, 6350 { K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2), 6351 "TCR_EL1", "TCR_EL2", "TCR_EL12" }, 6352 { K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0), 6353 "SPSR_EL1", "SPSR_EL2", "SPSR_EL12" }, 6354 { K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1), 6355 "ELR_EL1", "ELR_EL2", "ELR_EL12" }, 6356 { K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0), 6357 "AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" }, 6358 { K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1), 6359 "AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" }, 6360 { K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0), 6361 "ESR_EL1", "ESR_EL2", "ESR_EL12" }, 6362 { K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0), 6363 "FAR_EL1", "FAR_EL2", "FAR_EL12" }, 6364 { K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0), 6365 "MAIR_EL1", "MAIR_EL2", "MAIR_EL12" }, 6366 { K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0), 6367 "AMAIR0", "AMAIR_EL2", "AMAIR_EL12" }, 6368 { K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0), 6369 "VBAR", "VBAR_EL2", "VBAR_EL12" }, 6370 { K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1), 6371 "CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" }, 6372 { K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0), 6373 "CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" }, 6374 6375 /* 6376 * Note that redirection of ZCR is mentioned in the description 6377 * of ZCR_EL2, and aliasing in the description of ZCR_EL1, but 6378 * not in the summary table. 6379 */ 6380 { K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0), 6381 "ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve }, 6382 { K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6), 6383 "SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme }, 6384 6385 { K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0), 6386 "TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte }, 6387 6388 { K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7), 6389 "SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12", 6390 isar_feature_aa64_scxtnum }, 6391 6392 /* TODO: ARMv8.2-SPE -- PMSCR_EL2 */ 6393 /* TODO: ARMv8.4-Trace -- TRFCR_EL2 */ 6394 }; 6395 #undef K 6396 6397 size_t i; 6398 6399 for (i = 0; i < ARRAY_SIZE(aliases); i++) { 6400 const struct E2HAlias *a = &aliases[i]; 6401 ARMCPRegInfo *src_reg, *dst_reg, *new_reg; 6402 bool ok; 6403 6404 if (a->feature && !a->feature(&cpu->isar)) { 6405 continue; 6406 } 6407 6408 src_reg = g_hash_table_lookup(cpu->cp_regs, 6409 (gpointer)(uintptr_t)a->src_key); 6410 dst_reg = g_hash_table_lookup(cpu->cp_regs, 6411 (gpointer)(uintptr_t)a->dst_key); 6412 g_assert(src_reg != NULL); 6413 g_assert(dst_reg != NULL); 6414 6415 /* Cross-compare names to detect typos in the keys. */ 6416 g_assert(strcmp(src_reg->name, a->src_name) == 0); 6417 g_assert(strcmp(dst_reg->name, a->dst_name) == 0); 6418 6419 /* None of the core system registers use opaque; we will. */ 6420 g_assert(src_reg->opaque == NULL); 6421 6422 /* Create alias before redirection so we dup the right data. */ 6423 new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo)); 6424 6425 new_reg->name = a->new_name; 6426 new_reg->type |= ARM_CP_ALIAS; 6427 /* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */ 6428 new_reg->access &= PL2_RW | PL3_RW; 6429 6430 ok = g_hash_table_insert(cpu->cp_regs, 6431 (gpointer)(uintptr_t)a->new_key, new_reg); 6432 g_assert(ok); 6433 6434 src_reg->opaque = dst_reg; 6435 src_reg->orig_readfn = src_reg->readfn ?: raw_read; 6436 src_reg->orig_writefn = src_reg->writefn ?: raw_write; 6437 if (!src_reg->raw_readfn) { 6438 src_reg->raw_readfn = raw_read; 6439 } 6440 if (!src_reg->raw_writefn) { 6441 src_reg->raw_writefn = raw_write; 6442 } 6443 src_reg->readfn = el2_e2h_read; 6444 src_reg->writefn = el2_e2h_write; 6445 } 6446 } 6447 #endif 6448 6449 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri, 6450 bool isread) 6451 { 6452 int cur_el = arm_current_el(env); 6453 6454 if (cur_el < 2) { 6455 uint64_t hcr = arm_hcr_el2_eff(env); 6456 6457 if (cur_el == 0) { 6458 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 6459 if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) { 6460 return CP_ACCESS_TRAP_EL2; 6461 } 6462 } else { 6463 if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) { 6464 return CP_ACCESS_TRAP; 6465 } 6466 if (hcr & HCR_TID2) { 6467 return CP_ACCESS_TRAP_EL2; 6468 } 6469 } 6470 } else if (hcr & HCR_TID2) { 6471 return CP_ACCESS_TRAP_EL2; 6472 } 6473 } 6474 6475 if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) { 6476 return CP_ACCESS_TRAP_EL2; 6477 } 6478 6479 return CP_ACCESS_OK; 6480 } 6481 6482 /* 6483 * Check for traps to RAS registers, which are controlled 6484 * by HCR_EL2.TERR and SCR_EL3.TERR. 6485 */ 6486 static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri, 6487 bool isread) 6488 { 6489 int el = arm_current_el(env); 6490 6491 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) { 6492 return CP_ACCESS_TRAP_EL2; 6493 } 6494 if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) { 6495 return CP_ACCESS_TRAP_EL3; 6496 } 6497 return CP_ACCESS_OK; 6498 } 6499 6500 static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri) 6501 { 6502 int el = arm_current_el(env); 6503 6504 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6505 return env->cp15.vdisr_el2; 6506 } 6507 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6508 return 0; /* RAZ/WI */ 6509 } 6510 return env->cp15.disr_el1; 6511 } 6512 6513 static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 6514 { 6515 int el = arm_current_el(env); 6516 6517 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) { 6518 env->cp15.vdisr_el2 = val; 6519 return; 6520 } 6521 if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) { 6522 return; /* RAZ/WI */ 6523 } 6524 env->cp15.disr_el1 = val; 6525 } 6526 6527 /* 6528 * Minimal RAS implementation with no Error Records. 6529 * Which means that all of the Error Record registers: 6530 * ERXADDR_EL1 6531 * ERXCTLR_EL1 6532 * ERXFR_EL1 6533 * ERXMISC0_EL1 6534 * ERXMISC1_EL1 6535 * ERXMISC2_EL1 6536 * ERXMISC3_EL1 6537 * ERXPFGCDN_EL1 (RASv1p1) 6538 * ERXPFGCTL_EL1 (RASv1p1) 6539 * ERXPFGF_EL1 (RASv1p1) 6540 * ERXSTATUS_EL1 6541 * and 6542 * ERRSELR_EL1 6543 * may generate UNDEFINED, which is the effect we get by not 6544 * listing them at all. 6545 * 6546 * These registers have fine-grained trap bits, but UNDEF-to-EL1 6547 * is higher priority than FGT-to-EL2 so we do not need to list them 6548 * in order to check for an FGT. 6549 */ 6550 static const ARMCPRegInfo minimal_ras_reginfo[] = { 6551 { .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH, 6552 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1, 6553 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1), 6554 .readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write }, 6555 { .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH, 6556 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0, 6557 .access = PL1_R, .accessfn = access_terr, 6558 .fgt = FGT_ERRIDR_EL1, 6559 .type = ARM_CP_CONST, .resetvalue = 0 }, 6560 { .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH, 6561 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1, 6562 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) }, 6563 { .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH, 6564 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3, 6565 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) }, 6566 }; 6567 6568 /* 6569 * Return the exception level to which exceptions should be taken 6570 * via SVEAccessTrap. This excludes the check for whether the exception 6571 * should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily 6572 * be found by testing 0 < fp_exception_el < sve_exception_el. 6573 * 6574 * C.f. the ARM pseudocode function CheckSVEEnabled. Note that the 6575 * pseudocode does *not* separate out the FP trap checks, but has them 6576 * all in one function. 6577 */ 6578 int sve_exception_el(CPUARMState *env, int el) 6579 { 6580 #ifndef CONFIG_USER_ONLY 6581 if (el <= 1 && !el_is_in_host(env, el)) { 6582 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) { 6583 case 1: 6584 if (el != 0) { 6585 break; 6586 } 6587 /* fall through */ 6588 case 0: 6589 case 2: 6590 return 1; 6591 } 6592 } 6593 6594 if (el <= 2 && arm_is_el2_enabled(env)) { 6595 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6596 if (env->cp15.hcr_el2 & HCR_E2H) { 6597 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) { 6598 case 1: 6599 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6600 break; 6601 } 6602 /* fall through */ 6603 case 0: 6604 case 2: 6605 return 2; 6606 } 6607 } else { 6608 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) { 6609 return 2; 6610 } 6611 } 6612 } 6613 6614 /* CPTR_EL3. Since EZ is negative we must check for EL3. */ 6615 if (arm_feature(env, ARM_FEATURE_EL3) 6616 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) { 6617 return 3; 6618 } 6619 #endif 6620 return 0; 6621 } 6622 6623 /* 6624 * Return the exception level to which exceptions should be taken for SME. 6625 * C.f. the ARM pseudocode function CheckSMEAccess. 6626 */ 6627 int sme_exception_el(CPUARMState *env, int el) 6628 { 6629 #ifndef CONFIG_USER_ONLY 6630 if (el <= 1 && !el_is_in_host(env, el)) { 6631 switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) { 6632 case 1: 6633 if (el != 0) { 6634 break; 6635 } 6636 /* fall through */ 6637 case 0: 6638 case 2: 6639 return 1; 6640 } 6641 } 6642 6643 if (el <= 2 && arm_is_el2_enabled(env)) { 6644 /* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */ 6645 if (env->cp15.hcr_el2 & HCR_E2H) { 6646 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) { 6647 case 1: 6648 if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) { 6649 break; 6650 } 6651 /* fall through */ 6652 case 0: 6653 case 2: 6654 return 2; 6655 } 6656 } else { 6657 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) { 6658 return 2; 6659 } 6660 } 6661 } 6662 6663 /* CPTR_EL3. Since ESM is negative we must check for EL3. */ 6664 if (arm_feature(env, ARM_FEATURE_EL3) 6665 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6666 return 3; 6667 } 6668 #endif 6669 return 0; 6670 } 6671 6672 /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ 6673 static bool sme_fa64(CPUARMState *env, int el) 6674 { 6675 if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { 6676 return false; 6677 } 6678 6679 if (el <= 1 && !el_is_in_host(env, el)) { 6680 if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { 6681 return false; 6682 } 6683 } 6684 if (el <= 2 && arm_is_el2_enabled(env)) { 6685 if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { 6686 return false; 6687 } 6688 } 6689 if (arm_feature(env, ARM_FEATURE_EL3)) { 6690 if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { 6691 return false; 6692 } 6693 } 6694 6695 return true; 6696 } 6697 6698 /* 6699 * Given that SVE is enabled, return the vector length for EL. 6700 */ 6701 uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm) 6702 { 6703 ARMCPU *cpu = env_archcpu(env); 6704 uint64_t *cr = env->vfp.zcr_el; 6705 uint32_t map = cpu->sve_vq.map; 6706 uint32_t len = ARM_MAX_VQ - 1; 6707 6708 if (sm) { 6709 cr = env->vfp.smcr_el; 6710 map = cpu->sme_vq.map; 6711 } 6712 6713 if (el <= 1 && !el_is_in_host(env, el)) { 6714 len = MIN(len, 0xf & (uint32_t)cr[1]); 6715 } 6716 if (el <= 2 && arm_feature(env, ARM_FEATURE_EL2)) { 6717 len = MIN(len, 0xf & (uint32_t)cr[2]); 6718 } 6719 if (arm_feature(env, ARM_FEATURE_EL3)) { 6720 len = MIN(len, 0xf & (uint32_t)cr[3]); 6721 } 6722 6723 map &= MAKE_64BIT_MASK(0, len + 1); 6724 if (map != 0) { 6725 return 31 - clz32(map); 6726 } 6727 6728 /* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */ 6729 assert(sm); 6730 return ctz32(cpu->sme_vq.map); 6731 } 6732 6733 uint32_t sve_vqm1_for_el(CPUARMState *env, int el) 6734 { 6735 return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM)); 6736 } 6737 6738 static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6739 uint64_t value) 6740 { 6741 int cur_el = arm_current_el(env); 6742 int old_len = sve_vqm1_for_el(env, cur_el); 6743 int new_len; 6744 6745 /* Bits other than [3:0] are RAZ/WI. */ 6746 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16); 6747 raw_write(env, ri, value & 0xf); 6748 6749 /* 6750 * Because we arrived here, we know both FP and SVE are enabled; 6751 * otherwise we would have trapped access to the ZCR_ELn register. 6752 */ 6753 new_len = sve_vqm1_for_el(env, cur_el); 6754 if (new_len < old_len) { 6755 aarch64_sve_narrow_vq(env, new_len + 1); 6756 } 6757 } 6758 6759 static const ARMCPRegInfo zcr_reginfo[] = { 6760 { .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64, 6761 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0, 6762 .access = PL1_RW, .type = ARM_CP_SVE, 6763 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]), 6764 .writefn = zcr_write, .raw_writefn = raw_write }, 6765 { .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64, 6766 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0, 6767 .access = PL2_RW, .type = ARM_CP_SVE, 6768 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]), 6769 .writefn = zcr_write, .raw_writefn = raw_write }, 6770 { .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64, 6771 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0, 6772 .access = PL3_RW, .type = ARM_CP_SVE, 6773 .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]), 6774 .writefn = zcr_write, .raw_writefn = raw_write }, 6775 }; 6776 6777 #ifdef TARGET_AARCH64 6778 static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri, 6779 bool isread) 6780 { 6781 int el = arm_current_el(env); 6782 6783 if (el == 0) { 6784 uint64_t sctlr = arm_sctlr(env, el); 6785 if (!(sctlr & SCTLR_EnTP2)) { 6786 return CP_ACCESS_TRAP; 6787 } 6788 } 6789 /* TODO: FEAT_FGT */ 6790 if (el < 3 6791 && arm_feature(env, ARM_FEATURE_EL3) 6792 && !(env->cp15.scr_el3 & SCR_ENTP2)) { 6793 return CP_ACCESS_TRAP_EL3; 6794 } 6795 return CP_ACCESS_OK; 6796 } 6797 6798 static CPAccessResult access_esm(CPUARMState *env, const ARMCPRegInfo *ri, 6799 bool isread) 6800 { 6801 /* TODO: FEAT_FGT for SMPRI_EL1 but not SMPRIMAP_EL2 */ 6802 if (arm_current_el(env) < 3 6803 && arm_feature(env, ARM_FEATURE_EL3) 6804 && !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) { 6805 return CP_ACCESS_TRAP_EL3; 6806 } 6807 return CP_ACCESS_OK; 6808 } 6809 6810 /* ResetSVEState */ 6811 static void arm_reset_sve_state(CPUARMState *env) 6812 { 6813 memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs)); 6814 /* Recall that FFR is stored as pregs[16]. */ 6815 memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs)); 6816 vfp_set_fpcr(env, 0x0800009f); 6817 } 6818 6819 void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask) 6820 { 6821 uint64_t change = (env->svcr ^ new) & mask; 6822 6823 if (change == 0) { 6824 return; 6825 } 6826 env->svcr ^= change; 6827 6828 if (change & R_SVCR_SM_MASK) { 6829 arm_reset_sve_state(env); 6830 } 6831 6832 /* 6833 * ResetSMEState. 6834 * 6835 * SetPSTATE_ZA zeros on enable and disable. We can zero this only 6836 * on enable: while disabled, the storage is inaccessible and the 6837 * value does not matter. We're not saving the storage in vmstate 6838 * when disabled either. 6839 */ 6840 if (change & new & R_SVCR_ZA_MASK) { 6841 memset(env->zarray, 0, sizeof(env->zarray)); 6842 } 6843 6844 if (tcg_enabled()) { 6845 arm_rebuild_hflags(env); 6846 } 6847 } 6848 6849 static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6850 uint64_t value) 6851 { 6852 aarch64_set_svcr(env, value, -1); 6853 } 6854 6855 static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 6856 uint64_t value) 6857 { 6858 int cur_el = arm_current_el(env); 6859 int old_len = sve_vqm1_for_el(env, cur_el); 6860 int new_len; 6861 6862 QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1); 6863 value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK; 6864 raw_write(env, ri, value); 6865 6866 /* 6867 * Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage 6868 * when SVL is widened (old values kept, or zeros). Choose to keep the 6869 * current values for simplicity. But for QEMU internals, we must still 6870 * apply the narrower SVL to the Zregs and Pregs -- see the comment 6871 * above aarch64_sve_narrow_vq. 6872 */ 6873 new_len = sve_vqm1_for_el(env, cur_el); 6874 if (new_len < old_len) { 6875 aarch64_sve_narrow_vq(env, new_len + 1); 6876 } 6877 } 6878 6879 static const ARMCPRegInfo sme_reginfo[] = { 6880 { .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64, 6881 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5, 6882 .access = PL0_RW, .accessfn = access_tpidr2, 6883 .fgt = FGT_NTPIDR2_EL0, 6884 .fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) }, 6885 { .name = "SVCR", .state = ARM_CP_STATE_AA64, 6886 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2, 6887 .access = PL0_RW, .type = ARM_CP_SME, 6888 .fieldoffset = offsetof(CPUARMState, svcr), 6889 .writefn = svcr_write, .raw_writefn = raw_write }, 6890 { .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64, 6891 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6, 6892 .access = PL1_RW, .type = ARM_CP_SME, 6893 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]), 6894 .writefn = smcr_write, .raw_writefn = raw_write }, 6895 { .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64, 6896 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6, 6897 .access = PL2_RW, .type = ARM_CP_SME, 6898 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]), 6899 .writefn = smcr_write, .raw_writefn = raw_write }, 6900 { .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64, 6901 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6, 6902 .access = PL3_RW, .type = ARM_CP_SME, 6903 .fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]), 6904 .writefn = smcr_write, .raw_writefn = raw_write }, 6905 { .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64, 6906 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6, 6907 .access = PL1_R, .accessfn = access_aa64_tid1, 6908 /* 6909 * IMPLEMENTOR = 0 (software) 6910 * REVISION = 0 (implementation defined) 6911 * SMPS = 0 (no streaming execution priority in QEMU) 6912 * AFFINITY = 0 (streaming sve mode not shared with other PEs) 6913 */ 6914 .type = ARM_CP_CONST, .resetvalue = 0, }, 6915 /* 6916 * Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0. 6917 */ 6918 { .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64, 6919 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4, 6920 .access = PL1_RW, .accessfn = access_esm, 6921 .fgt = FGT_NSMPRI_EL1, 6922 .type = ARM_CP_CONST, .resetvalue = 0 }, 6923 { .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64, 6924 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5, 6925 .access = PL2_RW, .accessfn = access_esm, 6926 .type = ARM_CP_CONST, .resetvalue = 0 }, 6927 }; 6928 #endif /* TARGET_AARCH64 */ 6929 6930 static void define_pmu_regs(ARMCPU *cpu) 6931 { 6932 /* 6933 * v7 performance monitor control register: same implementor 6934 * field as main ID register, and we implement four counters in 6935 * addition to the cycle count register. 6936 */ 6937 unsigned int i, pmcrn = pmu_num_counters(&cpu->env); 6938 ARMCPRegInfo pmcr = { 6939 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0, 6940 .access = PL0_RW, 6941 .fgt = FGT_PMCR_EL0, 6942 .type = ARM_CP_IO | ARM_CP_ALIAS, 6943 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr), 6944 .accessfn = pmreg_access, .writefn = pmcr_write, 6945 .raw_writefn = raw_write, 6946 }; 6947 ARMCPRegInfo pmcr64 = { 6948 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64, 6949 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0, 6950 .access = PL0_RW, .accessfn = pmreg_access, 6951 .fgt = FGT_PMCR_EL0, 6952 .type = ARM_CP_IO, 6953 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr), 6954 .resetvalue = cpu->isar.reset_pmcr_el0, 6955 .writefn = pmcr_write, .raw_writefn = raw_write, 6956 }; 6957 6958 define_one_arm_cp_reg(cpu, &pmcr); 6959 define_one_arm_cp_reg(cpu, &pmcr64); 6960 for (i = 0; i < pmcrn; i++) { 6961 char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i); 6962 char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i); 6963 char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i); 6964 char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i); 6965 ARMCPRegInfo pmev_regs[] = { 6966 { .name = pmevcntr_name, .cp = 15, .crn = 14, 6967 .crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6968 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6969 .fgt = FGT_PMEVCNTRN_EL0, 6970 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6971 .accessfn = pmreg_access_xevcntr }, 6972 { .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64, 6973 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)), 6974 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr, 6975 .type = ARM_CP_IO, 6976 .fgt = FGT_PMEVCNTRN_EL0, 6977 .readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn, 6978 .raw_readfn = pmevcntr_rawread, 6979 .raw_writefn = pmevcntr_rawwrite }, 6980 { .name = pmevtyper_name, .cp = 15, .crn = 14, 6981 .crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7, 6982 .access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS, 6983 .fgt = FGT_PMEVTYPERN_EL0, 6984 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6985 .accessfn = pmreg_access }, 6986 { .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64, 6987 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)), 6988 .opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access, 6989 .fgt = FGT_PMEVTYPERN_EL0, 6990 .type = ARM_CP_IO, 6991 .readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn, 6992 .raw_writefn = pmevtyper_rawwrite }, 6993 }; 6994 define_arm_cp_regs(cpu, pmev_regs); 6995 g_free(pmevcntr_name); 6996 g_free(pmevcntr_el0_name); 6997 g_free(pmevtyper_name); 6998 g_free(pmevtyper_el0_name); 6999 } 7000 if (cpu_isar_feature(aa32_pmuv3p1, cpu)) { 7001 ARMCPRegInfo v81_pmu_regs[] = { 7002 { .name = "PMCEID2", .state = ARM_CP_STATE_AA32, 7003 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4, 7004 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7005 .fgt = FGT_PMCEIDN_EL0, 7006 .resetvalue = extract64(cpu->pmceid0, 32, 32) }, 7007 { .name = "PMCEID3", .state = ARM_CP_STATE_AA32, 7008 .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5, 7009 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7010 .fgt = FGT_PMCEIDN_EL0, 7011 .resetvalue = extract64(cpu->pmceid1, 32, 32) }, 7012 }; 7013 define_arm_cp_regs(cpu, v81_pmu_regs); 7014 } 7015 if (cpu_isar_feature(any_pmuv3p4, cpu)) { 7016 static const ARMCPRegInfo v84_pmmir = { 7017 .name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH, 7018 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6, 7019 .access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 7020 .fgt = FGT_PMMIR_EL1, 7021 .resetvalue = 0 7022 }; 7023 define_one_arm_cp_reg(cpu, &v84_pmmir); 7024 } 7025 } 7026 7027 #ifndef CONFIG_USER_ONLY 7028 /* 7029 * We don't know until after realize whether there's a GICv3 7030 * attached, and that is what registers the gicv3 sysregs. 7031 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1 7032 * at runtime. 7033 */ 7034 static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri) 7035 { 7036 ARMCPU *cpu = env_archcpu(env); 7037 uint64_t pfr1 = cpu->isar.id_pfr1; 7038 7039 if (env->gicv3state) { 7040 pfr1 |= 1 << 28; 7041 } 7042 return pfr1; 7043 } 7044 7045 static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri) 7046 { 7047 ARMCPU *cpu = env_archcpu(env); 7048 uint64_t pfr0 = cpu->isar.id_aa64pfr0; 7049 7050 if (env->gicv3state) { 7051 pfr0 |= 1 << 24; 7052 } 7053 return pfr0; 7054 } 7055 #endif 7056 7057 /* 7058 * Shared logic between LORID and the rest of the LOR* registers. 7059 * Secure state exclusion has already been dealt with. 7060 */ 7061 static CPAccessResult access_lor_ns(CPUARMState *env, 7062 const ARMCPRegInfo *ri, bool isread) 7063 { 7064 int el = arm_current_el(env); 7065 7066 if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) { 7067 return CP_ACCESS_TRAP_EL2; 7068 } 7069 if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) { 7070 return CP_ACCESS_TRAP_EL3; 7071 } 7072 return CP_ACCESS_OK; 7073 } 7074 7075 static CPAccessResult access_lor_other(CPUARMState *env, 7076 const ARMCPRegInfo *ri, bool isread) 7077 { 7078 if (arm_is_secure_below_el3(env)) { 7079 /* Access denied in secure mode. */ 7080 return CP_ACCESS_TRAP; 7081 } 7082 return access_lor_ns(env, ri, isread); 7083 } 7084 7085 /* 7086 * A trivial implementation of ARMv8.1-LOR leaves all of these 7087 * registers fixed at 0, which indicates that there are zero 7088 * supported Limited Ordering regions. 7089 */ 7090 static const ARMCPRegInfo lor_reginfo[] = { 7091 { .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64, 7092 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0, 7093 .access = PL1_RW, .accessfn = access_lor_other, 7094 .fgt = FGT_LORSA_EL1, 7095 .type = ARM_CP_CONST, .resetvalue = 0 }, 7096 { .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64, 7097 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1, 7098 .access = PL1_RW, .accessfn = access_lor_other, 7099 .fgt = FGT_LOREA_EL1, 7100 .type = ARM_CP_CONST, .resetvalue = 0 }, 7101 { .name = "LORN_EL1", .state = ARM_CP_STATE_AA64, 7102 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2, 7103 .access = PL1_RW, .accessfn = access_lor_other, 7104 .fgt = FGT_LORN_EL1, 7105 .type = ARM_CP_CONST, .resetvalue = 0 }, 7106 { .name = "LORC_EL1", .state = ARM_CP_STATE_AA64, 7107 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3, 7108 .access = PL1_RW, .accessfn = access_lor_other, 7109 .fgt = FGT_LORC_EL1, 7110 .type = ARM_CP_CONST, .resetvalue = 0 }, 7111 { .name = "LORID_EL1", .state = ARM_CP_STATE_AA64, 7112 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7, 7113 .access = PL1_R, .accessfn = access_lor_ns, 7114 .fgt = FGT_LORID_EL1, 7115 .type = ARM_CP_CONST, .resetvalue = 0 }, 7116 }; 7117 7118 #ifdef TARGET_AARCH64 7119 static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri, 7120 bool isread) 7121 { 7122 int el = arm_current_el(env); 7123 7124 if (el < 2 && 7125 arm_is_el2_enabled(env) && 7126 !(arm_hcr_el2_eff(env) & HCR_APK)) { 7127 return CP_ACCESS_TRAP_EL2; 7128 } 7129 if (el < 3 && 7130 arm_feature(env, ARM_FEATURE_EL3) && 7131 !(env->cp15.scr_el3 & SCR_APK)) { 7132 return CP_ACCESS_TRAP_EL3; 7133 } 7134 return CP_ACCESS_OK; 7135 } 7136 7137 static const ARMCPRegInfo pauth_reginfo[] = { 7138 { .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7139 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0, 7140 .access = PL1_RW, .accessfn = access_pauth, 7141 .fgt = FGT_APDAKEY, 7142 .fieldoffset = offsetof(CPUARMState, keys.apda.lo) }, 7143 { .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7144 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1, 7145 .access = PL1_RW, .accessfn = access_pauth, 7146 .fgt = FGT_APDAKEY, 7147 .fieldoffset = offsetof(CPUARMState, keys.apda.hi) }, 7148 { .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7149 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2, 7150 .access = PL1_RW, .accessfn = access_pauth, 7151 .fgt = FGT_APDBKEY, 7152 .fieldoffset = offsetof(CPUARMState, keys.apdb.lo) }, 7153 { .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7154 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3, 7155 .access = PL1_RW, .accessfn = access_pauth, 7156 .fgt = FGT_APDBKEY, 7157 .fieldoffset = offsetof(CPUARMState, keys.apdb.hi) }, 7158 { .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7159 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0, 7160 .access = PL1_RW, .accessfn = access_pauth, 7161 .fgt = FGT_APGAKEY, 7162 .fieldoffset = offsetof(CPUARMState, keys.apga.lo) }, 7163 { .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7164 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1, 7165 .access = PL1_RW, .accessfn = access_pauth, 7166 .fgt = FGT_APGAKEY, 7167 .fieldoffset = offsetof(CPUARMState, keys.apga.hi) }, 7168 { .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7169 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0, 7170 .access = PL1_RW, .accessfn = access_pauth, 7171 .fgt = FGT_APIAKEY, 7172 .fieldoffset = offsetof(CPUARMState, keys.apia.lo) }, 7173 { .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7174 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1, 7175 .access = PL1_RW, .accessfn = access_pauth, 7176 .fgt = FGT_APIAKEY, 7177 .fieldoffset = offsetof(CPUARMState, keys.apia.hi) }, 7178 { .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64, 7179 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2, 7180 .access = PL1_RW, .accessfn = access_pauth, 7181 .fgt = FGT_APIBKEY, 7182 .fieldoffset = offsetof(CPUARMState, keys.apib.lo) }, 7183 { .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64, 7184 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3, 7185 .access = PL1_RW, .accessfn = access_pauth, 7186 .fgt = FGT_APIBKEY, 7187 .fieldoffset = offsetof(CPUARMState, keys.apib.hi) }, 7188 }; 7189 7190 static const ARMCPRegInfo tlbirange_reginfo[] = { 7191 { .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64, 7192 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1, 7193 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7194 .fgt = FGT_TLBIRVAE1IS, 7195 .writefn = tlbi_aa64_rvae1is_write }, 7196 { .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64, 7197 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3, 7198 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7199 .fgt = FGT_TLBIRVAAE1IS, 7200 .writefn = tlbi_aa64_rvae1is_write }, 7201 { .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64, 7202 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5, 7203 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7204 .fgt = FGT_TLBIRVALE1IS, 7205 .writefn = tlbi_aa64_rvae1is_write }, 7206 { .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64, 7207 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7, 7208 .access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW, 7209 .fgt = FGT_TLBIRVAALE1IS, 7210 .writefn = tlbi_aa64_rvae1is_write }, 7211 { .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64, 7212 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1, 7213 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7214 .fgt = FGT_TLBIRVAE1OS, 7215 .writefn = tlbi_aa64_rvae1is_write }, 7216 { .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64, 7217 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3, 7218 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7219 .fgt = FGT_TLBIRVAAE1OS, 7220 .writefn = tlbi_aa64_rvae1is_write }, 7221 { .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64, 7222 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5, 7223 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7224 .fgt = FGT_TLBIRVALE1OS, 7225 .writefn = tlbi_aa64_rvae1is_write }, 7226 { .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64, 7227 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7, 7228 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7229 .fgt = FGT_TLBIRVAALE1OS, 7230 .writefn = tlbi_aa64_rvae1is_write }, 7231 { .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64, 7232 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1, 7233 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7234 .fgt = FGT_TLBIRVAE1, 7235 .writefn = tlbi_aa64_rvae1_write }, 7236 { .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64, 7237 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3, 7238 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7239 .fgt = FGT_TLBIRVAAE1, 7240 .writefn = tlbi_aa64_rvae1_write }, 7241 { .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64, 7242 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5, 7243 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7244 .fgt = FGT_TLBIRVALE1, 7245 .writefn = tlbi_aa64_rvae1_write }, 7246 { .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64, 7247 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7, 7248 .access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW, 7249 .fgt = FGT_TLBIRVAALE1, 7250 .writefn = tlbi_aa64_rvae1_write }, 7251 { .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64, 7252 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2, 7253 .access = PL2_W, .type = ARM_CP_NO_RAW, 7254 .writefn = tlbi_aa64_ripas2e1is_write }, 7255 { .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64, 7256 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6, 7257 .access = PL2_W, .type = ARM_CP_NO_RAW, 7258 .writefn = tlbi_aa64_ripas2e1is_write }, 7259 { .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64, 7260 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1, 7261 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7262 .writefn = tlbi_aa64_rvae2is_write }, 7263 { .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64, 7264 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5, 7265 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7266 .writefn = tlbi_aa64_rvae2is_write }, 7267 { .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64, 7268 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2, 7269 .access = PL2_W, .type = ARM_CP_NO_RAW, 7270 .writefn = tlbi_aa64_ripas2e1_write }, 7271 { .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64, 7272 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6, 7273 .access = PL2_W, .type = ARM_CP_NO_RAW, 7274 .writefn = tlbi_aa64_ripas2e1_write }, 7275 { .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64, 7276 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1, 7277 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7278 .writefn = tlbi_aa64_rvae2is_write }, 7279 { .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64, 7280 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5, 7281 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7282 .writefn = tlbi_aa64_rvae2is_write }, 7283 { .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64, 7284 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1, 7285 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7286 .writefn = tlbi_aa64_rvae2_write }, 7287 { .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64, 7288 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5, 7289 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7290 .writefn = tlbi_aa64_rvae2_write }, 7291 { .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64, 7292 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1, 7293 .access = PL3_W, .type = ARM_CP_NO_RAW, 7294 .writefn = tlbi_aa64_rvae3is_write }, 7295 { .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64, 7296 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5, 7297 .access = PL3_W, .type = ARM_CP_NO_RAW, 7298 .writefn = tlbi_aa64_rvae3is_write }, 7299 { .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64, 7300 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1, 7301 .access = PL3_W, .type = ARM_CP_NO_RAW, 7302 .writefn = tlbi_aa64_rvae3is_write }, 7303 { .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64, 7304 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5, 7305 .access = PL3_W, .type = ARM_CP_NO_RAW, 7306 .writefn = tlbi_aa64_rvae3is_write }, 7307 { .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64, 7308 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1, 7309 .access = PL3_W, .type = ARM_CP_NO_RAW, 7310 .writefn = tlbi_aa64_rvae3_write }, 7311 { .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64, 7312 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5, 7313 .access = PL3_W, .type = ARM_CP_NO_RAW, 7314 .writefn = tlbi_aa64_rvae3_write }, 7315 }; 7316 7317 static const ARMCPRegInfo tlbios_reginfo[] = { 7318 { .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64, 7319 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0, 7320 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7321 .fgt = FGT_TLBIVMALLE1OS, 7322 .writefn = tlbi_aa64_vmalle1is_write }, 7323 { .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64, 7324 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1, 7325 .fgt = FGT_TLBIVAE1OS, 7326 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7327 .writefn = tlbi_aa64_vae1is_write }, 7328 { .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64, 7329 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2, 7330 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7331 .fgt = FGT_TLBIASIDE1OS, 7332 .writefn = tlbi_aa64_vmalle1is_write }, 7333 { .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64, 7334 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3, 7335 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7336 .fgt = FGT_TLBIVAAE1OS, 7337 .writefn = tlbi_aa64_vae1is_write }, 7338 { .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64, 7339 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5, 7340 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7341 .fgt = FGT_TLBIVALE1OS, 7342 .writefn = tlbi_aa64_vae1is_write }, 7343 { .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64, 7344 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7, 7345 .access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW, 7346 .fgt = FGT_TLBIVAALE1OS, 7347 .writefn = tlbi_aa64_vae1is_write }, 7348 { .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64, 7349 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0, 7350 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7351 .writefn = tlbi_aa64_alle2is_write }, 7352 { .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64, 7353 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1, 7354 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7355 .writefn = tlbi_aa64_vae2is_write }, 7356 { .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64, 7357 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4, 7358 .access = PL2_W, .type = ARM_CP_NO_RAW, 7359 .writefn = tlbi_aa64_alle1is_write }, 7360 { .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64, 7361 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5, 7362 .access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF, 7363 .writefn = tlbi_aa64_vae2is_write }, 7364 { .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64, 7365 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6, 7366 .access = PL2_W, .type = ARM_CP_NO_RAW, 7367 .writefn = tlbi_aa64_alle1is_write }, 7368 { .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64, 7369 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0, 7370 .access = PL2_W, .type = ARM_CP_NOP }, 7371 { .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64, 7372 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3, 7373 .access = PL2_W, .type = ARM_CP_NOP }, 7374 { .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7375 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4, 7376 .access = PL2_W, .type = ARM_CP_NOP }, 7377 { .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64, 7378 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7, 7379 .access = PL2_W, .type = ARM_CP_NOP }, 7380 { .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64, 7381 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0, 7382 .access = PL3_W, .type = ARM_CP_NO_RAW, 7383 .writefn = tlbi_aa64_alle3is_write }, 7384 { .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64, 7385 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1, 7386 .access = PL3_W, .type = ARM_CP_NO_RAW, 7387 .writefn = tlbi_aa64_vae3is_write }, 7388 { .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64, 7389 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5, 7390 .access = PL3_W, .type = ARM_CP_NO_RAW, 7391 .writefn = tlbi_aa64_vae3is_write }, 7392 }; 7393 7394 static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri) 7395 { 7396 Error *err = NULL; 7397 uint64_t ret; 7398 7399 /* Success sets NZCV = 0000. */ 7400 env->NF = env->CF = env->VF = 0, env->ZF = 1; 7401 7402 if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) { 7403 /* 7404 * ??? Failed, for unknown reasons in the crypto subsystem. 7405 * The best we can do is log the reason and return the 7406 * timed-out indication to the guest. There is no reason 7407 * we know to expect this failure to be transitory, so the 7408 * guest may well hang retrying the operation. 7409 */ 7410 qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s", 7411 ri->name, error_get_pretty(err)); 7412 error_free(err); 7413 7414 env->ZF = 0; /* NZCF = 0100 */ 7415 return 0; 7416 } 7417 return ret; 7418 } 7419 7420 /* We do not support re-seeding, so the two registers operate the same. */ 7421 static const ARMCPRegInfo rndr_reginfo[] = { 7422 { .name = "RNDR", .state = ARM_CP_STATE_AA64, 7423 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7424 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0, 7425 .access = PL0_R, .readfn = rndr_readfn }, 7426 { .name = "RNDRRS", .state = ARM_CP_STATE_AA64, 7427 .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO, 7428 .opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1, 7429 .access = PL0_R, .readfn = rndr_readfn }, 7430 }; 7431 7432 #ifndef CONFIG_USER_ONLY 7433 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque, 7434 uint64_t value) 7435 { 7436 ARMCPU *cpu = env_archcpu(env); 7437 /* CTR_EL0 System register -> DminLine, bits [19:16] */ 7438 uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF); 7439 uint64_t vaddr_in = (uint64_t) value; 7440 uint64_t vaddr = vaddr_in & ~(dline_size - 1); 7441 void *haddr; 7442 int mem_idx = cpu_mmu_index(env, false); 7443 7444 /* This won't be crossing page boundaries */ 7445 haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC()); 7446 if (haddr) { 7447 7448 ram_addr_t offset; 7449 MemoryRegion *mr; 7450 7451 /* RCU lock is already being held */ 7452 mr = memory_region_from_host(haddr, &offset); 7453 7454 if (mr) { 7455 memory_region_writeback(mr, offset, dline_size); 7456 } 7457 } 7458 } 7459 7460 static const ARMCPRegInfo dcpop_reg[] = { 7461 { .name = "DC_CVAP", .state = ARM_CP_STATE_AA64, 7462 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1, 7463 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7464 .fgt = FGT_DCCVAP, 7465 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7466 }; 7467 7468 static const ARMCPRegInfo dcpodp_reg[] = { 7469 { .name = "DC_CVADP", .state = ARM_CP_STATE_AA64, 7470 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1, 7471 .access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END, 7472 .fgt = FGT_DCCVADP, 7473 .accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn }, 7474 }; 7475 #endif /*CONFIG_USER_ONLY*/ 7476 7477 static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri, 7478 bool isread) 7479 { 7480 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) { 7481 return CP_ACCESS_TRAP_EL2; 7482 } 7483 7484 return CP_ACCESS_OK; 7485 } 7486 7487 static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri, 7488 bool isread) 7489 { 7490 int el = arm_current_el(env); 7491 7492 if (el < 2 && arm_is_el2_enabled(env)) { 7493 uint64_t hcr = arm_hcr_el2_eff(env); 7494 if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) { 7495 return CP_ACCESS_TRAP_EL2; 7496 } 7497 } 7498 if (el < 3 && 7499 arm_feature(env, ARM_FEATURE_EL3) && 7500 !(env->cp15.scr_el3 & SCR_ATA)) { 7501 return CP_ACCESS_TRAP_EL3; 7502 } 7503 return CP_ACCESS_OK; 7504 } 7505 7506 static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri) 7507 { 7508 return env->pstate & PSTATE_TCO; 7509 } 7510 7511 static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val) 7512 { 7513 env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO); 7514 } 7515 7516 static const ARMCPRegInfo mte_reginfo[] = { 7517 { .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64, 7518 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1, 7519 .access = PL1_RW, .accessfn = access_mte, 7520 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) }, 7521 { .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64, 7522 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0, 7523 .access = PL1_RW, .accessfn = access_mte, 7524 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) }, 7525 { .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64, 7526 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0, 7527 .access = PL2_RW, .accessfn = access_mte, 7528 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) }, 7529 { .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64, 7530 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0, 7531 .access = PL3_RW, 7532 .fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) }, 7533 { .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64, 7534 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5, 7535 .access = PL1_RW, .accessfn = access_mte, 7536 .fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) }, 7537 { .name = "GCR_EL1", .state = ARM_CP_STATE_AA64, 7538 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6, 7539 .access = PL1_RW, .accessfn = access_mte, 7540 .fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) }, 7541 { .name = "GMID_EL1", .state = ARM_CP_STATE_AA64, 7542 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4, 7543 .access = PL1_R, .accessfn = access_aa64_tid5, 7544 .type = ARM_CP_CONST, .resetvalue = GMID_EL1_BS }, 7545 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7546 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7547 .type = ARM_CP_NO_RAW, 7548 .access = PL0_RW, .readfn = tco_read, .writefn = tco_write }, 7549 { .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64, 7550 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3, 7551 .type = ARM_CP_NOP, .access = PL1_W, 7552 .fgt = FGT_DCIVAC, 7553 .accessfn = aa64_cacheop_poc_access }, 7554 { .name = "DC_IGSW", .state = ARM_CP_STATE_AA64, 7555 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4, 7556 .fgt = FGT_DCISW, 7557 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7558 { .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64, 7559 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5, 7560 .type = ARM_CP_NOP, .access = PL1_W, 7561 .fgt = FGT_DCIVAC, 7562 .accessfn = aa64_cacheop_poc_access }, 7563 { .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64, 7564 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6, 7565 .fgt = FGT_DCISW, 7566 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7567 { .name = "DC_CGSW", .state = ARM_CP_STATE_AA64, 7568 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4, 7569 .fgt = FGT_DCCSW, 7570 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7571 { .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64, 7572 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6, 7573 .fgt = FGT_DCCSW, 7574 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7575 { .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64, 7576 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4, 7577 .fgt = FGT_DCCISW, 7578 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7579 { .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64, 7580 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6, 7581 .fgt = FGT_DCCISW, 7582 .type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw }, 7583 }; 7584 7585 static const ARMCPRegInfo mte_tco_ro_reginfo[] = { 7586 { .name = "TCO", .state = ARM_CP_STATE_AA64, 7587 .opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7, 7588 .type = ARM_CP_CONST, .access = PL0_RW, }, 7589 }; 7590 7591 static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = { 7592 { .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64, 7593 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3, 7594 .type = ARM_CP_NOP, .access = PL0_W, 7595 .fgt = FGT_DCCVAC, 7596 .accessfn = aa64_cacheop_poc_access }, 7597 { .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64, 7598 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5, 7599 .type = ARM_CP_NOP, .access = PL0_W, 7600 .fgt = FGT_DCCVAC, 7601 .accessfn = aa64_cacheop_poc_access }, 7602 { .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64, 7603 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3, 7604 .type = ARM_CP_NOP, .access = PL0_W, 7605 .fgt = FGT_DCCVAP, 7606 .accessfn = aa64_cacheop_poc_access }, 7607 { .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64, 7608 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5, 7609 .type = ARM_CP_NOP, .access = PL0_W, 7610 .fgt = FGT_DCCVAP, 7611 .accessfn = aa64_cacheop_poc_access }, 7612 { .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64, 7613 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3, 7614 .type = ARM_CP_NOP, .access = PL0_W, 7615 .fgt = FGT_DCCVADP, 7616 .accessfn = aa64_cacheop_poc_access }, 7617 { .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64, 7618 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5, 7619 .type = ARM_CP_NOP, .access = PL0_W, 7620 .fgt = FGT_DCCVADP, 7621 .accessfn = aa64_cacheop_poc_access }, 7622 { .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64, 7623 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3, 7624 .type = ARM_CP_NOP, .access = PL0_W, 7625 .fgt = FGT_DCCIVAC, 7626 .accessfn = aa64_cacheop_poc_access }, 7627 { .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64, 7628 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5, 7629 .type = ARM_CP_NOP, .access = PL0_W, 7630 .fgt = FGT_DCCIVAC, 7631 .accessfn = aa64_cacheop_poc_access }, 7632 { .name = "DC_GVA", .state = ARM_CP_STATE_AA64, 7633 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3, 7634 .access = PL0_W, .type = ARM_CP_DC_GVA, 7635 #ifndef CONFIG_USER_ONLY 7636 /* Avoid overhead of an access check that always passes in user-mode */ 7637 .accessfn = aa64_zva_access, 7638 .fgt = FGT_DCZVA, 7639 #endif 7640 }, 7641 { .name = "DC_GZVA", .state = ARM_CP_STATE_AA64, 7642 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4, 7643 .access = PL0_W, .type = ARM_CP_DC_GZVA, 7644 #ifndef CONFIG_USER_ONLY 7645 /* Avoid overhead of an access check that always passes in user-mode */ 7646 .accessfn = aa64_zva_access, 7647 .fgt = FGT_DCZVA, 7648 #endif 7649 }, 7650 }; 7651 7652 static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri, 7653 bool isread) 7654 { 7655 uint64_t hcr = arm_hcr_el2_eff(env); 7656 int el = arm_current_el(env); 7657 7658 if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) { 7659 if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) { 7660 if (hcr & HCR_TGE) { 7661 return CP_ACCESS_TRAP_EL2; 7662 } 7663 return CP_ACCESS_TRAP; 7664 } 7665 } else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) { 7666 return CP_ACCESS_TRAP_EL2; 7667 } 7668 if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) { 7669 return CP_ACCESS_TRAP_EL2; 7670 } 7671 if (el < 3 7672 && arm_feature(env, ARM_FEATURE_EL3) 7673 && !(env->cp15.scr_el3 & SCR_ENSCXT)) { 7674 return CP_ACCESS_TRAP_EL3; 7675 } 7676 return CP_ACCESS_OK; 7677 } 7678 7679 static const ARMCPRegInfo scxtnum_reginfo[] = { 7680 { .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64, 7681 .opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7, 7682 .access = PL0_RW, .accessfn = access_scxtnum, 7683 .fgt = FGT_SCXTNUM_EL0, 7684 .fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) }, 7685 { .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64, 7686 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7, 7687 .access = PL1_RW, .accessfn = access_scxtnum, 7688 .fgt = FGT_SCXTNUM_EL1, 7689 .fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) }, 7690 { .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64, 7691 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7, 7692 .access = PL2_RW, .accessfn = access_scxtnum, 7693 .fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) }, 7694 { .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64, 7695 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7, 7696 .access = PL3_RW, 7697 .fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) }, 7698 }; 7699 7700 static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri, 7701 bool isread) 7702 { 7703 if (arm_current_el(env) == 2 && 7704 arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) { 7705 return CP_ACCESS_TRAP_EL3; 7706 } 7707 return CP_ACCESS_OK; 7708 } 7709 7710 static const ARMCPRegInfo fgt_reginfo[] = { 7711 { .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7712 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4, 7713 .access = PL2_RW, .accessfn = access_fgt, 7714 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) }, 7715 { .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7716 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5, 7717 .access = PL2_RW, .accessfn = access_fgt, 7718 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) }, 7719 { .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64, 7720 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4, 7721 .access = PL2_RW, .accessfn = access_fgt, 7722 .fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) }, 7723 { .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64, 7724 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5, 7725 .access = PL2_RW, .accessfn = access_fgt, 7726 .fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) }, 7727 { .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64, 7728 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6, 7729 .access = PL2_RW, .accessfn = access_fgt, 7730 .fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) }, 7731 }; 7732 #endif /* TARGET_AARCH64 */ 7733 7734 static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri, 7735 bool isread) 7736 { 7737 int el = arm_current_el(env); 7738 7739 if (el == 0) { 7740 uint64_t sctlr = arm_sctlr(env, el); 7741 if (!(sctlr & SCTLR_EnRCTX)) { 7742 return CP_ACCESS_TRAP; 7743 } 7744 } else if (el == 1) { 7745 uint64_t hcr = arm_hcr_el2_eff(env); 7746 if (hcr & HCR_NV) { 7747 return CP_ACCESS_TRAP_EL2; 7748 } 7749 } 7750 return CP_ACCESS_OK; 7751 } 7752 7753 static const ARMCPRegInfo predinv_reginfo[] = { 7754 { .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64, 7755 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4, 7756 .fgt = FGT_CFPRCTX, 7757 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7758 { .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64, 7759 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5, 7760 .fgt = FGT_DVPRCTX, 7761 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7762 { .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64, 7763 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7, 7764 .fgt = FGT_CPPRCTX, 7765 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7766 /* 7767 * Note the AArch32 opcodes have a different OPC1. 7768 */ 7769 { .name = "CFPRCTX", .state = ARM_CP_STATE_AA32, 7770 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4, 7771 .fgt = FGT_CFPRCTX, 7772 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7773 { .name = "DVPRCTX", .state = ARM_CP_STATE_AA32, 7774 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5, 7775 .fgt = FGT_DVPRCTX, 7776 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7777 { .name = "CPPRCTX", .state = ARM_CP_STATE_AA32, 7778 .cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7, 7779 .fgt = FGT_CPPRCTX, 7780 .type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv }, 7781 }; 7782 7783 static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri) 7784 { 7785 /* Read the high 32 bits of the current CCSIDR */ 7786 return extract64(ccsidr_read(env, ri), 32, 32); 7787 } 7788 7789 static const ARMCPRegInfo ccsidr2_reginfo[] = { 7790 { .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH, 7791 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2, 7792 .access = PL1_R, 7793 .accessfn = access_tid4, 7794 .readfn = ccsidr2_read, .type = ARM_CP_NO_RAW }, 7795 }; 7796 7797 static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7798 bool isread) 7799 { 7800 if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) { 7801 return CP_ACCESS_TRAP_EL2; 7802 } 7803 7804 return CP_ACCESS_OK; 7805 } 7806 7807 static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri, 7808 bool isread) 7809 { 7810 if (arm_feature(env, ARM_FEATURE_V8)) { 7811 return access_aa64_tid3(env, ri, isread); 7812 } 7813 7814 return CP_ACCESS_OK; 7815 } 7816 7817 static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri, 7818 bool isread) 7819 { 7820 if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) { 7821 return CP_ACCESS_TRAP_EL2; 7822 } 7823 7824 return CP_ACCESS_OK; 7825 } 7826 7827 static CPAccessResult access_joscr_jmcr(CPUARMState *env, 7828 const ARMCPRegInfo *ri, bool isread) 7829 { 7830 /* 7831 * HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only 7832 * in v7A, not in v8A. 7833 */ 7834 if (!arm_feature(env, ARM_FEATURE_V8) && 7835 arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) && 7836 (env->cp15.hstr_el2 & HSTR_TJDBX)) { 7837 return CP_ACCESS_TRAP_EL2; 7838 } 7839 return CP_ACCESS_OK; 7840 } 7841 7842 static const ARMCPRegInfo jazelle_regs[] = { 7843 { .name = "JIDR", 7844 .cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0, 7845 .access = PL1_R, .accessfn = access_jazelle, 7846 .type = ARM_CP_CONST, .resetvalue = 0 }, 7847 { .name = "JOSCR", 7848 .cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0, 7849 .accessfn = access_joscr_jmcr, 7850 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7851 { .name = "JMCR", 7852 .cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0, 7853 .accessfn = access_joscr_jmcr, 7854 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 }, 7855 }; 7856 7857 static const ARMCPRegInfo contextidr_el2 = { 7858 .name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64, 7859 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1, 7860 .access = PL2_RW, 7861 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2]) 7862 }; 7863 7864 static const ARMCPRegInfo vhe_reginfo[] = { 7865 { .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64, 7866 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1, 7867 .access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write, 7868 .fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) }, 7869 #ifndef CONFIG_USER_ONLY 7870 { .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64, 7871 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2, 7872 .fieldoffset = 7873 offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval), 7874 .type = ARM_CP_IO, .access = PL2_RW, 7875 .writefn = gt_hv_cval_write, .raw_writefn = raw_write }, 7876 { .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH, 7877 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0, 7878 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW, 7879 .resetfn = gt_hv_timer_reset, 7880 .readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write }, 7881 { .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH, 7882 .type = ARM_CP_IO, 7883 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1, 7884 .access = PL2_RW, 7885 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl), 7886 .writefn = gt_hv_ctl_write, .raw_writefn = raw_write }, 7887 { .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64, 7888 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1, 7889 .type = ARM_CP_IO | ARM_CP_ALIAS, 7890 .access = PL2_RW, .accessfn = e2h_access, 7891 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl), 7892 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write }, 7893 { .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64, 7894 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1, 7895 .type = ARM_CP_IO | ARM_CP_ALIAS, 7896 .access = PL2_RW, .accessfn = e2h_access, 7897 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl), 7898 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write }, 7899 { .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7900 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0, 7901 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7902 .access = PL2_RW, .accessfn = e2h_access, 7903 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write }, 7904 { .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64, 7905 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0, 7906 .type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS, 7907 .access = PL2_RW, .accessfn = e2h_access, 7908 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write }, 7909 { .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7910 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2, 7911 .type = ARM_CP_IO | ARM_CP_ALIAS, 7912 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval), 7913 .access = PL2_RW, .accessfn = e2h_access, 7914 .writefn = gt_phys_cval_write, .raw_writefn = raw_write }, 7915 { .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64, 7916 .opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2, 7917 .type = ARM_CP_IO | ARM_CP_ALIAS, 7918 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval), 7919 .access = PL2_RW, .accessfn = e2h_access, 7920 .writefn = gt_virt_cval_write, .raw_writefn = raw_write }, 7921 #endif 7922 }; 7923 7924 #ifndef CONFIG_USER_ONLY 7925 static const ARMCPRegInfo ats1e1_reginfo[] = { 7926 { .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64, 7927 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7928 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7929 .fgt = FGT_ATS1E1RP, 7930 .writefn = ats_write64 }, 7931 { .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64, 7932 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7933 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7934 .fgt = FGT_ATS1E1WP, 7935 .writefn = ats_write64 }, 7936 }; 7937 7938 static const ARMCPRegInfo ats1cp_reginfo[] = { 7939 { .name = "ATS1CPRP", 7940 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0, 7941 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7942 .writefn = ats_write }, 7943 { .name = "ATS1CPWP", 7944 .cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1, 7945 .access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC, 7946 .writefn = ats_write }, 7947 }; 7948 #endif 7949 7950 /* 7951 * ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and 7952 * ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field 7953 * is non-zero, which is never for ARMv7, optionally in ARMv8 7954 * and mandatorily for ARMv8.2 and up. 7955 * ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's 7956 * implementation is RAZ/WI we can ignore this detail, as we 7957 * do for ACTLR. 7958 */ 7959 static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = { 7960 { .name = "ACTLR2", .state = ARM_CP_STATE_AA32, 7961 .cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3, 7962 .access = PL1_RW, .accessfn = access_tacr, 7963 .type = ARM_CP_CONST, .resetvalue = 0 }, 7964 { .name = "HACTLR2", .state = ARM_CP_STATE_AA32, 7965 .cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3, 7966 .access = PL2_RW, .type = ARM_CP_CONST, 7967 .resetvalue = 0 }, 7968 }; 7969 7970 void register_cp_regs_for_features(ARMCPU *cpu) 7971 { 7972 /* Register all the coprocessor registers based on feature bits */ 7973 CPUARMState *env = &cpu->env; 7974 if (arm_feature(env, ARM_FEATURE_M)) { 7975 /* M profile has no coprocessor registers */ 7976 return; 7977 } 7978 7979 define_arm_cp_regs(cpu, cp_reginfo); 7980 if (!arm_feature(env, ARM_FEATURE_V8)) { 7981 /* 7982 * Must go early as it is full of wildcards that may be 7983 * overridden by later definitions. 7984 */ 7985 define_arm_cp_regs(cpu, not_v8_cp_reginfo); 7986 } 7987 7988 if (arm_feature(env, ARM_FEATURE_V6)) { 7989 /* The ID registers all have impdef reset values */ 7990 ARMCPRegInfo v6_idregs[] = { 7991 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH, 7992 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0, 7993 .access = PL1_R, .type = ARM_CP_CONST, 7994 .accessfn = access_aa32_tid3, 7995 .resetvalue = cpu->isar.id_pfr0 }, 7996 /* 7997 * ID_PFR1 is not a plain ARM_CP_CONST because we don't know 7998 * the value of the GIC field until after we define these regs. 7999 */ 8000 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH, 8001 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1, 8002 .access = PL1_R, .type = ARM_CP_NO_RAW, 8003 .accessfn = access_aa32_tid3, 8004 #ifdef CONFIG_USER_ONLY 8005 .type = ARM_CP_CONST, 8006 .resetvalue = cpu->isar.id_pfr1, 8007 #else 8008 .type = ARM_CP_NO_RAW, 8009 .accessfn = access_aa32_tid3, 8010 .readfn = id_pfr1_read, 8011 .writefn = arm_cp_write_ignore 8012 #endif 8013 }, 8014 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH, 8015 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2, 8016 .access = PL1_R, .type = ARM_CP_CONST, 8017 .accessfn = access_aa32_tid3, 8018 .resetvalue = cpu->isar.id_dfr0 }, 8019 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH, 8020 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3, 8021 .access = PL1_R, .type = ARM_CP_CONST, 8022 .accessfn = access_aa32_tid3, 8023 .resetvalue = cpu->id_afr0 }, 8024 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH, 8025 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4, 8026 .access = PL1_R, .type = ARM_CP_CONST, 8027 .accessfn = access_aa32_tid3, 8028 .resetvalue = cpu->isar.id_mmfr0 }, 8029 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH, 8030 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5, 8031 .access = PL1_R, .type = ARM_CP_CONST, 8032 .accessfn = access_aa32_tid3, 8033 .resetvalue = cpu->isar.id_mmfr1 }, 8034 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH, 8035 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6, 8036 .access = PL1_R, .type = ARM_CP_CONST, 8037 .accessfn = access_aa32_tid3, 8038 .resetvalue = cpu->isar.id_mmfr2 }, 8039 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH, 8040 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7, 8041 .access = PL1_R, .type = ARM_CP_CONST, 8042 .accessfn = access_aa32_tid3, 8043 .resetvalue = cpu->isar.id_mmfr3 }, 8044 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH, 8045 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0, 8046 .access = PL1_R, .type = ARM_CP_CONST, 8047 .accessfn = access_aa32_tid3, 8048 .resetvalue = cpu->isar.id_isar0 }, 8049 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH, 8050 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1, 8051 .access = PL1_R, .type = ARM_CP_CONST, 8052 .accessfn = access_aa32_tid3, 8053 .resetvalue = cpu->isar.id_isar1 }, 8054 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH, 8055 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2, 8056 .access = PL1_R, .type = ARM_CP_CONST, 8057 .accessfn = access_aa32_tid3, 8058 .resetvalue = cpu->isar.id_isar2 }, 8059 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH, 8060 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3, 8061 .access = PL1_R, .type = ARM_CP_CONST, 8062 .accessfn = access_aa32_tid3, 8063 .resetvalue = cpu->isar.id_isar3 }, 8064 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH, 8065 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4, 8066 .access = PL1_R, .type = ARM_CP_CONST, 8067 .accessfn = access_aa32_tid3, 8068 .resetvalue = cpu->isar.id_isar4 }, 8069 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH, 8070 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5, 8071 .access = PL1_R, .type = ARM_CP_CONST, 8072 .accessfn = access_aa32_tid3, 8073 .resetvalue = cpu->isar.id_isar5 }, 8074 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH, 8075 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6, 8076 .access = PL1_R, .type = ARM_CP_CONST, 8077 .accessfn = access_aa32_tid3, 8078 .resetvalue = cpu->isar.id_mmfr4 }, 8079 { .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH, 8080 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7, 8081 .access = PL1_R, .type = ARM_CP_CONST, 8082 .accessfn = access_aa32_tid3, 8083 .resetvalue = cpu->isar.id_isar6 }, 8084 }; 8085 define_arm_cp_regs(cpu, v6_idregs); 8086 define_arm_cp_regs(cpu, v6_cp_reginfo); 8087 } else { 8088 define_arm_cp_regs(cpu, not_v6_cp_reginfo); 8089 } 8090 if (arm_feature(env, ARM_FEATURE_V6K)) { 8091 define_arm_cp_regs(cpu, v6k_cp_reginfo); 8092 } 8093 if (arm_feature(env, ARM_FEATURE_V7MP) && 8094 !arm_feature(env, ARM_FEATURE_PMSA)) { 8095 define_arm_cp_regs(cpu, v7mp_cp_reginfo); 8096 } 8097 if (arm_feature(env, ARM_FEATURE_V7VE)) { 8098 define_arm_cp_regs(cpu, pmovsset_cp_reginfo); 8099 } 8100 if (arm_feature(env, ARM_FEATURE_V7)) { 8101 ARMCPRegInfo clidr = { 8102 .name = "CLIDR", .state = ARM_CP_STATE_BOTH, 8103 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1, 8104 .access = PL1_R, .type = ARM_CP_CONST, 8105 .accessfn = access_tid4, 8106 .fgt = FGT_CLIDR_EL1, 8107 .resetvalue = cpu->clidr 8108 }; 8109 define_one_arm_cp_reg(cpu, &clidr); 8110 define_arm_cp_regs(cpu, v7_cp_reginfo); 8111 define_debug_regs(cpu); 8112 define_pmu_regs(cpu); 8113 } else { 8114 define_arm_cp_regs(cpu, not_v7_cp_reginfo); 8115 } 8116 if (arm_feature(env, ARM_FEATURE_V8)) { 8117 /* 8118 * v8 ID registers, which all have impdef reset values. 8119 * Note that within the ID register ranges the unused slots 8120 * must all RAZ, not UNDEF; future architecture versions may 8121 * define new registers here. 8122 * ID registers which are AArch64 views of the AArch32 ID registers 8123 * which already existed in v6 and v7 are handled elsewhere, 8124 * in v6_idregs[]. 8125 */ 8126 int i; 8127 ARMCPRegInfo v8_idregs[] = { 8128 /* 8129 * ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system 8130 * emulation because we don't know the right value for the 8131 * GIC field until after we define these regs. 8132 */ 8133 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64, 8134 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0, 8135 .access = PL1_R, 8136 #ifdef CONFIG_USER_ONLY 8137 .type = ARM_CP_CONST, 8138 .resetvalue = cpu->isar.id_aa64pfr0 8139 #else 8140 .type = ARM_CP_NO_RAW, 8141 .accessfn = access_aa64_tid3, 8142 .readfn = id_aa64pfr0_read, 8143 .writefn = arm_cp_write_ignore 8144 #endif 8145 }, 8146 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64, 8147 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1, 8148 .access = PL1_R, .type = ARM_CP_CONST, 8149 .accessfn = access_aa64_tid3, 8150 .resetvalue = cpu->isar.id_aa64pfr1}, 8151 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8152 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2, 8153 .access = PL1_R, .type = ARM_CP_CONST, 8154 .accessfn = access_aa64_tid3, 8155 .resetvalue = 0 }, 8156 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8157 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3, 8158 .access = PL1_R, .type = ARM_CP_CONST, 8159 .accessfn = access_aa64_tid3, 8160 .resetvalue = 0 }, 8161 { .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64, 8162 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4, 8163 .access = PL1_R, .type = ARM_CP_CONST, 8164 .accessfn = access_aa64_tid3, 8165 .resetvalue = cpu->isar.id_aa64zfr0 }, 8166 { .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64, 8167 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5, 8168 .access = PL1_R, .type = ARM_CP_CONST, 8169 .accessfn = access_aa64_tid3, 8170 .resetvalue = cpu->isar.id_aa64smfr0 }, 8171 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8172 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6, 8173 .access = PL1_R, .type = ARM_CP_CONST, 8174 .accessfn = access_aa64_tid3, 8175 .resetvalue = 0 }, 8176 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8177 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7, 8178 .access = PL1_R, .type = ARM_CP_CONST, 8179 .accessfn = access_aa64_tid3, 8180 .resetvalue = 0 }, 8181 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64, 8182 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0, 8183 .access = PL1_R, .type = ARM_CP_CONST, 8184 .accessfn = access_aa64_tid3, 8185 .resetvalue = cpu->isar.id_aa64dfr0 }, 8186 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64, 8187 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1, 8188 .access = PL1_R, .type = ARM_CP_CONST, 8189 .accessfn = access_aa64_tid3, 8190 .resetvalue = cpu->isar.id_aa64dfr1 }, 8191 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8192 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2, 8193 .access = PL1_R, .type = ARM_CP_CONST, 8194 .accessfn = access_aa64_tid3, 8195 .resetvalue = 0 }, 8196 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8197 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3, 8198 .access = PL1_R, .type = ARM_CP_CONST, 8199 .accessfn = access_aa64_tid3, 8200 .resetvalue = 0 }, 8201 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64, 8202 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4, 8203 .access = PL1_R, .type = ARM_CP_CONST, 8204 .accessfn = access_aa64_tid3, 8205 .resetvalue = cpu->id_aa64afr0 }, 8206 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64, 8207 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5, 8208 .access = PL1_R, .type = ARM_CP_CONST, 8209 .accessfn = access_aa64_tid3, 8210 .resetvalue = cpu->id_aa64afr1 }, 8211 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8212 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6, 8213 .access = PL1_R, .type = ARM_CP_CONST, 8214 .accessfn = access_aa64_tid3, 8215 .resetvalue = 0 }, 8216 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8217 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7, 8218 .access = PL1_R, .type = ARM_CP_CONST, 8219 .accessfn = access_aa64_tid3, 8220 .resetvalue = 0 }, 8221 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64, 8222 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0, 8223 .access = PL1_R, .type = ARM_CP_CONST, 8224 .accessfn = access_aa64_tid3, 8225 .resetvalue = cpu->isar.id_aa64isar0 }, 8226 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64, 8227 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1, 8228 .access = PL1_R, .type = ARM_CP_CONST, 8229 .accessfn = access_aa64_tid3, 8230 .resetvalue = cpu->isar.id_aa64isar1 }, 8231 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8232 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2, 8233 .access = PL1_R, .type = ARM_CP_CONST, 8234 .accessfn = access_aa64_tid3, 8235 .resetvalue = 0 }, 8236 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8237 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3, 8238 .access = PL1_R, .type = ARM_CP_CONST, 8239 .accessfn = access_aa64_tid3, 8240 .resetvalue = 0 }, 8241 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8242 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4, 8243 .access = PL1_R, .type = ARM_CP_CONST, 8244 .accessfn = access_aa64_tid3, 8245 .resetvalue = 0 }, 8246 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8247 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5, 8248 .access = PL1_R, .type = ARM_CP_CONST, 8249 .accessfn = access_aa64_tid3, 8250 .resetvalue = 0 }, 8251 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8252 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6, 8253 .access = PL1_R, .type = ARM_CP_CONST, 8254 .accessfn = access_aa64_tid3, 8255 .resetvalue = 0 }, 8256 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8257 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7, 8258 .access = PL1_R, .type = ARM_CP_CONST, 8259 .accessfn = access_aa64_tid3, 8260 .resetvalue = 0 }, 8261 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64, 8262 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0, 8263 .access = PL1_R, .type = ARM_CP_CONST, 8264 .accessfn = access_aa64_tid3, 8265 .resetvalue = cpu->isar.id_aa64mmfr0 }, 8266 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64, 8267 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1, 8268 .access = PL1_R, .type = ARM_CP_CONST, 8269 .accessfn = access_aa64_tid3, 8270 .resetvalue = cpu->isar.id_aa64mmfr1 }, 8271 { .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64, 8272 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2, 8273 .access = PL1_R, .type = ARM_CP_CONST, 8274 .accessfn = access_aa64_tid3, 8275 .resetvalue = cpu->isar.id_aa64mmfr2 }, 8276 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8277 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3, 8278 .access = PL1_R, .type = ARM_CP_CONST, 8279 .accessfn = access_aa64_tid3, 8280 .resetvalue = 0 }, 8281 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8282 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4, 8283 .access = PL1_R, .type = ARM_CP_CONST, 8284 .accessfn = access_aa64_tid3, 8285 .resetvalue = 0 }, 8286 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8287 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5, 8288 .access = PL1_R, .type = ARM_CP_CONST, 8289 .accessfn = access_aa64_tid3, 8290 .resetvalue = 0 }, 8291 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8292 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6, 8293 .access = PL1_R, .type = ARM_CP_CONST, 8294 .accessfn = access_aa64_tid3, 8295 .resetvalue = 0 }, 8296 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64, 8297 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7, 8298 .access = PL1_R, .type = ARM_CP_CONST, 8299 .accessfn = access_aa64_tid3, 8300 .resetvalue = 0 }, 8301 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64, 8302 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8303 .access = PL1_R, .type = ARM_CP_CONST, 8304 .accessfn = access_aa64_tid3, 8305 .resetvalue = cpu->isar.mvfr0 }, 8306 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64, 8307 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8308 .access = PL1_R, .type = ARM_CP_CONST, 8309 .accessfn = access_aa64_tid3, 8310 .resetvalue = cpu->isar.mvfr1 }, 8311 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64, 8312 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8313 .access = PL1_R, .type = ARM_CP_CONST, 8314 .accessfn = access_aa64_tid3, 8315 .resetvalue = cpu->isar.mvfr2 }, 8316 /* 8317 * "0, c0, c3, {0,1,2}" are the encodings corresponding to 8318 * AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding 8319 * as RAZ, since it is in the "reserved for future ID 8320 * registers, RAZ" part of the AArch32 encoding space. 8321 */ 8322 { .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32, 8323 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0, 8324 .access = PL1_R, .type = ARM_CP_CONST, 8325 .accessfn = access_aa64_tid3, 8326 .resetvalue = 0 }, 8327 { .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32, 8328 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1, 8329 .access = PL1_R, .type = ARM_CP_CONST, 8330 .accessfn = access_aa64_tid3, 8331 .resetvalue = 0 }, 8332 { .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32, 8333 .cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2, 8334 .access = PL1_R, .type = ARM_CP_CONST, 8335 .accessfn = access_aa64_tid3, 8336 .resetvalue = 0 }, 8337 /* 8338 * Other encodings in "0, c0, c3, ..." are STATE_BOTH because 8339 * they're also RAZ for AArch64, and in v8 are gradually 8340 * being filled with AArch64-view-of-AArch32-ID-register 8341 * for new ID registers. 8342 */ 8343 { .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH, 8344 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3, 8345 .access = PL1_R, .type = ARM_CP_CONST, 8346 .accessfn = access_aa64_tid3, 8347 .resetvalue = 0 }, 8348 { .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH, 8349 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4, 8350 .access = PL1_R, .type = ARM_CP_CONST, 8351 .accessfn = access_aa64_tid3, 8352 .resetvalue = cpu->isar.id_pfr2 }, 8353 { .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH, 8354 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5, 8355 .access = PL1_R, .type = ARM_CP_CONST, 8356 .accessfn = access_aa64_tid3, 8357 .resetvalue = cpu->isar.id_dfr1 }, 8358 { .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH, 8359 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6, 8360 .access = PL1_R, .type = ARM_CP_CONST, 8361 .accessfn = access_aa64_tid3, 8362 .resetvalue = cpu->isar.id_mmfr5 }, 8363 { .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH, 8364 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7, 8365 .access = PL1_R, .type = ARM_CP_CONST, 8366 .accessfn = access_aa64_tid3, 8367 .resetvalue = 0 }, 8368 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32, 8369 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6, 8370 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8371 .fgt = FGT_PMCEIDN_EL0, 8372 .resetvalue = extract64(cpu->pmceid0, 0, 32) }, 8373 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64, 8374 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6, 8375 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8376 .fgt = FGT_PMCEIDN_EL0, 8377 .resetvalue = cpu->pmceid0 }, 8378 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32, 8379 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7, 8380 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8381 .fgt = FGT_PMCEIDN_EL0, 8382 .resetvalue = extract64(cpu->pmceid1, 0, 32) }, 8383 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64, 8384 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7, 8385 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST, 8386 .fgt = FGT_PMCEIDN_EL0, 8387 .resetvalue = cpu->pmceid1 }, 8388 }; 8389 #ifdef CONFIG_USER_ONLY 8390 static const ARMCPRegUserSpaceInfo v8_user_idregs[] = { 8391 { .name = "ID_AA64PFR0_EL1", 8392 .exported_bits = R_ID_AA64PFR0_FP_MASK | 8393 R_ID_AA64PFR0_ADVSIMD_MASK | 8394 R_ID_AA64PFR0_SVE_MASK | 8395 R_ID_AA64PFR0_DIT_MASK, 8396 .fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) | 8397 (0x1u << R_ID_AA64PFR0_EL1_SHIFT) }, 8398 { .name = "ID_AA64PFR1_EL1", 8399 .exported_bits = R_ID_AA64PFR1_BT_MASK | 8400 R_ID_AA64PFR1_SSBS_MASK | 8401 R_ID_AA64PFR1_MTE_MASK | 8402 R_ID_AA64PFR1_SME_MASK }, 8403 { .name = "ID_AA64PFR*_EL1_RESERVED", 8404 .is_glob = true }, 8405 { .name = "ID_AA64ZFR0_EL1", 8406 .exported_bits = R_ID_AA64ZFR0_SVEVER_MASK | 8407 R_ID_AA64ZFR0_AES_MASK | 8408 R_ID_AA64ZFR0_BITPERM_MASK | 8409 R_ID_AA64ZFR0_BFLOAT16_MASK | 8410 R_ID_AA64ZFR0_SHA3_MASK | 8411 R_ID_AA64ZFR0_SM4_MASK | 8412 R_ID_AA64ZFR0_I8MM_MASK | 8413 R_ID_AA64ZFR0_F32MM_MASK | 8414 R_ID_AA64ZFR0_F64MM_MASK }, 8415 { .name = "ID_AA64SMFR0_EL1", 8416 .exported_bits = R_ID_AA64SMFR0_F32F32_MASK | 8417 R_ID_AA64SMFR0_B16F32_MASK | 8418 R_ID_AA64SMFR0_F16F32_MASK | 8419 R_ID_AA64SMFR0_I8I32_MASK | 8420 R_ID_AA64SMFR0_F64F64_MASK | 8421 R_ID_AA64SMFR0_I16I64_MASK | 8422 R_ID_AA64SMFR0_FA64_MASK }, 8423 { .name = "ID_AA64MMFR0_EL1", 8424 .exported_bits = R_ID_AA64MMFR0_ECV_MASK, 8425 .fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) | 8426 (0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) }, 8427 { .name = "ID_AA64MMFR1_EL1", 8428 .exported_bits = R_ID_AA64MMFR1_AFP_MASK }, 8429 { .name = "ID_AA64MMFR2_EL1", 8430 .exported_bits = R_ID_AA64MMFR2_AT_MASK }, 8431 { .name = "ID_AA64MMFR*_EL1_RESERVED", 8432 .is_glob = true }, 8433 { .name = "ID_AA64DFR0_EL1", 8434 .fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) }, 8435 { .name = "ID_AA64DFR1_EL1" }, 8436 { .name = "ID_AA64DFR*_EL1_RESERVED", 8437 .is_glob = true }, 8438 { .name = "ID_AA64AFR*", 8439 .is_glob = true }, 8440 { .name = "ID_AA64ISAR0_EL1", 8441 .exported_bits = R_ID_AA64ISAR0_AES_MASK | 8442 R_ID_AA64ISAR0_SHA1_MASK | 8443 R_ID_AA64ISAR0_SHA2_MASK | 8444 R_ID_AA64ISAR0_CRC32_MASK | 8445 R_ID_AA64ISAR0_ATOMIC_MASK | 8446 R_ID_AA64ISAR0_RDM_MASK | 8447 R_ID_AA64ISAR0_SHA3_MASK | 8448 R_ID_AA64ISAR0_SM3_MASK | 8449 R_ID_AA64ISAR0_SM4_MASK | 8450 R_ID_AA64ISAR0_DP_MASK | 8451 R_ID_AA64ISAR0_FHM_MASK | 8452 R_ID_AA64ISAR0_TS_MASK | 8453 R_ID_AA64ISAR0_RNDR_MASK }, 8454 { .name = "ID_AA64ISAR1_EL1", 8455 .exported_bits = R_ID_AA64ISAR1_DPB_MASK | 8456 R_ID_AA64ISAR1_APA_MASK | 8457 R_ID_AA64ISAR1_API_MASK | 8458 R_ID_AA64ISAR1_JSCVT_MASK | 8459 R_ID_AA64ISAR1_FCMA_MASK | 8460 R_ID_AA64ISAR1_LRCPC_MASK | 8461 R_ID_AA64ISAR1_GPA_MASK | 8462 R_ID_AA64ISAR1_GPI_MASK | 8463 R_ID_AA64ISAR1_FRINTTS_MASK | 8464 R_ID_AA64ISAR1_SB_MASK | 8465 R_ID_AA64ISAR1_BF16_MASK | 8466 R_ID_AA64ISAR1_DGH_MASK | 8467 R_ID_AA64ISAR1_I8MM_MASK }, 8468 { .name = "ID_AA64ISAR2_EL1", 8469 .exported_bits = R_ID_AA64ISAR2_WFXT_MASK | 8470 R_ID_AA64ISAR2_RPRES_MASK | 8471 R_ID_AA64ISAR2_GPA3_MASK | 8472 R_ID_AA64ISAR2_APA3_MASK }, 8473 { .name = "ID_AA64ISAR*_EL1_RESERVED", 8474 .is_glob = true }, 8475 }; 8476 modify_arm_cp_regs(v8_idregs, v8_user_idregs); 8477 #endif 8478 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */ 8479 if (!arm_feature(env, ARM_FEATURE_EL3) && 8480 !arm_feature(env, ARM_FEATURE_EL2)) { 8481 ARMCPRegInfo rvbar = { 8482 .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH, 8483 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8484 .access = PL1_R, 8485 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8486 }; 8487 define_one_arm_cp_reg(cpu, &rvbar); 8488 } 8489 define_arm_cp_regs(cpu, v8_idregs); 8490 define_arm_cp_regs(cpu, v8_cp_reginfo); 8491 8492 for (i = 4; i < 16; i++) { 8493 /* 8494 * Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32. 8495 * For pre-v8 cores there are RAZ patterns for these in 8496 * id_pre_v8_midr_cp_reginfo[]; for v8 we do that here. 8497 * v8 extends the "must RAZ" part of the ID register space 8498 * to also cover c0, 0, c{8-15}, {0-7}. 8499 * These are STATE_AA32 because in the AArch64 sysreg space 8500 * c4-c7 is where the AArch64 ID registers live (and we've 8501 * already defined those in v8_idregs[]), and c8-c15 are not 8502 * "must RAZ" for AArch64. 8503 */ 8504 g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i); 8505 ARMCPRegInfo v8_aa32_raz_idregs = { 8506 .name = name, 8507 .state = ARM_CP_STATE_AA32, 8508 .cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY, 8509 .access = PL1_R, .type = ARM_CP_CONST, 8510 .accessfn = access_aa64_tid3, 8511 .resetvalue = 0 }; 8512 define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs); 8513 } 8514 } 8515 8516 /* 8517 * Register the base EL2 cpregs. 8518 * Pre v8, these registers are implemented only as part of the 8519 * Virtualization Extensions (EL2 present). Beginning with v8, 8520 * if EL2 is missing but EL3 is enabled, mostly these become 8521 * RES0 from EL3, with some specific exceptions. 8522 */ 8523 if (arm_feature(env, ARM_FEATURE_EL2) 8524 || (arm_feature(env, ARM_FEATURE_EL3) 8525 && arm_feature(env, ARM_FEATURE_V8))) { 8526 uint64_t vmpidr_def = mpidr_read_val(env); 8527 ARMCPRegInfo vpidr_regs[] = { 8528 { .name = "VPIDR", .state = ARM_CP_STATE_AA32, 8529 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8530 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8531 .resetvalue = cpu->midr, 8532 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8533 .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) }, 8534 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64, 8535 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0, 8536 .access = PL2_RW, .resetvalue = cpu->midr, 8537 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8538 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) }, 8539 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32, 8540 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8541 .access = PL2_RW, .accessfn = access_el3_aa32ns, 8542 .resetvalue = vmpidr_def, 8543 .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ, 8544 .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) }, 8545 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64, 8546 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5, 8547 .access = PL2_RW, .resetvalue = vmpidr_def, 8548 .type = ARM_CP_EL3_NO_EL2_C_NZ, 8549 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) }, 8550 }; 8551 /* 8552 * The only field of MDCR_EL2 that has a defined architectural reset 8553 * value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N. 8554 */ 8555 ARMCPRegInfo mdcr_el2 = { 8556 .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO, 8557 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1, 8558 .writefn = mdcr_el2_write, 8559 .access = PL2_RW, .resetvalue = pmu_num_counters(env), 8560 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), 8561 }; 8562 define_one_arm_cp_reg(cpu, &mdcr_el2); 8563 define_arm_cp_regs(cpu, vpidr_regs); 8564 define_arm_cp_regs(cpu, el2_cp_reginfo); 8565 if (arm_feature(env, ARM_FEATURE_V8)) { 8566 define_arm_cp_regs(cpu, el2_v8_cp_reginfo); 8567 } 8568 if (cpu_isar_feature(aa64_sel2, cpu)) { 8569 define_arm_cp_regs(cpu, el2_sec_cp_reginfo); 8570 } 8571 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */ 8572 if (!arm_feature(env, ARM_FEATURE_EL3)) { 8573 ARMCPRegInfo rvbar[] = { 8574 { 8575 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64, 8576 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1, 8577 .access = PL2_R, 8578 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8579 }, 8580 { .name = "RVBAR", .type = ARM_CP_ALIAS, 8581 .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1, 8582 .access = PL2_R, 8583 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8584 }, 8585 }; 8586 define_arm_cp_regs(cpu, rvbar); 8587 } 8588 } 8589 8590 /* Register the base EL3 cpregs. */ 8591 if (arm_feature(env, ARM_FEATURE_EL3)) { 8592 define_arm_cp_regs(cpu, el3_cp_reginfo); 8593 ARMCPRegInfo el3_regs[] = { 8594 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64, 8595 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1, 8596 .access = PL3_R, 8597 .fieldoffset = offsetof(CPUARMState, cp15.rvbar), 8598 }, 8599 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64, 8600 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0, 8601 .access = PL3_RW, 8602 .raw_writefn = raw_write, .writefn = sctlr_write, 8603 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]), 8604 .resetvalue = cpu->reset_sctlr }, 8605 }; 8606 8607 define_arm_cp_regs(cpu, el3_regs); 8608 } 8609 /* 8610 * The behaviour of NSACR is sufficiently various that we don't 8611 * try to describe it in a single reginfo: 8612 * if EL3 is 64 bit, then trap to EL3 from S EL1, 8613 * reads as constant 0xc00 from NS EL1 and NS EL2 8614 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2 8615 * if v7 without EL3, register doesn't exist 8616 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2 8617 */ 8618 if (arm_feature(env, ARM_FEATURE_EL3)) { 8619 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8620 static const ARMCPRegInfo nsacr = { 8621 .name = "NSACR", .type = ARM_CP_CONST, 8622 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8623 .access = PL1_RW, .accessfn = nsacr_access, 8624 .resetvalue = 0xc00 8625 }; 8626 define_one_arm_cp_reg(cpu, &nsacr); 8627 } else { 8628 static const ARMCPRegInfo nsacr = { 8629 .name = "NSACR", 8630 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8631 .access = PL3_RW | PL1_R, 8632 .resetvalue = 0, 8633 .fieldoffset = offsetof(CPUARMState, cp15.nsacr) 8634 }; 8635 define_one_arm_cp_reg(cpu, &nsacr); 8636 } 8637 } else { 8638 if (arm_feature(env, ARM_FEATURE_V8)) { 8639 static const ARMCPRegInfo nsacr = { 8640 .name = "NSACR", .type = ARM_CP_CONST, 8641 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2, 8642 .access = PL1_R, 8643 .resetvalue = 0xc00 8644 }; 8645 define_one_arm_cp_reg(cpu, &nsacr); 8646 } 8647 } 8648 8649 if (arm_feature(env, ARM_FEATURE_PMSA)) { 8650 if (arm_feature(env, ARM_FEATURE_V6)) { 8651 /* PMSAv6 not implemented */ 8652 assert(arm_feature(env, ARM_FEATURE_V7)); 8653 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8654 define_arm_cp_regs(cpu, pmsav7_cp_reginfo); 8655 } else { 8656 define_arm_cp_regs(cpu, pmsav5_cp_reginfo); 8657 } 8658 } else { 8659 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo); 8660 define_arm_cp_regs(cpu, vmsa_cp_reginfo); 8661 /* TTCBR2 is introduced with ARMv8.2-AA32HPD. */ 8662 if (cpu_isar_feature(aa32_hpd, cpu)) { 8663 define_one_arm_cp_reg(cpu, &ttbcr2_reginfo); 8664 } 8665 } 8666 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) { 8667 define_arm_cp_regs(cpu, t2ee_cp_reginfo); 8668 } 8669 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) { 8670 define_arm_cp_regs(cpu, generic_timer_cp_reginfo); 8671 } 8672 if (arm_feature(env, ARM_FEATURE_VAPA)) { 8673 define_arm_cp_regs(cpu, vapa_cp_reginfo); 8674 } 8675 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) { 8676 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo); 8677 } 8678 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) { 8679 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo); 8680 } 8681 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) { 8682 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo); 8683 } 8684 if (arm_feature(env, ARM_FEATURE_OMAPCP)) { 8685 define_arm_cp_regs(cpu, omap_cp_reginfo); 8686 } 8687 if (arm_feature(env, ARM_FEATURE_STRONGARM)) { 8688 define_arm_cp_regs(cpu, strongarm_cp_reginfo); 8689 } 8690 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 8691 define_arm_cp_regs(cpu, xscale_cp_reginfo); 8692 } 8693 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) { 8694 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo); 8695 } 8696 if (arm_feature(env, ARM_FEATURE_LPAE)) { 8697 define_arm_cp_regs(cpu, lpae_cp_reginfo); 8698 } 8699 if (cpu_isar_feature(aa32_jazelle, cpu)) { 8700 define_arm_cp_regs(cpu, jazelle_regs); 8701 } 8702 /* 8703 * Slightly awkwardly, the OMAP and StrongARM cores need all of 8704 * cp15 crn=0 to be writes-ignored, whereas for other cores they should 8705 * be read-only (ie write causes UNDEF exception). 8706 */ 8707 { 8708 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = { 8709 /* 8710 * Pre-v8 MIDR space. 8711 * Note that the MIDR isn't a simple constant register because 8712 * of the TI925 behaviour where writes to another register can 8713 * cause the MIDR value to change. 8714 * 8715 * Unimplemented registers in the c15 0 0 0 space default to 8716 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR 8717 * and friends override accordingly. 8718 */ 8719 { .name = "MIDR", 8720 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY, 8721 .access = PL1_R, .resetvalue = cpu->midr, 8722 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write, 8723 .readfn = midr_read, 8724 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8725 .type = ARM_CP_OVERRIDE }, 8726 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */ 8727 { .name = "DUMMY", 8728 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY, 8729 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8730 { .name = "DUMMY", 8731 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY, 8732 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8733 { .name = "DUMMY", 8734 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY, 8735 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8736 { .name = "DUMMY", 8737 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY, 8738 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8739 { .name = "DUMMY", 8740 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY, 8741 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 }, 8742 }; 8743 ARMCPRegInfo id_v8_midr_cp_reginfo[] = { 8744 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH, 8745 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0, 8746 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr, 8747 .fgt = FGT_MIDR_EL1, 8748 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid), 8749 .readfn = midr_read }, 8750 /* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */ 8751 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8752 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7, 8753 .access = PL1_R, .resetvalue = cpu->midr }, 8754 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH, 8755 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6, 8756 .access = PL1_R, 8757 .accessfn = access_aa64_tid1, 8758 .fgt = FGT_REVIDR_EL1, 8759 .type = ARM_CP_CONST, .resetvalue = cpu->revidr }, 8760 }; 8761 ARMCPRegInfo id_v8_midr_alias_cp_reginfo = { 8762 .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST, 8763 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8764 .access = PL1_R, .resetvalue = cpu->midr 8765 }; 8766 ARMCPRegInfo id_cp_reginfo[] = { 8767 /* These are common to v8 and pre-v8 */ 8768 { .name = "CTR", 8769 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1, 8770 .access = PL1_R, .accessfn = ctr_el0_access, 8771 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8772 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64, 8773 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0, 8774 .access = PL0_R, .accessfn = ctr_el0_access, 8775 .fgt = FGT_CTR_EL0, 8776 .type = ARM_CP_CONST, .resetvalue = cpu->ctr }, 8777 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */ 8778 { .name = "TCMTR", 8779 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2, 8780 .access = PL1_R, 8781 .accessfn = access_aa32_tid1, 8782 .type = ARM_CP_CONST, .resetvalue = 0 }, 8783 }; 8784 /* TLBTR is specific to VMSA */ 8785 ARMCPRegInfo id_tlbtr_reginfo = { 8786 .name = "TLBTR", 8787 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3, 8788 .access = PL1_R, 8789 .accessfn = access_aa32_tid1, 8790 .type = ARM_CP_CONST, .resetvalue = 0, 8791 }; 8792 /* MPUIR is specific to PMSA V6+ */ 8793 ARMCPRegInfo id_mpuir_reginfo = { 8794 .name = "MPUIR", 8795 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4, 8796 .access = PL1_R, .type = ARM_CP_CONST, 8797 .resetvalue = cpu->pmsav7_dregion << 8 8798 }; 8799 /* HMPUIR is specific to PMSA V8 */ 8800 ARMCPRegInfo id_hmpuir_reginfo = { 8801 .name = "HMPUIR", 8802 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4, 8803 .access = PL2_R, .type = ARM_CP_CONST, 8804 .resetvalue = cpu->pmsav8r_hdregion 8805 }; 8806 static const ARMCPRegInfo crn0_wi_reginfo = { 8807 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY, 8808 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W, 8809 .type = ARM_CP_NOP | ARM_CP_OVERRIDE 8810 }; 8811 #ifdef CONFIG_USER_ONLY 8812 static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = { 8813 { .name = "MIDR_EL1", 8814 .exported_bits = R_MIDR_EL1_REVISION_MASK | 8815 R_MIDR_EL1_PARTNUM_MASK | 8816 R_MIDR_EL1_ARCHITECTURE_MASK | 8817 R_MIDR_EL1_VARIANT_MASK | 8818 R_MIDR_EL1_IMPLEMENTER_MASK }, 8819 { .name = "REVIDR_EL1" }, 8820 }; 8821 modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo); 8822 #endif 8823 if (arm_feature(env, ARM_FEATURE_OMAPCP) || 8824 arm_feature(env, ARM_FEATURE_STRONGARM)) { 8825 size_t i; 8826 /* 8827 * Register the blanket "writes ignored" value first to cover the 8828 * whole space. Then update the specific ID registers to allow write 8829 * access, so that they ignore writes rather than causing them to 8830 * UNDEF. 8831 */ 8832 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo); 8833 for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) { 8834 id_pre_v8_midr_cp_reginfo[i].access = PL1_RW; 8835 } 8836 for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) { 8837 id_cp_reginfo[i].access = PL1_RW; 8838 } 8839 id_mpuir_reginfo.access = PL1_RW; 8840 id_tlbtr_reginfo.access = PL1_RW; 8841 } 8842 if (arm_feature(env, ARM_FEATURE_V8)) { 8843 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo); 8844 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8845 define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo); 8846 } 8847 } else { 8848 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo); 8849 } 8850 define_arm_cp_regs(cpu, id_cp_reginfo); 8851 if (!arm_feature(env, ARM_FEATURE_PMSA)) { 8852 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo); 8853 } else if (arm_feature(env, ARM_FEATURE_PMSA) && 8854 arm_feature(env, ARM_FEATURE_V8)) { 8855 uint32_t i = 0; 8856 char *tmp_string; 8857 8858 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8859 define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo); 8860 define_arm_cp_regs(cpu, pmsav8r_cp_reginfo); 8861 8862 /* Register alias is only valid for first 32 indexes */ 8863 for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) { 8864 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8865 uint8_t opc1 = extract32(i, 4, 1); 8866 uint8_t opc2 = extract32(i, 0, 1) << 2; 8867 8868 tmp_string = g_strdup_printf("PRBAR%u", i); 8869 ARMCPRegInfo tmp_prbarn_reginfo = { 8870 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8871 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8872 .access = PL1_RW, .resetvalue = 0, 8873 .accessfn = access_tvm_trvm, 8874 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8875 }; 8876 define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo); 8877 g_free(tmp_string); 8878 8879 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8880 tmp_string = g_strdup_printf("PRLAR%u", i); 8881 ARMCPRegInfo tmp_prlarn_reginfo = { 8882 .name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW, 8883 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8884 .access = PL1_RW, .resetvalue = 0, 8885 .accessfn = access_tvm_trvm, 8886 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8887 }; 8888 define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo); 8889 g_free(tmp_string); 8890 } 8891 8892 /* Register alias is only valid for first 32 indexes */ 8893 for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) { 8894 uint8_t crm = 0b1000 | extract32(i, 1, 3); 8895 uint8_t opc1 = 0b100 | extract32(i, 4, 1); 8896 uint8_t opc2 = extract32(i, 0, 1) << 2; 8897 8898 tmp_string = g_strdup_printf("HPRBAR%u", i); 8899 ARMCPRegInfo tmp_hprbarn_reginfo = { 8900 .name = tmp_string, 8901 .type = ARM_CP_NO_RAW, 8902 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8903 .access = PL2_RW, .resetvalue = 0, 8904 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8905 }; 8906 define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo); 8907 g_free(tmp_string); 8908 8909 opc2 = extract32(i, 0, 1) << 2 | 0x1; 8910 tmp_string = g_strdup_printf("HPRLAR%u", i); 8911 ARMCPRegInfo tmp_hprlarn_reginfo = { 8912 .name = tmp_string, 8913 .type = ARM_CP_NO_RAW, 8914 .cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2, 8915 .access = PL2_RW, .resetvalue = 0, 8916 .writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read 8917 }; 8918 define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo); 8919 g_free(tmp_string); 8920 } 8921 } else if (arm_feature(env, ARM_FEATURE_V7)) { 8922 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo); 8923 } 8924 } 8925 8926 if (arm_feature(env, ARM_FEATURE_MPIDR)) { 8927 ARMCPRegInfo mpidr_cp_reginfo[] = { 8928 { .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH, 8929 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5, 8930 .fgt = FGT_MPIDR_EL1, 8931 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW }, 8932 }; 8933 #ifdef CONFIG_USER_ONLY 8934 static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = { 8935 { .name = "MPIDR_EL1", 8936 .fixed_bits = 0x0000000080000000 }, 8937 }; 8938 modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo); 8939 #endif 8940 define_arm_cp_regs(cpu, mpidr_cp_reginfo); 8941 } 8942 8943 if (arm_feature(env, ARM_FEATURE_AUXCR)) { 8944 ARMCPRegInfo auxcr_reginfo[] = { 8945 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH, 8946 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1, 8947 .access = PL1_RW, .accessfn = access_tacr, 8948 .type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr }, 8949 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH, 8950 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1, 8951 .access = PL2_RW, .type = ARM_CP_CONST, 8952 .resetvalue = 0 }, 8953 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64, 8954 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1, 8955 .access = PL3_RW, .type = ARM_CP_CONST, 8956 .resetvalue = 0 }, 8957 }; 8958 define_arm_cp_regs(cpu, auxcr_reginfo); 8959 if (cpu_isar_feature(aa32_ac2, cpu)) { 8960 define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo); 8961 } 8962 } 8963 8964 if (arm_feature(env, ARM_FEATURE_CBAR)) { 8965 /* 8966 * CBAR is IMPDEF, but common on Arm Cortex-A implementations. 8967 * There are two flavours: 8968 * (1) older 32-bit only cores have a simple 32-bit CBAR 8969 * (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a 8970 * 32-bit register visible to AArch32 at a different encoding 8971 * to the "flavour 1" register and with the bits rearranged to 8972 * be able to squash a 64-bit address into the 32-bit view. 8973 * We distinguish the two via the ARM_FEATURE_AARCH64 flag, but 8974 * in future if we support AArch32-only configs of some of the 8975 * AArch64 cores we might need to add a specific feature flag 8976 * to indicate cores with "flavour 2" CBAR. 8977 */ 8978 if (arm_feature(env, ARM_FEATURE_AARCH64)) { 8979 /* 32 bit view is [31:18] 0...0 [43:32]. */ 8980 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18) 8981 | extract64(cpu->reset_cbar, 32, 12); 8982 ARMCPRegInfo cbar_reginfo[] = { 8983 { .name = "CBAR", 8984 .type = ARM_CP_CONST, 8985 .cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0, 8986 .access = PL1_R, .resetvalue = cbar32 }, 8987 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64, 8988 .type = ARM_CP_CONST, 8989 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0, 8990 .access = PL1_R, .resetvalue = cpu->reset_cbar }, 8991 }; 8992 /* We don't implement a r/w 64 bit CBAR currently */ 8993 assert(arm_feature(env, ARM_FEATURE_CBAR_RO)); 8994 define_arm_cp_regs(cpu, cbar_reginfo); 8995 } else { 8996 ARMCPRegInfo cbar = { 8997 .name = "CBAR", 8998 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0, 8999 .access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar, 9000 .fieldoffset = offsetof(CPUARMState, 9001 cp15.c15_config_base_address) 9002 }; 9003 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) { 9004 cbar.access = PL1_R; 9005 cbar.fieldoffset = 0; 9006 cbar.type = ARM_CP_CONST; 9007 } 9008 define_one_arm_cp_reg(cpu, &cbar); 9009 } 9010 } 9011 9012 if (arm_feature(env, ARM_FEATURE_VBAR)) { 9013 static const ARMCPRegInfo vbar_cp_reginfo[] = { 9014 { .name = "VBAR", .state = ARM_CP_STATE_BOTH, 9015 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0, 9016 .access = PL1_RW, .writefn = vbar_write, 9017 .fgt = FGT_VBAR_EL1, 9018 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s), 9019 offsetof(CPUARMState, cp15.vbar_ns) }, 9020 .resetvalue = 0 }, 9021 }; 9022 define_arm_cp_regs(cpu, vbar_cp_reginfo); 9023 } 9024 9025 /* Generic registers whose values depend on the implementation */ 9026 { 9027 ARMCPRegInfo sctlr = { 9028 .name = "SCTLR", .state = ARM_CP_STATE_BOTH, 9029 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0, 9030 .access = PL1_RW, .accessfn = access_tvm_trvm, 9031 .fgt = FGT_SCTLR_EL1, 9032 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s), 9033 offsetof(CPUARMState, cp15.sctlr_ns) }, 9034 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr, 9035 .raw_writefn = raw_write, 9036 }; 9037 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 9038 /* 9039 * Normally we would always end the TB on an SCTLR write, but Linux 9040 * arch/arm/mach-pxa/sleep.S expects two instructions following 9041 * an MMU enable to execute from cache. Imitate this behaviour. 9042 */ 9043 sctlr.type |= ARM_CP_SUPPRESS_TB_END; 9044 } 9045 define_one_arm_cp_reg(cpu, &sctlr); 9046 9047 if (arm_feature(env, ARM_FEATURE_PMSA) && 9048 arm_feature(env, ARM_FEATURE_V8)) { 9049 ARMCPRegInfo vsctlr = { 9050 .name = "VSCTLR", .state = ARM_CP_STATE_AA32, 9051 .cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0, 9052 .access = PL2_RW, .resetvalue = 0x0, 9053 .fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr), 9054 }; 9055 define_one_arm_cp_reg(cpu, &vsctlr); 9056 } 9057 } 9058 9059 if (cpu_isar_feature(aa64_lor, cpu)) { 9060 define_arm_cp_regs(cpu, lor_reginfo); 9061 } 9062 if (cpu_isar_feature(aa64_pan, cpu)) { 9063 define_one_arm_cp_reg(cpu, &pan_reginfo); 9064 } 9065 #ifndef CONFIG_USER_ONLY 9066 if (cpu_isar_feature(aa64_ats1e1, cpu)) { 9067 define_arm_cp_regs(cpu, ats1e1_reginfo); 9068 } 9069 if (cpu_isar_feature(aa32_ats1e1, cpu)) { 9070 define_arm_cp_regs(cpu, ats1cp_reginfo); 9071 } 9072 #endif 9073 if (cpu_isar_feature(aa64_uao, cpu)) { 9074 define_one_arm_cp_reg(cpu, &uao_reginfo); 9075 } 9076 9077 if (cpu_isar_feature(aa64_dit, cpu)) { 9078 define_one_arm_cp_reg(cpu, &dit_reginfo); 9079 } 9080 if (cpu_isar_feature(aa64_ssbs, cpu)) { 9081 define_one_arm_cp_reg(cpu, &ssbs_reginfo); 9082 } 9083 if (cpu_isar_feature(any_ras, cpu)) { 9084 define_arm_cp_regs(cpu, minimal_ras_reginfo); 9085 } 9086 9087 if (cpu_isar_feature(aa64_vh, cpu) || 9088 cpu_isar_feature(aa64_debugv8p2, cpu)) { 9089 define_one_arm_cp_reg(cpu, &contextidr_el2); 9090 } 9091 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9092 define_arm_cp_regs(cpu, vhe_reginfo); 9093 } 9094 9095 if (cpu_isar_feature(aa64_sve, cpu)) { 9096 define_arm_cp_regs(cpu, zcr_reginfo); 9097 } 9098 9099 if (cpu_isar_feature(aa64_hcx, cpu)) { 9100 define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo); 9101 } 9102 9103 #ifdef TARGET_AARCH64 9104 if (cpu_isar_feature(aa64_sme, cpu)) { 9105 define_arm_cp_regs(cpu, sme_reginfo); 9106 } 9107 if (cpu_isar_feature(aa64_pauth, cpu)) { 9108 define_arm_cp_regs(cpu, pauth_reginfo); 9109 } 9110 if (cpu_isar_feature(aa64_rndr, cpu)) { 9111 define_arm_cp_regs(cpu, rndr_reginfo); 9112 } 9113 if (cpu_isar_feature(aa64_tlbirange, cpu)) { 9114 define_arm_cp_regs(cpu, tlbirange_reginfo); 9115 } 9116 if (cpu_isar_feature(aa64_tlbios, cpu)) { 9117 define_arm_cp_regs(cpu, tlbios_reginfo); 9118 } 9119 #ifndef CONFIG_USER_ONLY 9120 /* Data Cache clean instructions up to PoP */ 9121 if (cpu_isar_feature(aa64_dcpop, cpu)) { 9122 define_one_arm_cp_reg(cpu, dcpop_reg); 9123 9124 if (cpu_isar_feature(aa64_dcpodp, cpu)) { 9125 define_one_arm_cp_reg(cpu, dcpodp_reg); 9126 } 9127 } 9128 #endif /*CONFIG_USER_ONLY*/ 9129 9130 /* 9131 * If full MTE is enabled, add all of the system registers. 9132 * If only "instructions available at EL0" are enabled, 9133 * then define only a RAZ/WI version of PSTATE.TCO. 9134 */ 9135 if (cpu_isar_feature(aa64_mte, cpu)) { 9136 define_arm_cp_regs(cpu, mte_reginfo); 9137 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9138 } else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) { 9139 define_arm_cp_regs(cpu, mte_tco_ro_reginfo); 9140 define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo); 9141 } 9142 9143 if (cpu_isar_feature(aa64_scxtnum, cpu)) { 9144 define_arm_cp_regs(cpu, scxtnum_reginfo); 9145 } 9146 9147 if (cpu_isar_feature(aa64_fgt, cpu)) { 9148 define_arm_cp_regs(cpu, fgt_reginfo); 9149 } 9150 #endif 9151 9152 if (cpu_isar_feature(any_predinv, cpu)) { 9153 define_arm_cp_regs(cpu, predinv_reginfo); 9154 } 9155 9156 if (cpu_isar_feature(any_ccidx, cpu)) { 9157 define_arm_cp_regs(cpu, ccsidr2_reginfo); 9158 } 9159 9160 #ifndef CONFIG_USER_ONLY 9161 /* 9162 * Register redirections and aliases must be done last, 9163 * after the registers from the other extensions have been defined. 9164 */ 9165 if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) { 9166 define_arm_vh_e2h_redirects_aliases(cpu); 9167 } 9168 #endif 9169 } 9170 9171 /* Sort alphabetically by type name, except for "any". */ 9172 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b) 9173 { 9174 ObjectClass *class_a = (ObjectClass *)a; 9175 ObjectClass *class_b = (ObjectClass *)b; 9176 const char *name_a, *name_b; 9177 9178 name_a = object_class_get_name(class_a); 9179 name_b = object_class_get_name(class_b); 9180 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) { 9181 return 1; 9182 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) { 9183 return -1; 9184 } else { 9185 return strcmp(name_a, name_b); 9186 } 9187 } 9188 9189 static void arm_cpu_list_entry(gpointer data, gpointer user_data) 9190 { 9191 ObjectClass *oc = data; 9192 CPUClass *cc = CPU_CLASS(oc); 9193 const char *typename; 9194 char *name; 9195 9196 typename = object_class_get_name(oc); 9197 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9198 if (cc->deprecation_note) { 9199 qemu_printf(" %s (deprecated)\n", name); 9200 } else { 9201 qemu_printf(" %s\n", name); 9202 } 9203 g_free(name); 9204 } 9205 9206 void arm_cpu_list(void) 9207 { 9208 GSList *list; 9209 9210 list = object_class_get_list(TYPE_ARM_CPU, false); 9211 list = g_slist_sort(list, arm_cpu_list_compare); 9212 qemu_printf("Available CPUs:\n"); 9213 g_slist_foreach(list, arm_cpu_list_entry, NULL); 9214 g_slist_free(list); 9215 } 9216 9217 static void arm_cpu_add_definition(gpointer data, gpointer user_data) 9218 { 9219 ObjectClass *oc = data; 9220 CpuDefinitionInfoList **cpu_list = user_data; 9221 CpuDefinitionInfo *info; 9222 const char *typename; 9223 9224 typename = object_class_get_name(oc); 9225 info = g_malloc0(sizeof(*info)); 9226 info->name = g_strndup(typename, 9227 strlen(typename) - strlen("-" TYPE_ARM_CPU)); 9228 info->q_typename = g_strdup(typename); 9229 9230 QAPI_LIST_PREPEND(*cpu_list, info); 9231 } 9232 9233 CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp) 9234 { 9235 CpuDefinitionInfoList *cpu_list = NULL; 9236 GSList *list; 9237 9238 list = object_class_get_list(TYPE_ARM_CPU, false); 9239 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list); 9240 g_slist_free(list); 9241 9242 return cpu_list; 9243 } 9244 9245 /* 9246 * Private utility function for define_one_arm_cp_reg_with_opaque(): 9247 * add a single reginfo struct to the hash table. 9248 */ 9249 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r, 9250 void *opaque, CPState state, 9251 CPSecureState secstate, 9252 int crm, int opc1, int opc2, 9253 const char *name) 9254 { 9255 CPUARMState *env = &cpu->env; 9256 uint32_t key; 9257 ARMCPRegInfo *r2; 9258 bool is64 = r->type & ARM_CP_64BIT; 9259 bool ns = secstate & ARM_CP_SECSTATE_NS; 9260 int cp = r->cp; 9261 size_t name_len; 9262 bool make_const; 9263 9264 switch (state) { 9265 case ARM_CP_STATE_AA32: 9266 /* We assume it is a cp15 register if the .cp field is left unset. */ 9267 if (cp == 0 && r->state == ARM_CP_STATE_BOTH) { 9268 cp = 15; 9269 } 9270 key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2); 9271 break; 9272 case ARM_CP_STATE_AA64: 9273 /* 9274 * To allow abbreviation of ARMCPRegInfo definitions, we treat 9275 * cp == 0 as equivalent to the value for "standard guest-visible 9276 * sysreg". STATE_BOTH definitions are also always "standard sysreg" 9277 * in their AArch64 view (the .cp value may be non-zero for the 9278 * benefit of the AArch32 view). 9279 */ 9280 if (cp == 0 || r->state == ARM_CP_STATE_BOTH) { 9281 cp = CP_REG_ARM64_SYSREG_CP; 9282 } 9283 key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2); 9284 break; 9285 default: 9286 g_assert_not_reached(); 9287 } 9288 9289 /* Overriding of an existing definition must be explicitly requested. */ 9290 if (!(r->type & ARM_CP_OVERRIDE)) { 9291 const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key); 9292 if (oldreg) { 9293 assert(oldreg->type & ARM_CP_OVERRIDE); 9294 } 9295 } 9296 9297 /* 9298 * Eliminate registers that are not present because the EL is missing. 9299 * Doing this here makes it easier to put all registers for a given 9300 * feature into the same ARMCPRegInfo array and define them all at once. 9301 */ 9302 make_const = false; 9303 if (arm_feature(env, ARM_FEATURE_EL3)) { 9304 /* 9305 * An EL2 register without EL2 but with EL3 is (usually) RES0. 9306 * See rule RJFFP in section D1.1.3 of DDI0487H.a. 9307 */ 9308 int min_el = ctz32(r->access) / 2; 9309 if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) { 9310 if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) { 9311 return; 9312 } 9313 make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP); 9314 } 9315 } else { 9316 CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2) 9317 ? PL2_RW : PL1_RW); 9318 if ((r->access & max_el) == 0) { 9319 return; 9320 } 9321 } 9322 9323 /* Combine cpreg and name into one allocation. */ 9324 name_len = strlen(name) + 1; 9325 r2 = g_malloc(sizeof(*r2) + name_len); 9326 *r2 = *r; 9327 r2->name = memcpy(r2 + 1, name, name_len); 9328 9329 /* 9330 * Update fields to match the instantiation, overwiting wildcards 9331 * such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH. 9332 */ 9333 r2->cp = cp; 9334 r2->crm = crm; 9335 r2->opc1 = opc1; 9336 r2->opc2 = opc2; 9337 r2->state = state; 9338 r2->secure = secstate; 9339 if (opaque) { 9340 r2->opaque = opaque; 9341 } 9342 9343 if (make_const) { 9344 /* This should not have been a very special register to begin. */ 9345 int old_special = r2->type & ARM_CP_SPECIAL_MASK; 9346 assert(old_special == 0 || old_special == ARM_CP_NOP); 9347 /* 9348 * Set the special function to CONST, retaining the other flags. 9349 * This is important for e.g. ARM_CP_SVE so that we still 9350 * take the SVE trap if CPTR_EL3.EZ == 0. 9351 */ 9352 r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST; 9353 /* 9354 * Usually, these registers become RES0, but there are a few 9355 * special cases like VPIDR_EL2 which have a constant non-zero 9356 * value with writes ignored. 9357 */ 9358 if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) { 9359 r2->resetvalue = 0; 9360 } 9361 /* 9362 * ARM_CP_CONST has precedence, so removing the callbacks and 9363 * offsets are not strictly necessary, but it is potentially 9364 * less confusing to debug later. 9365 */ 9366 r2->readfn = NULL; 9367 r2->writefn = NULL; 9368 r2->raw_readfn = NULL; 9369 r2->raw_writefn = NULL; 9370 r2->resetfn = NULL; 9371 r2->fieldoffset = 0; 9372 r2->bank_fieldoffsets[0] = 0; 9373 r2->bank_fieldoffsets[1] = 0; 9374 } else { 9375 bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]; 9376 9377 if (isbanked) { 9378 /* 9379 * Register is banked (using both entries in array). 9380 * Overwriting fieldoffset as the array is only used to define 9381 * banked registers but later only fieldoffset is used. 9382 */ 9383 r2->fieldoffset = r->bank_fieldoffsets[ns]; 9384 } 9385 if (state == ARM_CP_STATE_AA32) { 9386 if (isbanked) { 9387 /* 9388 * If the register is banked then we don't need to migrate or 9389 * reset the 32-bit instance in certain cases: 9390 * 9391 * 1) If the register has both 32-bit and 64-bit instances 9392 * then we can count on the 64-bit instance taking care 9393 * of the non-secure bank. 9394 * 2) If ARMv8 is enabled then we can count on a 64-bit 9395 * version taking care of the secure bank. This requires 9396 * that separate 32 and 64-bit definitions are provided. 9397 */ 9398 if ((r->state == ARM_CP_STATE_BOTH && ns) || 9399 (arm_feature(env, ARM_FEATURE_V8) && !ns)) { 9400 r2->type |= ARM_CP_ALIAS; 9401 } 9402 } else if ((secstate != r->secure) && !ns) { 9403 /* 9404 * The register is not banked so we only want to allow 9405 * migration of the non-secure instance. 9406 */ 9407 r2->type |= ARM_CP_ALIAS; 9408 } 9409 9410 if (HOST_BIG_ENDIAN && 9411 r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) { 9412 r2->fieldoffset += sizeof(uint32_t); 9413 } 9414 } 9415 } 9416 9417 /* 9418 * By convention, for wildcarded registers only the first 9419 * entry is used for migration; the others are marked as 9420 * ALIAS so we don't try to transfer the register 9421 * multiple times. Special registers (ie NOP/WFI) are 9422 * never migratable and not even raw-accessible. 9423 */ 9424 if (r2->type & ARM_CP_SPECIAL_MASK) { 9425 r2->type |= ARM_CP_NO_RAW; 9426 } 9427 if (((r->crm == CP_ANY) && crm != 0) || 9428 ((r->opc1 == CP_ANY) && opc1 != 0) || 9429 ((r->opc2 == CP_ANY) && opc2 != 0)) { 9430 r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB; 9431 } 9432 9433 /* 9434 * Check that raw accesses are either forbidden or handled. Note that 9435 * we can't assert this earlier because the setup of fieldoffset for 9436 * banked registers has to be done first. 9437 */ 9438 if (!(r2->type & ARM_CP_NO_RAW)) { 9439 assert(!raw_accessors_invalid(r2)); 9440 } 9441 9442 g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2); 9443 } 9444 9445 9446 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, 9447 const ARMCPRegInfo *r, void *opaque) 9448 { 9449 /* 9450 * Define implementations of coprocessor registers. 9451 * We store these in a hashtable because typically 9452 * there are less than 150 registers in a space which 9453 * is 16*16*16*8*8 = 262144 in size. 9454 * Wildcarding is supported for the crm, opc1 and opc2 fields. 9455 * If a register is defined twice then the second definition is 9456 * used, so this can be used to define some generic registers and 9457 * then override them with implementation specific variations. 9458 * At least one of the original and the second definition should 9459 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard 9460 * against accidental use. 9461 * 9462 * The state field defines whether the register is to be 9463 * visible in the AArch32 or AArch64 execution state. If the 9464 * state is set to ARM_CP_STATE_BOTH then we synthesise a 9465 * reginfo structure for the AArch32 view, which sees the lower 9466 * 32 bits of the 64 bit register. 9467 * 9468 * Only registers visible in AArch64 may set r->opc0; opc0 cannot 9469 * be wildcarded. AArch64 registers are always considered to be 64 9470 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of 9471 * the register, if any. 9472 */ 9473 int crm, opc1, opc2; 9474 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm; 9475 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm; 9476 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1; 9477 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1; 9478 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2; 9479 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2; 9480 CPState state; 9481 9482 /* 64 bit registers have only CRm and Opc1 fields */ 9483 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn))); 9484 /* op0 only exists in the AArch64 encodings */ 9485 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0)); 9486 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */ 9487 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT)); 9488 /* 9489 * This API is only for Arm's system coprocessors (14 and 15) or 9490 * (M-profile or v7A-and-earlier only) for implementation defined 9491 * coprocessors in the range 0..7. Our decode assumes this, since 9492 * 8..13 can be used for other insns including VFP and Neon. See 9493 * valid_cp() in translate.c. Assert here that we haven't tried 9494 * to use an invalid coprocessor number. 9495 */ 9496 switch (r->state) { 9497 case ARM_CP_STATE_BOTH: 9498 /* 0 has a special meaning, but otherwise the same rules as AA32. */ 9499 if (r->cp == 0) { 9500 break; 9501 } 9502 /* fall through */ 9503 case ARM_CP_STATE_AA32: 9504 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 9505 !arm_feature(&cpu->env, ARM_FEATURE_M)) { 9506 assert(r->cp >= 14 && r->cp <= 15); 9507 } else { 9508 assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15)); 9509 } 9510 break; 9511 case ARM_CP_STATE_AA64: 9512 assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP); 9513 break; 9514 default: 9515 g_assert_not_reached(); 9516 } 9517 /* 9518 * The AArch64 pseudocode CheckSystemAccess() specifies that op1 9519 * encodes a minimum access level for the register. We roll this 9520 * runtime check into our general permission check code, so check 9521 * here that the reginfo's specified permissions are strict enough 9522 * to encompass the generic architectural permission check. 9523 */ 9524 if (r->state != ARM_CP_STATE_AA32) { 9525 CPAccessRights mask; 9526 switch (r->opc1) { 9527 case 0: 9528 /* min_EL EL1, but some accessible to EL0 via kernel ABI */ 9529 mask = PL0U_R | PL1_RW; 9530 break; 9531 case 1: case 2: 9532 /* min_EL EL1 */ 9533 mask = PL1_RW; 9534 break; 9535 case 3: 9536 /* min_EL EL0 */ 9537 mask = PL0_RW; 9538 break; 9539 case 4: 9540 case 5: 9541 /* min_EL EL2 */ 9542 mask = PL2_RW; 9543 break; 9544 case 6: 9545 /* min_EL EL3 */ 9546 mask = PL3_RW; 9547 break; 9548 case 7: 9549 /* min_EL EL1, secure mode only (we don't check the latter) */ 9550 mask = PL1_RW; 9551 break; 9552 default: 9553 /* broken reginfo with out-of-range opc1 */ 9554 g_assert_not_reached(); 9555 } 9556 /* assert our permissions are not too lax (stricter is fine) */ 9557 assert((r->access & ~mask) == 0); 9558 } 9559 9560 /* 9561 * Check that the register definition has enough info to handle 9562 * reads and writes if they are permitted. 9563 */ 9564 if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) { 9565 if (r->access & PL3_R) { 9566 assert((r->fieldoffset || 9567 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9568 r->readfn); 9569 } 9570 if (r->access & PL3_W) { 9571 assert((r->fieldoffset || 9572 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) || 9573 r->writefn); 9574 } 9575 } 9576 9577 for (crm = crmmin; crm <= crmmax; crm++) { 9578 for (opc1 = opc1min; opc1 <= opc1max; opc1++) { 9579 for (opc2 = opc2min; opc2 <= opc2max; opc2++) { 9580 for (state = ARM_CP_STATE_AA32; 9581 state <= ARM_CP_STATE_AA64; state++) { 9582 if (r->state != state && r->state != ARM_CP_STATE_BOTH) { 9583 continue; 9584 } 9585 if (state == ARM_CP_STATE_AA32) { 9586 /* 9587 * Under AArch32 CP registers can be common 9588 * (same for secure and non-secure world) or banked. 9589 */ 9590 char *name; 9591 9592 switch (r->secure) { 9593 case ARM_CP_SECSTATE_S: 9594 case ARM_CP_SECSTATE_NS: 9595 add_cpreg_to_hashtable(cpu, r, opaque, state, 9596 r->secure, crm, opc1, opc2, 9597 r->name); 9598 break; 9599 case ARM_CP_SECSTATE_BOTH: 9600 name = g_strdup_printf("%s_S", r->name); 9601 add_cpreg_to_hashtable(cpu, r, opaque, state, 9602 ARM_CP_SECSTATE_S, 9603 crm, opc1, opc2, name); 9604 g_free(name); 9605 add_cpreg_to_hashtable(cpu, r, opaque, state, 9606 ARM_CP_SECSTATE_NS, 9607 crm, opc1, opc2, r->name); 9608 break; 9609 default: 9610 g_assert_not_reached(); 9611 } 9612 } else { 9613 /* 9614 * AArch64 registers get mapped to non-secure instance 9615 * of AArch32 9616 */ 9617 add_cpreg_to_hashtable(cpu, r, opaque, state, 9618 ARM_CP_SECSTATE_NS, 9619 crm, opc1, opc2, r->name); 9620 } 9621 } 9622 } 9623 } 9624 } 9625 } 9626 9627 /* Define a whole list of registers */ 9628 void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs, 9629 void *opaque, size_t len) 9630 { 9631 size_t i; 9632 for (i = 0; i < len; ++i) { 9633 define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque); 9634 } 9635 } 9636 9637 /* 9638 * Modify ARMCPRegInfo for access from userspace. 9639 * 9640 * This is a data driven modification directed by 9641 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as 9642 * user-space cannot alter any values and dynamic values pertaining to 9643 * execution state are hidden from user space view anyway. 9644 */ 9645 void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len, 9646 const ARMCPRegUserSpaceInfo *mods, 9647 size_t mods_len) 9648 { 9649 for (size_t mi = 0; mi < mods_len; ++mi) { 9650 const ARMCPRegUserSpaceInfo *m = mods + mi; 9651 GPatternSpec *pat = NULL; 9652 9653 if (m->is_glob) { 9654 pat = g_pattern_spec_new(m->name); 9655 } 9656 for (size_t ri = 0; ri < regs_len; ++ri) { 9657 ARMCPRegInfo *r = regs + ri; 9658 9659 if (pat && g_pattern_match_string(pat, r->name)) { 9660 r->type = ARM_CP_CONST; 9661 r->access = PL0U_R; 9662 r->resetvalue = 0; 9663 /* continue */ 9664 } else if (strcmp(r->name, m->name) == 0) { 9665 r->type = ARM_CP_CONST; 9666 r->access = PL0U_R; 9667 r->resetvalue &= m->exported_bits; 9668 r->resetvalue |= m->fixed_bits; 9669 break; 9670 } 9671 } 9672 if (pat) { 9673 g_pattern_spec_free(pat); 9674 } 9675 } 9676 } 9677 9678 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp) 9679 { 9680 return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp); 9681 } 9682 9683 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri, 9684 uint64_t value) 9685 { 9686 /* Helper coprocessor write function for write-ignore registers */ 9687 } 9688 9689 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri) 9690 { 9691 /* Helper coprocessor write function for read-as-zero registers */ 9692 return 0; 9693 } 9694 9695 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque) 9696 { 9697 /* Helper coprocessor reset function for do-nothing-on-reset registers */ 9698 } 9699 9700 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type) 9701 { 9702 /* 9703 * Return true if it is not valid for us to switch to 9704 * this CPU mode (ie all the UNPREDICTABLE cases in 9705 * the ARM ARM CPSRWriteByInstr pseudocode). 9706 */ 9707 9708 /* Changes to or from Hyp via MSR and CPS are illegal. */ 9709 if (write_type == CPSRWriteByInstr && 9710 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP || 9711 mode == ARM_CPU_MODE_HYP)) { 9712 return 1; 9713 } 9714 9715 switch (mode) { 9716 case ARM_CPU_MODE_USR: 9717 return 0; 9718 case ARM_CPU_MODE_SYS: 9719 case ARM_CPU_MODE_SVC: 9720 case ARM_CPU_MODE_ABT: 9721 case ARM_CPU_MODE_UND: 9722 case ARM_CPU_MODE_IRQ: 9723 case ARM_CPU_MODE_FIQ: 9724 /* 9725 * Note that we don't implement the IMPDEF NSACR.RFR which in v7 9726 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.) 9727 */ 9728 /* 9729 * If HCR.TGE is set then changes from Monitor to NS PL1 via MSR 9730 * and CPS are treated as illegal mode changes. 9731 */ 9732 if (write_type == CPSRWriteByInstr && 9733 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON && 9734 (arm_hcr_el2_eff(env) & HCR_TGE)) { 9735 return 1; 9736 } 9737 return 0; 9738 case ARM_CPU_MODE_HYP: 9739 return !arm_is_el2_enabled(env) || arm_current_el(env) < 2; 9740 case ARM_CPU_MODE_MON: 9741 return arm_current_el(env) < 3; 9742 default: 9743 return 1; 9744 } 9745 } 9746 9747 uint32_t cpsr_read(CPUARMState *env) 9748 { 9749 int ZF; 9750 ZF = (env->ZF == 0); 9751 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) | 9752 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27) 9753 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25) 9754 | ((env->condexec_bits & 0xfc) << 8) 9755 | (env->GE << 16) | (env->daif & CPSR_AIF); 9756 } 9757 9758 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask, 9759 CPSRWriteType write_type) 9760 { 9761 uint32_t changed_daif; 9762 bool rebuild_hflags = (write_type != CPSRWriteRaw) && 9763 (mask & (CPSR_M | CPSR_E | CPSR_IL)); 9764 9765 if (mask & CPSR_NZCV) { 9766 env->ZF = (~val) & CPSR_Z; 9767 env->NF = val; 9768 env->CF = (val >> 29) & 1; 9769 env->VF = (val << 3) & 0x80000000; 9770 } 9771 if (mask & CPSR_Q) { 9772 env->QF = ((val & CPSR_Q) != 0); 9773 } 9774 if (mask & CPSR_T) { 9775 env->thumb = ((val & CPSR_T) != 0); 9776 } 9777 if (mask & CPSR_IT_0_1) { 9778 env->condexec_bits &= ~3; 9779 env->condexec_bits |= (val >> 25) & 3; 9780 } 9781 if (mask & CPSR_IT_2_7) { 9782 env->condexec_bits &= 3; 9783 env->condexec_bits |= (val >> 8) & 0xfc; 9784 } 9785 if (mask & CPSR_GE) { 9786 env->GE = (val >> 16) & 0xf; 9787 } 9788 9789 /* 9790 * In a V7 implementation that includes the security extensions but does 9791 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control 9792 * whether non-secure software is allowed to change the CPSR_F and CPSR_A 9793 * bits respectively. 9794 * 9795 * In a V8 implementation, it is permitted for privileged software to 9796 * change the CPSR A/F bits regardless of the SCR.AW/FW bits. 9797 */ 9798 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) && 9799 arm_feature(env, ARM_FEATURE_EL3) && 9800 !arm_feature(env, ARM_FEATURE_EL2) && 9801 !arm_is_secure(env)) { 9802 9803 changed_daif = (env->daif ^ val) & mask; 9804 9805 if (changed_daif & CPSR_A) { 9806 /* 9807 * Check to see if we are allowed to change the masking of async 9808 * abort exceptions from a non-secure state. 9809 */ 9810 if (!(env->cp15.scr_el3 & SCR_AW)) { 9811 qemu_log_mask(LOG_GUEST_ERROR, 9812 "Ignoring attempt to switch CPSR_A flag from " 9813 "non-secure world with SCR.AW bit clear\n"); 9814 mask &= ~CPSR_A; 9815 } 9816 } 9817 9818 if (changed_daif & CPSR_F) { 9819 /* 9820 * Check to see if we are allowed to change the masking of FIQ 9821 * exceptions from a non-secure state. 9822 */ 9823 if (!(env->cp15.scr_el3 & SCR_FW)) { 9824 qemu_log_mask(LOG_GUEST_ERROR, 9825 "Ignoring attempt to switch CPSR_F flag from " 9826 "non-secure world with SCR.FW bit clear\n"); 9827 mask &= ~CPSR_F; 9828 } 9829 9830 /* 9831 * Check whether non-maskable FIQ (NMFI) support is enabled. 9832 * If this bit is set software is not allowed to mask 9833 * FIQs, but is allowed to set CPSR_F to 0. 9834 */ 9835 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) && 9836 (val & CPSR_F)) { 9837 qemu_log_mask(LOG_GUEST_ERROR, 9838 "Ignoring attempt to enable CPSR_F flag " 9839 "(non-maskable FIQ [NMFI] support enabled)\n"); 9840 mask &= ~CPSR_F; 9841 } 9842 } 9843 } 9844 9845 env->daif &= ~(CPSR_AIF & mask); 9846 env->daif |= val & CPSR_AIF & mask; 9847 9848 if (write_type != CPSRWriteRaw && 9849 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) { 9850 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) { 9851 /* 9852 * Note that we can only get here in USR mode if this is a 9853 * gdb stub write; for this case we follow the architectural 9854 * behaviour for guest writes in USR mode of ignoring an attempt 9855 * to switch mode. (Those are caught by translate.c for writes 9856 * triggered by guest instructions.) 9857 */ 9858 mask &= ~CPSR_M; 9859 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) { 9860 /* 9861 * Attempt to switch to an invalid mode: this is UNPREDICTABLE in 9862 * v7, and has defined behaviour in v8: 9863 * + leave CPSR.M untouched 9864 * + allow changes to the other CPSR fields 9865 * + set PSTATE.IL 9866 * For user changes via the GDB stub, we don't set PSTATE.IL, 9867 * as this would be unnecessarily harsh for a user error. 9868 */ 9869 mask &= ~CPSR_M; 9870 if (write_type != CPSRWriteByGDBStub && 9871 arm_feature(env, ARM_FEATURE_V8)) { 9872 mask |= CPSR_IL; 9873 val |= CPSR_IL; 9874 } 9875 qemu_log_mask(LOG_GUEST_ERROR, 9876 "Illegal AArch32 mode switch attempt from %s to %s\n", 9877 aarch32_mode_name(env->uncached_cpsr), 9878 aarch32_mode_name(val)); 9879 } else { 9880 qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n", 9881 write_type == CPSRWriteExceptionReturn ? 9882 "Exception return from AArch32" : 9883 "AArch32 mode switch from", 9884 aarch32_mode_name(env->uncached_cpsr), 9885 aarch32_mode_name(val), env->regs[15]); 9886 switch_mode(env, val & CPSR_M); 9887 } 9888 } 9889 mask &= ~CACHED_CPSR_BITS; 9890 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask); 9891 if (tcg_enabled() && rebuild_hflags) { 9892 arm_rebuild_hflags(env); 9893 } 9894 } 9895 9896 /* Sign/zero extend */ 9897 uint32_t HELPER(sxtb16)(uint32_t x) 9898 { 9899 uint32_t res; 9900 res = (uint16_t)(int8_t)x; 9901 res |= (uint32_t)(int8_t)(x >> 16) << 16; 9902 return res; 9903 } 9904 9905 static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra) 9906 { 9907 /* 9908 * Take a division-by-zero exception if necessary; otherwise return 9909 * to get the usual non-trapping division behaviour (result of 0) 9910 */ 9911 if (arm_feature(env, ARM_FEATURE_M) 9912 && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) { 9913 raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra); 9914 } 9915 } 9916 9917 uint32_t HELPER(uxtb16)(uint32_t x) 9918 { 9919 uint32_t res; 9920 res = (uint16_t)(uint8_t)x; 9921 res |= (uint32_t)(uint8_t)(x >> 16) << 16; 9922 return res; 9923 } 9924 9925 int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den) 9926 { 9927 if (den == 0) { 9928 handle_possible_div0_trap(env, GETPC()); 9929 return 0; 9930 } 9931 if (num == INT_MIN && den == -1) { 9932 return INT_MIN; 9933 } 9934 return num / den; 9935 } 9936 9937 uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den) 9938 { 9939 if (den == 0) { 9940 handle_possible_div0_trap(env, GETPC()); 9941 return 0; 9942 } 9943 return num / den; 9944 } 9945 9946 uint32_t HELPER(rbit)(uint32_t x) 9947 { 9948 return revbit32(x); 9949 } 9950 9951 #ifdef CONFIG_USER_ONLY 9952 9953 static void switch_mode(CPUARMState *env, int mode) 9954 { 9955 ARMCPU *cpu = env_archcpu(env); 9956 9957 if (mode != ARM_CPU_MODE_USR) { 9958 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n"); 9959 } 9960 } 9961 9962 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 9963 uint32_t cur_el, bool secure) 9964 { 9965 return 1; 9966 } 9967 9968 void aarch64_sync_64_to_32(CPUARMState *env) 9969 { 9970 g_assert_not_reached(); 9971 } 9972 9973 #else 9974 9975 static void switch_mode(CPUARMState *env, int mode) 9976 { 9977 int old_mode; 9978 int i; 9979 9980 old_mode = env->uncached_cpsr & CPSR_M; 9981 if (mode == old_mode) { 9982 return; 9983 } 9984 9985 if (old_mode == ARM_CPU_MODE_FIQ) { 9986 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9987 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); 9988 } else if (mode == ARM_CPU_MODE_FIQ) { 9989 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); 9990 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); 9991 } 9992 9993 i = bank_number(old_mode); 9994 env->banked_r13[i] = env->regs[13]; 9995 env->banked_spsr[i] = env->spsr; 9996 9997 i = bank_number(mode); 9998 env->regs[13] = env->banked_r13[i]; 9999 env->spsr = env->banked_spsr[i]; 10000 10001 env->banked_r14[r14_bank_number(old_mode)] = env->regs[14]; 10002 env->regs[14] = env->banked_r14[r14_bank_number(mode)]; 10003 } 10004 10005 /* 10006 * Physical Interrupt Target EL Lookup Table 10007 * 10008 * [ From ARM ARM section G1.13.4 (Table G1-15) ] 10009 * 10010 * The below multi-dimensional table is used for looking up the target 10011 * exception level given numerous condition criteria. Specifically, the 10012 * target EL is based on SCR and HCR routing controls as well as the 10013 * currently executing EL and secure state. 10014 * 10015 * Dimensions: 10016 * target_el_table[2][2][2][2][2][4] 10017 * | | | | | +--- Current EL 10018 * | | | | +------ Non-secure(0)/Secure(1) 10019 * | | | +--------- HCR mask override 10020 * | | +------------ SCR exec state control 10021 * | +--------------- SCR mask override 10022 * +------------------ 32-bit(0)/64-bit(1) EL3 10023 * 10024 * The table values are as such: 10025 * 0-3 = EL0-EL3 10026 * -1 = Cannot occur 10027 * 10028 * The ARM ARM target EL table includes entries indicating that an "exception 10029 * is not taken". The two cases where this is applicable are: 10030 * 1) An exception is taken from EL3 but the SCR does not have the exception 10031 * routed to EL3. 10032 * 2) An exception is taken from EL2 but the HCR does not have the exception 10033 * routed to EL2. 10034 * In these two cases, the below table contain a target of EL1. This value is 10035 * returned as it is expected that the consumer of the table data will check 10036 * for "target EL >= current EL" to ensure the exception is not taken. 10037 * 10038 * SCR HCR 10039 * 64 EA AMO From 10040 * BIT IRQ IMO Non-secure Secure 10041 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3 10042 */ 10043 static const int8_t target_el_table[2][2][2][2][2][4] = { 10044 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10045 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},}, 10046 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },}, 10047 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},}, 10048 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10049 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},}, 10050 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },}, 10051 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},}, 10052 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },}, 10053 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},}, 10054 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },}, 10055 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},}, 10056 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },}, 10057 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},}, 10058 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },}, 10059 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},}, 10060 }; 10061 10062 /* 10063 * Determine the target EL for physical exceptions 10064 */ 10065 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx, 10066 uint32_t cur_el, bool secure) 10067 { 10068 CPUARMState *env = cs->env_ptr; 10069 bool rw; 10070 bool scr; 10071 bool hcr; 10072 int target_el; 10073 /* Is the highest EL AArch64? */ 10074 bool is64 = arm_feature(env, ARM_FEATURE_AARCH64); 10075 uint64_t hcr_el2; 10076 10077 if (arm_feature(env, ARM_FEATURE_EL3)) { 10078 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW); 10079 } else { 10080 /* 10081 * Either EL2 is the highest EL (and so the EL2 register width 10082 * is given by is64); or there is no EL2 or EL3, in which case 10083 * the value of 'rw' does not affect the table lookup anyway. 10084 */ 10085 rw = is64; 10086 } 10087 10088 hcr_el2 = arm_hcr_el2_eff(env); 10089 switch (excp_idx) { 10090 case EXCP_IRQ: 10091 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); 10092 hcr = hcr_el2 & HCR_IMO; 10093 break; 10094 case EXCP_FIQ: 10095 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); 10096 hcr = hcr_el2 & HCR_FMO; 10097 break; 10098 default: 10099 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); 10100 hcr = hcr_el2 & HCR_AMO; 10101 break; 10102 }; 10103 10104 /* 10105 * For these purposes, TGE and AMO/IMO/FMO both force the 10106 * interrupt to EL2. Fold TGE into the bit extracted above. 10107 */ 10108 hcr |= (hcr_el2 & HCR_TGE) != 0; 10109 10110 /* Perform a table-lookup for the target EL given the current state */ 10111 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el]; 10112 10113 assert(target_el > 0); 10114 10115 return target_el; 10116 } 10117 10118 void arm_log_exception(CPUState *cs) 10119 { 10120 int idx = cs->exception_index; 10121 10122 if (qemu_loglevel_mask(CPU_LOG_INT)) { 10123 const char *exc = NULL; 10124 static const char * const excnames[] = { 10125 [EXCP_UDEF] = "Undefined Instruction", 10126 [EXCP_SWI] = "SVC", 10127 [EXCP_PREFETCH_ABORT] = "Prefetch Abort", 10128 [EXCP_DATA_ABORT] = "Data Abort", 10129 [EXCP_IRQ] = "IRQ", 10130 [EXCP_FIQ] = "FIQ", 10131 [EXCP_BKPT] = "Breakpoint", 10132 [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit", 10133 [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage", 10134 [EXCP_HVC] = "Hypervisor Call", 10135 [EXCP_HYP_TRAP] = "Hypervisor Trap", 10136 [EXCP_SMC] = "Secure Monitor Call", 10137 [EXCP_VIRQ] = "Virtual IRQ", 10138 [EXCP_VFIQ] = "Virtual FIQ", 10139 [EXCP_SEMIHOST] = "Semihosting call", 10140 [EXCP_NOCP] = "v7M NOCP UsageFault", 10141 [EXCP_INVSTATE] = "v7M INVSTATE UsageFault", 10142 [EXCP_STKOF] = "v8M STKOF UsageFault", 10143 [EXCP_LAZYFP] = "v7M exception during lazy FP stacking", 10144 [EXCP_LSERR] = "v8M LSERR UsageFault", 10145 [EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault", 10146 [EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault", 10147 [EXCP_VSERR] = "Virtual SERR", 10148 }; 10149 10150 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) { 10151 exc = excnames[idx]; 10152 } 10153 if (!exc) { 10154 exc = "unknown"; 10155 } 10156 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n", 10157 idx, exc, cs->cpu_index); 10158 } 10159 } 10160 10161 /* 10162 * Function used to synchronize QEMU's AArch64 register set with AArch32 10163 * register set. This is necessary when switching between AArch32 and AArch64 10164 * execution state. 10165 */ 10166 void aarch64_sync_32_to_64(CPUARMState *env) 10167 { 10168 int i; 10169 uint32_t mode = env->uncached_cpsr & CPSR_M; 10170 10171 /* We can blanket copy R[0:7] to X[0:7] */ 10172 for (i = 0; i < 8; i++) { 10173 env->xregs[i] = env->regs[i]; 10174 } 10175 10176 /* 10177 * Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12. 10178 * Otherwise, they come from the banked user regs. 10179 */ 10180 if (mode == ARM_CPU_MODE_FIQ) { 10181 for (i = 8; i < 13; i++) { 10182 env->xregs[i] = env->usr_regs[i - 8]; 10183 } 10184 } else { 10185 for (i = 8; i < 13; i++) { 10186 env->xregs[i] = env->regs[i]; 10187 } 10188 } 10189 10190 /* 10191 * Registers x13-x23 are the various mode SP and FP registers. Registers 10192 * r13 and r14 are only copied if we are in that mode, otherwise we copy 10193 * from the mode banked register. 10194 */ 10195 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10196 env->xregs[13] = env->regs[13]; 10197 env->xregs[14] = env->regs[14]; 10198 } else { 10199 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)]; 10200 /* HYP is an exception in that it is copied from r14 */ 10201 if (mode == ARM_CPU_MODE_HYP) { 10202 env->xregs[14] = env->regs[14]; 10203 } else { 10204 env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)]; 10205 } 10206 } 10207 10208 if (mode == ARM_CPU_MODE_HYP) { 10209 env->xregs[15] = env->regs[13]; 10210 } else { 10211 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)]; 10212 } 10213 10214 if (mode == ARM_CPU_MODE_IRQ) { 10215 env->xregs[16] = env->regs[14]; 10216 env->xregs[17] = env->regs[13]; 10217 } else { 10218 env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)]; 10219 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)]; 10220 } 10221 10222 if (mode == ARM_CPU_MODE_SVC) { 10223 env->xregs[18] = env->regs[14]; 10224 env->xregs[19] = env->regs[13]; 10225 } else { 10226 env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)]; 10227 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)]; 10228 } 10229 10230 if (mode == ARM_CPU_MODE_ABT) { 10231 env->xregs[20] = env->regs[14]; 10232 env->xregs[21] = env->regs[13]; 10233 } else { 10234 env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)]; 10235 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)]; 10236 } 10237 10238 if (mode == ARM_CPU_MODE_UND) { 10239 env->xregs[22] = env->regs[14]; 10240 env->xregs[23] = env->regs[13]; 10241 } else { 10242 env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)]; 10243 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)]; 10244 } 10245 10246 /* 10247 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10248 * mode, then we can copy from r8-r14. Otherwise, we copy from the 10249 * FIQ bank for r8-r14. 10250 */ 10251 if (mode == ARM_CPU_MODE_FIQ) { 10252 for (i = 24; i < 31; i++) { 10253 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */ 10254 } 10255 } else { 10256 for (i = 24; i < 29; i++) { 10257 env->xregs[i] = env->fiq_regs[i - 24]; 10258 } 10259 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)]; 10260 env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)]; 10261 } 10262 10263 env->pc = env->regs[15]; 10264 } 10265 10266 /* 10267 * Function used to synchronize QEMU's AArch32 register set with AArch64 10268 * register set. This is necessary when switching between AArch32 and AArch64 10269 * execution state. 10270 */ 10271 void aarch64_sync_64_to_32(CPUARMState *env) 10272 { 10273 int i; 10274 uint32_t mode = env->uncached_cpsr & CPSR_M; 10275 10276 /* We can blanket copy X[0:7] to R[0:7] */ 10277 for (i = 0; i < 8; i++) { 10278 env->regs[i] = env->xregs[i]; 10279 } 10280 10281 /* 10282 * Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12. 10283 * Otherwise, we copy x8-x12 into the banked user regs. 10284 */ 10285 if (mode == ARM_CPU_MODE_FIQ) { 10286 for (i = 8; i < 13; i++) { 10287 env->usr_regs[i - 8] = env->xregs[i]; 10288 } 10289 } else { 10290 for (i = 8; i < 13; i++) { 10291 env->regs[i] = env->xregs[i]; 10292 } 10293 } 10294 10295 /* 10296 * Registers r13 & r14 depend on the current mode. 10297 * If we are in a given mode, we copy the corresponding x registers to r13 10298 * and r14. Otherwise, we copy the x register to the banked r13 and r14 10299 * for the mode. 10300 */ 10301 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) { 10302 env->regs[13] = env->xregs[13]; 10303 env->regs[14] = env->xregs[14]; 10304 } else { 10305 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13]; 10306 10307 /* 10308 * HYP is an exception in that it does not have its own banked r14 but 10309 * shares the USR r14 10310 */ 10311 if (mode == ARM_CPU_MODE_HYP) { 10312 env->regs[14] = env->xregs[14]; 10313 } else { 10314 env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14]; 10315 } 10316 } 10317 10318 if (mode == ARM_CPU_MODE_HYP) { 10319 env->regs[13] = env->xregs[15]; 10320 } else { 10321 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15]; 10322 } 10323 10324 if (mode == ARM_CPU_MODE_IRQ) { 10325 env->regs[14] = env->xregs[16]; 10326 env->regs[13] = env->xregs[17]; 10327 } else { 10328 env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16]; 10329 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17]; 10330 } 10331 10332 if (mode == ARM_CPU_MODE_SVC) { 10333 env->regs[14] = env->xregs[18]; 10334 env->regs[13] = env->xregs[19]; 10335 } else { 10336 env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18]; 10337 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19]; 10338 } 10339 10340 if (mode == ARM_CPU_MODE_ABT) { 10341 env->regs[14] = env->xregs[20]; 10342 env->regs[13] = env->xregs[21]; 10343 } else { 10344 env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20]; 10345 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21]; 10346 } 10347 10348 if (mode == ARM_CPU_MODE_UND) { 10349 env->regs[14] = env->xregs[22]; 10350 env->regs[13] = env->xregs[23]; 10351 } else { 10352 env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22]; 10353 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23]; 10354 } 10355 10356 /* 10357 * Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ 10358 * mode, then we can copy to r8-r14. Otherwise, we copy to the 10359 * FIQ bank for r8-r14. 10360 */ 10361 if (mode == ARM_CPU_MODE_FIQ) { 10362 for (i = 24; i < 31; i++) { 10363 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */ 10364 } 10365 } else { 10366 for (i = 24; i < 29; i++) { 10367 env->fiq_regs[i - 24] = env->xregs[i]; 10368 } 10369 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29]; 10370 env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30]; 10371 } 10372 10373 env->regs[15] = env->pc; 10374 } 10375 10376 static void take_aarch32_exception(CPUARMState *env, int new_mode, 10377 uint32_t mask, uint32_t offset, 10378 uint32_t newpc) 10379 { 10380 int new_el; 10381 10382 /* Change the CPU state so as to actually take the exception. */ 10383 switch_mode(env, new_mode); 10384 10385 /* 10386 * For exceptions taken to AArch32 we must clear the SS bit in both 10387 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now. 10388 */ 10389 env->pstate &= ~PSTATE_SS; 10390 env->spsr = cpsr_read(env); 10391 /* Clear IT bits. */ 10392 env->condexec_bits = 0; 10393 /* Switch to the new mode, and to the correct instruction set. */ 10394 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode; 10395 10396 /* This must be after mode switching. */ 10397 new_el = arm_current_el(env); 10398 10399 /* Set new mode endianness */ 10400 env->uncached_cpsr &= ~CPSR_E; 10401 if (env->cp15.sctlr_el[new_el] & SCTLR_EE) { 10402 env->uncached_cpsr |= CPSR_E; 10403 } 10404 /* J and IL must always be cleared for exception entry */ 10405 env->uncached_cpsr &= ~(CPSR_IL | CPSR_J); 10406 env->daif |= mask; 10407 10408 if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) { 10409 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) { 10410 env->uncached_cpsr |= CPSR_SSBS; 10411 } else { 10412 env->uncached_cpsr &= ~CPSR_SSBS; 10413 } 10414 } 10415 10416 if (new_mode == ARM_CPU_MODE_HYP) { 10417 env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0; 10418 env->elr_el[2] = env->regs[15]; 10419 } else { 10420 /* CPSR.PAN is normally preserved preserved unless... */ 10421 if (cpu_isar_feature(aa32_pan, env_archcpu(env))) { 10422 switch (new_el) { 10423 case 3: 10424 if (!arm_is_secure_below_el3(env)) { 10425 /* ... the target is EL3, from non-secure state. */ 10426 env->uncached_cpsr &= ~CPSR_PAN; 10427 break; 10428 } 10429 /* ... the target is EL3, from secure state ... */ 10430 /* fall through */ 10431 case 1: 10432 /* ... the target is EL1 and SCTLR.SPAN is 0. */ 10433 if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) { 10434 env->uncached_cpsr |= CPSR_PAN; 10435 } 10436 break; 10437 } 10438 } 10439 /* 10440 * this is a lie, as there was no c1_sys on V4T/V5, but who cares 10441 * and we should just guard the thumb mode on V4 10442 */ 10443 if (arm_feature(env, ARM_FEATURE_V4T)) { 10444 env->thumb = 10445 (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0; 10446 } 10447 env->regs[14] = env->regs[15] + offset; 10448 } 10449 env->regs[15] = newpc; 10450 10451 if (tcg_enabled()) { 10452 arm_rebuild_hflags(env); 10453 } 10454 } 10455 10456 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs) 10457 { 10458 /* 10459 * Handle exception entry to Hyp mode; this is sufficiently 10460 * different to entry to other AArch32 modes that we handle it 10461 * separately here. 10462 * 10463 * The vector table entry used is always the 0x14 Hyp mode entry point, 10464 * unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp. 10465 * The offset applied to the preferred return address is always zero 10466 * (see DDI0487C.a section G1.12.3). 10467 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values. 10468 */ 10469 uint32_t addr, mask; 10470 ARMCPU *cpu = ARM_CPU(cs); 10471 CPUARMState *env = &cpu->env; 10472 10473 switch (cs->exception_index) { 10474 case EXCP_UDEF: 10475 addr = 0x04; 10476 break; 10477 case EXCP_SWI: 10478 addr = 0x08; 10479 break; 10480 case EXCP_BKPT: 10481 /* Fall through to prefetch abort. */ 10482 case EXCP_PREFETCH_ABORT: 10483 env->cp15.ifar_s = env->exception.vaddress; 10484 qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n", 10485 (uint32_t)env->exception.vaddress); 10486 addr = 0x0c; 10487 break; 10488 case EXCP_DATA_ABORT: 10489 env->cp15.dfar_s = env->exception.vaddress; 10490 qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n", 10491 (uint32_t)env->exception.vaddress); 10492 addr = 0x10; 10493 break; 10494 case EXCP_IRQ: 10495 addr = 0x18; 10496 break; 10497 case EXCP_FIQ: 10498 addr = 0x1c; 10499 break; 10500 case EXCP_HVC: 10501 addr = 0x08; 10502 break; 10503 case EXCP_HYP_TRAP: 10504 addr = 0x14; 10505 break; 10506 default: 10507 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10508 } 10509 10510 if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) { 10511 if (!arm_feature(env, ARM_FEATURE_V8)) { 10512 /* 10513 * QEMU syndrome values are v8-style. v7 has the IL bit 10514 * UNK/SBZP for "field not valid" cases, where v8 uses RES1. 10515 * If this is a v7 CPU, squash the IL bit in those cases. 10516 */ 10517 if (cs->exception_index == EXCP_PREFETCH_ABORT || 10518 (cs->exception_index == EXCP_DATA_ABORT && 10519 !(env->exception.syndrome & ARM_EL_ISV)) || 10520 syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) { 10521 env->exception.syndrome &= ~ARM_EL_IL; 10522 } 10523 } 10524 env->cp15.esr_el[2] = env->exception.syndrome; 10525 } 10526 10527 if (arm_current_el(env) != 2 && addr < 0x14) { 10528 addr = 0x14; 10529 } 10530 10531 mask = 0; 10532 if (!(env->cp15.scr_el3 & SCR_EA)) { 10533 mask |= CPSR_A; 10534 } 10535 if (!(env->cp15.scr_el3 & SCR_IRQ)) { 10536 mask |= CPSR_I; 10537 } 10538 if (!(env->cp15.scr_el3 & SCR_FIQ)) { 10539 mask |= CPSR_F; 10540 } 10541 10542 addr += env->cp15.hvbar; 10543 10544 take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr); 10545 } 10546 10547 static void arm_cpu_do_interrupt_aarch32(CPUState *cs) 10548 { 10549 ARMCPU *cpu = ARM_CPU(cs); 10550 CPUARMState *env = &cpu->env; 10551 uint32_t addr; 10552 uint32_t mask; 10553 int new_mode; 10554 uint32_t offset; 10555 uint32_t moe; 10556 10557 /* If this is a debug exception we must update the DBGDSCR.MOE bits */ 10558 switch (syn_get_ec(env->exception.syndrome)) { 10559 case EC_BREAKPOINT: 10560 case EC_BREAKPOINT_SAME_EL: 10561 moe = 1; 10562 break; 10563 case EC_WATCHPOINT: 10564 case EC_WATCHPOINT_SAME_EL: 10565 moe = 10; 10566 break; 10567 case EC_AA32_BKPT: 10568 moe = 3; 10569 break; 10570 case EC_VECTORCATCH: 10571 moe = 5; 10572 break; 10573 default: 10574 moe = 0; 10575 break; 10576 } 10577 10578 if (moe) { 10579 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe); 10580 } 10581 10582 if (env->exception.target_el == 2) { 10583 arm_cpu_do_interrupt_aarch32_hyp(cs); 10584 return; 10585 } 10586 10587 switch (cs->exception_index) { 10588 case EXCP_UDEF: 10589 new_mode = ARM_CPU_MODE_UND; 10590 addr = 0x04; 10591 mask = CPSR_I; 10592 if (env->thumb) { 10593 offset = 2; 10594 } else { 10595 offset = 4; 10596 } 10597 break; 10598 case EXCP_SWI: 10599 new_mode = ARM_CPU_MODE_SVC; 10600 addr = 0x08; 10601 mask = CPSR_I; 10602 /* The PC already points to the next instruction. */ 10603 offset = 0; 10604 break; 10605 case EXCP_BKPT: 10606 /* Fall through to prefetch abort. */ 10607 case EXCP_PREFETCH_ABORT: 10608 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr); 10609 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress); 10610 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n", 10611 env->exception.fsr, (uint32_t)env->exception.vaddress); 10612 new_mode = ARM_CPU_MODE_ABT; 10613 addr = 0x0c; 10614 mask = CPSR_A | CPSR_I; 10615 offset = 4; 10616 break; 10617 case EXCP_DATA_ABORT: 10618 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10619 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress); 10620 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n", 10621 env->exception.fsr, 10622 (uint32_t)env->exception.vaddress); 10623 new_mode = ARM_CPU_MODE_ABT; 10624 addr = 0x10; 10625 mask = CPSR_A | CPSR_I; 10626 offset = 8; 10627 break; 10628 case EXCP_IRQ: 10629 new_mode = ARM_CPU_MODE_IRQ; 10630 addr = 0x18; 10631 /* Disable IRQ and imprecise data aborts. */ 10632 mask = CPSR_A | CPSR_I; 10633 offset = 4; 10634 if (env->cp15.scr_el3 & SCR_IRQ) { 10635 /* IRQ routed to monitor mode */ 10636 new_mode = ARM_CPU_MODE_MON; 10637 mask |= CPSR_F; 10638 } 10639 break; 10640 case EXCP_FIQ: 10641 new_mode = ARM_CPU_MODE_FIQ; 10642 addr = 0x1c; 10643 /* Disable FIQ, IRQ and imprecise data aborts. */ 10644 mask = CPSR_A | CPSR_I | CPSR_F; 10645 if (env->cp15.scr_el3 & SCR_FIQ) { 10646 /* FIQ routed to monitor mode */ 10647 new_mode = ARM_CPU_MODE_MON; 10648 } 10649 offset = 4; 10650 break; 10651 case EXCP_VIRQ: 10652 new_mode = ARM_CPU_MODE_IRQ; 10653 addr = 0x18; 10654 /* Disable IRQ and imprecise data aborts. */ 10655 mask = CPSR_A | CPSR_I; 10656 offset = 4; 10657 break; 10658 case EXCP_VFIQ: 10659 new_mode = ARM_CPU_MODE_FIQ; 10660 addr = 0x1c; 10661 /* Disable FIQ, IRQ and imprecise data aborts. */ 10662 mask = CPSR_A | CPSR_I | CPSR_F; 10663 offset = 4; 10664 break; 10665 case EXCP_VSERR: 10666 { 10667 /* 10668 * Note that this is reported as a data abort, but the DFAR 10669 * has an UNKNOWN value. Construct the SError syndrome from 10670 * AET and ExT fields. 10671 */ 10672 ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, }; 10673 10674 if (extended_addresses_enabled(env)) { 10675 env->exception.fsr = arm_fi_to_lfsc(&fi); 10676 } else { 10677 env->exception.fsr = arm_fi_to_sfsc(&fi); 10678 } 10679 env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000; 10680 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr); 10681 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n", 10682 env->exception.fsr); 10683 10684 new_mode = ARM_CPU_MODE_ABT; 10685 addr = 0x10; 10686 mask = CPSR_A | CPSR_I; 10687 offset = 8; 10688 } 10689 break; 10690 case EXCP_SMC: 10691 new_mode = ARM_CPU_MODE_MON; 10692 addr = 0x08; 10693 mask = CPSR_A | CPSR_I | CPSR_F; 10694 offset = 0; 10695 break; 10696 default: 10697 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10698 return; /* Never happens. Keep compiler happy. */ 10699 } 10700 10701 if (new_mode == ARM_CPU_MODE_MON) { 10702 addr += env->cp15.mvbar; 10703 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) { 10704 /* High vectors. When enabled, base address cannot be remapped. */ 10705 addr += 0xffff0000; 10706 } else { 10707 /* 10708 * ARM v7 architectures provide a vector base address register to remap 10709 * the interrupt vector table. 10710 * This register is only followed in non-monitor mode, and is banked. 10711 * Note: only bits 31:5 are valid. 10712 */ 10713 addr += A32_BANKED_CURRENT_REG_GET(env, vbar); 10714 } 10715 10716 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) { 10717 env->cp15.scr_el3 &= ~SCR_NS; 10718 } 10719 10720 take_aarch32_exception(env, new_mode, mask, offset, addr); 10721 } 10722 10723 static int aarch64_regnum(CPUARMState *env, int aarch32_reg) 10724 { 10725 /* 10726 * Return the register number of the AArch64 view of the AArch32 10727 * register @aarch32_reg. The CPUARMState CPSR is assumed to still 10728 * be that of the AArch32 mode the exception came from. 10729 */ 10730 int mode = env->uncached_cpsr & CPSR_M; 10731 10732 switch (aarch32_reg) { 10733 case 0 ... 7: 10734 return aarch32_reg; 10735 case 8 ... 12: 10736 return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg; 10737 case 13: 10738 switch (mode) { 10739 case ARM_CPU_MODE_USR: 10740 case ARM_CPU_MODE_SYS: 10741 return 13; 10742 case ARM_CPU_MODE_HYP: 10743 return 15; 10744 case ARM_CPU_MODE_IRQ: 10745 return 17; 10746 case ARM_CPU_MODE_SVC: 10747 return 19; 10748 case ARM_CPU_MODE_ABT: 10749 return 21; 10750 case ARM_CPU_MODE_UND: 10751 return 23; 10752 case ARM_CPU_MODE_FIQ: 10753 return 29; 10754 default: 10755 g_assert_not_reached(); 10756 } 10757 case 14: 10758 switch (mode) { 10759 case ARM_CPU_MODE_USR: 10760 case ARM_CPU_MODE_SYS: 10761 case ARM_CPU_MODE_HYP: 10762 return 14; 10763 case ARM_CPU_MODE_IRQ: 10764 return 16; 10765 case ARM_CPU_MODE_SVC: 10766 return 18; 10767 case ARM_CPU_MODE_ABT: 10768 return 20; 10769 case ARM_CPU_MODE_UND: 10770 return 22; 10771 case ARM_CPU_MODE_FIQ: 10772 return 30; 10773 default: 10774 g_assert_not_reached(); 10775 } 10776 case 15: 10777 return 31; 10778 default: 10779 g_assert_not_reached(); 10780 } 10781 } 10782 10783 static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env) 10784 { 10785 uint32_t ret = cpsr_read(env); 10786 10787 /* Move DIT to the correct location for SPSR_ELx */ 10788 if (ret & CPSR_DIT) { 10789 ret &= ~CPSR_DIT; 10790 ret |= PSTATE_DIT; 10791 } 10792 /* Merge PSTATE.SS into SPSR_ELx */ 10793 ret |= env->pstate & PSTATE_SS; 10794 10795 return ret; 10796 } 10797 10798 static bool syndrome_is_sync_extabt(uint32_t syndrome) 10799 { 10800 /* Return true if this syndrome value is a synchronous external abort */ 10801 switch (syn_get_ec(syndrome)) { 10802 case EC_INSNABORT: 10803 case EC_INSNABORT_SAME_EL: 10804 case EC_DATAABORT: 10805 case EC_DATAABORT_SAME_EL: 10806 /* Look at fault status code for all the synchronous ext abort cases */ 10807 switch (syndrome & 0x3f) { 10808 case 0x10: 10809 case 0x13: 10810 case 0x14: 10811 case 0x15: 10812 case 0x16: 10813 case 0x17: 10814 return true; 10815 default: 10816 return false; 10817 } 10818 default: 10819 return false; 10820 } 10821 } 10822 10823 /* Handle exception entry to a target EL which is using AArch64 */ 10824 static void arm_cpu_do_interrupt_aarch64(CPUState *cs) 10825 { 10826 ARMCPU *cpu = ARM_CPU(cs); 10827 CPUARMState *env = &cpu->env; 10828 unsigned int new_el = env->exception.target_el; 10829 target_ulong addr = env->cp15.vbar_el[new_el]; 10830 unsigned int new_mode = aarch64_pstate_mode(new_el, true); 10831 unsigned int old_mode; 10832 unsigned int cur_el = arm_current_el(env); 10833 int rt; 10834 10835 if (tcg_enabled()) { 10836 /* 10837 * Note that new_el can never be 0. If cur_el is 0, then 10838 * el0_a64 is is_a64(), else el0_a64 is ignored. 10839 */ 10840 aarch64_sve_change_el(env, cur_el, new_el, is_a64(env)); 10841 } 10842 10843 if (cur_el < new_el) { 10844 /* 10845 * Entry vector offset depends on whether the implemented EL 10846 * immediately lower than the target level is using AArch32 or AArch64 10847 */ 10848 bool is_aa64; 10849 uint64_t hcr; 10850 10851 switch (new_el) { 10852 case 3: 10853 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0; 10854 break; 10855 case 2: 10856 hcr = arm_hcr_el2_eff(env); 10857 if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 10858 is_aa64 = (hcr & HCR_RW) != 0; 10859 break; 10860 } 10861 /* fall through */ 10862 case 1: 10863 is_aa64 = is_a64(env); 10864 break; 10865 default: 10866 g_assert_not_reached(); 10867 } 10868 10869 if (is_aa64) { 10870 addr += 0x400; 10871 } else { 10872 addr += 0x600; 10873 } 10874 } else if (pstate_read(env) & PSTATE_SP) { 10875 addr += 0x200; 10876 } 10877 10878 switch (cs->exception_index) { 10879 case EXCP_PREFETCH_ABORT: 10880 case EXCP_DATA_ABORT: 10881 /* 10882 * FEAT_DoubleFault allows synchronous external aborts taken to EL3 10883 * to be taken to the SError vector entrypoint. 10884 */ 10885 if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) && 10886 syndrome_is_sync_extabt(env->exception.syndrome)) { 10887 addr += 0x180; 10888 } 10889 env->cp15.far_el[new_el] = env->exception.vaddress; 10890 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n", 10891 env->cp15.far_el[new_el]); 10892 /* fall through */ 10893 case EXCP_BKPT: 10894 case EXCP_UDEF: 10895 case EXCP_SWI: 10896 case EXCP_HVC: 10897 case EXCP_HYP_TRAP: 10898 case EXCP_SMC: 10899 switch (syn_get_ec(env->exception.syndrome)) { 10900 case EC_ADVSIMDFPACCESSTRAP: 10901 /* 10902 * QEMU internal FP/SIMD syndromes from AArch32 include the 10903 * TA and coproc fields which are only exposed if the exception 10904 * is taken to AArch32 Hyp mode. Mask them out to get a valid 10905 * AArch64 format syndrome. 10906 */ 10907 env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20); 10908 break; 10909 case EC_CP14RTTRAP: 10910 case EC_CP15RTTRAP: 10911 case EC_CP14DTTRAP: 10912 /* 10913 * For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently 10914 * the raw register field from the insn; when taking this to 10915 * AArch64 we must convert it to the AArch64 view of the register 10916 * number. Notice that we read a 4-bit AArch32 register number and 10917 * write back a 5-bit AArch64 one. 10918 */ 10919 rt = extract32(env->exception.syndrome, 5, 4); 10920 rt = aarch64_regnum(env, rt); 10921 env->exception.syndrome = deposit32(env->exception.syndrome, 10922 5, 5, rt); 10923 break; 10924 case EC_CP15RRTTRAP: 10925 case EC_CP14RRTTRAP: 10926 /* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */ 10927 rt = extract32(env->exception.syndrome, 5, 4); 10928 rt = aarch64_regnum(env, rt); 10929 env->exception.syndrome = deposit32(env->exception.syndrome, 10930 5, 5, rt); 10931 rt = extract32(env->exception.syndrome, 10, 4); 10932 rt = aarch64_regnum(env, rt); 10933 env->exception.syndrome = deposit32(env->exception.syndrome, 10934 10, 5, rt); 10935 break; 10936 } 10937 env->cp15.esr_el[new_el] = env->exception.syndrome; 10938 break; 10939 case EXCP_IRQ: 10940 case EXCP_VIRQ: 10941 addr += 0x80; 10942 break; 10943 case EXCP_FIQ: 10944 case EXCP_VFIQ: 10945 addr += 0x100; 10946 break; 10947 case EXCP_VSERR: 10948 addr += 0x180; 10949 /* Construct the SError syndrome from IDS and ISS fields. */ 10950 env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff); 10951 env->cp15.esr_el[new_el] = env->exception.syndrome; 10952 break; 10953 default: 10954 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index); 10955 } 10956 10957 if (is_a64(env)) { 10958 old_mode = pstate_read(env); 10959 aarch64_save_sp(env, arm_current_el(env)); 10960 env->elr_el[new_el] = env->pc; 10961 } else { 10962 old_mode = cpsr_read_for_spsr_elx(env); 10963 env->elr_el[new_el] = env->regs[15]; 10964 10965 aarch64_sync_32_to_64(env); 10966 10967 env->condexec_bits = 0; 10968 } 10969 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode; 10970 10971 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n", 10972 env->elr_el[new_el]); 10973 10974 if (cpu_isar_feature(aa64_pan, cpu)) { 10975 /* The value of PSTATE.PAN is normally preserved, except when ... */ 10976 new_mode |= old_mode & PSTATE_PAN; 10977 switch (new_el) { 10978 case 2: 10979 /* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */ 10980 if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) 10981 != (HCR_E2H | HCR_TGE)) { 10982 break; 10983 } 10984 /* fall through */ 10985 case 1: 10986 /* ... the target is EL1 ... */ 10987 /* ... and SCTLR_ELx.SPAN == 0, then set to 1. */ 10988 if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) { 10989 new_mode |= PSTATE_PAN; 10990 } 10991 break; 10992 } 10993 } 10994 if (cpu_isar_feature(aa64_mte, cpu)) { 10995 new_mode |= PSTATE_TCO; 10996 } 10997 10998 if (cpu_isar_feature(aa64_ssbs, cpu)) { 10999 if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) { 11000 new_mode |= PSTATE_SSBS; 11001 } else { 11002 new_mode &= ~PSTATE_SSBS; 11003 } 11004 } 11005 11006 pstate_write(env, PSTATE_DAIF | new_mode); 11007 env->aarch64 = true; 11008 aarch64_restore_sp(env, new_el); 11009 11010 if (tcg_enabled()) { 11011 helper_rebuild_hflags_a64(env, new_el); 11012 } 11013 11014 env->pc = addr; 11015 11016 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n", 11017 new_el, env->pc, pstate_read(env)); 11018 } 11019 11020 /* 11021 * Do semihosting call and set the appropriate return value. All the 11022 * permission and validity checks have been done at translate time. 11023 * 11024 * We only see semihosting exceptions in TCG only as they are not 11025 * trapped to the hypervisor in KVM. 11026 */ 11027 #ifdef CONFIG_TCG 11028 static void tcg_handle_semihosting(CPUState *cs) 11029 { 11030 ARMCPU *cpu = ARM_CPU(cs); 11031 CPUARMState *env = &cpu->env; 11032 11033 if (is_a64(env)) { 11034 qemu_log_mask(CPU_LOG_INT, 11035 "...handling as semihosting call 0x%" PRIx64 "\n", 11036 env->xregs[0]); 11037 do_common_semihosting(cs); 11038 env->pc += 4; 11039 } else { 11040 qemu_log_mask(CPU_LOG_INT, 11041 "...handling as semihosting call 0x%x\n", 11042 env->regs[0]); 11043 do_common_semihosting(cs); 11044 env->regs[15] += env->thumb ? 2 : 4; 11045 } 11046 } 11047 #endif 11048 11049 /* 11050 * Handle a CPU exception for A and R profile CPUs. 11051 * Do any appropriate logging, handle PSCI calls, and then hand off 11052 * to the AArch64-entry or AArch32-entry function depending on the 11053 * target exception level's register width. 11054 * 11055 * Note: this is used for both TCG (as the do_interrupt tcg op), 11056 * and KVM to re-inject guest debug exceptions, and to 11057 * inject a Synchronous-External-Abort. 11058 */ 11059 void arm_cpu_do_interrupt(CPUState *cs) 11060 { 11061 ARMCPU *cpu = ARM_CPU(cs); 11062 CPUARMState *env = &cpu->env; 11063 unsigned int new_el = env->exception.target_el; 11064 11065 assert(!arm_feature(env, ARM_FEATURE_M)); 11066 11067 arm_log_exception(cs); 11068 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env), 11069 new_el); 11070 if (qemu_loglevel_mask(CPU_LOG_INT) 11071 && !excp_is_internal(cs->exception_index)) { 11072 qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n", 11073 syn_get_ec(env->exception.syndrome), 11074 env->exception.syndrome); 11075 } 11076 11077 if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) { 11078 arm_handle_psci_call(cpu); 11079 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n"); 11080 return; 11081 } 11082 11083 /* 11084 * Semihosting semantics depend on the register width of the code 11085 * that caused the exception, not the target exception level, so 11086 * must be handled here. 11087 */ 11088 #ifdef CONFIG_TCG 11089 if (cs->exception_index == EXCP_SEMIHOST) { 11090 tcg_handle_semihosting(cs); 11091 return; 11092 } 11093 #endif 11094 11095 /* 11096 * Hooks may change global state so BQL should be held, also the 11097 * BQL needs to be held for any modification of 11098 * cs->interrupt_request. 11099 */ 11100 g_assert(qemu_mutex_iothread_locked()); 11101 11102 arm_call_pre_el_change_hook(cpu); 11103 11104 assert(!excp_is_internal(cs->exception_index)); 11105 if (arm_el_is_aa64(env, new_el)) { 11106 arm_cpu_do_interrupt_aarch64(cs); 11107 } else { 11108 arm_cpu_do_interrupt_aarch32(cs); 11109 } 11110 11111 arm_call_el_change_hook(cpu); 11112 11113 if (!kvm_enabled()) { 11114 cs->interrupt_request |= CPU_INTERRUPT_EXITTB; 11115 } 11116 } 11117 #endif /* !CONFIG_USER_ONLY */ 11118 11119 uint64_t arm_sctlr(CPUARMState *env, int el) 11120 { 11121 /* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */ 11122 if (el == 0) { 11123 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0); 11124 el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1; 11125 } 11126 return env->cp15.sctlr_el[el]; 11127 } 11128 11129 int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx) 11130 { 11131 if (regime_has_2_ranges(mmu_idx)) { 11132 return extract64(tcr, 37, 2); 11133 } else if (regime_is_stage2(mmu_idx)) { 11134 return 0; /* VTCR_EL2 */ 11135 } else { 11136 /* Replicate the single TBI bit so we always have 2 bits. */ 11137 return extract32(tcr, 20, 1) * 3; 11138 } 11139 } 11140 11141 int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx) 11142 { 11143 if (regime_has_2_ranges(mmu_idx)) { 11144 return extract64(tcr, 51, 2); 11145 } else if (regime_is_stage2(mmu_idx)) { 11146 return 0; /* VTCR_EL2 */ 11147 } else { 11148 /* Replicate the single TBID bit so we always have 2 bits. */ 11149 return extract32(tcr, 29, 1) * 3; 11150 } 11151 } 11152 11153 static int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx) 11154 { 11155 if (regime_has_2_ranges(mmu_idx)) { 11156 return extract64(tcr, 57, 2); 11157 } else { 11158 /* Replicate the single TCMA bit so we always have 2 bits. */ 11159 return extract32(tcr, 30, 1) * 3; 11160 } 11161 } 11162 11163 static ARMGranuleSize tg0_to_gran_size(int tg) 11164 { 11165 switch (tg) { 11166 case 0: 11167 return Gran4K; 11168 case 1: 11169 return Gran64K; 11170 case 2: 11171 return Gran16K; 11172 default: 11173 return GranInvalid; 11174 } 11175 } 11176 11177 static ARMGranuleSize tg1_to_gran_size(int tg) 11178 { 11179 switch (tg) { 11180 case 1: 11181 return Gran16K; 11182 case 2: 11183 return Gran4K; 11184 case 3: 11185 return Gran64K; 11186 default: 11187 return GranInvalid; 11188 } 11189 } 11190 11191 static inline bool have4k(ARMCPU *cpu, bool stage2) 11192 { 11193 return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu) 11194 : cpu_isar_feature(aa64_tgran4, cpu); 11195 } 11196 11197 static inline bool have16k(ARMCPU *cpu, bool stage2) 11198 { 11199 return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu) 11200 : cpu_isar_feature(aa64_tgran16, cpu); 11201 } 11202 11203 static inline bool have64k(ARMCPU *cpu, bool stage2) 11204 { 11205 return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu) 11206 : cpu_isar_feature(aa64_tgran64, cpu); 11207 } 11208 11209 static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran, 11210 bool stage2) 11211 { 11212 switch (gran) { 11213 case Gran4K: 11214 if (have4k(cpu, stage2)) { 11215 return gran; 11216 } 11217 break; 11218 case Gran16K: 11219 if (have16k(cpu, stage2)) { 11220 return gran; 11221 } 11222 break; 11223 case Gran64K: 11224 if (have64k(cpu, stage2)) { 11225 return gran; 11226 } 11227 break; 11228 case GranInvalid: 11229 break; 11230 } 11231 /* 11232 * If the guest selects a granule size that isn't implemented, 11233 * the architecture requires that we behave as if it selected one 11234 * that is (with an IMPDEF choice of which one to pick). We choose 11235 * to implement the smallest supported granule size. 11236 */ 11237 if (have4k(cpu, stage2)) { 11238 return Gran4K; 11239 } 11240 if (have16k(cpu, stage2)) { 11241 return Gran16K; 11242 } 11243 assert(have64k(cpu, stage2)); 11244 return Gran64K; 11245 } 11246 11247 ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va, 11248 ARMMMUIdx mmu_idx, bool data) 11249 { 11250 uint64_t tcr = regime_tcr(env, mmu_idx); 11251 bool epd, hpd, tsz_oob, ds, ha, hd; 11252 int select, tsz, tbi, max_tsz, min_tsz, ps, sh; 11253 ARMGranuleSize gran; 11254 ARMCPU *cpu = env_archcpu(env); 11255 bool stage2 = regime_is_stage2(mmu_idx); 11256 11257 if (!regime_has_2_ranges(mmu_idx)) { 11258 select = 0; 11259 tsz = extract32(tcr, 0, 6); 11260 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11261 if (stage2) { 11262 /* VTCR_EL2 */ 11263 hpd = false; 11264 } else { 11265 hpd = extract32(tcr, 24, 1); 11266 } 11267 epd = false; 11268 sh = extract32(tcr, 12, 2); 11269 ps = extract32(tcr, 16, 3); 11270 ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu); 11271 hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11272 ds = extract64(tcr, 32, 1); 11273 } else { 11274 bool e0pd; 11275 11276 /* 11277 * Bit 55 is always between the two regions, and is canonical for 11278 * determining if address tagging is enabled. 11279 */ 11280 select = extract64(va, 55, 1); 11281 if (!select) { 11282 tsz = extract32(tcr, 0, 6); 11283 gran = tg0_to_gran_size(extract32(tcr, 14, 2)); 11284 epd = extract32(tcr, 7, 1); 11285 sh = extract32(tcr, 12, 2); 11286 hpd = extract64(tcr, 41, 1); 11287 e0pd = extract64(tcr, 55, 1); 11288 } else { 11289 tsz = extract32(tcr, 16, 6); 11290 gran = tg1_to_gran_size(extract32(tcr, 30, 2)); 11291 epd = extract32(tcr, 23, 1); 11292 sh = extract32(tcr, 28, 2); 11293 hpd = extract64(tcr, 42, 1); 11294 e0pd = extract64(tcr, 56, 1); 11295 } 11296 ps = extract64(tcr, 32, 3); 11297 ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu); 11298 hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu); 11299 ds = extract64(tcr, 59, 1); 11300 11301 if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) && 11302 regime_is_user(env, mmu_idx)) { 11303 epd = true; 11304 } 11305 } 11306 11307 gran = sanitize_gran_size(cpu, gran, stage2); 11308 11309 if (cpu_isar_feature(aa64_st, cpu)) { 11310 max_tsz = 48 - (gran == Gran64K); 11311 } else { 11312 max_tsz = 39; 11313 } 11314 11315 /* 11316 * DS is RES0 unless FEAT_LPA2 is supported for the given page size; 11317 * adjust the effective value of DS, as documented. 11318 */ 11319 min_tsz = 16; 11320 if (gran == Gran64K) { 11321 if (cpu_isar_feature(aa64_lva, cpu)) { 11322 min_tsz = 12; 11323 } 11324 ds = false; 11325 } else if (ds) { 11326 if (regime_is_stage2(mmu_idx)) { 11327 if (gran == Gran16K) { 11328 ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu); 11329 } else { 11330 ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu); 11331 } 11332 } else { 11333 if (gran == Gran16K) { 11334 ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu); 11335 } else { 11336 ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu); 11337 } 11338 } 11339 if (ds) { 11340 min_tsz = 12; 11341 } 11342 } 11343 11344 if (tsz > max_tsz) { 11345 tsz = max_tsz; 11346 tsz_oob = true; 11347 } else if (tsz < min_tsz) { 11348 tsz = min_tsz; 11349 tsz_oob = true; 11350 } else { 11351 tsz_oob = false; 11352 } 11353 11354 /* Present TBI as a composite with TBID. */ 11355 tbi = aa64_va_parameter_tbi(tcr, mmu_idx); 11356 if (!data) { 11357 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx); 11358 } 11359 tbi = (tbi >> select) & 1; 11360 11361 return (ARMVAParameters) { 11362 .tsz = tsz, 11363 .ps = ps, 11364 .sh = sh, 11365 .select = select, 11366 .tbi = tbi, 11367 .epd = epd, 11368 .hpd = hpd, 11369 .tsz_oob = tsz_oob, 11370 .ds = ds, 11371 .ha = ha, 11372 .hd = ha && hd, 11373 .gran = gran, 11374 }; 11375 } 11376 11377 /* 11378 * Note that signed overflow is undefined in C. The following routines are 11379 * careful to use unsigned types where modulo arithmetic is required. 11380 * Failure to do so _will_ break on newer gcc. 11381 */ 11382 11383 /* Signed saturating arithmetic. */ 11384 11385 /* Perform 16-bit signed saturating addition. */ 11386 static inline uint16_t add16_sat(uint16_t a, uint16_t b) 11387 { 11388 uint16_t res; 11389 11390 res = a + b; 11391 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) { 11392 if (a & 0x8000) { 11393 res = 0x8000; 11394 } else { 11395 res = 0x7fff; 11396 } 11397 } 11398 return res; 11399 } 11400 11401 /* Perform 8-bit signed saturating addition. */ 11402 static inline uint8_t add8_sat(uint8_t a, uint8_t b) 11403 { 11404 uint8_t res; 11405 11406 res = a + b; 11407 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) { 11408 if (a & 0x80) { 11409 res = 0x80; 11410 } else { 11411 res = 0x7f; 11412 } 11413 } 11414 return res; 11415 } 11416 11417 /* Perform 16-bit signed saturating subtraction. */ 11418 static inline uint16_t sub16_sat(uint16_t a, uint16_t b) 11419 { 11420 uint16_t res; 11421 11422 res = a - b; 11423 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) { 11424 if (a & 0x8000) { 11425 res = 0x8000; 11426 } else { 11427 res = 0x7fff; 11428 } 11429 } 11430 return res; 11431 } 11432 11433 /* Perform 8-bit signed saturating subtraction. */ 11434 static inline uint8_t sub8_sat(uint8_t a, uint8_t b) 11435 { 11436 uint8_t res; 11437 11438 res = a - b; 11439 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) { 11440 if (a & 0x80) { 11441 res = 0x80; 11442 } else { 11443 res = 0x7f; 11444 } 11445 } 11446 return res; 11447 } 11448 11449 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16); 11450 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16); 11451 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8); 11452 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8); 11453 #define PFX q 11454 11455 #include "op_addsub.h" 11456 11457 /* Unsigned saturating arithmetic. */ 11458 static inline uint16_t add16_usat(uint16_t a, uint16_t b) 11459 { 11460 uint16_t res; 11461 res = a + b; 11462 if (res < a) { 11463 res = 0xffff; 11464 } 11465 return res; 11466 } 11467 11468 static inline uint16_t sub16_usat(uint16_t a, uint16_t b) 11469 { 11470 if (a > b) { 11471 return a - b; 11472 } else { 11473 return 0; 11474 } 11475 } 11476 11477 static inline uint8_t add8_usat(uint8_t a, uint8_t b) 11478 { 11479 uint8_t res; 11480 res = a + b; 11481 if (res < a) { 11482 res = 0xff; 11483 } 11484 return res; 11485 } 11486 11487 static inline uint8_t sub8_usat(uint8_t a, uint8_t b) 11488 { 11489 if (a > b) { 11490 return a - b; 11491 } else { 11492 return 0; 11493 } 11494 } 11495 11496 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16); 11497 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16); 11498 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8); 11499 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8); 11500 #define PFX uq 11501 11502 #include "op_addsub.h" 11503 11504 /* Signed modulo arithmetic. */ 11505 #define SARITH16(a, b, n, op) do { \ 11506 int32_t sum; \ 11507 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \ 11508 RESULT(sum, n, 16); \ 11509 if (sum >= 0) \ 11510 ge |= 3 << (n * 2); \ 11511 } while (0) 11512 11513 #define SARITH8(a, b, n, op) do { \ 11514 int32_t sum; \ 11515 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \ 11516 RESULT(sum, n, 8); \ 11517 if (sum >= 0) \ 11518 ge |= 1 << n; \ 11519 } while (0) 11520 11521 11522 #define ADD16(a, b, n) SARITH16(a, b, n, +) 11523 #define SUB16(a, b, n) SARITH16(a, b, n, -) 11524 #define ADD8(a, b, n) SARITH8(a, b, n, +) 11525 #define SUB8(a, b, n) SARITH8(a, b, n, -) 11526 #define PFX s 11527 #define ARITH_GE 11528 11529 #include "op_addsub.h" 11530 11531 /* Unsigned modulo arithmetic. */ 11532 #define ADD16(a, b, n) do { \ 11533 uint32_t sum; \ 11534 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \ 11535 RESULT(sum, n, 16); \ 11536 if ((sum >> 16) == 1) \ 11537 ge |= 3 << (n * 2); \ 11538 } while (0) 11539 11540 #define ADD8(a, b, n) do { \ 11541 uint32_t sum; \ 11542 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \ 11543 RESULT(sum, n, 8); \ 11544 if ((sum >> 8) == 1) \ 11545 ge |= 1 << n; \ 11546 } while (0) 11547 11548 #define SUB16(a, b, n) do { \ 11549 uint32_t sum; \ 11550 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \ 11551 RESULT(sum, n, 16); \ 11552 if ((sum >> 16) == 0) \ 11553 ge |= 3 << (n * 2); \ 11554 } while (0) 11555 11556 #define SUB8(a, b, n) do { \ 11557 uint32_t sum; \ 11558 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \ 11559 RESULT(sum, n, 8); \ 11560 if ((sum >> 8) == 0) \ 11561 ge |= 1 << n; \ 11562 } while (0) 11563 11564 #define PFX u 11565 #define ARITH_GE 11566 11567 #include "op_addsub.h" 11568 11569 /* Halved signed arithmetic. */ 11570 #define ADD16(a, b, n) \ 11571 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16) 11572 #define SUB16(a, b, n) \ 11573 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16) 11574 #define ADD8(a, b, n) \ 11575 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8) 11576 #define SUB8(a, b, n) \ 11577 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8) 11578 #define PFX sh 11579 11580 #include "op_addsub.h" 11581 11582 /* Halved unsigned arithmetic. */ 11583 #define ADD16(a, b, n) \ 11584 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11585 #define SUB16(a, b, n) \ 11586 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16) 11587 #define ADD8(a, b, n) \ 11588 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11589 #define SUB8(a, b, n) \ 11590 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8) 11591 #define PFX uh 11592 11593 #include "op_addsub.h" 11594 11595 static inline uint8_t do_usad(uint8_t a, uint8_t b) 11596 { 11597 if (a > b) { 11598 return a - b; 11599 } else { 11600 return b - a; 11601 } 11602 } 11603 11604 /* Unsigned sum of absolute byte differences. */ 11605 uint32_t HELPER(usad8)(uint32_t a, uint32_t b) 11606 { 11607 uint32_t sum; 11608 sum = do_usad(a, b); 11609 sum += do_usad(a >> 8, b >> 8); 11610 sum += do_usad(a >> 16, b >> 16); 11611 sum += do_usad(a >> 24, b >> 24); 11612 return sum; 11613 } 11614 11615 /* For ARMv6 SEL instruction. */ 11616 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b) 11617 { 11618 uint32_t mask; 11619 11620 mask = 0; 11621 if (flags & 1) { 11622 mask |= 0xff; 11623 } 11624 if (flags & 2) { 11625 mask |= 0xff00; 11626 } 11627 if (flags & 4) { 11628 mask |= 0xff0000; 11629 } 11630 if (flags & 8) { 11631 mask |= 0xff000000; 11632 } 11633 return (a & mask) | (b & ~mask); 11634 } 11635 11636 /* 11637 * CRC helpers. 11638 * The upper bytes of val (above the number specified by 'bytes') must have 11639 * been zeroed out by the caller. 11640 */ 11641 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes) 11642 { 11643 uint8_t buf[4]; 11644 11645 stl_le_p(buf, val); 11646 11647 /* zlib crc32 converts the accumulator and output to one's complement. */ 11648 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff; 11649 } 11650 11651 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes) 11652 { 11653 uint8_t buf[4]; 11654 11655 stl_le_p(buf, val); 11656 11657 /* Linux crc32c converts the output to one's complement. */ 11658 return crc32c(acc, buf, bytes) ^ 0xffffffff; 11659 } 11660 11661 /* 11662 * Return the exception level to which FP-disabled exceptions should 11663 * be taken, or 0 if FP is enabled. 11664 */ 11665 int fp_exception_el(CPUARMState *env, int cur_el) 11666 { 11667 #ifndef CONFIG_USER_ONLY 11668 uint64_t hcr_el2; 11669 11670 /* 11671 * CPACR and the CPTR registers don't exist before v6, so FP is 11672 * always accessible 11673 */ 11674 if (!arm_feature(env, ARM_FEATURE_V6)) { 11675 return 0; 11676 } 11677 11678 if (arm_feature(env, ARM_FEATURE_M)) { 11679 /* CPACR can cause a NOCP UsageFault taken to current security state */ 11680 if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) { 11681 return 1; 11682 } 11683 11684 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) { 11685 if (!extract32(env->v7m.nsacr, 10, 1)) { 11686 /* FP insns cause a NOCP UsageFault taken to Secure */ 11687 return 3; 11688 } 11689 } 11690 11691 return 0; 11692 } 11693 11694 hcr_el2 = arm_hcr_el2_eff(env); 11695 11696 /* 11697 * The CPACR controls traps to EL1, or PL1 if we're 32 bit: 11698 * 0, 2 : trap EL0 and EL1/PL1 accesses 11699 * 1 : trap only EL0 accesses 11700 * 3 : trap no accesses 11701 * This register is ignored if E2H+TGE are both set. 11702 */ 11703 if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11704 int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN); 11705 11706 switch (fpen) { 11707 case 1: 11708 if (cur_el != 0) { 11709 break; 11710 } 11711 /* fall through */ 11712 case 0: 11713 case 2: 11714 /* Trap from Secure PL0 or PL1 to Secure PL1. */ 11715 if (!arm_el_is_aa64(env, 3) 11716 && (cur_el == 3 || arm_is_secure_below_el3(env))) { 11717 return 3; 11718 } 11719 if (cur_el <= 1) { 11720 return 1; 11721 } 11722 break; 11723 } 11724 } 11725 11726 /* 11727 * The NSACR allows A-profile AArch32 EL3 and M-profile secure mode 11728 * to control non-secure access to the FPU. It doesn't have any 11729 * effect if EL3 is AArch64 or if EL3 doesn't exist at all. 11730 */ 11731 if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) && 11732 cur_el <= 2 && !arm_is_secure_below_el3(env))) { 11733 if (!extract32(env->cp15.nsacr, 10, 1)) { 11734 /* FP insns act as UNDEF */ 11735 return cur_el == 2 ? 2 : 1; 11736 } 11737 } 11738 11739 /* 11740 * CPTR_EL2 is present in v7VE or v8, and changes format 11741 * with HCR_EL2.E2H (regardless of TGE). 11742 */ 11743 if (cur_el <= 2) { 11744 if (hcr_el2 & HCR_E2H) { 11745 switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) { 11746 case 1: 11747 if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) { 11748 break; 11749 } 11750 /* fall through */ 11751 case 0: 11752 case 2: 11753 return 2; 11754 } 11755 } else if (arm_is_el2_enabled(env)) { 11756 if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) { 11757 return 2; 11758 } 11759 } 11760 } 11761 11762 /* CPTR_EL3 : present in v8 */ 11763 if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) { 11764 /* Trap all FP ops to EL3 */ 11765 return 3; 11766 } 11767 #endif 11768 return 0; 11769 } 11770 11771 /* Return the exception level we're running at if this is our mmu_idx */ 11772 int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx) 11773 { 11774 if (mmu_idx & ARM_MMU_IDX_M) { 11775 return mmu_idx & ARM_MMU_IDX_M_PRIV; 11776 } 11777 11778 switch (mmu_idx) { 11779 case ARMMMUIdx_E10_0: 11780 case ARMMMUIdx_E20_0: 11781 return 0; 11782 case ARMMMUIdx_E10_1: 11783 case ARMMMUIdx_E10_1_PAN: 11784 return 1; 11785 case ARMMMUIdx_E2: 11786 case ARMMMUIdx_E20_2: 11787 case ARMMMUIdx_E20_2_PAN: 11788 return 2; 11789 case ARMMMUIdx_E3: 11790 return 3; 11791 default: 11792 g_assert_not_reached(); 11793 } 11794 } 11795 11796 #ifndef CONFIG_TCG 11797 ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate) 11798 { 11799 g_assert_not_reached(); 11800 } 11801 #endif 11802 11803 static bool arm_pan_enabled(CPUARMState *env) 11804 { 11805 if (is_a64(env)) { 11806 return env->pstate & PSTATE_PAN; 11807 } else { 11808 return env->uncached_cpsr & CPSR_PAN; 11809 } 11810 } 11811 11812 ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el) 11813 { 11814 ARMMMUIdx idx; 11815 uint64_t hcr; 11816 11817 if (arm_feature(env, ARM_FEATURE_M)) { 11818 return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure); 11819 } 11820 11821 /* See ARM pseudo-function ELIsInHost. */ 11822 switch (el) { 11823 case 0: 11824 hcr = arm_hcr_el2_eff(env); 11825 if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) { 11826 idx = ARMMMUIdx_E20_0; 11827 } else { 11828 idx = ARMMMUIdx_E10_0; 11829 } 11830 break; 11831 case 1: 11832 if (arm_pan_enabled(env)) { 11833 idx = ARMMMUIdx_E10_1_PAN; 11834 } else { 11835 idx = ARMMMUIdx_E10_1; 11836 } 11837 break; 11838 case 2: 11839 /* Note that TGE does not apply at EL2. */ 11840 if (arm_hcr_el2_eff(env) & HCR_E2H) { 11841 if (arm_pan_enabled(env)) { 11842 idx = ARMMMUIdx_E20_2_PAN; 11843 } else { 11844 idx = ARMMMUIdx_E20_2; 11845 } 11846 } else { 11847 idx = ARMMMUIdx_E2; 11848 } 11849 break; 11850 case 3: 11851 return ARMMMUIdx_E3; 11852 default: 11853 g_assert_not_reached(); 11854 } 11855 11856 return idx; 11857 } 11858 11859 ARMMMUIdx arm_mmu_idx(CPUARMState *env) 11860 { 11861 return arm_mmu_idx_el(env, arm_current_el(env)); 11862 } 11863 11864 static inline bool fgt_svc(CPUARMState *env, int el) 11865 { 11866 /* 11867 * Assuming fine-grained-traps are active, return true if we 11868 * should be trapping on SVC instructions. Only AArch64 can 11869 * trap on an SVC at EL1, but we don't need to special-case this 11870 * because if this is AArch32 EL1 then arm_fgt_active() is false. 11871 * We also know el is 0 or 1. 11872 */ 11873 return el == 0 ? 11874 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) : 11875 FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1); 11876 } 11877 11878 static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, 11879 ARMMMUIdx mmu_idx, 11880 CPUARMTBFlags flags) 11881 { 11882 DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); 11883 DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); 11884 11885 if (arm_singlestep_active(env)) { 11886 DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); 11887 } 11888 11889 return flags; 11890 } 11891 11892 static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, 11893 ARMMMUIdx mmu_idx, 11894 CPUARMTBFlags flags) 11895 { 11896 bool sctlr_b = arm_sctlr_b(env); 11897 11898 if (sctlr_b) { 11899 DP_TBFLAG_A32(flags, SCTLR__B, 1); 11900 } 11901 if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { 11902 DP_TBFLAG_ANY(flags, BE_DATA, 1); 11903 } 11904 DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); 11905 11906 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 11907 } 11908 11909 static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, 11910 ARMMMUIdx mmu_idx) 11911 { 11912 CPUARMTBFlags flags = {}; 11913 uint32_t ccr = env->v7m.ccr[env->v7m.secure]; 11914 11915 /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ 11916 if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { 11917 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11918 } 11919 11920 if (arm_v7m_is_handler_mode(env)) { 11921 DP_TBFLAG_M32(flags, HANDLER, 1); 11922 } 11923 11924 /* 11925 * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN 11926 * is suppressing them because the requested execution priority 11927 * is less than 0. 11928 */ 11929 if (arm_feature(env, ARM_FEATURE_V8) && 11930 !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && 11931 (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { 11932 DP_TBFLAG_M32(flags, STACKCHECK, 1); 11933 } 11934 11935 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { 11936 DP_TBFLAG_M32(flags, SECURE, 1); 11937 } 11938 11939 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11940 } 11941 11942 static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, 11943 ARMMMUIdx mmu_idx) 11944 { 11945 CPUARMTBFlags flags = {}; 11946 int el = arm_current_el(env); 11947 11948 if (arm_sctlr(env, el) & SCTLR_A) { 11949 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 11950 } 11951 11952 if (arm_el_is_aa64(env, 1)) { 11953 DP_TBFLAG_A32(flags, VFPEN, 1); 11954 } 11955 11956 if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) && 11957 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { 11958 DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); 11959 } 11960 11961 if (arm_fgt_active(env, el)) { 11962 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 11963 if (fgt_svc(env, el)) { 11964 DP_TBFLAG_ANY(flags, FGT_SVC, 1); 11965 } 11966 } 11967 11968 if (env->uncached_cpsr & CPSR_IL) { 11969 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 11970 } 11971 11972 /* 11973 * The SME exception we are testing for is raised via 11974 * AArch64.CheckFPAdvSIMDEnabled(), as called from 11975 * AArch32.CheckAdvSIMDOrFPEnabled(). 11976 */ 11977 if (el == 0 11978 && FIELD_EX64(env->svcr, SVCR, SM) 11979 && (!arm_is_el2_enabled(env) 11980 || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) 11981 && arm_el_is_aa64(env, 1) 11982 && !sme_fa64(env, el)) { 11983 DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); 11984 } 11985 11986 return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); 11987 } 11988 11989 static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, 11990 ARMMMUIdx mmu_idx) 11991 { 11992 CPUARMTBFlags flags = {}; 11993 ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); 11994 uint64_t tcr = regime_tcr(env, mmu_idx); 11995 uint64_t sctlr; 11996 int tbii, tbid; 11997 11998 DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); 11999 12000 /* Get control bits for tagged addresses. */ 12001 tbid = aa64_va_parameter_tbi(tcr, mmu_idx); 12002 tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); 12003 12004 DP_TBFLAG_A64(flags, TBII, tbii); 12005 DP_TBFLAG_A64(flags, TBID, tbid); 12006 12007 if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { 12008 int sve_el = sve_exception_el(env, el); 12009 12010 /* 12011 * If either FP or SVE are disabled, translator does not need len. 12012 * If SVE EL > FP EL, FP exception has precedence, and translator 12013 * does not need SVE EL. Save potential re-translations by forcing 12014 * the unneeded data to zero. 12015 */ 12016 if (fp_el != 0) { 12017 if (sve_el > fp_el) { 12018 sve_el = 0; 12019 } 12020 } else if (sve_el == 0) { 12021 DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); 12022 } 12023 DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); 12024 } 12025 if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { 12026 int sme_el = sme_exception_el(env, el); 12027 bool sm = FIELD_EX64(env->svcr, SVCR, SM); 12028 12029 DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); 12030 if (sme_el == 0) { 12031 /* Similarly, do not compute SVL if SME is disabled. */ 12032 int svl = sve_vqm1_for_el_sm(env, el, true); 12033 DP_TBFLAG_A64(flags, SVL, svl); 12034 if (sm) { 12035 /* If SVE is disabled, we will not have set VL above. */ 12036 DP_TBFLAG_A64(flags, VL, svl); 12037 } 12038 } 12039 if (sm) { 12040 DP_TBFLAG_A64(flags, PSTATE_SM, 1); 12041 DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); 12042 } 12043 DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); 12044 } 12045 12046 sctlr = regime_sctlr(env, stage1); 12047 12048 if (sctlr & SCTLR_A) { 12049 DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); 12050 } 12051 12052 if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { 12053 DP_TBFLAG_ANY(flags, BE_DATA, 1); 12054 } 12055 12056 if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { 12057 /* 12058 * In order to save space in flags, we record only whether 12059 * pauth is "inactive", meaning all insns are implemented as 12060 * a nop, or "active" when some action must be performed. 12061 * The decision of which action to take is left to a helper. 12062 */ 12063 if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { 12064 DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); 12065 } 12066 } 12067 12068 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12069 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ 12070 if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { 12071 DP_TBFLAG_A64(flags, BT, 1); 12072 } 12073 } 12074 12075 /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ 12076 if (!(env->pstate & PSTATE_UAO)) { 12077 switch (mmu_idx) { 12078 case ARMMMUIdx_E10_1: 12079 case ARMMMUIdx_E10_1_PAN: 12080 /* TODO: ARMv8.3-NV */ 12081 DP_TBFLAG_A64(flags, UNPRIV, 1); 12082 break; 12083 case ARMMMUIdx_E20_2: 12084 case ARMMMUIdx_E20_2_PAN: 12085 /* 12086 * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is 12087 * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. 12088 */ 12089 if (env->cp15.hcr_el2 & HCR_TGE) { 12090 DP_TBFLAG_A64(flags, UNPRIV, 1); 12091 } 12092 break; 12093 default: 12094 break; 12095 } 12096 } 12097 12098 if (env->pstate & PSTATE_IL) { 12099 DP_TBFLAG_ANY(flags, PSTATE__IL, 1); 12100 } 12101 12102 if (arm_fgt_active(env, el)) { 12103 DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); 12104 if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) { 12105 DP_TBFLAG_A64(flags, FGT_ERET, 1); 12106 } 12107 if (fgt_svc(env, el)) { 12108 DP_TBFLAG_ANY(flags, FGT_SVC, 1); 12109 } 12110 } 12111 12112 if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { 12113 /* 12114 * Set MTE_ACTIVE if any access may be Checked, and leave clear 12115 * if all accesses must be Unchecked: 12116 * 1) If no TBI, then there are no tags in the address to check, 12117 * 2) If Tag Check Override, then all accesses are Unchecked, 12118 * 3) If Tag Check Fail == 0, then Checked access have no effect, 12119 * 4) If no Allocation Tag Access, then all accesses are Unchecked. 12120 */ 12121 if (allocation_tag_access_enabled(env, el, sctlr)) { 12122 DP_TBFLAG_A64(flags, ATA, 1); 12123 if (tbid 12124 && !(env->pstate & PSTATE_TCO) 12125 && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { 12126 DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); 12127 } 12128 } 12129 /* And again for unprivileged accesses, if required. */ 12130 if (EX_TBFLAG_A64(flags, UNPRIV) 12131 && tbid 12132 && !(env->pstate & PSTATE_TCO) 12133 && (sctlr & SCTLR_TCF0) 12134 && allocation_tag_access_enabled(env, 0, sctlr)) { 12135 DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); 12136 } 12137 /* Cache TCMA as well as TBI. */ 12138 DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); 12139 } 12140 12141 return rebuild_hflags_common(env, fp_el, mmu_idx, flags); 12142 } 12143 12144 static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) 12145 { 12146 int el = arm_current_el(env); 12147 int fp_el = fp_exception_el(env, el); 12148 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12149 12150 if (is_a64(env)) { 12151 return rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12152 } else if (arm_feature(env, ARM_FEATURE_M)) { 12153 return rebuild_hflags_m32(env, fp_el, mmu_idx); 12154 } else { 12155 return rebuild_hflags_a32(env, fp_el, mmu_idx); 12156 } 12157 } 12158 12159 void arm_rebuild_hflags(CPUARMState *env) 12160 { 12161 env->hflags = rebuild_hflags_internal(env); 12162 } 12163 12164 /* 12165 * If we have triggered a EL state change we can't rely on the 12166 * translator having passed it to us, we need to recompute. 12167 */ 12168 void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) 12169 { 12170 int el = arm_current_el(env); 12171 int fp_el = fp_exception_el(env, el); 12172 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12173 12174 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12175 } 12176 12177 void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) 12178 { 12179 int fp_el = fp_exception_el(env, el); 12180 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12181 12182 env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); 12183 } 12184 12185 /* 12186 * If we have triggered a EL state change we can't rely on the 12187 * translator having passed it to us, we need to recompute. 12188 */ 12189 void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) 12190 { 12191 int el = arm_current_el(env); 12192 int fp_el = fp_exception_el(env, el); 12193 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12194 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12195 } 12196 12197 void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) 12198 { 12199 int fp_el = fp_exception_el(env, el); 12200 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12201 12202 env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); 12203 } 12204 12205 void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) 12206 { 12207 int fp_el = fp_exception_el(env, el); 12208 ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); 12209 12210 env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); 12211 } 12212 12213 static inline void assert_hflags_rebuild_correctly(CPUARMState *env) 12214 { 12215 #ifdef CONFIG_DEBUG_TCG 12216 CPUARMTBFlags c = env->hflags; 12217 CPUARMTBFlags r = rebuild_hflags_internal(env); 12218 12219 if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { 12220 fprintf(stderr, "TCG hflags mismatch " 12221 "(current:(0x%08x,0x" TARGET_FMT_lx ")" 12222 " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", 12223 c.flags, c.flags2, r.flags, r.flags2); 12224 abort(); 12225 } 12226 #endif 12227 } 12228 12229 static bool mve_no_pred(CPUARMState *env) 12230 { 12231 /* 12232 * Return true if there is definitely no predication of MVE 12233 * instructions by VPR or LTPSIZE. (Returning false even if there 12234 * isn't any predication is OK; generated code will just be 12235 * a little worse.) 12236 * If the CPU does not implement MVE then this TB flag is always 0. 12237 * 12238 * NOTE: if you change this logic, the "recalculate s->mve_no_pred" 12239 * logic in gen_update_fp_context() needs to be updated to match. 12240 * 12241 * We do not include the effect of the ECI bits here -- they are 12242 * tracked in other TB flags. This simplifies the logic for 12243 * "when did we emit code that changes the MVE_NO_PRED TB flag 12244 * and thus need to end the TB?". 12245 */ 12246 if (cpu_isar_feature(aa32_mve, env_archcpu(env))) { 12247 return false; 12248 } 12249 if (env->v7m.vpr) { 12250 return false; 12251 } 12252 if (env->v7m.ltpsize < 4) { 12253 return false; 12254 } 12255 return true; 12256 } 12257 12258 void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc, 12259 target_ulong *cs_base, uint32_t *pflags) 12260 { 12261 CPUARMTBFlags flags; 12262 12263 assert_hflags_rebuild_correctly(env); 12264 flags = env->hflags; 12265 12266 if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) { 12267 *pc = env->pc; 12268 if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { 12269 DP_TBFLAG_A64(flags, BTYPE, env->btype); 12270 } 12271 } else { 12272 *pc = env->regs[15]; 12273 12274 if (arm_feature(env, ARM_FEATURE_M)) { 12275 if (arm_feature(env, ARM_FEATURE_M_SECURITY) && 12276 FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S) 12277 != env->v7m.secure) { 12278 DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1); 12279 } 12280 12281 if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) && 12282 (!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) || 12283 (env->v7m.secure && 12284 !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) { 12285 /* 12286 * ASPEN is set, but FPCA/SFPA indicate that there is no 12287 * active FP context; we must create a new FP context before 12288 * executing any FP insn. 12289 */ 12290 DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1); 12291 } 12292 12293 bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK; 12294 if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) { 12295 DP_TBFLAG_M32(flags, LSPACT, 1); 12296 } 12297 12298 if (mve_no_pred(env)) { 12299 DP_TBFLAG_M32(flags, MVE_NO_PRED, 1); 12300 } 12301 } else { 12302 /* 12303 * Note that XSCALE_CPAR shares bits with VECSTRIDE. 12304 * Note that VECLEN+VECSTRIDE are RES0 for M-profile. 12305 */ 12306 if (arm_feature(env, ARM_FEATURE_XSCALE)) { 12307 DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar); 12308 } else { 12309 DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len); 12310 DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride); 12311 } 12312 if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) { 12313 DP_TBFLAG_A32(flags, VFPEN, 1); 12314 } 12315 } 12316 12317 DP_TBFLAG_AM32(flags, THUMB, env->thumb); 12318 DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits); 12319 } 12320 12321 /* 12322 * The SS_ACTIVE and PSTATE_SS bits correspond to the state machine 12323 * states defined in the ARM ARM for software singlestep: 12324 * SS_ACTIVE PSTATE.SS State 12325 * 0 x Inactive (the TB flag for SS is always 0) 12326 * 1 0 Active-pending 12327 * 1 1 Active-not-pending 12328 * SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB. 12329 */ 12330 if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) { 12331 DP_TBFLAG_ANY(flags, PSTATE__SS, 1); 12332 } 12333 12334 *pflags = flags.flags; 12335 *cs_base = flags.flags2; 12336 } 12337 12338 #ifdef TARGET_AARCH64 12339 /* 12340 * The manual says that when SVE is enabled and VQ is widened the 12341 * implementation is allowed to zero the previously inaccessible 12342 * portion of the registers. The corollary to that is that when 12343 * SVE is enabled and VQ is narrowed we are also allowed to zero 12344 * the now inaccessible portion of the registers. 12345 * 12346 * The intent of this is that no predicate bit beyond VQ is ever set. 12347 * Which means that some operations on predicate registers themselves 12348 * may operate on full uint64_t or even unrolled across the maximum 12349 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally 12350 * may well be cheaper than conditionals to restrict the operation 12351 * to the relevant portion of a uint16_t[16]. 12352 */ 12353 void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq) 12354 { 12355 int i, j; 12356 uint64_t pmask; 12357 12358 assert(vq >= 1 && vq <= ARM_MAX_VQ); 12359 assert(vq <= env_archcpu(env)->sve_max_vq); 12360 12361 /* Zap the high bits of the zregs. */ 12362 for (i = 0; i < 32; i++) { 12363 memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq)); 12364 } 12365 12366 /* Zap the high bits of the pregs and ffr. */ 12367 pmask = 0; 12368 if (vq & 3) { 12369 pmask = ~(-1ULL << (16 * (vq & 3))); 12370 } 12371 for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) { 12372 for (i = 0; i < 17; ++i) { 12373 env->vfp.pregs[i].p[j] &= pmask; 12374 } 12375 pmask = 0; 12376 } 12377 } 12378 12379 static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm) 12380 { 12381 int exc_el; 12382 12383 if (sm) { 12384 exc_el = sme_exception_el(env, el); 12385 } else { 12386 exc_el = sve_exception_el(env, el); 12387 } 12388 if (exc_el) { 12389 return 0; /* disabled */ 12390 } 12391 return sve_vqm1_for_el_sm(env, el, sm); 12392 } 12393 12394 /* 12395 * Notice a change in SVE vector size when changing EL. 12396 */ 12397 void aarch64_sve_change_el(CPUARMState *env, int old_el, 12398 int new_el, bool el0_a64) 12399 { 12400 ARMCPU *cpu = env_archcpu(env); 12401 int old_len, new_len; 12402 bool old_a64, new_a64, sm; 12403 12404 /* Nothing to do if no SVE. */ 12405 if (!cpu_isar_feature(aa64_sve, cpu)) { 12406 return; 12407 } 12408 12409 /* Nothing to do if FP is disabled in either EL. */ 12410 if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) { 12411 return; 12412 } 12413 12414 old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64; 12415 new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64; 12416 12417 /* 12418 * Both AArch64.TakeException and AArch64.ExceptionReturn 12419 * invoke ResetSVEState when taking an exception from, or 12420 * returning to, AArch32 state when PSTATE.SM is enabled. 12421 */ 12422 sm = FIELD_EX64(env->svcr, SVCR, SM); 12423 if (old_a64 != new_a64 && sm) { 12424 arm_reset_sve_state(env); 12425 return; 12426 } 12427 12428 /* 12429 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped 12430 * at ELx, or not available because the EL is in AArch32 state, then 12431 * for all purposes other than a direct read, the ZCR_ELx.LEN field 12432 * has an effective value of 0". 12433 * 12434 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0). 12435 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition 12436 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that 12437 * we already have the correct register contents when encountering the 12438 * vq0->vq0 transition between EL0->EL1. 12439 */ 12440 old_len = new_len = 0; 12441 if (old_a64) { 12442 old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm); 12443 } 12444 if (new_a64) { 12445 new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm); 12446 } 12447 12448 /* When changing vector length, clear inaccessible state. */ 12449 if (new_len < old_len) { 12450 aarch64_sve_narrow_vq(env, new_len + 1); 12451 } 12452 } 12453 #endif 12454